]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
linux-user: Add support for setsockopt() options IPV6_<ADD|DROP>_MEMBERSHIP
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
30ab9ef2 6#include <sys/shm.h>
31e31b8a 7
3ef693a0 8#include "qemu.h"
76cad711 9#include "disas/disas.h"
f348b6d1 10#include "qemu/path.h"
c6a2377f 11#include "qemu/guest-random.h"
31e31b8a 12
e58ffeb3 13#ifdef _ARCH_PPC64
a6cc84f4 14#undef ARCH_DLINFO
15#undef ELF_PLATFORM
16#undef ELF_HWCAP
ad6919dc 17#undef ELF_HWCAP2
a6cc84f4 18#undef ELF_CLASS
19#undef ELF_DATA
20#undef ELF_ARCH
21#endif
22
edf8e2af
MW
23#define ELF_OSABI ELFOSABI_SYSV
24
cb33da57
BS
25/* from personality.h */
26
27/*
28 * Flags for bug emulation.
29 *
30 * These occupy the top three bytes.
31 */
32enum {
d97ef72e
RH
33 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
34 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
35 descriptors (signal handling) */
36 MMAP_PAGE_ZERO = 0x0100000,
37 ADDR_COMPAT_LAYOUT = 0x0200000,
38 READ_IMPLIES_EXEC = 0x0400000,
39 ADDR_LIMIT_32BIT = 0x0800000,
40 SHORT_INODE = 0x1000000,
41 WHOLE_SECONDS = 0x2000000,
42 STICKY_TIMEOUTS = 0x4000000,
43 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
44};
45
46/*
47 * Personality types.
48 *
49 * These go in the low byte. Avoid using the top bit, it will
50 * conflict with error returns.
51 */
52enum {
d97ef72e
RH
53 PER_LINUX = 0x0000,
54 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
55 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
56 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
57 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
58 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
59 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
60 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
61 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
62 PER_BSD = 0x0006,
63 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
64 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
65 PER_LINUX32 = 0x0008,
66 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
67 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
68 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
69 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
70 PER_RISCOS = 0x000c,
71 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
72 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
73 PER_OSF4 = 0x000f, /* OSF/1 v4 */
74 PER_HPUX = 0x0010,
75 PER_MASK = 0x00ff,
cb33da57
BS
76};
77
78/*
79 * Return the base personality without flags.
80 */
d97ef72e 81#define personality(pers) (pers & PER_MASK)
cb33da57 82
3cb10cfa
CL
83int info_is_fdpic(struct image_info *info)
84{
85 return info->personality == PER_LINUX_FDPIC;
86}
87
83fb7adf
FB
88/* this flag is uneffective under linux too, should be deleted */
89#ifndef MAP_DENYWRITE
90#define MAP_DENYWRITE 0
91#endif
92
93/* should probably go in elf.h */
94#ifndef ELIBBAD
95#define ELIBBAD 80
96#endif
97
28490231
RH
98#ifdef TARGET_WORDS_BIGENDIAN
99#define ELF_DATA ELFDATA2MSB
100#else
101#define ELF_DATA ELFDATA2LSB
102#endif
103
a29f998d 104#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
105typedef abi_ullong target_elf_greg_t;
106#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
107#else
108typedef abi_ulong target_elf_greg_t;
109#define tswapreg(ptr) tswapal(ptr)
110#endif
111
21e807fa 112#ifdef USE_UID16
1ddd592f
PB
113typedef abi_ushort target_uid_t;
114typedef abi_ushort target_gid_t;
21e807fa 115#else
f8fd4fc4
PB
116typedef abi_uint target_uid_t;
117typedef abi_uint target_gid_t;
21e807fa 118#endif
f8fd4fc4 119typedef abi_int target_pid_t;
21e807fa 120
30ac07d4
FB
121#ifdef TARGET_I386
122
15338fd7
FB
123#define ELF_PLATFORM get_elf_platform()
124
125static const char *get_elf_platform(void)
126{
127 static char elf_platform[] = "i386";
a2247f8e 128 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
129 if (family > 6)
130 family = 6;
131 if (family >= 3)
132 elf_platform[1] = '0' + family;
133 return elf_platform;
134}
135
136#define ELF_HWCAP get_elf_hwcap()
137
138static uint32_t get_elf_hwcap(void)
139{
a2247f8e
AF
140 X86CPU *cpu = X86_CPU(thread_cpu);
141
142 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
143}
144
84409ddb
JM
145#ifdef TARGET_X86_64
146#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
147
148#define ELF_CLASS ELFCLASS64
84409ddb
JM
149#define ELF_ARCH EM_X86_64
150
151static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
152{
153 regs->rax = 0;
154 regs->rsp = infop->start_stack;
155 regs->rip = infop->entry;
156}
157
9edc5d79 158#define ELF_NREG 27
c227f099 159typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
160
161/*
162 * Note that ELF_NREG should be 29 as there should be place for
163 * TRAPNO and ERR "registers" as well but linux doesn't dump
164 * those.
165 *
166 * See linux kernel: arch/x86/include/asm/elf.h
167 */
05390248 168static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
169{
170 (*regs)[0] = env->regs[15];
171 (*regs)[1] = env->regs[14];
172 (*regs)[2] = env->regs[13];
173 (*regs)[3] = env->regs[12];
174 (*regs)[4] = env->regs[R_EBP];
175 (*regs)[5] = env->regs[R_EBX];
176 (*regs)[6] = env->regs[11];
177 (*regs)[7] = env->regs[10];
178 (*regs)[8] = env->regs[9];
179 (*regs)[9] = env->regs[8];
180 (*regs)[10] = env->regs[R_EAX];
181 (*regs)[11] = env->regs[R_ECX];
182 (*regs)[12] = env->regs[R_EDX];
183 (*regs)[13] = env->regs[R_ESI];
184 (*regs)[14] = env->regs[R_EDI];
185 (*regs)[15] = env->regs[R_EAX]; /* XXX */
186 (*regs)[16] = env->eip;
187 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
188 (*regs)[18] = env->eflags;
189 (*regs)[19] = env->regs[R_ESP];
190 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
191 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
192 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
193 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
194 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
195 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
196 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
197}
198
84409ddb
JM
199#else
200
30ac07d4
FB
201#define ELF_START_MMAP 0x80000000
202
30ac07d4
FB
203/*
204 * This is used to ensure we don't load something for the wrong architecture.
205 */
206#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
207
208/*
209 * These are used to set parameters in the core dumps.
210 */
d97ef72e 211#define ELF_CLASS ELFCLASS32
d97ef72e 212#define ELF_ARCH EM_386
30ac07d4 213
d97ef72e
RH
214static inline void init_thread(struct target_pt_regs *regs,
215 struct image_info *infop)
b346ff46
FB
216{
217 regs->esp = infop->start_stack;
218 regs->eip = infop->entry;
e5fe0c52
PB
219
220 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
221 starts %edx contains a pointer to a function which might be
222 registered using `atexit'. This provides a mean for the
223 dynamic linker to call DT_FINI functions for shared libraries
224 that have been loaded before the code runs.
225
226 A value of 0 tells we have no such handler. */
227 regs->edx = 0;
b346ff46 228}
9edc5d79 229
9edc5d79 230#define ELF_NREG 17
c227f099 231typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
232
233/*
234 * Note that ELF_NREG should be 19 as there should be place for
235 * TRAPNO and ERR "registers" as well but linux doesn't dump
236 * those.
237 *
238 * See linux kernel: arch/x86/include/asm/elf.h
239 */
05390248 240static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
241{
242 (*regs)[0] = env->regs[R_EBX];
243 (*regs)[1] = env->regs[R_ECX];
244 (*regs)[2] = env->regs[R_EDX];
245 (*regs)[3] = env->regs[R_ESI];
246 (*regs)[4] = env->regs[R_EDI];
247 (*regs)[5] = env->regs[R_EBP];
248 (*regs)[6] = env->regs[R_EAX];
249 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
250 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
251 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
252 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
253 (*regs)[11] = env->regs[R_EAX]; /* XXX */
254 (*regs)[12] = env->eip;
255 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
256 (*regs)[14] = env->eflags;
257 (*regs)[15] = env->regs[R_ESP];
258 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
259}
84409ddb 260#endif
b346ff46 261
9edc5d79 262#define USE_ELF_CORE_DUMP
d97ef72e 263#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
264
265#endif
266
267#ifdef TARGET_ARM
268
24e76ff0
PM
269#ifndef TARGET_AARCH64
270/* 32 bit ARM definitions */
271
b346ff46
FB
272#define ELF_START_MMAP 0x80000000
273
b597c3f7 274#define ELF_ARCH EM_ARM
d97ef72e 275#define ELF_CLASS ELFCLASS32
b346ff46 276
d97ef72e
RH
277static inline void init_thread(struct target_pt_regs *regs,
278 struct image_info *infop)
b346ff46 279{
992f48a0 280 abi_long stack = infop->start_stack;
b346ff46 281 memset(regs, 0, sizeof(*regs));
99033cae 282
167e4cdc
PM
283 regs->uregs[16] = ARM_CPU_MODE_USR;
284 if (infop->entry & 1) {
285 regs->uregs[16] |= CPSR_T;
286 }
287 regs->uregs[15] = infop->entry & 0xfffffffe;
288 regs->uregs[13] = infop->start_stack;
2f619698 289 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
290 get_user_ual(regs->uregs[2], stack + 8); /* envp */
291 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 292 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 293 regs->uregs[0] = 0;
e5fe0c52 294 /* For uClinux PIC binaries. */
863cf0b7 295 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 296 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
297
298 /* Support ARM FDPIC. */
299 if (info_is_fdpic(infop)) {
300 /* As described in the ABI document, r7 points to the loadmap info
301 * prepared by the kernel. If an interpreter is needed, r8 points
302 * to the interpreter loadmap and r9 points to the interpreter
303 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
304 * r9 points to the main program PT_DYNAMIC info.
305 */
306 regs->uregs[7] = infop->loadmap_addr;
307 if (infop->interpreter_loadmap_addr) {
308 /* Executable is dynamically loaded. */
309 regs->uregs[8] = infop->interpreter_loadmap_addr;
310 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
311 } else {
312 regs->uregs[8] = 0;
313 regs->uregs[9] = infop->pt_dynamic_addr;
314 }
315 }
b346ff46
FB
316}
317
edf8e2af 318#define ELF_NREG 18
c227f099 319typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 320
05390248 321static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 322{
86cd7b2d
PB
323 (*regs)[0] = tswapreg(env->regs[0]);
324 (*regs)[1] = tswapreg(env->regs[1]);
325 (*regs)[2] = tswapreg(env->regs[2]);
326 (*regs)[3] = tswapreg(env->regs[3]);
327 (*regs)[4] = tswapreg(env->regs[4]);
328 (*regs)[5] = tswapreg(env->regs[5]);
329 (*regs)[6] = tswapreg(env->regs[6]);
330 (*regs)[7] = tswapreg(env->regs[7]);
331 (*regs)[8] = tswapreg(env->regs[8]);
332 (*regs)[9] = tswapreg(env->regs[9]);
333 (*regs)[10] = tswapreg(env->regs[10]);
334 (*regs)[11] = tswapreg(env->regs[11]);
335 (*regs)[12] = tswapreg(env->regs[12]);
336 (*regs)[13] = tswapreg(env->regs[13]);
337 (*regs)[14] = tswapreg(env->regs[14]);
338 (*regs)[15] = tswapreg(env->regs[15]);
339
340 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
341 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
342}
343
30ac07d4 344#define USE_ELF_CORE_DUMP
d97ef72e 345#define ELF_EXEC_PAGESIZE 4096
30ac07d4 346
afce2927
FB
347enum
348{
d97ef72e
RH
349 ARM_HWCAP_ARM_SWP = 1 << 0,
350 ARM_HWCAP_ARM_HALF = 1 << 1,
351 ARM_HWCAP_ARM_THUMB = 1 << 2,
352 ARM_HWCAP_ARM_26BIT = 1 << 3,
353 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
354 ARM_HWCAP_ARM_FPA = 1 << 5,
355 ARM_HWCAP_ARM_VFP = 1 << 6,
356 ARM_HWCAP_ARM_EDSP = 1 << 7,
357 ARM_HWCAP_ARM_JAVA = 1 << 8,
358 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
359 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
360 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
361 ARM_HWCAP_ARM_NEON = 1 << 12,
362 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
363 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
364 ARM_HWCAP_ARM_TLS = 1 << 15,
365 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
366 ARM_HWCAP_ARM_IDIVA = 1 << 17,
367 ARM_HWCAP_ARM_IDIVT = 1 << 18,
368 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
369 ARM_HWCAP_ARM_LPAE = 1 << 20,
370 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
371};
372
ad6919dc
PM
373enum {
374 ARM_HWCAP2_ARM_AES = 1 << 0,
375 ARM_HWCAP2_ARM_PMULL = 1 << 1,
376 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
377 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
378 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
379};
380
6b1275ff
PM
381/* The commpage only exists for 32 bit kernels */
382
806d1021
MI
383/* Return 1 if the proposed guest space is suitable for the guest.
384 * Return 0 if the proposed guest space isn't suitable, but another
385 * address space should be tried.
386 * Return -1 if there is no way the proposed guest space can be
387 * valid regardless of the base.
388 * The guest code may leave a page mapped and populate it if the
389 * address is suitable.
390 */
c3637eaf
LS
391static int init_guest_commpage(unsigned long guest_base,
392 unsigned long guest_size)
97cc7560
DDAG
393{
394 unsigned long real_start, test_page_addr;
395
396 /* We need to check that we can force a fault on access to the
397 * commpage at 0xffff0fxx
398 */
399 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
400
401 /* If the commpage lies within the already allocated guest space,
402 * then there is no way we can allocate it.
955e304f
LS
403 *
404 * You may be thinking that that this check is redundant because
405 * we already validated the guest size against MAX_RESERVED_VA;
406 * but if qemu_host_page_mask is unusually large, then
407 * test_page_addr may be lower.
806d1021
MI
408 */
409 if (test_page_addr >= guest_base
e568f9df 410 && test_page_addr < (guest_base + guest_size)) {
806d1021
MI
411 return -1;
412 }
413
97cc7560
DDAG
414 /* Note it needs to be writeable to let us initialise it */
415 real_start = (unsigned long)
416 mmap((void *)test_page_addr, qemu_host_page_size,
417 PROT_READ | PROT_WRITE,
418 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
419
420 /* If we can't map it then try another address */
421 if (real_start == -1ul) {
422 return 0;
423 }
424
425 if (real_start != test_page_addr) {
426 /* OS didn't put the page where we asked - unmap and reject */
427 munmap((void *)real_start, qemu_host_page_size);
428 return 0;
429 }
430
431 /* Leave the page mapped
432 * Populate it (mmap should have left it all 0'd)
433 */
434
435 /* Kernel helper versions */
436 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
437
438 /* Now it's populated make it RO */
439 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
440 perror("Protecting guest commpage");
441 exit(-1);
442 }
443
444 return 1; /* All good */
445}
adf050b1
BC
446
447#define ELF_HWCAP get_elf_hwcap()
ad6919dc 448#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
449
450static uint32_t get_elf_hwcap(void)
451{
a2247f8e 452 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
453 uint32_t hwcaps = 0;
454
455 hwcaps |= ARM_HWCAP_ARM_SWP;
456 hwcaps |= ARM_HWCAP_ARM_HALF;
457 hwcaps |= ARM_HWCAP_ARM_THUMB;
458 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
459
460 /* probe for the extra features */
461#define GET_FEATURE(feat, hwcap) \
a2247f8e 462 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
962fcbf2
RH
463
464#define GET_FEATURE_ID(feat, hwcap) \
465 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
466
24682654
PM
467 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
468 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
469 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
470 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
471 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
472 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
473 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
474 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
475 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
7e0cf8b4
RH
476 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
477 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
24682654
PM
478 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
479 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
480 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
481 * to our VFP_FP16 feature bit.
482 */
483 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
484 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
485
486 return hwcaps;
487}
afce2927 488
ad6919dc
PM
489static uint32_t get_elf_hwcap2(void)
490{
491 ARMCPU *cpu = ARM_CPU(thread_cpu);
492 uint32_t hwcaps = 0;
493
962fcbf2
RH
494 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
495 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
496 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
497 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
498 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
ad6919dc
PM
499 return hwcaps;
500}
501
502#undef GET_FEATURE
962fcbf2 503#undef GET_FEATURE_ID
ad6919dc 504
13ec4ec3
RH
505#define ELF_PLATFORM get_elf_platform()
506
507static const char *get_elf_platform(void)
508{
509 CPUARMState *env = thread_cpu->env_ptr;
510
511#ifdef TARGET_WORDS_BIGENDIAN
512# define END "b"
513#else
514# define END "l"
515#endif
516
517 if (arm_feature(env, ARM_FEATURE_V8)) {
518 return "v8" END;
519 } else if (arm_feature(env, ARM_FEATURE_V7)) {
520 if (arm_feature(env, ARM_FEATURE_M)) {
521 return "v7m" END;
522 } else {
523 return "v7" END;
524 }
525 } else if (arm_feature(env, ARM_FEATURE_V6)) {
526 return "v6" END;
527 } else if (arm_feature(env, ARM_FEATURE_V5)) {
528 return "v5" END;
529 } else {
530 return "v4" END;
531 }
532
533#undef END
534}
535
24e76ff0
PM
536#else
537/* 64 bit ARM definitions */
538#define ELF_START_MMAP 0x80000000
539
b597c3f7 540#define ELF_ARCH EM_AARCH64
24e76ff0 541#define ELF_CLASS ELFCLASS64
e20e3ec9
RH
542#ifdef TARGET_WORDS_BIGENDIAN
543# define ELF_PLATFORM "aarch64_be"
544#else
545# define ELF_PLATFORM "aarch64"
546#endif
24e76ff0
PM
547
548static inline void init_thread(struct target_pt_regs *regs,
549 struct image_info *infop)
550{
551 abi_long stack = infop->start_stack;
552 memset(regs, 0, sizeof(*regs));
553
554 regs->pc = infop->entry & ~0x3ULL;
555 regs->sp = stack;
556}
557
558#define ELF_NREG 34
559typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
560
561static void elf_core_copy_regs(target_elf_gregset_t *regs,
562 const CPUARMState *env)
563{
564 int i;
565
566 for (i = 0; i < 32; i++) {
567 (*regs)[i] = tswapreg(env->xregs[i]);
568 }
569 (*regs)[32] = tswapreg(env->pc);
570 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
571}
572
573#define USE_ELF_CORE_DUMP
574#define ELF_EXEC_PAGESIZE 4096
575
576enum {
577 ARM_HWCAP_A64_FP = 1 << 0,
578 ARM_HWCAP_A64_ASIMD = 1 << 1,
579 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
580 ARM_HWCAP_A64_AES = 1 << 3,
581 ARM_HWCAP_A64_PMULL = 1 << 4,
582 ARM_HWCAP_A64_SHA1 = 1 << 5,
583 ARM_HWCAP_A64_SHA2 = 1 << 6,
584 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
585 ARM_HWCAP_A64_ATOMICS = 1 << 8,
586 ARM_HWCAP_A64_FPHP = 1 << 9,
587 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
588 ARM_HWCAP_A64_CPUID = 1 << 11,
589 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
590 ARM_HWCAP_A64_JSCVT = 1 << 13,
591 ARM_HWCAP_A64_FCMA = 1 << 14,
592 ARM_HWCAP_A64_LRCPC = 1 << 15,
593 ARM_HWCAP_A64_DCPOP = 1 << 16,
594 ARM_HWCAP_A64_SHA3 = 1 << 17,
595 ARM_HWCAP_A64_SM3 = 1 << 18,
596 ARM_HWCAP_A64_SM4 = 1 << 19,
597 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
598 ARM_HWCAP_A64_SHA512 = 1 << 21,
599 ARM_HWCAP_A64_SVE = 1 << 22,
0083a1fa
RH
600 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
601 ARM_HWCAP_A64_DIT = 1 << 24,
602 ARM_HWCAP_A64_USCAT = 1 << 25,
603 ARM_HWCAP_A64_ILRCPC = 1 << 26,
604 ARM_HWCAP_A64_FLAGM = 1 << 27,
605 ARM_HWCAP_A64_SSBS = 1 << 28,
606 ARM_HWCAP_A64_SB = 1 << 29,
607 ARM_HWCAP_A64_PACA = 1 << 30,
608 ARM_HWCAP_A64_PACG = 1UL << 31,
24e76ff0
PM
609};
610
611#define ELF_HWCAP get_elf_hwcap()
612
613static uint32_t get_elf_hwcap(void)
614{
615 ARMCPU *cpu = ARM_CPU(thread_cpu);
616 uint32_t hwcaps = 0;
617
618 hwcaps |= ARM_HWCAP_A64_FP;
619 hwcaps |= ARM_HWCAP_A64_ASIMD;
37020ff1 620 hwcaps |= ARM_HWCAP_A64_CPUID;
24e76ff0
PM
621
622 /* probe for the extra features */
962fcbf2
RH
623#define GET_FEATURE_ID(feat, hwcap) \
624 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
625
626 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
627 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
628 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
629 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
630 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
631 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
632 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
633 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
634 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
5763190f 635 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
962fcbf2
RH
636 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
637 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
638 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
639 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
cd208a1c 640 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
29d26ab2 641 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
1c9af3a9
RH
642 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
643 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
9888bd1e 644 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
b89d9c98 645 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
962fcbf2 646
962fcbf2 647#undef GET_FEATURE_ID
24e76ff0
PM
648
649 return hwcaps;
650}
651
652#endif /* not TARGET_AARCH64 */
653#endif /* TARGET_ARM */
30ac07d4 654
853d6f7a 655#ifdef TARGET_SPARC
a315a145 656#ifdef TARGET_SPARC64
853d6f7a
FB
657
658#define ELF_START_MMAP 0x80000000
cf973e46
AT
659#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
660 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 661#ifndef TARGET_ABI32
cb33da57 662#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
663#else
664#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
665#endif
853d6f7a 666
a315a145 667#define ELF_CLASS ELFCLASS64
5ef54116
FB
668#define ELF_ARCH EM_SPARCV9
669
d97ef72e 670#define STACK_BIAS 2047
a315a145 671
d97ef72e
RH
672static inline void init_thread(struct target_pt_regs *regs,
673 struct image_info *infop)
a315a145 674{
992f48a0 675#ifndef TARGET_ABI32
a315a145 676 regs->tstate = 0;
992f48a0 677#endif
a315a145
FB
678 regs->pc = infop->entry;
679 regs->npc = regs->pc + 4;
680 regs->y = 0;
992f48a0
BS
681#ifdef TARGET_ABI32
682 regs->u_regs[14] = infop->start_stack - 16 * 4;
683#else
cb33da57
BS
684 if (personality(infop->personality) == PER_LINUX32)
685 regs->u_regs[14] = infop->start_stack - 16 * 4;
686 else
687 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 688#endif
a315a145
FB
689}
690
691#else
692#define ELF_START_MMAP 0x80000000
cf973e46
AT
693#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
694 | HWCAP_SPARC_MULDIV)
a315a145 695
853d6f7a 696#define ELF_CLASS ELFCLASS32
853d6f7a
FB
697#define ELF_ARCH EM_SPARC
698
d97ef72e
RH
699static inline void init_thread(struct target_pt_regs *regs,
700 struct image_info *infop)
853d6f7a 701{
f5155289
FB
702 regs->psr = 0;
703 regs->pc = infop->entry;
704 regs->npc = regs->pc + 4;
705 regs->y = 0;
706 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
707}
708
a315a145 709#endif
853d6f7a
FB
710#endif
711
67867308
FB
712#ifdef TARGET_PPC
713
4ecd4d16 714#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
715#define ELF_START_MMAP 0x80000000
716
e85e7c6e 717#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
718
719#define elf_check_arch(x) ( (x) == EM_PPC64 )
720
d97ef72e 721#define ELF_CLASS ELFCLASS64
84409ddb
JM
722
723#else
724
d97ef72e 725#define ELF_CLASS ELFCLASS32
84409ddb
JM
726
727#endif
728
d97ef72e 729#define ELF_ARCH EM_PPC
67867308 730
df84e4f3
NF
731/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
732 See arch/powerpc/include/asm/cputable.h. */
733enum {
3efa9a67 734 QEMU_PPC_FEATURE_32 = 0x80000000,
735 QEMU_PPC_FEATURE_64 = 0x40000000,
736 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
737 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
738 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
739 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
740 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
741 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
742 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
743 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
744 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
745 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
746 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
747 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
748 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
749 QEMU_PPC_FEATURE_CELL = 0x00010000,
750 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
751 QEMU_PPC_FEATURE_SMT = 0x00004000,
752 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
753 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
754 QEMU_PPC_FEATURE_PA6T = 0x00000800,
755 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
756 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
757 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
758 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
759 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
760
761 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
762 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
763
764 /* Feature definitions in AT_HWCAP2. */
765 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
766 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
767 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
768 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
769 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
770 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
be0c46d4 771 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
df84e4f3
NF
772};
773
774#define ELF_HWCAP get_elf_hwcap()
775
776static uint32_t get_elf_hwcap(void)
777{
a2247f8e 778 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
779 uint32_t features = 0;
780
781 /* We don't have to be terribly complete here; the high points are
782 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 783#define GET_FEATURE(flag, feature) \
a2247f8e 784 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
785#define GET_FEATURE2(flags, feature) \
786 do { \
787 if ((cpu->env.insns_flags2 & flags) == flags) { \
788 features |= feature; \
789 } \
790 } while (0)
3efa9a67 791 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
792 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
793 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
794 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
795 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
796 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
797 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
798 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
799 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
800 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
801 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
802 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
803 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 804#undef GET_FEATURE
0e019746 805#undef GET_FEATURE2
df84e4f3
NF
806
807 return features;
808}
809
a60438dd
TM
810#define ELF_HWCAP2 get_elf_hwcap2()
811
812static uint32_t get_elf_hwcap2(void)
813{
814 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
815 uint32_t features = 0;
816
817#define GET_FEATURE(flag, feature) \
818 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
819#define GET_FEATURE2(flag, feature) \
820 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
821
822 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
823 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
824 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
825 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
be0c46d4 826 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
a60438dd
TM
827
828#undef GET_FEATURE
829#undef GET_FEATURE2
830
831 return features;
832}
833
f5155289
FB
834/*
835 * The requirements here are:
836 * - keep the final alignment of sp (sp & 0xf)
837 * - make sure the 32-bit value at the first 16 byte aligned position of
838 * AUXV is greater than 16 for glibc compatibility.
839 * AT_IGNOREPPC is used for that.
840 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
841 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
842 */
0bccf03d 843#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
844#define ARCH_DLINFO \
845 do { \
623e250a 846 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 847 /* \
82991bed
PM
848 * Handle glibc compatibility: these magic entries must \
849 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
850 */ \
851 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
852 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
853 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
854 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
855 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 856 } while (0)
f5155289 857
67867308
FB
858static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
859{
67867308 860 _regs->gpr[1] = infop->start_stack;
e85e7c6e 861#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 862 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
863 uint64_t val;
864 get_user_u64(val, infop->entry + 8);
865 _regs->gpr[2] = val + infop->load_bias;
866 get_user_u64(val, infop->entry);
867 infop->entry = val + infop->load_bias;
d90b94cd
DK
868 } else {
869 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
870 }
84409ddb 871#endif
67867308
FB
872 _regs->nip = infop->entry;
873}
874
e2f3e741
NF
875/* See linux kernel: arch/powerpc/include/asm/elf.h. */
876#define ELF_NREG 48
877typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
878
05390248 879static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
880{
881 int i;
882 target_ulong ccr = 0;
883
884 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 885 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
886 }
887
86cd7b2d
PB
888 (*regs)[32] = tswapreg(env->nip);
889 (*regs)[33] = tswapreg(env->msr);
890 (*regs)[35] = tswapreg(env->ctr);
891 (*regs)[36] = tswapreg(env->lr);
892 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
893
894 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
895 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
896 }
86cd7b2d 897 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
898}
899
900#define USE_ELF_CORE_DUMP
d97ef72e 901#define ELF_EXEC_PAGESIZE 4096
67867308
FB
902
903#endif
904
048f6b4d
FB
905#ifdef TARGET_MIPS
906
907#define ELF_START_MMAP 0x80000000
908
388bb21a
TS
909#ifdef TARGET_MIPS64
910#define ELF_CLASS ELFCLASS64
911#else
048f6b4d 912#define ELF_CLASS ELFCLASS32
388bb21a 913#endif
048f6b4d
FB
914#define ELF_ARCH EM_MIPS
915
f72541f3
AM
916#define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
917
d97ef72e
RH
918static inline void init_thread(struct target_pt_regs *regs,
919 struct image_info *infop)
048f6b4d 920{
623a930e 921 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
922 regs->cp0_epc = infop->entry;
923 regs->regs[29] = infop->start_stack;
924}
925
51e52606
NF
926/* See linux kernel: arch/mips/include/asm/elf.h. */
927#define ELF_NREG 45
928typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
929
930/* See linux kernel: arch/mips/include/asm/reg.h. */
931enum {
932#ifdef TARGET_MIPS64
933 TARGET_EF_R0 = 0,
934#else
935 TARGET_EF_R0 = 6,
936#endif
937 TARGET_EF_R26 = TARGET_EF_R0 + 26,
938 TARGET_EF_R27 = TARGET_EF_R0 + 27,
939 TARGET_EF_LO = TARGET_EF_R0 + 32,
940 TARGET_EF_HI = TARGET_EF_R0 + 33,
941 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
942 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
943 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
944 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
945};
946
947/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 948static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
949{
950 int i;
951
952 for (i = 0; i < TARGET_EF_R0; i++) {
953 (*regs)[i] = 0;
954 }
955 (*regs)[TARGET_EF_R0] = 0;
956
957 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 958 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
959 }
960
961 (*regs)[TARGET_EF_R26] = 0;
962 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
963 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
964 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
965 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
966 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
967 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
968 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
969}
970
971#define USE_ELF_CORE_DUMP
388bb21a
TS
972#define ELF_EXEC_PAGESIZE 4096
973
46a1ee4f
JC
974/* See arch/mips/include/uapi/asm/hwcap.h. */
975enum {
976 HWCAP_MIPS_R6 = (1 << 0),
977 HWCAP_MIPS_MSA = (1 << 1),
978};
979
980#define ELF_HWCAP get_elf_hwcap()
981
982static uint32_t get_elf_hwcap(void)
983{
984 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
985 uint32_t hwcaps = 0;
986
987#define GET_FEATURE(flag, hwcap) \
988 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
989
990 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
991 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
992
993#undef GET_FEATURE
994
995 return hwcaps;
996}
997
048f6b4d
FB
998#endif /* TARGET_MIPS */
999
b779e29e
EI
1000#ifdef TARGET_MICROBLAZE
1001
1002#define ELF_START_MMAP 0x80000000
1003
0d5d4699 1004#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
1005
1006#define ELF_CLASS ELFCLASS32
0d5d4699 1007#define ELF_ARCH EM_MICROBLAZE
b779e29e 1008
d97ef72e
RH
1009static inline void init_thread(struct target_pt_regs *regs,
1010 struct image_info *infop)
b779e29e
EI
1011{
1012 regs->pc = infop->entry;
1013 regs->r1 = infop->start_stack;
1014
1015}
1016
b779e29e
EI
1017#define ELF_EXEC_PAGESIZE 4096
1018
e4cbd44d
EI
1019#define USE_ELF_CORE_DUMP
1020#define ELF_NREG 38
1021typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1022
1023/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1024static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
1025{
1026 int i, pos = 0;
1027
1028 for (i = 0; i < 32; i++) {
86cd7b2d 1029 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
1030 }
1031
1032 for (i = 0; i < 6; i++) {
86cd7b2d 1033 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
1034 }
1035}
1036
b779e29e
EI
1037#endif /* TARGET_MICROBLAZE */
1038
a0a839b6
MV
1039#ifdef TARGET_NIOS2
1040
1041#define ELF_START_MMAP 0x80000000
1042
1043#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1044
1045#define ELF_CLASS ELFCLASS32
1046#define ELF_ARCH EM_ALTERA_NIOS2
1047
1048static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1049{
1050 regs->ea = infop->entry;
1051 regs->sp = infop->start_stack;
1052 regs->estatus = 0x3;
1053}
1054
1055#define ELF_EXEC_PAGESIZE 4096
1056
1057#define USE_ELF_CORE_DUMP
1058#define ELF_NREG 49
1059typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1060
1061/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1062static void elf_core_copy_regs(target_elf_gregset_t *regs,
1063 const CPUNios2State *env)
1064{
1065 int i;
1066
1067 (*regs)[0] = -1;
1068 for (i = 1; i < 8; i++) /* r0-r7 */
1069 (*regs)[i] = tswapreg(env->regs[i + 7]);
1070
1071 for (i = 8; i < 16; i++) /* r8-r15 */
1072 (*regs)[i] = tswapreg(env->regs[i - 8]);
1073
1074 for (i = 16; i < 24; i++) /* r16-r23 */
1075 (*regs)[i] = tswapreg(env->regs[i + 7]);
1076 (*regs)[24] = -1; /* R_ET */
1077 (*regs)[25] = -1; /* R_BT */
1078 (*regs)[26] = tswapreg(env->regs[R_GP]);
1079 (*regs)[27] = tswapreg(env->regs[R_SP]);
1080 (*regs)[28] = tswapreg(env->regs[R_FP]);
1081 (*regs)[29] = tswapreg(env->regs[R_EA]);
1082 (*regs)[30] = -1; /* R_SSTATUS */
1083 (*regs)[31] = tswapreg(env->regs[R_RA]);
1084
1085 (*regs)[32] = tswapreg(env->regs[R_PC]);
1086
1087 (*regs)[33] = -1; /* R_STATUS */
1088 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1089
1090 for (i = 35; i < 49; i++) /* ... */
1091 (*regs)[i] = -1;
1092}
1093
1094#endif /* TARGET_NIOS2 */
1095
d962783e
JL
1096#ifdef TARGET_OPENRISC
1097
1098#define ELF_START_MMAP 0x08000000
1099
d962783e
JL
1100#define ELF_ARCH EM_OPENRISC
1101#define ELF_CLASS ELFCLASS32
1102#define ELF_DATA ELFDATA2MSB
1103
1104static inline void init_thread(struct target_pt_regs *regs,
1105 struct image_info *infop)
1106{
1107 regs->pc = infop->entry;
1108 regs->gpr[1] = infop->start_stack;
1109}
1110
1111#define USE_ELF_CORE_DUMP
1112#define ELF_EXEC_PAGESIZE 8192
1113
1114/* See linux kernel arch/openrisc/include/asm/elf.h. */
1115#define ELF_NREG 34 /* gprs and pc, sr */
1116typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1117
1118static void elf_core_copy_regs(target_elf_gregset_t *regs,
1119 const CPUOpenRISCState *env)
1120{
1121 int i;
1122
1123 for (i = 0; i < 32; i++) {
d89e71e8 1124 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1125 }
86cd7b2d 1126 (*regs)[32] = tswapreg(env->pc);
84775c43 1127 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1128}
1129#define ELF_HWCAP 0
1130#define ELF_PLATFORM NULL
1131
1132#endif /* TARGET_OPENRISC */
1133
fdf9b3e8
FB
1134#ifdef TARGET_SH4
1135
1136#define ELF_START_MMAP 0x80000000
1137
fdf9b3e8 1138#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1139#define ELF_ARCH EM_SH
1140
d97ef72e
RH
1141static inline void init_thread(struct target_pt_regs *regs,
1142 struct image_info *infop)
fdf9b3e8 1143{
d97ef72e
RH
1144 /* Check other registers XXXXX */
1145 regs->pc = infop->entry;
1146 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1147}
1148
7631c97e
NF
1149/* See linux kernel: arch/sh/include/asm/elf.h. */
1150#define ELF_NREG 23
1151typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1152
1153/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1154enum {
1155 TARGET_REG_PC = 16,
1156 TARGET_REG_PR = 17,
1157 TARGET_REG_SR = 18,
1158 TARGET_REG_GBR = 19,
1159 TARGET_REG_MACH = 20,
1160 TARGET_REG_MACL = 21,
1161 TARGET_REG_SYSCALL = 22
1162};
1163
d97ef72e 1164static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1165 const CPUSH4State *env)
7631c97e
NF
1166{
1167 int i;
1168
1169 for (i = 0; i < 16; i++) {
72cd500b 1170 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1171 }
1172
86cd7b2d
PB
1173 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1174 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1175 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1176 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1177 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1178 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1179 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1180}
1181
1182#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1183#define ELF_EXEC_PAGESIZE 4096
1184
e42fd944
RH
1185enum {
1186 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1187 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1188 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1189 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1190 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1191 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1192 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1193 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1194 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1195 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1196};
1197
1198#define ELF_HWCAP get_elf_hwcap()
1199
1200static uint32_t get_elf_hwcap(void)
1201{
1202 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1203 uint32_t hwcap = 0;
1204
1205 hwcap |= SH_CPU_HAS_FPU;
1206
1207 if (cpu->env.features & SH_FEATURE_SH4A) {
1208 hwcap |= SH_CPU_HAS_LLSC;
1209 }
1210
1211 return hwcap;
1212}
1213
fdf9b3e8
FB
1214#endif
1215
48733d19
TS
1216#ifdef TARGET_CRIS
1217
1218#define ELF_START_MMAP 0x80000000
1219
48733d19 1220#define ELF_CLASS ELFCLASS32
48733d19
TS
1221#define ELF_ARCH EM_CRIS
1222
d97ef72e
RH
1223static inline void init_thread(struct target_pt_regs *regs,
1224 struct image_info *infop)
48733d19 1225{
d97ef72e 1226 regs->erp = infop->entry;
48733d19
TS
1227}
1228
48733d19
TS
1229#define ELF_EXEC_PAGESIZE 8192
1230
1231#endif
1232
e6e5906b
PB
1233#ifdef TARGET_M68K
1234
1235#define ELF_START_MMAP 0x80000000
1236
d97ef72e 1237#define ELF_CLASS ELFCLASS32
d97ef72e 1238#define ELF_ARCH EM_68K
e6e5906b
PB
1239
1240/* ??? Does this need to do anything?
d97ef72e 1241 #define ELF_PLAT_INIT(_r) */
e6e5906b 1242
d97ef72e
RH
1243static inline void init_thread(struct target_pt_regs *regs,
1244 struct image_info *infop)
e6e5906b
PB
1245{
1246 regs->usp = infop->start_stack;
1247 regs->sr = 0;
1248 regs->pc = infop->entry;
1249}
1250
7a93cc55
NF
1251/* See linux kernel: arch/m68k/include/asm/elf.h. */
1252#define ELF_NREG 20
1253typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1254
05390248 1255static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1256{
86cd7b2d
PB
1257 (*regs)[0] = tswapreg(env->dregs[1]);
1258 (*regs)[1] = tswapreg(env->dregs[2]);
1259 (*regs)[2] = tswapreg(env->dregs[3]);
1260 (*regs)[3] = tswapreg(env->dregs[4]);
1261 (*regs)[4] = tswapreg(env->dregs[5]);
1262 (*regs)[5] = tswapreg(env->dregs[6]);
1263 (*regs)[6] = tswapreg(env->dregs[7]);
1264 (*regs)[7] = tswapreg(env->aregs[0]);
1265 (*regs)[8] = tswapreg(env->aregs[1]);
1266 (*regs)[9] = tswapreg(env->aregs[2]);
1267 (*regs)[10] = tswapreg(env->aregs[3]);
1268 (*regs)[11] = tswapreg(env->aregs[4]);
1269 (*regs)[12] = tswapreg(env->aregs[5]);
1270 (*regs)[13] = tswapreg(env->aregs[6]);
1271 (*regs)[14] = tswapreg(env->dregs[0]);
1272 (*regs)[15] = tswapreg(env->aregs[7]);
1273 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1274 (*regs)[17] = tswapreg(env->sr);
1275 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1276 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1277}
1278
1279#define USE_ELF_CORE_DUMP
d97ef72e 1280#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1281
1282#endif
1283
7a3148a9
JM
1284#ifdef TARGET_ALPHA
1285
1286#define ELF_START_MMAP (0x30000000000ULL)
1287
7a3148a9 1288#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1289#define ELF_ARCH EM_ALPHA
1290
d97ef72e
RH
1291static inline void init_thread(struct target_pt_regs *regs,
1292 struct image_info *infop)
7a3148a9
JM
1293{
1294 regs->pc = infop->entry;
1295 regs->ps = 8;
1296 regs->usp = infop->start_stack;
7a3148a9
JM
1297}
1298
7a3148a9
JM
1299#define ELF_EXEC_PAGESIZE 8192
1300
1301#endif /* TARGET_ALPHA */
1302
a4c075f1
UH
1303#ifdef TARGET_S390X
1304
1305#define ELF_START_MMAP (0x20000000000ULL)
1306
a4c075f1
UH
1307#define ELF_CLASS ELFCLASS64
1308#define ELF_DATA ELFDATA2MSB
1309#define ELF_ARCH EM_S390
1310
6d88baf1
DH
1311#include "elf.h"
1312
1313#define ELF_HWCAP get_elf_hwcap()
1314
1315#define GET_FEATURE(_feat, _hwcap) \
1316 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1317
1318static uint32_t get_elf_hwcap(void)
1319{
1320 /*
1321 * Let's assume we always have esan3 and zarch.
1322 * 31-bit processes can use 64-bit registers (high gprs).
1323 */
1324 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1325
1326 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1327 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1328 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1329 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1330 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1331 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1332 hwcap |= HWCAP_S390_ETF3EH;
1333 }
1334 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1335
1336 return hwcap;
1337}
1338
a4c075f1
UH
1339static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1340{
1341 regs->psw.addr = infop->entry;
1342 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1343 regs->gprs[15] = infop->start_stack;
1344}
1345
1346#endif /* TARGET_S390X */
1347
b16189b2
CG
1348#ifdef TARGET_TILEGX
1349
1350/* 42 bits real used address, a half for user mode */
1351#define ELF_START_MMAP (0x00000020000000000ULL)
1352
1353#define elf_check_arch(x) ((x) == EM_TILEGX)
1354
1355#define ELF_CLASS ELFCLASS64
1356#define ELF_DATA ELFDATA2LSB
1357#define ELF_ARCH EM_TILEGX
1358
1359static inline void init_thread(struct target_pt_regs *regs,
1360 struct image_info *infop)
1361{
1362 regs->pc = infop->entry;
1363 regs->sp = infop->start_stack;
1364
1365}
1366
1367#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1368
1369#endif /* TARGET_TILEGX */
1370
47ae93cd
MC
1371#ifdef TARGET_RISCV
1372
1373#define ELF_START_MMAP 0x80000000
1374#define ELF_ARCH EM_RISCV
1375
1376#ifdef TARGET_RISCV32
1377#define ELF_CLASS ELFCLASS32
1378#else
1379#define ELF_CLASS ELFCLASS64
1380#endif
1381
1382static inline void init_thread(struct target_pt_regs *regs,
1383 struct image_info *infop)
1384{
1385 regs->sepc = infop->entry;
1386 regs->sp = infop->start_stack;
1387}
1388
1389#define ELF_EXEC_PAGESIZE 4096
1390
1391#endif /* TARGET_RISCV */
1392
7c248bcd
RH
1393#ifdef TARGET_HPPA
1394
1395#define ELF_START_MMAP 0x80000000
1396#define ELF_CLASS ELFCLASS32
1397#define ELF_ARCH EM_PARISC
1398#define ELF_PLATFORM "PARISC"
1399#define STACK_GROWS_DOWN 0
1400#define STACK_ALIGNMENT 64
1401
1402static inline void init_thread(struct target_pt_regs *regs,
1403 struct image_info *infop)
1404{
1405 regs->iaoq[0] = infop->entry;
1406 regs->iaoq[1] = infop->entry + 4;
1407 regs->gr[23] = 0;
1408 regs->gr[24] = infop->arg_start;
1409 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1410 /* The top-of-stack contains a linkage buffer. */
1411 regs->gr[30] = infop->start_stack + 64;
1412 regs->gr[31] = infop->entry;
1413}
1414
1415#endif /* TARGET_HPPA */
1416
ba7651fb
MF
1417#ifdef TARGET_XTENSA
1418
1419#define ELF_START_MMAP 0x20000000
1420
1421#define ELF_CLASS ELFCLASS32
1422#define ELF_ARCH EM_XTENSA
1423
1424static inline void init_thread(struct target_pt_regs *regs,
1425 struct image_info *infop)
1426{
1427 regs->windowbase = 0;
1428 regs->windowstart = 1;
1429 regs->areg[1] = infop->start_stack;
1430 regs->pc = infop->entry;
1431}
1432
1433/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1434#define ELF_NREG 128
1435typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1436
1437enum {
1438 TARGET_REG_PC,
1439 TARGET_REG_PS,
1440 TARGET_REG_LBEG,
1441 TARGET_REG_LEND,
1442 TARGET_REG_LCOUNT,
1443 TARGET_REG_SAR,
1444 TARGET_REG_WINDOWSTART,
1445 TARGET_REG_WINDOWBASE,
1446 TARGET_REG_THREADPTR,
1447 TARGET_REG_AR0 = 64,
1448};
1449
1450static void elf_core_copy_regs(target_elf_gregset_t *regs,
1451 const CPUXtensaState *env)
1452{
1453 unsigned i;
1454
1455 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1456 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1457 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1458 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1459 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1460 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1461 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1462 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1463 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1464 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1465 for (i = 0; i < env->config->nareg; ++i) {
1466 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1467 }
1468}
1469
1470#define USE_ELF_CORE_DUMP
1471#define ELF_EXEC_PAGESIZE 4096
1472
1473#endif /* TARGET_XTENSA */
1474
15338fd7
FB
1475#ifndef ELF_PLATFORM
1476#define ELF_PLATFORM (NULL)
1477#endif
1478
75be901c
PC
1479#ifndef ELF_MACHINE
1480#define ELF_MACHINE ELF_ARCH
1481#endif
1482
d276a604
PC
1483#ifndef elf_check_arch
1484#define elf_check_arch(x) ((x) == ELF_ARCH)
1485#endif
1486
15338fd7
FB
1487#ifndef ELF_HWCAP
1488#define ELF_HWCAP 0
1489#endif
1490
7c4ee5bc
RH
1491#ifndef STACK_GROWS_DOWN
1492#define STACK_GROWS_DOWN 1
1493#endif
1494
1495#ifndef STACK_ALIGNMENT
1496#define STACK_ALIGNMENT 16
1497#endif
1498
992f48a0 1499#ifdef TARGET_ABI32
cb33da57 1500#undef ELF_CLASS
992f48a0 1501#define ELF_CLASS ELFCLASS32
cb33da57
BS
1502#undef bswaptls
1503#define bswaptls(ptr) bswap32s(ptr)
1504#endif
1505
31e31b8a 1506#include "elf.h"
09bfb054 1507
09bfb054
FB
1508struct exec
1509{
d97ef72e
RH
1510 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1511 unsigned int a_text; /* length of text, in bytes */
1512 unsigned int a_data; /* length of data, in bytes */
1513 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1514 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1515 unsigned int a_entry; /* start address */
1516 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1517 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1518};
1519
1520
1521#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1522#define OMAGIC 0407
1523#define NMAGIC 0410
1524#define ZMAGIC 0413
1525#define QMAGIC 0314
1526
31e31b8a 1527/* Necessary parameters */
94894ff2
SB
1528#define TARGET_ELF_EXEC_PAGESIZE \
1529 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1530 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1531#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
79cb1f1d
YK
1532#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1533 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1534#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1535
444cd5c3 1536#define DLINFO_ITEMS 15
31e31b8a 1537
09bfb054
FB
1538static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1539{
d97ef72e 1540 memcpy(to, from, n);
09bfb054 1541}
d691f669 1542
31e31b8a 1543#ifdef BSWAP_NEEDED
92a31b1f 1544static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1545{
d97ef72e
RH
1546 bswap16s(&ehdr->e_type); /* Object file type */
1547 bswap16s(&ehdr->e_machine); /* Architecture */
1548 bswap32s(&ehdr->e_version); /* Object file version */
1549 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1550 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1551 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1552 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1553 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1554 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1555 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1556 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1557 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1558 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1559}
1560
991f8f0c 1561static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1562{
991f8f0c
RH
1563 int i;
1564 for (i = 0; i < phnum; ++i, ++phdr) {
1565 bswap32s(&phdr->p_type); /* Segment type */
1566 bswap32s(&phdr->p_flags); /* Segment flags */
1567 bswaptls(&phdr->p_offset); /* Segment file offset */
1568 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1569 bswaptls(&phdr->p_paddr); /* Segment physical address */
1570 bswaptls(&phdr->p_filesz); /* Segment size in file */
1571 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1572 bswaptls(&phdr->p_align); /* Segment alignment */
1573 }
31e31b8a 1574}
689f936f 1575
991f8f0c 1576static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1577{
991f8f0c
RH
1578 int i;
1579 for (i = 0; i < shnum; ++i, ++shdr) {
1580 bswap32s(&shdr->sh_name);
1581 bswap32s(&shdr->sh_type);
1582 bswaptls(&shdr->sh_flags);
1583 bswaptls(&shdr->sh_addr);
1584 bswaptls(&shdr->sh_offset);
1585 bswaptls(&shdr->sh_size);
1586 bswap32s(&shdr->sh_link);
1587 bswap32s(&shdr->sh_info);
1588 bswaptls(&shdr->sh_addralign);
1589 bswaptls(&shdr->sh_entsize);
1590 }
689f936f
FB
1591}
1592
7a3148a9 1593static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1594{
1595 bswap32s(&sym->st_name);
7a3148a9
JM
1596 bswaptls(&sym->st_value);
1597 bswaptls(&sym->st_size);
689f936f
FB
1598 bswap16s(&sym->st_shndx);
1599}
5dd0db52
SM
1600
1601#ifdef TARGET_MIPS
1602static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1603{
1604 bswap16s(&abiflags->version);
1605 bswap32s(&abiflags->ases);
1606 bswap32s(&abiflags->isa_ext);
1607 bswap32s(&abiflags->flags1);
1608 bswap32s(&abiflags->flags2);
1609}
1610#endif
991f8f0c
RH
1611#else
1612static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1613static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1614static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1615static inline void bswap_sym(struct elf_sym *sym) { }
5dd0db52
SM
1616#ifdef TARGET_MIPS
1617static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1618#endif
31e31b8a
FB
1619#endif
1620
edf8e2af 1621#ifdef USE_ELF_CORE_DUMP
9349b4f9 1622static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1623#endif /* USE_ELF_CORE_DUMP */
682674b8 1624static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1625
9058abdd
RH
1626/* Verify the portions of EHDR within E_IDENT for the target.
1627 This can be performed before bswapping the entire header. */
1628static bool elf_check_ident(struct elfhdr *ehdr)
1629{
1630 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1631 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1632 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1633 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1634 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1635 && ehdr->e_ident[EI_DATA] == ELF_DATA
1636 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1637}
1638
1639/* Verify the portions of EHDR outside of E_IDENT for the target.
1640 This has to wait until after bswapping the header. */
1641static bool elf_check_ehdr(struct elfhdr *ehdr)
1642{
1643 return (elf_check_arch(ehdr->e_machine)
1644 && ehdr->e_ehsize == sizeof(struct elfhdr)
1645 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1646 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1647}
1648
31e31b8a 1649/*
e5fe0c52 1650 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1651 * memory to free pages in kernel mem. These are in a format ready
1652 * to be put directly into the top of new user memory.
1653 *
1654 */
59baae9a
SB
1655static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1656 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1657{
59baae9a 1658 char *tmp;
7c4ee5bc 1659 int len, i;
59baae9a 1660 abi_ulong top = p;
31e31b8a
FB
1661
1662 if (!p) {
d97ef72e 1663 return 0; /* bullet-proofing */
31e31b8a 1664 }
59baae9a 1665
7c4ee5bc
RH
1666 if (STACK_GROWS_DOWN) {
1667 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1668 for (i = argc - 1; i >= 0; --i) {
1669 tmp = argv[i];
1670 if (!tmp) {
1671 fprintf(stderr, "VFS: argc is wrong");
1672 exit(-1);
1673 }
1674 len = strlen(tmp) + 1;
1675 tmp += len;
59baae9a 1676
7c4ee5bc
RH
1677 if (len > (p - stack_limit)) {
1678 return 0;
1679 }
1680 while (len) {
1681 int bytes_to_copy = (len > offset) ? offset : len;
1682 tmp -= bytes_to_copy;
1683 p -= bytes_to_copy;
1684 offset -= bytes_to_copy;
1685 len -= bytes_to_copy;
1686
1687 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1688
1689 if (offset == 0) {
1690 memcpy_to_target(p, scratch, top - p);
1691 top = p;
1692 offset = TARGET_PAGE_SIZE;
1693 }
1694 }
d97ef72e 1695 }
7c4ee5bc
RH
1696 if (p != top) {
1697 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1698 }
7c4ee5bc
RH
1699 } else {
1700 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1701 for (i = 0; i < argc; ++i) {
1702 tmp = argv[i];
1703 if (!tmp) {
1704 fprintf(stderr, "VFS: argc is wrong");
1705 exit(-1);
1706 }
1707 len = strlen(tmp) + 1;
1708 if (len > (stack_limit - p)) {
1709 return 0;
1710 }
1711 while (len) {
1712 int bytes_to_copy = (len > remaining) ? remaining : len;
1713
1714 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1715
1716 tmp += bytes_to_copy;
1717 remaining -= bytes_to_copy;
1718 p += bytes_to_copy;
1719 len -= bytes_to_copy;
1720
1721 if (remaining == 0) {
1722 memcpy_to_target(top, scratch, p - top);
1723 top = p;
1724 remaining = TARGET_PAGE_SIZE;
1725 }
d97ef72e
RH
1726 }
1727 }
7c4ee5bc
RH
1728 if (p != top) {
1729 memcpy_to_target(top, scratch, p - top);
1730 }
59baae9a
SB
1731 }
1732
31e31b8a
FB
1733 return p;
1734}
1735
59baae9a
SB
1736/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1737 * argument/environment space. Newer kernels (>2.6.33) allow more,
1738 * dependent on stack size, but guarantee at least 32 pages for
1739 * backwards compatibility.
1740 */
1741#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1742
1743static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1744 struct image_info *info)
53a5960a 1745{
59baae9a 1746 abi_ulong size, error, guard;
31e31b8a 1747
703e0e89 1748 size = guest_stack_size;
59baae9a
SB
1749 if (size < STACK_LOWER_LIMIT) {
1750 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1751 }
1752 guard = TARGET_PAGE_SIZE;
1753 if (guard < qemu_real_host_page_size) {
1754 guard = qemu_real_host_page_size;
1755 }
1756
1757 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1758 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1759 if (error == -1) {
60dcbcb5 1760 perror("mmap stack");
09bfb054
FB
1761 exit(-1);
1762 }
31e31b8a 1763
60dcbcb5 1764 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1765 if (STACK_GROWS_DOWN) {
1766 target_mprotect(error, guard, PROT_NONE);
1767 info->stack_limit = error + guard;
1768 return info->stack_limit + size - sizeof(void *);
1769 } else {
1770 target_mprotect(error + size, guard, PROT_NONE);
1771 info->stack_limit = error + size;
1772 return error;
1773 }
31e31b8a
FB
1774}
1775
cf129f3a
RH
1776/* Map and zero the bss. We need to explicitly zero any fractional pages
1777 after the data section (i.e. bss). */
1778static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1779{
cf129f3a
RH
1780 uintptr_t host_start, host_map_start, host_end;
1781
1782 last_bss = TARGET_PAGE_ALIGN(last_bss);
1783
1784 /* ??? There is confusion between qemu_real_host_page_size and
1785 qemu_host_page_size here and elsewhere in target_mmap, which
1786 may lead to the end of the data section mapping from the file
1787 not being mapped. At least there was an explicit test and
1788 comment for that here, suggesting that "the file size must
1789 be known". The comment probably pre-dates the introduction
1790 of the fstat system call in target_mmap which does in fact
1791 find out the size. What isn't clear is if the workaround
1792 here is still actually needed. For now, continue with it,
1793 but merge it with the "normal" mmap that would allocate the bss. */
1794
1795 host_start = (uintptr_t) g2h(elf_bss);
1796 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1797 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1798
1799 if (host_map_start < host_end) {
1800 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1801 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1802 if (p == MAP_FAILED) {
1803 perror("cannot mmap brk");
1804 exit(-1);
853d6f7a 1805 }
f46e9a0b 1806 }
853d6f7a 1807
f46e9a0b
TM
1808 /* Ensure that the bss page(s) are valid */
1809 if ((page_get_flags(last_bss-1) & prot) != prot) {
1810 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1811 }
31e31b8a 1812
cf129f3a
RH
1813 if (host_start < host_map_start) {
1814 memset((void *)host_start, 0, host_map_start - host_start);
1815 }
1816}
53a5960a 1817
cf58affe
CL
1818#ifdef TARGET_ARM
1819static int elf_is_fdpic(struct elfhdr *exec)
1820{
1821 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1822}
1823#else
a99856cd
CL
1824/* Default implementation, always false. */
1825static int elf_is_fdpic(struct elfhdr *exec)
1826{
1827 return 0;
1828}
cf58affe 1829#endif
a99856cd 1830
1af02e83
MF
1831static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1832{
1833 uint16_t n;
1834 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1835
1836 /* elf32_fdpic_loadseg */
1837 n = info->nsegs;
1838 while (n--) {
1839 sp -= 12;
1840 put_user_u32(loadsegs[n].addr, sp+0);
1841 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1842 put_user_u32(loadsegs[n].p_memsz, sp+8);
1843 }
1844
1845 /* elf32_fdpic_loadmap */
1846 sp -= 4;
1847 put_user_u16(0, sp+0); /* version */
1848 put_user_u16(info->nsegs, sp+2); /* nsegs */
1849
1850 info->personality = PER_LINUX_FDPIC;
1851 info->loadmap_addr = sp;
1852
1853 return sp;
1854}
1af02e83 1855
992f48a0 1856static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1857 struct elfhdr *exec,
1858 struct image_info *info,
1859 struct image_info *interp_info)
31e31b8a 1860{
d97ef72e 1861 abi_ulong sp;
7c4ee5bc 1862 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1863 int size;
14322bad
LA
1864 int i;
1865 abi_ulong u_rand_bytes;
1866 uint8_t k_rand_bytes[16];
d97ef72e
RH
1867 abi_ulong u_platform;
1868 const char *k_platform;
1869 const int n = sizeof(elf_addr_t);
1870
1871 sp = p;
1af02e83 1872
1af02e83
MF
1873 /* Needs to be before we load the env/argc/... */
1874 if (elf_is_fdpic(exec)) {
1875 /* Need 4 byte alignment for these structs */
1876 sp &= ~3;
1877 sp = loader_build_fdpic_loadmap(info, sp);
1878 info->other_info = interp_info;
1879 if (interp_info) {
1880 interp_info->other_info = info;
1881 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
1882 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1883 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1884 } else {
1885 info->interpreter_loadmap_addr = 0;
1886 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
1887 }
1888 }
1af02e83 1889
d97ef72e
RH
1890 u_platform = 0;
1891 k_platform = ELF_PLATFORM;
1892 if (k_platform) {
1893 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1894 if (STACK_GROWS_DOWN) {
1895 sp -= (len + n - 1) & ~(n - 1);
1896 u_platform = sp;
1897 /* FIXME - check return value of memcpy_to_target() for failure */
1898 memcpy_to_target(sp, k_platform, len);
1899 } else {
1900 memcpy_to_target(sp, k_platform, len);
1901 u_platform = sp;
1902 sp += len + 1;
1903 }
1904 }
1905
1906 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1907 * the argv and envp pointers.
1908 */
1909 if (STACK_GROWS_DOWN) {
1910 sp = QEMU_ALIGN_DOWN(sp, 16);
1911 } else {
1912 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1913 }
14322bad
LA
1914
1915 /*
c6a2377f 1916 * Generate 16 random bytes for userspace PRNG seeding.
14322bad 1917 */
c6a2377f 1918 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
7c4ee5bc
RH
1919 if (STACK_GROWS_DOWN) {
1920 sp -= 16;
1921 u_rand_bytes = sp;
1922 /* FIXME - check return value of memcpy_to_target() for failure */
1923 memcpy_to_target(sp, k_rand_bytes, 16);
1924 } else {
1925 memcpy_to_target(sp, k_rand_bytes, 16);
1926 u_rand_bytes = sp;
1927 sp += 16;
1928 }
14322bad 1929
d97ef72e
RH
1930 size = (DLINFO_ITEMS + 1) * 2;
1931 if (k_platform)
1932 size += 2;
f5155289 1933#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1934 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1935#endif
1936#ifdef ELF_HWCAP2
1937 size += 2;
f5155289 1938#endif
f516511e
PM
1939 info->auxv_len = size * n;
1940
d97ef72e 1941 size += envc + argc + 2;
b9329d4b 1942 size += 1; /* argc itself */
d97ef72e 1943 size *= n;
7c4ee5bc
RH
1944
1945 /* Allocate space and finalize stack alignment for entry now. */
1946 if (STACK_GROWS_DOWN) {
1947 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1948 sp = u_argc;
1949 } else {
1950 u_argc = sp;
1951 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1952 }
1953
1954 u_argv = u_argc + n;
1955 u_envp = u_argv + (argc + 1) * n;
1956 u_auxv = u_envp + (envc + 1) * n;
1957 info->saved_auxv = u_auxv;
1958 info->arg_start = u_argv;
1959 info->arg_end = u_argv + argc * n;
d97ef72e
RH
1960
1961 /* This is correct because Linux defines
1962 * elf_addr_t as Elf32_Off / Elf64_Off
1963 */
1964#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
1965 put_user_ual(id, u_auxv); u_auxv += n; \
1966 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
1967 } while(0)
1968
82991bed
PM
1969#ifdef ARCH_DLINFO
1970 /*
1971 * ARCH_DLINFO must come first so platform specific code can enforce
1972 * special alignment requirements on the AUXV if necessary (eg. PPC).
1973 */
1974 ARCH_DLINFO;
1975#endif
f516511e
PM
1976 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1977 * on info->auxv_len will trigger.
1978 */
8e62a717 1979 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1980 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1981 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
1982 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1983 /* Target doesn't support host page size alignment */
1984 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1985 } else {
1986 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1987 qemu_host_page_size)));
1988 }
8e62a717 1989 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1990 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1991 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1992 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1993 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1994 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1995 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1996 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1997 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 1998 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 1999 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
14322bad 2000
ad6919dc
PM
2001#ifdef ELF_HWCAP2
2002 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2003#endif
2004
7c4ee5bc 2005 if (u_platform) {
d97ef72e 2006 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 2007 }
7c4ee5bc 2008 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
2009#undef NEW_AUX_ENT
2010
f516511e
PM
2011 /* Check that our initial calculation of the auxv length matches how much
2012 * we actually put into it.
2013 */
2014 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
2015
2016 put_user_ual(argc, u_argc);
2017
2018 p = info->arg_strings;
2019 for (i = 0; i < argc; ++i) {
2020 put_user_ual(p, u_argv);
2021 u_argv += n;
2022 p += target_strlen(p) + 1;
2023 }
2024 put_user_ual(0, u_argv);
2025
2026 p = info->env_strings;
2027 for (i = 0; i < envc; ++i) {
2028 put_user_ual(p, u_envp);
2029 u_envp += n;
2030 p += target_strlen(p) + 1;
2031 }
2032 put_user_ual(0, u_envp);
edf8e2af 2033
d97ef72e 2034 return sp;
31e31b8a
FB
2035}
2036
dce10401
MI
2037unsigned long init_guest_space(unsigned long host_start,
2038 unsigned long host_size,
2039 unsigned long guest_start,
2040 bool fixed)
2041{
30ab9ef2
RH
2042 /* In order to use host shmat, we must be able to honor SHMLBA. */
2043 unsigned long align = MAX(SHMLBA, qemu_host_page_size);
293f2060 2044 unsigned long current_start, aligned_start;
dce10401
MI
2045 int flags;
2046
2047 assert(host_start || host_size);
2048
2049 /* If just a starting address is given, then just verify that
2050 * address. */
2051 if (host_start && !host_size) {
8756e136 2052#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
c3637eaf 2053 if (init_guest_commpage(host_start, host_size) != 1) {
dce10401
MI
2054 return (unsigned long)-1;
2055 }
8756e136
LS
2056#endif
2057 return host_start;
dce10401
MI
2058 }
2059
2060 /* Setup the initial flags and start address. */
30ab9ef2 2061 current_start = host_start & -align;
dce10401
MI
2062 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2063 if (fixed) {
2064 flags |= MAP_FIXED;
2065 }
2066
2067 /* Otherwise, a non-zero size region of memory needs to be mapped
2068 * and validated. */
2a53535a
LS
2069
2070#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2071 /* On 32-bit ARM, we need to map not just the usable memory, but
2072 * also the commpage. Try to find a suitable place by allocating
2073 * a big chunk for all of it. If host_start, then the naive
2074 * strategy probably does good enough.
2075 */
2076 if (!host_start) {
2077 unsigned long guest_full_size, host_full_size, real_start;
2078
2079 guest_full_size =
2080 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2081 host_full_size = guest_full_size - guest_start;
2082 real_start = (unsigned long)
2083 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2084 if (real_start == (unsigned long)-1) {
2085 if (host_size < host_full_size - qemu_host_page_size) {
2086 /* We failed to map a continous segment, but we're
2087 * allowed to have a gap between the usable memory and
2088 * the commpage where other things can be mapped.
2089 * This sparseness gives us more flexibility to find
2090 * an address range.
2091 */
2092 goto naive;
2093 }
2094 return (unsigned long)-1;
2095 }
2096 munmap((void *)real_start, host_full_size);
30ab9ef2
RH
2097 if (real_start & (align - 1)) {
2098 /* The same thing again, but with extra
2a53535a
LS
2099 * so that we can shift around alignment.
2100 */
2101 unsigned long real_size = host_full_size + qemu_host_page_size;
2102 real_start = (unsigned long)
2103 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2104 if (real_start == (unsigned long)-1) {
2105 if (host_size < host_full_size - qemu_host_page_size) {
2106 goto naive;
2107 }
2108 return (unsigned long)-1;
2109 }
2110 munmap((void *)real_start, real_size);
30ab9ef2 2111 real_start = ROUND_UP(real_start, align);
2a53535a
LS
2112 }
2113 current_start = real_start;
2114 }
2115 naive:
2116#endif
2117
dce10401 2118 while (1) {
293f2060
LS
2119 unsigned long real_start, real_size, aligned_size;
2120 aligned_size = real_size = host_size;
806d1021 2121
dce10401
MI
2122 /* Do not use mmap_find_vma here because that is limited to the
2123 * guest address space. We are going to make the
2124 * guest address space fit whatever we're given.
2125 */
2126 real_start = (unsigned long)
2127 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2128 if (real_start == (unsigned long)-1) {
2129 return (unsigned long)-1;
2130 }
2131
aac362e4
LS
2132 /* Check to see if the address is valid. */
2133 if (host_start && real_start != current_start) {
2134 goto try_again;
2135 }
2136
806d1021 2137 /* Ensure the address is properly aligned. */
30ab9ef2 2138 if (real_start & (align - 1)) {
293f2060
LS
2139 /* Ideally, we adjust like
2140 *
2141 * pages: [ ][ ][ ][ ][ ]
2142 * old: [ real ]
2143 * [ aligned ]
2144 * new: [ real ]
2145 * [ aligned ]
2146 *
2147 * But if there is something else mapped right after it,
2148 * then obviously it won't have room to grow, and the
2149 * kernel will put the new larger real someplace else with
2150 * unknown alignment (if we made it to here, then
2151 * fixed=false). Which is why we grow real by a full page
2152 * size, instead of by part of one; so that even if we get
2153 * moved, we can still guarantee alignment. But this does
2154 * mean that there is a padding of < 1 page both before
2155 * and after the aligned range; the "after" could could
2156 * cause problems for ARM emulation where it could butt in
2157 * to where we need to put the commpage.
2158 */
806d1021 2159 munmap((void *)real_start, host_size);
293f2060 2160 real_size = aligned_size + qemu_host_page_size;
806d1021
MI
2161 real_start = (unsigned long)
2162 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2163 if (real_start == (unsigned long)-1) {
2164 return (unsigned long)-1;
2165 }
30ab9ef2 2166 aligned_start = ROUND_UP(real_start, align);
293f2060
LS
2167 } else {
2168 aligned_start = real_start;
806d1021
MI
2169 }
2170
8756e136 2171#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
7ad75eea
LS
2172 /* On 32-bit ARM, we need to also be able to map the commpage. */
2173 int valid = init_guest_commpage(aligned_start - guest_start,
2174 aligned_size + guest_start);
2175 if (valid == -1) {
2176 munmap((void *)real_start, real_size);
2177 return (unsigned long)-1;
2178 } else if (valid == 0) {
2179 goto try_again;
dce10401 2180 }
7ad75eea
LS
2181#endif
2182
2183 /* If nothing has said `return -1` or `goto try_again` yet,
2184 * then the address we have is good.
2185 */
2186 break;
dce10401 2187
7ad75eea 2188 try_again:
dce10401
MI
2189 /* That address didn't work. Unmap and try a different one.
2190 * The address the host picked because is typically right at
2191 * the top of the host address space and leaves the guest with
2192 * no usable address space. Resort to a linear search. We
2193 * already compensated for mmap_min_addr, so this should not
2194 * happen often. Probably means we got unlucky and host
2195 * address space randomization put a shared library somewhere
2196 * inconvenient.
8c17d862
LS
2197 *
2198 * This is probably a good strategy if host_start, but is
2199 * probably a bad strategy if not, which means we got here
2200 * because of trouble with ARM commpage setup.
dce10401 2201 */
293f2060 2202 munmap((void *)real_start, real_size);
30ab9ef2 2203 current_start += align;
dce10401
MI
2204 if (host_start == current_start) {
2205 /* Theoretically possible if host doesn't have any suitably
2206 * aligned areas. Normally the first mmap will fail.
2207 */
2208 return (unsigned long)-1;
2209 }
2210 }
2211
13829020 2212 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
806d1021 2213
293f2060 2214 return aligned_start;
dce10401
MI
2215}
2216
f3ed1f5d
PM
2217static void probe_guest_base(const char *image_name,
2218 abi_ulong loaddr, abi_ulong hiaddr)
2219{
2220 /* Probe for a suitable guest base address, if the user has not set
2221 * it explicitly, and set guest_base appropriately.
2222 * In case of error we will print a suitable message and exit.
2223 */
f3ed1f5d
PM
2224 const char *errmsg;
2225 if (!have_guest_base && !reserved_va) {
2226 unsigned long host_start, real_start, host_size;
2227
2228 /* Round addresses to page boundaries. */
2229 loaddr &= qemu_host_page_mask;
2230 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2231
2232 if (loaddr < mmap_min_addr) {
2233 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2234 } else {
2235 host_start = loaddr;
2236 if (host_start != loaddr) {
2237 errmsg = "Address overflow loading ELF binary";
2238 goto exit_errmsg;
2239 }
2240 }
2241 host_size = hiaddr - loaddr;
dce10401
MI
2242
2243 /* Setup the initial guest memory space with ranges gleaned from
2244 * the ELF image that is being loaded.
2245 */
2246 real_start = init_guest_space(host_start, host_size, loaddr, false);
2247 if (real_start == (unsigned long)-1) {
2248 errmsg = "Unable to find space for application";
2249 goto exit_errmsg;
f3ed1f5d 2250 }
dce10401
MI
2251 guest_base = real_start - loaddr;
2252
13829020
PB
2253 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2254 TARGET_ABI_FMT_lx " to 0x%lx\n",
2255 loaddr, real_start);
f3ed1f5d
PM
2256 }
2257 return;
2258
f3ed1f5d
PM
2259exit_errmsg:
2260 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2261 exit(-1);
f3ed1f5d
PM
2262}
2263
2264
8e62a717 2265/* Load an ELF image into the address space.
31e31b8a 2266
8e62a717
RH
2267 IMAGE_NAME is the filename of the image, to use in error messages.
2268 IMAGE_FD is the open file descriptor for the image.
2269
2270 BPRM_BUF is a copy of the beginning of the file; this of course
2271 contains the elf file header at offset 0. It is assumed that this
2272 buffer is sufficiently aligned to present no problems to the host
2273 in accessing data at aligned offsets within the buffer.
2274
2275 On return: INFO values will be filled in, as necessary or available. */
2276
2277static void load_elf_image(const char *image_name, int image_fd,
bf858897 2278 struct image_info *info, char **pinterp_name,
8e62a717 2279 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2280{
8e62a717
RH
2281 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2282 struct elf_phdr *phdr;
2283 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2284 int i, retval;
2285 const char *errmsg;
5fafdf24 2286
8e62a717
RH
2287 /* First of all, some simple consistency checks */
2288 errmsg = "Invalid ELF image for this architecture";
2289 if (!elf_check_ident(ehdr)) {
2290 goto exit_errmsg;
2291 }
2292 bswap_ehdr(ehdr);
2293 if (!elf_check_ehdr(ehdr)) {
2294 goto exit_errmsg;
d97ef72e 2295 }
5fafdf24 2296
8e62a717
RH
2297 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2298 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2299 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2300 } else {
8e62a717
RH
2301 phdr = (struct elf_phdr *) alloca(i);
2302 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2303 if (retval != i) {
8e62a717 2304 goto exit_read;
9955ffac 2305 }
d97ef72e 2306 }
8e62a717 2307 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2308
1af02e83
MF
2309 info->nsegs = 0;
2310 info->pt_dynamic_addr = 0;
1af02e83 2311
98c1076c
AB
2312 mmap_lock();
2313
682674b8
RH
2314 /* Find the maximum size of the image and allocate an appropriate
2315 amount of memory to handle that. */
2316 loaddr = -1, hiaddr = 0;
33143c44 2317 info->alignment = 0;
8e62a717
RH
2318 for (i = 0; i < ehdr->e_phnum; ++i) {
2319 if (phdr[i].p_type == PT_LOAD) {
a93934fe 2320 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
2321 if (a < loaddr) {
2322 loaddr = a;
2323 }
ccf661f8 2324 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
2325 if (a > hiaddr) {
2326 hiaddr = a;
2327 }
1af02e83 2328 ++info->nsegs;
33143c44 2329 info->alignment |= phdr[i].p_align;
682674b8
RH
2330 }
2331 }
2332
2333 load_addr = loaddr;
8e62a717 2334 if (ehdr->e_type == ET_DYN) {
682674b8
RH
2335 /* The image indicates that it can be loaded anywhere. Find a
2336 location that can hold the memory space required. If the
2337 image is pre-linked, LOADDR will be non-zero. Since we do
2338 not supply MAP_FIXED here we'll use that address if and
2339 only if it remains available. */
2340 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2341 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2342 -1, 0);
2343 if (load_addr == -1) {
8e62a717 2344 goto exit_perror;
d97ef72e 2345 }
bf858897
RH
2346 } else if (pinterp_name != NULL) {
2347 /* This is the main executable. Make sure that the low
2348 address does not conflict with MMAP_MIN_ADDR or the
2349 QEMU application itself. */
f3ed1f5d 2350 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 2351 }
682674b8 2352 load_bias = load_addr - loaddr;
d97ef72e 2353
a99856cd 2354 if (elf_is_fdpic(ehdr)) {
1af02e83 2355 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2356 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2357
2358 for (i = 0; i < ehdr->e_phnum; ++i) {
2359 switch (phdr[i].p_type) {
2360 case PT_DYNAMIC:
2361 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2362 break;
2363 case PT_LOAD:
2364 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2365 loadsegs->p_vaddr = phdr[i].p_vaddr;
2366 loadsegs->p_memsz = phdr[i].p_memsz;
2367 ++loadsegs;
2368 break;
2369 }
2370 }
2371 }
1af02e83 2372
8e62a717
RH
2373 info->load_bias = load_bias;
2374 info->load_addr = load_addr;
2375 info->entry = ehdr->e_entry + load_bias;
2376 info->start_code = -1;
2377 info->end_code = 0;
2378 info->start_data = -1;
2379 info->end_data = 0;
2380 info->brk = 0;
d8fd2954 2381 info->elf_flags = ehdr->e_flags;
8e62a717
RH
2382
2383 for (i = 0; i < ehdr->e_phnum; i++) {
2384 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2385 if (eppnt->p_type == PT_LOAD) {
94894ff2 2386 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
d97ef72e 2387 int elf_prot = 0;
d97ef72e
RH
2388
2389 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2390 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2391 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 2392
682674b8
RH
2393 vaddr = load_bias + eppnt->p_vaddr;
2394 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2395 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
94894ff2 2396 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
682674b8 2397
d87146bc
GM
2398 /*
2399 * Some segments may be completely empty without any backing file
2400 * segment, in that case just let zero_bss allocate an empty buffer
2401 * for it.
2402 */
2403 if (eppnt->p_filesz != 0) {
2404 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2405 MAP_PRIVATE | MAP_FIXED,
2406 image_fd, eppnt->p_offset - vaddr_po);
2407
2408 if (error == -1) {
2409 goto exit_perror;
2410 }
09bfb054 2411 }
09bfb054 2412
682674b8
RH
2413 vaddr_ef = vaddr + eppnt->p_filesz;
2414 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 2415
cf129f3a 2416 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
2417 if (vaddr_ef < vaddr_em) {
2418 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 2419 }
8e62a717
RH
2420
2421 /* Find the full program boundaries. */
2422 if (elf_prot & PROT_EXEC) {
2423 if (vaddr < info->start_code) {
2424 info->start_code = vaddr;
2425 }
2426 if (vaddr_ef > info->end_code) {
2427 info->end_code = vaddr_ef;
2428 }
2429 }
2430 if (elf_prot & PROT_WRITE) {
2431 if (vaddr < info->start_data) {
2432 info->start_data = vaddr;
2433 }
2434 if (vaddr_ef > info->end_data) {
2435 info->end_data = vaddr_ef;
2436 }
2437 if (vaddr_em > info->brk) {
2438 info->brk = vaddr_em;
2439 }
2440 }
bf858897
RH
2441 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2442 char *interp_name;
2443
2444 if (*pinterp_name) {
2445 errmsg = "Multiple PT_INTERP entries";
2446 goto exit_errmsg;
2447 }
2448 interp_name = malloc(eppnt->p_filesz);
2449 if (!interp_name) {
2450 goto exit_perror;
2451 }
2452
2453 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2454 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2455 eppnt->p_filesz);
2456 } else {
2457 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2458 eppnt->p_offset);
2459 if (retval != eppnt->p_filesz) {
2460 goto exit_perror;
2461 }
2462 }
2463 if (interp_name[eppnt->p_filesz - 1] != 0) {
2464 errmsg = "Invalid PT_INTERP entry";
2465 goto exit_errmsg;
2466 }
2467 *pinterp_name = interp_name;
5dd0db52
SM
2468#ifdef TARGET_MIPS
2469 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2470 Mips_elf_abiflags_v0 abiflags;
2471 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2472 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2473 goto exit_errmsg;
2474 }
2475 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2476 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2477 sizeof(Mips_elf_abiflags_v0));
2478 } else {
2479 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2480 eppnt->p_offset);
2481 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2482 goto exit_perror;
2483 }
2484 }
2485 bswap_mips_abiflags(&abiflags);
c94cb6c9 2486 info->fp_abi = abiflags.fp_abi;
5dd0db52 2487#endif
d97ef72e 2488 }
682674b8 2489 }
5fafdf24 2490
8e62a717
RH
2491 if (info->end_data == 0) {
2492 info->start_data = info->end_code;
2493 info->end_data = info->end_code;
2494 info->brk = info->end_code;
2495 }
2496
682674b8 2497 if (qemu_log_enabled()) {
8e62a717 2498 load_symbols(ehdr, image_fd, load_bias);
682674b8 2499 }
31e31b8a 2500
98c1076c
AB
2501 mmap_unlock();
2502
8e62a717
RH
2503 close(image_fd);
2504 return;
2505
2506 exit_read:
2507 if (retval >= 0) {
2508 errmsg = "Incomplete read of file header";
2509 goto exit_errmsg;
2510 }
2511 exit_perror:
2512 errmsg = strerror(errno);
2513 exit_errmsg:
2514 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2515 exit(-1);
2516}
2517
2518static void load_elf_interp(const char *filename, struct image_info *info,
2519 char bprm_buf[BPRM_BUF_SIZE])
2520{
2521 int fd, retval;
2522
2523 fd = open(path(filename), O_RDONLY);
2524 if (fd < 0) {
2525 goto exit_perror;
2526 }
31e31b8a 2527
8e62a717
RH
2528 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2529 if (retval < 0) {
2530 goto exit_perror;
2531 }
2532 if (retval < BPRM_BUF_SIZE) {
2533 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2534 }
2535
bf858897 2536 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2537 return;
2538
2539 exit_perror:
2540 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2541 exit(-1);
31e31b8a
FB
2542}
2543
49918a75
PB
2544static int symfind(const void *s0, const void *s1)
2545{
c7c530cd 2546 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2547 struct elf_sym *sym = (struct elf_sym *)s1;
2548 int result = 0;
c7c530cd 2549 if (addr < sym->st_value) {
49918a75 2550 result = -1;
c7c530cd 2551 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2552 result = 1;
2553 }
2554 return result;
2555}
2556
2557static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2558{
2559#if ELF_CLASS == ELFCLASS32
2560 struct elf_sym *syms = s->disas_symtab.elf32;
2561#else
2562 struct elf_sym *syms = s->disas_symtab.elf64;
2563#endif
2564
2565 // binary search
49918a75
PB
2566 struct elf_sym *sym;
2567
c7c530cd 2568 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2569 if (sym != NULL) {
49918a75
PB
2570 return s->disas_strtab + sym->st_name;
2571 }
2572
2573 return "";
2574}
2575
2576/* FIXME: This should use elf_ops.h */
2577static int symcmp(const void *s0, const void *s1)
2578{
2579 struct elf_sym *sym0 = (struct elf_sym *)s0;
2580 struct elf_sym *sym1 = (struct elf_sym *)s1;
2581 return (sym0->st_value < sym1->st_value)
2582 ? -1
2583 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2584}
2585
689f936f 2586/* Best attempt to load symbols from this ELF object. */
682674b8 2587static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2588{
682674b8 2589 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 2590 uint64_t segsz;
682674b8 2591 struct elf_shdr *shdr;
b9475279
CV
2592 char *strings = NULL;
2593 struct syminfo *s = NULL;
2594 struct elf_sym *new_syms, *syms = NULL;
689f936f 2595
682674b8
RH
2596 shnum = hdr->e_shnum;
2597 i = shnum * sizeof(struct elf_shdr);
2598 shdr = (struct elf_shdr *)alloca(i);
2599 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2600 return;
2601 }
2602
2603 bswap_shdr(shdr, shnum);
2604 for (i = 0; i < shnum; ++i) {
2605 if (shdr[i].sh_type == SHT_SYMTAB) {
2606 sym_idx = i;
2607 str_idx = shdr[i].sh_link;
49918a75
PB
2608 goto found;
2609 }
689f936f 2610 }
682674b8
RH
2611
2612 /* There will be no symbol table if the file was stripped. */
2613 return;
689f936f
FB
2614
2615 found:
682674b8 2616 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 2617 s = g_try_new(struct syminfo, 1);
682674b8 2618 if (!s) {
b9475279 2619 goto give_up;
682674b8 2620 }
5fafdf24 2621
1e06262d
PM
2622 segsz = shdr[str_idx].sh_size;
2623 s->disas_strtab = strings = g_try_malloc(segsz);
2624 if (!strings ||
2625 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 2626 goto give_up;
682674b8 2627 }
49918a75 2628
1e06262d
PM
2629 segsz = shdr[sym_idx].sh_size;
2630 syms = g_try_malloc(segsz);
2631 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 2632 goto give_up;
682674b8 2633 }
31e31b8a 2634
1e06262d
PM
2635 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2636 /* Implausibly large symbol table: give up rather than ploughing
2637 * on with the number of symbols calculation overflowing
2638 */
2639 goto give_up;
2640 }
2641 nsyms = segsz / sizeof(struct elf_sym);
682674b8 2642 for (i = 0; i < nsyms; ) {
49918a75 2643 bswap_sym(syms + i);
682674b8
RH
2644 /* Throw away entries which we do not need. */
2645 if (syms[i].st_shndx == SHN_UNDEF
2646 || syms[i].st_shndx >= SHN_LORESERVE
2647 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2648 if (i < --nsyms) {
49918a75
PB
2649 syms[i] = syms[nsyms];
2650 }
682674b8 2651 } else {
49918a75 2652#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2653 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2654 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2655#endif
682674b8
RH
2656 syms[i].st_value += load_bias;
2657 i++;
2658 }
0774bed1 2659 }
49918a75 2660
b9475279
CV
2661 /* No "useful" symbol. */
2662 if (nsyms == 0) {
2663 goto give_up;
2664 }
2665
5d5c9930
RH
2666 /* Attempt to free the storage associated with the local symbols
2667 that we threw away. Whether or not this has any effect on the
2668 memory allocation depends on the malloc implementation and how
2669 many symbols we managed to discard. */
0ef9ea29 2670 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 2671 if (new_syms == NULL) {
b9475279 2672 goto give_up;
5d5c9930 2673 }
8d79de6e 2674 syms = new_syms;
5d5c9930 2675
49918a75 2676 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2677
49918a75
PB
2678 s->disas_num_syms = nsyms;
2679#if ELF_CLASS == ELFCLASS32
2680 s->disas_symtab.elf32 = syms;
49918a75
PB
2681#else
2682 s->disas_symtab.elf64 = syms;
49918a75 2683#endif
682674b8 2684 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2685 s->next = syminfos;
2686 syminfos = s;
b9475279
CV
2687
2688 return;
2689
2690give_up:
0ef9ea29
PM
2691 g_free(s);
2692 g_free(strings);
2693 g_free(syms);
689f936f 2694}
31e31b8a 2695
768fe76e
YS
2696uint32_t get_elf_eflags(int fd)
2697{
2698 struct elfhdr ehdr;
2699 off_t offset;
2700 int ret;
2701
2702 /* Read ELF header */
2703 offset = lseek(fd, 0, SEEK_SET);
2704 if (offset == (off_t) -1) {
2705 return 0;
2706 }
2707 ret = read(fd, &ehdr, sizeof(ehdr));
2708 if (ret < sizeof(ehdr)) {
2709 return 0;
2710 }
2711 offset = lseek(fd, offset, SEEK_SET);
2712 if (offset == (off_t) -1) {
2713 return 0;
2714 }
2715
2716 /* Check ELF signature */
2717 if (!elf_check_ident(&ehdr)) {
2718 return 0;
2719 }
2720
2721 /* check header */
2722 bswap_ehdr(&ehdr);
2723 if (!elf_check_ehdr(&ehdr)) {
2724 return 0;
2725 }
2726
2727 /* return architecture id */
2728 return ehdr.e_flags;
2729}
2730
f0116c54 2731int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2732{
8e62a717 2733 struct image_info interp_info;
31e31b8a 2734 struct elfhdr elf_ex;
8e62a717 2735 char *elf_interpreter = NULL;
59baae9a 2736 char *scratch;
31e31b8a 2737
abcac736
DS
2738 memset(&interp_info, 0, sizeof(interp_info));
2739#ifdef TARGET_MIPS
2740 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2741#endif
2742
bf858897 2743 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2744
2745 load_elf_image(bprm->filename, bprm->fd, info,
2746 &elf_interpreter, bprm->buf);
31e31b8a 2747
bf858897
RH
2748 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2749 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2750 when we load the interpreter. */
2751 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2752
59baae9a
SB
2753 /* Do this so that we can load the interpreter, if need be. We will
2754 change some of these later */
2755 bprm->p = setup_arg_pages(bprm, info);
2756
2757 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
2758 if (STACK_GROWS_DOWN) {
2759 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2760 bprm->p, info->stack_limit);
2761 info->file_string = bprm->p;
2762 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2763 bprm->p, info->stack_limit);
2764 info->env_strings = bprm->p;
2765 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2766 bprm->p, info->stack_limit);
2767 info->arg_strings = bprm->p;
2768 } else {
2769 info->arg_strings = bprm->p;
2770 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2771 bprm->p, info->stack_limit);
2772 info->env_strings = bprm->p;
2773 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2774 bprm->p, info->stack_limit);
2775 info->file_string = bprm->p;
2776 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2777 bprm->p, info->stack_limit);
2778 }
2779
59baae9a
SB
2780 g_free(scratch);
2781
e5fe0c52 2782 if (!bprm->p) {
bf858897
RH
2783 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2784 exit(-1);
379f6698 2785 }
379f6698 2786
8e62a717
RH
2787 if (elf_interpreter) {
2788 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2789
8e62a717
RH
2790 /* If the program interpreter is one of these two, then assume
2791 an iBCS2 image. Otherwise assume a native linux image. */
2792
2793 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2794 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2795 info->personality = PER_SVR4;
31e31b8a 2796
8e62a717
RH
2797 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2798 and some applications "depend" upon this behavior. Since
2799 we do not have the power to recompile these, we emulate
2800 the SVr4 behavior. Sigh. */
2801 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 2802 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 2803 }
c94cb6c9
SM
2804#ifdef TARGET_MIPS
2805 info->interp_fp_abi = interp_info.fp_abi;
2806#endif
31e31b8a
FB
2807 }
2808
8e62a717
RH
2809 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2810 info, (elf_interpreter ? &interp_info : NULL));
2811 info->start_stack = bprm->p;
2812
2813 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2814 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2815 point as a function descriptor. Do this after creating elf tables
2816 so that we copy the original program entry point into the AUXV. */
2817 if (elf_interpreter) {
8e78064e 2818 info->load_bias = interp_info.load_bias;
8e62a717 2819 info->entry = interp_info.entry;
bf858897 2820 free(elf_interpreter);
8e62a717 2821 }
31e31b8a 2822
edf8e2af
MW
2823#ifdef USE_ELF_CORE_DUMP
2824 bprm->core_dump = &elf_core_dump;
2825#endif
2826
31e31b8a
FB
2827 return 0;
2828}
2829
edf8e2af 2830#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2831/*
2832 * Definitions to generate Intel SVR4-like core files.
a2547a13 2833 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2834 * tacked on the front to prevent clashes with linux definitions,
2835 * and the typedef forms have been avoided. This is mostly like
2836 * the SVR4 structure, but more Linuxy, with things that Linux does
2837 * not support and which gdb doesn't really use excluded.
2838 *
2839 * Fields we don't dump (their contents is zero) in linux-user qemu
2840 * are marked with XXX.
2841 *
2842 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2843 *
2844 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2845 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2846 * the target resides):
2847 *
2848 * #define USE_ELF_CORE_DUMP
2849 *
2850 * Next you define type of register set used for dumping. ELF specification
2851 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2852 *
c227f099 2853 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2854 * #define ELF_NREG <number of registers>
c227f099 2855 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2856 *
edf8e2af
MW
2857 * Last step is to implement target specific function that copies registers
2858 * from given cpu into just specified register set. Prototype is:
2859 *
c227f099 2860 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2861 * const CPUArchState *env);
edf8e2af
MW
2862 *
2863 * Parameters:
2864 * regs - copy register values into here (allocated and zeroed by caller)
2865 * env - copy registers from here
2866 *
2867 * Example for ARM target is provided in this file.
2868 */
2869
2870/* An ELF note in memory */
2871struct memelfnote {
2872 const char *name;
2873 size_t namesz;
2874 size_t namesz_rounded;
2875 int type;
2876 size_t datasz;
80f5ce75 2877 size_t datasz_rounded;
edf8e2af
MW
2878 void *data;
2879 size_t notesz;
2880};
2881
a2547a13 2882struct target_elf_siginfo {
f8fd4fc4
PB
2883 abi_int si_signo; /* signal number */
2884 abi_int si_code; /* extra code */
2885 abi_int si_errno; /* errno */
edf8e2af
MW
2886};
2887
a2547a13
LD
2888struct target_elf_prstatus {
2889 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2890 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2891 abi_ulong pr_sigpend; /* XXX */
2892 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2893 target_pid_t pr_pid;
2894 target_pid_t pr_ppid;
2895 target_pid_t pr_pgrp;
2896 target_pid_t pr_sid;
edf8e2af
MW
2897 struct target_timeval pr_utime; /* XXX User time */
2898 struct target_timeval pr_stime; /* XXX System time */
2899 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2900 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2901 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2902 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2903};
2904
2905#define ELF_PRARGSZ (80) /* Number of chars for args */
2906
a2547a13 2907struct target_elf_prpsinfo {
edf8e2af
MW
2908 char pr_state; /* numeric process state */
2909 char pr_sname; /* char for pr_state */
2910 char pr_zomb; /* zombie */
2911 char pr_nice; /* nice val */
ca98ac83 2912 abi_ulong pr_flag; /* flags */
c227f099
AL
2913 target_uid_t pr_uid;
2914 target_gid_t pr_gid;
2915 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af 2916 /* Lots missing */
d7eb2b92 2917 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
edf8e2af
MW
2918 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2919};
2920
2921/* Here is the structure in which status of each thread is captured. */
2922struct elf_thread_status {
72cf2d4f 2923 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2924 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2925#if 0
2926 elf_fpregset_t fpu; /* NT_PRFPREG */
2927 struct task_struct *thread;
2928 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2929#endif
2930 struct memelfnote notes[1];
2931 int num_notes;
2932};
2933
2934struct elf_note_info {
2935 struct memelfnote *notes;
a2547a13
LD
2936 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2937 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2938
b58deb34 2939 QTAILQ_HEAD(, elf_thread_status) thread_list;
edf8e2af
MW
2940#if 0
2941 /*
2942 * Current version of ELF coredump doesn't support
2943 * dumping fp regs etc.
2944 */
2945 elf_fpregset_t *fpu;
2946 elf_fpxregset_t *xfpu;
2947 int thread_status_size;
2948#endif
2949 int notes_size;
2950 int numnote;
2951};
2952
2953struct vm_area_struct {
1a1c4db9
MI
2954 target_ulong vma_start; /* start vaddr of memory region */
2955 target_ulong vma_end; /* end vaddr of memory region */
2956 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2957 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2958};
2959
2960struct mm_struct {
72cf2d4f 2961 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2962 int mm_count; /* number of mappings */
2963};
2964
2965static struct mm_struct *vma_init(void);
2966static void vma_delete(struct mm_struct *);
1a1c4db9
MI
2967static int vma_add_mapping(struct mm_struct *, target_ulong,
2968 target_ulong, abi_ulong);
edf8e2af
MW
2969static int vma_get_mapping_count(const struct mm_struct *);
2970static struct vm_area_struct *vma_first(const struct mm_struct *);
2971static struct vm_area_struct *vma_next(struct vm_area_struct *);
2972static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 2973static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2974 unsigned long flags);
edf8e2af
MW
2975
2976static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2977static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2978 unsigned int, void *);
a2547a13
LD
2979static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2980static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2981static void fill_auxv_note(struct memelfnote *, const TaskState *);
2982static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2983static size_t note_size(const struct memelfnote *);
2984static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2985static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2986static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2987static int core_dump_filename(const TaskState *, char *, size_t);
2988
2989static int dump_write(int, const void *, size_t);
2990static int write_note(struct memelfnote *, int);
2991static int write_note_info(struct elf_note_info *, int);
2992
2993#ifdef BSWAP_NEEDED
a2547a13 2994static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2995{
ca98ac83
PB
2996 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2997 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2998 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2999 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
3000 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3001 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
3002 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3003 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3004 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3005 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3006 /* cpu times are not filled, so we skip them */
3007 /* regs should be in correct format already */
3008 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3009}
3010
a2547a13 3011static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 3012{
ca98ac83 3013 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
3014 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3015 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3016 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3017 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3018 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3019 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3020}
991f8f0c
RH
3021
3022static void bswap_note(struct elf_note *en)
3023{
3024 bswap32s(&en->n_namesz);
3025 bswap32s(&en->n_descsz);
3026 bswap32s(&en->n_type);
3027}
3028#else
3029static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3030static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3031static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
3032#endif /* BSWAP_NEEDED */
3033
3034/*
3035 * Minimal support for linux memory regions. These are needed
3036 * when we are finding out what memory exactly belongs to
3037 * emulated process. No locks needed here, as long as
3038 * thread that received the signal is stopped.
3039 */
3040
3041static struct mm_struct *vma_init(void)
3042{
3043 struct mm_struct *mm;
3044
7267c094 3045 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
3046 return (NULL);
3047
3048 mm->mm_count = 0;
72cf2d4f 3049 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
3050
3051 return (mm);
3052}
3053
3054static void vma_delete(struct mm_struct *mm)
3055{
3056 struct vm_area_struct *vma;
3057
3058 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 3059 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 3060 g_free(vma);
edf8e2af 3061 }
7267c094 3062 g_free(mm);
edf8e2af
MW
3063}
3064
1a1c4db9
MI
3065static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3066 target_ulong end, abi_ulong flags)
edf8e2af
MW
3067{
3068 struct vm_area_struct *vma;
3069
7267c094 3070 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
3071 return (-1);
3072
3073 vma->vma_start = start;
3074 vma->vma_end = end;
3075 vma->vma_flags = flags;
3076
72cf2d4f 3077 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
3078 mm->mm_count++;
3079
3080 return (0);
3081}
3082
3083static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3084{
72cf2d4f 3085 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
3086}
3087
3088static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3089{
72cf2d4f 3090 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
3091}
3092
3093static int vma_get_mapping_count(const struct mm_struct *mm)
3094{
3095 return (mm->mm_count);
3096}
3097
3098/*
3099 * Calculate file (dump) size of given memory region.
3100 */
3101static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3102{
3103 /* if we cannot even read the first page, skip it */
3104 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3105 return (0);
3106
3107 /*
3108 * Usually we don't dump executable pages as they contain
3109 * non-writable code that debugger can read directly from
3110 * target library etc. However, thread stacks are marked
3111 * also executable so we read in first page of given region
3112 * and check whether it contains elf header. If there is
3113 * no elf header, we dump it.
3114 */
3115 if (vma->vma_flags & PROT_EXEC) {
3116 char page[TARGET_PAGE_SIZE];
3117
3118 copy_from_user(page, vma->vma_start, sizeof (page));
3119 if ((page[EI_MAG0] == ELFMAG0) &&
3120 (page[EI_MAG1] == ELFMAG1) &&
3121 (page[EI_MAG2] == ELFMAG2) &&
3122 (page[EI_MAG3] == ELFMAG3)) {
3123 /*
3124 * Mappings are possibly from ELF binary. Don't dump
3125 * them.
3126 */
3127 return (0);
3128 }
3129 }
3130
3131 return (vma->vma_end - vma->vma_start);
3132}
3133
1a1c4db9 3134static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3135 unsigned long flags)
edf8e2af
MW
3136{
3137 struct mm_struct *mm = (struct mm_struct *)priv;
3138
edf8e2af
MW
3139 vma_add_mapping(mm, start, end, flags);
3140 return (0);
3141}
3142
3143static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 3144 unsigned int sz, void *data)
edf8e2af
MW
3145{
3146 unsigned int namesz;
3147
3148 namesz = strlen(name) + 1;
3149 note->name = name;
3150 note->namesz = namesz;
3151 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3152 note->type = type;
80f5ce75
LV
3153 note->datasz = sz;
3154 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3155
edf8e2af
MW
3156 note->data = data;
3157
3158 /*
3159 * We calculate rounded up note size here as specified by
3160 * ELF document.
3161 */
3162 note->notesz = sizeof (struct elf_note) +
80f5ce75 3163 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
3164}
3165
3166static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 3167 uint32_t flags)
edf8e2af
MW
3168{
3169 (void) memset(elf, 0, sizeof(*elf));
3170
3171 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3172 elf->e_ident[EI_CLASS] = ELF_CLASS;
3173 elf->e_ident[EI_DATA] = ELF_DATA;
3174 elf->e_ident[EI_VERSION] = EV_CURRENT;
3175 elf->e_ident[EI_OSABI] = ELF_OSABI;
3176
3177 elf->e_type = ET_CORE;
3178 elf->e_machine = machine;
3179 elf->e_version = EV_CURRENT;
3180 elf->e_phoff = sizeof(struct elfhdr);
3181 elf->e_flags = flags;
3182 elf->e_ehsize = sizeof(struct elfhdr);
3183 elf->e_phentsize = sizeof(struct elf_phdr);
3184 elf->e_phnum = segs;
3185
edf8e2af 3186 bswap_ehdr(elf);
edf8e2af
MW
3187}
3188
3189static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3190{
3191 phdr->p_type = PT_NOTE;
3192 phdr->p_offset = offset;
3193 phdr->p_vaddr = 0;
3194 phdr->p_paddr = 0;
3195 phdr->p_filesz = sz;
3196 phdr->p_memsz = 0;
3197 phdr->p_flags = 0;
3198 phdr->p_align = 0;
3199
991f8f0c 3200 bswap_phdr(phdr, 1);
edf8e2af
MW
3201}
3202
3203static size_t note_size(const struct memelfnote *note)
3204{
3205 return (note->notesz);
3206}
3207
a2547a13 3208static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 3209 const TaskState *ts, int signr)
edf8e2af
MW
3210{
3211 (void) memset(prstatus, 0, sizeof (*prstatus));
3212 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3213 prstatus->pr_pid = ts->ts_tid;
3214 prstatus->pr_ppid = getppid();
3215 prstatus->pr_pgrp = getpgrp();
3216 prstatus->pr_sid = getsid(0);
3217
edf8e2af 3218 bswap_prstatus(prstatus);
edf8e2af
MW
3219}
3220
a2547a13 3221static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 3222{
900cfbca 3223 char *base_filename;
edf8e2af
MW
3224 unsigned int i, len;
3225
3226 (void) memset(psinfo, 0, sizeof (*psinfo));
3227
3228 len = ts->info->arg_end - ts->info->arg_start;
3229 if (len >= ELF_PRARGSZ)
3230 len = ELF_PRARGSZ - 1;
3231 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3232 return -EFAULT;
3233 for (i = 0; i < len; i++)
3234 if (psinfo->pr_psargs[i] == 0)
3235 psinfo->pr_psargs[i] = ' ';
3236 psinfo->pr_psargs[len] = 0;
3237
3238 psinfo->pr_pid = getpid();
3239 psinfo->pr_ppid = getppid();
3240 psinfo->pr_pgrp = getpgrp();
3241 psinfo->pr_sid = getsid(0);
3242 psinfo->pr_uid = getuid();
3243 psinfo->pr_gid = getgid();
3244
900cfbca
JM
3245 base_filename = g_path_get_basename(ts->bprm->filename);
3246 /*
3247 * Using strncpy here is fine: at max-length,
3248 * this field is not NUL-terminated.
3249 */
edf8e2af 3250 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 3251 sizeof(psinfo->pr_fname));
edf8e2af 3252
900cfbca 3253 g_free(base_filename);
edf8e2af 3254 bswap_psinfo(psinfo);
edf8e2af
MW
3255 return (0);
3256}
3257
3258static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3259{
3260 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3261 elf_addr_t orig_auxv = auxv;
edf8e2af 3262 void *ptr;
125b0f55 3263 int len = ts->info->auxv_len;
edf8e2af
MW
3264
3265 /*
3266 * Auxiliary vector is stored in target process stack. It contains
3267 * {type, value} pairs that we need to dump into note. This is not
3268 * strictly necessary but we do it here for sake of completeness.
3269 */
3270
edf8e2af
MW
3271 /* read in whole auxv vector and copy it to memelfnote */
3272 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3273 if (ptr != NULL) {
3274 fill_note(note, "CORE", NT_AUXV, len, ptr);
3275 unlock_user(ptr, auxv, len);
3276 }
3277}
3278
3279/*
3280 * Constructs name of coredump file. We have following convention
3281 * for the name:
3282 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3283 *
3284 * Returns 0 in case of success, -1 otherwise (errno is set).
3285 */
3286static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 3287 size_t bufsize)
edf8e2af
MW
3288{
3289 char timestamp[64];
edf8e2af
MW
3290 char *base_filename = NULL;
3291 struct timeval tv;
3292 struct tm tm;
3293
3294 assert(bufsize >= PATH_MAX);
3295
3296 if (gettimeofday(&tv, NULL) < 0) {
3297 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 3298 strerror(errno));
edf8e2af
MW
3299 return (-1);
3300 }
3301
b8da57fa 3302 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 3303 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 3304 localtime_r(&tv.tv_sec, &tm));
edf8e2af 3305 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 3306 base_filename, timestamp, (int)getpid());
b8da57fa 3307 g_free(base_filename);
edf8e2af
MW
3308
3309 return (0);
3310}
3311
3312static int dump_write(int fd, const void *ptr, size_t size)
3313{
3314 const char *bufp = (const char *)ptr;
3315 ssize_t bytes_written, bytes_left;
3316 struct rlimit dumpsize;
3317 off_t pos;
3318
3319 bytes_written = 0;
3320 getrlimit(RLIMIT_CORE, &dumpsize);
3321 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3322 if (errno == ESPIPE) { /* not a seekable stream */
3323 bytes_left = size;
3324 } else {
3325 return pos;
3326 }
3327 } else {
3328 if (dumpsize.rlim_cur <= pos) {
3329 return -1;
3330 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3331 bytes_left = size;
3332 } else {
3333 size_t limit_left=dumpsize.rlim_cur - pos;
3334 bytes_left = limit_left >= size ? size : limit_left ;
3335 }
3336 }
3337
3338 /*
3339 * In normal conditions, single write(2) should do but
3340 * in case of socket etc. this mechanism is more portable.
3341 */
3342 do {
3343 bytes_written = write(fd, bufp, bytes_left);
3344 if (bytes_written < 0) {
3345 if (errno == EINTR)
3346 continue;
3347 return (-1);
3348 } else if (bytes_written == 0) { /* eof */
3349 return (-1);
3350 }
3351 bufp += bytes_written;
3352 bytes_left -= bytes_written;
3353 } while (bytes_left > 0);
3354
3355 return (0);
3356}
3357
3358static int write_note(struct memelfnote *men, int fd)
3359{
3360 struct elf_note en;
3361
3362 en.n_namesz = men->namesz;
3363 en.n_type = men->type;
3364 en.n_descsz = men->datasz;
3365
edf8e2af 3366 bswap_note(&en);
edf8e2af
MW
3367
3368 if (dump_write(fd, &en, sizeof(en)) != 0)
3369 return (-1);
3370 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3371 return (-1);
80f5ce75 3372 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3373 return (-1);
3374
3375 return (0);
3376}
3377
9349b4f9 3378static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3379{
29a0af61 3380 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3381 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3382 struct elf_thread_status *ets;
3383
7267c094 3384 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3385 ets->num_notes = 1; /* only prstatus is dumped */
3386 fill_prstatus(&ets->prstatus, ts, 0);
3387 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3388 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3389 &ets->prstatus);
edf8e2af 3390
72cf2d4f 3391 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3392
3393 info->notes_size += note_size(&ets->notes[0]);
3394}
3395
6afafa86
PM
3396static void init_note_info(struct elf_note_info *info)
3397{
3398 /* Initialize the elf_note_info structure so that it is at
3399 * least safe to call free_note_info() on it. Must be
3400 * called before calling fill_note_info().
3401 */
3402 memset(info, 0, sizeof (*info));
3403 QTAILQ_INIT(&info->thread_list);
3404}
3405
edf8e2af 3406static int fill_note_info(struct elf_note_info *info,
9349b4f9 3407 long signr, const CPUArchState *env)
edf8e2af
MW
3408{
3409#define NUMNOTES 3
29a0af61 3410 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3411 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3412 int i;
3413
c78d65e8 3414 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3415 if (info->notes == NULL)
3416 return (-ENOMEM);
7267c094 3417 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3418 if (info->prstatus == NULL)
3419 return (-ENOMEM);
7267c094 3420 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3421 if (info->prstatus == NULL)
3422 return (-ENOMEM);
3423
3424 /*
3425 * First fill in status (and registers) of current thread
3426 * including process info & aux vector.
3427 */
3428 fill_prstatus(info->prstatus, ts, signr);
3429 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3430 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3431 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3432 fill_psinfo(info->psinfo, ts);
3433 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3434 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3435 fill_auxv_note(&info->notes[2], ts);
3436 info->numnote = 3;
3437
3438 info->notes_size = 0;
3439 for (i = 0; i < info->numnote; i++)
3440 info->notes_size += note_size(&info->notes[i]);
3441
3442 /* read and fill status of all threads */
3443 cpu_list_lock();
bdc44640 3444 CPU_FOREACH(cpu) {
a2247f8e 3445 if (cpu == thread_cpu) {
edf8e2af 3446 continue;
182735ef
AF
3447 }
3448 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3449 }
3450 cpu_list_unlock();
3451
3452 return (0);
3453}
3454
3455static void free_note_info(struct elf_note_info *info)
3456{
3457 struct elf_thread_status *ets;
3458
72cf2d4f
BS
3459 while (!QTAILQ_EMPTY(&info->thread_list)) {
3460 ets = QTAILQ_FIRST(&info->thread_list);
3461 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3462 g_free(ets);
edf8e2af
MW
3463 }
3464
7267c094
AL
3465 g_free(info->prstatus);
3466 g_free(info->psinfo);
3467 g_free(info->notes);
edf8e2af
MW
3468}
3469
3470static int write_note_info(struct elf_note_info *info, int fd)
3471{
3472 struct elf_thread_status *ets;
3473 int i, error = 0;
3474
3475 /* write prstatus, psinfo and auxv for current thread */
3476 for (i = 0; i < info->numnote; i++)
3477 if ((error = write_note(&info->notes[i], fd)) != 0)
3478 return (error);
3479
3480 /* write prstatus for each thread */
52a53afe 3481 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3482 if ((error = write_note(&ets->notes[0], fd)) != 0)
3483 return (error);
3484 }
3485
3486 return (0);
3487}
3488
3489/*
3490 * Write out ELF coredump.
3491 *
3492 * See documentation of ELF object file format in:
3493 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3494 *
3495 * Coredump format in linux is following:
3496 *
3497 * 0 +----------------------+ \
3498 * | ELF header | ET_CORE |
3499 * +----------------------+ |
3500 * | ELF program headers | |--- headers
3501 * | - NOTE section | |
3502 * | - PT_LOAD sections | |
3503 * +----------------------+ /
3504 * | NOTEs: |
3505 * | - NT_PRSTATUS |
3506 * | - NT_PRSINFO |
3507 * | - NT_AUXV |
3508 * +----------------------+ <-- aligned to target page
3509 * | Process memory dump |
3510 * : :
3511 * . .
3512 * : :
3513 * | |
3514 * +----------------------+
3515 *
3516 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3517 * NT_PRSINFO -> struct elf_prpsinfo
3518 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3519 *
3520 * Format follows System V format as close as possible. Current
3521 * version limitations are as follows:
3522 * - no floating point registers are dumped
3523 *
3524 * Function returns 0 in case of success, negative errno otherwise.
3525 *
3526 * TODO: make this work also during runtime: it should be
3527 * possible to force coredump from running process and then
3528 * continue processing. For example qemu could set up SIGUSR2
3529 * handler (provided that target process haven't registered
3530 * handler for that) that does the dump when signal is received.
3531 */
9349b4f9 3532static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3533{
29a0af61 3534 const CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3535 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3536 struct vm_area_struct *vma = NULL;
3537 char corefile[PATH_MAX];
3538 struct elf_note_info info;
3539 struct elfhdr elf;
3540 struct elf_phdr phdr;
3541 struct rlimit dumpsize;
3542 struct mm_struct *mm = NULL;
3543 off_t offset = 0, data_offset = 0;
3544 int segs = 0;
3545 int fd = -1;
3546
6afafa86
PM
3547 init_note_info(&info);
3548
edf8e2af
MW
3549 errno = 0;
3550 getrlimit(RLIMIT_CORE, &dumpsize);
3551 if (dumpsize.rlim_cur == 0)
d97ef72e 3552 return 0;
edf8e2af
MW
3553
3554 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3555 return (-errno);
3556
3557 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3558 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3559 return (-errno);
3560
3561 /*
3562 * Walk through target process memory mappings and
3563 * set up structure containing this information. After
3564 * this point vma_xxx functions can be used.
3565 */
3566 if ((mm = vma_init()) == NULL)
3567 goto out;
3568
3569 walk_memory_regions(mm, vma_walker);
3570 segs = vma_get_mapping_count(mm);
3571
3572 /*
3573 * Construct valid coredump ELF header. We also
3574 * add one more segment for notes.
3575 */
3576 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3577 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3578 goto out;
3579
b6af0975 3580 /* fill in the in-memory version of notes */
edf8e2af
MW
3581 if (fill_note_info(&info, signr, env) < 0)
3582 goto out;
3583
3584 offset += sizeof (elf); /* elf header */
3585 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3586
3587 /* write out notes program header */
3588 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3589
3590 offset += info.notes_size;
3591 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3592 goto out;
3593
3594 /*
3595 * ELF specification wants data to start at page boundary so
3596 * we align it here.
3597 */
80f5ce75 3598 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3599
3600 /*
3601 * Write program headers for memory regions mapped in
3602 * the target process.
3603 */
3604 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3605 (void) memset(&phdr, 0, sizeof (phdr));
3606
3607 phdr.p_type = PT_LOAD;
3608 phdr.p_offset = offset;
3609 phdr.p_vaddr = vma->vma_start;
3610 phdr.p_paddr = 0;
3611 phdr.p_filesz = vma_dump_size(vma);
3612 offset += phdr.p_filesz;
3613 phdr.p_memsz = vma->vma_end - vma->vma_start;
3614 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3615 if (vma->vma_flags & PROT_WRITE)
3616 phdr.p_flags |= PF_W;
3617 if (vma->vma_flags & PROT_EXEC)
3618 phdr.p_flags |= PF_X;
3619 phdr.p_align = ELF_EXEC_PAGESIZE;
3620
80f5ce75 3621 bswap_phdr(&phdr, 1);
772034b6
PM
3622 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3623 goto out;
3624 }
edf8e2af
MW
3625 }
3626
3627 /*
3628 * Next we write notes just after program headers. No
3629 * alignment needed here.
3630 */
3631 if (write_note_info(&info, fd) < 0)
3632 goto out;
3633
3634 /* align data to page boundary */
edf8e2af
MW
3635 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3636 goto out;
3637
3638 /*
3639 * Finally we can dump process memory into corefile as well.
3640 */
3641 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3642 abi_ulong addr;
3643 abi_ulong end;
3644
3645 end = vma->vma_start + vma_dump_size(vma);
3646
3647 for (addr = vma->vma_start; addr < end;
d97ef72e 3648 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3649 char page[TARGET_PAGE_SIZE];
3650 int error;
3651
3652 /*
3653 * Read in page from target process memory and
3654 * write it to coredump file.
3655 */
3656 error = copy_from_user(page, addr, sizeof (page));
3657 if (error != 0) {
49995e17 3658 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3659 addr);
edf8e2af
MW
3660 errno = -error;
3661 goto out;
3662 }
3663 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3664 goto out;
3665 }
3666 }
3667
d97ef72e 3668 out:
edf8e2af
MW
3669 free_note_info(&info);
3670 if (mm != NULL)
3671 vma_delete(mm);
3672 (void) close(fd);
3673
3674 if (errno != 0)
3675 return (-errno);
3676 return (0);
3677}
edf8e2af
MW
3678#endif /* USE_ELF_CORE_DUMP */
3679
e5fe0c52
PB
3680void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3681{
3682 init_thread(regs, infop);
3683}