]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
elf: Add EM_NANOMIPS value as a valid one for e_machine field
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
31e31b8a 6
3ef693a0 7#include "qemu.h"
76cad711 8#include "disas/disas.h"
f348b6d1 9#include "qemu/path.h"
31e31b8a 10
e58ffeb3 11#ifdef _ARCH_PPC64
a6cc84f4 12#undef ARCH_DLINFO
13#undef ELF_PLATFORM
14#undef ELF_HWCAP
ad6919dc 15#undef ELF_HWCAP2
a6cc84f4 16#undef ELF_CLASS
17#undef ELF_DATA
18#undef ELF_ARCH
19#endif
20
edf8e2af
MW
21#define ELF_OSABI ELFOSABI_SYSV
22
cb33da57
BS
23/* from personality.h */
24
25/*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30enum {
d97ef72e
RH
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
42};
43
44/*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50enum {
d97ef72e
RH
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
cb33da57
BS
74};
75
76/*
77 * Return the base personality without flags.
78 */
d97ef72e 79#define personality(pers) (pers & PER_MASK)
cb33da57 80
3cb10cfa
CL
81int info_is_fdpic(struct image_info *info)
82{
83 return info->personality == PER_LINUX_FDPIC;
84}
85
83fb7adf
FB
86/* this flag is uneffective under linux too, should be deleted */
87#ifndef MAP_DENYWRITE
88#define MAP_DENYWRITE 0
89#endif
90
91/* should probably go in elf.h */
92#ifndef ELIBBAD
93#define ELIBBAD 80
94#endif
95
28490231
RH
96#ifdef TARGET_WORDS_BIGENDIAN
97#define ELF_DATA ELFDATA2MSB
98#else
99#define ELF_DATA ELFDATA2LSB
100#endif
101
a29f998d 102#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
103typedef abi_ullong target_elf_greg_t;
104#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
105#else
106typedef abi_ulong target_elf_greg_t;
107#define tswapreg(ptr) tswapal(ptr)
108#endif
109
21e807fa 110#ifdef USE_UID16
1ddd592f
PB
111typedef abi_ushort target_uid_t;
112typedef abi_ushort target_gid_t;
21e807fa 113#else
f8fd4fc4
PB
114typedef abi_uint target_uid_t;
115typedef abi_uint target_gid_t;
21e807fa 116#endif
f8fd4fc4 117typedef abi_int target_pid_t;
21e807fa 118
30ac07d4
FB
119#ifdef TARGET_I386
120
15338fd7
FB
121#define ELF_PLATFORM get_elf_platform()
122
123static const char *get_elf_platform(void)
124{
125 static char elf_platform[] = "i386";
a2247f8e 126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
127 if (family > 6)
128 family = 6;
129 if (family >= 3)
130 elf_platform[1] = '0' + family;
131 return elf_platform;
132}
133
134#define ELF_HWCAP get_elf_hwcap()
135
136static uint32_t get_elf_hwcap(void)
137{
a2247f8e
AF
138 X86CPU *cpu = X86_CPU(thread_cpu);
139
140 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
141}
142
84409ddb
JM
143#ifdef TARGET_X86_64
144#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
145
146#define ELF_CLASS ELFCLASS64
84409ddb
JM
147#define ELF_ARCH EM_X86_64
148
149static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150{
151 regs->rax = 0;
152 regs->rsp = infop->start_stack;
153 regs->rip = infop->entry;
154}
155
9edc5d79 156#define ELF_NREG 27
c227f099 157typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
158
159/*
160 * Note that ELF_NREG should be 29 as there should be place for
161 * TRAPNO and ERR "registers" as well but linux doesn't dump
162 * those.
163 *
164 * See linux kernel: arch/x86/include/asm/elf.h
165 */
05390248 166static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
167{
168 (*regs)[0] = env->regs[15];
169 (*regs)[1] = env->regs[14];
170 (*regs)[2] = env->regs[13];
171 (*regs)[3] = env->regs[12];
172 (*regs)[4] = env->regs[R_EBP];
173 (*regs)[5] = env->regs[R_EBX];
174 (*regs)[6] = env->regs[11];
175 (*regs)[7] = env->regs[10];
176 (*regs)[8] = env->regs[9];
177 (*regs)[9] = env->regs[8];
178 (*regs)[10] = env->regs[R_EAX];
179 (*regs)[11] = env->regs[R_ECX];
180 (*regs)[12] = env->regs[R_EDX];
181 (*regs)[13] = env->regs[R_ESI];
182 (*regs)[14] = env->regs[R_EDI];
183 (*regs)[15] = env->regs[R_EAX]; /* XXX */
184 (*regs)[16] = env->eip;
185 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186 (*regs)[18] = env->eflags;
187 (*regs)[19] = env->regs[R_ESP];
188 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195}
196
84409ddb
JM
197#else
198
30ac07d4
FB
199#define ELF_START_MMAP 0x80000000
200
30ac07d4
FB
201/*
202 * This is used to ensure we don't load something for the wrong architecture.
203 */
204#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205
206/*
207 * These are used to set parameters in the core dumps.
208 */
d97ef72e 209#define ELF_CLASS ELFCLASS32
d97ef72e 210#define ELF_ARCH EM_386
30ac07d4 211
d97ef72e
RH
212static inline void init_thread(struct target_pt_regs *regs,
213 struct image_info *infop)
b346ff46
FB
214{
215 regs->esp = infop->start_stack;
216 regs->eip = infop->entry;
e5fe0c52
PB
217
218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219 starts %edx contains a pointer to a function which might be
220 registered using `atexit'. This provides a mean for the
221 dynamic linker to call DT_FINI functions for shared libraries
222 that have been loaded before the code runs.
223
224 A value of 0 tells we have no such handler. */
225 regs->edx = 0;
b346ff46 226}
9edc5d79 227
9edc5d79 228#define ELF_NREG 17
c227f099 229typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
230
231/*
232 * Note that ELF_NREG should be 19 as there should be place for
233 * TRAPNO and ERR "registers" as well but linux doesn't dump
234 * those.
235 *
236 * See linux kernel: arch/x86/include/asm/elf.h
237 */
05390248 238static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
239{
240 (*regs)[0] = env->regs[R_EBX];
241 (*regs)[1] = env->regs[R_ECX];
242 (*regs)[2] = env->regs[R_EDX];
243 (*regs)[3] = env->regs[R_ESI];
244 (*regs)[4] = env->regs[R_EDI];
245 (*regs)[5] = env->regs[R_EBP];
246 (*regs)[6] = env->regs[R_EAX];
247 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251 (*regs)[11] = env->regs[R_EAX]; /* XXX */
252 (*regs)[12] = env->eip;
253 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254 (*regs)[14] = env->eflags;
255 (*regs)[15] = env->regs[R_ESP];
256 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257}
84409ddb 258#endif
b346ff46 259
9edc5d79 260#define USE_ELF_CORE_DUMP
d97ef72e 261#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
262
263#endif
264
265#ifdef TARGET_ARM
266
24e76ff0
PM
267#ifndef TARGET_AARCH64
268/* 32 bit ARM definitions */
269
b346ff46
FB
270#define ELF_START_MMAP 0x80000000
271
b597c3f7 272#define ELF_ARCH EM_ARM
d97ef72e 273#define ELF_CLASS ELFCLASS32
b346ff46 274
d97ef72e
RH
275static inline void init_thread(struct target_pt_regs *regs,
276 struct image_info *infop)
b346ff46 277{
992f48a0 278 abi_long stack = infop->start_stack;
b346ff46 279 memset(regs, 0, sizeof(*regs));
99033cae 280
167e4cdc
PM
281 regs->uregs[16] = ARM_CPU_MODE_USR;
282 if (infop->entry & 1) {
283 regs->uregs[16] |= CPSR_T;
284 }
285 regs->uregs[15] = infop->entry & 0xfffffffe;
286 regs->uregs[13] = infop->start_stack;
2f619698 287 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
288 get_user_ual(regs->uregs[2], stack + 8); /* envp */
289 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 290 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 291 regs->uregs[0] = 0;
e5fe0c52 292 /* For uClinux PIC binaries. */
863cf0b7 293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 294 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
295
296 /* Support ARM FDPIC. */
297 if (info_is_fdpic(infop)) {
298 /* As described in the ABI document, r7 points to the loadmap info
299 * prepared by the kernel. If an interpreter is needed, r8 points
300 * to the interpreter loadmap and r9 points to the interpreter
301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302 * r9 points to the main program PT_DYNAMIC info.
303 */
304 regs->uregs[7] = infop->loadmap_addr;
305 if (infop->interpreter_loadmap_addr) {
306 /* Executable is dynamically loaded. */
307 regs->uregs[8] = infop->interpreter_loadmap_addr;
308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309 } else {
310 regs->uregs[8] = 0;
311 regs->uregs[9] = infop->pt_dynamic_addr;
312 }
313 }
b346ff46
FB
314}
315
edf8e2af 316#define ELF_NREG 18
c227f099 317typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 318
05390248 319static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 320{
86cd7b2d
PB
321 (*regs)[0] = tswapreg(env->regs[0]);
322 (*regs)[1] = tswapreg(env->regs[1]);
323 (*regs)[2] = tswapreg(env->regs[2]);
324 (*regs)[3] = tswapreg(env->regs[3]);
325 (*regs)[4] = tswapreg(env->regs[4]);
326 (*regs)[5] = tswapreg(env->regs[5]);
327 (*regs)[6] = tswapreg(env->regs[6]);
328 (*regs)[7] = tswapreg(env->regs[7]);
329 (*regs)[8] = tswapreg(env->regs[8]);
330 (*regs)[9] = tswapreg(env->regs[9]);
331 (*regs)[10] = tswapreg(env->regs[10]);
332 (*regs)[11] = tswapreg(env->regs[11]);
333 (*regs)[12] = tswapreg(env->regs[12]);
334 (*regs)[13] = tswapreg(env->regs[13]);
335 (*regs)[14] = tswapreg(env->regs[14]);
336 (*regs)[15] = tswapreg(env->regs[15]);
337
338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
340}
341
30ac07d4 342#define USE_ELF_CORE_DUMP
d97ef72e 343#define ELF_EXEC_PAGESIZE 4096
30ac07d4 344
afce2927
FB
345enum
346{
d97ef72e
RH
347 ARM_HWCAP_ARM_SWP = 1 << 0,
348 ARM_HWCAP_ARM_HALF = 1 << 1,
349 ARM_HWCAP_ARM_THUMB = 1 << 2,
350 ARM_HWCAP_ARM_26BIT = 1 << 3,
351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352 ARM_HWCAP_ARM_FPA = 1 << 5,
353 ARM_HWCAP_ARM_VFP = 1 << 6,
354 ARM_HWCAP_ARM_EDSP = 1 << 7,
355 ARM_HWCAP_ARM_JAVA = 1 << 8,
356 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
357 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
358 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
359 ARM_HWCAP_ARM_NEON = 1 << 12,
360 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
362 ARM_HWCAP_ARM_TLS = 1 << 15,
363 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
364 ARM_HWCAP_ARM_IDIVA = 1 << 17,
365 ARM_HWCAP_ARM_IDIVT = 1 << 18,
366 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
367 ARM_HWCAP_ARM_LPAE = 1 << 20,
368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
369};
370
ad6919dc
PM
371enum {
372 ARM_HWCAP2_ARM_AES = 1 << 0,
373 ARM_HWCAP2_ARM_PMULL = 1 << 1,
374 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
375 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
376 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
377};
378
6b1275ff
PM
379/* The commpage only exists for 32 bit kernels */
380
806d1021
MI
381/* Return 1 if the proposed guest space is suitable for the guest.
382 * Return 0 if the proposed guest space isn't suitable, but another
383 * address space should be tried.
384 * Return -1 if there is no way the proposed guest space can be
385 * valid regardless of the base.
386 * The guest code may leave a page mapped and populate it if the
387 * address is suitable.
388 */
c3637eaf
LS
389static int init_guest_commpage(unsigned long guest_base,
390 unsigned long guest_size)
97cc7560
DDAG
391{
392 unsigned long real_start, test_page_addr;
393
394 /* We need to check that we can force a fault on access to the
395 * commpage at 0xffff0fxx
396 */
397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
398
399 /* If the commpage lies within the already allocated guest space,
400 * then there is no way we can allocate it.
955e304f
LS
401 *
402 * You may be thinking that that this check is redundant because
403 * we already validated the guest size against MAX_RESERVED_VA;
404 * but if qemu_host_page_mask is unusually large, then
405 * test_page_addr may be lower.
806d1021
MI
406 */
407 if (test_page_addr >= guest_base
e568f9df 408 && test_page_addr < (guest_base + guest_size)) {
806d1021
MI
409 return -1;
410 }
411
97cc7560
DDAG
412 /* Note it needs to be writeable to let us initialise it */
413 real_start = (unsigned long)
414 mmap((void *)test_page_addr, qemu_host_page_size,
415 PROT_READ | PROT_WRITE,
416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417
418 /* If we can't map it then try another address */
419 if (real_start == -1ul) {
420 return 0;
421 }
422
423 if (real_start != test_page_addr) {
424 /* OS didn't put the page where we asked - unmap and reject */
425 munmap((void *)real_start, qemu_host_page_size);
426 return 0;
427 }
428
429 /* Leave the page mapped
430 * Populate it (mmap should have left it all 0'd)
431 */
432
433 /* Kernel helper versions */
434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435
436 /* Now it's populated make it RO */
437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438 perror("Protecting guest commpage");
439 exit(-1);
440 }
441
442 return 1; /* All good */
443}
adf050b1
BC
444
445#define ELF_HWCAP get_elf_hwcap()
ad6919dc 446#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
447
448static uint32_t get_elf_hwcap(void)
449{
a2247f8e 450 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
451 uint32_t hwcaps = 0;
452
453 hwcaps |= ARM_HWCAP_ARM_SWP;
454 hwcaps |= ARM_HWCAP_ARM_HALF;
455 hwcaps |= ARM_HWCAP_ARM_THUMB;
456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
457
458 /* probe for the extra features */
459#define GET_FEATURE(feat, hwcap) \
a2247f8e 460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
24682654
PM
461 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
462 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
463 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
464 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
465 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
466 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
467 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
468 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
469 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
470 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
471 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
472 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
473 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
474 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
475 * to our VFP_FP16 feature bit.
476 */
477 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
478 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
479
480 return hwcaps;
481}
afce2927 482
ad6919dc
PM
483static uint32_t get_elf_hwcap2(void)
484{
485 ARMCPU *cpu = ARM_CPU(thread_cpu);
486 uint32_t hwcaps = 0;
487
488 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
4e624eda 489 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
f1ecb913
AB
490 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
491 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
ad6919dc
PM
492 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
493 return hwcaps;
494}
495
496#undef GET_FEATURE
497
24e76ff0
PM
498#else
499/* 64 bit ARM definitions */
500#define ELF_START_MMAP 0x80000000
501
b597c3f7 502#define ELF_ARCH EM_AARCH64
24e76ff0
PM
503#define ELF_CLASS ELFCLASS64
504#define ELF_PLATFORM "aarch64"
505
506static inline void init_thread(struct target_pt_regs *regs,
507 struct image_info *infop)
508{
509 abi_long stack = infop->start_stack;
510 memset(regs, 0, sizeof(*regs));
511
512 regs->pc = infop->entry & ~0x3ULL;
513 regs->sp = stack;
514}
515
516#define ELF_NREG 34
517typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
518
519static void elf_core_copy_regs(target_elf_gregset_t *regs,
520 const CPUARMState *env)
521{
522 int i;
523
524 for (i = 0; i < 32; i++) {
525 (*regs)[i] = tswapreg(env->xregs[i]);
526 }
527 (*regs)[32] = tswapreg(env->pc);
528 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
529}
530
531#define USE_ELF_CORE_DUMP
532#define ELF_EXEC_PAGESIZE 4096
533
534enum {
535 ARM_HWCAP_A64_FP = 1 << 0,
536 ARM_HWCAP_A64_ASIMD = 1 << 1,
537 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
538 ARM_HWCAP_A64_AES = 1 << 3,
539 ARM_HWCAP_A64_PMULL = 1 << 4,
540 ARM_HWCAP_A64_SHA1 = 1 << 5,
541 ARM_HWCAP_A64_SHA2 = 1 << 6,
542 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
543 ARM_HWCAP_A64_ATOMICS = 1 << 8,
544 ARM_HWCAP_A64_FPHP = 1 << 9,
545 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
546 ARM_HWCAP_A64_CPUID = 1 << 11,
547 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
548 ARM_HWCAP_A64_JSCVT = 1 << 13,
549 ARM_HWCAP_A64_FCMA = 1 << 14,
550 ARM_HWCAP_A64_LRCPC = 1 << 15,
551 ARM_HWCAP_A64_DCPOP = 1 << 16,
552 ARM_HWCAP_A64_SHA3 = 1 << 17,
553 ARM_HWCAP_A64_SM3 = 1 << 18,
554 ARM_HWCAP_A64_SM4 = 1 << 19,
555 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
556 ARM_HWCAP_A64_SHA512 = 1 << 21,
557 ARM_HWCAP_A64_SVE = 1 << 22,
24e76ff0
PM
558};
559
560#define ELF_HWCAP get_elf_hwcap()
561
562static uint32_t get_elf_hwcap(void)
563{
564 ARMCPU *cpu = ARM_CPU(thread_cpu);
565 uint32_t hwcaps = 0;
566
567 hwcaps |= ARM_HWCAP_A64_FP;
568 hwcaps |= ARM_HWCAP_A64_ASIMD;
569
570 /* probe for the extra features */
571#define GET_FEATURE(feat, hwcap) \
572 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
5acc765c 573 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
411bdc78 574 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
f6fe04d5
PM
575 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
576 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
130f2e7d 577 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
955f56d4
AB
578 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
579 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
580 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
581 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
201b19d5
PM
582 GET_FEATURE(ARM_FEATURE_V8_FP16,
583 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
68412d2e 584 GET_FEATURE(ARM_FEATURE_V8_ATOMICS, ARM_HWCAP_A64_ATOMICS);
1dc81c15 585 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
26c470a7 586 GET_FEATURE(ARM_FEATURE_V8_DOTPROD, ARM_HWCAP_A64_ASIMDDP);
0438f037 587 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
802ac0e1 588 GET_FEATURE(ARM_FEATURE_SVE, ARM_HWCAP_A64_SVE);
24e76ff0
PM
589#undef GET_FEATURE
590
591 return hwcaps;
592}
593
594#endif /* not TARGET_AARCH64 */
595#endif /* TARGET_ARM */
30ac07d4 596
853d6f7a 597#ifdef TARGET_SPARC
a315a145 598#ifdef TARGET_SPARC64
853d6f7a
FB
599
600#define ELF_START_MMAP 0x80000000
cf973e46
AT
601#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
602 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 603#ifndef TARGET_ABI32
cb33da57 604#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
605#else
606#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
607#endif
853d6f7a 608
a315a145 609#define ELF_CLASS ELFCLASS64
5ef54116
FB
610#define ELF_ARCH EM_SPARCV9
611
d97ef72e 612#define STACK_BIAS 2047
a315a145 613
d97ef72e
RH
614static inline void init_thread(struct target_pt_regs *regs,
615 struct image_info *infop)
a315a145 616{
992f48a0 617#ifndef TARGET_ABI32
a315a145 618 regs->tstate = 0;
992f48a0 619#endif
a315a145
FB
620 regs->pc = infop->entry;
621 regs->npc = regs->pc + 4;
622 regs->y = 0;
992f48a0
BS
623#ifdef TARGET_ABI32
624 regs->u_regs[14] = infop->start_stack - 16 * 4;
625#else
cb33da57
BS
626 if (personality(infop->personality) == PER_LINUX32)
627 regs->u_regs[14] = infop->start_stack - 16 * 4;
628 else
629 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 630#endif
a315a145
FB
631}
632
633#else
634#define ELF_START_MMAP 0x80000000
cf973e46
AT
635#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
636 | HWCAP_SPARC_MULDIV)
a315a145 637
853d6f7a 638#define ELF_CLASS ELFCLASS32
853d6f7a
FB
639#define ELF_ARCH EM_SPARC
640
d97ef72e
RH
641static inline void init_thread(struct target_pt_regs *regs,
642 struct image_info *infop)
853d6f7a 643{
f5155289
FB
644 regs->psr = 0;
645 regs->pc = infop->entry;
646 regs->npc = regs->pc + 4;
647 regs->y = 0;
648 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
649}
650
a315a145 651#endif
853d6f7a
FB
652#endif
653
67867308
FB
654#ifdef TARGET_PPC
655
4ecd4d16 656#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
657#define ELF_START_MMAP 0x80000000
658
e85e7c6e 659#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
660
661#define elf_check_arch(x) ( (x) == EM_PPC64 )
662
d97ef72e 663#define ELF_CLASS ELFCLASS64
84409ddb
JM
664
665#else
666
d97ef72e 667#define ELF_CLASS ELFCLASS32
84409ddb
JM
668
669#endif
670
d97ef72e 671#define ELF_ARCH EM_PPC
67867308 672
df84e4f3
NF
673/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
674 See arch/powerpc/include/asm/cputable.h. */
675enum {
3efa9a67 676 QEMU_PPC_FEATURE_32 = 0x80000000,
677 QEMU_PPC_FEATURE_64 = 0x40000000,
678 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
679 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
680 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
681 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
682 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
683 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
684 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
685 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
686 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
687 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
688 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
689 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
690 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
691 QEMU_PPC_FEATURE_CELL = 0x00010000,
692 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
693 QEMU_PPC_FEATURE_SMT = 0x00004000,
694 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
695 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
696 QEMU_PPC_FEATURE_PA6T = 0x00000800,
697 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
698 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
699 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
700 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
701 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
702
703 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
704 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
705
706 /* Feature definitions in AT_HWCAP2. */
707 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
708 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
709 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
710 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
711 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
712 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
df84e4f3
NF
713};
714
715#define ELF_HWCAP get_elf_hwcap()
716
717static uint32_t get_elf_hwcap(void)
718{
a2247f8e 719 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
720 uint32_t features = 0;
721
722 /* We don't have to be terribly complete here; the high points are
723 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 724#define GET_FEATURE(flag, feature) \
a2247f8e 725 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
726#define GET_FEATURE2(flags, feature) \
727 do { \
728 if ((cpu->env.insns_flags2 & flags) == flags) { \
729 features |= feature; \
730 } \
731 } while (0)
3efa9a67 732 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
733 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
734 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
735 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
736 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
737 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
738 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
739 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
740 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
741 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
742 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
743 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
744 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 745#undef GET_FEATURE
0e019746 746#undef GET_FEATURE2
df84e4f3
NF
747
748 return features;
749}
750
a60438dd
TM
751#define ELF_HWCAP2 get_elf_hwcap2()
752
753static uint32_t get_elf_hwcap2(void)
754{
755 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
756 uint32_t features = 0;
757
758#define GET_FEATURE(flag, feature) \
759 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
760#define GET_FEATURE2(flag, feature) \
761 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
762
763 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
764 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
765 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
766 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
767
768#undef GET_FEATURE
769#undef GET_FEATURE2
770
771 return features;
772}
773
f5155289
FB
774/*
775 * The requirements here are:
776 * - keep the final alignment of sp (sp & 0xf)
777 * - make sure the 32-bit value at the first 16 byte aligned position of
778 * AUXV is greater than 16 for glibc compatibility.
779 * AT_IGNOREPPC is used for that.
780 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
781 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
782 */
0bccf03d 783#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
784#define ARCH_DLINFO \
785 do { \
623e250a 786 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 787 /* \
82991bed
PM
788 * Handle glibc compatibility: these magic entries must \
789 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
790 */ \
791 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
792 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
793 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
794 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
795 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 796 } while (0)
f5155289 797
67867308
FB
798static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
799{
67867308 800 _regs->gpr[1] = infop->start_stack;
e85e7c6e 801#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 802 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
803 uint64_t val;
804 get_user_u64(val, infop->entry + 8);
805 _regs->gpr[2] = val + infop->load_bias;
806 get_user_u64(val, infop->entry);
807 infop->entry = val + infop->load_bias;
d90b94cd
DK
808 } else {
809 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
810 }
84409ddb 811#endif
67867308
FB
812 _regs->nip = infop->entry;
813}
814
e2f3e741
NF
815/* See linux kernel: arch/powerpc/include/asm/elf.h. */
816#define ELF_NREG 48
817typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
818
05390248 819static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
820{
821 int i;
822 target_ulong ccr = 0;
823
824 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 825 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
826 }
827
86cd7b2d
PB
828 (*regs)[32] = tswapreg(env->nip);
829 (*regs)[33] = tswapreg(env->msr);
830 (*regs)[35] = tswapreg(env->ctr);
831 (*regs)[36] = tswapreg(env->lr);
832 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
833
834 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
835 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
836 }
86cd7b2d 837 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
838}
839
840#define USE_ELF_CORE_DUMP
d97ef72e 841#define ELF_EXEC_PAGESIZE 4096
67867308
FB
842
843#endif
844
048f6b4d
FB
845#ifdef TARGET_MIPS
846
847#define ELF_START_MMAP 0x80000000
848
388bb21a
TS
849#ifdef TARGET_MIPS64
850#define ELF_CLASS ELFCLASS64
851#else
048f6b4d 852#define ELF_CLASS ELFCLASS32
388bb21a 853#endif
048f6b4d
FB
854#define ELF_ARCH EM_MIPS
855
d97ef72e
RH
856static inline void init_thread(struct target_pt_regs *regs,
857 struct image_info *infop)
048f6b4d 858{
623a930e 859 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
860 regs->cp0_epc = infop->entry;
861 regs->regs[29] = infop->start_stack;
862}
863
51e52606
NF
864/* See linux kernel: arch/mips/include/asm/elf.h. */
865#define ELF_NREG 45
866typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
867
868/* See linux kernel: arch/mips/include/asm/reg.h. */
869enum {
870#ifdef TARGET_MIPS64
871 TARGET_EF_R0 = 0,
872#else
873 TARGET_EF_R0 = 6,
874#endif
875 TARGET_EF_R26 = TARGET_EF_R0 + 26,
876 TARGET_EF_R27 = TARGET_EF_R0 + 27,
877 TARGET_EF_LO = TARGET_EF_R0 + 32,
878 TARGET_EF_HI = TARGET_EF_R0 + 33,
879 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
880 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
881 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
882 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
883};
884
885/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 886static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
887{
888 int i;
889
890 for (i = 0; i < TARGET_EF_R0; i++) {
891 (*regs)[i] = 0;
892 }
893 (*regs)[TARGET_EF_R0] = 0;
894
895 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 896 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
897 }
898
899 (*regs)[TARGET_EF_R26] = 0;
900 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
901 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
902 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
903 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
904 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
905 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
906 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
907}
908
909#define USE_ELF_CORE_DUMP
388bb21a
TS
910#define ELF_EXEC_PAGESIZE 4096
911
46a1ee4f
JC
912/* See arch/mips/include/uapi/asm/hwcap.h. */
913enum {
914 HWCAP_MIPS_R6 = (1 << 0),
915 HWCAP_MIPS_MSA = (1 << 1),
916};
917
918#define ELF_HWCAP get_elf_hwcap()
919
920static uint32_t get_elf_hwcap(void)
921{
922 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
923 uint32_t hwcaps = 0;
924
925#define GET_FEATURE(flag, hwcap) \
926 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
927
928 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
929 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
930
931#undef GET_FEATURE
932
933 return hwcaps;
934}
935
048f6b4d
FB
936#endif /* TARGET_MIPS */
937
b779e29e
EI
938#ifdef TARGET_MICROBLAZE
939
940#define ELF_START_MMAP 0x80000000
941
0d5d4699 942#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
943
944#define ELF_CLASS ELFCLASS32
0d5d4699 945#define ELF_ARCH EM_MICROBLAZE
b779e29e 946
d97ef72e
RH
947static inline void init_thread(struct target_pt_regs *regs,
948 struct image_info *infop)
b779e29e
EI
949{
950 regs->pc = infop->entry;
951 regs->r1 = infop->start_stack;
952
953}
954
b779e29e
EI
955#define ELF_EXEC_PAGESIZE 4096
956
e4cbd44d
EI
957#define USE_ELF_CORE_DUMP
958#define ELF_NREG 38
959typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
960
961/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 962static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
963{
964 int i, pos = 0;
965
966 for (i = 0; i < 32; i++) {
86cd7b2d 967 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
968 }
969
970 for (i = 0; i < 6; i++) {
86cd7b2d 971 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
972 }
973}
974
b779e29e
EI
975#endif /* TARGET_MICROBLAZE */
976
a0a839b6
MV
977#ifdef TARGET_NIOS2
978
979#define ELF_START_MMAP 0x80000000
980
981#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
982
983#define ELF_CLASS ELFCLASS32
984#define ELF_ARCH EM_ALTERA_NIOS2
985
986static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
987{
988 regs->ea = infop->entry;
989 regs->sp = infop->start_stack;
990 regs->estatus = 0x3;
991}
992
993#define ELF_EXEC_PAGESIZE 4096
994
995#define USE_ELF_CORE_DUMP
996#define ELF_NREG 49
997typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
998
999/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1000static void elf_core_copy_regs(target_elf_gregset_t *regs,
1001 const CPUNios2State *env)
1002{
1003 int i;
1004
1005 (*regs)[0] = -1;
1006 for (i = 1; i < 8; i++) /* r0-r7 */
1007 (*regs)[i] = tswapreg(env->regs[i + 7]);
1008
1009 for (i = 8; i < 16; i++) /* r8-r15 */
1010 (*regs)[i] = tswapreg(env->regs[i - 8]);
1011
1012 for (i = 16; i < 24; i++) /* r16-r23 */
1013 (*regs)[i] = tswapreg(env->regs[i + 7]);
1014 (*regs)[24] = -1; /* R_ET */
1015 (*regs)[25] = -1; /* R_BT */
1016 (*regs)[26] = tswapreg(env->regs[R_GP]);
1017 (*regs)[27] = tswapreg(env->regs[R_SP]);
1018 (*regs)[28] = tswapreg(env->regs[R_FP]);
1019 (*regs)[29] = tswapreg(env->regs[R_EA]);
1020 (*regs)[30] = -1; /* R_SSTATUS */
1021 (*regs)[31] = tswapreg(env->regs[R_RA]);
1022
1023 (*regs)[32] = tswapreg(env->regs[R_PC]);
1024
1025 (*regs)[33] = -1; /* R_STATUS */
1026 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1027
1028 for (i = 35; i < 49; i++) /* ... */
1029 (*regs)[i] = -1;
1030}
1031
1032#endif /* TARGET_NIOS2 */
1033
d962783e
JL
1034#ifdef TARGET_OPENRISC
1035
1036#define ELF_START_MMAP 0x08000000
1037
d962783e
JL
1038#define ELF_ARCH EM_OPENRISC
1039#define ELF_CLASS ELFCLASS32
1040#define ELF_DATA ELFDATA2MSB
1041
1042static inline void init_thread(struct target_pt_regs *regs,
1043 struct image_info *infop)
1044{
1045 regs->pc = infop->entry;
1046 regs->gpr[1] = infop->start_stack;
1047}
1048
1049#define USE_ELF_CORE_DUMP
1050#define ELF_EXEC_PAGESIZE 8192
1051
1052/* See linux kernel arch/openrisc/include/asm/elf.h. */
1053#define ELF_NREG 34 /* gprs and pc, sr */
1054typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1055
1056static void elf_core_copy_regs(target_elf_gregset_t *regs,
1057 const CPUOpenRISCState *env)
1058{
1059 int i;
1060
1061 for (i = 0; i < 32; i++) {
d89e71e8 1062 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1063 }
86cd7b2d 1064 (*regs)[32] = tswapreg(env->pc);
84775c43 1065 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1066}
1067#define ELF_HWCAP 0
1068#define ELF_PLATFORM NULL
1069
1070#endif /* TARGET_OPENRISC */
1071
fdf9b3e8
FB
1072#ifdef TARGET_SH4
1073
1074#define ELF_START_MMAP 0x80000000
1075
fdf9b3e8 1076#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1077#define ELF_ARCH EM_SH
1078
d97ef72e
RH
1079static inline void init_thread(struct target_pt_regs *regs,
1080 struct image_info *infop)
fdf9b3e8 1081{
d97ef72e
RH
1082 /* Check other registers XXXXX */
1083 regs->pc = infop->entry;
1084 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1085}
1086
7631c97e
NF
1087/* See linux kernel: arch/sh/include/asm/elf.h. */
1088#define ELF_NREG 23
1089typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1090
1091/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1092enum {
1093 TARGET_REG_PC = 16,
1094 TARGET_REG_PR = 17,
1095 TARGET_REG_SR = 18,
1096 TARGET_REG_GBR = 19,
1097 TARGET_REG_MACH = 20,
1098 TARGET_REG_MACL = 21,
1099 TARGET_REG_SYSCALL = 22
1100};
1101
d97ef72e 1102static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1103 const CPUSH4State *env)
7631c97e
NF
1104{
1105 int i;
1106
1107 for (i = 0; i < 16; i++) {
72cd500b 1108 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1109 }
1110
86cd7b2d
PB
1111 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1112 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1113 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1114 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1115 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1116 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1117 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1118}
1119
1120#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1121#define ELF_EXEC_PAGESIZE 4096
1122
e42fd944
RH
1123enum {
1124 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1125 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1126 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1127 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1128 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1129 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1130 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1131 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1132 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1133 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1134};
1135
1136#define ELF_HWCAP get_elf_hwcap()
1137
1138static uint32_t get_elf_hwcap(void)
1139{
1140 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1141 uint32_t hwcap = 0;
1142
1143 hwcap |= SH_CPU_HAS_FPU;
1144
1145 if (cpu->env.features & SH_FEATURE_SH4A) {
1146 hwcap |= SH_CPU_HAS_LLSC;
1147 }
1148
1149 return hwcap;
1150}
1151
fdf9b3e8
FB
1152#endif
1153
48733d19
TS
1154#ifdef TARGET_CRIS
1155
1156#define ELF_START_MMAP 0x80000000
1157
48733d19 1158#define ELF_CLASS ELFCLASS32
48733d19
TS
1159#define ELF_ARCH EM_CRIS
1160
d97ef72e
RH
1161static inline void init_thread(struct target_pt_regs *regs,
1162 struct image_info *infop)
48733d19 1163{
d97ef72e 1164 regs->erp = infop->entry;
48733d19
TS
1165}
1166
48733d19
TS
1167#define ELF_EXEC_PAGESIZE 8192
1168
1169#endif
1170
e6e5906b
PB
1171#ifdef TARGET_M68K
1172
1173#define ELF_START_MMAP 0x80000000
1174
d97ef72e 1175#define ELF_CLASS ELFCLASS32
d97ef72e 1176#define ELF_ARCH EM_68K
e6e5906b
PB
1177
1178/* ??? Does this need to do anything?
d97ef72e 1179 #define ELF_PLAT_INIT(_r) */
e6e5906b 1180
d97ef72e
RH
1181static inline void init_thread(struct target_pt_regs *regs,
1182 struct image_info *infop)
e6e5906b
PB
1183{
1184 regs->usp = infop->start_stack;
1185 regs->sr = 0;
1186 regs->pc = infop->entry;
1187}
1188
7a93cc55
NF
1189/* See linux kernel: arch/m68k/include/asm/elf.h. */
1190#define ELF_NREG 20
1191typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1192
05390248 1193static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1194{
86cd7b2d
PB
1195 (*regs)[0] = tswapreg(env->dregs[1]);
1196 (*regs)[1] = tswapreg(env->dregs[2]);
1197 (*regs)[2] = tswapreg(env->dregs[3]);
1198 (*regs)[3] = tswapreg(env->dregs[4]);
1199 (*regs)[4] = tswapreg(env->dregs[5]);
1200 (*regs)[5] = tswapreg(env->dregs[6]);
1201 (*regs)[6] = tswapreg(env->dregs[7]);
1202 (*regs)[7] = tswapreg(env->aregs[0]);
1203 (*regs)[8] = tswapreg(env->aregs[1]);
1204 (*regs)[9] = tswapreg(env->aregs[2]);
1205 (*regs)[10] = tswapreg(env->aregs[3]);
1206 (*regs)[11] = tswapreg(env->aregs[4]);
1207 (*regs)[12] = tswapreg(env->aregs[5]);
1208 (*regs)[13] = tswapreg(env->aregs[6]);
1209 (*regs)[14] = tswapreg(env->dregs[0]);
1210 (*regs)[15] = tswapreg(env->aregs[7]);
1211 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1212 (*regs)[17] = tswapreg(env->sr);
1213 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1214 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1215}
1216
1217#define USE_ELF_CORE_DUMP
d97ef72e 1218#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1219
1220#endif
1221
7a3148a9
JM
1222#ifdef TARGET_ALPHA
1223
1224#define ELF_START_MMAP (0x30000000000ULL)
1225
7a3148a9 1226#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1227#define ELF_ARCH EM_ALPHA
1228
d97ef72e
RH
1229static inline void init_thread(struct target_pt_regs *regs,
1230 struct image_info *infop)
7a3148a9
JM
1231{
1232 regs->pc = infop->entry;
1233 regs->ps = 8;
1234 regs->usp = infop->start_stack;
7a3148a9
JM
1235}
1236
7a3148a9
JM
1237#define ELF_EXEC_PAGESIZE 8192
1238
1239#endif /* TARGET_ALPHA */
1240
a4c075f1
UH
1241#ifdef TARGET_S390X
1242
1243#define ELF_START_MMAP (0x20000000000ULL)
1244
a4c075f1
UH
1245#define ELF_CLASS ELFCLASS64
1246#define ELF_DATA ELFDATA2MSB
1247#define ELF_ARCH EM_S390
1248
1249static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1250{
1251 regs->psw.addr = infop->entry;
1252 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1253 regs->gprs[15] = infop->start_stack;
1254}
1255
1256#endif /* TARGET_S390X */
1257
b16189b2
CG
1258#ifdef TARGET_TILEGX
1259
1260/* 42 bits real used address, a half for user mode */
1261#define ELF_START_MMAP (0x00000020000000000ULL)
1262
1263#define elf_check_arch(x) ((x) == EM_TILEGX)
1264
1265#define ELF_CLASS ELFCLASS64
1266#define ELF_DATA ELFDATA2LSB
1267#define ELF_ARCH EM_TILEGX
1268
1269static inline void init_thread(struct target_pt_regs *regs,
1270 struct image_info *infop)
1271{
1272 regs->pc = infop->entry;
1273 regs->sp = infop->start_stack;
1274
1275}
1276
1277#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1278
1279#endif /* TARGET_TILEGX */
1280
47ae93cd
MC
1281#ifdef TARGET_RISCV
1282
1283#define ELF_START_MMAP 0x80000000
1284#define ELF_ARCH EM_RISCV
1285
1286#ifdef TARGET_RISCV32
1287#define ELF_CLASS ELFCLASS32
1288#else
1289#define ELF_CLASS ELFCLASS64
1290#endif
1291
1292static inline void init_thread(struct target_pt_regs *regs,
1293 struct image_info *infop)
1294{
1295 regs->sepc = infop->entry;
1296 regs->sp = infop->start_stack;
1297}
1298
1299#define ELF_EXEC_PAGESIZE 4096
1300
1301#endif /* TARGET_RISCV */
1302
7c248bcd
RH
1303#ifdef TARGET_HPPA
1304
1305#define ELF_START_MMAP 0x80000000
1306#define ELF_CLASS ELFCLASS32
1307#define ELF_ARCH EM_PARISC
1308#define ELF_PLATFORM "PARISC"
1309#define STACK_GROWS_DOWN 0
1310#define STACK_ALIGNMENT 64
1311
1312static inline void init_thread(struct target_pt_regs *regs,
1313 struct image_info *infop)
1314{
1315 regs->iaoq[0] = infop->entry;
1316 regs->iaoq[1] = infop->entry + 4;
1317 regs->gr[23] = 0;
1318 regs->gr[24] = infop->arg_start;
1319 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1320 /* The top-of-stack contains a linkage buffer. */
1321 regs->gr[30] = infop->start_stack + 64;
1322 regs->gr[31] = infop->entry;
1323}
1324
1325#endif /* TARGET_HPPA */
1326
ba7651fb
MF
1327#ifdef TARGET_XTENSA
1328
1329#define ELF_START_MMAP 0x20000000
1330
1331#define ELF_CLASS ELFCLASS32
1332#define ELF_ARCH EM_XTENSA
1333
1334static inline void init_thread(struct target_pt_regs *regs,
1335 struct image_info *infop)
1336{
1337 regs->windowbase = 0;
1338 regs->windowstart = 1;
1339 regs->areg[1] = infop->start_stack;
1340 regs->pc = infop->entry;
1341}
1342
1343/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1344#define ELF_NREG 128
1345typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1346
1347enum {
1348 TARGET_REG_PC,
1349 TARGET_REG_PS,
1350 TARGET_REG_LBEG,
1351 TARGET_REG_LEND,
1352 TARGET_REG_LCOUNT,
1353 TARGET_REG_SAR,
1354 TARGET_REG_WINDOWSTART,
1355 TARGET_REG_WINDOWBASE,
1356 TARGET_REG_THREADPTR,
1357 TARGET_REG_AR0 = 64,
1358};
1359
1360static void elf_core_copy_regs(target_elf_gregset_t *regs,
1361 const CPUXtensaState *env)
1362{
1363 unsigned i;
1364
1365 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1366 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1367 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1368 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1369 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1370 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1371 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1372 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1373 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1374 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1375 for (i = 0; i < env->config->nareg; ++i) {
1376 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1377 }
1378}
1379
1380#define USE_ELF_CORE_DUMP
1381#define ELF_EXEC_PAGESIZE 4096
1382
1383#endif /* TARGET_XTENSA */
1384
15338fd7
FB
1385#ifndef ELF_PLATFORM
1386#define ELF_PLATFORM (NULL)
1387#endif
1388
75be901c
PC
1389#ifndef ELF_MACHINE
1390#define ELF_MACHINE ELF_ARCH
1391#endif
1392
d276a604
PC
1393#ifndef elf_check_arch
1394#define elf_check_arch(x) ((x) == ELF_ARCH)
1395#endif
1396
15338fd7
FB
1397#ifndef ELF_HWCAP
1398#define ELF_HWCAP 0
1399#endif
1400
7c4ee5bc
RH
1401#ifndef STACK_GROWS_DOWN
1402#define STACK_GROWS_DOWN 1
1403#endif
1404
1405#ifndef STACK_ALIGNMENT
1406#define STACK_ALIGNMENT 16
1407#endif
1408
992f48a0 1409#ifdef TARGET_ABI32
cb33da57 1410#undef ELF_CLASS
992f48a0 1411#define ELF_CLASS ELFCLASS32
cb33da57
BS
1412#undef bswaptls
1413#define bswaptls(ptr) bswap32s(ptr)
1414#endif
1415
31e31b8a 1416#include "elf.h"
09bfb054 1417
09bfb054
FB
1418struct exec
1419{
d97ef72e
RH
1420 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1421 unsigned int a_text; /* length of text, in bytes */
1422 unsigned int a_data; /* length of data, in bytes */
1423 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1424 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1425 unsigned int a_entry; /* start address */
1426 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1427 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1428};
1429
1430
1431#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1432#define OMAGIC 0407
1433#define NMAGIC 0410
1434#define ZMAGIC 0413
1435#define QMAGIC 0314
1436
31e31b8a 1437/* Necessary parameters */
54936004 1438#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
79cb1f1d
YK
1439#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1440 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1441#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1442
444cd5c3 1443#define DLINFO_ITEMS 15
31e31b8a 1444
09bfb054
FB
1445static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1446{
d97ef72e 1447 memcpy(to, from, n);
09bfb054 1448}
d691f669 1449
31e31b8a 1450#ifdef BSWAP_NEEDED
92a31b1f 1451static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1452{
d97ef72e
RH
1453 bswap16s(&ehdr->e_type); /* Object file type */
1454 bswap16s(&ehdr->e_machine); /* Architecture */
1455 bswap32s(&ehdr->e_version); /* Object file version */
1456 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1457 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1458 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1459 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1460 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1461 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1462 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1463 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1464 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1465 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1466}
1467
991f8f0c 1468static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1469{
991f8f0c
RH
1470 int i;
1471 for (i = 0; i < phnum; ++i, ++phdr) {
1472 bswap32s(&phdr->p_type); /* Segment type */
1473 bswap32s(&phdr->p_flags); /* Segment flags */
1474 bswaptls(&phdr->p_offset); /* Segment file offset */
1475 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1476 bswaptls(&phdr->p_paddr); /* Segment physical address */
1477 bswaptls(&phdr->p_filesz); /* Segment size in file */
1478 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1479 bswaptls(&phdr->p_align); /* Segment alignment */
1480 }
31e31b8a 1481}
689f936f 1482
991f8f0c 1483static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1484{
991f8f0c
RH
1485 int i;
1486 for (i = 0; i < shnum; ++i, ++shdr) {
1487 bswap32s(&shdr->sh_name);
1488 bswap32s(&shdr->sh_type);
1489 bswaptls(&shdr->sh_flags);
1490 bswaptls(&shdr->sh_addr);
1491 bswaptls(&shdr->sh_offset);
1492 bswaptls(&shdr->sh_size);
1493 bswap32s(&shdr->sh_link);
1494 bswap32s(&shdr->sh_info);
1495 bswaptls(&shdr->sh_addralign);
1496 bswaptls(&shdr->sh_entsize);
1497 }
689f936f
FB
1498}
1499
7a3148a9 1500static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1501{
1502 bswap32s(&sym->st_name);
7a3148a9
JM
1503 bswaptls(&sym->st_value);
1504 bswaptls(&sym->st_size);
689f936f
FB
1505 bswap16s(&sym->st_shndx);
1506}
991f8f0c
RH
1507#else
1508static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1509static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1510static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1511static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
1512#endif
1513
edf8e2af 1514#ifdef USE_ELF_CORE_DUMP
9349b4f9 1515static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1516#endif /* USE_ELF_CORE_DUMP */
682674b8 1517static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1518
9058abdd
RH
1519/* Verify the portions of EHDR within E_IDENT for the target.
1520 This can be performed before bswapping the entire header. */
1521static bool elf_check_ident(struct elfhdr *ehdr)
1522{
1523 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1524 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1525 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1526 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1527 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1528 && ehdr->e_ident[EI_DATA] == ELF_DATA
1529 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1530}
1531
1532/* Verify the portions of EHDR outside of E_IDENT for the target.
1533 This has to wait until after bswapping the header. */
1534static bool elf_check_ehdr(struct elfhdr *ehdr)
1535{
1536 return (elf_check_arch(ehdr->e_machine)
1537 && ehdr->e_ehsize == sizeof(struct elfhdr)
1538 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1539 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1540}
1541
31e31b8a 1542/*
e5fe0c52 1543 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1544 * memory to free pages in kernel mem. These are in a format ready
1545 * to be put directly into the top of new user memory.
1546 *
1547 */
59baae9a
SB
1548static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1549 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1550{
59baae9a 1551 char *tmp;
7c4ee5bc 1552 int len, i;
59baae9a 1553 abi_ulong top = p;
31e31b8a
FB
1554
1555 if (!p) {
d97ef72e 1556 return 0; /* bullet-proofing */
31e31b8a 1557 }
59baae9a 1558
7c4ee5bc
RH
1559 if (STACK_GROWS_DOWN) {
1560 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1561 for (i = argc - 1; i >= 0; --i) {
1562 tmp = argv[i];
1563 if (!tmp) {
1564 fprintf(stderr, "VFS: argc is wrong");
1565 exit(-1);
1566 }
1567 len = strlen(tmp) + 1;
1568 tmp += len;
59baae9a 1569
7c4ee5bc
RH
1570 if (len > (p - stack_limit)) {
1571 return 0;
1572 }
1573 while (len) {
1574 int bytes_to_copy = (len > offset) ? offset : len;
1575 tmp -= bytes_to_copy;
1576 p -= bytes_to_copy;
1577 offset -= bytes_to_copy;
1578 len -= bytes_to_copy;
1579
1580 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1581
1582 if (offset == 0) {
1583 memcpy_to_target(p, scratch, top - p);
1584 top = p;
1585 offset = TARGET_PAGE_SIZE;
1586 }
1587 }
d97ef72e 1588 }
7c4ee5bc
RH
1589 if (p != top) {
1590 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1591 }
7c4ee5bc
RH
1592 } else {
1593 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1594 for (i = 0; i < argc; ++i) {
1595 tmp = argv[i];
1596 if (!tmp) {
1597 fprintf(stderr, "VFS: argc is wrong");
1598 exit(-1);
1599 }
1600 len = strlen(tmp) + 1;
1601 if (len > (stack_limit - p)) {
1602 return 0;
1603 }
1604 while (len) {
1605 int bytes_to_copy = (len > remaining) ? remaining : len;
1606
1607 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1608
1609 tmp += bytes_to_copy;
1610 remaining -= bytes_to_copy;
1611 p += bytes_to_copy;
1612 len -= bytes_to_copy;
1613
1614 if (remaining == 0) {
1615 memcpy_to_target(top, scratch, p - top);
1616 top = p;
1617 remaining = TARGET_PAGE_SIZE;
1618 }
d97ef72e
RH
1619 }
1620 }
7c4ee5bc
RH
1621 if (p != top) {
1622 memcpy_to_target(top, scratch, p - top);
1623 }
59baae9a
SB
1624 }
1625
31e31b8a
FB
1626 return p;
1627}
1628
59baae9a
SB
1629/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1630 * argument/environment space. Newer kernels (>2.6.33) allow more,
1631 * dependent on stack size, but guarantee at least 32 pages for
1632 * backwards compatibility.
1633 */
1634#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1635
1636static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1637 struct image_info *info)
53a5960a 1638{
59baae9a 1639 abi_ulong size, error, guard;
31e31b8a 1640
703e0e89 1641 size = guest_stack_size;
59baae9a
SB
1642 if (size < STACK_LOWER_LIMIT) {
1643 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1644 }
1645 guard = TARGET_PAGE_SIZE;
1646 if (guard < qemu_real_host_page_size) {
1647 guard = qemu_real_host_page_size;
1648 }
1649
1650 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1651 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1652 if (error == -1) {
60dcbcb5 1653 perror("mmap stack");
09bfb054
FB
1654 exit(-1);
1655 }
31e31b8a 1656
60dcbcb5 1657 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1658 if (STACK_GROWS_DOWN) {
1659 target_mprotect(error, guard, PROT_NONE);
1660 info->stack_limit = error + guard;
1661 return info->stack_limit + size - sizeof(void *);
1662 } else {
1663 target_mprotect(error + size, guard, PROT_NONE);
1664 info->stack_limit = error + size;
1665 return error;
1666 }
31e31b8a
FB
1667}
1668
cf129f3a
RH
1669/* Map and zero the bss. We need to explicitly zero any fractional pages
1670 after the data section (i.e. bss). */
1671static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1672{
cf129f3a
RH
1673 uintptr_t host_start, host_map_start, host_end;
1674
1675 last_bss = TARGET_PAGE_ALIGN(last_bss);
1676
1677 /* ??? There is confusion between qemu_real_host_page_size and
1678 qemu_host_page_size here and elsewhere in target_mmap, which
1679 may lead to the end of the data section mapping from the file
1680 not being mapped. At least there was an explicit test and
1681 comment for that here, suggesting that "the file size must
1682 be known". The comment probably pre-dates the introduction
1683 of the fstat system call in target_mmap which does in fact
1684 find out the size. What isn't clear is if the workaround
1685 here is still actually needed. For now, continue with it,
1686 but merge it with the "normal" mmap that would allocate the bss. */
1687
1688 host_start = (uintptr_t) g2h(elf_bss);
1689 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1690 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1691
1692 if (host_map_start < host_end) {
1693 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1694 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1695 if (p == MAP_FAILED) {
1696 perror("cannot mmap brk");
1697 exit(-1);
853d6f7a 1698 }
f46e9a0b 1699 }
853d6f7a 1700
f46e9a0b
TM
1701 /* Ensure that the bss page(s) are valid */
1702 if ((page_get_flags(last_bss-1) & prot) != prot) {
1703 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1704 }
31e31b8a 1705
cf129f3a
RH
1706 if (host_start < host_map_start) {
1707 memset((void *)host_start, 0, host_map_start - host_start);
1708 }
1709}
53a5960a 1710
cf58affe
CL
1711#ifdef TARGET_ARM
1712static int elf_is_fdpic(struct elfhdr *exec)
1713{
1714 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1715}
1716#else
a99856cd
CL
1717/* Default implementation, always false. */
1718static int elf_is_fdpic(struct elfhdr *exec)
1719{
1720 return 0;
1721}
cf58affe 1722#endif
a99856cd 1723
1af02e83
MF
1724static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1725{
1726 uint16_t n;
1727 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1728
1729 /* elf32_fdpic_loadseg */
1730 n = info->nsegs;
1731 while (n--) {
1732 sp -= 12;
1733 put_user_u32(loadsegs[n].addr, sp+0);
1734 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1735 put_user_u32(loadsegs[n].p_memsz, sp+8);
1736 }
1737
1738 /* elf32_fdpic_loadmap */
1739 sp -= 4;
1740 put_user_u16(0, sp+0); /* version */
1741 put_user_u16(info->nsegs, sp+2); /* nsegs */
1742
1743 info->personality = PER_LINUX_FDPIC;
1744 info->loadmap_addr = sp;
1745
1746 return sp;
1747}
1af02e83 1748
992f48a0 1749static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1750 struct elfhdr *exec,
1751 struct image_info *info,
1752 struct image_info *interp_info)
31e31b8a 1753{
d97ef72e 1754 abi_ulong sp;
7c4ee5bc 1755 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1756 int size;
14322bad
LA
1757 int i;
1758 abi_ulong u_rand_bytes;
1759 uint8_t k_rand_bytes[16];
d97ef72e
RH
1760 abi_ulong u_platform;
1761 const char *k_platform;
1762 const int n = sizeof(elf_addr_t);
1763
1764 sp = p;
1af02e83 1765
1af02e83
MF
1766 /* Needs to be before we load the env/argc/... */
1767 if (elf_is_fdpic(exec)) {
1768 /* Need 4 byte alignment for these structs */
1769 sp &= ~3;
1770 sp = loader_build_fdpic_loadmap(info, sp);
1771 info->other_info = interp_info;
1772 if (interp_info) {
1773 interp_info->other_info = info;
1774 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
1775 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1776 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1777 } else {
1778 info->interpreter_loadmap_addr = 0;
1779 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
1780 }
1781 }
1af02e83 1782
d97ef72e
RH
1783 u_platform = 0;
1784 k_platform = ELF_PLATFORM;
1785 if (k_platform) {
1786 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1787 if (STACK_GROWS_DOWN) {
1788 sp -= (len + n - 1) & ~(n - 1);
1789 u_platform = sp;
1790 /* FIXME - check return value of memcpy_to_target() for failure */
1791 memcpy_to_target(sp, k_platform, len);
1792 } else {
1793 memcpy_to_target(sp, k_platform, len);
1794 u_platform = sp;
1795 sp += len + 1;
1796 }
1797 }
1798
1799 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1800 * the argv and envp pointers.
1801 */
1802 if (STACK_GROWS_DOWN) {
1803 sp = QEMU_ALIGN_DOWN(sp, 16);
1804 } else {
1805 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1806 }
14322bad
LA
1807
1808 /*
1809 * Generate 16 random bytes for userspace PRNG seeding (not
1810 * cryptically secure but it's not the aim of QEMU).
1811 */
14322bad
LA
1812 for (i = 0; i < 16; i++) {
1813 k_rand_bytes[i] = rand();
1814 }
7c4ee5bc
RH
1815 if (STACK_GROWS_DOWN) {
1816 sp -= 16;
1817 u_rand_bytes = sp;
1818 /* FIXME - check return value of memcpy_to_target() for failure */
1819 memcpy_to_target(sp, k_rand_bytes, 16);
1820 } else {
1821 memcpy_to_target(sp, k_rand_bytes, 16);
1822 u_rand_bytes = sp;
1823 sp += 16;
1824 }
14322bad 1825
d97ef72e
RH
1826 size = (DLINFO_ITEMS + 1) * 2;
1827 if (k_platform)
1828 size += 2;
f5155289 1829#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1830 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1831#endif
1832#ifdef ELF_HWCAP2
1833 size += 2;
f5155289 1834#endif
f516511e
PM
1835 info->auxv_len = size * n;
1836
d97ef72e 1837 size += envc + argc + 2;
b9329d4b 1838 size += 1; /* argc itself */
d97ef72e 1839 size *= n;
7c4ee5bc
RH
1840
1841 /* Allocate space and finalize stack alignment for entry now. */
1842 if (STACK_GROWS_DOWN) {
1843 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1844 sp = u_argc;
1845 } else {
1846 u_argc = sp;
1847 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1848 }
1849
1850 u_argv = u_argc + n;
1851 u_envp = u_argv + (argc + 1) * n;
1852 u_auxv = u_envp + (envc + 1) * n;
1853 info->saved_auxv = u_auxv;
1854 info->arg_start = u_argv;
1855 info->arg_end = u_argv + argc * n;
d97ef72e
RH
1856
1857 /* This is correct because Linux defines
1858 * elf_addr_t as Elf32_Off / Elf64_Off
1859 */
1860#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
1861 put_user_ual(id, u_auxv); u_auxv += n; \
1862 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
1863 } while(0)
1864
82991bed
PM
1865#ifdef ARCH_DLINFO
1866 /*
1867 * ARCH_DLINFO must come first so platform specific code can enforce
1868 * special alignment requirements on the AUXV if necessary (eg. PPC).
1869 */
1870 ARCH_DLINFO;
1871#endif
f516511e
PM
1872 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1873 * on info->auxv_len will trigger.
1874 */
8e62a717 1875 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1876 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1877 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
1878 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1879 /* Target doesn't support host page size alignment */
1880 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1881 } else {
1882 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1883 qemu_host_page_size)));
1884 }
8e62a717 1885 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1886 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1887 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1888 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1889 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1890 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1891 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1892 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1893 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 1894 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 1895 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
14322bad 1896
ad6919dc
PM
1897#ifdef ELF_HWCAP2
1898 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1899#endif
1900
7c4ee5bc 1901 if (u_platform) {
d97ef72e 1902 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 1903 }
7c4ee5bc 1904 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
1905#undef NEW_AUX_ENT
1906
f516511e
PM
1907 /* Check that our initial calculation of the auxv length matches how much
1908 * we actually put into it.
1909 */
1910 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
1911
1912 put_user_ual(argc, u_argc);
1913
1914 p = info->arg_strings;
1915 for (i = 0; i < argc; ++i) {
1916 put_user_ual(p, u_argv);
1917 u_argv += n;
1918 p += target_strlen(p) + 1;
1919 }
1920 put_user_ual(0, u_argv);
1921
1922 p = info->env_strings;
1923 for (i = 0; i < envc; ++i) {
1924 put_user_ual(p, u_envp);
1925 u_envp += n;
1926 p += target_strlen(p) + 1;
1927 }
1928 put_user_ual(0, u_envp);
edf8e2af 1929
d97ef72e 1930 return sp;
31e31b8a
FB
1931}
1932
dce10401
MI
1933unsigned long init_guest_space(unsigned long host_start,
1934 unsigned long host_size,
1935 unsigned long guest_start,
1936 bool fixed)
1937{
293f2060 1938 unsigned long current_start, aligned_start;
dce10401
MI
1939 int flags;
1940
1941 assert(host_start || host_size);
1942
1943 /* If just a starting address is given, then just verify that
1944 * address. */
1945 if (host_start && !host_size) {
8756e136 1946#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
c3637eaf 1947 if (init_guest_commpage(host_start, host_size) != 1) {
dce10401
MI
1948 return (unsigned long)-1;
1949 }
8756e136
LS
1950#endif
1951 return host_start;
dce10401
MI
1952 }
1953
1954 /* Setup the initial flags and start address. */
1955 current_start = host_start & qemu_host_page_mask;
1956 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1957 if (fixed) {
1958 flags |= MAP_FIXED;
1959 }
1960
1961 /* Otherwise, a non-zero size region of memory needs to be mapped
1962 * and validated. */
2a53535a
LS
1963
1964#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1965 /* On 32-bit ARM, we need to map not just the usable memory, but
1966 * also the commpage. Try to find a suitable place by allocating
1967 * a big chunk for all of it. If host_start, then the naive
1968 * strategy probably does good enough.
1969 */
1970 if (!host_start) {
1971 unsigned long guest_full_size, host_full_size, real_start;
1972
1973 guest_full_size =
1974 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
1975 host_full_size = guest_full_size - guest_start;
1976 real_start = (unsigned long)
1977 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
1978 if (real_start == (unsigned long)-1) {
1979 if (host_size < host_full_size - qemu_host_page_size) {
1980 /* We failed to map a continous segment, but we're
1981 * allowed to have a gap between the usable memory and
1982 * the commpage where other things can be mapped.
1983 * This sparseness gives us more flexibility to find
1984 * an address range.
1985 */
1986 goto naive;
1987 }
1988 return (unsigned long)-1;
1989 }
1990 munmap((void *)real_start, host_full_size);
1991 if (real_start & ~qemu_host_page_mask) {
1992 /* The same thing again, but with an extra qemu_host_page_size
1993 * so that we can shift around alignment.
1994 */
1995 unsigned long real_size = host_full_size + qemu_host_page_size;
1996 real_start = (unsigned long)
1997 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
1998 if (real_start == (unsigned long)-1) {
1999 if (host_size < host_full_size - qemu_host_page_size) {
2000 goto naive;
2001 }
2002 return (unsigned long)-1;
2003 }
2004 munmap((void *)real_start, real_size);
2005 real_start = HOST_PAGE_ALIGN(real_start);
2006 }
2007 current_start = real_start;
2008 }
2009 naive:
2010#endif
2011
dce10401 2012 while (1) {
293f2060
LS
2013 unsigned long real_start, real_size, aligned_size;
2014 aligned_size = real_size = host_size;
806d1021 2015
dce10401
MI
2016 /* Do not use mmap_find_vma here because that is limited to the
2017 * guest address space. We are going to make the
2018 * guest address space fit whatever we're given.
2019 */
2020 real_start = (unsigned long)
2021 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2022 if (real_start == (unsigned long)-1) {
2023 return (unsigned long)-1;
2024 }
2025
aac362e4
LS
2026 /* Check to see if the address is valid. */
2027 if (host_start && real_start != current_start) {
2028 goto try_again;
2029 }
2030
806d1021
MI
2031 /* Ensure the address is properly aligned. */
2032 if (real_start & ~qemu_host_page_mask) {
293f2060
LS
2033 /* Ideally, we adjust like
2034 *
2035 * pages: [ ][ ][ ][ ][ ]
2036 * old: [ real ]
2037 * [ aligned ]
2038 * new: [ real ]
2039 * [ aligned ]
2040 *
2041 * But if there is something else mapped right after it,
2042 * then obviously it won't have room to grow, and the
2043 * kernel will put the new larger real someplace else with
2044 * unknown alignment (if we made it to here, then
2045 * fixed=false). Which is why we grow real by a full page
2046 * size, instead of by part of one; so that even if we get
2047 * moved, we can still guarantee alignment. But this does
2048 * mean that there is a padding of < 1 page both before
2049 * and after the aligned range; the "after" could could
2050 * cause problems for ARM emulation where it could butt in
2051 * to where we need to put the commpage.
2052 */
806d1021 2053 munmap((void *)real_start, host_size);
293f2060 2054 real_size = aligned_size + qemu_host_page_size;
806d1021
MI
2055 real_start = (unsigned long)
2056 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2057 if (real_start == (unsigned long)-1) {
2058 return (unsigned long)-1;
2059 }
293f2060
LS
2060 aligned_start = HOST_PAGE_ALIGN(real_start);
2061 } else {
2062 aligned_start = real_start;
806d1021
MI
2063 }
2064
8756e136 2065#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
7ad75eea
LS
2066 /* On 32-bit ARM, we need to also be able to map the commpage. */
2067 int valid = init_guest_commpage(aligned_start - guest_start,
2068 aligned_size + guest_start);
2069 if (valid == -1) {
2070 munmap((void *)real_start, real_size);
2071 return (unsigned long)-1;
2072 } else if (valid == 0) {
2073 goto try_again;
dce10401 2074 }
7ad75eea
LS
2075#endif
2076
2077 /* If nothing has said `return -1` or `goto try_again` yet,
2078 * then the address we have is good.
2079 */
2080 break;
dce10401 2081
7ad75eea 2082 try_again:
dce10401
MI
2083 /* That address didn't work. Unmap and try a different one.
2084 * The address the host picked because is typically right at
2085 * the top of the host address space and leaves the guest with
2086 * no usable address space. Resort to a linear search. We
2087 * already compensated for mmap_min_addr, so this should not
2088 * happen often. Probably means we got unlucky and host
2089 * address space randomization put a shared library somewhere
2090 * inconvenient.
8c17d862
LS
2091 *
2092 * This is probably a good strategy if host_start, but is
2093 * probably a bad strategy if not, which means we got here
2094 * because of trouble with ARM commpage setup.
dce10401 2095 */
293f2060 2096 munmap((void *)real_start, real_size);
dce10401
MI
2097 current_start += qemu_host_page_size;
2098 if (host_start == current_start) {
2099 /* Theoretically possible if host doesn't have any suitably
2100 * aligned areas. Normally the first mmap will fail.
2101 */
2102 return (unsigned long)-1;
2103 }
2104 }
2105
13829020 2106 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
806d1021 2107
293f2060 2108 return aligned_start;
dce10401
MI
2109}
2110
f3ed1f5d
PM
2111static void probe_guest_base(const char *image_name,
2112 abi_ulong loaddr, abi_ulong hiaddr)
2113{
2114 /* Probe for a suitable guest base address, if the user has not set
2115 * it explicitly, and set guest_base appropriately.
2116 * In case of error we will print a suitable message and exit.
2117 */
f3ed1f5d
PM
2118 const char *errmsg;
2119 if (!have_guest_base && !reserved_va) {
2120 unsigned long host_start, real_start, host_size;
2121
2122 /* Round addresses to page boundaries. */
2123 loaddr &= qemu_host_page_mask;
2124 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2125
2126 if (loaddr < mmap_min_addr) {
2127 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2128 } else {
2129 host_start = loaddr;
2130 if (host_start != loaddr) {
2131 errmsg = "Address overflow loading ELF binary";
2132 goto exit_errmsg;
2133 }
2134 }
2135 host_size = hiaddr - loaddr;
dce10401
MI
2136
2137 /* Setup the initial guest memory space with ranges gleaned from
2138 * the ELF image that is being loaded.
2139 */
2140 real_start = init_guest_space(host_start, host_size, loaddr, false);
2141 if (real_start == (unsigned long)-1) {
2142 errmsg = "Unable to find space for application";
2143 goto exit_errmsg;
f3ed1f5d 2144 }
dce10401
MI
2145 guest_base = real_start - loaddr;
2146
13829020
PB
2147 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2148 TARGET_ABI_FMT_lx " to 0x%lx\n",
2149 loaddr, real_start);
f3ed1f5d
PM
2150 }
2151 return;
2152
f3ed1f5d
PM
2153exit_errmsg:
2154 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2155 exit(-1);
f3ed1f5d
PM
2156}
2157
2158
8e62a717 2159/* Load an ELF image into the address space.
31e31b8a 2160
8e62a717
RH
2161 IMAGE_NAME is the filename of the image, to use in error messages.
2162 IMAGE_FD is the open file descriptor for the image.
2163
2164 BPRM_BUF is a copy of the beginning of the file; this of course
2165 contains the elf file header at offset 0. It is assumed that this
2166 buffer is sufficiently aligned to present no problems to the host
2167 in accessing data at aligned offsets within the buffer.
2168
2169 On return: INFO values will be filled in, as necessary or available. */
2170
2171static void load_elf_image(const char *image_name, int image_fd,
bf858897 2172 struct image_info *info, char **pinterp_name,
8e62a717 2173 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2174{
8e62a717
RH
2175 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2176 struct elf_phdr *phdr;
2177 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2178 int i, retval;
2179 const char *errmsg;
5fafdf24 2180
8e62a717
RH
2181 /* First of all, some simple consistency checks */
2182 errmsg = "Invalid ELF image for this architecture";
2183 if (!elf_check_ident(ehdr)) {
2184 goto exit_errmsg;
2185 }
2186 bswap_ehdr(ehdr);
2187 if (!elf_check_ehdr(ehdr)) {
2188 goto exit_errmsg;
d97ef72e 2189 }
5fafdf24 2190
8e62a717
RH
2191 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2192 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2193 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2194 } else {
8e62a717
RH
2195 phdr = (struct elf_phdr *) alloca(i);
2196 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2197 if (retval != i) {
8e62a717 2198 goto exit_read;
9955ffac 2199 }
d97ef72e 2200 }
8e62a717 2201 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2202
1af02e83
MF
2203 info->nsegs = 0;
2204 info->pt_dynamic_addr = 0;
1af02e83 2205
98c1076c
AB
2206 mmap_lock();
2207
682674b8
RH
2208 /* Find the maximum size of the image and allocate an appropriate
2209 amount of memory to handle that. */
2210 loaddr = -1, hiaddr = 0;
33143c44 2211 info->alignment = 0;
8e62a717
RH
2212 for (i = 0; i < ehdr->e_phnum; ++i) {
2213 if (phdr[i].p_type == PT_LOAD) {
a93934fe 2214 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
2215 if (a < loaddr) {
2216 loaddr = a;
2217 }
ccf661f8 2218 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
2219 if (a > hiaddr) {
2220 hiaddr = a;
2221 }
1af02e83 2222 ++info->nsegs;
33143c44 2223 info->alignment |= phdr[i].p_align;
682674b8
RH
2224 }
2225 }
2226
2227 load_addr = loaddr;
8e62a717 2228 if (ehdr->e_type == ET_DYN) {
682674b8
RH
2229 /* The image indicates that it can be loaded anywhere. Find a
2230 location that can hold the memory space required. If the
2231 image is pre-linked, LOADDR will be non-zero. Since we do
2232 not supply MAP_FIXED here we'll use that address if and
2233 only if it remains available. */
2234 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2235 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2236 -1, 0);
2237 if (load_addr == -1) {
8e62a717 2238 goto exit_perror;
d97ef72e 2239 }
bf858897
RH
2240 } else if (pinterp_name != NULL) {
2241 /* This is the main executable. Make sure that the low
2242 address does not conflict with MMAP_MIN_ADDR or the
2243 QEMU application itself. */
f3ed1f5d 2244 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 2245 }
682674b8 2246 load_bias = load_addr - loaddr;
d97ef72e 2247
a99856cd 2248 if (elf_is_fdpic(ehdr)) {
1af02e83 2249 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2250 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2251
2252 for (i = 0; i < ehdr->e_phnum; ++i) {
2253 switch (phdr[i].p_type) {
2254 case PT_DYNAMIC:
2255 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2256 break;
2257 case PT_LOAD:
2258 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2259 loadsegs->p_vaddr = phdr[i].p_vaddr;
2260 loadsegs->p_memsz = phdr[i].p_memsz;
2261 ++loadsegs;
2262 break;
2263 }
2264 }
2265 }
1af02e83 2266
8e62a717
RH
2267 info->load_bias = load_bias;
2268 info->load_addr = load_addr;
2269 info->entry = ehdr->e_entry + load_bias;
2270 info->start_code = -1;
2271 info->end_code = 0;
2272 info->start_data = -1;
2273 info->end_data = 0;
2274 info->brk = 0;
d8fd2954 2275 info->elf_flags = ehdr->e_flags;
8e62a717
RH
2276
2277 for (i = 0; i < ehdr->e_phnum; i++) {
2278 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2279 if (eppnt->p_type == PT_LOAD) {
682674b8 2280 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
d97ef72e 2281 int elf_prot = 0;
d97ef72e
RH
2282
2283 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2284 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2285 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 2286
682674b8
RH
2287 vaddr = load_bias + eppnt->p_vaddr;
2288 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2289 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2290
2291 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2292 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 2293 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 2294 if (error == -1) {
8e62a717 2295 goto exit_perror;
09bfb054 2296 }
09bfb054 2297
682674b8
RH
2298 vaddr_ef = vaddr + eppnt->p_filesz;
2299 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 2300
cf129f3a 2301 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
2302 if (vaddr_ef < vaddr_em) {
2303 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 2304 }
8e62a717
RH
2305
2306 /* Find the full program boundaries. */
2307 if (elf_prot & PROT_EXEC) {
2308 if (vaddr < info->start_code) {
2309 info->start_code = vaddr;
2310 }
2311 if (vaddr_ef > info->end_code) {
2312 info->end_code = vaddr_ef;
2313 }
2314 }
2315 if (elf_prot & PROT_WRITE) {
2316 if (vaddr < info->start_data) {
2317 info->start_data = vaddr;
2318 }
2319 if (vaddr_ef > info->end_data) {
2320 info->end_data = vaddr_ef;
2321 }
2322 if (vaddr_em > info->brk) {
2323 info->brk = vaddr_em;
2324 }
2325 }
bf858897
RH
2326 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2327 char *interp_name;
2328
2329 if (*pinterp_name) {
2330 errmsg = "Multiple PT_INTERP entries";
2331 goto exit_errmsg;
2332 }
2333 interp_name = malloc(eppnt->p_filesz);
2334 if (!interp_name) {
2335 goto exit_perror;
2336 }
2337
2338 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2339 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2340 eppnt->p_filesz);
2341 } else {
2342 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2343 eppnt->p_offset);
2344 if (retval != eppnt->p_filesz) {
2345 goto exit_perror;
2346 }
2347 }
2348 if (interp_name[eppnt->p_filesz - 1] != 0) {
2349 errmsg = "Invalid PT_INTERP entry";
2350 goto exit_errmsg;
2351 }
2352 *pinterp_name = interp_name;
d97ef72e 2353 }
682674b8 2354 }
5fafdf24 2355
8e62a717
RH
2356 if (info->end_data == 0) {
2357 info->start_data = info->end_code;
2358 info->end_data = info->end_code;
2359 info->brk = info->end_code;
2360 }
2361
682674b8 2362 if (qemu_log_enabled()) {
8e62a717 2363 load_symbols(ehdr, image_fd, load_bias);
682674b8 2364 }
31e31b8a 2365
98c1076c
AB
2366 mmap_unlock();
2367
8e62a717
RH
2368 close(image_fd);
2369 return;
2370
2371 exit_read:
2372 if (retval >= 0) {
2373 errmsg = "Incomplete read of file header";
2374 goto exit_errmsg;
2375 }
2376 exit_perror:
2377 errmsg = strerror(errno);
2378 exit_errmsg:
2379 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2380 exit(-1);
2381}
2382
2383static void load_elf_interp(const char *filename, struct image_info *info,
2384 char bprm_buf[BPRM_BUF_SIZE])
2385{
2386 int fd, retval;
2387
2388 fd = open(path(filename), O_RDONLY);
2389 if (fd < 0) {
2390 goto exit_perror;
2391 }
31e31b8a 2392
8e62a717
RH
2393 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2394 if (retval < 0) {
2395 goto exit_perror;
2396 }
2397 if (retval < BPRM_BUF_SIZE) {
2398 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2399 }
2400
bf858897 2401 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2402 return;
2403
2404 exit_perror:
2405 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2406 exit(-1);
31e31b8a
FB
2407}
2408
49918a75
PB
2409static int symfind(const void *s0, const void *s1)
2410{
c7c530cd 2411 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2412 struct elf_sym *sym = (struct elf_sym *)s1;
2413 int result = 0;
c7c530cd 2414 if (addr < sym->st_value) {
49918a75 2415 result = -1;
c7c530cd 2416 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2417 result = 1;
2418 }
2419 return result;
2420}
2421
2422static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2423{
2424#if ELF_CLASS == ELFCLASS32
2425 struct elf_sym *syms = s->disas_symtab.elf32;
2426#else
2427 struct elf_sym *syms = s->disas_symtab.elf64;
2428#endif
2429
2430 // binary search
49918a75
PB
2431 struct elf_sym *sym;
2432
c7c530cd 2433 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2434 if (sym != NULL) {
49918a75
PB
2435 return s->disas_strtab + sym->st_name;
2436 }
2437
2438 return "";
2439}
2440
2441/* FIXME: This should use elf_ops.h */
2442static int symcmp(const void *s0, const void *s1)
2443{
2444 struct elf_sym *sym0 = (struct elf_sym *)s0;
2445 struct elf_sym *sym1 = (struct elf_sym *)s1;
2446 return (sym0->st_value < sym1->st_value)
2447 ? -1
2448 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2449}
2450
689f936f 2451/* Best attempt to load symbols from this ELF object. */
682674b8 2452static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2453{
682674b8 2454 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 2455 uint64_t segsz;
682674b8 2456 struct elf_shdr *shdr;
b9475279
CV
2457 char *strings = NULL;
2458 struct syminfo *s = NULL;
2459 struct elf_sym *new_syms, *syms = NULL;
689f936f 2460
682674b8
RH
2461 shnum = hdr->e_shnum;
2462 i = shnum * sizeof(struct elf_shdr);
2463 shdr = (struct elf_shdr *)alloca(i);
2464 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2465 return;
2466 }
2467
2468 bswap_shdr(shdr, shnum);
2469 for (i = 0; i < shnum; ++i) {
2470 if (shdr[i].sh_type == SHT_SYMTAB) {
2471 sym_idx = i;
2472 str_idx = shdr[i].sh_link;
49918a75
PB
2473 goto found;
2474 }
689f936f 2475 }
682674b8
RH
2476
2477 /* There will be no symbol table if the file was stripped. */
2478 return;
689f936f
FB
2479
2480 found:
682674b8 2481 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 2482 s = g_try_new(struct syminfo, 1);
682674b8 2483 if (!s) {
b9475279 2484 goto give_up;
682674b8 2485 }
5fafdf24 2486
1e06262d
PM
2487 segsz = shdr[str_idx].sh_size;
2488 s->disas_strtab = strings = g_try_malloc(segsz);
2489 if (!strings ||
2490 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 2491 goto give_up;
682674b8 2492 }
49918a75 2493
1e06262d
PM
2494 segsz = shdr[sym_idx].sh_size;
2495 syms = g_try_malloc(segsz);
2496 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 2497 goto give_up;
682674b8 2498 }
31e31b8a 2499
1e06262d
PM
2500 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2501 /* Implausibly large symbol table: give up rather than ploughing
2502 * on with the number of symbols calculation overflowing
2503 */
2504 goto give_up;
2505 }
2506 nsyms = segsz / sizeof(struct elf_sym);
682674b8 2507 for (i = 0; i < nsyms; ) {
49918a75 2508 bswap_sym(syms + i);
682674b8
RH
2509 /* Throw away entries which we do not need. */
2510 if (syms[i].st_shndx == SHN_UNDEF
2511 || syms[i].st_shndx >= SHN_LORESERVE
2512 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2513 if (i < --nsyms) {
49918a75
PB
2514 syms[i] = syms[nsyms];
2515 }
682674b8 2516 } else {
49918a75 2517#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2518 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2519 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2520#endif
682674b8
RH
2521 syms[i].st_value += load_bias;
2522 i++;
2523 }
0774bed1 2524 }
49918a75 2525
b9475279
CV
2526 /* No "useful" symbol. */
2527 if (nsyms == 0) {
2528 goto give_up;
2529 }
2530
5d5c9930
RH
2531 /* Attempt to free the storage associated with the local symbols
2532 that we threw away. Whether or not this has any effect on the
2533 memory allocation depends on the malloc implementation and how
2534 many symbols we managed to discard. */
0ef9ea29 2535 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 2536 if (new_syms == NULL) {
b9475279 2537 goto give_up;
5d5c9930 2538 }
8d79de6e 2539 syms = new_syms;
5d5c9930 2540
49918a75 2541 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2542
49918a75
PB
2543 s->disas_num_syms = nsyms;
2544#if ELF_CLASS == ELFCLASS32
2545 s->disas_symtab.elf32 = syms;
49918a75
PB
2546#else
2547 s->disas_symtab.elf64 = syms;
49918a75 2548#endif
682674b8 2549 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2550 s->next = syminfos;
2551 syminfos = s;
b9475279
CV
2552
2553 return;
2554
2555give_up:
0ef9ea29
PM
2556 g_free(s);
2557 g_free(strings);
2558 g_free(syms);
689f936f 2559}
31e31b8a 2560
768fe76e
YS
2561uint32_t get_elf_eflags(int fd)
2562{
2563 struct elfhdr ehdr;
2564 off_t offset;
2565 int ret;
2566
2567 /* Read ELF header */
2568 offset = lseek(fd, 0, SEEK_SET);
2569 if (offset == (off_t) -1) {
2570 return 0;
2571 }
2572 ret = read(fd, &ehdr, sizeof(ehdr));
2573 if (ret < sizeof(ehdr)) {
2574 return 0;
2575 }
2576 offset = lseek(fd, offset, SEEK_SET);
2577 if (offset == (off_t) -1) {
2578 return 0;
2579 }
2580
2581 /* Check ELF signature */
2582 if (!elf_check_ident(&ehdr)) {
2583 return 0;
2584 }
2585
2586 /* check header */
2587 bswap_ehdr(&ehdr);
2588 if (!elf_check_ehdr(&ehdr)) {
2589 return 0;
2590 }
2591
2592 /* return architecture id */
2593 return ehdr.e_flags;
2594}
2595
f0116c54 2596int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2597{
8e62a717 2598 struct image_info interp_info;
31e31b8a 2599 struct elfhdr elf_ex;
8e62a717 2600 char *elf_interpreter = NULL;
59baae9a 2601 char *scratch;
31e31b8a 2602
bf858897 2603 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2604
2605 load_elf_image(bprm->filename, bprm->fd, info,
2606 &elf_interpreter, bprm->buf);
31e31b8a 2607
bf858897
RH
2608 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2609 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2610 when we load the interpreter. */
2611 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2612
59baae9a
SB
2613 /* Do this so that we can load the interpreter, if need be. We will
2614 change some of these later */
2615 bprm->p = setup_arg_pages(bprm, info);
2616
2617 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
2618 if (STACK_GROWS_DOWN) {
2619 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2620 bprm->p, info->stack_limit);
2621 info->file_string = bprm->p;
2622 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2623 bprm->p, info->stack_limit);
2624 info->env_strings = bprm->p;
2625 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2626 bprm->p, info->stack_limit);
2627 info->arg_strings = bprm->p;
2628 } else {
2629 info->arg_strings = bprm->p;
2630 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2631 bprm->p, info->stack_limit);
2632 info->env_strings = bprm->p;
2633 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2634 bprm->p, info->stack_limit);
2635 info->file_string = bprm->p;
2636 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2637 bprm->p, info->stack_limit);
2638 }
2639
59baae9a
SB
2640 g_free(scratch);
2641
e5fe0c52 2642 if (!bprm->p) {
bf858897
RH
2643 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2644 exit(-1);
379f6698 2645 }
379f6698 2646
8e62a717
RH
2647 if (elf_interpreter) {
2648 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2649
8e62a717
RH
2650 /* If the program interpreter is one of these two, then assume
2651 an iBCS2 image. Otherwise assume a native linux image. */
2652
2653 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2654 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2655 info->personality = PER_SVR4;
31e31b8a 2656
8e62a717
RH
2657 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2658 and some applications "depend" upon this behavior. Since
2659 we do not have the power to recompile these, we emulate
2660 the SVr4 behavior. Sigh. */
2661 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 2662 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 2663 }
31e31b8a
FB
2664 }
2665
8e62a717
RH
2666 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2667 info, (elf_interpreter ? &interp_info : NULL));
2668 info->start_stack = bprm->p;
2669
2670 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2671 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2672 point as a function descriptor. Do this after creating elf tables
2673 so that we copy the original program entry point into the AUXV. */
2674 if (elf_interpreter) {
8e78064e 2675 info->load_bias = interp_info.load_bias;
8e62a717 2676 info->entry = interp_info.entry;
bf858897 2677 free(elf_interpreter);
8e62a717 2678 }
31e31b8a 2679
edf8e2af
MW
2680#ifdef USE_ELF_CORE_DUMP
2681 bprm->core_dump = &elf_core_dump;
2682#endif
2683
31e31b8a
FB
2684 return 0;
2685}
2686
edf8e2af 2687#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2688/*
2689 * Definitions to generate Intel SVR4-like core files.
a2547a13 2690 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2691 * tacked on the front to prevent clashes with linux definitions,
2692 * and the typedef forms have been avoided. This is mostly like
2693 * the SVR4 structure, but more Linuxy, with things that Linux does
2694 * not support and which gdb doesn't really use excluded.
2695 *
2696 * Fields we don't dump (their contents is zero) in linux-user qemu
2697 * are marked with XXX.
2698 *
2699 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2700 *
2701 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2702 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2703 * the target resides):
2704 *
2705 * #define USE_ELF_CORE_DUMP
2706 *
2707 * Next you define type of register set used for dumping. ELF specification
2708 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2709 *
c227f099 2710 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2711 * #define ELF_NREG <number of registers>
c227f099 2712 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2713 *
edf8e2af
MW
2714 * Last step is to implement target specific function that copies registers
2715 * from given cpu into just specified register set. Prototype is:
2716 *
c227f099 2717 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2718 * const CPUArchState *env);
edf8e2af
MW
2719 *
2720 * Parameters:
2721 * regs - copy register values into here (allocated and zeroed by caller)
2722 * env - copy registers from here
2723 *
2724 * Example for ARM target is provided in this file.
2725 */
2726
2727/* An ELF note in memory */
2728struct memelfnote {
2729 const char *name;
2730 size_t namesz;
2731 size_t namesz_rounded;
2732 int type;
2733 size_t datasz;
80f5ce75 2734 size_t datasz_rounded;
edf8e2af
MW
2735 void *data;
2736 size_t notesz;
2737};
2738
a2547a13 2739struct target_elf_siginfo {
f8fd4fc4
PB
2740 abi_int si_signo; /* signal number */
2741 abi_int si_code; /* extra code */
2742 abi_int si_errno; /* errno */
edf8e2af
MW
2743};
2744
a2547a13
LD
2745struct target_elf_prstatus {
2746 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2747 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2748 abi_ulong pr_sigpend; /* XXX */
2749 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2750 target_pid_t pr_pid;
2751 target_pid_t pr_ppid;
2752 target_pid_t pr_pgrp;
2753 target_pid_t pr_sid;
edf8e2af
MW
2754 struct target_timeval pr_utime; /* XXX User time */
2755 struct target_timeval pr_stime; /* XXX System time */
2756 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2757 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2758 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2759 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2760};
2761
2762#define ELF_PRARGSZ (80) /* Number of chars for args */
2763
a2547a13 2764struct target_elf_prpsinfo {
edf8e2af
MW
2765 char pr_state; /* numeric process state */
2766 char pr_sname; /* char for pr_state */
2767 char pr_zomb; /* zombie */
2768 char pr_nice; /* nice val */
ca98ac83 2769 abi_ulong pr_flag; /* flags */
c227f099
AL
2770 target_uid_t pr_uid;
2771 target_gid_t pr_gid;
2772 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2773 /* Lots missing */
2774 char pr_fname[16]; /* filename of executable */
2775 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2776};
2777
2778/* Here is the structure in which status of each thread is captured. */
2779struct elf_thread_status {
72cf2d4f 2780 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2781 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2782#if 0
2783 elf_fpregset_t fpu; /* NT_PRFPREG */
2784 struct task_struct *thread;
2785 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2786#endif
2787 struct memelfnote notes[1];
2788 int num_notes;
2789};
2790
2791struct elf_note_info {
2792 struct memelfnote *notes;
a2547a13
LD
2793 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2794 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2795
72cf2d4f 2796 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2797#if 0
2798 /*
2799 * Current version of ELF coredump doesn't support
2800 * dumping fp regs etc.
2801 */
2802 elf_fpregset_t *fpu;
2803 elf_fpxregset_t *xfpu;
2804 int thread_status_size;
2805#endif
2806 int notes_size;
2807 int numnote;
2808};
2809
2810struct vm_area_struct {
1a1c4db9
MI
2811 target_ulong vma_start; /* start vaddr of memory region */
2812 target_ulong vma_end; /* end vaddr of memory region */
2813 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2814 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2815};
2816
2817struct mm_struct {
72cf2d4f 2818 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2819 int mm_count; /* number of mappings */
2820};
2821
2822static struct mm_struct *vma_init(void);
2823static void vma_delete(struct mm_struct *);
1a1c4db9
MI
2824static int vma_add_mapping(struct mm_struct *, target_ulong,
2825 target_ulong, abi_ulong);
edf8e2af
MW
2826static int vma_get_mapping_count(const struct mm_struct *);
2827static struct vm_area_struct *vma_first(const struct mm_struct *);
2828static struct vm_area_struct *vma_next(struct vm_area_struct *);
2829static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 2830static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2831 unsigned long flags);
edf8e2af
MW
2832
2833static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2834static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2835 unsigned int, void *);
a2547a13
LD
2836static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2837static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2838static void fill_auxv_note(struct memelfnote *, const TaskState *);
2839static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2840static size_t note_size(const struct memelfnote *);
2841static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2842static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2843static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2844static int core_dump_filename(const TaskState *, char *, size_t);
2845
2846static int dump_write(int, const void *, size_t);
2847static int write_note(struct memelfnote *, int);
2848static int write_note_info(struct elf_note_info *, int);
2849
2850#ifdef BSWAP_NEEDED
a2547a13 2851static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2852{
ca98ac83
PB
2853 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2854 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2855 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2856 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
2857 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2858 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
2859 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2860 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2861 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2862 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2863 /* cpu times are not filled, so we skip them */
2864 /* regs should be in correct format already */
2865 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2866}
2867
a2547a13 2868static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 2869{
ca98ac83 2870 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
2871 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2872 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2873 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2874 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2875 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2876 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2877}
991f8f0c
RH
2878
2879static void bswap_note(struct elf_note *en)
2880{
2881 bswap32s(&en->n_namesz);
2882 bswap32s(&en->n_descsz);
2883 bswap32s(&en->n_type);
2884}
2885#else
2886static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2887static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2888static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2889#endif /* BSWAP_NEEDED */
2890
2891/*
2892 * Minimal support for linux memory regions. These are needed
2893 * when we are finding out what memory exactly belongs to
2894 * emulated process. No locks needed here, as long as
2895 * thread that received the signal is stopped.
2896 */
2897
2898static struct mm_struct *vma_init(void)
2899{
2900 struct mm_struct *mm;
2901
7267c094 2902 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
2903 return (NULL);
2904
2905 mm->mm_count = 0;
72cf2d4f 2906 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2907
2908 return (mm);
2909}
2910
2911static void vma_delete(struct mm_struct *mm)
2912{
2913 struct vm_area_struct *vma;
2914
2915 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2916 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 2917 g_free(vma);
edf8e2af 2918 }
7267c094 2919 g_free(mm);
edf8e2af
MW
2920}
2921
1a1c4db9
MI
2922static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2923 target_ulong end, abi_ulong flags)
edf8e2af
MW
2924{
2925 struct vm_area_struct *vma;
2926
7267c094 2927 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
2928 return (-1);
2929
2930 vma->vma_start = start;
2931 vma->vma_end = end;
2932 vma->vma_flags = flags;
2933
72cf2d4f 2934 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2935 mm->mm_count++;
2936
2937 return (0);
2938}
2939
2940static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2941{
72cf2d4f 2942 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2943}
2944
2945static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2946{
72cf2d4f 2947 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2948}
2949
2950static int vma_get_mapping_count(const struct mm_struct *mm)
2951{
2952 return (mm->mm_count);
2953}
2954
2955/*
2956 * Calculate file (dump) size of given memory region.
2957 */
2958static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2959{
2960 /* if we cannot even read the first page, skip it */
2961 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2962 return (0);
2963
2964 /*
2965 * Usually we don't dump executable pages as they contain
2966 * non-writable code that debugger can read directly from
2967 * target library etc. However, thread stacks are marked
2968 * also executable so we read in first page of given region
2969 * and check whether it contains elf header. If there is
2970 * no elf header, we dump it.
2971 */
2972 if (vma->vma_flags & PROT_EXEC) {
2973 char page[TARGET_PAGE_SIZE];
2974
2975 copy_from_user(page, vma->vma_start, sizeof (page));
2976 if ((page[EI_MAG0] == ELFMAG0) &&
2977 (page[EI_MAG1] == ELFMAG1) &&
2978 (page[EI_MAG2] == ELFMAG2) &&
2979 (page[EI_MAG3] == ELFMAG3)) {
2980 /*
2981 * Mappings are possibly from ELF binary. Don't dump
2982 * them.
2983 */
2984 return (0);
2985 }
2986 }
2987
2988 return (vma->vma_end - vma->vma_start);
2989}
2990
1a1c4db9 2991static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2992 unsigned long flags)
edf8e2af
MW
2993{
2994 struct mm_struct *mm = (struct mm_struct *)priv;
2995
edf8e2af
MW
2996 vma_add_mapping(mm, start, end, flags);
2997 return (0);
2998}
2999
3000static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 3001 unsigned int sz, void *data)
edf8e2af
MW
3002{
3003 unsigned int namesz;
3004
3005 namesz = strlen(name) + 1;
3006 note->name = name;
3007 note->namesz = namesz;
3008 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3009 note->type = type;
80f5ce75
LV
3010 note->datasz = sz;
3011 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3012
edf8e2af
MW
3013 note->data = data;
3014
3015 /*
3016 * We calculate rounded up note size here as specified by
3017 * ELF document.
3018 */
3019 note->notesz = sizeof (struct elf_note) +
80f5ce75 3020 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
3021}
3022
3023static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 3024 uint32_t flags)
edf8e2af
MW
3025{
3026 (void) memset(elf, 0, sizeof(*elf));
3027
3028 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3029 elf->e_ident[EI_CLASS] = ELF_CLASS;
3030 elf->e_ident[EI_DATA] = ELF_DATA;
3031 elf->e_ident[EI_VERSION] = EV_CURRENT;
3032 elf->e_ident[EI_OSABI] = ELF_OSABI;
3033
3034 elf->e_type = ET_CORE;
3035 elf->e_machine = machine;
3036 elf->e_version = EV_CURRENT;
3037 elf->e_phoff = sizeof(struct elfhdr);
3038 elf->e_flags = flags;
3039 elf->e_ehsize = sizeof(struct elfhdr);
3040 elf->e_phentsize = sizeof(struct elf_phdr);
3041 elf->e_phnum = segs;
3042
edf8e2af 3043 bswap_ehdr(elf);
edf8e2af
MW
3044}
3045
3046static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3047{
3048 phdr->p_type = PT_NOTE;
3049 phdr->p_offset = offset;
3050 phdr->p_vaddr = 0;
3051 phdr->p_paddr = 0;
3052 phdr->p_filesz = sz;
3053 phdr->p_memsz = 0;
3054 phdr->p_flags = 0;
3055 phdr->p_align = 0;
3056
991f8f0c 3057 bswap_phdr(phdr, 1);
edf8e2af
MW
3058}
3059
3060static size_t note_size(const struct memelfnote *note)
3061{
3062 return (note->notesz);
3063}
3064
a2547a13 3065static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 3066 const TaskState *ts, int signr)
edf8e2af
MW
3067{
3068 (void) memset(prstatus, 0, sizeof (*prstatus));
3069 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3070 prstatus->pr_pid = ts->ts_tid;
3071 prstatus->pr_ppid = getppid();
3072 prstatus->pr_pgrp = getpgrp();
3073 prstatus->pr_sid = getsid(0);
3074
edf8e2af 3075 bswap_prstatus(prstatus);
edf8e2af
MW
3076}
3077
a2547a13 3078static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 3079{
900cfbca 3080 char *base_filename;
edf8e2af
MW
3081 unsigned int i, len;
3082
3083 (void) memset(psinfo, 0, sizeof (*psinfo));
3084
3085 len = ts->info->arg_end - ts->info->arg_start;
3086 if (len >= ELF_PRARGSZ)
3087 len = ELF_PRARGSZ - 1;
3088 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3089 return -EFAULT;
3090 for (i = 0; i < len; i++)
3091 if (psinfo->pr_psargs[i] == 0)
3092 psinfo->pr_psargs[i] = ' ';
3093 psinfo->pr_psargs[len] = 0;
3094
3095 psinfo->pr_pid = getpid();
3096 psinfo->pr_ppid = getppid();
3097 psinfo->pr_pgrp = getpgrp();
3098 psinfo->pr_sid = getsid(0);
3099 psinfo->pr_uid = getuid();
3100 psinfo->pr_gid = getgid();
3101
900cfbca
JM
3102 base_filename = g_path_get_basename(ts->bprm->filename);
3103 /*
3104 * Using strncpy here is fine: at max-length,
3105 * this field is not NUL-terminated.
3106 */
edf8e2af 3107 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 3108 sizeof(psinfo->pr_fname));
edf8e2af 3109
900cfbca 3110 g_free(base_filename);
edf8e2af 3111 bswap_psinfo(psinfo);
edf8e2af
MW
3112 return (0);
3113}
3114
3115static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3116{
3117 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3118 elf_addr_t orig_auxv = auxv;
edf8e2af 3119 void *ptr;
125b0f55 3120 int len = ts->info->auxv_len;
edf8e2af
MW
3121
3122 /*
3123 * Auxiliary vector is stored in target process stack. It contains
3124 * {type, value} pairs that we need to dump into note. This is not
3125 * strictly necessary but we do it here for sake of completeness.
3126 */
3127
edf8e2af
MW
3128 /* read in whole auxv vector and copy it to memelfnote */
3129 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3130 if (ptr != NULL) {
3131 fill_note(note, "CORE", NT_AUXV, len, ptr);
3132 unlock_user(ptr, auxv, len);
3133 }
3134}
3135
3136/*
3137 * Constructs name of coredump file. We have following convention
3138 * for the name:
3139 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3140 *
3141 * Returns 0 in case of success, -1 otherwise (errno is set).
3142 */
3143static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 3144 size_t bufsize)
edf8e2af
MW
3145{
3146 char timestamp[64];
edf8e2af
MW
3147 char *base_filename = NULL;
3148 struct timeval tv;
3149 struct tm tm;
3150
3151 assert(bufsize >= PATH_MAX);
3152
3153 if (gettimeofday(&tv, NULL) < 0) {
3154 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 3155 strerror(errno));
edf8e2af
MW
3156 return (-1);
3157 }
3158
b8da57fa 3159 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 3160 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 3161 localtime_r(&tv.tv_sec, &tm));
edf8e2af 3162 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 3163 base_filename, timestamp, (int)getpid());
b8da57fa 3164 g_free(base_filename);
edf8e2af
MW
3165
3166 return (0);
3167}
3168
3169static int dump_write(int fd, const void *ptr, size_t size)
3170{
3171 const char *bufp = (const char *)ptr;
3172 ssize_t bytes_written, bytes_left;
3173 struct rlimit dumpsize;
3174 off_t pos;
3175
3176 bytes_written = 0;
3177 getrlimit(RLIMIT_CORE, &dumpsize);
3178 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3179 if (errno == ESPIPE) { /* not a seekable stream */
3180 bytes_left = size;
3181 } else {
3182 return pos;
3183 }
3184 } else {
3185 if (dumpsize.rlim_cur <= pos) {
3186 return -1;
3187 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3188 bytes_left = size;
3189 } else {
3190 size_t limit_left=dumpsize.rlim_cur - pos;
3191 bytes_left = limit_left >= size ? size : limit_left ;
3192 }
3193 }
3194
3195 /*
3196 * In normal conditions, single write(2) should do but
3197 * in case of socket etc. this mechanism is more portable.
3198 */
3199 do {
3200 bytes_written = write(fd, bufp, bytes_left);
3201 if (bytes_written < 0) {
3202 if (errno == EINTR)
3203 continue;
3204 return (-1);
3205 } else if (bytes_written == 0) { /* eof */
3206 return (-1);
3207 }
3208 bufp += bytes_written;
3209 bytes_left -= bytes_written;
3210 } while (bytes_left > 0);
3211
3212 return (0);
3213}
3214
3215static int write_note(struct memelfnote *men, int fd)
3216{
3217 struct elf_note en;
3218
3219 en.n_namesz = men->namesz;
3220 en.n_type = men->type;
3221 en.n_descsz = men->datasz;
3222
edf8e2af 3223 bswap_note(&en);
edf8e2af
MW
3224
3225 if (dump_write(fd, &en, sizeof(en)) != 0)
3226 return (-1);
3227 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3228 return (-1);
80f5ce75 3229 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3230 return (-1);
3231
3232 return (0);
3233}
3234
9349b4f9 3235static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3236{
0429a971
AF
3237 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3238 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3239 struct elf_thread_status *ets;
3240
7267c094 3241 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3242 ets->num_notes = 1; /* only prstatus is dumped */
3243 fill_prstatus(&ets->prstatus, ts, 0);
3244 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3245 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3246 &ets->prstatus);
edf8e2af 3247
72cf2d4f 3248 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3249
3250 info->notes_size += note_size(&ets->notes[0]);
3251}
3252
6afafa86
PM
3253static void init_note_info(struct elf_note_info *info)
3254{
3255 /* Initialize the elf_note_info structure so that it is at
3256 * least safe to call free_note_info() on it. Must be
3257 * called before calling fill_note_info().
3258 */
3259 memset(info, 0, sizeof (*info));
3260 QTAILQ_INIT(&info->thread_list);
3261}
3262
edf8e2af 3263static int fill_note_info(struct elf_note_info *info,
9349b4f9 3264 long signr, const CPUArchState *env)
edf8e2af
MW
3265{
3266#define NUMNOTES 3
0429a971
AF
3267 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3268 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3269 int i;
3270
c78d65e8 3271 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3272 if (info->notes == NULL)
3273 return (-ENOMEM);
7267c094 3274 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3275 if (info->prstatus == NULL)
3276 return (-ENOMEM);
7267c094 3277 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3278 if (info->prstatus == NULL)
3279 return (-ENOMEM);
3280
3281 /*
3282 * First fill in status (and registers) of current thread
3283 * including process info & aux vector.
3284 */
3285 fill_prstatus(info->prstatus, ts, signr);
3286 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3287 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3288 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3289 fill_psinfo(info->psinfo, ts);
3290 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3291 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3292 fill_auxv_note(&info->notes[2], ts);
3293 info->numnote = 3;
3294
3295 info->notes_size = 0;
3296 for (i = 0; i < info->numnote; i++)
3297 info->notes_size += note_size(&info->notes[i]);
3298
3299 /* read and fill status of all threads */
3300 cpu_list_lock();
bdc44640 3301 CPU_FOREACH(cpu) {
a2247f8e 3302 if (cpu == thread_cpu) {
edf8e2af 3303 continue;
182735ef
AF
3304 }
3305 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3306 }
3307 cpu_list_unlock();
3308
3309 return (0);
3310}
3311
3312static void free_note_info(struct elf_note_info *info)
3313{
3314 struct elf_thread_status *ets;
3315
72cf2d4f
BS
3316 while (!QTAILQ_EMPTY(&info->thread_list)) {
3317 ets = QTAILQ_FIRST(&info->thread_list);
3318 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3319 g_free(ets);
edf8e2af
MW
3320 }
3321
7267c094
AL
3322 g_free(info->prstatus);
3323 g_free(info->psinfo);
3324 g_free(info->notes);
edf8e2af
MW
3325}
3326
3327static int write_note_info(struct elf_note_info *info, int fd)
3328{
3329 struct elf_thread_status *ets;
3330 int i, error = 0;
3331
3332 /* write prstatus, psinfo and auxv for current thread */
3333 for (i = 0; i < info->numnote; i++)
3334 if ((error = write_note(&info->notes[i], fd)) != 0)
3335 return (error);
3336
3337 /* write prstatus for each thread */
52a53afe 3338 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3339 if ((error = write_note(&ets->notes[0], fd)) != 0)
3340 return (error);
3341 }
3342
3343 return (0);
3344}
3345
3346/*
3347 * Write out ELF coredump.
3348 *
3349 * See documentation of ELF object file format in:
3350 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3351 *
3352 * Coredump format in linux is following:
3353 *
3354 * 0 +----------------------+ \
3355 * | ELF header | ET_CORE |
3356 * +----------------------+ |
3357 * | ELF program headers | |--- headers
3358 * | - NOTE section | |
3359 * | - PT_LOAD sections | |
3360 * +----------------------+ /
3361 * | NOTEs: |
3362 * | - NT_PRSTATUS |
3363 * | - NT_PRSINFO |
3364 * | - NT_AUXV |
3365 * +----------------------+ <-- aligned to target page
3366 * | Process memory dump |
3367 * : :
3368 * . .
3369 * : :
3370 * | |
3371 * +----------------------+
3372 *
3373 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3374 * NT_PRSINFO -> struct elf_prpsinfo
3375 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3376 *
3377 * Format follows System V format as close as possible. Current
3378 * version limitations are as follows:
3379 * - no floating point registers are dumped
3380 *
3381 * Function returns 0 in case of success, negative errno otherwise.
3382 *
3383 * TODO: make this work also during runtime: it should be
3384 * possible to force coredump from running process and then
3385 * continue processing. For example qemu could set up SIGUSR2
3386 * handler (provided that target process haven't registered
3387 * handler for that) that does the dump when signal is received.
3388 */
9349b4f9 3389static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3390{
0429a971
AF
3391 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3392 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3393 struct vm_area_struct *vma = NULL;
3394 char corefile[PATH_MAX];
3395 struct elf_note_info info;
3396 struct elfhdr elf;
3397 struct elf_phdr phdr;
3398 struct rlimit dumpsize;
3399 struct mm_struct *mm = NULL;
3400 off_t offset = 0, data_offset = 0;
3401 int segs = 0;
3402 int fd = -1;
3403
6afafa86
PM
3404 init_note_info(&info);
3405
edf8e2af
MW
3406 errno = 0;
3407 getrlimit(RLIMIT_CORE, &dumpsize);
3408 if (dumpsize.rlim_cur == 0)
d97ef72e 3409 return 0;
edf8e2af
MW
3410
3411 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3412 return (-errno);
3413
3414 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3415 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3416 return (-errno);
3417
3418 /*
3419 * Walk through target process memory mappings and
3420 * set up structure containing this information. After
3421 * this point vma_xxx functions can be used.
3422 */
3423 if ((mm = vma_init()) == NULL)
3424 goto out;
3425
3426 walk_memory_regions(mm, vma_walker);
3427 segs = vma_get_mapping_count(mm);
3428
3429 /*
3430 * Construct valid coredump ELF header. We also
3431 * add one more segment for notes.
3432 */
3433 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3434 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3435 goto out;
3436
b6af0975 3437 /* fill in the in-memory version of notes */
edf8e2af
MW
3438 if (fill_note_info(&info, signr, env) < 0)
3439 goto out;
3440
3441 offset += sizeof (elf); /* elf header */
3442 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3443
3444 /* write out notes program header */
3445 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3446
3447 offset += info.notes_size;
3448 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3449 goto out;
3450
3451 /*
3452 * ELF specification wants data to start at page boundary so
3453 * we align it here.
3454 */
80f5ce75 3455 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3456
3457 /*
3458 * Write program headers for memory regions mapped in
3459 * the target process.
3460 */
3461 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3462 (void) memset(&phdr, 0, sizeof (phdr));
3463
3464 phdr.p_type = PT_LOAD;
3465 phdr.p_offset = offset;
3466 phdr.p_vaddr = vma->vma_start;
3467 phdr.p_paddr = 0;
3468 phdr.p_filesz = vma_dump_size(vma);
3469 offset += phdr.p_filesz;
3470 phdr.p_memsz = vma->vma_end - vma->vma_start;
3471 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3472 if (vma->vma_flags & PROT_WRITE)
3473 phdr.p_flags |= PF_W;
3474 if (vma->vma_flags & PROT_EXEC)
3475 phdr.p_flags |= PF_X;
3476 phdr.p_align = ELF_EXEC_PAGESIZE;
3477
80f5ce75 3478 bswap_phdr(&phdr, 1);
772034b6
PM
3479 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3480 goto out;
3481 }
edf8e2af
MW
3482 }
3483
3484 /*
3485 * Next we write notes just after program headers. No
3486 * alignment needed here.
3487 */
3488 if (write_note_info(&info, fd) < 0)
3489 goto out;
3490
3491 /* align data to page boundary */
edf8e2af
MW
3492 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3493 goto out;
3494
3495 /*
3496 * Finally we can dump process memory into corefile as well.
3497 */
3498 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3499 abi_ulong addr;
3500 abi_ulong end;
3501
3502 end = vma->vma_start + vma_dump_size(vma);
3503
3504 for (addr = vma->vma_start; addr < end;
d97ef72e 3505 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3506 char page[TARGET_PAGE_SIZE];
3507 int error;
3508
3509 /*
3510 * Read in page from target process memory and
3511 * write it to coredump file.
3512 */
3513 error = copy_from_user(page, addr, sizeof (page));
3514 if (error != 0) {
49995e17 3515 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3516 addr);
edf8e2af
MW
3517 errno = -error;
3518 goto out;
3519 }
3520 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3521 goto out;
3522 }
3523 }
3524
d97ef72e 3525 out:
edf8e2af
MW
3526 free_note_info(&info);
3527 if (mm != NULL)
3528 vma_delete(mm);
3529 (void) close(fd);
3530
3531 if (errno != 0)
3532 return (-errno);
3533 return (0);
3534}
edf8e2af
MW
3535#endif /* USE_ELF_CORE_DUMP */
3536
e5fe0c52
PB
3537void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3538{
3539 init_thread(regs, infop);
3540}