]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
Update version for 0.13.x
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
edf8e2af
MW
2#include <sys/time.h>
3#include <sys/param.h>
31e31b8a
FB
4
5#include <stdio.h>
6#include <sys/types.h>
7#include <fcntl.h>
31e31b8a
FB
8#include <errno.h>
9#include <unistd.h>
10#include <sys/mman.h>
edf8e2af 11#include <sys/resource.h>
31e31b8a
FB
12#include <stdlib.h>
13#include <string.h>
edf8e2af 14#include <time.h>
31e31b8a 15
3ef693a0 16#include "qemu.h"
689f936f 17#include "disas.h"
31e31b8a 18
e58ffeb3 19#ifdef _ARCH_PPC64
a6cc84f4 20#undef ARCH_DLINFO
21#undef ELF_PLATFORM
22#undef ELF_HWCAP
23#undef ELF_CLASS
24#undef ELF_DATA
25#undef ELF_ARCH
26#endif
27
edf8e2af
MW
28#define ELF_OSABI ELFOSABI_SYSV
29
cb33da57
BS
30/* from personality.h */
31
32/*
33 * Flags for bug emulation.
34 *
35 * These occupy the top three bytes.
36 */
37enum {
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to descriptors
40 * (signal handling)
41 */
42 MMAP_PAGE_ZERO = 0x0100000,
43 ADDR_COMPAT_LAYOUT = 0x0200000,
44 READ_IMPLIES_EXEC = 0x0400000,
45 ADDR_LIMIT_32BIT = 0x0800000,
46 SHORT_INODE = 0x1000000,
47 WHOLE_SECONDS = 0x2000000,
48 STICKY_TIMEOUTS = 0x4000000,
49 ADDR_LIMIT_3GB = 0x8000000,
50};
51
52/*
53 * Personality types.
54 *
55 * These go in the low byte. Avoid using the top bit, it will
56 * conflict with error returns.
57 */
58enum {
59 PER_LINUX = 0x0000,
60 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
61 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
62 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS |
65 WHOLE_SECONDS | SHORT_INODE,
66 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
67 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
68 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
69 PER_BSD = 0x0006,
70 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
71 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
72 PER_LINUX32 = 0x0008,
73 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
74 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
75 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
76 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
77 PER_RISCOS = 0x000c,
78 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
79 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
80 PER_OSF4 = 0x000f, /* OSF/1 v4 */
81 PER_HPUX = 0x0010,
82 PER_MASK = 0x00ff,
83};
84
85/*
86 * Return the base personality without flags.
87 */
88#define personality(pers) (pers & PER_MASK)
89
83fb7adf
FB
90/* this flag is uneffective under linux too, should be deleted */
91#ifndef MAP_DENYWRITE
92#define MAP_DENYWRITE 0
93#endif
94
95/* should probably go in elf.h */
96#ifndef ELIBBAD
97#define ELIBBAD 80
98#endif
99
21e807fa
NF
100typedef target_ulong target_elf_greg_t;
101#ifdef USE_UID16
102typedef uint16_t target_uid_t;
103typedef uint16_t target_gid_t;
104#else
105typedef uint32_t target_uid_t;
106typedef uint32_t target_gid_t;
107#endif
108typedef int32_t target_pid_t;
109
30ac07d4
FB
110#ifdef TARGET_I386
111
15338fd7
FB
112#define ELF_PLATFORM get_elf_platform()
113
114static const char *get_elf_platform(void)
115{
116 static char elf_platform[] = "i386";
d5975363 117 int family = (thread_env->cpuid_version >> 8) & 0xff;
15338fd7
FB
118 if (family > 6)
119 family = 6;
120 if (family >= 3)
121 elf_platform[1] = '0' + family;
122 return elf_platform;
123}
124
125#define ELF_HWCAP get_elf_hwcap()
126
127static uint32_t get_elf_hwcap(void)
128{
d5975363 129 return thread_env->cpuid_features;
15338fd7
FB
130}
131
84409ddb
JM
132#ifdef TARGET_X86_64
133#define ELF_START_MMAP 0x2aaaaab000ULL
134#define elf_check_arch(x) ( ((x) == ELF_ARCH) )
135
136#define ELF_CLASS ELFCLASS64
137#define ELF_DATA ELFDATA2LSB
138#define ELF_ARCH EM_X86_64
139
140static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
141{
142 regs->rax = 0;
143 regs->rsp = infop->start_stack;
144 regs->rip = infop->entry;
145}
146
9edc5d79 147#define ELF_NREG 27
c227f099 148typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
149
150/*
151 * Note that ELF_NREG should be 29 as there should be place for
152 * TRAPNO and ERR "registers" as well but linux doesn't dump
153 * those.
154 *
155 * See linux kernel: arch/x86/include/asm/elf.h
156 */
c227f099 157static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
9edc5d79
MW
158{
159 (*regs)[0] = env->regs[15];
160 (*regs)[1] = env->regs[14];
161 (*regs)[2] = env->regs[13];
162 (*regs)[3] = env->regs[12];
163 (*regs)[4] = env->regs[R_EBP];
164 (*regs)[5] = env->regs[R_EBX];
165 (*regs)[6] = env->regs[11];
166 (*regs)[7] = env->regs[10];
167 (*regs)[8] = env->regs[9];
168 (*regs)[9] = env->regs[8];
169 (*regs)[10] = env->regs[R_EAX];
170 (*regs)[11] = env->regs[R_ECX];
171 (*regs)[12] = env->regs[R_EDX];
172 (*regs)[13] = env->regs[R_ESI];
173 (*regs)[14] = env->regs[R_EDI];
174 (*regs)[15] = env->regs[R_EAX]; /* XXX */
175 (*regs)[16] = env->eip;
176 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
177 (*regs)[18] = env->eflags;
178 (*regs)[19] = env->regs[R_ESP];
179 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
180 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
181 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
182 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
183 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
184 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
186}
187
84409ddb
JM
188#else
189
30ac07d4
FB
190#define ELF_START_MMAP 0x80000000
191
30ac07d4
FB
192/*
193 * This is used to ensure we don't load something for the wrong architecture.
194 */
195#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
196
197/*
198 * These are used to set parameters in the core dumps.
199 */
200#define ELF_CLASS ELFCLASS32
201#define ELF_DATA ELFDATA2LSB
202#define ELF_ARCH EM_386
203
b346ff46
FB
204static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
205{
206 regs->esp = infop->start_stack;
207 regs->eip = infop->entry;
e5fe0c52
PB
208
209 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
210 starts %edx contains a pointer to a function which might be
211 registered using `atexit'. This provides a mean for the
212 dynamic linker to call DT_FINI functions for shared libraries
213 that have been loaded before the code runs.
214
215 A value of 0 tells we have no such handler. */
216 regs->edx = 0;
b346ff46 217}
9edc5d79 218
9edc5d79 219#define ELF_NREG 17
c227f099 220typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
221
222/*
223 * Note that ELF_NREG should be 19 as there should be place for
224 * TRAPNO and ERR "registers" as well but linux doesn't dump
225 * those.
226 *
227 * See linux kernel: arch/x86/include/asm/elf.h
228 */
c227f099 229static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
9edc5d79
MW
230{
231 (*regs)[0] = env->regs[R_EBX];
232 (*regs)[1] = env->regs[R_ECX];
233 (*regs)[2] = env->regs[R_EDX];
234 (*regs)[3] = env->regs[R_ESI];
235 (*regs)[4] = env->regs[R_EDI];
236 (*regs)[5] = env->regs[R_EBP];
237 (*regs)[6] = env->regs[R_EAX];
238 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
239 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
240 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
241 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
242 (*regs)[11] = env->regs[R_EAX]; /* XXX */
243 (*regs)[12] = env->eip;
244 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
245 (*regs)[14] = env->eflags;
246 (*regs)[15] = env->regs[R_ESP];
247 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
248}
84409ddb 249#endif
b346ff46 250
9edc5d79 251#define USE_ELF_CORE_DUMP
b346ff46
FB
252#define ELF_EXEC_PAGESIZE 4096
253
254#endif
255
256#ifdef TARGET_ARM
257
258#define ELF_START_MMAP 0x80000000
259
260#define elf_check_arch(x) ( (x) == EM_ARM )
261
262#define ELF_CLASS ELFCLASS32
263#ifdef TARGET_WORDS_BIGENDIAN
264#define ELF_DATA ELFDATA2MSB
265#else
266#define ELF_DATA ELFDATA2LSB
267#endif
268#define ELF_ARCH EM_ARM
269
b346ff46
FB
270static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
271{
992f48a0 272 abi_long stack = infop->start_stack;
b346ff46
FB
273 memset(regs, 0, sizeof(*regs));
274 regs->ARM_cpsr = 0x10;
0240ded8
PB
275 if (infop->entry & 1)
276 regs->ARM_cpsr |= CPSR_T;
277 regs->ARM_pc = infop->entry & 0xfffffffe;
b346ff46 278 regs->ARM_sp = infop->start_stack;
2f619698
FB
279 /* FIXME - what to for failure of get_user()? */
280 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
281 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
a1516e92 282 /* XXX: it seems that r0 is zeroed after ! */
e5fe0c52
PB
283 regs->ARM_r0 = 0;
284 /* For uClinux PIC binaries. */
863cf0b7 285 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
e5fe0c52 286 regs->ARM_r10 = infop->start_data;
b346ff46
FB
287}
288
edf8e2af 289#define ELF_NREG 18
c227f099 290typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 291
c227f099 292static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
edf8e2af 293{
d049e626
NF
294 (*regs)[0] = tswapl(env->regs[0]);
295 (*regs)[1] = tswapl(env->regs[1]);
296 (*regs)[2] = tswapl(env->regs[2]);
297 (*regs)[3] = tswapl(env->regs[3]);
298 (*regs)[4] = tswapl(env->regs[4]);
299 (*regs)[5] = tswapl(env->regs[5]);
300 (*regs)[6] = tswapl(env->regs[6]);
301 (*regs)[7] = tswapl(env->regs[7]);
302 (*regs)[8] = tswapl(env->regs[8]);
303 (*regs)[9] = tswapl(env->regs[9]);
304 (*regs)[10] = tswapl(env->regs[10]);
305 (*regs)[11] = tswapl(env->regs[11]);
306 (*regs)[12] = tswapl(env->regs[12]);
307 (*regs)[13] = tswapl(env->regs[13]);
308 (*regs)[14] = tswapl(env->regs[14]);
309 (*regs)[15] = tswapl(env->regs[15]);
310
311 (*regs)[16] = tswapl(cpsr_read((CPUState *)env));
312 (*regs)[17] = tswapl(env->regs[0]); /* XXX */
edf8e2af
MW
313}
314
30ac07d4
FB
315#define USE_ELF_CORE_DUMP
316#define ELF_EXEC_PAGESIZE 4096
317
afce2927
FB
318enum
319{
320 ARM_HWCAP_ARM_SWP = 1 << 0,
321 ARM_HWCAP_ARM_HALF = 1 << 1,
322 ARM_HWCAP_ARM_THUMB = 1 << 2,
323 ARM_HWCAP_ARM_26BIT = 1 << 3,
324 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
325 ARM_HWCAP_ARM_FPA = 1 << 5,
326 ARM_HWCAP_ARM_VFP = 1 << 6,
327 ARM_HWCAP_ARM_EDSP = 1 << 7,
cf6de34a
RV
328 ARM_HWCAP_ARM_JAVA = 1 << 8,
329 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
330 ARM_HWCAP_ARM_THUMBEE = 1 << 10,
331 ARM_HWCAP_ARM_NEON = 1 << 11,
332 ARM_HWCAP_ARM_VFPv3 = 1 << 12,
333 ARM_HWCAP_ARM_VFPv3D16 = 1 << 13,
afce2927
FB
334};
335
15338fd7 336#define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \
afce2927 337 | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \
cf6de34a
RV
338 | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \
339 | ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 )
afce2927 340
30ac07d4
FB
341#endif
342
853d6f7a 343#ifdef TARGET_SPARC
a315a145 344#ifdef TARGET_SPARC64
853d6f7a
FB
345
346#define ELF_START_MMAP 0x80000000
347
992f48a0 348#ifndef TARGET_ABI32
cb33da57 349#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
350#else
351#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
352#endif
853d6f7a 353
a315a145
FB
354#define ELF_CLASS ELFCLASS64
355#define ELF_DATA ELFDATA2MSB
5ef54116
FB
356#define ELF_ARCH EM_SPARCV9
357
358#define STACK_BIAS 2047
a315a145 359
a315a145
FB
360static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
361{
992f48a0 362#ifndef TARGET_ABI32
a315a145 363 regs->tstate = 0;
992f48a0 364#endif
a315a145
FB
365 regs->pc = infop->entry;
366 regs->npc = regs->pc + 4;
367 regs->y = 0;
992f48a0
BS
368#ifdef TARGET_ABI32
369 regs->u_regs[14] = infop->start_stack - 16 * 4;
370#else
cb33da57
BS
371 if (personality(infop->personality) == PER_LINUX32)
372 regs->u_regs[14] = infop->start_stack - 16 * 4;
373 else
374 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 375#endif
a315a145
FB
376}
377
378#else
379#define ELF_START_MMAP 0x80000000
380
381#define elf_check_arch(x) ( (x) == EM_SPARC )
382
853d6f7a
FB
383#define ELF_CLASS ELFCLASS32
384#define ELF_DATA ELFDATA2MSB
385#define ELF_ARCH EM_SPARC
386
853d6f7a
FB
387static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
388{
f5155289
FB
389 regs->psr = 0;
390 regs->pc = infop->entry;
391 regs->npc = regs->pc + 4;
392 regs->y = 0;
393 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
394}
395
a315a145 396#endif
853d6f7a
FB
397#endif
398
67867308
FB
399#ifdef TARGET_PPC
400
401#define ELF_START_MMAP 0x80000000
402
e85e7c6e 403#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
404
405#define elf_check_arch(x) ( (x) == EM_PPC64 )
406
407#define ELF_CLASS ELFCLASS64
408
409#else
410
67867308
FB
411#define elf_check_arch(x) ( (x) == EM_PPC )
412
413#define ELF_CLASS ELFCLASS32
84409ddb
JM
414
415#endif
416
67867308
FB
417#ifdef TARGET_WORDS_BIGENDIAN
418#define ELF_DATA ELFDATA2MSB
419#else
420#define ELF_DATA ELFDATA2LSB
421#endif
422#define ELF_ARCH EM_PPC
423
df84e4f3
NF
424/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
425 See arch/powerpc/include/asm/cputable.h. */
426enum {
3efa9a67 427 QEMU_PPC_FEATURE_32 = 0x80000000,
428 QEMU_PPC_FEATURE_64 = 0x40000000,
429 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
430 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
431 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
432 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
433 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
434 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
435 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
436 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
437 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
438 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
439 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
440 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
441 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
442 QEMU_PPC_FEATURE_CELL = 0x00010000,
443 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
444 QEMU_PPC_FEATURE_SMT = 0x00004000,
445 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
446 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
447 QEMU_PPC_FEATURE_PA6T = 0x00000800,
448 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
449 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
450 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
451 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
452 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
453
454 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
455 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
df84e4f3
NF
456};
457
458#define ELF_HWCAP get_elf_hwcap()
459
460static uint32_t get_elf_hwcap(void)
461{
462 CPUState *e = thread_env;
463 uint32_t features = 0;
464
465 /* We don't have to be terribly complete here; the high points are
466 Altivec/FP/SPE support. Anything else is just a bonus. */
467#define GET_FEATURE(flag, feature) \
468 do {if (e->insns_flags & flag) features |= feature; } while(0)
3efa9a67 469 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
470 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
471 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
472 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
473 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
474 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
475 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
476 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
df84e4f3
NF
477#undef GET_FEATURE
478
479 return features;
480}
481
f5155289
FB
482/*
483 * We need to put in some extra aux table entries to tell glibc what
484 * the cache block size is, so it can use the dcbz instruction safely.
485 */
486#define AT_DCACHEBSIZE 19
487#define AT_ICACHEBSIZE 20
488#define AT_UCACHEBSIZE 21
489/* A special ignored type value for PPC, for glibc compatibility. */
490#define AT_IGNOREPPC 22
491/*
492 * The requirements here are:
493 * - keep the final alignment of sp (sp & 0xf)
494 * - make sure the 32-bit value at the first 16 byte aligned position of
495 * AUXV is greater than 16 for glibc compatibility.
496 * AT_IGNOREPPC is used for that.
497 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
498 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
499 */
0bccf03d 500#define DLINFO_ARCH_ITEMS 5
f5155289
FB
501#define ARCH_DLINFO \
502do { \
0bccf03d
FB
503 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
504 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
505 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
f5155289
FB
506 /* \
507 * Now handle glibc compatibility. \
508 */ \
0bccf03d
FB
509 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
510 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
f5155289
FB
511 } while (0)
512
67867308
FB
513static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
514{
67867308 515 _regs->gpr[1] = infop->start_stack;
e85e7c6e 516#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
7983f435
RL
517 _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_addr;
518 infop->entry = ldq_raw(infop->entry) + infop->load_addr;
84409ddb 519#endif
67867308
FB
520 _regs->nip = infop->entry;
521}
522
e2f3e741
NF
523/* See linux kernel: arch/powerpc/include/asm/elf.h. */
524#define ELF_NREG 48
525typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
526
527static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
528{
529 int i;
530 target_ulong ccr = 0;
531
532 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
533 (*regs)[i] = tswapl(env->gpr[i]);
534 }
535
536 (*regs)[32] = tswapl(env->nip);
537 (*regs)[33] = tswapl(env->msr);
538 (*regs)[35] = tswapl(env->ctr);
539 (*regs)[36] = tswapl(env->lr);
540 (*regs)[37] = tswapl(env->xer);
541
542 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
543 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
544 }
545 (*regs)[38] = tswapl(ccr);
546}
547
548#define USE_ELF_CORE_DUMP
67867308
FB
549#define ELF_EXEC_PAGESIZE 4096
550
551#endif
552
048f6b4d
FB
553#ifdef TARGET_MIPS
554
555#define ELF_START_MMAP 0x80000000
556
557#define elf_check_arch(x) ( (x) == EM_MIPS )
558
388bb21a
TS
559#ifdef TARGET_MIPS64
560#define ELF_CLASS ELFCLASS64
561#else
048f6b4d 562#define ELF_CLASS ELFCLASS32
388bb21a 563#endif
048f6b4d
FB
564#ifdef TARGET_WORDS_BIGENDIAN
565#define ELF_DATA ELFDATA2MSB
566#else
567#define ELF_DATA ELFDATA2LSB
568#endif
569#define ELF_ARCH EM_MIPS
570
048f6b4d
FB
571static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
572{
623a930e 573 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
574 regs->cp0_epc = infop->entry;
575 regs->regs[29] = infop->start_stack;
576}
577
51e52606
NF
578/* See linux kernel: arch/mips/include/asm/elf.h. */
579#define ELF_NREG 45
580typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
581
582/* See linux kernel: arch/mips/include/asm/reg.h. */
583enum {
584#ifdef TARGET_MIPS64
585 TARGET_EF_R0 = 0,
586#else
587 TARGET_EF_R0 = 6,
588#endif
589 TARGET_EF_R26 = TARGET_EF_R0 + 26,
590 TARGET_EF_R27 = TARGET_EF_R0 + 27,
591 TARGET_EF_LO = TARGET_EF_R0 + 32,
592 TARGET_EF_HI = TARGET_EF_R0 + 33,
593 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
594 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
595 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
596 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
597};
598
599/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
600static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
601{
602 int i;
603
604 for (i = 0; i < TARGET_EF_R0; i++) {
605 (*regs)[i] = 0;
606 }
607 (*regs)[TARGET_EF_R0] = 0;
608
609 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
610 (*regs)[TARGET_EF_R0 + i] = tswapl(env->active_tc.gpr[i]);
611 }
612
613 (*regs)[TARGET_EF_R26] = 0;
614 (*regs)[TARGET_EF_R27] = 0;
615 (*regs)[TARGET_EF_LO] = tswapl(env->active_tc.LO[0]);
616 (*regs)[TARGET_EF_HI] = tswapl(env->active_tc.HI[0]);
617 (*regs)[TARGET_EF_CP0_EPC] = tswapl(env->active_tc.PC);
618 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapl(env->CP0_BadVAddr);
619 (*regs)[TARGET_EF_CP0_STATUS] = tswapl(env->CP0_Status);
620 (*regs)[TARGET_EF_CP0_CAUSE] = tswapl(env->CP0_Cause);
621}
622
623#define USE_ELF_CORE_DUMP
388bb21a
TS
624#define ELF_EXEC_PAGESIZE 4096
625
048f6b4d
FB
626#endif /* TARGET_MIPS */
627
b779e29e
EI
628#ifdef TARGET_MICROBLAZE
629
630#define ELF_START_MMAP 0x80000000
631
0d5d4699 632#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
633
634#define ELF_CLASS ELFCLASS32
635#define ELF_DATA ELFDATA2MSB
0d5d4699 636#define ELF_ARCH EM_MICROBLAZE
b779e29e
EI
637
638static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
639{
640 regs->pc = infop->entry;
641 regs->r1 = infop->start_stack;
642
643}
644
b779e29e
EI
645#define ELF_EXEC_PAGESIZE 4096
646
e4cbd44d
EI
647#define USE_ELF_CORE_DUMP
648#define ELF_NREG 38
649typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
650
651/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
652static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
653{
654 int i, pos = 0;
655
656 for (i = 0; i < 32; i++) {
657 (*regs)[pos++] = tswapl(env->regs[i]);
658 }
659
660 for (i = 0; i < 6; i++) {
661 (*regs)[pos++] = tswapl(env->sregs[i]);
662 }
663}
664
b779e29e
EI
665#endif /* TARGET_MICROBLAZE */
666
fdf9b3e8
FB
667#ifdef TARGET_SH4
668
669#define ELF_START_MMAP 0x80000000
670
671#define elf_check_arch(x) ( (x) == EM_SH )
672
673#define ELF_CLASS ELFCLASS32
674#define ELF_DATA ELFDATA2LSB
675#define ELF_ARCH EM_SH
676
fdf9b3e8
FB
677static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
678{
679 /* Check other registers XXXXX */
680 regs->pc = infop->entry;
072ae847 681 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
682}
683
7631c97e
NF
684/* See linux kernel: arch/sh/include/asm/elf.h. */
685#define ELF_NREG 23
686typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
687
688/* See linux kernel: arch/sh/include/asm/ptrace.h. */
689enum {
690 TARGET_REG_PC = 16,
691 TARGET_REG_PR = 17,
692 TARGET_REG_SR = 18,
693 TARGET_REG_GBR = 19,
694 TARGET_REG_MACH = 20,
695 TARGET_REG_MACL = 21,
696 TARGET_REG_SYSCALL = 22
697};
698
699static inline void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
700{
701 int i;
702
703 for (i = 0; i < 16; i++) {
704 (*regs[i]) = tswapl(env->gregs[i]);
705 }
706
707 (*regs)[TARGET_REG_PC] = tswapl(env->pc);
708 (*regs)[TARGET_REG_PR] = tswapl(env->pr);
709 (*regs)[TARGET_REG_SR] = tswapl(env->sr);
710 (*regs)[TARGET_REG_GBR] = tswapl(env->gbr);
711 (*regs)[TARGET_REG_MACH] = tswapl(env->mach);
712 (*regs)[TARGET_REG_MACL] = tswapl(env->macl);
713 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
714}
715
716#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
717#define ELF_EXEC_PAGESIZE 4096
718
719#endif
720
48733d19
TS
721#ifdef TARGET_CRIS
722
723#define ELF_START_MMAP 0x80000000
724
725#define elf_check_arch(x) ( (x) == EM_CRIS )
726
727#define ELF_CLASS ELFCLASS32
728#define ELF_DATA ELFDATA2LSB
729#define ELF_ARCH EM_CRIS
730
731static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
732{
733 regs->erp = infop->entry;
734}
735
48733d19
TS
736#define ELF_EXEC_PAGESIZE 8192
737
738#endif
739
e6e5906b
PB
740#ifdef TARGET_M68K
741
742#define ELF_START_MMAP 0x80000000
743
744#define elf_check_arch(x) ( (x) == EM_68K )
745
746#define ELF_CLASS ELFCLASS32
747#define ELF_DATA ELFDATA2MSB
748#define ELF_ARCH EM_68K
749
750/* ??? Does this need to do anything?
751#define ELF_PLAT_INIT(_r) */
752
753static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
754{
755 regs->usp = infop->start_stack;
756 regs->sr = 0;
757 regs->pc = infop->entry;
758}
759
7a93cc55
NF
760/* See linux kernel: arch/m68k/include/asm/elf.h. */
761#define ELF_NREG 20
762typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
763
764static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
765{
766 (*regs)[0] = tswapl(env->dregs[1]);
767 (*regs)[1] = tswapl(env->dregs[2]);
768 (*regs)[2] = tswapl(env->dregs[3]);
769 (*regs)[3] = tswapl(env->dregs[4]);
770 (*regs)[4] = tswapl(env->dregs[5]);
771 (*regs)[5] = tswapl(env->dregs[6]);
772 (*regs)[6] = tswapl(env->dregs[7]);
773 (*regs)[7] = tswapl(env->aregs[0]);
774 (*regs)[8] = tswapl(env->aregs[1]);
775 (*regs)[9] = tswapl(env->aregs[2]);
776 (*regs)[10] = tswapl(env->aregs[3]);
777 (*regs)[11] = tswapl(env->aregs[4]);
778 (*regs)[12] = tswapl(env->aregs[5]);
779 (*regs)[13] = tswapl(env->aregs[6]);
780 (*regs)[14] = tswapl(env->dregs[0]);
781 (*regs)[15] = tswapl(env->aregs[7]);
782 (*regs)[16] = tswapl(env->dregs[0]); /* FIXME: orig_d0 */
783 (*regs)[17] = tswapl(env->sr);
784 (*regs)[18] = tswapl(env->pc);
785 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
786}
787
788#define USE_ELF_CORE_DUMP
e6e5906b
PB
789#define ELF_EXEC_PAGESIZE 8192
790
791#endif
792
7a3148a9
JM
793#ifdef TARGET_ALPHA
794
795#define ELF_START_MMAP (0x30000000000ULL)
796
797#define elf_check_arch(x) ( (x) == ELF_ARCH )
798
799#define ELF_CLASS ELFCLASS64
800#define ELF_DATA ELFDATA2MSB
801#define ELF_ARCH EM_ALPHA
802
803static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
804{
805 regs->pc = infop->entry;
806 regs->ps = 8;
807 regs->usp = infop->start_stack;
7a3148a9
JM
808}
809
7a3148a9
JM
810#define ELF_EXEC_PAGESIZE 8192
811
812#endif /* TARGET_ALPHA */
813
15338fd7
FB
814#ifndef ELF_PLATFORM
815#define ELF_PLATFORM (NULL)
816#endif
817
818#ifndef ELF_HWCAP
819#define ELF_HWCAP 0
820#endif
821
992f48a0 822#ifdef TARGET_ABI32
cb33da57 823#undef ELF_CLASS
992f48a0 824#define ELF_CLASS ELFCLASS32
cb33da57
BS
825#undef bswaptls
826#define bswaptls(ptr) bswap32s(ptr)
827#endif
828
31e31b8a 829#include "elf.h"
09bfb054 830
09bfb054
FB
831struct exec
832{
833 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
834 unsigned int a_text; /* length of text, in bytes */
835 unsigned int a_data; /* length of data, in bytes */
836 unsigned int a_bss; /* length of uninitialized data area, in bytes */
837 unsigned int a_syms; /* length of symbol table data in file, in bytes */
838 unsigned int a_entry; /* start address */
839 unsigned int a_trsize; /* length of relocation info for text, in bytes */
840 unsigned int a_drsize; /* length of relocation info for data, in bytes */
841};
842
843
844#define N_MAGIC(exec) ((exec).a_info & 0xffff)
845#define OMAGIC 0407
846#define NMAGIC 0410
847#define ZMAGIC 0413
848#define QMAGIC 0314
849
09bfb054
FB
850/* max code+data+bss space allocated to elf interpreter */
851#define INTERP_MAP_SIZE (32 * 1024 * 1024)
852
853/* max code+data+bss+brk space allocated to ET_DYN executables */
854#define ET_DYN_MAP_SIZE (128 * 1024 * 1024)
855
31e31b8a 856/* Necessary parameters */
54936004
FB
857#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
858#define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
859#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a
FB
860
861#define INTERPRETER_NONE 0
862#define INTERPRETER_AOUT 1
863#define INTERPRETER_ELF 2
864
15338fd7 865#define DLINFO_ITEMS 12
31e31b8a 866
09bfb054
FB
867static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
868{
869 memcpy(to, from, n);
870}
d691f669 871
31e31b8a
FB
872static int load_aout_interp(void * exptr, int interp_fd);
873
874#ifdef BSWAP_NEEDED
92a31b1f 875static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a
FB
876{
877 bswap16s(&ehdr->e_type); /* Object file type */
878 bswap16s(&ehdr->e_machine); /* Architecture */
879 bswap32s(&ehdr->e_version); /* Object file version */
92a31b1f
FB
880 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
881 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
882 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
31e31b8a
FB
883 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
884 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
885 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
886 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
887 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
888 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
889 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
890}
891
92a31b1f 892static void bswap_phdr(struct elf_phdr *phdr)
31e31b8a
FB
893{
894 bswap32s(&phdr->p_type); /* Segment type */
92a31b1f
FB
895 bswaptls(&phdr->p_offset); /* Segment file offset */
896 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
897 bswaptls(&phdr->p_paddr); /* Segment physical address */
898 bswaptls(&phdr->p_filesz); /* Segment size in file */
899 bswaptls(&phdr->p_memsz); /* Segment size in memory */
31e31b8a 900 bswap32s(&phdr->p_flags); /* Segment flags */
92a31b1f 901 bswaptls(&phdr->p_align); /* Segment alignment */
31e31b8a 902}
689f936f 903
92a31b1f 904static void bswap_shdr(struct elf_shdr *shdr)
689f936f
FB
905{
906 bswap32s(&shdr->sh_name);
907 bswap32s(&shdr->sh_type);
92a31b1f
FB
908 bswaptls(&shdr->sh_flags);
909 bswaptls(&shdr->sh_addr);
910 bswaptls(&shdr->sh_offset);
911 bswaptls(&shdr->sh_size);
689f936f
FB
912 bswap32s(&shdr->sh_link);
913 bswap32s(&shdr->sh_info);
92a31b1f
FB
914 bswaptls(&shdr->sh_addralign);
915 bswaptls(&shdr->sh_entsize);
689f936f
FB
916}
917
7a3148a9 918static void bswap_sym(struct elf_sym *sym)
689f936f
FB
919{
920 bswap32s(&sym->st_name);
7a3148a9
JM
921 bswaptls(&sym->st_value);
922 bswaptls(&sym->st_size);
689f936f
FB
923 bswap16s(&sym->st_shndx);
924}
31e31b8a
FB
925#endif
926
edf8e2af
MW
927#ifdef USE_ELF_CORE_DUMP
928static int elf_core_dump(int, const CPUState *);
929
930#ifdef BSWAP_NEEDED
931static void bswap_note(struct elf_note *en)
932{
9fdca5aa 933 bswap32s(&en->n_namesz);
934 bswap32s(&en->n_descsz);
935 bswap32s(&en->n_type);
edf8e2af
MW
936}
937#endif /* BSWAP_NEEDED */
938
939#endif /* USE_ELF_CORE_DUMP */
940
31e31b8a 941/*
e5fe0c52 942 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
943 * memory to free pages in kernel mem. These are in a format ready
944 * to be put directly into the top of new user memory.
945 *
946 */
992f48a0
BS
947static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
948 abi_ulong p)
31e31b8a
FB
949{
950 char *tmp, *tmp1, *pag = NULL;
951 int len, offset = 0;
952
953 if (!p) {
954 return 0; /* bullet-proofing */
955 }
956 while (argc-- > 0) {
edf779ff
FB
957 tmp = argv[argc];
958 if (!tmp) {
31e31b8a
FB
959 fprintf(stderr, "VFS: argc is wrong");
960 exit(-1);
961 }
edf779ff
FB
962 tmp1 = tmp;
963 while (*tmp++);
31e31b8a
FB
964 len = tmp - tmp1;
965 if (p < len) { /* this shouldn't happen - 128kB */
966 return 0;
967 }
968 while (len) {
969 --p; --tmp; --len;
970 if (--offset < 0) {
54936004 971 offset = p % TARGET_PAGE_SIZE;
53a5960a 972 pag = (char *)page[p/TARGET_PAGE_SIZE];
44a91cae 973 if (!pag) {
53a5960a 974 pag = (char *)malloc(TARGET_PAGE_SIZE);
4118a970 975 memset(pag, 0, TARGET_PAGE_SIZE);
53a5960a 976 page[p/TARGET_PAGE_SIZE] = pag;
44a91cae
FB
977 if (!pag)
978 return 0;
31e31b8a
FB
979 }
980 }
981 if (len == 0 || offset == 0) {
edf779ff 982 *(pag + offset) = *tmp;
31e31b8a
FB
983 }
984 else {
985 int bytes_to_copy = (len > offset) ? offset : len;
986 tmp -= bytes_to_copy;
987 p -= bytes_to_copy;
988 offset -= bytes_to_copy;
989 len -= bytes_to_copy;
990 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
991 }
992 }
993 }
994 return p;
995}
996
992f48a0
BS
997static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
998 struct image_info *info)
53a5960a 999{
992f48a0 1000 abi_ulong stack_base, size, error;
31e31b8a 1001 int i;
31e31b8a 1002
09bfb054
FB
1003 /* Create enough stack to hold everything. If we don't use
1004 * it for args, we'll use it for something else...
1005 */
703e0e89 1006 size = guest_stack_size;
54936004
FB
1007 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE)
1008 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
5fafdf24 1009 error = target_mmap(0,
83fb7adf 1010 size + qemu_host_page_size,
54936004
FB
1011 PROT_READ | PROT_WRITE,
1012 MAP_PRIVATE | MAP_ANONYMOUS,
1013 -1, 0);
09bfb054
FB
1014 if (error == -1) {
1015 perror("stk mmap");
1016 exit(-1);
1017 }
1018 /* we reserve one extra page at the top of the stack as guard */
83fb7adf 1019 target_mprotect(error + size, qemu_host_page_size, PROT_NONE);
31e31b8a 1020
97374d38 1021 info->stack_limit = error;
54936004 1022 stack_base = error + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
31e31b8a 1023 p += stack_base;
09bfb054 1024
31e31b8a
FB
1025 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1026 if (bprm->page[i]) {
1027 info->rss++;
579a97f7 1028 /* FIXME - check return value of memcpy_to_target() for failure */
53a5960a
PB
1029 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
1030 free(bprm->page[i]);
31e31b8a 1031 }
53a5960a 1032 stack_base += TARGET_PAGE_SIZE;
31e31b8a
FB
1033 }
1034 return p;
1035}
1036
992f48a0 1037static void set_brk(abi_ulong start, abi_ulong end)
31e31b8a
FB
1038{
1039 /* page-align the start and end addresses... */
54936004
FB
1040 start = HOST_PAGE_ALIGN(start);
1041 end = HOST_PAGE_ALIGN(end);
31e31b8a
FB
1042 if (end <= start)
1043 return;
54936004
FB
1044 if(target_mmap(start, end - start,
1045 PROT_READ | PROT_WRITE | PROT_EXEC,
1046 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0) == -1) {
31e31b8a
FB
1047 perror("cannot mmap brk");
1048 exit(-1);
1049 }
1050}
1051
1052
853d6f7a
FB
1053/* We need to explicitly zero any fractional pages after the data
1054 section (i.e. bss). This would contain the junk from the file that
1055 should not be in memory. */
992f48a0 1056static void padzero(abi_ulong elf_bss, abi_ulong last_bss)
31e31b8a 1057{
992f48a0 1058 abi_ulong nbyte;
31e31b8a 1059
768a4a36
TS
1060 if (elf_bss >= last_bss)
1061 return;
1062
853d6f7a
FB
1063 /* XXX: this is really a hack : if the real host page size is
1064 smaller than the target page size, some pages after the end
1065 of the file may not be mapped. A better fix would be to
1066 patch target_mmap(), but it is more complicated as the file
1067 size must be known */
83fb7adf 1068 if (qemu_real_host_page_size < qemu_host_page_size) {
992f48a0 1069 abi_ulong end_addr, end_addr1;
5fafdf24 1070 end_addr1 = (elf_bss + qemu_real_host_page_size - 1) &
83fb7adf 1071 ~(qemu_real_host_page_size - 1);
853d6f7a
FB
1072 end_addr = HOST_PAGE_ALIGN(elf_bss);
1073 if (end_addr1 < end_addr) {
863cf0b7 1074 mmap((void *)g2h(end_addr1), end_addr - end_addr1,
853d6f7a
FB
1075 PROT_READ|PROT_WRITE|PROT_EXEC,
1076 MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1077 }
1078 }
1079
83fb7adf 1080 nbyte = elf_bss & (qemu_host_page_size-1);
31e31b8a 1081 if (nbyte) {
83fb7adf 1082 nbyte = qemu_host_page_size - nbyte;
31e31b8a 1083 do {
2f619698
FB
1084 /* FIXME - what to do if put_user() fails? */
1085 put_user_u8(0, elf_bss);
53a5960a 1086 elf_bss++;
31e31b8a
FB
1087 } while (--nbyte);
1088 }
1089}
1090
53a5960a 1091
992f48a0
BS
1092static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1093 struct elfhdr * exec,
1094 abi_ulong load_addr,
1095 abi_ulong load_bias,
1096 abi_ulong interp_load_addr, int ibcs,
1097 struct image_info *info)
31e31b8a 1098{
992f48a0 1099 abi_ulong sp;
53a5960a 1100 int size;
992f48a0 1101 abi_ulong u_platform;
15338fd7 1102 const char *k_platform;
863cf0b7 1103 const int n = sizeof(elf_addr_t);
edf779ff 1104
53a5960a
PB
1105 sp = p;
1106 u_platform = 0;
15338fd7
FB
1107 k_platform = ELF_PLATFORM;
1108 if (k_platform) {
1109 size_t len = strlen(k_platform) + 1;
53a5960a
PB
1110 sp -= (len + n - 1) & ~(n - 1);
1111 u_platform = sp;
579a97f7 1112 /* FIXME - check return value of memcpy_to_target() for failure */
53a5960a 1113 memcpy_to_target(sp, k_platform, len);
15338fd7 1114 }
53a5960a
PB
1115 /*
1116 * Force 16 byte _final_ alignment here for generality.
1117 */
992f48a0 1118 sp = sp &~ (abi_ulong)15;
53a5960a 1119 size = (DLINFO_ITEMS + 1) * 2;
15338fd7 1120 if (k_platform)
53a5960a 1121 size += 2;
f5155289 1122#ifdef DLINFO_ARCH_ITEMS
53a5960a 1123 size += DLINFO_ARCH_ITEMS * 2;
f5155289 1124#endif
53a5960a
PB
1125 size += envc + argc + 2;
1126 size += (!ibcs ? 3 : 1); /* argc itself */
1127 size *= n;
1128 if (size & 15)
1129 sp -= 16 - (size & 15);
3b46e624 1130
863cf0b7
JM
1131 /* This is correct because Linux defines
1132 * elf_addr_t as Elf32_Off / Elf64_Off
1133 */
2f619698
FB
1134#define NEW_AUX_ENT(id, val) do { \
1135 sp -= n; put_user_ual(val, sp); \
1136 sp -= n; put_user_ual(id, sp); \
53a5960a 1137 } while(0)
2f619698 1138
0bccf03d
FB
1139 NEW_AUX_ENT (AT_NULL, 0);
1140
1141 /* There must be exactly DLINFO_ITEMS entries here. */
992f48a0
BS
1142 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(load_addr + exec->e_phoff));
1143 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1144 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1145 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1146 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_load_addr));
1147 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
0bccf03d 1148 NEW_AUX_ENT(AT_ENTRY, load_bias + exec->e_entry);
992f48a0
BS
1149 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1150 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1151 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1152 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1153 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
a07c67df 1154 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
15338fd7 1155 if (k_platform)
53a5960a 1156 NEW_AUX_ENT(AT_PLATFORM, u_platform);
f5155289 1157#ifdef ARCH_DLINFO
5fafdf24 1158 /*
f5155289
FB
1159 * ARCH_DLINFO must come last so platform specific code can enforce
1160 * special alignment requirements on the AUXV if necessary (eg. PPC).
1161 */
1162 ARCH_DLINFO;
1163#endif
1164#undef NEW_AUX_ENT
1165
edf8e2af
MW
1166 info->saved_auxv = sp;
1167
e5fe0c52 1168 sp = loader_build_argptr(envc, argc, sp, p, !ibcs);
31e31b8a
FB
1169 return sp;
1170}
1171
1172
992f48a0
BS
1173static abi_ulong load_elf_interp(struct elfhdr * interp_elf_ex,
1174 int interpreter_fd,
1175 abi_ulong *interp_load_addr)
31e31b8a
FB
1176{
1177 struct elf_phdr *elf_phdata = NULL;
1178 struct elf_phdr *eppnt;
992f48a0 1179 abi_ulong load_addr = 0;
31e31b8a
FB
1180 int load_addr_set = 0;
1181 int retval;
992f48a0
BS
1182 abi_ulong last_bss, elf_bss;
1183 abi_ulong error;
31e31b8a 1184 int i;
5fafdf24 1185
31e31b8a
FB
1186 elf_bss = 0;
1187 last_bss = 0;
1188 error = 0;
1189
644c433c
FB
1190#ifdef BSWAP_NEEDED
1191 bswap_ehdr(interp_elf_ex);
1192#endif
31e31b8a 1193 /* First of all, some simple consistency checks */
5fafdf24
TS
1194 if ((interp_elf_ex->e_type != ET_EXEC &&
1195 interp_elf_ex->e_type != ET_DYN) ||
31e31b8a 1196 !elf_check_arch(interp_elf_ex->e_machine)) {
992f48a0 1197 return ~((abi_ulong)0UL);
31e31b8a 1198 }
5fafdf24 1199
644c433c 1200
31e31b8a 1201 /* Now read in all of the header information */
5fafdf24 1202
54936004 1203 if (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > TARGET_PAGE_SIZE)
992f48a0 1204 return ~(abi_ulong)0UL;
5fafdf24
TS
1205
1206 elf_phdata = (struct elf_phdr *)
31e31b8a
FB
1207 malloc(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
1208
1209 if (!elf_phdata)
992f48a0 1210 return ~((abi_ulong)0UL);
5fafdf24 1211
31e31b8a
FB
1212 /*
1213 * If the size of this structure has changed, then punt, since
1214 * we will be doing the wrong thing.
1215 */
09bfb054 1216 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) {
31e31b8a 1217 free(elf_phdata);
992f48a0 1218 return ~((abi_ulong)0UL);
09bfb054 1219 }
31e31b8a
FB
1220
1221 retval = lseek(interpreter_fd, interp_elf_ex->e_phoff, SEEK_SET);
1222 if(retval >= 0) {
1223 retval = read(interpreter_fd,
1224 (char *) elf_phdata,
1225 sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
1226 }
31e31b8a
FB
1227 if (retval < 0) {
1228 perror("load_elf_interp");
1229 exit(-1);
1230 free (elf_phdata);
1231 return retval;
1232 }
1233#ifdef BSWAP_NEEDED
1234 eppnt = elf_phdata;
1235 for (i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) {
1236 bswap_phdr(eppnt);
1237 }
1238#endif
09bfb054
FB
1239
1240 if (interp_elf_ex->e_type == ET_DYN) {
e91c8a77 1241 /* in order to avoid hardcoding the interpreter load
09bfb054 1242 address in qemu, we allocate a big enough memory zone */
54936004 1243 error = target_mmap(0, INTERP_MAP_SIZE,
5fafdf24 1244 PROT_NONE, MAP_PRIVATE | MAP_ANON,
54936004 1245 -1, 0);
09bfb054
FB
1246 if (error == -1) {
1247 perror("mmap");
1248 exit(-1);
1249 }
1250 load_addr = error;
1251 load_addr_set = 1;
1252 }
1253
31e31b8a
FB
1254 eppnt = elf_phdata;
1255 for(i=0; i<interp_elf_ex->e_phnum; i++, eppnt++)
1256 if (eppnt->p_type == PT_LOAD) {
1257 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
1258 int elf_prot = 0;
992f48a0
BS
1259 abi_ulong vaddr = 0;
1260 abi_ulong k;
31e31b8a
FB
1261
1262 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1263 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1264 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1265 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) {
1266 elf_type |= MAP_FIXED;
1267 vaddr = eppnt->p_vaddr;
1268 }
54936004
FB
1269 error = target_mmap(load_addr+TARGET_ELF_PAGESTART(vaddr),
1270 eppnt->p_filesz + TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr),
31e31b8a
FB
1271 elf_prot,
1272 elf_type,
1273 interpreter_fd,
54936004 1274 eppnt->p_offset - TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr));
3b46e624 1275
e89f07d3 1276 if (error == -1) {
31e31b8a
FB
1277 /* Real error */
1278 close(interpreter_fd);
1279 free(elf_phdata);
992f48a0 1280 return ~((abi_ulong)0UL);
31e31b8a
FB
1281 }
1282
1283 if (!load_addr_set && interp_elf_ex->e_type == ET_DYN) {
1284 load_addr = error;
1285 load_addr_set = 1;
1286 }
1287
1288 /*
1289 * Find the end of the file mapping for this phdr, and keep
1290 * track of the largest address we see for this.
1291 */
1292 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
1293 if (k > elf_bss) elf_bss = k;
1294
1295 /*
1296 * Do the same thing for the memory mapping - between
1297 * elf_bss and last_bss is the bss section.
1298 */
1299 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
1300 if (k > last_bss) last_bss = k;
1301 }
5fafdf24 1302
31e31b8a
FB
1303 /* Now use mmap to map the library into memory. */
1304
1305 close(interpreter_fd);
1306
1307 /*
1308 * Now fill out the bss section. First pad the last page up
1309 * to the page boundary, and then perform a mmap to make sure
1310 * that there are zeromapped pages up to and including the last
1311 * bss page.
1312 */
768a4a36 1313 padzero(elf_bss, last_bss);
83fb7adf 1314 elf_bss = TARGET_ELF_PAGESTART(elf_bss + qemu_host_page_size - 1); /* What we have mapped so far */
31e31b8a
FB
1315
1316 /* Map the last of the bss segment */
1317 if (last_bss > elf_bss) {
54936004
FB
1318 target_mmap(elf_bss, last_bss-elf_bss,
1319 PROT_READ|PROT_WRITE|PROT_EXEC,
1320 MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
31e31b8a
FB
1321 }
1322 free(elf_phdata);
1323
1324 *interp_load_addr = load_addr;
992f48a0 1325 return ((abi_ulong) interp_elf_ex->e_entry) + load_addr;
31e31b8a
FB
1326}
1327
49918a75
PB
1328static int symfind(const void *s0, const void *s1)
1329{
1330 struct elf_sym *key = (struct elf_sym *)s0;
1331 struct elf_sym *sym = (struct elf_sym *)s1;
1332 int result = 0;
1333 if (key->st_value < sym->st_value) {
1334 result = -1;
ec822001 1335 } else if (key->st_value >= sym->st_value + sym->st_size) {
49918a75
PB
1336 result = 1;
1337 }
1338 return result;
1339}
1340
1341static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
1342{
1343#if ELF_CLASS == ELFCLASS32
1344 struct elf_sym *syms = s->disas_symtab.elf32;
1345#else
1346 struct elf_sym *syms = s->disas_symtab.elf64;
1347#endif
1348
1349 // binary search
1350 struct elf_sym key;
1351 struct elf_sym *sym;
1352
1353 key.st_value = orig_addr;
1354
1355 sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 1356 if (sym != NULL) {
49918a75
PB
1357 return s->disas_strtab + sym->st_name;
1358 }
1359
1360 return "";
1361}
1362
1363/* FIXME: This should use elf_ops.h */
1364static int symcmp(const void *s0, const void *s1)
1365{
1366 struct elf_sym *sym0 = (struct elf_sym *)s0;
1367 struct elf_sym *sym1 = (struct elf_sym *)s1;
1368 return (sym0->st_value < sym1->st_value)
1369 ? -1
1370 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
1371}
1372
689f936f
FB
1373/* Best attempt to load symbols from this ELF object. */
1374static void load_symbols(struct elfhdr *hdr, int fd)
1375{
49918a75 1376 unsigned int i, nsyms;
689f936f
FB
1377 struct elf_shdr sechdr, symtab, strtab;
1378 char *strings;
e80cfcfc 1379 struct syminfo *s;
49918a75 1380 struct elf_sym *syms;
689f936f
FB
1381
1382 lseek(fd, hdr->e_shoff, SEEK_SET);
1383 for (i = 0; i < hdr->e_shnum; i++) {
49918a75
PB
1384 if (read(fd, &sechdr, sizeof(sechdr)) != sizeof(sechdr))
1385 return;
689f936f 1386#ifdef BSWAP_NEEDED
49918a75 1387 bswap_shdr(&sechdr);
689f936f 1388#endif
49918a75
PB
1389 if (sechdr.sh_type == SHT_SYMTAB) {
1390 symtab = sechdr;
1391 lseek(fd, hdr->e_shoff
1392 + sizeof(sechdr) * sechdr.sh_link, SEEK_SET);
1393 if (read(fd, &strtab, sizeof(strtab))
1394 != sizeof(strtab))
1395 return;
689f936f 1396#ifdef BSWAP_NEEDED
49918a75 1397 bswap_shdr(&strtab);
689f936f 1398#endif
49918a75
PB
1399 goto found;
1400 }
689f936f
FB
1401 }
1402 return; /* Shouldn't happen... */
1403
1404 found:
1405 /* Now know where the strtab and symtab are. Snarf them. */
e80cfcfc 1406 s = malloc(sizeof(*s));
49918a75
PB
1407 syms = malloc(symtab.sh_size);
1408 if (!syms)
1409 return;
e80cfcfc 1410 s->disas_strtab = strings = malloc(strtab.sh_size);
49918a75
PB
1411 if (!s->disas_strtab)
1412 return;
5fafdf24 1413
689f936f 1414 lseek(fd, symtab.sh_offset, SEEK_SET);
49918a75
PB
1415 if (read(fd, syms, symtab.sh_size) != symtab.sh_size)
1416 return;
1417
1418 nsyms = symtab.sh_size / sizeof(struct elf_sym);
31e31b8a 1419
49918a75
PB
1420 i = 0;
1421 while (i < nsyms) {
689f936f 1422#ifdef BSWAP_NEEDED
49918a75 1423 bswap_sym(syms + i);
689f936f 1424#endif
49918a75
PB
1425 // Throw away entries which we do not need.
1426 if (syms[i].st_shndx == SHN_UNDEF ||
1427 syms[i].st_shndx >= SHN_LORESERVE ||
1428 ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
1429 nsyms--;
1430 if (i < nsyms) {
1431 syms[i] = syms[nsyms];
1432 }
1433 continue;
1434 }
1435#if defined(TARGET_ARM) || defined (TARGET_MIPS)
1436 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
1437 syms[i].st_value &= ~(target_ulong)1;
0774bed1 1438#endif
49918a75 1439 i++;
0774bed1 1440 }
49918a75
PB
1441 syms = realloc(syms, nsyms * sizeof(*syms));
1442
1443 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f
FB
1444
1445 lseek(fd, strtab.sh_offset, SEEK_SET);
1446 if (read(fd, strings, strtab.sh_size) != strtab.sh_size)
49918a75
PB
1447 return;
1448 s->disas_num_syms = nsyms;
1449#if ELF_CLASS == ELFCLASS32
1450 s->disas_symtab.elf32 = syms;
9f9f0309 1451 s->lookup_symbol = lookup_symbolxx;
49918a75
PB
1452#else
1453 s->disas_symtab.elf64 = syms;
9f9f0309 1454 s->lookup_symbol = lookup_symbolxx;
49918a75 1455#endif
e80cfcfc
FB
1456 s->next = syminfos;
1457 syminfos = s;
689f936f 1458}
31e31b8a 1459
e5fe0c52
PB
1460int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
1461 struct image_info * info)
31e31b8a
FB
1462{
1463 struct elfhdr elf_ex;
1464 struct elfhdr interp_elf_ex;
1465 struct exec interp_ex;
1466 int interpreter_fd = -1; /* avoid warning */
992f48a0 1467 abi_ulong load_addr, load_bias;
31e31b8a
FB
1468 int load_addr_set = 0;
1469 unsigned int interpreter_type = INTERPRETER_NONE;
1470 unsigned char ibcs2_interpreter;
1471 int i;
992f48a0 1472 abi_ulong mapped_addr;
31e31b8a
FB
1473 struct elf_phdr * elf_ppnt;
1474 struct elf_phdr *elf_phdata;
992f48a0 1475 abi_ulong elf_bss, k, elf_brk;
31e31b8a
FB
1476 int retval;
1477 char * elf_interpreter;
992f48a0 1478 abi_ulong elf_entry, interp_load_addr = 0;
31e31b8a 1479 int status;
992f48a0
BS
1480 abi_ulong start_code, end_code, start_data, end_data;
1481 abi_ulong reloc_func_desc = 0;
1482 abi_ulong elf_stack;
31e31b8a
FB
1483 char passed_fileno[6];
1484
1485 ibcs2_interpreter = 0;
1486 status = 0;
1487 load_addr = 0;
09bfb054 1488 load_bias = 0;
31e31b8a
FB
1489 elf_ex = *((struct elfhdr *) bprm->buf); /* exec-header */
1490#ifdef BSWAP_NEEDED
1491 bswap_ehdr(&elf_ex);
1492#endif
1493
31e31b8a
FB
1494 /* First of all, some simple consistency checks */
1495 if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) ||
1496 (! elf_check_arch(elf_ex.e_machine))) {
1497 return -ENOEXEC;
1498 }
1499
e5fe0c52
PB
1500 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
1501 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
1502 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
1503 if (!bprm->p) {
1504 retval = -E2BIG;
1505 }
1506
31e31b8a 1507 /* Now read in all of the header information */
31e31b8a
FB
1508 elf_phdata = (struct elf_phdr *)malloc(elf_ex.e_phentsize*elf_ex.e_phnum);
1509 if (elf_phdata == NULL) {
1510 return -ENOMEM;
1511 }
1512
1513 retval = lseek(bprm->fd, elf_ex.e_phoff, SEEK_SET);
1514 if(retval > 0) {
5fafdf24 1515 retval = read(bprm->fd, (char *) elf_phdata,
31e31b8a
FB
1516 elf_ex.e_phentsize * elf_ex.e_phnum);
1517 }
1518
1519 if (retval < 0) {
1520 perror("load_elf_binary");
1521 exit(-1);
1522 free (elf_phdata);
1523 return -errno;
1524 }
1525
b17780d5
FB
1526#ifdef BSWAP_NEEDED
1527 elf_ppnt = elf_phdata;
1528 for (i=0; i<elf_ex.e_phnum; i++, elf_ppnt++) {
1529 bswap_phdr(elf_ppnt);
1530 }
1531#endif
31e31b8a
FB
1532 elf_ppnt = elf_phdata;
1533
1534 elf_bss = 0;
1535 elf_brk = 0;
1536
1537
992f48a0 1538 elf_stack = ~((abi_ulong)0UL);
31e31b8a 1539 elf_interpreter = NULL;
992f48a0 1540 start_code = ~((abi_ulong)0UL);
31e31b8a 1541 end_code = 0;
863cf0b7 1542 start_data = 0;
31e31b8a 1543 end_data = 0;
98448f58 1544 interp_ex.a_info = 0;
31e31b8a
FB
1545
1546 for(i=0;i < elf_ex.e_phnum; i++) {
1547 if (elf_ppnt->p_type == PT_INTERP) {
1548 if ( elf_interpreter != NULL )
1549 {
1550 free (elf_phdata);
1551 free(elf_interpreter);
1552 close(bprm->fd);
1553 return -EINVAL;
1554 }
1555
1556 /* This is the program interpreter used for
1557 * shared libraries - for now assume that this
1558 * is an a.out format binary
1559 */
1560
32ce6337 1561 elf_interpreter = (char *)malloc(elf_ppnt->p_filesz);
31e31b8a
FB
1562
1563 if (elf_interpreter == NULL) {
1564 free (elf_phdata);
1565 close(bprm->fd);
1566 return -ENOMEM;
1567 }
1568
31e31b8a
FB
1569 retval = lseek(bprm->fd, elf_ppnt->p_offset, SEEK_SET);
1570 if(retval >= 0) {
32ce6337 1571 retval = read(bprm->fd, elf_interpreter, elf_ppnt->p_filesz);
31e31b8a
FB
1572 }
1573 if(retval < 0) {
1574 perror("load_elf_binary2");
1575 exit(-1);
5fafdf24 1576 }
31e31b8a
FB
1577
1578 /* If the program interpreter is one of these two,
1579 then assume an iBCS2 image. Otherwise assume
1580 a native linux image. */
1581
1582 /* JRP - Need to add X86 lib dir stuff here... */
1583
1584 if (strcmp(elf_interpreter,"/usr/lib/libc.so.1") == 0 ||
1585 strcmp(elf_interpreter,"/usr/lib/ld.so.1") == 0) {
1586 ibcs2_interpreter = 1;
1587 }
1588
1589#if 0
3bc0bdca 1590 printf("Using ELF interpreter %s\n", path(elf_interpreter));
31e31b8a
FB
1591#endif
1592 if (retval >= 0) {
32ce6337 1593 retval = open(path(elf_interpreter), O_RDONLY);
31e31b8a
FB
1594 if(retval >= 0) {
1595 interpreter_fd = retval;
1596 }
1597 else {
1598 perror(elf_interpreter);
1599 exit(-1);
1600 /* retval = -errno; */
1601 }
1602 }
1603
1604 if (retval >= 0) {
1605 retval = lseek(interpreter_fd, 0, SEEK_SET);
1606 if(retval >= 0) {
1607 retval = read(interpreter_fd,bprm->buf,128);
1608 }
1609 }
1610 if (retval >= 0) {
1611 interp_ex = *((struct exec *) bprm->buf); /* aout exec-header */
6ece4df6 1612 interp_elf_ex = *((struct elfhdr *) bprm->buf); /* elf exec-header */
31e31b8a
FB
1613 }
1614 if (retval < 0) {
1615 perror("load_elf_binary3");
1616 exit(-1);
1617 free (elf_phdata);
1618 free(elf_interpreter);
1619 close(bprm->fd);
1620 return retval;
1621 }
1622 }
1623 elf_ppnt++;
1624 }
1625
1626 /* Some simple consistency checks for the interpreter */
1627 if (elf_interpreter){
1628 interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT;
1629
1630 /* Now figure out which format our binary is */
1631 if ((N_MAGIC(interp_ex) != OMAGIC) && (N_MAGIC(interp_ex) != ZMAGIC) &&
1632 (N_MAGIC(interp_ex) != QMAGIC)) {
1633 interpreter_type = INTERPRETER_ELF;
1634 }
1635
1636 if (interp_elf_ex.e_ident[0] != 0x7f ||
b55266b5 1637 strncmp((char *)&interp_elf_ex.e_ident[1], "ELF",3) != 0) {
31e31b8a
FB
1638 interpreter_type &= ~INTERPRETER_ELF;
1639 }
1640
1641 if (!interpreter_type) {
1642 free(elf_interpreter);
1643 free(elf_phdata);
1644 close(bprm->fd);
1645 return -ELIBBAD;
1646 }
1647 }
1648
1649 /* OK, we are done with that, now set up the arg stuff,
1650 and then start this sucker up */
1651
e5fe0c52 1652 {
31e31b8a
FB
1653 char * passed_p;
1654
1655 if (interpreter_type == INTERPRETER_AOUT) {
eba2af63 1656 snprintf(passed_fileno, sizeof(passed_fileno), "%d", bprm->fd);
31e31b8a
FB
1657 passed_p = passed_fileno;
1658
1659 if (elf_interpreter) {
e5fe0c52 1660 bprm->p = copy_elf_strings(1,&passed_p,bprm->page,bprm->p);
31e31b8a
FB
1661 bprm->argc++;
1662 }
1663 }
1664 if (!bprm->p) {
1665 if (elf_interpreter) {
1666 free(elf_interpreter);
1667 }
1668 free (elf_phdata);
1669 close(bprm->fd);
1670 return -E2BIG;
1671 }
1672 }
1673
1674 /* OK, This is the point of no return */
1675 info->end_data = 0;
1676 info->end_code = 0;
992f48a0 1677 info->start_mmap = (abi_ulong)ELF_START_MMAP;
31e31b8a 1678 info->mmap = 0;
992f48a0 1679 elf_entry = (abi_ulong) elf_ex.e_entry;
31e31b8a 1680
379f6698
PB
1681#if defined(CONFIG_USE_GUEST_BASE)
1682 /*
1683 * In case where user has not explicitly set the guest_base, we
1684 * probe here that should we set it automatically.
1685 */
68a1c816 1686 if (!(have_guest_base || reserved_va)) {
379f6698 1687 /*
c581deda
PB
1688 * Go through ELF program header table and find the address
1689 * range used by loadable segments. Check that this is available on
1690 * the host, and if not find a suitable value for guest_base. */
1691 abi_ulong app_start = ~0;
1692 abi_ulong app_end = 0;
1693 abi_ulong addr;
1694 unsigned long host_start;
1695 unsigned long real_start;
1696 unsigned long host_size;
379f6698
PB
1697 for (i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum;
1698 i++, elf_ppnt++) {
1699 if (elf_ppnt->p_type != PT_LOAD)
1700 continue;
c581deda
PB
1701 addr = elf_ppnt->p_vaddr;
1702 if (addr < app_start) {
1703 app_start = addr;
1704 }
1705 addr += elf_ppnt->p_memsz;
1706 if (addr > app_end) {
1707 app_end = addr;
1708 }
1709 }
1710
1711 /* If we don't have any loadable segments then something
1712 is very wrong. */
1713 assert(app_start < app_end);
1714
1715 /* Round addresses to page boundaries. */
1716 app_start = app_start & qemu_host_page_mask;
1717 app_end = HOST_PAGE_ALIGN(app_end);
1718 if (app_start < mmap_min_addr) {
1719 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1720 } else {
1721 host_start = app_start;
1722 if (host_start != app_start) {
1723 fprintf(stderr, "qemu: Address overflow loading ELF binary\n");
1724 abort();
1725 }
1726 }
1727 host_size = app_end - app_start;
1728 while (1) {
1729 /* Do not use mmap_find_vma here because that is limited to the
1730 guest address space. We are going to make the
1731 guest address space fit whatever we're given. */
1732 real_start = (unsigned long)mmap((void *)host_start, host_size,
1733 PROT_NONE, MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0);
1734 if (real_start == (unsigned long)-1) {
1735 fprintf(stderr, "qemu: Virtual memory exausted\n");
1736 abort();
1737 }
1738 if (real_start == host_start) {
379f6698
PB
1739 break;
1740 }
c581deda
PB
1741 /* That address didn't work. Unmap and try a different one.
1742 The address the host picked because is typically
1743 right at the top of the host address space and leaves the
1744 guest with no usable address space. Resort to a linear search.
1745 We already compensated for mmap_min_addr, so this should not
1746 happen often. Probably means we got unlucky and host address
1747 space randomization put a shared library somewhere
1748 inconvenient. */
1749 munmap((void *)real_start, host_size);
1750 host_start += qemu_host_page_size;
1751 if (host_start == app_start) {
1752 /* Theoretically possible if host doesn't have any
1753 suitably aligned areas. Normally the first mmap will
1754 fail. */
1755 fprintf(stderr, "qemu: Unable to find space for application\n");
1756 abort();
1757 }
379f6698 1758 }
c581deda
PB
1759 qemu_log("Relocating guest address space from 0x" TARGET_ABI_FMT_lx
1760 " to 0x%lx\n", app_start, real_start);
1761 guest_base = real_start - app_start;
379f6698
PB
1762 }
1763#endif /* CONFIG_USE_GUEST_BASE */
1764
31e31b8a
FB
1765 /* Do this so that we can load the interpreter, if need be. We will
1766 change some of these later */
1767 info->rss = 0;
1768 bprm->p = setup_arg_pages(bprm->p, bprm, info);
1769 info->start_stack = bprm->p;
1770
1771 /* Now we do a little grungy work by mmaping the ELF image into
1772 * the correct location in memory. At this point, we assume that
1773 * the image should be loaded at fixed address, not at a variable
1774 * address.
1775 */
1776
31e31b8a 1777 for(i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) {
09bfb054
FB
1778 int elf_prot = 0;
1779 int elf_flags = 0;
992f48a0 1780 abi_ulong error;
3b46e624 1781
09bfb054
FB
1782 if (elf_ppnt->p_type != PT_LOAD)
1783 continue;
3b46e624 1784
09bfb054
FB
1785 if (elf_ppnt->p_flags & PF_R) elf_prot |= PROT_READ;
1786 if (elf_ppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1787 if (elf_ppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1788 elf_flags = MAP_PRIVATE | MAP_DENYWRITE;
1789 if (elf_ex.e_type == ET_EXEC || load_addr_set) {
1790 elf_flags |= MAP_FIXED;
1791 } else if (elf_ex.e_type == ET_DYN) {
1792 /* Try and get dynamic programs out of the way of the default mmap
1793 base, as well as whatever program they might try to exec. This
1794 is because the brk will follow the loader, and is not movable. */
1795 /* NOTE: for qemu, we do a big mmap to get enough space
e91c8a77 1796 without hardcoding any address */
54936004 1797 error = target_mmap(0, ET_DYN_MAP_SIZE,
5fafdf24 1798 PROT_NONE, MAP_PRIVATE | MAP_ANON,
54936004 1799 -1, 0);
09bfb054
FB
1800 if (error == -1) {
1801 perror("mmap");
1802 exit(-1);
1803 }
54936004 1804 load_bias = TARGET_ELF_PAGESTART(error - elf_ppnt->p_vaddr);
09bfb054 1805 }
3b46e624 1806
54936004
FB
1807 error = target_mmap(TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr),
1808 (elf_ppnt->p_filesz +
1809 TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)),
1810 elf_prot,
1811 (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE),
1812 bprm->fd,
5fafdf24 1813 (elf_ppnt->p_offset -
54936004 1814 TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)));
09bfb054
FB
1815 if (error == -1) {
1816 perror("mmap");
1817 exit(-1);
1818 }
31e31b8a
FB
1819
1820#ifdef LOW_ELF_STACK
54936004
FB
1821 if (TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr) < elf_stack)
1822 elf_stack = TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr);
31e31b8a 1823#endif
3b46e624 1824
09bfb054
FB
1825 if (!load_addr_set) {
1826 load_addr_set = 1;
1827 load_addr = elf_ppnt->p_vaddr - elf_ppnt->p_offset;
1828 if (elf_ex.e_type == ET_DYN) {
1829 load_bias += error -
54936004 1830 TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr);
09bfb054 1831 load_addr += load_bias;
84409ddb 1832 reloc_func_desc = load_bias;
09bfb054
FB
1833 }
1834 }
1835 k = elf_ppnt->p_vaddr;
5fafdf24 1836 if (k < start_code)
09bfb054 1837 start_code = k;
863cf0b7
JM
1838 if (start_data < k)
1839 start_data = k;
09bfb054 1840 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
5fafdf24 1841 if (k > elf_bss)
09bfb054
FB
1842 elf_bss = k;
1843 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1844 end_code = k;
5fafdf24 1845 if (end_data < k)
09bfb054
FB
1846 end_data = k;
1847 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1848 if (k > elf_brk) elf_brk = k;
31e31b8a
FB
1849 }
1850
09bfb054
FB
1851 elf_entry += load_bias;
1852 elf_bss += load_bias;
1853 elf_brk += load_bias;
1854 start_code += load_bias;
1855 end_code += load_bias;
863cf0b7 1856 start_data += load_bias;
09bfb054
FB
1857 end_data += load_bias;
1858
31e31b8a
FB
1859 if (elf_interpreter) {
1860 if (interpreter_type & 1) {
1861 elf_entry = load_aout_interp(&interp_ex, interpreter_fd);
1862 }
1863 else if (interpreter_type & 2) {
1864 elf_entry = load_elf_interp(&interp_elf_ex, interpreter_fd,
1865 &interp_load_addr);
1866 }
84409ddb 1867 reloc_func_desc = interp_load_addr;
31e31b8a
FB
1868
1869 close(interpreter_fd);
1870 free(elf_interpreter);
1871
992f48a0 1872 if (elf_entry == ~((abi_ulong)0UL)) {
31e31b8a
FB
1873 printf("Unable to load interpreter\n");
1874 free(elf_phdata);
1875 exit(-1);
1876 return 0;
1877 }
1878 }
1879
1880 free(elf_phdata);
1881
93fcfe39 1882 if (qemu_log_enabled())
689f936f
FB
1883 load_symbols(&elf_ex, bprm->fd);
1884
31e31b8a
FB
1885 if (interpreter_type != INTERPRETER_AOUT) close(bprm->fd);
1886 info->personality = (ibcs2_interpreter ? PER_SVR4 : PER_LINUX);
1887
1888#ifdef LOW_ELF_STACK
1889 info->start_stack = bprm->p = elf_stack - 4;
1890#endif
53a5960a 1891 bprm->p = create_elf_tables(bprm->p,
31e31b8a
FB
1892 bprm->argc,
1893 bprm->envc,
a1516e92 1894 &elf_ex,
09bfb054 1895 load_addr, load_bias,
31e31b8a
FB
1896 interp_load_addr,
1897 (interpreter_type == INTERPRETER_AOUT ? 0 : 1),
1898 info);
92a343da 1899 info->load_addr = reloc_func_desc;
31e31b8a
FB
1900 info->start_brk = info->brk = elf_brk;
1901 info->end_code = end_code;
1902 info->start_code = start_code;
863cf0b7 1903 info->start_data = start_data;
31e31b8a
FB
1904 info->end_data = end_data;
1905 info->start_stack = bprm->p;
1906
1907 /* Calling set_brk effectively mmaps the pages that we need for the bss and break
1908 sections */
1909 set_brk(elf_bss, elf_brk);
1910
768a4a36 1911 padzero(elf_bss, elf_brk);
31e31b8a
FB
1912
1913#if 0
1914 printf("(start_brk) %x\n" , info->start_brk);
1915 printf("(end_code) %x\n" , info->end_code);
1916 printf("(start_code) %x\n" , info->start_code);
1917 printf("(end_data) %x\n" , info->end_data);
1918 printf("(start_stack) %x\n" , info->start_stack);
1919 printf("(brk) %x\n" , info->brk);
1920#endif
1921
1922 if ( info->personality == PER_SVR4 )
1923 {
1924 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1925 and some applications "depend" upon this behavior.
1926 Since we do not have the power to recompile these, we
1927 emulate the SVr4 behavior. Sigh. */
83fb7adf 1928 mapped_addr = target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
54936004 1929 MAP_FIXED | MAP_PRIVATE, -1, 0);
31e31b8a
FB
1930 }
1931
31e31b8a
FB
1932 info->entry = elf_entry;
1933
edf8e2af
MW
1934#ifdef USE_ELF_CORE_DUMP
1935 bprm->core_dump = &elf_core_dump;
1936#endif
1937
31e31b8a
FB
1938 return 0;
1939}
1940
edf8e2af
MW
1941#ifdef USE_ELF_CORE_DUMP
1942
1943/*
1944 * Definitions to generate Intel SVR4-like core files.
a2547a13 1945 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
1946 * tacked on the front to prevent clashes with linux definitions,
1947 * and the typedef forms have been avoided. This is mostly like
1948 * the SVR4 structure, but more Linuxy, with things that Linux does
1949 * not support and which gdb doesn't really use excluded.
1950 *
1951 * Fields we don't dump (their contents is zero) in linux-user qemu
1952 * are marked with XXX.
1953 *
1954 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
1955 *
1956 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 1957 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
1958 * the target resides):
1959 *
1960 * #define USE_ELF_CORE_DUMP
1961 *
1962 * Next you define type of register set used for dumping. ELF specification
1963 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
1964 *
c227f099 1965 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 1966 * #define ELF_NREG <number of registers>
c227f099 1967 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 1968 *
edf8e2af
MW
1969 * Last step is to implement target specific function that copies registers
1970 * from given cpu into just specified register set. Prototype is:
1971 *
c227f099 1972 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
a2547a13 1973 * const CPUState *env);
edf8e2af
MW
1974 *
1975 * Parameters:
1976 * regs - copy register values into here (allocated and zeroed by caller)
1977 * env - copy registers from here
1978 *
1979 * Example for ARM target is provided in this file.
1980 */
1981
1982/* An ELF note in memory */
1983struct memelfnote {
1984 const char *name;
1985 size_t namesz;
1986 size_t namesz_rounded;
1987 int type;
1988 size_t datasz;
1989 void *data;
1990 size_t notesz;
1991};
1992
a2547a13 1993struct target_elf_siginfo {
edf8e2af
MW
1994 int si_signo; /* signal number */
1995 int si_code; /* extra code */
1996 int si_errno; /* errno */
1997};
1998
a2547a13
LD
1999struct target_elf_prstatus {
2000 struct target_elf_siginfo pr_info; /* Info associated with signal */
edf8e2af
MW
2001 short pr_cursig; /* Current signal */
2002 target_ulong pr_sigpend; /* XXX */
2003 target_ulong pr_sighold; /* XXX */
c227f099
AL
2004 target_pid_t pr_pid;
2005 target_pid_t pr_ppid;
2006 target_pid_t pr_pgrp;
2007 target_pid_t pr_sid;
edf8e2af
MW
2008 struct target_timeval pr_utime; /* XXX User time */
2009 struct target_timeval pr_stime; /* XXX System time */
2010 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2011 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2012 target_elf_gregset_t pr_reg; /* GP registers */
edf8e2af
MW
2013 int pr_fpvalid; /* XXX */
2014};
2015
2016#define ELF_PRARGSZ (80) /* Number of chars for args */
2017
a2547a13 2018struct target_elf_prpsinfo {
edf8e2af
MW
2019 char pr_state; /* numeric process state */
2020 char pr_sname; /* char for pr_state */
2021 char pr_zomb; /* zombie */
2022 char pr_nice; /* nice val */
2023 target_ulong pr_flag; /* flags */
c227f099
AL
2024 target_uid_t pr_uid;
2025 target_gid_t pr_gid;
2026 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2027 /* Lots missing */
2028 char pr_fname[16]; /* filename of executable */
2029 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2030};
2031
2032/* Here is the structure in which status of each thread is captured. */
2033struct elf_thread_status {
72cf2d4f 2034 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2035 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2036#if 0
2037 elf_fpregset_t fpu; /* NT_PRFPREG */
2038 struct task_struct *thread;
2039 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2040#endif
2041 struct memelfnote notes[1];
2042 int num_notes;
2043};
2044
2045struct elf_note_info {
2046 struct memelfnote *notes;
a2547a13
LD
2047 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2048 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2049
72cf2d4f 2050 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2051#if 0
2052 /*
2053 * Current version of ELF coredump doesn't support
2054 * dumping fp regs etc.
2055 */
2056 elf_fpregset_t *fpu;
2057 elf_fpxregset_t *xfpu;
2058 int thread_status_size;
2059#endif
2060 int notes_size;
2061 int numnote;
2062};
2063
2064struct vm_area_struct {
2065 abi_ulong vma_start; /* start vaddr of memory region */
2066 abi_ulong vma_end; /* end vaddr of memory region */
2067 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2068 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2069};
2070
2071struct mm_struct {
72cf2d4f 2072 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2073 int mm_count; /* number of mappings */
2074};
2075
2076static struct mm_struct *vma_init(void);
2077static void vma_delete(struct mm_struct *);
2078static int vma_add_mapping(struct mm_struct *, abi_ulong,
2079 abi_ulong, abi_ulong);
2080static int vma_get_mapping_count(const struct mm_struct *);
2081static struct vm_area_struct *vma_first(const struct mm_struct *);
2082static struct vm_area_struct *vma_next(struct vm_area_struct *);
2083static abi_ulong vma_dump_size(const struct vm_area_struct *);
b480d9b7 2084static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
edf8e2af
MW
2085 unsigned long flags);
2086
2087static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2088static void fill_note(struct memelfnote *, const char *, int,
2089 unsigned int, void *);
a2547a13
LD
2090static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2091static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2092static void fill_auxv_note(struct memelfnote *, const TaskState *);
2093static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2094static size_t note_size(const struct memelfnote *);
2095static void free_note_info(struct elf_note_info *);
2096static int fill_note_info(struct elf_note_info *, long, const CPUState *);
2097static void fill_thread_info(struct elf_note_info *, const CPUState *);
2098static int core_dump_filename(const TaskState *, char *, size_t);
2099
2100static int dump_write(int, const void *, size_t);
2101static int write_note(struct memelfnote *, int);
2102static int write_note_info(struct elf_note_info *, int);
2103
2104#ifdef BSWAP_NEEDED
a2547a13
LD
2105static void bswap_prstatus(struct target_elf_prstatus *);
2106static void bswap_psinfo(struct target_elf_prpsinfo *);
edf8e2af 2107
a2547a13 2108static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af
MW
2109{
2110 prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo);
2111 prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code);
2112 prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno);
2113 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2114 prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend);
2115 prstatus->pr_sighold = tswapl(prstatus->pr_sighold);
2116 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2117 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2118 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2119 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2120 /* cpu times are not filled, so we skip them */
2121 /* regs should be in correct format already */
2122 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2123}
2124
a2547a13 2125static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af
MW
2126{
2127 psinfo->pr_flag = tswapl(psinfo->pr_flag);
2128 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2129 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2130 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2131 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2132 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2133 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2134}
2135#endif /* BSWAP_NEEDED */
2136
2137/*
2138 * Minimal support for linux memory regions. These are needed
2139 * when we are finding out what memory exactly belongs to
2140 * emulated process. No locks needed here, as long as
2141 * thread that received the signal is stopped.
2142 */
2143
2144static struct mm_struct *vma_init(void)
2145{
2146 struct mm_struct *mm;
2147
2148 if ((mm = qemu_malloc(sizeof (*mm))) == NULL)
2149 return (NULL);
2150
2151 mm->mm_count = 0;
72cf2d4f 2152 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2153
2154 return (mm);
2155}
2156
2157static void vma_delete(struct mm_struct *mm)
2158{
2159 struct vm_area_struct *vma;
2160
2161 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2162 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2163 qemu_free(vma);
2164 }
2165 qemu_free(mm);
2166}
2167
2168static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
2169 abi_ulong end, abi_ulong flags)
2170{
2171 struct vm_area_struct *vma;
2172
2173 if ((vma = qemu_mallocz(sizeof (*vma))) == NULL)
2174 return (-1);
2175
2176 vma->vma_start = start;
2177 vma->vma_end = end;
2178 vma->vma_flags = flags;
2179
72cf2d4f 2180 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2181 mm->mm_count++;
2182
2183 return (0);
2184}
2185
2186static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2187{
72cf2d4f 2188 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2189}
2190
2191static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2192{
72cf2d4f 2193 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2194}
2195
2196static int vma_get_mapping_count(const struct mm_struct *mm)
2197{
2198 return (mm->mm_count);
2199}
2200
2201/*
2202 * Calculate file (dump) size of given memory region.
2203 */
2204static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2205{
2206 /* if we cannot even read the first page, skip it */
2207 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2208 return (0);
2209
2210 /*
2211 * Usually we don't dump executable pages as they contain
2212 * non-writable code that debugger can read directly from
2213 * target library etc. However, thread stacks are marked
2214 * also executable so we read in first page of given region
2215 * and check whether it contains elf header. If there is
2216 * no elf header, we dump it.
2217 */
2218 if (vma->vma_flags & PROT_EXEC) {
2219 char page[TARGET_PAGE_SIZE];
2220
2221 copy_from_user(page, vma->vma_start, sizeof (page));
2222 if ((page[EI_MAG0] == ELFMAG0) &&
2223 (page[EI_MAG1] == ELFMAG1) &&
2224 (page[EI_MAG2] == ELFMAG2) &&
2225 (page[EI_MAG3] == ELFMAG3)) {
2226 /*
2227 * Mappings are possibly from ELF binary. Don't dump
2228 * them.
2229 */
2230 return (0);
2231 }
2232 }
2233
2234 return (vma->vma_end - vma->vma_start);
2235}
2236
b480d9b7 2237static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
edf8e2af
MW
2238 unsigned long flags)
2239{
2240 struct mm_struct *mm = (struct mm_struct *)priv;
2241
edf8e2af
MW
2242 vma_add_mapping(mm, start, end, flags);
2243 return (0);
2244}
2245
2246static void fill_note(struct memelfnote *note, const char *name, int type,
2247 unsigned int sz, void *data)
2248{
2249 unsigned int namesz;
2250
2251 namesz = strlen(name) + 1;
2252 note->name = name;
2253 note->namesz = namesz;
2254 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2255 note->type = type;
2256 note->datasz = roundup(sz, sizeof (int32_t));;
2257 note->data = data;
2258
2259 /*
2260 * We calculate rounded up note size here as specified by
2261 * ELF document.
2262 */
2263 note->notesz = sizeof (struct elf_note) +
2264 note->namesz_rounded + note->datasz;
2265}
2266
2267static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2268 uint32_t flags)
2269{
2270 (void) memset(elf, 0, sizeof(*elf));
2271
2272 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2273 elf->e_ident[EI_CLASS] = ELF_CLASS;
2274 elf->e_ident[EI_DATA] = ELF_DATA;
2275 elf->e_ident[EI_VERSION] = EV_CURRENT;
2276 elf->e_ident[EI_OSABI] = ELF_OSABI;
2277
2278 elf->e_type = ET_CORE;
2279 elf->e_machine = machine;
2280 elf->e_version = EV_CURRENT;
2281 elf->e_phoff = sizeof(struct elfhdr);
2282 elf->e_flags = flags;
2283 elf->e_ehsize = sizeof(struct elfhdr);
2284 elf->e_phentsize = sizeof(struct elf_phdr);
2285 elf->e_phnum = segs;
2286
2287#ifdef BSWAP_NEEDED
2288 bswap_ehdr(elf);
2289#endif
2290}
2291
2292static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2293{
2294 phdr->p_type = PT_NOTE;
2295 phdr->p_offset = offset;
2296 phdr->p_vaddr = 0;
2297 phdr->p_paddr = 0;
2298 phdr->p_filesz = sz;
2299 phdr->p_memsz = 0;
2300 phdr->p_flags = 0;
2301 phdr->p_align = 0;
2302
2303#ifdef BSWAP_NEEDED
2304 bswap_phdr(phdr);
2305#endif
2306}
2307
2308static size_t note_size(const struct memelfnote *note)
2309{
2310 return (note->notesz);
2311}
2312
a2547a13 2313static void fill_prstatus(struct target_elf_prstatus *prstatus,
edf8e2af
MW
2314 const TaskState *ts, int signr)
2315{
2316 (void) memset(prstatus, 0, sizeof (*prstatus));
2317 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2318 prstatus->pr_pid = ts->ts_tid;
2319 prstatus->pr_ppid = getppid();
2320 prstatus->pr_pgrp = getpgrp();
2321 prstatus->pr_sid = getsid(0);
2322
2323#ifdef BSWAP_NEEDED
2324 bswap_prstatus(prstatus);
2325#endif
2326}
2327
a2547a13 2328static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af
MW
2329{
2330 char *filename, *base_filename;
2331 unsigned int i, len;
2332
2333 (void) memset(psinfo, 0, sizeof (*psinfo));
2334
2335 len = ts->info->arg_end - ts->info->arg_start;
2336 if (len >= ELF_PRARGSZ)
2337 len = ELF_PRARGSZ - 1;
2338 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2339 return -EFAULT;
2340 for (i = 0; i < len; i++)
2341 if (psinfo->pr_psargs[i] == 0)
2342 psinfo->pr_psargs[i] = ' ';
2343 psinfo->pr_psargs[len] = 0;
2344
2345 psinfo->pr_pid = getpid();
2346 psinfo->pr_ppid = getppid();
2347 psinfo->pr_pgrp = getpgrp();
2348 psinfo->pr_sid = getsid(0);
2349 psinfo->pr_uid = getuid();
2350 psinfo->pr_gid = getgid();
2351
2352 filename = strdup(ts->bprm->filename);
2353 base_filename = strdup(basename(filename));
2354 (void) strncpy(psinfo->pr_fname, base_filename,
2355 sizeof(psinfo->pr_fname));
2356 free(base_filename);
2357 free(filename);
2358
2359#ifdef BSWAP_NEEDED
2360 bswap_psinfo(psinfo);
2361#endif
2362 return (0);
2363}
2364
2365static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2366{
2367 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2368 elf_addr_t orig_auxv = auxv;
2369 abi_ulong val;
2370 void *ptr;
2371 int i, len;
2372
2373 /*
2374 * Auxiliary vector is stored in target process stack. It contains
2375 * {type, value} pairs that we need to dump into note. This is not
2376 * strictly necessary but we do it here for sake of completeness.
2377 */
2378
2379 /* find out lenght of the vector, AT_NULL is terminator */
2380 i = len = 0;
2381 do {
2382 get_user_ual(val, auxv);
2383 i += 2;
2384 auxv += 2 * sizeof (elf_addr_t);
2385 } while (val != AT_NULL);
2386 len = i * sizeof (elf_addr_t);
2387
2388 /* read in whole auxv vector and copy it to memelfnote */
2389 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2390 if (ptr != NULL) {
2391 fill_note(note, "CORE", NT_AUXV, len, ptr);
2392 unlock_user(ptr, auxv, len);
2393 }
2394}
2395
2396/*
2397 * Constructs name of coredump file. We have following convention
2398 * for the name:
2399 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2400 *
2401 * Returns 0 in case of success, -1 otherwise (errno is set).
2402 */
2403static int core_dump_filename(const TaskState *ts, char *buf,
2404 size_t bufsize)
2405{
2406 char timestamp[64];
2407 char *filename = NULL;
2408 char *base_filename = NULL;
2409 struct timeval tv;
2410 struct tm tm;
2411
2412 assert(bufsize >= PATH_MAX);
2413
2414 if (gettimeofday(&tv, NULL) < 0) {
2415 (void) fprintf(stderr, "unable to get current timestamp: %s",
2416 strerror(errno));
2417 return (-1);
2418 }
2419
2420 filename = strdup(ts->bprm->filename);
2421 base_filename = strdup(basename(filename));
2422 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2423 localtime_r(&tv.tv_sec, &tm));
2424 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2425 base_filename, timestamp, (int)getpid());
2426 free(base_filename);
2427 free(filename);
2428
2429 return (0);
2430}
2431
2432static int dump_write(int fd, const void *ptr, size_t size)
2433{
2434 const char *bufp = (const char *)ptr;
2435 ssize_t bytes_written, bytes_left;
2436 struct rlimit dumpsize;
2437 off_t pos;
2438
2439 bytes_written = 0;
2440 getrlimit(RLIMIT_CORE, &dumpsize);
2441 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2442 if (errno == ESPIPE) { /* not a seekable stream */
2443 bytes_left = size;
2444 } else {
2445 return pos;
2446 }
2447 } else {
2448 if (dumpsize.rlim_cur <= pos) {
2449 return -1;
2450 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2451 bytes_left = size;
2452 } else {
2453 size_t limit_left=dumpsize.rlim_cur - pos;
2454 bytes_left = limit_left >= size ? size : limit_left ;
2455 }
2456 }
2457
2458 /*
2459 * In normal conditions, single write(2) should do but
2460 * in case of socket etc. this mechanism is more portable.
2461 */
2462 do {
2463 bytes_written = write(fd, bufp, bytes_left);
2464 if (bytes_written < 0) {
2465 if (errno == EINTR)
2466 continue;
2467 return (-1);
2468 } else if (bytes_written == 0) { /* eof */
2469 return (-1);
2470 }
2471 bufp += bytes_written;
2472 bytes_left -= bytes_written;
2473 } while (bytes_left > 0);
2474
2475 return (0);
2476}
2477
2478static int write_note(struct memelfnote *men, int fd)
2479{
2480 struct elf_note en;
2481
2482 en.n_namesz = men->namesz;
2483 en.n_type = men->type;
2484 en.n_descsz = men->datasz;
2485
2486#ifdef BSWAP_NEEDED
2487 bswap_note(&en);
2488#endif
2489
2490 if (dump_write(fd, &en, sizeof(en)) != 0)
2491 return (-1);
2492 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2493 return (-1);
2494 if (dump_write(fd, men->data, men->datasz) != 0)
2495 return (-1);
2496
2497 return (0);
2498}
2499
2500static void fill_thread_info(struct elf_note_info *info, const CPUState *env)
2501{
2502 TaskState *ts = (TaskState *)env->opaque;
2503 struct elf_thread_status *ets;
2504
2505 ets = qemu_mallocz(sizeof (*ets));
2506 ets->num_notes = 1; /* only prstatus is dumped */
2507 fill_prstatus(&ets->prstatus, ts, 0);
2508 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2509 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2510 &ets->prstatus);
2511
72cf2d4f 2512 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
2513
2514 info->notes_size += note_size(&ets->notes[0]);
2515}
2516
2517static int fill_note_info(struct elf_note_info *info,
2518 long signr, const CPUState *env)
2519{
2520#define NUMNOTES 3
2521 CPUState *cpu = NULL;
2522 TaskState *ts = (TaskState *)env->opaque;
2523 int i;
2524
2525 (void) memset(info, 0, sizeof (*info));
2526
72cf2d4f 2527 QTAILQ_INIT(&info->thread_list);
edf8e2af
MW
2528
2529 info->notes = qemu_mallocz(NUMNOTES * sizeof (struct memelfnote));
2530 if (info->notes == NULL)
2531 return (-ENOMEM);
2532 info->prstatus = qemu_mallocz(sizeof (*info->prstatus));
2533 if (info->prstatus == NULL)
2534 return (-ENOMEM);
2535 info->psinfo = qemu_mallocz(sizeof (*info->psinfo));
2536 if (info->prstatus == NULL)
2537 return (-ENOMEM);
2538
2539 /*
2540 * First fill in status (and registers) of current thread
2541 * including process info & aux vector.
2542 */
2543 fill_prstatus(info->prstatus, ts, signr);
2544 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2545 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2546 sizeof (*info->prstatus), info->prstatus);
2547 fill_psinfo(info->psinfo, ts);
2548 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2549 sizeof (*info->psinfo), info->psinfo);
2550 fill_auxv_note(&info->notes[2], ts);
2551 info->numnote = 3;
2552
2553 info->notes_size = 0;
2554 for (i = 0; i < info->numnote; i++)
2555 info->notes_size += note_size(&info->notes[i]);
2556
2557 /* read and fill status of all threads */
2558 cpu_list_lock();
2559 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2560 if (cpu == thread_env)
2561 continue;
2562 fill_thread_info(info, cpu);
2563 }
2564 cpu_list_unlock();
2565
2566 return (0);
2567}
2568
2569static void free_note_info(struct elf_note_info *info)
2570{
2571 struct elf_thread_status *ets;
2572
72cf2d4f
BS
2573 while (!QTAILQ_EMPTY(&info->thread_list)) {
2574 ets = QTAILQ_FIRST(&info->thread_list);
2575 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
edf8e2af
MW
2576 qemu_free(ets);
2577 }
2578
2579 qemu_free(info->prstatus);
2580 qemu_free(info->psinfo);
2581 qemu_free(info->notes);
2582}
2583
2584static int write_note_info(struct elf_note_info *info, int fd)
2585{
2586 struct elf_thread_status *ets;
2587 int i, error = 0;
2588
2589 /* write prstatus, psinfo and auxv for current thread */
2590 for (i = 0; i < info->numnote; i++)
2591 if ((error = write_note(&info->notes[i], fd)) != 0)
2592 return (error);
2593
2594 /* write prstatus for each thread */
2595 for (ets = info->thread_list.tqh_first; ets != NULL;
2596 ets = ets->ets_link.tqe_next) {
2597 if ((error = write_note(&ets->notes[0], fd)) != 0)
2598 return (error);
2599 }
2600
2601 return (0);
2602}
2603
2604/*
2605 * Write out ELF coredump.
2606 *
2607 * See documentation of ELF object file format in:
2608 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2609 *
2610 * Coredump format in linux is following:
2611 *
2612 * 0 +----------------------+ \
2613 * | ELF header | ET_CORE |
2614 * +----------------------+ |
2615 * | ELF program headers | |--- headers
2616 * | - NOTE section | |
2617 * | - PT_LOAD sections | |
2618 * +----------------------+ /
2619 * | NOTEs: |
2620 * | - NT_PRSTATUS |
2621 * | - NT_PRSINFO |
2622 * | - NT_AUXV |
2623 * +----------------------+ <-- aligned to target page
2624 * | Process memory dump |
2625 * : :
2626 * . .
2627 * : :
2628 * | |
2629 * +----------------------+
2630 *
2631 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2632 * NT_PRSINFO -> struct elf_prpsinfo
2633 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2634 *
2635 * Format follows System V format as close as possible. Current
2636 * version limitations are as follows:
2637 * - no floating point registers are dumped
2638 *
2639 * Function returns 0 in case of success, negative errno otherwise.
2640 *
2641 * TODO: make this work also during runtime: it should be
2642 * possible to force coredump from running process and then
2643 * continue processing. For example qemu could set up SIGUSR2
2644 * handler (provided that target process haven't registered
2645 * handler for that) that does the dump when signal is received.
2646 */
2647static int elf_core_dump(int signr, const CPUState *env)
2648{
2649 const TaskState *ts = (const TaskState *)env->opaque;
2650 struct vm_area_struct *vma = NULL;
2651 char corefile[PATH_MAX];
2652 struct elf_note_info info;
2653 struct elfhdr elf;
2654 struct elf_phdr phdr;
2655 struct rlimit dumpsize;
2656 struct mm_struct *mm = NULL;
2657 off_t offset = 0, data_offset = 0;
2658 int segs = 0;
2659 int fd = -1;
2660
2661 errno = 0;
2662 getrlimit(RLIMIT_CORE, &dumpsize);
2663 if (dumpsize.rlim_cur == 0)
2664 return 0;
2665
2666 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2667 return (-errno);
2668
2669 if ((fd = open(corefile, O_WRONLY | O_CREAT,
2670 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2671 return (-errno);
2672
2673 /*
2674 * Walk through target process memory mappings and
2675 * set up structure containing this information. After
2676 * this point vma_xxx functions can be used.
2677 */
2678 if ((mm = vma_init()) == NULL)
2679 goto out;
2680
2681 walk_memory_regions(mm, vma_walker);
2682 segs = vma_get_mapping_count(mm);
2683
2684 /*
2685 * Construct valid coredump ELF header. We also
2686 * add one more segment for notes.
2687 */
2688 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2689 if (dump_write(fd, &elf, sizeof (elf)) != 0)
2690 goto out;
2691
2692 /* fill in in-memory version of notes */
2693 if (fill_note_info(&info, signr, env) < 0)
2694 goto out;
2695
2696 offset += sizeof (elf); /* elf header */
2697 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
2698
2699 /* write out notes program header */
2700 fill_elf_note_phdr(&phdr, info.notes_size, offset);
2701
2702 offset += info.notes_size;
2703 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2704 goto out;
2705
2706 /*
2707 * ELF specification wants data to start at page boundary so
2708 * we align it here.
2709 */
2710 offset = roundup(offset, ELF_EXEC_PAGESIZE);
2711
2712 /*
2713 * Write program headers for memory regions mapped in
2714 * the target process.
2715 */
2716 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2717 (void) memset(&phdr, 0, sizeof (phdr));
2718
2719 phdr.p_type = PT_LOAD;
2720 phdr.p_offset = offset;
2721 phdr.p_vaddr = vma->vma_start;
2722 phdr.p_paddr = 0;
2723 phdr.p_filesz = vma_dump_size(vma);
2724 offset += phdr.p_filesz;
2725 phdr.p_memsz = vma->vma_end - vma->vma_start;
2726 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2727 if (vma->vma_flags & PROT_WRITE)
2728 phdr.p_flags |= PF_W;
2729 if (vma->vma_flags & PROT_EXEC)
2730 phdr.p_flags |= PF_X;
2731 phdr.p_align = ELF_EXEC_PAGESIZE;
2732
2733 dump_write(fd, &phdr, sizeof (phdr));
2734 }
2735
2736 /*
2737 * Next we write notes just after program headers. No
2738 * alignment needed here.
2739 */
2740 if (write_note_info(&info, fd) < 0)
2741 goto out;
2742
2743 /* align data to page boundary */
2744 data_offset = lseek(fd, 0, SEEK_CUR);
2745 data_offset = TARGET_PAGE_ALIGN(data_offset);
2746 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
2747 goto out;
2748
2749 /*
2750 * Finally we can dump process memory into corefile as well.
2751 */
2752 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2753 abi_ulong addr;
2754 abi_ulong end;
2755
2756 end = vma->vma_start + vma_dump_size(vma);
2757
2758 for (addr = vma->vma_start; addr < end;
2759 addr += TARGET_PAGE_SIZE) {
2760 char page[TARGET_PAGE_SIZE];
2761 int error;
2762
2763 /*
2764 * Read in page from target process memory and
2765 * write it to coredump file.
2766 */
2767 error = copy_from_user(page, addr, sizeof (page));
2768 if (error != 0) {
49995e17 2769 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
edf8e2af
MW
2770 addr);
2771 errno = -error;
2772 goto out;
2773 }
2774 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
2775 goto out;
2776 }
2777 }
2778
2779out:
2780 free_note_info(&info);
2781 if (mm != NULL)
2782 vma_delete(mm);
2783 (void) close(fd);
2784
2785 if (errno != 0)
2786 return (-errno);
2787 return (0);
2788}
2789
2790#endif /* USE_ELF_CORE_DUMP */
2791
31e31b8a
FB
2792static int load_aout_interp(void * exptr, int interp_fd)
2793{
2794 printf("a.out interpreter not yet supported\n");
2795 return(0);
2796}
2797
e5fe0c52
PB
2798void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
2799{
2800 init_thread(regs, infop);
2801}