]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
Revert "linux-user: Fix qemu-arm to run static armhf binaries"
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
30ab9ef2 6#include <sys/shm.h>
31e31b8a 7
3ef693a0 8#include "qemu.h"
3b249d26 9#include "user-internals.h"
db2af69d 10#include "signal-common.h"
3ad0a769 11#include "loader.h"
5423e6d3 12#include "user-mmap.h"
76cad711 13#include "disas/disas.h"
ce543844 14#include "qemu/bitops.h"
f348b6d1 15#include "qemu/path.h"
dc5e9ac7 16#include "qemu/queue.h"
c6a2377f 17#include "qemu/guest-random.h"
6fd59449 18#include "qemu/units.h"
ee947430 19#include "qemu/selfmap.h"
370ed600 20#include "qemu/lockable.h"
c7f17e7b 21#include "qapi/error.h"
cc37d98b 22#include "qemu/error-report.h"
db2af69d 23#include "target_signal.h"
7c10cb38 24#include "accel/tcg/debuginfo.h"
31e31b8a 25
e58ffeb3 26#ifdef _ARCH_PPC64
a6cc84f4 27#undef ARCH_DLINFO
28#undef ELF_PLATFORM
29#undef ELF_HWCAP
ad6919dc 30#undef ELF_HWCAP2
a6cc84f4 31#undef ELF_CLASS
32#undef ELF_DATA
33#undef ELF_ARCH
34#endif
35
edf8e2af
MW
36#define ELF_OSABI ELFOSABI_SYSV
37
cb33da57
BS
38/* from personality.h */
39
40/*
41 * Flags for bug emulation.
42 *
43 * These occupy the top three bytes.
44 */
45enum {
d97ef72e
RH
46 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
47 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
48 descriptors (signal handling) */
49 MMAP_PAGE_ZERO = 0x0100000,
50 ADDR_COMPAT_LAYOUT = 0x0200000,
51 READ_IMPLIES_EXEC = 0x0400000,
52 ADDR_LIMIT_32BIT = 0x0800000,
53 SHORT_INODE = 0x1000000,
54 WHOLE_SECONDS = 0x2000000,
55 STICKY_TIMEOUTS = 0x4000000,
56 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
57};
58
59/*
60 * Personality types.
61 *
62 * These go in the low byte. Avoid using the top bit, it will
63 * conflict with error returns.
64 */
65enum {
d97ef72e
RH
66 PER_LINUX = 0x0000,
67 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
68 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
69 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
70 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
71 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
72 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
73 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
74 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
75 PER_BSD = 0x0006,
76 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
77 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
78 PER_LINUX32 = 0x0008,
79 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
80 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
81 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
82 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
83 PER_RISCOS = 0x000c,
84 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
85 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
86 PER_OSF4 = 0x000f, /* OSF/1 v4 */
87 PER_HPUX = 0x0010,
88 PER_MASK = 0x00ff,
cb33da57
BS
89};
90
91/*
92 * Return the base personality without flags.
93 */
d97ef72e 94#define personality(pers) (pers & PER_MASK)
cb33da57 95
3cb10cfa
CL
96int info_is_fdpic(struct image_info *info)
97{
98 return info->personality == PER_LINUX_FDPIC;
99}
100
83fb7adf
FB
101/* this flag is uneffective under linux too, should be deleted */
102#ifndef MAP_DENYWRITE
103#define MAP_DENYWRITE 0
104#endif
105
106/* should probably go in elf.h */
107#ifndef ELIBBAD
108#define ELIBBAD 80
109#endif
110
ee3eb3a7 111#if TARGET_BIG_ENDIAN
28490231
RH
112#define ELF_DATA ELFDATA2MSB
113#else
114#define ELF_DATA ELFDATA2LSB
115#endif
116
a29f998d 117#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
118typedef abi_ullong target_elf_greg_t;
119#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
120#else
121typedef abi_ulong target_elf_greg_t;
122#define tswapreg(ptr) tswapal(ptr)
123#endif
124
21e807fa 125#ifdef USE_UID16
1ddd592f
PB
126typedef abi_ushort target_uid_t;
127typedef abi_ushort target_gid_t;
21e807fa 128#else
f8fd4fc4
PB
129typedef abi_uint target_uid_t;
130typedef abi_uint target_gid_t;
21e807fa 131#endif
f8fd4fc4 132typedef abi_int target_pid_t;
21e807fa 133
30ac07d4
FB
134#ifdef TARGET_I386
135
15338fd7
FB
136#define ELF_HWCAP get_elf_hwcap()
137
138static uint32_t get_elf_hwcap(void)
139{
a2247f8e
AF
140 X86CPU *cpu = X86_CPU(thread_cpu);
141
142 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
143}
144
84409ddb
JM
145#ifdef TARGET_X86_64
146#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
147
148#define ELF_CLASS ELFCLASS64
84409ddb
JM
149#define ELF_ARCH EM_X86_64
150
9263ba84
RH
151#define ELF_PLATFORM "x86_64"
152
84409ddb
JM
153static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154{
155 regs->rax = 0;
156 regs->rsp = infop->start_stack;
157 regs->rip = infop->entry;
158}
159
9edc5d79 160#define ELF_NREG 27
c227f099 161typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
162
163/*
164 * Note that ELF_NREG should be 29 as there should be place for
165 * TRAPNO and ERR "registers" as well but linux doesn't dump
166 * those.
167 *
168 * See linux kernel: arch/x86/include/asm/elf.h
169 */
05390248 170static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79 171{
030912e0
IL
172 (*regs)[0] = tswapreg(env->regs[15]);
173 (*regs)[1] = tswapreg(env->regs[14]);
174 (*regs)[2] = tswapreg(env->regs[13]);
175 (*regs)[3] = tswapreg(env->regs[12]);
176 (*regs)[4] = tswapreg(env->regs[R_EBP]);
177 (*regs)[5] = tswapreg(env->regs[R_EBX]);
178 (*regs)[6] = tswapreg(env->regs[11]);
179 (*regs)[7] = tswapreg(env->regs[10]);
180 (*regs)[8] = tswapreg(env->regs[9]);
181 (*regs)[9] = tswapreg(env->regs[8]);
182 (*regs)[10] = tswapreg(env->regs[R_EAX]);
183 (*regs)[11] = tswapreg(env->regs[R_ECX]);
184 (*regs)[12] = tswapreg(env->regs[R_EDX]);
185 (*regs)[13] = tswapreg(env->regs[R_ESI]);
186 (*regs)[14] = tswapreg(env->regs[R_EDI]);
187 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
188 (*regs)[16] = tswapreg(env->eip);
189 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
190 (*regs)[18] = tswapreg(env->eflags);
191 (*regs)[19] = tswapreg(env->regs[R_ESP]);
192 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
193 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
194 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
195 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
196 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
197 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
198 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
9edc5d79
MW
199}
200
d461b73e
RH
201#if ULONG_MAX > UINT32_MAX
202#define INIT_GUEST_COMMPAGE
203static bool init_guest_commpage(void)
204{
205 /*
206 * The vsyscall page is at a high negative address aka kernel space,
207 * which means that we cannot actually allocate it with target_mmap.
208 * We still should be able to use page_set_flags, unless the user
209 * has specified -R reserved_va, which would trigger an assert().
210 */
211 if (reserved_va != 0 &&
95059f9c 212 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
d461b73e
RH
213 error_report("Cannot allocate vsyscall page");
214 exit(EXIT_FAILURE);
215 }
216 page_set_flags(TARGET_VSYSCALL_PAGE,
49840a4a 217 TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
d461b73e
RH
218 PAGE_EXEC | PAGE_VALID);
219 return true;
220}
221#endif
84409ddb
JM
222#else
223
30ac07d4
FB
224#define ELF_START_MMAP 0x80000000
225
30ac07d4
FB
226/*
227 * This is used to ensure we don't load something for the wrong architecture.
228 */
229#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
230
231/*
232 * These are used to set parameters in the core dumps.
233 */
d97ef72e 234#define ELF_CLASS ELFCLASS32
d97ef72e 235#define ELF_ARCH EM_386
30ac07d4 236
9263ba84 237#define ELF_PLATFORM get_elf_platform()
872f3d04 238#define EXSTACK_DEFAULT true
9263ba84
RH
239
240static const char *get_elf_platform(void)
241{
242 static char elf_platform[] = "i386";
243 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
244 if (family > 6) {
245 family = 6;
246 }
247 if (family >= 3) {
248 elf_platform[1] = '0' + family;
249 }
250 return elf_platform;
251}
252
d97ef72e
RH
253static inline void init_thread(struct target_pt_regs *regs,
254 struct image_info *infop)
b346ff46
FB
255{
256 regs->esp = infop->start_stack;
257 regs->eip = infop->entry;
e5fe0c52
PB
258
259 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
260 starts %edx contains a pointer to a function which might be
261 registered using `atexit'. This provides a mean for the
262 dynamic linker to call DT_FINI functions for shared libraries
263 that have been loaded before the code runs.
264
265 A value of 0 tells we have no such handler. */
266 regs->edx = 0;
b346ff46 267}
9edc5d79 268
9edc5d79 269#define ELF_NREG 17
c227f099 270typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
271
272/*
273 * Note that ELF_NREG should be 19 as there should be place for
274 * TRAPNO and ERR "registers" as well but linux doesn't dump
275 * those.
276 *
277 * See linux kernel: arch/x86/include/asm/elf.h
278 */
05390248 279static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79 280{
030912e0
IL
281 (*regs)[0] = tswapreg(env->regs[R_EBX]);
282 (*regs)[1] = tswapreg(env->regs[R_ECX]);
283 (*regs)[2] = tswapreg(env->regs[R_EDX]);
284 (*regs)[3] = tswapreg(env->regs[R_ESI]);
285 (*regs)[4] = tswapreg(env->regs[R_EDI]);
286 (*regs)[5] = tswapreg(env->regs[R_EBP]);
287 (*regs)[6] = tswapreg(env->regs[R_EAX]);
288 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
289 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
290 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
291 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
292 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
293 (*regs)[12] = tswapreg(env->eip);
294 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
295 (*regs)[14] = tswapreg(env->eflags);
296 (*regs)[15] = tswapreg(env->regs[R_ESP]);
297 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
9edc5d79 298}
84409ddb 299#endif
b346ff46 300
9edc5d79 301#define USE_ELF_CORE_DUMP
d97ef72e 302#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
303
304#endif
305
306#ifdef TARGET_ARM
307
24e76ff0
PM
308#ifndef TARGET_AARCH64
309/* 32 bit ARM definitions */
310
b346ff46
FB
311#define ELF_START_MMAP 0x80000000
312
b597c3f7 313#define ELF_ARCH EM_ARM
d97ef72e 314#define ELF_CLASS ELFCLASS32
872f3d04 315#define EXSTACK_DEFAULT true
b346ff46 316
d97ef72e
RH
317static inline void init_thread(struct target_pt_regs *regs,
318 struct image_info *infop)
b346ff46 319{
992f48a0 320 abi_long stack = infop->start_stack;
b346ff46 321 memset(regs, 0, sizeof(*regs));
99033cae 322
167e4cdc
PM
323 regs->uregs[16] = ARM_CPU_MODE_USR;
324 if (infop->entry & 1) {
325 regs->uregs[16] |= CPSR_T;
326 }
327 regs->uregs[15] = infop->entry & 0xfffffffe;
328 regs->uregs[13] = infop->start_stack;
2f619698 329 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
330 get_user_ual(regs->uregs[2], stack + 8); /* envp */
331 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 332 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 333 regs->uregs[0] = 0;
e5fe0c52 334 /* For uClinux PIC binaries. */
863cf0b7 335 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 336 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
337
338 /* Support ARM FDPIC. */
339 if (info_is_fdpic(infop)) {
340 /* As described in the ABI document, r7 points to the loadmap info
341 * prepared by the kernel. If an interpreter is needed, r8 points
342 * to the interpreter loadmap and r9 points to the interpreter
343 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
344 * r9 points to the main program PT_DYNAMIC info.
345 */
346 regs->uregs[7] = infop->loadmap_addr;
347 if (infop->interpreter_loadmap_addr) {
348 /* Executable is dynamically loaded. */
349 regs->uregs[8] = infop->interpreter_loadmap_addr;
350 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
351 } else {
352 regs->uregs[8] = 0;
353 regs->uregs[9] = infop->pt_dynamic_addr;
354 }
355 }
b346ff46
FB
356}
357
edf8e2af 358#define ELF_NREG 18
c227f099 359typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 360
05390248 361static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 362{
86cd7b2d
PB
363 (*regs)[0] = tswapreg(env->regs[0]);
364 (*regs)[1] = tswapreg(env->regs[1]);
365 (*regs)[2] = tswapreg(env->regs[2]);
366 (*regs)[3] = tswapreg(env->regs[3]);
367 (*regs)[4] = tswapreg(env->regs[4]);
368 (*regs)[5] = tswapreg(env->regs[5]);
369 (*regs)[6] = tswapreg(env->regs[6]);
370 (*regs)[7] = tswapreg(env->regs[7]);
371 (*regs)[8] = tswapreg(env->regs[8]);
372 (*regs)[9] = tswapreg(env->regs[9]);
373 (*regs)[10] = tswapreg(env->regs[10]);
374 (*regs)[11] = tswapreg(env->regs[11]);
375 (*regs)[12] = tswapreg(env->regs[12]);
376 (*regs)[13] = tswapreg(env->regs[13]);
377 (*regs)[14] = tswapreg(env->regs[14]);
378 (*regs)[15] = tswapreg(env->regs[15]);
379
380 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
381 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
382}
383
30ac07d4 384#define USE_ELF_CORE_DUMP
d97ef72e 385#define ELF_EXEC_PAGESIZE 4096
30ac07d4 386
afce2927
FB
387enum
388{
d97ef72e
RH
389 ARM_HWCAP_ARM_SWP = 1 << 0,
390 ARM_HWCAP_ARM_HALF = 1 << 1,
391 ARM_HWCAP_ARM_THUMB = 1 << 2,
392 ARM_HWCAP_ARM_26BIT = 1 << 3,
393 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
394 ARM_HWCAP_ARM_FPA = 1 << 5,
395 ARM_HWCAP_ARM_VFP = 1 << 6,
396 ARM_HWCAP_ARM_EDSP = 1 << 7,
397 ARM_HWCAP_ARM_JAVA = 1 << 8,
398 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
399 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
400 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
401 ARM_HWCAP_ARM_NEON = 1 << 12,
402 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
403 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
404 ARM_HWCAP_ARM_TLS = 1 << 15,
405 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
406 ARM_HWCAP_ARM_IDIVA = 1 << 17,
407 ARM_HWCAP_ARM_IDIVT = 1 << 18,
408 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
409 ARM_HWCAP_ARM_LPAE = 1 << 20,
410 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
411};
412
ad6919dc
PM
413enum {
414 ARM_HWCAP2_ARM_AES = 1 << 0,
415 ARM_HWCAP2_ARM_PMULL = 1 << 1,
416 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
417 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
418 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
419};
420
6b1275ff
PM
421/* The commpage only exists for 32 bit kernels */
422
66346faf 423#define HI_COMMPAGE (intptr_t)0xffff0f00u
806d1021 424
ee947430
AB
425static bool init_guest_commpage(void)
426{
d713cf4d
PMD
427 ARMCPU *cpu = ARM_CPU(thread_cpu);
428 abi_ptr commpage;
429 void *want;
430 void *addr;
431
432 /*
433 * M-profile allocates maximum of 2GB address space, so can never
434 * allocate the commpage. Skip it.
435 */
436 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
437 return true;
438 }
439
440 commpage = HI_COMMPAGE & -qemu_host_page_size;
441 want = g2h_untagged(commpage);
442 addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
443 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
97cc7560 444
6cda41da 445 if (addr == MAP_FAILED) {
ee947430
AB
446 perror("Allocating guest commpage");
447 exit(EXIT_FAILURE);
97cc7560 448 }
ee947430
AB
449 if (addr != want) {
450 return false;
97cc7560
DDAG
451 }
452
ee947430 453 /* Set kernel helper versions; rest of page is 0. */
6cda41da 454 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
97cc7560 455
6cda41da 456 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
97cc7560 457 perror("Protecting guest commpage");
ee947430 458 exit(EXIT_FAILURE);
97cc7560 459 }
6cda41da
RH
460
461 page_set_flags(commpage, commpage | ~qemu_host_page_mask,
462 PAGE_READ | PAGE_EXEC | PAGE_VALID);
ee947430 463 return true;
97cc7560 464}
adf050b1
BC
465
466#define ELF_HWCAP get_elf_hwcap()
ad6919dc 467#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
468
469static uint32_t get_elf_hwcap(void)
470{
a2247f8e 471 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
472 uint32_t hwcaps = 0;
473
474 hwcaps |= ARM_HWCAP_ARM_SWP;
475 hwcaps |= ARM_HWCAP_ARM_HALF;
476 hwcaps |= ARM_HWCAP_ARM_THUMB;
477 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
478
479 /* probe for the extra features */
480#define GET_FEATURE(feat, hwcap) \
a2247f8e 481 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
962fcbf2
RH
482
483#define GET_FEATURE_ID(feat, hwcap) \
484 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
485
24682654
PM
486 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
487 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
488 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
489 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
490 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
24682654 491 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
bfa8a370 492 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
873b73c0
PM
493 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
494 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
bfa8a370
RH
495 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
496
497 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
498 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
499 hwcaps |= ARM_HWCAP_ARM_VFPv3;
500 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
501 hwcaps |= ARM_HWCAP_ARM_VFPD32;
502 } else {
503 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
504 }
505 }
506 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
adf050b1
BC
507
508 return hwcaps;
509}
afce2927 510
ad6919dc
PM
511static uint32_t get_elf_hwcap2(void)
512{
513 ARMCPU *cpu = ARM_CPU(thread_cpu);
514 uint32_t hwcaps = 0;
515
962fcbf2
RH
516 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
517 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
518 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
519 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
520 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
ad6919dc
PM
521 return hwcaps;
522}
523
524#undef GET_FEATURE
962fcbf2 525#undef GET_FEATURE_ID
ad6919dc 526
13ec4ec3
RH
527#define ELF_PLATFORM get_elf_platform()
528
529static const char *get_elf_platform(void)
530{
531 CPUARMState *env = thread_cpu->env_ptr;
532
ee3eb3a7 533#if TARGET_BIG_ENDIAN
13ec4ec3
RH
534# define END "b"
535#else
536# define END "l"
537#endif
538
539 if (arm_feature(env, ARM_FEATURE_V8)) {
540 return "v8" END;
541 } else if (arm_feature(env, ARM_FEATURE_V7)) {
542 if (arm_feature(env, ARM_FEATURE_M)) {
543 return "v7m" END;
544 } else {
545 return "v7" END;
546 }
547 } else if (arm_feature(env, ARM_FEATURE_V6)) {
548 return "v6" END;
549 } else if (arm_feature(env, ARM_FEATURE_V5)) {
550 return "v5" END;
551 } else {
552 return "v4" END;
553 }
554
555#undef END
556}
557
24e76ff0
PM
558#else
559/* 64 bit ARM definitions */
560#define ELF_START_MMAP 0x80000000
561
b597c3f7 562#define ELF_ARCH EM_AARCH64
24e76ff0 563#define ELF_CLASS ELFCLASS64
ee3eb3a7 564#if TARGET_BIG_ENDIAN
e20e3ec9
RH
565# define ELF_PLATFORM "aarch64_be"
566#else
567# define ELF_PLATFORM "aarch64"
568#endif
24e76ff0
PM
569
570static inline void init_thread(struct target_pt_regs *regs,
571 struct image_info *infop)
572{
573 abi_long stack = infop->start_stack;
574 memset(regs, 0, sizeof(*regs));
575
576 regs->pc = infop->entry & ~0x3ULL;
577 regs->sp = stack;
578}
579
580#define ELF_NREG 34
581typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
582
583static void elf_core_copy_regs(target_elf_gregset_t *regs,
584 const CPUARMState *env)
585{
586 int i;
587
588 for (i = 0; i < 32; i++) {
589 (*regs)[i] = tswapreg(env->xregs[i]);
590 }
591 (*regs)[32] = tswapreg(env->pc);
592 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
593}
594
595#define USE_ELF_CORE_DUMP
596#define ELF_EXEC_PAGESIZE 4096
597
598enum {
599 ARM_HWCAP_A64_FP = 1 << 0,
600 ARM_HWCAP_A64_ASIMD = 1 << 1,
601 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
602 ARM_HWCAP_A64_AES = 1 << 3,
603 ARM_HWCAP_A64_PMULL = 1 << 4,
604 ARM_HWCAP_A64_SHA1 = 1 << 5,
605 ARM_HWCAP_A64_SHA2 = 1 << 6,
606 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
607 ARM_HWCAP_A64_ATOMICS = 1 << 8,
608 ARM_HWCAP_A64_FPHP = 1 << 9,
609 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
610 ARM_HWCAP_A64_CPUID = 1 << 11,
611 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
612 ARM_HWCAP_A64_JSCVT = 1 << 13,
613 ARM_HWCAP_A64_FCMA = 1 << 14,
614 ARM_HWCAP_A64_LRCPC = 1 << 15,
615 ARM_HWCAP_A64_DCPOP = 1 << 16,
616 ARM_HWCAP_A64_SHA3 = 1 << 17,
617 ARM_HWCAP_A64_SM3 = 1 << 18,
618 ARM_HWCAP_A64_SM4 = 1 << 19,
619 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
620 ARM_HWCAP_A64_SHA512 = 1 << 21,
621 ARM_HWCAP_A64_SVE = 1 << 22,
0083a1fa
RH
622 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
623 ARM_HWCAP_A64_DIT = 1 << 24,
624 ARM_HWCAP_A64_USCAT = 1 << 25,
625 ARM_HWCAP_A64_ILRCPC = 1 << 26,
626 ARM_HWCAP_A64_FLAGM = 1 << 27,
627 ARM_HWCAP_A64_SSBS = 1 << 28,
628 ARM_HWCAP_A64_SB = 1 << 29,
629 ARM_HWCAP_A64_PACA = 1 << 30,
630 ARM_HWCAP_A64_PACG = 1UL << 31,
2041df4a
RH
631
632 ARM_HWCAP2_A64_DCPODP = 1 << 0,
633 ARM_HWCAP2_A64_SVE2 = 1 << 1,
634 ARM_HWCAP2_A64_SVEAES = 1 << 2,
635 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
636 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
637 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
638 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
639 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
640 ARM_HWCAP2_A64_FRINT = 1 << 8,
68948d18
RH
641 ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
642 ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
643 ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
644 ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
645 ARM_HWCAP2_A64_I8MM = 1 << 13,
646 ARM_HWCAP2_A64_BF16 = 1 << 14,
647 ARM_HWCAP2_A64_DGH = 1 << 15,
648 ARM_HWCAP2_A64_RNG = 1 << 16,
649 ARM_HWCAP2_A64_BTI = 1 << 17,
650 ARM_HWCAP2_A64_MTE = 1 << 18,
f9982cea
RH
651 ARM_HWCAP2_A64_ECV = 1 << 19,
652 ARM_HWCAP2_A64_AFP = 1 << 20,
653 ARM_HWCAP2_A64_RPRES = 1 << 21,
654 ARM_HWCAP2_A64_MTE3 = 1 << 22,
655 ARM_HWCAP2_A64_SME = 1 << 23,
656 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24,
657 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25,
658 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26,
659 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27,
660 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28,
661 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29,
662 ARM_HWCAP2_A64_SME_FA64 = 1 << 30,
24e76ff0
PM
663};
664
2041df4a
RH
665#define ELF_HWCAP get_elf_hwcap()
666#define ELF_HWCAP2 get_elf_hwcap2()
667
668#define GET_FEATURE_ID(feat, hwcap) \
669 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
24e76ff0
PM
670
671static uint32_t get_elf_hwcap(void)
672{
673 ARMCPU *cpu = ARM_CPU(thread_cpu);
674 uint32_t hwcaps = 0;
675
676 hwcaps |= ARM_HWCAP_A64_FP;
677 hwcaps |= ARM_HWCAP_A64_ASIMD;
37020ff1 678 hwcaps |= ARM_HWCAP_A64_CPUID;
24e76ff0
PM
679
680 /* probe for the extra features */
962fcbf2
RH
681
682 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
683 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
684 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
685 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
686 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
687 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
688 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
689 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
690 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
5763190f 691 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
962fcbf2
RH
692 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
693 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
694 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
695 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
cd208a1c 696 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
29d26ab2 697 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
1c9af3a9
RH
698 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
699 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
9888bd1e 700 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
b89d9c98 701 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
0d57b499 702 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
2677cf9f 703 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
a1229109 704 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
962fcbf2 705
2041df4a
RH
706 return hwcaps;
707}
708
709static uint32_t get_elf_hwcap2(void)
710{
711 ARMCPU *cpu = ARM_CPU(thread_cpu);
712 uint32_t hwcaps = 0;
713
0d57b499 714 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
cdc8d8b2
RH
715 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
716 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
717 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
718 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
719 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
720 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
2041df4a
RH
721 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
722 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
cdc8d8b2
RH
723 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
724 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
725 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
6c47a905 726 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
cdc8d8b2 727 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
6c47a905 728 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
68948d18
RH
729 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
730 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
731 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
f9982cea
RH
732 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
733 ARM_HWCAP2_A64_SME_F32F32 |
734 ARM_HWCAP2_A64_SME_B16F32 |
735 ARM_HWCAP2_A64_SME_F16F32 |
736 ARM_HWCAP2_A64_SME_I8I32));
737 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
738 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
739 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
24e76ff0
PM
740
741 return hwcaps;
742}
743
2041df4a
RH
744#undef GET_FEATURE_ID
745
24e76ff0
PM
746#endif /* not TARGET_AARCH64 */
747#endif /* TARGET_ARM */
30ac07d4 748
853d6f7a 749#ifdef TARGET_SPARC
a315a145 750#ifdef TARGET_SPARC64
853d6f7a
FB
751
752#define ELF_START_MMAP 0x80000000
cf973e46
AT
753#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
754 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 755#ifndef TARGET_ABI32
cb33da57 756#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
757#else
758#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
759#endif
853d6f7a 760
a315a145 761#define ELF_CLASS ELFCLASS64
5ef54116 762#define ELF_ARCH EM_SPARCV9
a315a145
FB
763#else
764#define ELF_START_MMAP 0x80000000
cf973e46
AT
765#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
766 | HWCAP_SPARC_MULDIV)
853d6f7a 767#define ELF_CLASS ELFCLASS32
853d6f7a 768#define ELF_ARCH EM_SPARC
089a2256 769#endif /* TARGET_SPARC64 */
853d6f7a 770
d97ef72e
RH
771static inline void init_thread(struct target_pt_regs *regs,
772 struct image_info *infop)
853d6f7a 773{
089a2256 774 /* Note that target_cpu_copy_regs does not read psr/tstate. */
f5155289
FB
775 regs->pc = infop->entry;
776 regs->npc = regs->pc + 4;
777 regs->y = 0;
089a2256
RH
778 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
779 - TARGET_STACK_BIAS);
853d6f7a 780}
089a2256 781#endif /* TARGET_SPARC */
853d6f7a 782
67867308
FB
783#ifdef TARGET_PPC
784
4ecd4d16 785#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
786#define ELF_START_MMAP 0x80000000
787
74154d7e 788#if defined(TARGET_PPC64)
84409ddb
JM
789
790#define elf_check_arch(x) ( (x) == EM_PPC64 )
791
d97ef72e 792#define ELF_CLASS ELFCLASS64
84409ddb
JM
793
794#else
795
d97ef72e 796#define ELF_CLASS ELFCLASS32
872f3d04 797#define EXSTACK_DEFAULT true
84409ddb
JM
798
799#endif
800
d97ef72e 801#define ELF_ARCH EM_PPC
67867308 802
df84e4f3
NF
803/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
804 See arch/powerpc/include/asm/cputable.h. */
805enum {
3efa9a67 806 QEMU_PPC_FEATURE_32 = 0x80000000,
807 QEMU_PPC_FEATURE_64 = 0x40000000,
808 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
809 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
810 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
811 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
812 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
813 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
814 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
815 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
816 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
817 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
818 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
819 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
820 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
821 QEMU_PPC_FEATURE_CELL = 0x00010000,
822 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
823 QEMU_PPC_FEATURE_SMT = 0x00004000,
824 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
825 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
826 QEMU_PPC_FEATURE_PA6T = 0x00000800,
827 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
828 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
829 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
830 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
831 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
832
833 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
834 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
835
836 /* Feature definitions in AT_HWCAP2. */
837 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
838 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
839 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
840 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
841 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
842 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
24c373ec
LV
843 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
844 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
be0c46d4 845 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
24c373ec
LV
846 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
847 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
848 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
849 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
96c343cc
JS
850 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
851 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
df84e4f3
NF
852};
853
854#define ELF_HWCAP get_elf_hwcap()
855
856static uint32_t get_elf_hwcap(void)
857{
a2247f8e 858 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
859 uint32_t features = 0;
860
861 /* We don't have to be terribly complete here; the high points are
862 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 863#define GET_FEATURE(flag, feature) \
a2247f8e 864 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
865#define GET_FEATURE2(flags, feature) \
866 do { \
867 if ((cpu->env.insns_flags2 & flags) == flags) { \
868 features |= feature; \
869 } \
870 } while (0)
3efa9a67 871 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
872 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
873 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
874 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
875 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
876 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
877 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
878 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
879 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
880 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
881 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
882 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
883 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 884#undef GET_FEATURE
0e019746 885#undef GET_FEATURE2
df84e4f3
NF
886
887 return features;
888}
889
a60438dd
TM
890#define ELF_HWCAP2 get_elf_hwcap2()
891
892static uint32_t get_elf_hwcap2(void)
893{
894 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
895 uint32_t features = 0;
896
897#define GET_FEATURE(flag, feature) \
898 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
899#define GET_FEATURE2(flag, feature) \
900 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
901
902 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
903 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
904 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
24c373ec
LV
905 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
906 QEMU_PPC_FEATURE2_VEC_CRYPTO);
907 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
8a589aeb 908 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
96c343cc
JS
909 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
910 QEMU_PPC_FEATURE2_MMA);
a60438dd
TM
911
912#undef GET_FEATURE
913#undef GET_FEATURE2
914
915 return features;
916}
917
f5155289
FB
918/*
919 * The requirements here are:
920 * - keep the final alignment of sp (sp & 0xf)
921 * - make sure the 32-bit value at the first 16 byte aligned position of
922 * AUXV is greater than 16 for glibc compatibility.
923 * AT_IGNOREPPC is used for that.
924 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
925 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
926 */
0bccf03d 927#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
928#define ARCH_DLINFO \
929 do { \
623e250a 930 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 931 /* \
82991bed
PM
932 * Handle glibc compatibility: these magic entries must \
933 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
934 */ \
935 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
936 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
937 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
938 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
939 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 940 } while (0)
f5155289 941
67867308
FB
942static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
943{
67867308 944 _regs->gpr[1] = infop->start_stack;
74154d7e 945#if defined(TARGET_PPC64)
d90b94cd 946 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
947 uint64_t val;
948 get_user_u64(val, infop->entry + 8);
949 _regs->gpr[2] = val + infop->load_bias;
950 get_user_u64(val, infop->entry);
951 infop->entry = val + infop->load_bias;
d90b94cd
DK
952 } else {
953 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
954 }
84409ddb 955#endif
67867308
FB
956 _regs->nip = infop->entry;
957}
958
e2f3e741
NF
959/* See linux kernel: arch/powerpc/include/asm/elf.h. */
960#define ELF_NREG 48
961typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
962
05390248 963static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
964{
965 int i;
966 target_ulong ccr = 0;
967
968 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 969 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
970 }
971
86cd7b2d
PB
972 (*regs)[32] = tswapreg(env->nip);
973 (*regs)[33] = tswapreg(env->msr);
974 (*regs)[35] = tswapreg(env->ctr);
975 (*regs)[36] = tswapreg(env->lr);
10de0521 976 (*regs)[37] = tswapreg(cpu_read_xer(env));
e2f3e741 977
2060436a 978 ccr = ppc_get_cr(env);
86cd7b2d 979 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
980}
981
982#define USE_ELF_CORE_DUMP
d97ef72e 983#define ELF_EXEC_PAGESIZE 4096
67867308
FB
984
985#endif
986
3418fe25
SG
987#ifdef TARGET_LOONGARCH64
988
989#define ELF_START_MMAP 0x80000000
990
991#define ELF_CLASS ELFCLASS64
992#define ELF_ARCH EM_LOONGARCH
872f3d04 993#define EXSTACK_DEFAULT true
3418fe25
SG
994
995#define elf_check_arch(x) ((x) == EM_LOONGARCH)
996
997static inline void init_thread(struct target_pt_regs *regs,
998 struct image_info *infop)
999{
1000 /*Set crmd PG,DA = 1,0 */
1001 regs->csr.crmd = 2 << 3;
1002 regs->csr.era = infop->entry;
1003 regs->regs[3] = infop->start_stack;
1004}
1005
1006/* See linux kernel: arch/loongarch/include/asm/elf.h */
1007#define ELF_NREG 45
1008typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1009
1010enum {
1011 TARGET_EF_R0 = 0,
1012 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1013 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1014};
1015
1016static void elf_core_copy_regs(target_elf_gregset_t *regs,
1017 const CPULoongArchState *env)
1018{
1019 int i;
1020
1021 (*regs)[TARGET_EF_R0] = 0;
1022
1023 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1024 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1025 }
1026
1027 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1028 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1029}
1030
1031#define USE_ELF_CORE_DUMP
1032#define ELF_EXEC_PAGESIZE 4096
1033
1034#define ELF_HWCAP get_elf_hwcap()
1035
1036/* See arch/loongarch/include/uapi/asm/hwcap.h */
1037enum {
1038 HWCAP_LOONGARCH_CPUCFG = (1 << 0),
1039 HWCAP_LOONGARCH_LAM = (1 << 1),
1040 HWCAP_LOONGARCH_UAL = (1 << 2),
1041 HWCAP_LOONGARCH_FPU = (1 << 3),
1042 HWCAP_LOONGARCH_LSX = (1 << 4),
1043 HWCAP_LOONGARCH_LASX = (1 << 5),
1044 HWCAP_LOONGARCH_CRC32 = (1 << 6),
1045 HWCAP_LOONGARCH_COMPLEX = (1 << 7),
1046 HWCAP_LOONGARCH_CRYPTO = (1 << 8),
1047 HWCAP_LOONGARCH_LVZ = (1 << 9),
1048 HWCAP_LOONGARCH_LBT_X86 = (1 << 10),
1049 HWCAP_LOONGARCH_LBT_ARM = (1 << 11),
1050 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1051};
1052
1053static uint32_t get_elf_hwcap(void)
1054{
1055 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1056 uint32_t hwcaps = 0;
1057
1058 hwcaps |= HWCAP_LOONGARCH_CRC32;
1059
1060 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1061 hwcaps |= HWCAP_LOONGARCH_UAL;
1062 }
1063
1064 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1065 hwcaps |= HWCAP_LOONGARCH_FPU;
1066 }
1067
1068 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1069 hwcaps |= HWCAP_LOONGARCH_LAM;
1070 }
1071
1072 return hwcaps;
1073}
1074
1075#define ELF_PLATFORM "loongarch"
1076
1077#endif /* TARGET_LOONGARCH64 */
1078
048f6b4d
FB
1079#ifdef TARGET_MIPS
1080
1081#define ELF_START_MMAP 0x80000000
1082
388bb21a
TS
1083#ifdef TARGET_MIPS64
1084#define ELF_CLASS ELFCLASS64
1085#else
048f6b4d 1086#define ELF_CLASS ELFCLASS32
388bb21a 1087#endif
048f6b4d 1088#define ELF_ARCH EM_MIPS
872f3d04 1089#define EXSTACK_DEFAULT true
048f6b4d 1090
ace3d654
CMAB
1091#ifdef TARGET_ABI_MIPSN32
1092#define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1093#else
1094#define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1095#endif
1096
fbf47c18
JY
1097#define ELF_BASE_PLATFORM get_elf_base_platform()
1098
1099#define MATCH_PLATFORM_INSN(_flags, _base_platform) \
1100 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1101 { return _base_platform; } } while (0)
1102
1103static const char *get_elf_base_platform(void)
1104{
1105 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1106
1107 /* 64 bit ISAs goes first */
1108 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1109 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1110 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1111 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1112 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1113 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1114 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1115
1116 /* 32 bit ISAs */
1117 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1118 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1119 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1120 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1121 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1122
1123 /* Fallback */
1124 return "mips";
1125}
1126#undef MATCH_PLATFORM_INSN
1127
d97ef72e
RH
1128static inline void init_thread(struct target_pt_regs *regs,
1129 struct image_info *infop)
048f6b4d 1130{
623a930e 1131 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
1132 regs->cp0_epc = infop->entry;
1133 regs->regs[29] = infop->start_stack;
1134}
1135
51e52606
NF
1136/* See linux kernel: arch/mips/include/asm/elf.h. */
1137#define ELF_NREG 45
1138typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1139
1140/* See linux kernel: arch/mips/include/asm/reg.h. */
1141enum {
1142#ifdef TARGET_MIPS64
1143 TARGET_EF_R0 = 0,
1144#else
1145 TARGET_EF_R0 = 6,
1146#endif
1147 TARGET_EF_R26 = TARGET_EF_R0 + 26,
1148 TARGET_EF_R27 = TARGET_EF_R0 + 27,
1149 TARGET_EF_LO = TARGET_EF_R0 + 32,
1150 TARGET_EF_HI = TARGET_EF_R0 + 33,
1151 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1152 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1153 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1154 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1155};
1156
1157/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1158static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
1159{
1160 int i;
1161
1162 for (i = 0; i < TARGET_EF_R0; i++) {
1163 (*regs)[i] = 0;
1164 }
1165 (*regs)[TARGET_EF_R0] = 0;
1166
1167 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 1168 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
1169 }
1170
1171 (*regs)[TARGET_EF_R26] = 0;
1172 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
1173 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1174 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1175 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1176 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1177 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1178 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
1179}
1180
1181#define USE_ELF_CORE_DUMP
388bb21a
TS
1182#define ELF_EXEC_PAGESIZE 4096
1183
46a1ee4f
JC
1184/* See arch/mips/include/uapi/asm/hwcap.h. */
1185enum {
1186 HWCAP_MIPS_R6 = (1 << 0),
1187 HWCAP_MIPS_MSA = (1 << 1),
9ea313ba
PMD
1188 HWCAP_MIPS_CRC32 = (1 << 2),
1189 HWCAP_MIPS_MIPS16 = (1 << 3),
1190 HWCAP_MIPS_MDMX = (1 << 4),
1191 HWCAP_MIPS_MIPS3D = (1 << 5),
1192 HWCAP_MIPS_SMARTMIPS = (1 << 6),
1193 HWCAP_MIPS_DSP = (1 << 7),
1194 HWCAP_MIPS_DSP2 = (1 << 8),
1195 HWCAP_MIPS_DSP3 = (1 << 9),
1196 HWCAP_MIPS_MIPS16E2 = (1 << 10),
1197 HWCAP_LOONGSON_MMI = (1 << 11),
1198 HWCAP_LOONGSON_EXT = (1 << 12),
1199 HWCAP_LOONGSON_EXT2 = (1 << 13),
1200 HWCAP_LOONGSON_CPUCFG = (1 << 14),
46a1ee4f
JC
1201};
1202
1203#define ELF_HWCAP get_elf_hwcap()
1204
7d9a3d96 1205#define GET_FEATURE_INSN(_flag, _hwcap) \
6dd97bfc
PMD
1206 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1207
388765a0
PMD
1208#define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1209 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1210
ce543844
PMD
1211#define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1212 do { \
1213 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1214 hwcaps |= _hwcap; \
1215 } \
1216 } while (0)
1217
46a1ee4f
JC
1218static uint32_t get_elf_hwcap(void)
1219{
1220 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1221 uint32_t hwcaps = 0;
1222
ce543844
PMD
1223 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1224 2, HWCAP_MIPS_R6);
388765a0 1225 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
53673d0f
PMD
1226 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1227 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
46a1ee4f 1228
46a1ee4f
JC
1229 return hwcaps;
1230}
1231
ce543844 1232#undef GET_FEATURE_REG_EQU
388765a0 1233#undef GET_FEATURE_REG_SET
7d9a3d96 1234#undef GET_FEATURE_INSN
6dd97bfc 1235
048f6b4d
FB
1236#endif /* TARGET_MIPS */
1237
b779e29e
EI
1238#ifdef TARGET_MICROBLAZE
1239
1240#define ELF_START_MMAP 0x80000000
1241
0d5d4699 1242#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
1243
1244#define ELF_CLASS ELFCLASS32
0d5d4699 1245#define ELF_ARCH EM_MICROBLAZE
b779e29e 1246
d97ef72e
RH
1247static inline void init_thread(struct target_pt_regs *regs,
1248 struct image_info *infop)
b779e29e
EI
1249{
1250 regs->pc = infop->entry;
1251 regs->r1 = infop->start_stack;
1252
1253}
1254
b779e29e
EI
1255#define ELF_EXEC_PAGESIZE 4096
1256
e4cbd44d
EI
1257#define USE_ELF_CORE_DUMP
1258#define ELF_NREG 38
1259typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1260
1261/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1262static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
1263{
1264 int i, pos = 0;
1265
1266 for (i = 0; i < 32; i++) {
86cd7b2d 1267 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
1268 }
1269
af20a93a 1270 (*regs)[pos++] = tswapreg(env->pc);
1074c0fb 1271 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
af20a93a
RH
1272 (*regs)[pos++] = 0;
1273 (*regs)[pos++] = tswapreg(env->ear);
1274 (*regs)[pos++] = 0;
1275 (*regs)[pos++] = tswapreg(env->esr);
e4cbd44d
EI
1276}
1277
b779e29e
EI
1278#endif /* TARGET_MICROBLAZE */
1279
a0a839b6
MV
1280#ifdef TARGET_NIOS2
1281
1282#define ELF_START_MMAP 0x80000000
1283
1284#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1285
1286#define ELF_CLASS ELFCLASS32
1287#define ELF_ARCH EM_ALTERA_NIOS2
1288
1289static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1290{
1291 regs->ea = infop->entry;
1292 regs->sp = infop->start_stack;
a0a839b6
MV
1293}
1294
f5ef0e51
RH
1295#define LO_COMMPAGE TARGET_PAGE_SIZE
1296
1297static bool init_guest_commpage(void)
1298{
1299 static const uint8_t kuser_page[4 + 2 * 64] = {
1300 /* __kuser_helper_version */
1301 [0x00] = 0x02, 0x00, 0x00, 0x00,
1302
1303 /* __kuser_cmpxchg */
1304 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */
1305 0x3a, 0x28, 0x00, 0xf8, /* ret */
1306
1307 /* __kuser_sigtramp */
1308 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */
1309 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */
1310 };
1311
1312 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1313 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1314 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1315
1316 if (addr == MAP_FAILED) {
1317 perror("Allocating guest commpage");
1318 exit(EXIT_FAILURE);
1319 }
1320 if (addr != want) {
1321 return false;
1322 }
1323
1324 memcpy(addr, kuser_page, sizeof(kuser_page));
1325
1326 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1327 perror("Protecting guest commpage");
1328 exit(EXIT_FAILURE);
1329 }
1330
49840a4a 1331 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
f5ef0e51
RH
1332 PAGE_READ | PAGE_EXEC | PAGE_VALID);
1333 return true;
1334}
1335
a0a839b6
MV
1336#define ELF_EXEC_PAGESIZE 4096
1337
1338#define USE_ELF_CORE_DUMP
1339#define ELF_NREG 49
1340typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1341
1342/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1343static void elf_core_copy_regs(target_elf_gregset_t *regs,
1344 const CPUNios2State *env)
1345{
1346 int i;
1347
1348 (*regs)[0] = -1;
1349 for (i = 1; i < 8; i++) /* r0-r7 */
1350 (*regs)[i] = tswapreg(env->regs[i + 7]);
1351
1352 for (i = 8; i < 16; i++) /* r8-r15 */
1353 (*regs)[i] = tswapreg(env->regs[i - 8]);
1354
1355 for (i = 16; i < 24; i++) /* r16-r23 */
1356 (*regs)[i] = tswapreg(env->regs[i + 7]);
1357 (*regs)[24] = -1; /* R_ET */
1358 (*regs)[25] = -1; /* R_BT */
1359 (*regs)[26] = tswapreg(env->regs[R_GP]);
1360 (*regs)[27] = tswapreg(env->regs[R_SP]);
1361 (*regs)[28] = tswapreg(env->regs[R_FP]);
1362 (*regs)[29] = tswapreg(env->regs[R_EA]);
1363 (*regs)[30] = -1; /* R_SSTATUS */
1364 (*regs)[31] = tswapreg(env->regs[R_RA]);
1365
17a406ee 1366 (*regs)[32] = tswapreg(env->pc);
a0a839b6
MV
1367
1368 (*regs)[33] = -1; /* R_STATUS */
1369 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1370
1371 for (i = 35; i < 49; i++) /* ... */
1372 (*regs)[i] = -1;
1373}
1374
1375#endif /* TARGET_NIOS2 */
1376
d962783e
JL
1377#ifdef TARGET_OPENRISC
1378
1379#define ELF_START_MMAP 0x08000000
1380
d962783e
JL
1381#define ELF_ARCH EM_OPENRISC
1382#define ELF_CLASS ELFCLASS32
1383#define ELF_DATA ELFDATA2MSB
1384
1385static inline void init_thread(struct target_pt_regs *regs,
1386 struct image_info *infop)
1387{
1388 regs->pc = infop->entry;
1389 regs->gpr[1] = infop->start_stack;
1390}
1391
1392#define USE_ELF_CORE_DUMP
1393#define ELF_EXEC_PAGESIZE 8192
1394
1395/* See linux kernel arch/openrisc/include/asm/elf.h. */
1396#define ELF_NREG 34 /* gprs and pc, sr */
1397typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1398
1399static void elf_core_copy_regs(target_elf_gregset_t *regs,
1400 const CPUOpenRISCState *env)
1401{
1402 int i;
1403
1404 for (i = 0; i < 32; i++) {
d89e71e8 1405 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1406 }
86cd7b2d 1407 (*regs)[32] = tswapreg(env->pc);
84775c43 1408 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1409}
1410#define ELF_HWCAP 0
1411#define ELF_PLATFORM NULL
1412
1413#endif /* TARGET_OPENRISC */
1414
fdf9b3e8
FB
1415#ifdef TARGET_SH4
1416
1417#define ELF_START_MMAP 0x80000000
1418
fdf9b3e8 1419#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1420#define ELF_ARCH EM_SH
1421
d97ef72e
RH
1422static inline void init_thread(struct target_pt_regs *regs,
1423 struct image_info *infop)
fdf9b3e8 1424{
d97ef72e
RH
1425 /* Check other registers XXXXX */
1426 regs->pc = infop->entry;
1427 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1428}
1429
7631c97e
NF
1430/* See linux kernel: arch/sh/include/asm/elf.h. */
1431#define ELF_NREG 23
1432typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1433
1434/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1435enum {
1436 TARGET_REG_PC = 16,
1437 TARGET_REG_PR = 17,
1438 TARGET_REG_SR = 18,
1439 TARGET_REG_GBR = 19,
1440 TARGET_REG_MACH = 20,
1441 TARGET_REG_MACL = 21,
1442 TARGET_REG_SYSCALL = 22
1443};
1444
d97ef72e 1445static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1446 const CPUSH4State *env)
7631c97e
NF
1447{
1448 int i;
1449
1450 for (i = 0; i < 16; i++) {
72cd500b 1451 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1452 }
1453
86cd7b2d
PB
1454 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1455 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1456 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1457 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1458 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1459 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1460 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1461}
1462
1463#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1464#define ELF_EXEC_PAGESIZE 4096
1465
e42fd944
RH
1466enum {
1467 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1468 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1469 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1470 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1471 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1472 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1473 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1474 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1475 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1476 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1477};
1478
1479#define ELF_HWCAP get_elf_hwcap()
1480
1481static uint32_t get_elf_hwcap(void)
1482{
1483 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1484 uint32_t hwcap = 0;
1485
1486 hwcap |= SH_CPU_HAS_FPU;
1487
1488 if (cpu->env.features & SH_FEATURE_SH4A) {
1489 hwcap |= SH_CPU_HAS_LLSC;
1490 }
1491
1492 return hwcap;
1493}
1494
fdf9b3e8
FB
1495#endif
1496
48733d19
TS
1497#ifdef TARGET_CRIS
1498
1499#define ELF_START_MMAP 0x80000000
1500
48733d19 1501#define ELF_CLASS ELFCLASS32
48733d19
TS
1502#define ELF_ARCH EM_CRIS
1503
d97ef72e
RH
1504static inline void init_thread(struct target_pt_regs *regs,
1505 struct image_info *infop)
48733d19 1506{
d97ef72e 1507 regs->erp = infop->entry;
48733d19
TS
1508}
1509
48733d19
TS
1510#define ELF_EXEC_PAGESIZE 8192
1511
1512#endif
1513
e6e5906b
PB
1514#ifdef TARGET_M68K
1515
1516#define ELF_START_MMAP 0x80000000
1517
d97ef72e 1518#define ELF_CLASS ELFCLASS32
d97ef72e 1519#define ELF_ARCH EM_68K
e6e5906b
PB
1520
1521/* ??? Does this need to do anything?
d97ef72e 1522 #define ELF_PLAT_INIT(_r) */
e6e5906b 1523
d97ef72e
RH
1524static inline void init_thread(struct target_pt_regs *regs,
1525 struct image_info *infop)
e6e5906b
PB
1526{
1527 regs->usp = infop->start_stack;
1528 regs->sr = 0;
1529 regs->pc = infop->entry;
1530}
1531
7a93cc55
NF
1532/* See linux kernel: arch/m68k/include/asm/elf.h. */
1533#define ELF_NREG 20
1534typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1535
05390248 1536static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1537{
86cd7b2d
PB
1538 (*regs)[0] = tswapreg(env->dregs[1]);
1539 (*regs)[1] = tswapreg(env->dregs[2]);
1540 (*regs)[2] = tswapreg(env->dregs[3]);
1541 (*regs)[3] = tswapreg(env->dregs[4]);
1542 (*regs)[4] = tswapreg(env->dregs[5]);
1543 (*regs)[5] = tswapreg(env->dregs[6]);
1544 (*regs)[6] = tswapreg(env->dregs[7]);
1545 (*regs)[7] = tswapreg(env->aregs[0]);
1546 (*regs)[8] = tswapreg(env->aregs[1]);
1547 (*regs)[9] = tswapreg(env->aregs[2]);
1548 (*regs)[10] = tswapreg(env->aregs[3]);
1549 (*regs)[11] = tswapreg(env->aregs[4]);
1550 (*regs)[12] = tswapreg(env->aregs[5]);
1551 (*regs)[13] = tswapreg(env->aregs[6]);
1552 (*regs)[14] = tswapreg(env->dregs[0]);
1553 (*regs)[15] = tswapreg(env->aregs[7]);
1554 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1555 (*regs)[17] = tswapreg(env->sr);
1556 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1557 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1558}
1559
1560#define USE_ELF_CORE_DUMP
d97ef72e 1561#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1562
1563#endif
1564
7a3148a9
JM
1565#ifdef TARGET_ALPHA
1566
1567#define ELF_START_MMAP (0x30000000000ULL)
1568
7a3148a9 1569#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1570#define ELF_ARCH EM_ALPHA
1571
d97ef72e
RH
1572static inline void init_thread(struct target_pt_regs *regs,
1573 struct image_info *infop)
7a3148a9
JM
1574{
1575 regs->pc = infop->entry;
1576 regs->ps = 8;
1577 regs->usp = infop->start_stack;
7a3148a9
JM
1578}
1579
7a3148a9
JM
1580#define ELF_EXEC_PAGESIZE 8192
1581
1582#endif /* TARGET_ALPHA */
1583
a4c075f1
UH
1584#ifdef TARGET_S390X
1585
1586#define ELF_START_MMAP (0x20000000000ULL)
1587
a4c075f1
UH
1588#define ELF_CLASS ELFCLASS64
1589#define ELF_DATA ELFDATA2MSB
1590#define ELF_ARCH EM_S390
1591
6d88baf1
DH
1592#include "elf.h"
1593
1594#define ELF_HWCAP get_elf_hwcap()
1595
1596#define GET_FEATURE(_feat, _hwcap) \
1597 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1598
e1b819c8 1599uint32_t get_elf_hwcap(void)
6d88baf1
DH
1600{
1601 /*
1602 * Let's assume we always have esan3 and zarch.
1603 * 31-bit processes can use 64-bit registers (high gprs).
1604 */
1605 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1606
1607 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1608 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1609 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1610 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1611 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1612 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1613 hwcap |= HWCAP_S390_ETF3EH;
1614 }
1615 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
da215c23 1616 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
6d88baf1
DH
1617
1618 return hwcap;
1619}
1620
e19807be
IL
1621const char *elf_hwcap_str(uint32_t bit)
1622{
1623 static const char *hwcap_str[] = {
7f114a58
IL
1624 [HWCAP_S390_NR_ESAN3] = "esan3",
1625 [HWCAP_S390_NR_ZARCH] = "zarch",
1626 [HWCAP_S390_NR_STFLE] = "stfle",
1627 [HWCAP_S390_NR_MSA] = "msa",
1628 [HWCAP_S390_NR_LDISP] = "ldisp",
1629 [HWCAP_S390_NR_EIMM] = "eimm",
1630 [HWCAP_S390_NR_DFP] = "dfp",
1631 [HWCAP_S390_NR_HPAGE] = "edat",
1632 [HWCAP_S390_NR_ETF3EH] = "etf3eh",
1633 [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1634 [HWCAP_S390_NR_TE] = "te",
1635 [HWCAP_S390_NR_VXRS] = "vx",
1636 [HWCAP_S390_NR_VXRS_BCD] = "vxd",
1637 [HWCAP_S390_NR_VXRS_EXT] = "vxe",
1638 [HWCAP_S390_NR_GS] = "gs",
1639 [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1640 [HWCAP_S390_NR_VXRS_PDE] = "vxp",
1641 [HWCAP_S390_NR_SORT] = "sort",
1642 [HWCAP_S390_NR_DFLT] = "dflt",
1643 [HWCAP_S390_NR_NNPA] = "nnpa",
1644 [HWCAP_S390_NR_PCI_MIO] = "pcimio",
1645 [HWCAP_S390_NR_SIE] = "sie",
e19807be
IL
1646 };
1647
1648 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1649}
1650
a4c075f1
UH
1651static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1652{
1653 regs->psw.addr = infop->entry;
78a1e153
IL
1654 regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1655 PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1656 PSW_MASK_32;
a4c075f1
UH
1657 regs->gprs[15] = infop->start_stack;
1658}
1659
4a1e8931
IL
1660/* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1661#define ELF_NREG 27
1662typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1663
1664enum {
1665 TARGET_REG_PSWM = 0,
1666 TARGET_REG_PSWA = 1,
1667 TARGET_REG_GPRS = 2,
1668 TARGET_REG_ARS = 18,
1669 TARGET_REG_ORIG_R2 = 26,
1670};
1671
1672static void elf_core_copy_regs(target_elf_gregset_t *regs,
1673 const CPUS390XState *env)
1674{
1675 int i;
1676 uint32_t *aregs;
1677
1678 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1679 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1680 for (i = 0; i < 16; i++) {
1681 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1682 }
1683 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1684 for (i = 0; i < 16; i++) {
1685 aregs[i] = tswap32(env->aregs[i]);
1686 }
1687 (*regs)[TARGET_REG_ORIG_R2] = 0;
1688}
1689
1690#define USE_ELF_CORE_DUMP
1691#define ELF_EXEC_PAGESIZE 4096
1692
a4c075f1
UH
1693#endif /* TARGET_S390X */
1694
47ae93cd
MC
1695#ifdef TARGET_RISCV
1696
1697#define ELF_START_MMAP 0x80000000
1698#define ELF_ARCH EM_RISCV
1699
1700#ifdef TARGET_RISCV32
1701#define ELF_CLASS ELFCLASS32
1702#else
1703#define ELF_CLASS ELFCLASS64
1704#endif
1705
cb46938c
KC
1706#define ELF_HWCAP get_elf_hwcap()
1707
1708static uint32_t get_elf_hwcap(void)
1709{
1710#define MISA_BIT(EXT) (1 << (EXT - 'A'))
1711 RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1712 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1713 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1714
e91a7227 1715 return cpu->env.misa_ext & mask;
cb46938c
KC
1716#undef MISA_BIT
1717}
1718
47ae93cd
MC
1719static inline void init_thread(struct target_pt_regs *regs,
1720 struct image_info *infop)
1721{
1722 regs->sepc = infop->entry;
1723 regs->sp = infop->start_stack;
1724}
1725
1726#define ELF_EXEC_PAGESIZE 4096
1727
1728#endif /* TARGET_RISCV */
1729
7c248bcd
RH
1730#ifdef TARGET_HPPA
1731
1732#define ELF_START_MMAP 0x80000000
1733#define ELF_CLASS ELFCLASS32
1734#define ELF_ARCH EM_PARISC
1735#define ELF_PLATFORM "PARISC"
1736#define STACK_GROWS_DOWN 0
1737#define STACK_ALIGNMENT 64
1738
1739static inline void init_thread(struct target_pt_regs *regs,
1740 struct image_info *infop)
1741{
1742 regs->iaoq[0] = infop->entry;
1743 regs->iaoq[1] = infop->entry + 4;
1744 regs->gr[23] = 0;
60f1c801
RH
1745 regs->gr[24] = infop->argv;
1746 regs->gr[25] = infop->argc;
7c248bcd
RH
1747 /* The top-of-stack contains a linkage buffer. */
1748 regs->gr[30] = infop->start_stack + 64;
1749 regs->gr[31] = infop->entry;
1750}
1751
eee816c0
RH
1752#define LO_COMMPAGE 0
1753
1754static bool init_guest_commpage(void)
1755{
1756 void *want = g2h_untagged(LO_COMMPAGE);
1757 void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1758 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1759
1760 if (addr == MAP_FAILED) {
1761 perror("Allocating guest commpage");
1762 exit(EXIT_FAILURE);
1763 }
1764 if (addr != want) {
1765 return false;
1766 }
1767
1768 /*
1769 * On Linux, page zero is normally marked execute only + gateway.
1770 * Normal read or write is supposed to fail (thus PROT_NONE above),
1771 * but specific offsets have kernel code mapped to raise permissions
1772 * and implement syscalls. Here, simply mark the page executable.
1773 * Special case the entry points during translation (see do_page_zero).
1774 */
49840a4a 1775 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
eee816c0
RH
1776 PAGE_EXEC | PAGE_VALID);
1777 return true;
1778}
1779
7c248bcd
RH
1780#endif /* TARGET_HPPA */
1781
ba7651fb
MF
1782#ifdef TARGET_XTENSA
1783
1784#define ELF_START_MMAP 0x20000000
1785
1786#define ELF_CLASS ELFCLASS32
1787#define ELF_ARCH EM_XTENSA
1788
1789static inline void init_thread(struct target_pt_regs *regs,
1790 struct image_info *infop)
1791{
1792 regs->windowbase = 0;
1793 regs->windowstart = 1;
1794 regs->areg[1] = infop->start_stack;
1795 regs->pc = infop->entry;
d2796be6
MF
1796 if (info_is_fdpic(infop)) {
1797 regs->areg[4] = infop->loadmap_addr;
1798 regs->areg[5] = infop->interpreter_loadmap_addr;
1799 if (infop->interpreter_loadmap_addr) {
1800 regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1801 } else {
1802 regs->areg[6] = infop->pt_dynamic_addr;
1803 }
1804 }
ba7651fb
MF
1805}
1806
1807/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1808#define ELF_NREG 128
1809typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1810
1811enum {
1812 TARGET_REG_PC,
1813 TARGET_REG_PS,
1814 TARGET_REG_LBEG,
1815 TARGET_REG_LEND,
1816 TARGET_REG_LCOUNT,
1817 TARGET_REG_SAR,
1818 TARGET_REG_WINDOWSTART,
1819 TARGET_REG_WINDOWBASE,
1820 TARGET_REG_THREADPTR,
1821 TARGET_REG_AR0 = 64,
1822};
1823
1824static void elf_core_copy_regs(target_elf_gregset_t *regs,
1825 const CPUXtensaState *env)
1826{
1827 unsigned i;
1828
1829 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1830 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1831 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1832 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1833 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1834 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1835 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1836 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1837 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1838 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1839 for (i = 0; i < env->config->nareg; ++i) {
1840 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1841 }
1842}
1843
1844#define USE_ELF_CORE_DUMP
1845#define ELF_EXEC_PAGESIZE 4096
1846
1847#endif /* TARGET_XTENSA */
1848
d2a56bd2
TS
1849#ifdef TARGET_HEXAGON
1850
1851#define ELF_START_MMAP 0x20000000
1852
1853#define ELF_CLASS ELFCLASS32
1854#define ELF_ARCH EM_HEXAGON
1855
1856static inline void init_thread(struct target_pt_regs *regs,
1857 struct image_info *infop)
1858{
1859 regs->sepc = infop->entry;
1860 regs->sp = infop->start_stack;
1861}
1862
1863#endif /* TARGET_HEXAGON */
1864
fcdc0ab4
JY
1865#ifndef ELF_BASE_PLATFORM
1866#define ELF_BASE_PLATFORM (NULL)
1867#endif
1868
15338fd7
FB
1869#ifndef ELF_PLATFORM
1870#define ELF_PLATFORM (NULL)
1871#endif
1872
75be901c
PC
1873#ifndef ELF_MACHINE
1874#define ELF_MACHINE ELF_ARCH
1875#endif
1876
d276a604
PC
1877#ifndef elf_check_arch
1878#define elf_check_arch(x) ((x) == ELF_ARCH)
1879#endif
1880
ace3d654
CMAB
1881#ifndef elf_check_abi
1882#define elf_check_abi(x) (1)
1883#endif
1884
15338fd7
FB
1885#ifndef ELF_HWCAP
1886#define ELF_HWCAP 0
1887#endif
1888
7c4ee5bc
RH
1889#ifndef STACK_GROWS_DOWN
1890#define STACK_GROWS_DOWN 1
1891#endif
1892
1893#ifndef STACK_ALIGNMENT
1894#define STACK_ALIGNMENT 16
1895#endif
1896
992f48a0 1897#ifdef TARGET_ABI32
cb33da57 1898#undef ELF_CLASS
992f48a0 1899#define ELF_CLASS ELFCLASS32
cb33da57
BS
1900#undef bswaptls
1901#define bswaptls(ptr) bswap32s(ptr)
1902#endif
1903
872f3d04
RH
1904#ifndef EXSTACK_DEFAULT
1905#define EXSTACK_DEFAULT false
1906#endif
1907
31e31b8a 1908#include "elf.h"
09bfb054 1909
e8384b37
RH
1910/* We must delay the following stanzas until after "elf.h". */
1911#if defined(TARGET_AARCH64)
1912
1913static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1914 const uint32_t *data,
1915 struct image_info *info,
1916 Error **errp)
1917{
1918 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1919 if (pr_datasz != sizeof(uint32_t)) {
1920 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1921 return false;
1922 }
1923 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1924 info->note_flags = *data;
1925 }
1926 return true;
1927}
1928#define ARCH_USE_GNU_PROPERTY 1
1929
1930#else
1931
83f990eb
RH
1932static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1933 const uint32_t *data,
1934 struct image_info *info,
1935 Error **errp)
1936{
1937 g_assert_not_reached();
1938}
1939#define ARCH_USE_GNU_PROPERTY 0
1940
e8384b37
RH
1941#endif
1942
09bfb054
FB
1943struct exec
1944{
d97ef72e
RH
1945 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1946 unsigned int a_text; /* length of text, in bytes */
1947 unsigned int a_data; /* length of data, in bytes */
1948 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1949 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1950 unsigned int a_entry; /* start address */
1951 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1952 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1953};
1954
1955
1956#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1957#define OMAGIC 0407
1958#define NMAGIC 0410
1959#define ZMAGIC 0413
1960#define QMAGIC 0314
1961
31e31b8a 1962/* Necessary parameters */
94894ff2
SB
1963#define TARGET_ELF_EXEC_PAGESIZE \
1964 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1965 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1966#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
79cb1f1d
YK
1967#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1968 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1969#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1970
e0d1673d 1971#define DLINFO_ITEMS 16
31e31b8a 1972
09bfb054
FB
1973static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1974{
d97ef72e 1975 memcpy(to, from, n);
09bfb054 1976}
d691f669 1977
31e31b8a 1978#ifdef BSWAP_NEEDED
92a31b1f 1979static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1980{
d97ef72e
RH
1981 bswap16s(&ehdr->e_type); /* Object file type */
1982 bswap16s(&ehdr->e_machine); /* Architecture */
1983 bswap32s(&ehdr->e_version); /* Object file version */
1984 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1985 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1986 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1987 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1988 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1989 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1990 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1991 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1992 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1993 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1994}
1995
991f8f0c 1996static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1997{
991f8f0c
RH
1998 int i;
1999 for (i = 0; i < phnum; ++i, ++phdr) {
2000 bswap32s(&phdr->p_type); /* Segment type */
2001 bswap32s(&phdr->p_flags); /* Segment flags */
2002 bswaptls(&phdr->p_offset); /* Segment file offset */
2003 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
2004 bswaptls(&phdr->p_paddr); /* Segment physical address */
2005 bswaptls(&phdr->p_filesz); /* Segment size in file */
2006 bswaptls(&phdr->p_memsz); /* Segment size in memory */
2007 bswaptls(&phdr->p_align); /* Segment alignment */
2008 }
31e31b8a 2009}
689f936f 2010
991f8f0c 2011static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 2012{
991f8f0c
RH
2013 int i;
2014 for (i = 0; i < shnum; ++i, ++shdr) {
2015 bswap32s(&shdr->sh_name);
2016 bswap32s(&shdr->sh_type);
2017 bswaptls(&shdr->sh_flags);
2018 bswaptls(&shdr->sh_addr);
2019 bswaptls(&shdr->sh_offset);
2020 bswaptls(&shdr->sh_size);
2021 bswap32s(&shdr->sh_link);
2022 bswap32s(&shdr->sh_info);
2023 bswaptls(&shdr->sh_addralign);
2024 bswaptls(&shdr->sh_entsize);
2025 }
689f936f
FB
2026}
2027
7a3148a9 2028static void bswap_sym(struct elf_sym *sym)
689f936f
FB
2029{
2030 bswap32s(&sym->st_name);
7a3148a9
JM
2031 bswaptls(&sym->st_value);
2032 bswaptls(&sym->st_size);
689f936f
FB
2033 bswap16s(&sym->st_shndx);
2034}
5dd0db52
SM
2035
2036#ifdef TARGET_MIPS
2037static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2038{
2039 bswap16s(&abiflags->version);
2040 bswap32s(&abiflags->ases);
2041 bswap32s(&abiflags->isa_ext);
2042 bswap32s(&abiflags->flags1);
2043 bswap32s(&abiflags->flags2);
2044}
2045#endif
991f8f0c
RH
2046#else
2047static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2048static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2049static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2050static inline void bswap_sym(struct elf_sym *sym) { }
5dd0db52
SM
2051#ifdef TARGET_MIPS
2052static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2053#endif
31e31b8a
FB
2054#endif
2055
edf8e2af 2056#ifdef USE_ELF_CORE_DUMP
9349b4f9 2057static int elf_core_dump(int, const CPUArchState *);
edf8e2af 2058#endif /* USE_ELF_CORE_DUMP */
682674b8 2059static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 2060
9058abdd
RH
2061/* Verify the portions of EHDR within E_IDENT for the target.
2062 This can be performed before bswapping the entire header. */
2063static bool elf_check_ident(struct elfhdr *ehdr)
2064{
2065 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2066 && ehdr->e_ident[EI_MAG1] == ELFMAG1
2067 && ehdr->e_ident[EI_MAG2] == ELFMAG2
2068 && ehdr->e_ident[EI_MAG3] == ELFMAG3
2069 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2070 && ehdr->e_ident[EI_DATA] == ELF_DATA
2071 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2072}
2073
2074/* Verify the portions of EHDR outside of E_IDENT for the target.
2075 This has to wait until after bswapping the header. */
2076static bool elf_check_ehdr(struct elfhdr *ehdr)
2077{
2078 return (elf_check_arch(ehdr->e_machine)
ace3d654 2079 && elf_check_abi(ehdr->e_flags)
9058abdd
RH
2080 && ehdr->e_ehsize == sizeof(struct elfhdr)
2081 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
2082 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2083}
2084
31e31b8a 2085/*
e5fe0c52 2086 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
2087 * memory to free pages in kernel mem. These are in a format ready
2088 * to be put directly into the top of new user memory.
2089 *
2090 */
59baae9a
SB
2091static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2092 abi_ulong p, abi_ulong stack_limit)
31e31b8a 2093{
59baae9a 2094 char *tmp;
7c4ee5bc 2095 int len, i;
59baae9a 2096 abi_ulong top = p;
31e31b8a
FB
2097
2098 if (!p) {
d97ef72e 2099 return 0; /* bullet-proofing */
31e31b8a 2100 }
59baae9a 2101
7c4ee5bc
RH
2102 if (STACK_GROWS_DOWN) {
2103 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2104 for (i = argc - 1; i >= 0; --i) {
2105 tmp = argv[i];
2106 if (!tmp) {
2107 fprintf(stderr, "VFS: argc is wrong");
2108 exit(-1);
2109 }
2110 len = strlen(tmp) + 1;
2111 tmp += len;
59baae9a 2112
7c4ee5bc
RH
2113 if (len > (p - stack_limit)) {
2114 return 0;
2115 }
2116 while (len) {
2117 int bytes_to_copy = (len > offset) ? offset : len;
2118 tmp -= bytes_to_copy;
2119 p -= bytes_to_copy;
2120 offset -= bytes_to_copy;
2121 len -= bytes_to_copy;
2122
2123 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2124
2125 if (offset == 0) {
2126 memcpy_to_target(p, scratch, top - p);
2127 top = p;
2128 offset = TARGET_PAGE_SIZE;
2129 }
2130 }
d97ef72e 2131 }
7c4ee5bc
RH
2132 if (p != top) {
2133 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 2134 }
7c4ee5bc
RH
2135 } else {
2136 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2137 for (i = 0; i < argc; ++i) {
2138 tmp = argv[i];
2139 if (!tmp) {
2140 fprintf(stderr, "VFS: argc is wrong");
2141 exit(-1);
2142 }
2143 len = strlen(tmp) + 1;
2144 if (len > (stack_limit - p)) {
2145 return 0;
2146 }
2147 while (len) {
2148 int bytes_to_copy = (len > remaining) ? remaining : len;
2149
2150 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2151
2152 tmp += bytes_to_copy;
2153 remaining -= bytes_to_copy;
2154 p += bytes_to_copy;
2155 len -= bytes_to_copy;
2156
2157 if (remaining == 0) {
2158 memcpy_to_target(top, scratch, p - top);
2159 top = p;
2160 remaining = TARGET_PAGE_SIZE;
2161 }
d97ef72e
RH
2162 }
2163 }
7c4ee5bc
RH
2164 if (p != top) {
2165 memcpy_to_target(top, scratch, p - top);
2166 }
59baae9a
SB
2167 }
2168
31e31b8a
FB
2169 return p;
2170}
2171
59baae9a
SB
2172/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2173 * argument/environment space. Newer kernels (>2.6.33) allow more,
2174 * dependent on stack size, but guarantee at least 32 pages for
2175 * backwards compatibility.
2176 */
2177#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2178
2179static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 2180 struct image_info *info)
53a5960a 2181{
59baae9a 2182 abi_ulong size, error, guard;
872f3d04 2183 int prot;
31e31b8a 2184
703e0e89 2185 size = guest_stack_size;
59baae9a
SB
2186 if (size < STACK_LOWER_LIMIT) {
2187 size = STACK_LOWER_LIMIT;
60dcbcb5 2188 }
f4388205
HD
2189
2190 if (STACK_GROWS_DOWN) {
2191 guard = TARGET_PAGE_SIZE;
2192 if (guard < qemu_real_host_page_size()) {
2193 guard = qemu_real_host_page_size();
2194 }
2195 } else {
2196 /* no guard page for hppa target where stack grows upwards. */
2197 guard = 0;
60dcbcb5
RH
2198 }
2199
872f3d04
RH
2200 prot = PROT_READ | PROT_WRITE;
2201 if (info->exec_stack) {
2202 prot |= PROT_EXEC;
2203 }
2204 error = target_mmap(0, size + guard, prot,
60dcbcb5 2205 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 2206 if (error == -1) {
60dcbcb5 2207 perror("mmap stack");
09bfb054
FB
2208 exit(-1);
2209 }
31e31b8a 2210
60dcbcb5 2211 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
2212 if (STACK_GROWS_DOWN) {
2213 target_mprotect(error, guard, PROT_NONE);
2214 info->stack_limit = error + guard;
2215 return info->stack_limit + size - sizeof(void *);
2216 } else {
7c4ee5bc
RH
2217 info->stack_limit = error + size;
2218 return error;
2219 }
31e31b8a
FB
2220}
2221
cf129f3a
RH
2222/* Map and zero the bss. We need to explicitly zero any fractional pages
2223 after the data section (i.e. bss). */
2224static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 2225{
cf129f3a
RH
2226 uintptr_t host_start, host_map_start, host_end;
2227
2228 last_bss = TARGET_PAGE_ALIGN(last_bss);
2229
2230 /* ??? There is confusion between qemu_real_host_page_size and
2231 qemu_host_page_size here and elsewhere in target_mmap, which
2232 may lead to the end of the data section mapping from the file
2233 not being mapped. At least there was an explicit test and
2234 comment for that here, suggesting that "the file size must
2235 be known". The comment probably pre-dates the introduction
2236 of the fstat system call in target_mmap which does in fact
2237 find out the size. What isn't clear is if the workaround
2238 here is still actually needed. For now, continue with it,
2239 but merge it with the "normal" mmap that would allocate the bss. */
2240
3e8f1628
RH
2241 host_start = (uintptr_t) g2h_untagged(elf_bss);
2242 host_end = (uintptr_t) g2h_untagged(last_bss);
0c2d70c4 2243 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
2244
2245 if (host_map_start < host_end) {
2246 void *p = mmap((void *)host_map_start, host_end - host_map_start,
2247 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2248 if (p == MAP_FAILED) {
2249 perror("cannot mmap brk");
2250 exit(-1);
853d6f7a 2251 }
f46e9a0b 2252 }
853d6f7a 2253
f46e9a0b
TM
2254 /* Ensure that the bss page(s) are valid */
2255 if ((page_get_flags(last_bss-1) & prot) != prot) {
49840a4a
RH
2256 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss - 1,
2257 prot | PAGE_VALID);
cf129f3a 2258 }
31e31b8a 2259
cf129f3a
RH
2260 if (host_start < host_map_start) {
2261 memset((void *)host_start, 0, host_map_start - host_start);
2262 }
2263}
53a5960a 2264
d2796be6 2265#if defined(TARGET_ARM)
cf58affe
CL
2266static int elf_is_fdpic(struct elfhdr *exec)
2267{
2268 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2269}
d2796be6
MF
2270#elif defined(TARGET_XTENSA)
2271static int elf_is_fdpic(struct elfhdr *exec)
2272{
2273 return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2274}
cf58affe 2275#else
a99856cd
CL
2276/* Default implementation, always false. */
2277static int elf_is_fdpic(struct elfhdr *exec)
2278{
2279 return 0;
2280}
cf58affe 2281#endif
a99856cd 2282
1af02e83
MF
2283static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2284{
2285 uint16_t n;
2286 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2287
2288 /* elf32_fdpic_loadseg */
2289 n = info->nsegs;
2290 while (n--) {
2291 sp -= 12;
2292 put_user_u32(loadsegs[n].addr, sp+0);
2293 put_user_u32(loadsegs[n].p_vaddr, sp+4);
2294 put_user_u32(loadsegs[n].p_memsz, sp+8);
2295 }
2296
2297 /* elf32_fdpic_loadmap */
2298 sp -= 4;
2299 put_user_u16(0, sp+0); /* version */
2300 put_user_u16(info->nsegs, sp+2); /* nsegs */
2301
2302 info->personality = PER_LINUX_FDPIC;
2303 info->loadmap_addr = sp;
2304
2305 return sp;
2306}
1af02e83 2307
992f48a0 2308static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
2309 struct elfhdr *exec,
2310 struct image_info *info,
2311 struct image_info *interp_info)
31e31b8a 2312{
d97ef72e 2313 abi_ulong sp;
7c4ee5bc 2314 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 2315 int size;
14322bad
LA
2316 int i;
2317 abi_ulong u_rand_bytes;
2318 uint8_t k_rand_bytes[16];
fcdc0ab4
JY
2319 abi_ulong u_platform, u_base_platform;
2320 const char *k_platform, *k_base_platform;
d97ef72e
RH
2321 const int n = sizeof(elf_addr_t);
2322
2323 sp = p;
1af02e83 2324
1af02e83
MF
2325 /* Needs to be before we load the env/argc/... */
2326 if (elf_is_fdpic(exec)) {
2327 /* Need 4 byte alignment for these structs */
2328 sp &= ~3;
2329 sp = loader_build_fdpic_loadmap(info, sp);
2330 info->other_info = interp_info;
2331 if (interp_info) {
2332 interp_info->other_info = info;
2333 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
2334 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2335 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2336 } else {
2337 info->interpreter_loadmap_addr = 0;
2338 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
2339 }
2340 }
1af02e83 2341
fcdc0ab4
JY
2342 u_base_platform = 0;
2343 k_base_platform = ELF_BASE_PLATFORM;
2344 if (k_base_platform) {
2345 size_t len = strlen(k_base_platform) + 1;
2346 if (STACK_GROWS_DOWN) {
2347 sp -= (len + n - 1) & ~(n - 1);
2348 u_base_platform = sp;
2349 /* FIXME - check return value of memcpy_to_target() for failure */
2350 memcpy_to_target(sp, k_base_platform, len);
2351 } else {
2352 memcpy_to_target(sp, k_base_platform, len);
2353 u_base_platform = sp;
2354 sp += len + 1;
2355 }
2356 }
2357
d97ef72e
RH
2358 u_platform = 0;
2359 k_platform = ELF_PLATFORM;
2360 if (k_platform) {
2361 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
2362 if (STACK_GROWS_DOWN) {
2363 sp -= (len + n - 1) & ~(n - 1);
2364 u_platform = sp;
2365 /* FIXME - check return value of memcpy_to_target() for failure */
2366 memcpy_to_target(sp, k_platform, len);
2367 } else {
2368 memcpy_to_target(sp, k_platform, len);
2369 u_platform = sp;
2370 sp += len + 1;
2371 }
2372 }
2373
2374 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2375 * the argv and envp pointers.
2376 */
2377 if (STACK_GROWS_DOWN) {
2378 sp = QEMU_ALIGN_DOWN(sp, 16);
2379 } else {
2380 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 2381 }
14322bad
LA
2382
2383 /*
c6a2377f 2384 * Generate 16 random bytes for userspace PRNG seeding.
14322bad 2385 */
c6a2377f 2386 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
7c4ee5bc
RH
2387 if (STACK_GROWS_DOWN) {
2388 sp -= 16;
2389 u_rand_bytes = sp;
2390 /* FIXME - check return value of memcpy_to_target() for failure */
2391 memcpy_to_target(sp, k_rand_bytes, 16);
2392 } else {
2393 memcpy_to_target(sp, k_rand_bytes, 16);
2394 u_rand_bytes = sp;
2395 sp += 16;
2396 }
14322bad 2397
d97ef72e 2398 size = (DLINFO_ITEMS + 1) * 2;
fcdc0ab4
JY
2399 if (k_base_platform)
2400 size += 2;
d97ef72e
RH
2401 if (k_platform)
2402 size += 2;
f5155289 2403#ifdef DLINFO_ARCH_ITEMS
d97ef72e 2404 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
2405#endif
2406#ifdef ELF_HWCAP2
2407 size += 2;
f5155289 2408#endif
f516511e
PM
2409 info->auxv_len = size * n;
2410
d97ef72e 2411 size += envc + argc + 2;
b9329d4b 2412 size += 1; /* argc itself */
d97ef72e 2413 size *= n;
7c4ee5bc
RH
2414
2415 /* Allocate space and finalize stack alignment for entry now. */
2416 if (STACK_GROWS_DOWN) {
2417 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2418 sp = u_argc;
2419 } else {
2420 u_argc = sp;
2421 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2422 }
2423
2424 u_argv = u_argc + n;
2425 u_envp = u_argv + (argc + 1) * n;
2426 u_auxv = u_envp + (envc + 1) * n;
2427 info->saved_auxv = u_auxv;
60f1c801
RH
2428 info->argc = argc;
2429 info->envc = envc;
2430 info->argv = u_argv;
2431 info->envp = u_envp;
d97ef72e
RH
2432
2433 /* This is correct because Linux defines
2434 * elf_addr_t as Elf32_Off / Elf64_Off
2435 */
2436#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
2437 put_user_ual(id, u_auxv); u_auxv += n; \
2438 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
2439 } while(0)
2440
82991bed
PM
2441#ifdef ARCH_DLINFO
2442 /*
2443 * ARCH_DLINFO must come first so platform specific code can enforce
2444 * special alignment requirements on the AUXV if necessary (eg. PPC).
2445 */
2446 ARCH_DLINFO;
2447#endif
f516511e
PM
2448 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2449 * on info->auxv_len will trigger.
2450 */
8e62a717 2451 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
2452 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2453 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
2454 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2455 /* Target doesn't support host page size alignment */
2456 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2457 } else {
2458 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2459 qemu_host_page_size)));
2460 }
8e62a717 2461 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 2462 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 2463 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
2464 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2465 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2466 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2467 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2468 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2469 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 2470 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 2471 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
e0d1673d 2472 NEW_AUX_ENT(AT_EXECFN, info->file_string);
14322bad 2473
ad6919dc
PM
2474#ifdef ELF_HWCAP2
2475 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2476#endif
2477
fcdc0ab4
JY
2478 if (u_base_platform) {
2479 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2480 }
7c4ee5bc 2481 if (u_platform) {
d97ef72e 2482 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 2483 }
7c4ee5bc 2484 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
2485#undef NEW_AUX_ENT
2486
f516511e
PM
2487 /* Check that our initial calculation of the auxv length matches how much
2488 * we actually put into it.
2489 */
2490 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
2491
2492 put_user_ual(argc, u_argc);
2493
2494 p = info->arg_strings;
2495 for (i = 0; i < argc; ++i) {
2496 put_user_ual(p, u_argv);
2497 u_argv += n;
2498 p += target_strlen(p) + 1;
2499 }
2500 put_user_ual(0, u_argv);
2501
2502 p = info->env_strings;
2503 for (i = 0; i < envc; ++i) {
2504 put_user_ual(p, u_envp);
2505 u_envp += n;
2506 p += target_strlen(p) + 1;
2507 }
2508 put_user_ual(0, u_envp);
edf8e2af 2509
d97ef72e 2510 return sp;
31e31b8a
FB
2511}
2512
f5ef0e51 2513#if defined(HI_COMMPAGE)
eee816c0 2514#define LO_COMMPAGE -1
f5ef0e51
RH
2515#elif defined(LO_COMMPAGE)
2516#define HI_COMMPAGE 0
2517#else
66346faf 2518#define HI_COMMPAGE 0
eee816c0 2519#define LO_COMMPAGE -1
d461b73e 2520#ifndef INIT_GUEST_COMMPAGE
ee947430 2521#define init_guest_commpage() true
8756e136 2522#endif
d461b73e 2523#endif
dce10401 2524
ee947430
AB
2525static void pgb_fail_in_use(const char *image_name)
2526{
2527 error_report("%s: requires virtual address space that is in use "
2528 "(omit the -B option or choose a different value)",
2529 image_name);
2530 exit(EXIT_FAILURE);
2531}
dce10401 2532
ee947430
AB
2533static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2534 abi_ulong guest_hiaddr, long align)
2535{
2536 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2537 void *addr, *test;
2a53535a 2538
ee947430 2539 if (!QEMU_IS_ALIGNED(guest_base, align)) {
5ca870b9 2540 fprintf(stderr, "Requested guest base %p does not satisfy "
ee947430 2541 "host minimum alignment (0x%lx)\n",
5ca870b9 2542 (void *)guest_base, align);
ee947430
AB
2543 exit(EXIT_FAILURE);
2544 }
2545
2546 /* Sanity check the guest binary. */
2547 if (reserved_va) {
2548 if (guest_hiaddr > reserved_va) {
2549 error_report("%s: requires more than reserved virtual "
2550 "address space (0x%" PRIx64 " > 0x%lx)",
95059f9c 2551 image_name, (uint64_t)guest_hiaddr, reserved_va);
ee947430 2552 exit(EXIT_FAILURE);
2a53535a 2553 }
ee947430 2554 } else {
a932eec4 2555#if HOST_LONG_BITS < TARGET_ABI_BITS
ee947430
AB
2556 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2557 error_report("%s: requires more virtual address space "
2558 "than the host can provide (0x%" PRIx64 ")",
a3a67f54 2559 image_name, (uint64_t)guest_hiaddr + 1 - guest_base);
ee947430 2560 exit(EXIT_FAILURE);
2a53535a 2561 }
a932eec4 2562#endif
2a53535a 2563 }
2a53535a 2564
ee947430
AB
2565 /*
2566 * Expand the allocation to the entire reserved_va.
2567 * Exclude the mmap_min_addr hole.
2568 */
2569 if (reserved_va) {
2570 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2571 : mmap_min_addr - guest_base);
95059f9c 2572 guest_hiaddr = reserved_va;
ee947430 2573 }
806d1021 2574
ee947430 2575 /* Reserve the address space for the binary, or reserved_va. */
3e8f1628 2576 test = g2h_untagged(guest_loaddr);
a3a67f54 2577 addr = mmap(test, guest_hiaddr - guest_loaddr + 1, PROT_NONE, flags, -1, 0);
ee947430
AB
2578 if (test != addr) {
2579 pgb_fail_in_use(image_name);
2580 }
e7588237 2581 qemu_log_mask(CPU_LOG_PAGE,
a3a67f54
RH
2582 "%s: base @ %p for %" PRIu64 " bytes\n",
2583 __func__, addr, (uint64_t)guest_hiaddr - guest_loaddr + 1);
ee947430
AB
2584}
2585
ad592e37
AB
2586/**
2587 * pgd_find_hole_fallback: potential mmap address
2588 * @guest_size: size of available space
2589 * @brk: location of break
2590 * @align: memory alignment
2591 *
2592 * This is a fallback method for finding a hole in the host address
2593 * space if we don't have the benefit of being able to access
2594 * /proc/self/map. It can potentially take a very long time as we can
2595 * only dumbly iterate up the host address space seeing if the
2596 * allocation would work.
2597 */
5c3e87f3
AB
2598static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2599 long align, uintptr_t offset)
ad592e37
AB
2600{
2601 uintptr_t base;
2602
2603 /* Start (aligned) at the bottom and work our way up */
2604 base = ROUND_UP(mmap_min_addr, align);
2605
2606 while (true) {
2607 uintptr_t align_start, end;
2608 align_start = ROUND_UP(base, align);
5c3e87f3 2609 end = align_start + guest_size + offset;
ad592e37
AB
2610
2611 /* if brk is anywhere in the range give ourselves some room to grow. */
2612 if (align_start <= brk && brk < end) {
2613 base = brk + (16 * MiB);
2614 continue;
2615 } else if (align_start + guest_size < align_start) {
2616 /* we have run out of space */
2617 return -1;
2618 } else {
2667e069
AB
2619 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2620 MAP_FIXED_NOREPLACE;
ad592e37
AB
2621 void * mmap_start = mmap((void *) align_start, guest_size,
2622 PROT_NONE, flags, -1, 0);
2623 if (mmap_start != MAP_FAILED) {
7e588fbc 2624 munmap(mmap_start, guest_size);
934eed51 2625 if (mmap_start == (void *) align_start) {
e7588237
AB
2626 qemu_log_mask(CPU_LOG_PAGE,
2627 "%s: base @ %p for %" PRIdPTR" bytes\n",
2628 __func__, mmap_start + offset, guest_size);
2667e069
AB
2629 return (uintptr_t) mmap_start + offset;
2630 }
ad592e37
AB
2631 }
2632 base += qemu_host_page_size;
2633 }
2634 }
2635}
2636
ee947430
AB
2637/* Return value for guest_base, or -1 if no hole found. */
2638static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
5c3e87f3 2639 long align, uintptr_t offset)
ee947430
AB
2640{
2641 GSList *maps, *iter;
2642 uintptr_t this_start, this_end, next_start, brk;
2643 intptr_t ret = -1;
2644
2645 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2646
2647 maps = read_self_maps();
dce10401 2648
ee947430
AB
2649 /* Read brk after we've read the maps, which will malloc. */
2650 brk = (uintptr_t)sbrk(0);
2651
ad592e37 2652 if (!maps) {
190674f3 2653 return pgd_find_hole_fallback(guest_size, brk, align, offset);
ad592e37
AB
2654 }
2655
ee947430
AB
2656 /* The first hole is before the first map entry. */
2657 this_start = mmap_min_addr;
2658
2659 for (iter = maps; iter;
2660 this_start = next_start, iter = g_slist_next(iter)) {
2661 uintptr_t align_start, hole_size;
2662
2663 this_end = ((MapInfo *)iter->data)->start;
2664 next_start = ((MapInfo *)iter->data)->end;
5c3e87f3 2665 align_start = ROUND_UP(this_start + offset, align);
ee947430
AB
2666
2667 /* Skip holes that are too small. */
2668 if (align_start >= this_end) {
2669 continue;
2670 }
2671 hole_size = this_end - align_start;
2672 if (hole_size < guest_size) {
2673 continue;
aac362e4
LS
2674 }
2675
ee947430
AB
2676 /* If this hole contains brk, give ourselves some room to grow. */
2677 if (this_start <= brk && brk < this_end) {
2678 hole_size -= guest_size;
2679 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2680 align_start += 1 * GiB;
2681 } else if (hole_size >= 16 * MiB) {
2682 align_start += 16 * MiB;
2683 } else {
2684 align_start = (this_end - guest_size) & -align;
2685 if (align_start < this_start) {
2686 continue;
2687 }
806d1021 2688 }
806d1021
MI
2689 }
2690
ee947430
AB
2691 /* Record the lowest successful match. */
2692 if (ret < 0) {
190674f3 2693 ret = align_start;
dce10401 2694 }
ee947430
AB
2695 /* If this hole contains the identity map, select it. */
2696 if (align_start <= guest_loaddr &&
2697 guest_loaddr + guest_size <= this_end) {
2698 ret = 0;
b859040d 2699 }
ee947430
AB
2700 /* If this hole ends above the identity map, stop looking. */
2701 if (this_end >= guest_loaddr) {
2702 break;
dce10401
MI
2703 }
2704 }
ee947430 2705 free_self_maps(maps);
dce10401 2706
e7588237
AB
2707 if (ret != -1) {
2708 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR
2709 " for %" PRIuPTR " bytes\n",
2710 __func__, ret, guest_size);
2711 }
2712
ee947430 2713 return ret;
dce10401
MI
2714}
2715
ee947430
AB
2716static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2717 abi_ulong orig_hiaddr, long align)
f3ed1f5d 2718{
ee947430
AB
2719 uintptr_t loaddr = orig_loaddr;
2720 uintptr_t hiaddr = orig_hiaddr;
5c3e87f3 2721 uintptr_t offset = 0;
ee947430 2722 uintptr_t addr;
f3ed1f5d 2723
ee947430
AB
2724 if (hiaddr != orig_hiaddr) {
2725 error_report("%s: requires virtual address space that the "
2726 "host cannot provide (0x%" PRIx64 ")",
a3a67f54 2727 image_name, (uint64_t)orig_hiaddr + 1);
ee947430
AB
2728 exit(EXIT_FAILURE);
2729 }
f3ed1f5d 2730
ee947430 2731 loaddr &= -align;
66346faf 2732 if (HI_COMMPAGE) {
ee947430
AB
2733 /*
2734 * Extend the allocation to include the commpage.
5c3e87f3
AB
2735 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2736 * need to ensure there is space bellow the guest_base so we
2737 * can map the commpage in the place needed when the address
2738 * arithmetic wraps around.
ee947430
AB
2739 */
2740 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
a3a67f54 2741 hiaddr = UINT32_MAX;
f3ed1f5d 2742 } else {
66346faf 2743 offset = -(HI_COMMPAGE & -align);
f3ed1f5d 2744 }
eee816c0 2745 } else if (LO_COMMPAGE != -1) {
f5ef0e51 2746 loaddr = MIN(loaddr, LO_COMMPAGE & -align);
ee947430 2747 }
dce10401 2748
a3a67f54 2749 addr = pgb_find_hole(loaddr, hiaddr - loaddr + 1, align, offset);
ee947430
AB
2750 if (addr == -1) {
2751 /*
66346faf 2752 * If HI_COMMPAGE, there *might* be a non-consecutive allocation
ee947430
AB
2753 * that can satisfy both. But as the normal arm32 link base address
2754 * is ~32k, and we extend down to include the commpage, making the
2755 * overhead only ~96k, this is unlikely.
dce10401 2756 */
ee947430
AB
2757 error_report("%s: Unable to allocate %#zx bytes of "
2758 "virtual address space", image_name,
2759 (size_t)(hiaddr - loaddr));
2760 exit(EXIT_FAILURE);
2761 }
2762
2763 guest_base = addr;
e7588237
AB
2764
2765 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n",
2766 __func__, addr, hiaddr - loaddr);
ee947430 2767}
dce10401 2768
ee947430
AB
2769static void pgb_dynamic(const char *image_name, long align)
2770{
2771 /*
2772 * The executable is dynamic and does not require a fixed address.
2773 * All we need is a commpage that satisfies align.
2774 * If we do not need a commpage, leave guest_base == 0.
2775 */
66346faf 2776 if (HI_COMMPAGE) {
ee947430
AB
2777 uintptr_t addr, commpage;
2778
2779 /* 64-bit hosts should have used reserved_va. */
2780 assert(sizeof(uintptr_t) == 4);
2781
2782 /*
2783 * By putting the commpage at the first hole, that puts guest_base
2784 * just above that, and maximises the positive guest addresses.
2785 */
66346faf 2786 commpage = HI_COMMPAGE & -align;
5c3e87f3 2787 addr = pgb_find_hole(commpage, -commpage, align, 0);
ee947430
AB
2788 assert(addr != -1);
2789 guest_base = addr;
2790 }
2791}
2792
2793static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2794 abi_ulong guest_hiaddr, long align)
2795{
c1f6ad79 2796 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
ee947430
AB
2797 void *addr, *test;
2798
2799 if (guest_hiaddr > reserved_va) {
2800 error_report("%s: requires more than reserved virtual "
2801 "address space (0x%" PRIx64 " > 0x%lx)",
95059f9c 2802 image_name, (uint64_t)guest_hiaddr, reserved_va);
ee947430 2803 exit(EXIT_FAILURE);
f3ed1f5d 2804 }
f3ed1f5d 2805
ee947430
AB
2806 /* Widen the "image" to the entire reserved address space. */
2807 pgb_static(image_name, 0, reserved_va, align);
2808
2667e069 2809 /* osdep.h defines this as 0 if it's missing */
c1f6ad79 2810 flags |= MAP_FIXED_NOREPLACE;
c1f6ad79 2811
ee947430
AB
2812 /* Reserve the memory on the host. */
2813 assert(guest_base != 0);
3e8f1628 2814 test = g2h_untagged(0);
95059f9c 2815 addr = mmap(test, reserved_va + 1, PROT_NONE, flags, -1, 0);
fb730c86 2816 if (addr == MAP_FAILED || addr != test) {
ee947430 2817 error_report("Unable to reserve 0x%lx bytes of virtual address "
87966743 2818 "space at %p (%s) for use as guest address space (check your "
f101c25c 2819 "virtual memory ulimit setting, mmap_min_addr or reserve less "
e9289071
AJ
2820 "using qemu-user's -R option)",
2821 reserved_va + 1, test, strerror(errno));
ee947430
AB
2822 exit(EXIT_FAILURE);
2823 }
e7588237
AB
2824
2825 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n",
95059f9c 2826 __func__, addr, reserved_va + 1);
f3ed1f5d
PM
2827}
2828
ee947430
AB
2829void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2830 abi_ulong guest_hiaddr)
2831{
2832 /* In order to use host shmat, we must be able to honor SHMLBA. */
2833 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2834
2835 if (have_guest_base) {
2836 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2837 } else if (reserved_va) {
2838 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2839 } else if (guest_loaddr) {
2840 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2841 } else {
2842 pgb_dynamic(image_name, align);
2843 }
2844
2845 /* Reserve and initialize the commpage. */
2846 if (!init_guest_commpage()) {
2847 /*
2848 * With have_guest_base, the user has selected the address and
2849 * we are trying to work with that. Otherwise, we have selected
2850 * free space and init_guest_commpage must succeeded.
2851 */
2852 assert(have_guest_base);
2853 pgb_fail_in_use(image_name);
2854 }
2855
2856 assert(QEMU_IS_ALIGNED(guest_base, align));
2857 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2858 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2859}
f3ed1f5d 2860
83f990eb
RH
2861enum {
2862 /* The string "GNU\0" as a magic number. */
2863 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2864 NOTE_DATA_SZ = 1 * KiB,
2865 NOTE_NAME_SZ = 4,
2866 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2867};
2868
2869/*
2870 * Process a single gnu_property entry.
2871 * Return false for error.
2872 */
2873static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2874 struct image_info *info, bool have_prev_type,
2875 uint32_t *prev_type, Error **errp)
2876{
2877 uint32_t pr_type, pr_datasz, step;
2878
2879 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2880 goto error_data;
2881 }
2882 datasz -= *off;
2883 data += *off / sizeof(uint32_t);
2884
2885 if (datasz < 2 * sizeof(uint32_t)) {
2886 goto error_data;
2887 }
2888 pr_type = data[0];
2889 pr_datasz = data[1];
2890 data += 2;
2891 datasz -= 2 * sizeof(uint32_t);
2892 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2893 if (step > datasz) {
2894 goto error_data;
2895 }
2896
2897 /* Properties are supposed to be unique and sorted on pr_type. */
2898 if (have_prev_type && pr_type <= *prev_type) {
2899 if (pr_type == *prev_type) {
2900 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2901 } else {
2902 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2903 }
2904 return false;
2905 }
2906 *prev_type = pr_type;
2907
2908 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2909 return false;
2910 }
2911
2912 *off += 2 * sizeof(uint32_t) + step;
2913 return true;
2914
2915 error_data:
2916 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2917 return false;
2918}
2919
2920/* Process NT_GNU_PROPERTY_TYPE_0. */
2921static bool parse_elf_properties(int image_fd,
2922 struct image_info *info,
2923 const struct elf_phdr *phdr,
2924 char bprm_buf[BPRM_BUF_SIZE],
2925 Error **errp)
2926{
2927 union {
2928 struct elf_note nhdr;
2929 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2930 } note;
2931
2932 int n, off, datasz;
2933 bool have_prev_type;
2934 uint32_t prev_type;
2935
2936 /* Unless the arch requires properties, ignore them. */
2937 if (!ARCH_USE_GNU_PROPERTY) {
2938 return true;
2939 }
2940
2941 /* If the properties are crazy large, that's too bad. */
2942 n = phdr->p_filesz;
2943 if (n > sizeof(note)) {
2944 error_setg(errp, "PT_GNU_PROPERTY too large");
2945 return false;
2946 }
2947 if (n < sizeof(note.nhdr)) {
2948 error_setg(errp, "PT_GNU_PROPERTY too small");
2949 return false;
2950 }
2951
2952 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2953 memcpy(&note, bprm_buf + phdr->p_offset, n);
2954 } else {
2955 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2956 if (len != n) {
2957 error_setg_errno(errp, errno, "Error reading file header");
2958 return false;
2959 }
2960 }
2961
2962 /*
2963 * The contents of a valid PT_GNU_PROPERTY is a sequence
2964 * of uint32_t -- swap them all now.
2965 */
2966#ifdef BSWAP_NEEDED
2967 for (int i = 0; i < n / 4; i++) {
2968 bswap32s(note.data + i);
2969 }
2970#endif
2971
2972 /*
2973 * Note that nhdr is 3 words, and that the "name" described by namesz
2974 * immediately follows nhdr and is thus at the 4th word. Further, all
2975 * of the inputs to the kernel's round_up are multiples of 4.
2976 */
2977 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2978 note.nhdr.n_namesz != NOTE_NAME_SZ ||
2979 note.data[3] != GNU0_MAGIC) {
2980 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2981 return false;
2982 }
2983 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2984
2985 datasz = note.nhdr.n_descsz + off;
2986 if (datasz > n) {
2987 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2988 return false;
2989 }
2990
2991 have_prev_type = false;
2992 prev_type = 0;
2993 while (1) {
2994 if (off == datasz) {
2995 return true; /* end, exit ok */
2996 }
2997 if (!parse_elf_property(note.data, &off, datasz, info,
2998 have_prev_type, &prev_type, errp)) {
2999 return false;
3000 }
3001 have_prev_type = true;
3002 }
3003}
3004
8e62a717 3005/* Load an ELF image into the address space.
31e31b8a 3006
8e62a717
RH
3007 IMAGE_NAME is the filename of the image, to use in error messages.
3008 IMAGE_FD is the open file descriptor for the image.
3009
3010 BPRM_BUF is a copy of the beginning of the file; this of course
3011 contains the elf file header at offset 0. It is assumed that this
3012 buffer is sufficiently aligned to present no problems to the host
3013 in accessing data at aligned offsets within the buffer.
3014
3015 On return: INFO values will be filled in, as necessary or available. */
3016
3017static void load_elf_image(const char *image_name, int image_fd,
bf858897 3018 struct image_info *info, char **pinterp_name,
8e62a717 3019 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 3020{
8e62a717
RH
3021 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
3022 struct elf_phdr *phdr;
3023 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
e8384b37 3024 int i, retval, prot_exec;
c7f17e7b 3025 Error *err = NULL;
5fafdf24 3026
8e62a717 3027 /* First of all, some simple consistency checks */
8e62a717 3028 if (!elf_check_ident(ehdr)) {
c7f17e7b 3029 error_setg(&err, "Invalid ELF image for this architecture");
8e62a717
RH
3030 goto exit_errmsg;
3031 }
3032 bswap_ehdr(ehdr);
3033 if (!elf_check_ehdr(ehdr)) {
c7f17e7b 3034 error_setg(&err, "Invalid ELF image for this architecture");
8e62a717 3035 goto exit_errmsg;
d97ef72e 3036 }
5fafdf24 3037
8e62a717
RH
3038 i = ehdr->e_phnum * sizeof(struct elf_phdr);
3039 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
3040 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 3041 } else {
8e62a717
RH
3042 phdr = (struct elf_phdr *) alloca(i);
3043 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 3044 if (retval != i) {
8e62a717 3045 goto exit_read;
9955ffac 3046 }
d97ef72e 3047 }
8e62a717 3048 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 3049
1af02e83
MF
3050 info->nsegs = 0;
3051 info->pt_dynamic_addr = 0;
1af02e83 3052
98c1076c
AB
3053 mmap_lock();
3054
8a1a5274
RH
3055 /*
3056 * Find the maximum size of the image and allocate an appropriate
3057 * amount of memory to handle that. Locate the interpreter, if any.
3058 */
682674b8 3059 loaddr = -1, hiaddr = 0;
33143c44 3060 info->alignment = 0;
872f3d04 3061 info->exec_stack = EXSTACK_DEFAULT;
8e62a717 3062 for (i = 0; i < ehdr->e_phnum; ++i) {
4d9d535a
RH
3063 struct elf_phdr *eppnt = phdr + i;
3064 if (eppnt->p_type == PT_LOAD) {
3065 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
682674b8
RH
3066 if (a < loaddr) {
3067 loaddr = a;
3068 }
a3a67f54 3069 a = eppnt->p_vaddr + eppnt->p_memsz - 1;
682674b8
RH
3070 if (a > hiaddr) {
3071 hiaddr = a;
3072 }
1af02e83 3073 ++info->nsegs;
4d9d535a 3074 info->alignment |= eppnt->p_align;
8a1a5274
RH
3075 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3076 g_autofree char *interp_name = NULL;
3077
3078 if (*pinterp_name) {
c7f17e7b 3079 error_setg(&err, "Multiple PT_INTERP entries");
8a1a5274
RH
3080 goto exit_errmsg;
3081 }
c7f17e7b 3082
8a1a5274 3083 interp_name = g_malloc(eppnt->p_filesz);
8a1a5274
RH
3084
3085 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3086 memcpy(interp_name, bprm_buf + eppnt->p_offset,
3087 eppnt->p_filesz);
3088 } else {
3089 retval = pread(image_fd, interp_name, eppnt->p_filesz,
3090 eppnt->p_offset);
3091 if (retval != eppnt->p_filesz) {
c7f17e7b 3092 goto exit_read;
8a1a5274
RH
3093 }
3094 }
3095 if (interp_name[eppnt->p_filesz - 1] != 0) {
c7f17e7b 3096 error_setg(&err, "Invalid PT_INTERP entry");
8a1a5274
RH
3097 goto exit_errmsg;
3098 }
3099 *pinterp_name = g_steal_pointer(&interp_name);
83f990eb
RH
3100 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3101 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3102 goto exit_errmsg;
3103 }
872f3d04
RH
3104 } else if (eppnt->p_type == PT_GNU_STACK) {
3105 info->exec_stack = eppnt->p_flags & PF_X;
682674b8
RH
3106 }
3107 }
3108
6fd59449
RH
3109 if (pinterp_name != NULL) {
3110 /*
3111 * This is the main executable.
3112 *
3113 * Reserve extra space for brk.
3114 * We hold on to this space while placing the interpreter
3115 * and the stack, lest they be placed immediately after
3116 * the data segment and block allocation from the brk.
3117 *
11d36727
AB
3118 * 16MB is chosen as "large enough" without being so large as
3119 * to allow the result to not fit with a 32-bit guest on a
3120 * 32-bit host. However some 64 bit guests (e.g. s390x)
3121 * attempt to place their heap further ahead and currently
3122 * nothing stops them smashing into QEMUs address space.
6fd59449 3123 */
11d36727
AB
3124#if TARGET_LONG_BITS == 64
3125 info->reserve_brk = 32 * MiB;
3126#else
6fd59449 3127 info->reserve_brk = 16 * MiB;
11d36727 3128#endif
6fd59449
RH
3129 hiaddr += info->reserve_brk;
3130
3131 if (ehdr->e_type == ET_EXEC) {
3132 /*
3133 * Make sure that the low address does not conflict with
3134 * MMAP_MIN_ADDR or the QEMU application itself.
3135 */
3136 probe_guest_base(image_name, loaddr, hiaddr);
ee947430
AB
3137 } else {
3138 /*
3139 * The binary is dynamic, but we still need to
3140 * select guest_base. In this case we pass a size.
3141 */
3142 probe_guest_base(image_name, 0, hiaddr - loaddr);
d97ef72e 3143 }
6fd59449
RH
3144 }
3145
3146 /*
3147 * Reserve address space for all of this.
3148 *
3149 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
3150 * exactly the address range that is required.
3151 *
3152 * Otherwise this is ET_DYN, and we are searching for a location
3153 * that can hold the memory space required. If the image is
3154 * pre-linked, LOADDR will be non-zero, and the kernel should
3155 * honor that address if it happens to be free.
3156 *
3157 * In both cases, we will overwrite pages in this range with mappings
3158 * from the executable.
3159 */
a3a67f54 3160 load_addr = target_mmap(loaddr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
6fd59449
RH
3161 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3162 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
3163 -1, 0);
3164 if (load_addr == -1) {
c7f17e7b 3165 goto exit_mmap;
d97ef72e 3166 }
682674b8 3167 load_bias = load_addr - loaddr;
d97ef72e 3168
a99856cd 3169 if (elf_is_fdpic(ehdr)) {
1af02e83 3170 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 3171 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
3172
3173 for (i = 0; i < ehdr->e_phnum; ++i) {
3174 switch (phdr[i].p_type) {
3175 case PT_DYNAMIC:
3176 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3177 break;
3178 case PT_LOAD:
3179 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3180 loadsegs->p_vaddr = phdr[i].p_vaddr;
3181 loadsegs->p_memsz = phdr[i].p_memsz;
3182 ++loadsegs;
3183 break;
3184 }
3185 }
3186 }
1af02e83 3187
8e62a717 3188 info->load_bias = load_bias;
dc12567a
JK
3189 info->code_offset = load_bias;
3190 info->data_offset = load_bias;
8e62a717
RH
3191 info->load_addr = load_addr;
3192 info->entry = ehdr->e_entry + load_bias;
3193 info->start_code = -1;
3194 info->end_code = 0;
3195 info->start_data = -1;
3196 info->end_data = 0;
3197 info->brk = 0;
d8fd2954 3198 info->elf_flags = ehdr->e_flags;
8e62a717 3199
e8384b37
RH
3200 prot_exec = PROT_EXEC;
3201#ifdef TARGET_AARCH64
3202 /*
3203 * If the BTI feature is present, this indicates that the executable
3204 * pages of the startup binary should be mapped with PROT_BTI, so that
3205 * branch targets are enforced.
3206 *
3207 * The startup binary is either the interpreter or the static executable.
3208 * The interpreter is responsible for all pages of a dynamic executable.
3209 *
3210 * Elf notes are backward compatible to older cpus.
3211 * Do not enable BTI unless it is supported.
3212 */
3213 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3214 && (pinterp_name == NULL || *pinterp_name == 0)
3215 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3216 prot_exec |= TARGET_PROT_BTI;
3217 }
3218#endif
3219
8e62a717
RH
3220 for (i = 0; i < ehdr->e_phnum; i++) {
3221 struct elf_phdr *eppnt = phdr + i;
d97ef72e 3222 if (eppnt->p_type == PT_LOAD) {
94894ff2 3223 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
d97ef72e 3224 int elf_prot = 0;
d97ef72e 3225
e5eaf570
RH
3226 if (eppnt->p_flags & PF_R) {
3227 elf_prot |= PROT_READ;
3228 }
3229 if (eppnt->p_flags & PF_W) {
3230 elf_prot |= PROT_WRITE;
3231 }
3232 if (eppnt->p_flags & PF_X) {
e8384b37 3233 elf_prot |= prot_exec;
e5eaf570 3234 }
d97ef72e 3235
682674b8
RH
3236 vaddr = load_bias + eppnt->p_vaddr;
3237 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
3238 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
22d113b5
GM
3239
3240 vaddr_ef = vaddr + eppnt->p_filesz;
3241 vaddr_em = vaddr + eppnt->p_memsz;
682674b8 3242
d87146bc 3243 /*
22d113b5
GM
3244 * Some segments may be completely empty, with a non-zero p_memsz
3245 * but no backing file segment.
d87146bc
GM
3246 */
3247 if (eppnt->p_filesz != 0) {
22d113b5 3248 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
d87146bc
GM
3249 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3250 MAP_PRIVATE | MAP_FIXED,
3251 image_fd, eppnt->p_offset - vaddr_po);
3252
3253 if (error == -1) {
c7f17e7b 3254 goto exit_mmap;
d87146bc 3255 }
09bfb054 3256
22d113b5
GM
3257 /*
3258 * If the load segment requests extra zeros (e.g. bss), map it.
3259 */
3260 if (eppnt->p_filesz < eppnt->p_memsz) {
3261 zero_bss(vaddr_ef, vaddr_em, elf_prot);
3262 }
3263 } else if (eppnt->p_memsz != 0) {
3264 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
3265 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3266 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
3267 -1, 0);
31e31b8a 3268
22d113b5
GM
3269 if (error == -1) {
3270 goto exit_mmap;
3271 }
cf129f3a 3272 }
8e62a717
RH
3273
3274 /* Find the full program boundaries. */
3275 if (elf_prot & PROT_EXEC) {
3276 if (vaddr < info->start_code) {
3277 info->start_code = vaddr;
3278 }
3279 if (vaddr_ef > info->end_code) {
3280 info->end_code = vaddr_ef;
3281 }
3282 }
3283 if (elf_prot & PROT_WRITE) {
3284 if (vaddr < info->start_data) {
3285 info->start_data = vaddr;
3286 }
3287 if (vaddr_ef > info->end_data) {
3288 info->end_data = vaddr_ef;
3289 }
8a045188
TB
3290 }
3291 if (vaddr_em > info->brk) {
3292 info->brk = vaddr_em;
8e62a717 3293 }
5dd0db52
SM
3294#ifdef TARGET_MIPS
3295 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3296 Mips_elf_abiflags_v0 abiflags;
3297 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
c7f17e7b 3298 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
5dd0db52
SM
3299 goto exit_errmsg;
3300 }
3301 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3302 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3303 sizeof(Mips_elf_abiflags_v0));
3304 } else {
3305 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3306 eppnt->p_offset);
3307 if (retval != sizeof(Mips_elf_abiflags_v0)) {
c7f17e7b 3308 goto exit_read;
5dd0db52
SM
3309 }
3310 }
3311 bswap_mips_abiflags(&abiflags);
c94cb6c9 3312 info->fp_abi = abiflags.fp_abi;
5dd0db52 3313#endif
d97ef72e 3314 }
682674b8 3315 }
5fafdf24 3316
8e62a717
RH
3317 if (info->end_data == 0) {
3318 info->start_data = info->end_code;
3319 info->end_data = info->end_code;
8e62a717
RH
3320 }
3321
682674b8 3322 if (qemu_log_enabled()) {
8e62a717 3323 load_symbols(ehdr, image_fd, load_bias);
682674b8 3324 }
31e31b8a 3325
7c10cb38
IL
3326 debuginfo_report_elf(image_name, image_fd, load_bias);
3327
98c1076c
AB
3328 mmap_unlock();
3329
8e62a717
RH
3330 close(image_fd);
3331 return;
3332
3333 exit_read:
3334 if (retval >= 0) {
c7f17e7b
RH
3335 error_setg(&err, "Incomplete read of file header");
3336 } else {
3337 error_setg_errno(&err, errno, "Error reading file header");
8e62a717 3338 }
c7f17e7b
RH
3339 goto exit_errmsg;
3340 exit_mmap:
3341 error_setg_errno(&err, errno, "Error mapping file");
3342 goto exit_errmsg;
8e62a717 3343 exit_errmsg:
c7f17e7b 3344 error_reportf_err(err, "%s: ", image_name);
8e62a717
RH
3345 exit(-1);
3346}
3347
3348static void load_elf_interp(const char *filename, struct image_info *info,
3349 char bprm_buf[BPRM_BUF_SIZE])
3350{
3351 int fd, retval;
808f6563 3352 Error *err = NULL;
8e62a717
RH
3353
3354 fd = open(path(filename), O_RDONLY);
3355 if (fd < 0) {
808f6563
RH
3356 error_setg_file_open(&err, errno, filename);
3357 error_report_err(err);
3358 exit(-1);
8e62a717 3359 }
31e31b8a 3360
8e62a717
RH
3361 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3362 if (retval < 0) {
808f6563
RH
3363 error_setg_errno(&err, errno, "Error reading file header");
3364 error_reportf_err(err, "%s: ", filename);
3365 exit(-1);
8e62a717 3366 }
808f6563 3367
8e62a717
RH
3368 if (retval < BPRM_BUF_SIZE) {
3369 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3370 }
3371
bf858897 3372 load_elf_image(filename, fd, info, NULL, bprm_buf);
31e31b8a
FB
3373}
3374
49918a75
PB
3375static int symfind(const void *s0, const void *s1)
3376{
49918a75 3377 struct elf_sym *sym = (struct elf_sym *)s1;
b6235a75 3378 __typeof(sym->st_value) addr = *(uint64_t *)s0;
49918a75 3379 int result = 0;
b6235a75 3380
c7c530cd 3381 if (addr < sym->st_value) {
49918a75 3382 result = -1;
c7c530cd 3383 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
3384 result = 1;
3385 }
3386 return result;
3387}
3388
b6235a75 3389static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
49918a75
PB
3390{
3391#if ELF_CLASS == ELFCLASS32
3392 struct elf_sym *syms = s->disas_symtab.elf32;
3393#else
3394 struct elf_sym *syms = s->disas_symtab.elf64;
3395#endif
3396
3397 // binary search
49918a75
PB
3398 struct elf_sym *sym;
3399
c7c530cd 3400 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 3401 if (sym != NULL) {
49918a75
PB
3402 return s->disas_strtab + sym->st_name;
3403 }
3404
3405 return "";
3406}
3407
3408/* FIXME: This should use elf_ops.h */
3409static int symcmp(const void *s0, const void *s1)
3410{
3411 struct elf_sym *sym0 = (struct elf_sym *)s0;
3412 struct elf_sym *sym1 = (struct elf_sym *)s1;
3413 return (sym0->st_value < sym1->st_value)
3414 ? -1
3415 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3416}
3417
689f936f 3418/* Best attempt to load symbols from this ELF object. */
682674b8 3419static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 3420{
682674b8 3421 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 3422 uint64_t segsz;
682674b8 3423 struct elf_shdr *shdr;
b9475279
CV
3424 char *strings = NULL;
3425 struct syminfo *s = NULL;
3426 struct elf_sym *new_syms, *syms = NULL;
689f936f 3427
682674b8
RH
3428 shnum = hdr->e_shnum;
3429 i = shnum * sizeof(struct elf_shdr);
3430 shdr = (struct elf_shdr *)alloca(i);
3431 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3432 return;
3433 }
3434
3435 bswap_shdr(shdr, shnum);
3436 for (i = 0; i < shnum; ++i) {
3437 if (shdr[i].sh_type == SHT_SYMTAB) {
3438 sym_idx = i;
3439 str_idx = shdr[i].sh_link;
49918a75
PB
3440 goto found;
3441 }
689f936f 3442 }
682674b8
RH
3443
3444 /* There will be no symbol table if the file was stripped. */
3445 return;
689f936f
FB
3446
3447 found:
682674b8 3448 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 3449 s = g_try_new(struct syminfo, 1);
682674b8 3450 if (!s) {
b9475279 3451 goto give_up;
682674b8 3452 }
5fafdf24 3453
1e06262d
PM
3454 segsz = shdr[str_idx].sh_size;
3455 s->disas_strtab = strings = g_try_malloc(segsz);
3456 if (!strings ||
3457 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 3458 goto give_up;
682674b8 3459 }
49918a75 3460
1e06262d
PM
3461 segsz = shdr[sym_idx].sh_size;
3462 syms = g_try_malloc(segsz);
3463 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 3464 goto give_up;
682674b8 3465 }
31e31b8a 3466
1e06262d
PM
3467 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3468 /* Implausibly large symbol table: give up rather than ploughing
3469 * on with the number of symbols calculation overflowing
3470 */
3471 goto give_up;
3472 }
3473 nsyms = segsz / sizeof(struct elf_sym);
682674b8 3474 for (i = 0; i < nsyms; ) {
49918a75 3475 bswap_sym(syms + i);
682674b8
RH
3476 /* Throw away entries which we do not need. */
3477 if (syms[i].st_shndx == SHN_UNDEF
3478 || syms[i].st_shndx >= SHN_LORESERVE
3479 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3480 if (i < --nsyms) {
49918a75
PB
3481 syms[i] = syms[nsyms];
3482 }
682674b8 3483 } else {
49918a75 3484#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
3485 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3486 syms[i].st_value &= ~(target_ulong)1;
0774bed1 3487#endif
682674b8
RH
3488 syms[i].st_value += load_bias;
3489 i++;
3490 }
0774bed1 3491 }
49918a75 3492
b9475279
CV
3493 /* No "useful" symbol. */
3494 if (nsyms == 0) {
3495 goto give_up;
3496 }
3497
5d5c9930
RH
3498 /* Attempt to free the storage associated with the local symbols
3499 that we threw away. Whether or not this has any effect on the
3500 memory allocation depends on the malloc implementation and how
3501 many symbols we managed to discard. */
0ef9ea29 3502 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 3503 if (new_syms == NULL) {
b9475279 3504 goto give_up;
5d5c9930 3505 }
8d79de6e 3506 syms = new_syms;
5d5c9930 3507
49918a75 3508 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 3509
49918a75
PB
3510 s->disas_num_syms = nsyms;
3511#if ELF_CLASS == ELFCLASS32
3512 s->disas_symtab.elf32 = syms;
49918a75
PB
3513#else
3514 s->disas_symtab.elf64 = syms;
49918a75 3515#endif
682674b8 3516 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
3517 s->next = syminfos;
3518 syminfos = s;
b9475279
CV
3519
3520 return;
3521
3522give_up:
0ef9ea29
PM
3523 g_free(s);
3524 g_free(strings);
3525 g_free(syms);
689f936f 3526}
31e31b8a 3527
768fe76e
YS
3528uint32_t get_elf_eflags(int fd)
3529{
3530 struct elfhdr ehdr;
3531 off_t offset;
3532 int ret;
3533
3534 /* Read ELF header */
3535 offset = lseek(fd, 0, SEEK_SET);
3536 if (offset == (off_t) -1) {
3537 return 0;
3538 }
3539 ret = read(fd, &ehdr, sizeof(ehdr));
3540 if (ret < sizeof(ehdr)) {
3541 return 0;
3542 }
3543 offset = lseek(fd, offset, SEEK_SET);
3544 if (offset == (off_t) -1) {
3545 return 0;
3546 }
3547
3548 /* Check ELF signature */
3549 if (!elf_check_ident(&ehdr)) {
3550 return 0;
3551 }
3552
3553 /* check header */
3554 bswap_ehdr(&ehdr);
3555 if (!elf_check_ehdr(&ehdr)) {
3556 return 0;
3557 }
3558
3559 /* return architecture id */
3560 return ehdr.e_flags;
3561}
3562
f0116c54 3563int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 3564{
8e62a717 3565 struct image_info interp_info;
31e31b8a 3566 struct elfhdr elf_ex;
8e62a717 3567 char *elf_interpreter = NULL;
59baae9a 3568 char *scratch;
31e31b8a 3569
abcac736
DS
3570 memset(&interp_info, 0, sizeof(interp_info));
3571#ifdef TARGET_MIPS
3572 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3573#endif
3574
bf858897 3575 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
3576
3577 load_elf_image(bprm->filename, bprm->fd, info,
3578 &elf_interpreter, bprm->buf);
31e31b8a 3579
bf858897
RH
3580 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3581 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3582 when we load the interpreter. */
3583 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 3584
59baae9a
SB
3585 /* Do this so that we can load the interpreter, if need be. We will
3586 change some of these later */
3587 bprm->p = setup_arg_pages(bprm, info);
3588
3589 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
3590 if (STACK_GROWS_DOWN) {
3591 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3592 bprm->p, info->stack_limit);
3593 info->file_string = bprm->p;
3594 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3595 bprm->p, info->stack_limit);
3596 info->env_strings = bprm->p;
3597 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3598 bprm->p, info->stack_limit);
3599 info->arg_strings = bprm->p;
3600 } else {
3601 info->arg_strings = bprm->p;
3602 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3603 bprm->p, info->stack_limit);
3604 info->env_strings = bprm->p;
3605 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3606 bprm->p, info->stack_limit);
3607 info->file_string = bprm->p;
3608 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3609 bprm->p, info->stack_limit);
3610 }
3611
59baae9a
SB
3612 g_free(scratch);
3613
e5fe0c52 3614 if (!bprm->p) {
bf858897
RH
3615 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3616 exit(-1);
379f6698 3617 }
379f6698 3618
8e62a717
RH
3619 if (elf_interpreter) {
3620 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 3621
8e62a717
RH
3622 /* If the program interpreter is one of these two, then assume
3623 an iBCS2 image. Otherwise assume a native linux image. */
3624
3625 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3626 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3627 info->personality = PER_SVR4;
31e31b8a 3628
8e62a717
RH
3629 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3630 and some applications "depend" upon this behavior. Since
3631 we do not have the power to recompile these, we emulate
3632 the SVr4 behavior. Sigh. */
3633 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 3634 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 3635 }
c94cb6c9
SM
3636#ifdef TARGET_MIPS
3637 info->interp_fp_abi = interp_info.fp_abi;
3638#endif
31e31b8a
FB
3639 }
3640
db2af69d
RH
3641 /*
3642 * TODO: load a vdso, which would also contain the signal trampolines.
3643 * Otherwise, allocate a private page to hold them.
3644 */
3645 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
802ae45e
LV
3646 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3647 PROT_READ | PROT_WRITE,
3648 MAP_PRIVATE | MAP_ANON, -1, 0);
3649 if (tramp_page == -1) {
3650 return -errno;
3651 }
3652
db2af69d
RH
3653 setup_sigtramp(tramp_page);
3654 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3655 }
3656
8e62a717
RH
3657 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3658 info, (elf_interpreter ? &interp_info : NULL));
3659 info->start_stack = bprm->p;
3660
3661 /* If we have an interpreter, set that as the program's entry point.
8e78064e 3662 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
3663 point as a function descriptor. Do this after creating elf tables
3664 so that we copy the original program entry point into the AUXV. */
3665 if (elf_interpreter) {
8e78064e 3666 info->load_bias = interp_info.load_bias;
8e62a717 3667 info->entry = interp_info.entry;
2b323087 3668 g_free(elf_interpreter);
8e62a717 3669 }
31e31b8a 3670
edf8e2af
MW
3671#ifdef USE_ELF_CORE_DUMP
3672 bprm->core_dump = &elf_core_dump;
3673#endif
3674
6fd59449
RH
3675 /*
3676 * If we reserved extra space for brk, release it now.
3677 * The implementation of do_brk in syscalls.c expects to be able
3678 * to mmap pages in this space.
3679 */
3680 if (info->reserve_brk) {
3681 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3682 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3683 target_munmap(start_brk, end_brk - start_brk);
3684 }
3685
31e31b8a
FB
3686 return 0;
3687}
3688
edf8e2af 3689#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
3690/*
3691 * Definitions to generate Intel SVR4-like core files.
a2547a13 3692 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
3693 * tacked on the front to prevent clashes with linux definitions,
3694 * and the typedef forms have been avoided. This is mostly like
3695 * the SVR4 structure, but more Linuxy, with things that Linux does
3696 * not support and which gdb doesn't really use excluded.
3697 *
3698 * Fields we don't dump (their contents is zero) in linux-user qemu
3699 * are marked with XXX.
3700 *
3701 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3702 *
3703 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 3704 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
3705 * the target resides):
3706 *
3707 * #define USE_ELF_CORE_DUMP
3708 *
3709 * Next you define type of register set used for dumping. ELF specification
3710 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3711 *
c227f099 3712 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 3713 * #define ELF_NREG <number of registers>
c227f099 3714 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 3715 *
edf8e2af
MW
3716 * Last step is to implement target specific function that copies registers
3717 * from given cpu into just specified register set. Prototype is:
3718 *
c227f099 3719 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 3720 * const CPUArchState *env);
edf8e2af
MW
3721 *
3722 * Parameters:
3723 * regs - copy register values into here (allocated and zeroed by caller)
3724 * env - copy registers from here
3725 *
3726 * Example for ARM target is provided in this file.
3727 */
3728
3729/* An ELF note in memory */
3730struct memelfnote {
3731 const char *name;
3732 size_t namesz;
3733 size_t namesz_rounded;
3734 int type;
3735 size_t datasz;
80f5ce75 3736 size_t datasz_rounded;
edf8e2af
MW
3737 void *data;
3738 size_t notesz;
3739};
3740
a2547a13 3741struct target_elf_siginfo {
f8fd4fc4
PB
3742 abi_int si_signo; /* signal number */
3743 abi_int si_code; /* extra code */
3744 abi_int si_errno; /* errno */
edf8e2af
MW
3745};
3746
a2547a13
LD
3747struct target_elf_prstatus {
3748 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 3749 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
3750 abi_ulong pr_sigpend; /* XXX */
3751 abi_ulong pr_sighold; /* XXX */
c227f099
AL
3752 target_pid_t pr_pid;
3753 target_pid_t pr_ppid;
3754 target_pid_t pr_pgrp;
3755 target_pid_t pr_sid;
edf8e2af
MW
3756 struct target_timeval pr_utime; /* XXX User time */
3757 struct target_timeval pr_stime; /* XXX System time */
3758 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3759 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 3760 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 3761 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
3762};
3763
3764#define ELF_PRARGSZ (80) /* Number of chars for args */
3765
a2547a13 3766struct target_elf_prpsinfo {
edf8e2af
MW
3767 char pr_state; /* numeric process state */
3768 char pr_sname; /* char for pr_state */
3769 char pr_zomb; /* zombie */
3770 char pr_nice; /* nice val */
ca98ac83 3771 abi_ulong pr_flag; /* flags */
c227f099
AL
3772 target_uid_t pr_uid;
3773 target_gid_t pr_gid;
3774 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af 3775 /* Lots missing */
d7eb2b92 3776 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
edf8e2af
MW
3777 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3778};
3779
3780/* Here is the structure in which status of each thread is captured. */
3781struct elf_thread_status {
72cf2d4f 3782 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 3783 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
3784#if 0
3785 elf_fpregset_t fpu; /* NT_PRFPREG */
3786 struct task_struct *thread;
3787 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3788#endif
3789 struct memelfnote notes[1];
3790 int num_notes;
3791};
3792
3793struct elf_note_info {
3794 struct memelfnote *notes;
a2547a13
LD
3795 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3796 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 3797
b58deb34 3798 QTAILQ_HEAD(, elf_thread_status) thread_list;
edf8e2af
MW
3799#if 0
3800 /*
3801 * Current version of ELF coredump doesn't support
3802 * dumping fp regs etc.
3803 */
3804 elf_fpregset_t *fpu;
3805 elf_fpxregset_t *xfpu;
3806 int thread_status_size;
3807#endif
3808 int notes_size;
3809 int numnote;
3810};
3811
3812struct vm_area_struct {
1a1c4db9
MI
3813 target_ulong vma_start; /* start vaddr of memory region */
3814 target_ulong vma_end; /* end vaddr of memory region */
3815 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 3816 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
3817};
3818
3819struct mm_struct {
72cf2d4f 3820 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
3821 int mm_count; /* number of mappings */
3822};
3823
3824static struct mm_struct *vma_init(void);
3825static void vma_delete(struct mm_struct *);
1a1c4db9
MI
3826static int vma_add_mapping(struct mm_struct *, target_ulong,
3827 target_ulong, abi_ulong);
edf8e2af
MW
3828static int vma_get_mapping_count(const struct mm_struct *);
3829static struct vm_area_struct *vma_first(const struct mm_struct *);
3830static struct vm_area_struct *vma_next(struct vm_area_struct *);
3831static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 3832static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3833 unsigned long flags);
edf8e2af
MW
3834
3835static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3836static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 3837 unsigned int, void *);
a2547a13
LD
3838static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3839static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
3840static void fill_auxv_note(struct memelfnote *, const TaskState *);
3841static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3842static size_t note_size(const struct memelfnote *);
3843static void free_note_info(struct elf_note_info *);
9349b4f9
AF
3844static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3845static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
3846
3847static int dump_write(int, const void *, size_t);
3848static int write_note(struct memelfnote *, int);
3849static int write_note_info(struct elf_note_info *, int);
3850
3851#ifdef BSWAP_NEEDED
a2547a13 3852static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 3853{
ca98ac83
PB
3854 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3855 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3856 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 3857 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
3858 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3859 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
3860 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3861 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3862 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3863 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3864 /* cpu times are not filled, so we skip them */
3865 /* regs should be in correct format already */
3866 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3867}
3868
a2547a13 3869static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 3870{
ca98ac83 3871 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
3872 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3873 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3874 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3875 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3876 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3877 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3878}
991f8f0c
RH
3879
3880static void bswap_note(struct elf_note *en)
3881{
3882 bswap32s(&en->n_namesz);
3883 bswap32s(&en->n_descsz);
3884 bswap32s(&en->n_type);
3885}
3886#else
3887static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3888static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3889static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
3890#endif /* BSWAP_NEEDED */
3891
3892/*
3893 * Minimal support for linux memory regions. These are needed
3894 * when we are finding out what memory exactly belongs to
3895 * emulated process. No locks needed here, as long as
3896 * thread that received the signal is stopped.
3897 */
3898
3899static struct mm_struct *vma_init(void)
3900{
3901 struct mm_struct *mm;
3902
7267c094 3903 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
3904 return (NULL);
3905
3906 mm->mm_count = 0;
72cf2d4f 3907 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
3908
3909 return (mm);
3910}
3911
3912static void vma_delete(struct mm_struct *mm)
3913{
3914 struct vm_area_struct *vma;
3915
3916 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 3917 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 3918 g_free(vma);
edf8e2af 3919 }
7267c094 3920 g_free(mm);
edf8e2af
MW
3921}
3922
1a1c4db9
MI
3923static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3924 target_ulong end, abi_ulong flags)
edf8e2af
MW
3925{
3926 struct vm_area_struct *vma;
3927
7267c094 3928 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
3929 return (-1);
3930
3931 vma->vma_start = start;
3932 vma->vma_end = end;
3933 vma->vma_flags = flags;
3934
72cf2d4f 3935 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
3936 mm->mm_count++;
3937
3938 return (0);
3939}
3940
3941static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3942{
72cf2d4f 3943 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
3944}
3945
3946static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3947{
72cf2d4f 3948 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
3949}
3950
3951static int vma_get_mapping_count(const struct mm_struct *mm)
3952{
3953 return (mm->mm_count);
3954}
3955
3956/*
3957 * Calculate file (dump) size of given memory region.
3958 */
3959static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3960{
3961 /* if we cannot even read the first page, skip it */
c7169b02 3962 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
edf8e2af
MW
3963 return (0);
3964
3965 /*
3966 * Usually we don't dump executable pages as they contain
3967 * non-writable code that debugger can read directly from
3968 * target library etc. However, thread stacks are marked
3969 * also executable so we read in first page of given region
3970 * and check whether it contains elf header. If there is
3971 * no elf header, we dump it.
3972 */
3973 if (vma->vma_flags & PROT_EXEC) {
3974 char page[TARGET_PAGE_SIZE];
3975
022625a8
PM
3976 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3977 return 0;
3978 }
edf8e2af
MW
3979 if ((page[EI_MAG0] == ELFMAG0) &&
3980 (page[EI_MAG1] == ELFMAG1) &&
3981 (page[EI_MAG2] == ELFMAG2) &&
3982 (page[EI_MAG3] == ELFMAG3)) {
3983 /*
3984 * Mappings are possibly from ELF binary. Don't dump
3985 * them.
3986 */
3987 return (0);
3988 }
3989 }
3990
3991 return (vma->vma_end - vma->vma_start);
3992}
3993
1a1c4db9 3994static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3995 unsigned long flags)
edf8e2af
MW
3996{
3997 struct mm_struct *mm = (struct mm_struct *)priv;
3998
edf8e2af
MW
3999 vma_add_mapping(mm, start, end, flags);
4000 return (0);
4001}
4002
4003static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 4004 unsigned int sz, void *data)
edf8e2af
MW
4005{
4006 unsigned int namesz;
4007
4008 namesz = strlen(name) + 1;
4009 note->name = name;
4010 note->namesz = namesz;
4011 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
4012 note->type = type;
80f5ce75
LV
4013 note->datasz = sz;
4014 note->datasz_rounded = roundup(sz, sizeof (int32_t));
4015
edf8e2af
MW
4016 note->data = data;
4017
4018 /*
4019 * We calculate rounded up note size here as specified by
4020 * ELF document.
4021 */
4022 note->notesz = sizeof (struct elf_note) +
80f5ce75 4023 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
4024}
4025
4026static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 4027 uint32_t flags)
edf8e2af
MW
4028{
4029 (void) memset(elf, 0, sizeof(*elf));
4030
4031 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
4032 elf->e_ident[EI_CLASS] = ELF_CLASS;
4033 elf->e_ident[EI_DATA] = ELF_DATA;
4034 elf->e_ident[EI_VERSION] = EV_CURRENT;
4035 elf->e_ident[EI_OSABI] = ELF_OSABI;
4036
4037 elf->e_type = ET_CORE;
4038 elf->e_machine = machine;
4039 elf->e_version = EV_CURRENT;
4040 elf->e_phoff = sizeof(struct elfhdr);
4041 elf->e_flags = flags;
4042 elf->e_ehsize = sizeof(struct elfhdr);
4043 elf->e_phentsize = sizeof(struct elf_phdr);
4044 elf->e_phnum = segs;
4045
edf8e2af 4046 bswap_ehdr(elf);
edf8e2af
MW
4047}
4048
4049static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4050{
4051 phdr->p_type = PT_NOTE;
4052 phdr->p_offset = offset;
4053 phdr->p_vaddr = 0;
4054 phdr->p_paddr = 0;
4055 phdr->p_filesz = sz;
4056 phdr->p_memsz = 0;
4057 phdr->p_flags = 0;
4058 phdr->p_align = 0;
4059
991f8f0c 4060 bswap_phdr(phdr, 1);
edf8e2af
MW
4061}
4062
4063static size_t note_size(const struct memelfnote *note)
4064{
4065 return (note->notesz);
4066}
4067
a2547a13 4068static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 4069 const TaskState *ts, int signr)
edf8e2af
MW
4070{
4071 (void) memset(prstatus, 0, sizeof (*prstatus));
4072 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4073 prstatus->pr_pid = ts->ts_tid;
4074 prstatus->pr_ppid = getppid();
4075 prstatus->pr_pgrp = getpgrp();
4076 prstatus->pr_sid = getsid(0);
4077
edf8e2af 4078 bswap_prstatus(prstatus);
edf8e2af
MW
4079}
4080
a2547a13 4081static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 4082{
900cfbca 4083 char *base_filename;
edf8e2af
MW
4084 unsigned int i, len;
4085
4086 (void) memset(psinfo, 0, sizeof (*psinfo));
4087
5f779a3a 4088 len = ts->info->env_strings - ts->info->arg_strings;
edf8e2af
MW
4089 if (len >= ELF_PRARGSZ)
4090 len = ELF_PRARGSZ - 1;
5f779a3a 4091 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
edf8e2af 4092 return -EFAULT;
5f779a3a 4093 }
edf8e2af
MW
4094 for (i = 0; i < len; i++)
4095 if (psinfo->pr_psargs[i] == 0)
4096 psinfo->pr_psargs[i] = ' ';
4097 psinfo->pr_psargs[len] = 0;
4098
4099 psinfo->pr_pid = getpid();
4100 psinfo->pr_ppid = getppid();
4101 psinfo->pr_pgrp = getpgrp();
4102 psinfo->pr_sid = getsid(0);
4103 psinfo->pr_uid = getuid();
4104 psinfo->pr_gid = getgid();
4105
900cfbca
JM
4106 base_filename = g_path_get_basename(ts->bprm->filename);
4107 /*
4108 * Using strncpy here is fine: at max-length,
4109 * this field is not NUL-terminated.
4110 */
edf8e2af 4111 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 4112 sizeof(psinfo->pr_fname));
edf8e2af 4113
900cfbca 4114 g_free(base_filename);
edf8e2af 4115 bswap_psinfo(psinfo);
edf8e2af
MW
4116 return (0);
4117}
4118
4119static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4120{
4121 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4122 elf_addr_t orig_auxv = auxv;
edf8e2af 4123 void *ptr;
125b0f55 4124 int len = ts->info->auxv_len;
edf8e2af
MW
4125
4126 /*
4127 * Auxiliary vector is stored in target process stack. It contains
4128 * {type, value} pairs that we need to dump into note. This is not
4129 * strictly necessary but we do it here for sake of completeness.
4130 */
4131
edf8e2af
MW
4132 /* read in whole auxv vector and copy it to memelfnote */
4133 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4134 if (ptr != NULL) {
4135 fill_note(note, "CORE", NT_AUXV, len, ptr);
4136 unlock_user(ptr, auxv, len);
4137 }
4138}
4139
4140/*
4141 * Constructs name of coredump file. We have following convention
4142 * for the name:
4143 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4144 *
68af19ad 4145 * Returns the filename
edf8e2af 4146 */
68af19ad 4147static char *core_dump_filename(const TaskState *ts)
edf8e2af 4148{
68af19ad
DB
4149 g_autoptr(GDateTime) now = g_date_time_new_now_local();
4150 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4151 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 4152
68af19ad
DB
4153 return g_strdup_printf("qemu_%s_%s_%d.core",
4154 base_filename, nowstr, (int)getpid());
edf8e2af
MW
4155}
4156
4157static int dump_write(int fd, const void *ptr, size_t size)
4158{
4159 const char *bufp = (const char *)ptr;
4160 ssize_t bytes_written, bytes_left;
4161 struct rlimit dumpsize;
4162 off_t pos;
4163
4164 bytes_written = 0;
4165 getrlimit(RLIMIT_CORE, &dumpsize);
4166 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4167 if (errno == ESPIPE) { /* not a seekable stream */
4168 bytes_left = size;
4169 } else {
4170 return pos;
4171 }
4172 } else {
4173 if (dumpsize.rlim_cur <= pos) {
4174 return -1;
4175 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4176 bytes_left = size;
4177 } else {
4178 size_t limit_left=dumpsize.rlim_cur - pos;
4179 bytes_left = limit_left >= size ? size : limit_left ;
4180 }
4181 }
4182
4183 /*
4184 * In normal conditions, single write(2) should do but
4185 * in case of socket etc. this mechanism is more portable.
4186 */
4187 do {
4188 bytes_written = write(fd, bufp, bytes_left);
4189 if (bytes_written < 0) {
4190 if (errno == EINTR)
4191 continue;
4192 return (-1);
4193 } else if (bytes_written == 0) { /* eof */
4194 return (-1);
4195 }
4196 bufp += bytes_written;
4197 bytes_left -= bytes_written;
4198 } while (bytes_left > 0);
4199
4200 return (0);
4201}
4202
4203static int write_note(struct memelfnote *men, int fd)
4204{
4205 struct elf_note en;
4206
4207 en.n_namesz = men->namesz;
4208 en.n_type = men->type;
4209 en.n_descsz = men->datasz;
4210
edf8e2af 4211 bswap_note(&en);
edf8e2af
MW
4212
4213 if (dump_write(fd, &en, sizeof(en)) != 0)
4214 return (-1);
4215 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4216 return (-1);
80f5ce75 4217 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
4218 return (-1);
4219
4220 return (0);
4221}
4222
9349b4f9 4223static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 4224{
29a0af61 4225 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 4226 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
4227 struct elf_thread_status *ets;
4228
7267c094 4229 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
4230 ets->num_notes = 1; /* only prstatus is dumped */
4231 fill_prstatus(&ets->prstatus, ts, 0);
4232 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4233 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 4234 &ets->prstatus);
edf8e2af 4235
72cf2d4f 4236 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
4237
4238 info->notes_size += note_size(&ets->notes[0]);
4239}
4240
6afafa86
PM
4241static void init_note_info(struct elf_note_info *info)
4242{
4243 /* Initialize the elf_note_info structure so that it is at
4244 * least safe to call free_note_info() on it. Must be
4245 * called before calling fill_note_info().
4246 */
4247 memset(info, 0, sizeof (*info));
4248 QTAILQ_INIT(&info->thread_list);
4249}
4250
edf8e2af 4251static int fill_note_info(struct elf_note_info *info,
9349b4f9 4252 long signr, const CPUArchState *env)
edf8e2af
MW
4253{
4254#define NUMNOTES 3
29a0af61 4255 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 4256 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
4257 int i;
4258
c78d65e8 4259 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
4260 if (info->notes == NULL)
4261 return (-ENOMEM);
7267c094 4262 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
4263 if (info->prstatus == NULL)
4264 return (-ENOMEM);
7267c094 4265 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
4266 if (info->prstatus == NULL)
4267 return (-ENOMEM);
4268
4269 /*
4270 * First fill in status (and registers) of current thread
4271 * including process info & aux vector.
4272 */
4273 fill_prstatus(info->prstatus, ts, signr);
4274 elf_core_copy_regs(&info->prstatus->pr_reg, env);
4275 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 4276 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
4277 fill_psinfo(info->psinfo, ts);
4278 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 4279 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
4280 fill_auxv_note(&info->notes[2], ts);
4281 info->numnote = 3;
4282
4283 info->notes_size = 0;
4284 for (i = 0; i < info->numnote; i++)
4285 info->notes_size += note_size(&info->notes[i]);
4286
4287 /* read and fill status of all threads */
370ed600
JI
4288 WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) {
4289 CPU_FOREACH(cpu) {
4290 if (cpu == thread_cpu) {
4291 continue;
4292 }
4293 fill_thread_info(info, cpu->env_ptr);
182735ef 4294 }
edf8e2af 4295 }
edf8e2af
MW
4296
4297 return (0);
4298}
4299
4300static void free_note_info(struct elf_note_info *info)
4301{
4302 struct elf_thread_status *ets;
4303
72cf2d4f
BS
4304 while (!QTAILQ_EMPTY(&info->thread_list)) {
4305 ets = QTAILQ_FIRST(&info->thread_list);
4306 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 4307 g_free(ets);
edf8e2af
MW
4308 }
4309
7267c094
AL
4310 g_free(info->prstatus);
4311 g_free(info->psinfo);
4312 g_free(info->notes);
edf8e2af
MW
4313}
4314
4315static int write_note_info(struct elf_note_info *info, int fd)
4316{
4317 struct elf_thread_status *ets;
4318 int i, error = 0;
4319
4320 /* write prstatus, psinfo and auxv for current thread */
4321 for (i = 0; i < info->numnote; i++)
4322 if ((error = write_note(&info->notes[i], fd)) != 0)
4323 return (error);
4324
4325 /* write prstatus for each thread */
52a53afe 4326 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
4327 if ((error = write_note(&ets->notes[0], fd)) != 0)
4328 return (error);
4329 }
4330
4331 return (0);
4332}
4333
4334/*
4335 * Write out ELF coredump.
4336 *
4337 * See documentation of ELF object file format in:
4338 * http://www.caldera.com/developers/devspecs/gabi41.pdf
4339 *
4340 * Coredump format in linux is following:
4341 *
4342 * 0 +----------------------+ \
4343 * | ELF header | ET_CORE |
4344 * +----------------------+ |
4345 * | ELF program headers | |--- headers
4346 * | - NOTE section | |
4347 * | - PT_LOAD sections | |
4348 * +----------------------+ /
4349 * | NOTEs: |
4350 * | - NT_PRSTATUS |
4351 * | - NT_PRSINFO |
4352 * | - NT_AUXV |
4353 * +----------------------+ <-- aligned to target page
4354 * | Process memory dump |
4355 * : :
4356 * . .
4357 * : :
4358 * | |
4359 * +----------------------+
4360 *
4361 * NT_PRSTATUS -> struct elf_prstatus (per thread)
4362 * NT_PRSINFO -> struct elf_prpsinfo
4363 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4364 *
4365 * Format follows System V format as close as possible. Current
4366 * version limitations are as follows:
4367 * - no floating point registers are dumped
4368 *
4369 * Function returns 0 in case of success, negative errno otherwise.
4370 *
4371 * TODO: make this work also during runtime: it should be
4372 * possible to force coredump from running process and then
4373 * continue processing. For example qemu could set up SIGUSR2
4374 * handler (provided that target process haven't registered
4375 * handler for that) that does the dump when signal is received.
4376 */
9349b4f9 4377static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 4378{
29a0af61 4379 const CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 4380 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af 4381 struct vm_area_struct *vma = NULL;
68af19ad 4382 g_autofree char *corefile = NULL;
edf8e2af
MW
4383 struct elf_note_info info;
4384 struct elfhdr elf;
4385 struct elf_phdr phdr;
4386 struct rlimit dumpsize;
4387 struct mm_struct *mm = NULL;
4388 off_t offset = 0, data_offset = 0;
4389 int segs = 0;
4390 int fd = -1;
4391
6afafa86
PM
4392 init_note_info(&info);
4393
edf8e2af
MW
4394 errno = 0;
4395 getrlimit(RLIMIT_CORE, &dumpsize);
4396 if (dumpsize.rlim_cur == 0)
d97ef72e 4397 return 0;
edf8e2af 4398
68af19ad 4399 corefile = core_dump_filename(ts);
edf8e2af
MW
4400
4401 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 4402 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
4403 return (-errno);
4404
4405 /*
4406 * Walk through target process memory mappings and
4407 * set up structure containing this information. After
4408 * this point vma_xxx functions can be used.
4409 */
4410 if ((mm = vma_init()) == NULL)
4411 goto out;
4412
4413 walk_memory_regions(mm, vma_walker);
4414 segs = vma_get_mapping_count(mm);
4415
4416 /*
4417 * Construct valid coredump ELF header. We also
4418 * add one more segment for notes.
4419 */
4420 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4421 if (dump_write(fd, &elf, sizeof (elf)) != 0)
4422 goto out;
4423
b6af0975 4424 /* fill in the in-memory version of notes */
edf8e2af
MW
4425 if (fill_note_info(&info, signr, env) < 0)
4426 goto out;
4427
4428 offset += sizeof (elf); /* elf header */
4429 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
4430
4431 /* write out notes program header */
4432 fill_elf_note_phdr(&phdr, info.notes_size, offset);
4433
4434 offset += info.notes_size;
4435 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4436 goto out;
4437
4438 /*
4439 * ELF specification wants data to start at page boundary so
4440 * we align it here.
4441 */
80f5ce75 4442 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
4443
4444 /*
4445 * Write program headers for memory regions mapped in
4446 * the target process.
4447 */
4448 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4449 (void) memset(&phdr, 0, sizeof (phdr));
4450
4451 phdr.p_type = PT_LOAD;
4452 phdr.p_offset = offset;
4453 phdr.p_vaddr = vma->vma_start;
4454 phdr.p_paddr = 0;
4455 phdr.p_filesz = vma_dump_size(vma);
4456 offset += phdr.p_filesz;
4457 phdr.p_memsz = vma->vma_end - vma->vma_start;
4458 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4459 if (vma->vma_flags & PROT_WRITE)
4460 phdr.p_flags |= PF_W;
4461 if (vma->vma_flags & PROT_EXEC)
4462 phdr.p_flags |= PF_X;
4463 phdr.p_align = ELF_EXEC_PAGESIZE;
4464
80f5ce75 4465 bswap_phdr(&phdr, 1);
772034b6
PM
4466 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4467 goto out;
4468 }
edf8e2af
MW
4469 }
4470
4471 /*
4472 * Next we write notes just after program headers. No
4473 * alignment needed here.
4474 */
4475 if (write_note_info(&info, fd) < 0)
4476 goto out;
4477
4478 /* align data to page boundary */
edf8e2af
MW
4479 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4480 goto out;
4481
4482 /*
4483 * Finally we can dump process memory into corefile as well.
4484 */
4485 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4486 abi_ulong addr;
4487 abi_ulong end;
4488
4489 end = vma->vma_start + vma_dump_size(vma);
4490
4491 for (addr = vma->vma_start; addr < end;
d97ef72e 4492 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
4493 char page[TARGET_PAGE_SIZE];
4494 int error;
4495
4496 /*
4497 * Read in page from target process memory and
4498 * write it to coredump file.
4499 */
4500 error = copy_from_user(page, addr, sizeof (page));
4501 if (error != 0) {
49995e17 4502 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 4503 addr);
edf8e2af
MW
4504 errno = -error;
4505 goto out;
4506 }
4507 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4508 goto out;
4509 }
4510 }
4511
d97ef72e 4512 out:
edf8e2af
MW
4513 free_note_info(&info);
4514 if (mm != NULL)
4515 vma_delete(mm);
4516 (void) close(fd);
4517
4518 if (errno != 0)
4519 return (-errno);
4520 return (0);
4521}
edf8e2af
MW
4522#endif /* USE_ELF_CORE_DUMP */
4523
e5fe0c52
PB
4524void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4525{
4526 init_thread(regs, infop);
4527}