]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
Fix Sparse warnings: "Using plain integer as NULL pointer"
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
edf8e2af
MW
2#include <sys/time.h>
3#include <sys/param.h>
31e31b8a
FB
4
5#include <stdio.h>
6#include <sys/types.h>
7#include <fcntl.h>
31e31b8a
FB
8#include <errno.h>
9#include <unistd.h>
10#include <sys/mman.h>
edf8e2af 11#include <sys/resource.h>
31e31b8a
FB
12#include <stdlib.h>
13#include <string.h>
edf8e2af 14#include <time.h>
31e31b8a 15
3ef693a0 16#include "qemu.h"
689f936f 17#include "disas.h"
31e31b8a 18
e58ffeb3 19#ifdef _ARCH_PPC64
a6cc84f4 20#undef ARCH_DLINFO
21#undef ELF_PLATFORM
22#undef ELF_HWCAP
23#undef ELF_CLASS
24#undef ELF_DATA
25#undef ELF_ARCH
26#endif
27
edf8e2af
MW
28#define ELF_OSABI ELFOSABI_SYSV
29
cb33da57
BS
30/* from personality.h */
31
32/*
33 * Flags for bug emulation.
34 *
35 * These occupy the top three bytes.
36 */
37enum {
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to descriptors
40 * (signal handling)
41 */
42 MMAP_PAGE_ZERO = 0x0100000,
43 ADDR_COMPAT_LAYOUT = 0x0200000,
44 READ_IMPLIES_EXEC = 0x0400000,
45 ADDR_LIMIT_32BIT = 0x0800000,
46 SHORT_INODE = 0x1000000,
47 WHOLE_SECONDS = 0x2000000,
48 STICKY_TIMEOUTS = 0x4000000,
49 ADDR_LIMIT_3GB = 0x8000000,
50};
51
52/*
53 * Personality types.
54 *
55 * These go in the low byte. Avoid using the top bit, it will
56 * conflict with error returns.
57 */
58enum {
59 PER_LINUX = 0x0000,
60 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
61 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
62 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS |
65 WHOLE_SECONDS | SHORT_INODE,
66 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
67 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
68 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
69 PER_BSD = 0x0006,
70 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
71 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
72 PER_LINUX32 = 0x0008,
73 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
74 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
75 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
76 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
77 PER_RISCOS = 0x000c,
78 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
79 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
80 PER_OSF4 = 0x000f, /* OSF/1 v4 */
81 PER_HPUX = 0x0010,
82 PER_MASK = 0x00ff,
83};
84
85/*
86 * Return the base personality without flags.
87 */
88#define personality(pers) (pers & PER_MASK)
89
83fb7adf
FB
90/* this flag is uneffective under linux too, should be deleted */
91#ifndef MAP_DENYWRITE
92#define MAP_DENYWRITE 0
93#endif
94
95/* should probably go in elf.h */
96#ifndef ELIBBAD
97#define ELIBBAD 80
98#endif
99
30ac07d4
FB
100#ifdef TARGET_I386
101
15338fd7
FB
102#define ELF_PLATFORM get_elf_platform()
103
104static const char *get_elf_platform(void)
105{
106 static char elf_platform[] = "i386";
d5975363 107 int family = (thread_env->cpuid_version >> 8) & 0xff;
15338fd7
FB
108 if (family > 6)
109 family = 6;
110 if (family >= 3)
111 elf_platform[1] = '0' + family;
112 return elf_platform;
113}
114
115#define ELF_HWCAP get_elf_hwcap()
116
117static uint32_t get_elf_hwcap(void)
118{
d5975363 119 return thread_env->cpuid_features;
15338fd7
FB
120}
121
84409ddb
JM
122#ifdef TARGET_X86_64
123#define ELF_START_MMAP 0x2aaaaab000ULL
124#define elf_check_arch(x) ( ((x) == ELF_ARCH) )
125
126#define ELF_CLASS ELFCLASS64
127#define ELF_DATA ELFDATA2LSB
128#define ELF_ARCH EM_X86_64
129
130static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
131{
132 regs->rax = 0;
133 regs->rsp = infop->start_stack;
134 regs->rip = infop->entry;
135}
136
a2547a13 137typedef target_ulong target_elf_greg_t;
9edc5d79
MW
138typedef uint32_t target_uid_t;
139typedef uint32_t target_gid_t;
140typedef int32_t target_pid_t;
141
142#define ELF_NREG 27
a2547a13 143typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
144
145/*
146 * Note that ELF_NREG should be 29 as there should be place for
147 * TRAPNO and ERR "registers" as well but linux doesn't dump
148 * those.
149 *
150 * See linux kernel: arch/x86/include/asm/elf.h
151 */
a2547a13 152static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
9edc5d79
MW
153{
154 (*regs)[0] = env->regs[15];
155 (*regs)[1] = env->regs[14];
156 (*regs)[2] = env->regs[13];
157 (*regs)[3] = env->regs[12];
158 (*regs)[4] = env->regs[R_EBP];
159 (*regs)[5] = env->regs[R_EBX];
160 (*regs)[6] = env->regs[11];
161 (*regs)[7] = env->regs[10];
162 (*regs)[8] = env->regs[9];
163 (*regs)[9] = env->regs[8];
164 (*regs)[10] = env->regs[R_EAX];
165 (*regs)[11] = env->regs[R_ECX];
166 (*regs)[12] = env->regs[R_EDX];
167 (*regs)[13] = env->regs[R_ESI];
168 (*regs)[14] = env->regs[R_EDI];
169 (*regs)[15] = env->regs[R_EAX]; /* XXX */
170 (*regs)[16] = env->eip;
171 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
172 (*regs)[18] = env->eflags;
173 (*regs)[19] = env->regs[R_ESP];
174 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
175 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
176 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
177 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
178 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
179 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
180 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
181}
182
84409ddb
JM
183#else
184
30ac07d4
FB
185#define ELF_START_MMAP 0x80000000
186
30ac07d4
FB
187/*
188 * This is used to ensure we don't load something for the wrong architecture.
189 */
190#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
191
192/*
193 * These are used to set parameters in the core dumps.
194 */
195#define ELF_CLASS ELFCLASS32
196#define ELF_DATA ELFDATA2LSB
197#define ELF_ARCH EM_386
198
b346ff46
FB
199static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
200{
201 regs->esp = infop->start_stack;
202 regs->eip = infop->entry;
e5fe0c52
PB
203
204 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
205 starts %edx contains a pointer to a function which might be
206 registered using `atexit'. This provides a mean for the
207 dynamic linker to call DT_FINI functions for shared libraries
208 that have been loaded before the code runs.
209
210 A value of 0 tells we have no such handler. */
211 regs->edx = 0;
b346ff46 212}
9edc5d79 213
a2547a13 214typedef target_ulong target_elf_greg_t;
9edc5d79
MW
215typedef uint16_t target_uid_t;
216typedef uint16_t target_gid_t;
217typedef int32_t target_pid_t;
218
219#define ELF_NREG 17
a2547a13 220typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
221
222/*
223 * Note that ELF_NREG should be 19 as there should be place for
224 * TRAPNO and ERR "registers" as well but linux doesn't dump
225 * those.
226 *
227 * See linux kernel: arch/x86/include/asm/elf.h
228 */
a2547a13 229static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
9edc5d79
MW
230{
231 (*regs)[0] = env->regs[R_EBX];
232 (*regs)[1] = env->regs[R_ECX];
233 (*regs)[2] = env->regs[R_EDX];
234 (*regs)[3] = env->regs[R_ESI];
235 (*regs)[4] = env->regs[R_EDI];
236 (*regs)[5] = env->regs[R_EBP];
237 (*regs)[6] = env->regs[R_EAX];
238 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
239 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
240 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
241 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
242 (*regs)[11] = env->regs[R_EAX]; /* XXX */
243 (*regs)[12] = env->eip;
244 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
245 (*regs)[14] = env->eflags;
246 (*regs)[15] = env->regs[R_ESP];
247 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
248}
84409ddb 249#endif
b346ff46 250
9edc5d79 251#define USE_ELF_CORE_DUMP
b346ff46
FB
252#define ELF_EXEC_PAGESIZE 4096
253
254#endif
255
256#ifdef TARGET_ARM
257
258#define ELF_START_MMAP 0x80000000
259
260#define elf_check_arch(x) ( (x) == EM_ARM )
261
262#define ELF_CLASS ELFCLASS32
263#ifdef TARGET_WORDS_BIGENDIAN
264#define ELF_DATA ELFDATA2MSB
265#else
266#define ELF_DATA ELFDATA2LSB
267#endif
268#define ELF_ARCH EM_ARM
269
b346ff46
FB
270static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
271{
992f48a0 272 abi_long stack = infop->start_stack;
b346ff46
FB
273 memset(regs, 0, sizeof(*regs));
274 regs->ARM_cpsr = 0x10;
0240ded8
PB
275 if (infop->entry & 1)
276 regs->ARM_cpsr |= CPSR_T;
277 regs->ARM_pc = infop->entry & 0xfffffffe;
b346ff46 278 regs->ARM_sp = infop->start_stack;
2f619698
FB
279 /* FIXME - what to for failure of get_user()? */
280 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
281 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
a1516e92 282 /* XXX: it seems that r0 is zeroed after ! */
e5fe0c52
PB
283 regs->ARM_r0 = 0;
284 /* For uClinux PIC binaries. */
863cf0b7 285 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
e5fe0c52 286 regs->ARM_r10 = infop->start_data;
b346ff46
FB
287}
288
a2547a13 289typedef uint32_t target_elf_greg_t;
edf8e2af
MW
290typedef uint16_t target_uid_t;
291typedef uint16_t target_gid_t;
292typedef int32_t target_pid_t;
293
294#define ELF_NREG 18
a2547a13 295typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 296
a2547a13 297static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
edf8e2af
MW
298{
299 (*regs)[0] = env->regs[0];
300 (*regs)[1] = env->regs[1];
301 (*regs)[2] = env->regs[2];
302 (*regs)[3] = env->regs[3];
303 (*regs)[4] = env->regs[4];
304 (*regs)[5] = env->regs[5];
305 (*regs)[6] = env->regs[6];
306 (*regs)[7] = env->regs[7];
307 (*regs)[8] = env->regs[8];
308 (*regs)[9] = env->regs[9];
309 (*regs)[10] = env->regs[10];
310 (*regs)[11] = env->regs[11];
311 (*regs)[12] = env->regs[12];
312 (*regs)[13] = env->regs[13];
313 (*regs)[14] = env->regs[14];
314 (*regs)[15] = env->regs[15];
315
316 (*regs)[16] = cpsr_read((CPUState *)env);
317 (*regs)[17] = env->regs[0]; /* XXX */
318}
319
30ac07d4
FB
320#define USE_ELF_CORE_DUMP
321#define ELF_EXEC_PAGESIZE 4096
322
afce2927
FB
323enum
324{
325 ARM_HWCAP_ARM_SWP = 1 << 0,
326 ARM_HWCAP_ARM_HALF = 1 << 1,
327 ARM_HWCAP_ARM_THUMB = 1 << 2,
328 ARM_HWCAP_ARM_26BIT = 1 << 3,
329 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
330 ARM_HWCAP_ARM_FPA = 1 << 5,
331 ARM_HWCAP_ARM_VFP = 1 << 6,
332 ARM_HWCAP_ARM_EDSP = 1 << 7,
333};
334
15338fd7 335#define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \
afce2927
FB
336 | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \
337 | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP)
338
30ac07d4
FB
339#endif
340
853d6f7a 341#ifdef TARGET_SPARC
a315a145 342#ifdef TARGET_SPARC64
853d6f7a
FB
343
344#define ELF_START_MMAP 0x80000000
345
992f48a0 346#ifndef TARGET_ABI32
cb33da57 347#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
348#else
349#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
350#endif
853d6f7a 351
a315a145
FB
352#define ELF_CLASS ELFCLASS64
353#define ELF_DATA ELFDATA2MSB
5ef54116
FB
354#define ELF_ARCH EM_SPARCV9
355
356#define STACK_BIAS 2047
a315a145 357
a315a145
FB
358static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
359{
992f48a0 360#ifndef TARGET_ABI32
a315a145 361 regs->tstate = 0;
992f48a0 362#endif
a315a145
FB
363 regs->pc = infop->entry;
364 regs->npc = regs->pc + 4;
365 regs->y = 0;
992f48a0
BS
366#ifdef TARGET_ABI32
367 regs->u_regs[14] = infop->start_stack - 16 * 4;
368#else
cb33da57
BS
369 if (personality(infop->personality) == PER_LINUX32)
370 regs->u_regs[14] = infop->start_stack - 16 * 4;
371 else
372 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 373#endif
a315a145
FB
374}
375
376#else
377#define ELF_START_MMAP 0x80000000
378
379#define elf_check_arch(x) ( (x) == EM_SPARC )
380
853d6f7a
FB
381#define ELF_CLASS ELFCLASS32
382#define ELF_DATA ELFDATA2MSB
383#define ELF_ARCH EM_SPARC
384
853d6f7a
FB
385static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
386{
f5155289
FB
387 regs->psr = 0;
388 regs->pc = infop->entry;
389 regs->npc = regs->pc + 4;
390 regs->y = 0;
391 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
392}
393
a315a145 394#endif
853d6f7a
FB
395#endif
396
67867308
FB
397#ifdef TARGET_PPC
398
399#define ELF_START_MMAP 0x80000000
400
e85e7c6e 401#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
402
403#define elf_check_arch(x) ( (x) == EM_PPC64 )
404
405#define ELF_CLASS ELFCLASS64
406
407#else
408
67867308
FB
409#define elf_check_arch(x) ( (x) == EM_PPC )
410
411#define ELF_CLASS ELFCLASS32
84409ddb
JM
412
413#endif
414
67867308
FB
415#ifdef TARGET_WORDS_BIGENDIAN
416#define ELF_DATA ELFDATA2MSB
417#else
418#define ELF_DATA ELFDATA2LSB
419#endif
420#define ELF_ARCH EM_PPC
421
df84e4f3
NF
422/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
423 See arch/powerpc/include/asm/cputable.h. */
424enum {
3efa9a67 425 QEMU_PPC_FEATURE_32 = 0x80000000,
426 QEMU_PPC_FEATURE_64 = 0x40000000,
427 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
428 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
429 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
430 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
431 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
432 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
433 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
434 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
435 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
436 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
437 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
438 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
439 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
440 QEMU_PPC_FEATURE_CELL = 0x00010000,
441 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
442 QEMU_PPC_FEATURE_SMT = 0x00004000,
443 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
444 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
445 QEMU_PPC_FEATURE_PA6T = 0x00000800,
446 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
447 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
448 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
449 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
450 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
451
452 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
453 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
df84e4f3
NF
454};
455
456#define ELF_HWCAP get_elf_hwcap()
457
458static uint32_t get_elf_hwcap(void)
459{
460 CPUState *e = thread_env;
461 uint32_t features = 0;
462
463 /* We don't have to be terribly complete here; the high points are
464 Altivec/FP/SPE support. Anything else is just a bonus. */
465#define GET_FEATURE(flag, feature) \
466 do {if (e->insns_flags & flag) features |= feature; } while(0)
3efa9a67 467 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
468 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
469 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
470 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
471 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
472 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
473 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
474 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
df84e4f3
NF
475#undef GET_FEATURE
476
477 return features;
478}
479
f5155289
FB
480/*
481 * We need to put in some extra aux table entries to tell glibc what
482 * the cache block size is, so it can use the dcbz instruction safely.
483 */
484#define AT_DCACHEBSIZE 19
485#define AT_ICACHEBSIZE 20
486#define AT_UCACHEBSIZE 21
487/* A special ignored type value for PPC, for glibc compatibility. */
488#define AT_IGNOREPPC 22
489/*
490 * The requirements here are:
491 * - keep the final alignment of sp (sp & 0xf)
492 * - make sure the 32-bit value at the first 16 byte aligned position of
493 * AUXV is greater than 16 for glibc compatibility.
494 * AT_IGNOREPPC is used for that.
495 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
496 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
497 */
0bccf03d 498#define DLINFO_ARCH_ITEMS 5
f5155289
FB
499#define ARCH_DLINFO \
500do { \
0bccf03d
FB
501 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
502 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
503 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
f5155289
FB
504 /* \
505 * Now handle glibc compatibility. \
506 */ \
0bccf03d
FB
507 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
508 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
f5155289
FB
509 } while (0)
510
67867308
FB
511static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
512{
992f48a0
BS
513 abi_ulong pos = infop->start_stack;
514 abi_ulong tmp;
e85e7c6e 515#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
992f48a0 516 abi_ulong entry, toc;
84409ddb 517#endif
e5fe0c52 518
67867308 519 _regs->gpr[1] = infop->start_stack;
e85e7c6e 520#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
521 entry = ldq_raw(infop->entry) + infop->load_addr;
522 toc = ldq_raw(infop->entry + 8) + infop->load_addr;
523 _regs->gpr[2] = toc;
524 infop->entry = entry;
525#endif
67867308 526 _regs->nip = infop->entry;
e5fe0c52
PB
527 /* Note that isn't exactly what regular kernel does
528 * but this is what the ABI wants and is needed to allow
529 * execution of PPC BSD programs.
530 */
2f619698
FB
531 /* FIXME - what to for failure of get_user()? */
532 get_user_ual(_regs->gpr[3], pos);
992f48a0 533 pos += sizeof(abi_ulong);
e5fe0c52 534 _regs->gpr[4] = pos;
992f48a0 535 for (tmp = 1; tmp != 0; pos += sizeof(abi_ulong))
e5fe0c52
PB
536 tmp = ldl(pos);
537 _regs->gpr[5] = pos;
67867308
FB
538}
539
67867308
FB
540#define ELF_EXEC_PAGESIZE 4096
541
542#endif
543
048f6b4d
FB
544#ifdef TARGET_MIPS
545
546#define ELF_START_MMAP 0x80000000
547
548#define elf_check_arch(x) ( (x) == EM_MIPS )
549
388bb21a
TS
550#ifdef TARGET_MIPS64
551#define ELF_CLASS ELFCLASS64
552#else
048f6b4d 553#define ELF_CLASS ELFCLASS32
388bb21a 554#endif
048f6b4d
FB
555#ifdef TARGET_WORDS_BIGENDIAN
556#define ELF_DATA ELFDATA2MSB
557#else
558#define ELF_DATA ELFDATA2LSB
559#endif
560#define ELF_ARCH EM_MIPS
561
048f6b4d
FB
562static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
563{
623a930e 564 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
565 regs->cp0_epc = infop->entry;
566 regs->regs[29] = infop->start_stack;
567}
568
388bb21a
TS
569#define ELF_EXEC_PAGESIZE 4096
570
048f6b4d
FB
571#endif /* TARGET_MIPS */
572
b779e29e
EI
573#ifdef TARGET_MICROBLAZE
574
575#define ELF_START_MMAP 0x80000000
576
577#define elf_check_arch(x) ( (x) == EM_XILINX_MICROBLAZE )
578
579#define ELF_CLASS ELFCLASS32
580#define ELF_DATA ELFDATA2MSB
581#define ELF_ARCH EM_MIPS
582
583static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
584{
585 regs->pc = infop->entry;
586 regs->r1 = infop->start_stack;
587
588}
589
b779e29e
EI
590#define ELF_EXEC_PAGESIZE 4096
591
592#endif /* TARGET_MICROBLAZE */
593
fdf9b3e8
FB
594#ifdef TARGET_SH4
595
596#define ELF_START_MMAP 0x80000000
597
598#define elf_check_arch(x) ( (x) == EM_SH )
599
600#define ELF_CLASS ELFCLASS32
601#define ELF_DATA ELFDATA2LSB
602#define ELF_ARCH EM_SH
603
fdf9b3e8
FB
604static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
605{
606 /* Check other registers XXXXX */
607 regs->pc = infop->entry;
072ae847 608 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
609}
610
fdf9b3e8
FB
611#define ELF_EXEC_PAGESIZE 4096
612
613#endif
614
48733d19
TS
615#ifdef TARGET_CRIS
616
617#define ELF_START_MMAP 0x80000000
618
619#define elf_check_arch(x) ( (x) == EM_CRIS )
620
621#define ELF_CLASS ELFCLASS32
622#define ELF_DATA ELFDATA2LSB
623#define ELF_ARCH EM_CRIS
624
625static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
626{
627 regs->erp = infop->entry;
628}
629
48733d19
TS
630#define ELF_EXEC_PAGESIZE 8192
631
632#endif
633
e6e5906b
PB
634#ifdef TARGET_M68K
635
636#define ELF_START_MMAP 0x80000000
637
638#define elf_check_arch(x) ( (x) == EM_68K )
639
640#define ELF_CLASS ELFCLASS32
641#define ELF_DATA ELFDATA2MSB
642#define ELF_ARCH EM_68K
643
644/* ??? Does this need to do anything?
645#define ELF_PLAT_INIT(_r) */
646
647static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
648{
649 regs->usp = infop->start_stack;
650 regs->sr = 0;
651 regs->pc = infop->entry;
652}
653
e6e5906b
PB
654#define ELF_EXEC_PAGESIZE 8192
655
656#endif
657
7a3148a9
JM
658#ifdef TARGET_ALPHA
659
660#define ELF_START_MMAP (0x30000000000ULL)
661
662#define elf_check_arch(x) ( (x) == ELF_ARCH )
663
664#define ELF_CLASS ELFCLASS64
665#define ELF_DATA ELFDATA2MSB
666#define ELF_ARCH EM_ALPHA
667
668static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
669{
670 regs->pc = infop->entry;
671 regs->ps = 8;
672 regs->usp = infop->start_stack;
673 regs->unique = infop->start_data; /* ? */
674 printf("Set unique value to " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n",
675 regs->unique, infop->start_data);
676}
677
7a3148a9
JM
678#define ELF_EXEC_PAGESIZE 8192
679
680#endif /* TARGET_ALPHA */
681
15338fd7
FB
682#ifndef ELF_PLATFORM
683#define ELF_PLATFORM (NULL)
684#endif
685
686#ifndef ELF_HWCAP
687#define ELF_HWCAP 0
688#endif
689
992f48a0 690#ifdef TARGET_ABI32
cb33da57 691#undef ELF_CLASS
992f48a0 692#define ELF_CLASS ELFCLASS32
cb33da57
BS
693#undef bswaptls
694#define bswaptls(ptr) bswap32s(ptr)
695#endif
696
31e31b8a 697#include "elf.h"
09bfb054 698
09bfb054
FB
699struct exec
700{
701 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
702 unsigned int a_text; /* length of text, in bytes */
703 unsigned int a_data; /* length of data, in bytes */
704 unsigned int a_bss; /* length of uninitialized data area, in bytes */
705 unsigned int a_syms; /* length of symbol table data in file, in bytes */
706 unsigned int a_entry; /* start address */
707 unsigned int a_trsize; /* length of relocation info for text, in bytes */
708 unsigned int a_drsize; /* length of relocation info for data, in bytes */
709};
710
711
712#define N_MAGIC(exec) ((exec).a_info & 0xffff)
713#define OMAGIC 0407
714#define NMAGIC 0410
715#define ZMAGIC 0413
716#define QMAGIC 0314
717
09bfb054
FB
718/* max code+data+bss space allocated to elf interpreter */
719#define INTERP_MAP_SIZE (32 * 1024 * 1024)
720
721/* max code+data+bss+brk space allocated to ET_DYN executables */
722#define ET_DYN_MAP_SIZE (128 * 1024 * 1024)
723
31e31b8a 724/* Necessary parameters */
54936004
FB
725#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
726#define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
727#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a
FB
728
729#define INTERPRETER_NONE 0
730#define INTERPRETER_AOUT 1
731#define INTERPRETER_ELF 2
732
15338fd7 733#define DLINFO_ITEMS 12
31e31b8a 734
09bfb054
FB
735static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
736{
737 memcpy(to, from, n);
738}
d691f669 739
31e31b8a
FB
740static int load_aout_interp(void * exptr, int interp_fd);
741
742#ifdef BSWAP_NEEDED
92a31b1f 743static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a
FB
744{
745 bswap16s(&ehdr->e_type); /* Object file type */
746 bswap16s(&ehdr->e_machine); /* Architecture */
747 bswap32s(&ehdr->e_version); /* Object file version */
92a31b1f
FB
748 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
749 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
750 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
31e31b8a
FB
751 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
752 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
753 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
754 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
755 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
756 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
757 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
758}
759
92a31b1f 760static void bswap_phdr(struct elf_phdr *phdr)
31e31b8a
FB
761{
762 bswap32s(&phdr->p_type); /* Segment type */
92a31b1f
FB
763 bswaptls(&phdr->p_offset); /* Segment file offset */
764 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
765 bswaptls(&phdr->p_paddr); /* Segment physical address */
766 bswaptls(&phdr->p_filesz); /* Segment size in file */
767 bswaptls(&phdr->p_memsz); /* Segment size in memory */
31e31b8a 768 bswap32s(&phdr->p_flags); /* Segment flags */
92a31b1f 769 bswaptls(&phdr->p_align); /* Segment alignment */
31e31b8a 770}
689f936f 771
92a31b1f 772static void bswap_shdr(struct elf_shdr *shdr)
689f936f
FB
773{
774 bswap32s(&shdr->sh_name);
775 bswap32s(&shdr->sh_type);
92a31b1f
FB
776 bswaptls(&shdr->sh_flags);
777 bswaptls(&shdr->sh_addr);
778 bswaptls(&shdr->sh_offset);
779 bswaptls(&shdr->sh_size);
689f936f
FB
780 bswap32s(&shdr->sh_link);
781 bswap32s(&shdr->sh_info);
92a31b1f
FB
782 bswaptls(&shdr->sh_addralign);
783 bswaptls(&shdr->sh_entsize);
689f936f
FB
784}
785
7a3148a9 786static void bswap_sym(struct elf_sym *sym)
689f936f
FB
787{
788 bswap32s(&sym->st_name);
7a3148a9
JM
789 bswaptls(&sym->st_value);
790 bswaptls(&sym->st_size);
689f936f
FB
791 bswap16s(&sym->st_shndx);
792}
31e31b8a
FB
793#endif
794
edf8e2af
MW
795#ifdef USE_ELF_CORE_DUMP
796static int elf_core_dump(int, const CPUState *);
797
798#ifdef BSWAP_NEEDED
799static void bswap_note(struct elf_note *en)
800{
9fdca5aa 801 bswap32s(&en->n_namesz);
802 bswap32s(&en->n_descsz);
803 bswap32s(&en->n_type);
edf8e2af
MW
804}
805#endif /* BSWAP_NEEDED */
806
807#endif /* USE_ELF_CORE_DUMP */
808
31e31b8a 809/*
e5fe0c52 810 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
811 * memory to free pages in kernel mem. These are in a format ready
812 * to be put directly into the top of new user memory.
813 *
814 */
992f48a0
BS
815static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
816 abi_ulong p)
31e31b8a
FB
817{
818 char *tmp, *tmp1, *pag = NULL;
819 int len, offset = 0;
820
821 if (!p) {
822 return 0; /* bullet-proofing */
823 }
824 while (argc-- > 0) {
edf779ff
FB
825 tmp = argv[argc];
826 if (!tmp) {
31e31b8a
FB
827 fprintf(stderr, "VFS: argc is wrong");
828 exit(-1);
829 }
edf779ff
FB
830 tmp1 = tmp;
831 while (*tmp++);
31e31b8a
FB
832 len = tmp - tmp1;
833 if (p < len) { /* this shouldn't happen - 128kB */
834 return 0;
835 }
836 while (len) {
837 --p; --tmp; --len;
838 if (--offset < 0) {
54936004 839 offset = p % TARGET_PAGE_SIZE;
53a5960a 840 pag = (char *)page[p/TARGET_PAGE_SIZE];
44a91cae 841 if (!pag) {
53a5960a 842 pag = (char *)malloc(TARGET_PAGE_SIZE);
4118a970 843 memset(pag, 0, TARGET_PAGE_SIZE);
53a5960a 844 page[p/TARGET_PAGE_SIZE] = pag;
44a91cae
FB
845 if (!pag)
846 return 0;
31e31b8a
FB
847 }
848 }
849 if (len == 0 || offset == 0) {
edf779ff 850 *(pag + offset) = *tmp;
31e31b8a
FB
851 }
852 else {
853 int bytes_to_copy = (len > offset) ? offset : len;
854 tmp -= bytes_to_copy;
855 p -= bytes_to_copy;
856 offset -= bytes_to_copy;
857 len -= bytes_to_copy;
858 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
859 }
860 }
861 }
862 return p;
863}
864
992f48a0
BS
865static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
866 struct image_info *info)
53a5960a 867{
992f48a0 868 abi_ulong stack_base, size, error;
31e31b8a 869 int i;
31e31b8a 870
09bfb054
FB
871 /* Create enough stack to hold everything. If we don't use
872 * it for args, we'll use it for something else...
873 */
874 size = x86_stack_size;
54936004
FB
875 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE)
876 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
5fafdf24 877 error = target_mmap(0,
83fb7adf 878 size + qemu_host_page_size,
54936004
FB
879 PROT_READ | PROT_WRITE,
880 MAP_PRIVATE | MAP_ANONYMOUS,
881 -1, 0);
09bfb054
FB
882 if (error == -1) {
883 perror("stk mmap");
884 exit(-1);
885 }
886 /* we reserve one extra page at the top of the stack as guard */
83fb7adf 887 target_mprotect(error + size, qemu_host_page_size, PROT_NONE);
31e31b8a 888
54936004 889 stack_base = error + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
31e31b8a 890 p += stack_base;
09bfb054 891
31e31b8a
FB
892 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
893 if (bprm->page[i]) {
894 info->rss++;
579a97f7 895 /* FIXME - check return value of memcpy_to_target() for failure */
53a5960a
PB
896 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
897 free(bprm->page[i]);
31e31b8a 898 }
53a5960a 899 stack_base += TARGET_PAGE_SIZE;
31e31b8a
FB
900 }
901 return p;
902}
903
992f48a0 904static void set_brk(abi_ulong start, abi_ulong end)
31e31b8a
FB
905{
906 /* page-align the start and end addresses... */
54936004
FB
907 start = HOST_PAGE_ALIGN(start);
908 end = HOST_PAGE_ALIGN(end);
31e31b8a
FB
909 if (end <= start)
910 return;
54936004
FB
911 if(target_mmap(start, end - start,
912 PROT_READ | PROT_WRITE | PROT_EXEC,
913 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0) == -1) {
31e31b8a
FB
914 perror("cannot mmap brk");
915 exit(-1);
916 }
917}
918
919
853d6f7a
FB
920/* We need to explicitly zero any fractional pages after the data
921 section (i.e. bss). This would contain the junk from the file that
922 should not be in memory. */
992f48a0 923static void padzero(abi_ulong elf_bss, abi_ulong last_bss)
31e31b8a 924{
992f48a0 925 abi_ulong nbyte;
31e31b8a 926
768a4a36
TS
927 if (elf_bss >= last_bss)
928 return;
929
853d6f7a
FB
930 /* XXX: this is really a hack : if the real host page size is
931 smaller than the target page size, some pages after the end
932 of the file may not be mapped. A better fix would be to
933 patch target_mmap(), but it is more complicated as the file
934 size must be known */
83fb7adf 935 if (qemu_real_host_page_size < qemu_host_page_size) {
992f48a0 936 abi_ulong end_addr, end_addr1;
5fafdf24 937 end_addr1 = (elf_bss + qemu_real_host_page_size - 1) &
83fb7adf 938 ~(qemu_real_host_page_size - 1);
853d6f7a
FB
939 end_addr = HOST_PAGE_ALIGN(elf_bss);
940 if (end_addr1 < end_addr) {
863cf0b7 941 mmap((void *)g2h(end_addr1), end_addr - end_addr1,
853d6f7a
FB
942 PROT_READ|PROT_WRITE|PROT_EXEC,
943 MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
944 }
945 }
946
83fb7adf 947 nbyte = elf_bss & (qemu_host_page_size-1);
31e31b8a 948 if (nbyte) {
83fb7adf 949 nbyte = qemu_host_page_size - nbyte;
31e31b8a 950 do {
2f619698
FB
951 /* FIXME - what to do if put_user() fails? */
952 put_user_u8(0, elf_bss);
53a5960a 953 elf_bss++;
31e31b8a
FB
954 } while (--nbyte);
955 }
956}
957
53a5960a 958
992f48a0
BS
959static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
960 struct elfhdr * exec,
961 abi_ulong load_addr,
962 abi_ulong load_bias,
963 abi_ulong interp_load_addr, int ibcs,
964 struct image_info *info)
31e31b8a 965{
992f48a0 966 abi_ulong sp;
53a5960a 967 int size;
992f48a0 968 abi_ulong u_platform;
15338fd7 969 const char *k_platform;
863cf0b7 970 const int n = sizeof(elf_addr_t);
edf779ff 971
53a5960a
PB
972 sp = p;
973 u_platform = 0;
15338fd7
FB
974 k_platform = ELF_PLATFORM;
975 if (k_platform) {
976 size_t len = strlen(k_platform) + 1;
53a5960a
PB
977 sp -= (len + n - 1) & ~(n - 1);
978 u_platform = sp;
579a97f7 979 /* FIXME - check return value of memcpy_to_target() for failure */
53a5960a 980 memcpy_to_target(sp, k_platform, len);
15338fd7 981 }
53a5960a
PB
982 /*
983 * Force 16 byte _final_ alignment here for generality.
984 */
992f48a0 985 sp = sp &~ (abi_ulong)15;
53a5960a 986 size = (DLINFO_ITEMS + 1) * 2;
15338fd7 987 if (k_platform)
53a5960a 988 size += 2;
f5155289 989#ifdef DLINFO_ARCH_ITEMS
53a5960a 990 size += DLINFO_ARCH_ITEMS * 2;
f5155289 991#endif
53a5960a
PB
992 size += envc + argc + 2;
993 size += (!ibcs ? 3 : 1); /* argc itself */
994 size *= n;
995 if (size & 15)
996 sp -= 16 - (size & 15);
3b46e624 997
863cf0b7
JM
998 /* This is correct because Linux defines
999 * elf_addr_t as Elf32_Off / Elf64_Off
1000 */
2f619698
FB
1001#define NEW_AUX_ENT(id, val) do { \
1002 sp -= n; put_user_ual(val, sp); \
1003 sp -= n; put_user_ual(id, sp); \
53a5960a 1004 } while(0)
2f619698 1005
0bccf03d
FB
1006 NEW_AUX_ENT (AT_NULL, 0);
1007
1008 /* There must be exactly DLINFO_ITEMS entries here. */
992f48a0
BS
1009 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(load_addr + exec->e_phoff));
1010 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1011 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1012 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1013 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_load_addr));
1014 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
0bccf03d 1015 NEW_AUX_ENT(AT_ENTRY, load_bias + exec->e_entry);
992f48a0
BS
1016 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1017 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1018 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1019 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1020 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
a07c67df 1021 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
15338fd7 1022 if (k_platform)
53a5960a 1023 NEW_AUX_ENT(AT_PLATFORM, u_platform);
f5155289 1024#ifdef ARCH_DLINFO
5fafdf24 1025 /*
f5155289
FB
1026 * ARCH_DLINFO must come last so platform specific code can enforce
1027 * special alignment requirements on the AUXV if necessary (eg. PPC).
1028 */
1029 ARCH_DLINFO;
1030#endif
1031#undef NEW_AUX_ENT
1032
edf8e2af
MW
1033 info->saved_auxv = sp;
1034
e5fe0c52 1035 sp = loader_build_argptr(envc, argc, sp, p, !ibcs);
31e31b8a
FB
1036 return sp;
1037}
1038
1039
992f48a0
BS
1040static abi_ulong load_elf_interp(struct elfhdr * interp_elf_ex,
1041 int interpreter_fd,
1042 abi_ulong *interp_load_addr)
31e31b8a
FB
1043{
1044 struct elf_phdr *elf_phdata = NULL;
1045 struct elf_phdr *eppnt;
992f48a0 1046 abi_ulong load_addr = 0;
31e31b8a
FB
1047 int load_addr_set = 0;
1048 int retval;
992f48a0
BS
1049 abi_ulong last_bss, elf_bss;
1050 abi_ulong error;
31e31b8a 1051 int i;
5fafdf24 1052
31e31b8a
FB
1053 elf_bss = 0;
1054 last_bss = 0;
1055 error = 0;
1056
644c433c
FB
1057#ifdef BSWAP_NEEDED
1058 bswap_ehdr(interp_elf_ex);
1059#endif
31e31b8a 1060 /* First of all, some simple consistency checks */
5fafdf24
TS
1061 if ((interp_elf_ex->e_type != ET_EXEC &&
1062 interp_elf_ex->e_type != ET_DYN) ||
31e31b8a 1063 !elf_check_arch(interp_elf_ex->e_machine)) {
992f48a0 1064 return ~((abi_ulong)0UL);
31e31b8a 1065 }
5fafdf24 1066
644c433c 1067
31e31b8a 1068 /* Now read in all of the header information */
5fafdf24 1069
54936004 1070 if (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > TARGET_PAGE_SIZE)
992f48a0 1071 return ~(abi_ulong)0UL;
5fafdf24
TS
1072
1073 elf_phdata = (struct elf_phdr *)
31e31b8a
FB
1074 malloc(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
1075
1076 if (!elf_phdata)
992f48a0 1077 return ~((abi_ulong)0UL);
5fafdf24 1078
31e31b8a
FB
1079 /*
1080 * If the size of this structure has changed, then punt, since
1081 * we will be doing the wrong thing.
1082 */
09bfb054 1083 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) {
31e31b8a 1084 free(elf_phdata);
992f48a0 1085 return ~((abi_ulong)0UL);
09bfb054 1086 }
31e31b8a
FB
1087
1088 retval = lseek(interpreter_fd, interp_elf_ex->e_phoff, SEEK_SET);
1089 if(retval >= 0) {
1090 retval = read(interpreter_fd,
1091 (char *) elf_phdata,
1092 sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
1093 }
31e31b8a
FB
1094 if (retval < 0) {
1095 perror("load_elf_interp");
1096 exit(-1);
1097 free (elf_phdata);
1098 return retval;
1099 }
1100#ifdef BSWAP_NEEDED
1101 eppnt = elf_phdata;
1102 for (i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) {
1103 bswap_phdr(eppnt);
1104 }
1105#endif
09bfb054
FB
1106
1107 if (interp_elf_ex->e_type == ET_DYN) {
e91c8a77 1108 /* in order to avoid hardcoding the interpreter load
09bfb054 1109 address in qemu, we allocate a big enough memory zone */
54936004 1110 error = target_mmap(0, INTERP_MAP_SIZE,
5fafdf24 1111 PROT_NONE, MAP_PRIVATE | MAP_ANON,
54936004 1112 -1, 0);
09bfb054
FB
1113 if (error == -1) {
1114 perror("mmap");
1115 exit(-1);
1116 }
1117 load_addr = error;
1118 load_addr_set = 1;
1119 }
1120
31e31b8a
FB
1121 eppnt = elf_phdata;
1122 for(i=0; i<interp_elf_ex->e_phnum; i++, eppnt++)
1123 if (eppnt->p_type == PT_LOAD) {
1124 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
1125 int elf_prot = 0;
992f48a0
BS
1126 abi_ulong vaddr = 0;
1127 abi_ulong k;
31e31b8a
FB
1128
1129 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1130 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1131 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1132 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) {
1133 elf_type |= MAP_FIXED;
1134 vaddr = eppnt->p_vaddr;
1135 }
54936004
FB
1136 error = target_mmap(load_addr+TARGET_ELF_PAGESTART(vaddr),
1137 eppnt->p_filesz + TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr),
31e31b8a
FB
1138 elf_prot,
1139 elf_type,
1140 interpreter_fd,
54936004 1141 eppnt->p_offset - TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr));
3b46e624 1142
e89f07d3 1143 if (error == -1) {
31e31b8a
FB
1144 /* Real error */
1145 close(interpreter_fd);
1146 free(elf_phdata);
992f48a0 1147 return ~((abi_ulong)0UL);
31e31b8a
FB
1148 }
1149
1150 if (!load_addr_set && interp_elf_ex->e_type == ET_DYN) {
1151 load_addr = error;
1152 load_addr_set = 1;
1153 }
1154
1155 /*
1156 * Find the end of the file mapping for this phdr, and keep
1157 * track of the largest address we see for this.
1158 */
1159 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
1160 if (k > elf_bss) elf_bss = k;
1161
1162 /*
1163 * Do the same thing for the memory mapping - between
1164 * elf_bss and last_bss is the bss section.
1165 */
1166 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
1167 if (k > last_bss) last_bss = k;
1168 }
5fafdf24 1169
31e31b8a
FB
1170 /* Now use mmap to map the library into memory. */
1171
1172 close(interpreter_fd);
1173
1174 /*
1175 * Now fill out the bss section. First pad the last page up
1176 * to the page boundary, and then perform a mmap to make sure
1177 * that there are zeromapped pages up to and including the last
1178 * bss page.
1179 */
768a4a36 1180 padzero(elf_bss, last_bss);
83fb7adf 1181 elf_bss = TARGET_ELF_PAGESTART(elf_bss + qemu_host_page_size - 1); /* What we have mapped so far */
31e31b8a
FB
1182
1183 /* Map the last of the bss segment */
1184 if (last_bss > elf_bss) {
54936004
FB
1185 target_mmap(elf_bss, last_bss-elf_bss,
1186 PROT_READ|PROT_WRITE|PROT_EXEC,
1187 MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
31e31b8a
FB
1188 }
1189 free(elf_phdata);
1190
1191 *interp_load_addr = load_addr;
992f48a0 1192 return ((abi_ulong) interp_elf_ex->e_entry) + load_addr;
31e31b8a
FB
1193}
1194
49918a75
PB
1195static int symfind(const void *s0, const void *s1)
1196{
1197 struct elf_sym *key = (struct elf_sym *)s0;
1198 struct elf_sym *sym = (struct elf_sym *)s1;
1199 int result = 0;
1200 if (key->st_value < sym->st_value) {
1201 result = -1;
1202 } else if (key->st_value > sym->st_value + sym->st_size) {
1203 result = 1;
1204 }
1205 return result;
1206}
1207
1208static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
1209{
1210#if ELF_CLASS == ELFCLASS32
1211 struct elf_sym *syms = s->disas_symtab.elf32;
1212#else
1213 struct elf_sym *syms = s->disas_symtab.elf64;
1214#endif
1215
1216 // binary search
1217 struct elf_sym key;
1218 struct elf_sym *sym;
1219
1220 key.st_value = orig_addr;
1221
1222 sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), symfind);
1223 if (sym != 0) {
1224 return s->disas_strtab + sym->st_name;
1225 }
1226
1227 return "";
1228}
1229
1230/* FIXME: This should use elf_ops.h */
1231static int symcmp(const void *s0, const void *s1)
1232{
1233 struct elf_sym *sym0 = (struct elf_sym *)s0;
1234 struct elf_sym *sym1 = (struct elf_sym *)s1;
1235 return (sym0->st_value < sym1->st_value)
1236 ? -1
1237 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
1238}
1239
689f936f
FB
1240/* Best attempt to load symbols from this ELF object. */
1241static void load_symbols(struct elfhdr *hdr, int fd)
1242{
49918a75 1243 unsigned int i, nsyms;
689f936f
FB
1244 struct elf_shdr sechdr, symtab, strtab;
1245 char *strings;
e80cfcfc 1246 struct syminfo *s;
49918a75 1247 struct elf_sym *syms;
689f936f
FB
1248
1249 lseek(fd, hdr->e_shoff, SEEK_SET);
1250 for (i = 0; i < hdr->e_shnum; i++) {
49918a75
PB
1251 if (read(fd, &sechdr, sizeof(sechdr)) != sizeof(sechdr))
1252 return;
689f936f 1253#ifdef BSWAP_NEEDED
49918a75 1254 bswap_shdr(&sechdr);
689f936f 1255#endif
49918a75
PB
1256 if (sechdr.sh_type == SHT_SYMTAB) {
1257 symtab = sechdr;
1258 lseek(fd, hdr->e_shoff
1259 + sizeof(sechdr) * sechdr.sh_link, SEEK_SET);
1260 if (read(fd, &strtab, sizeof(strtab))
1261 != sizeof(strtab))
1262 return;
689f936f 1263#ifdef BSWAP_NEEDED
49918a75 1264 bswap_shdr(&strtab);
689f936f 1265#endif
49918a75
PB
1266 goto found;
1267 }
689f936f
FB
1268 }
1269 return; /* Shouldn't happen... */
1270
1271 found:
1272 /* Now know where the strtab and symtab are. Snarf them. */
e80cfcfc 1273 s = malloc(sizeof(*s));
49918a75
PB
1274 syms = malloc(symtab.sh_size);
1275 if (!syms)
1276 return;
e80cfcfc 1277 s->disas_strtab = strings = malloc(strtab.sh_size);
49918a75
PB
1278 if (!s->disas_strtab)
1279 return;
5fafdf24 1280
689f936f 1281 lseek(fd, symtab.sh_offset, SEEK_SET);
49918a75
PB
1282 if (read(fd, syms, symtab.sh_size) != symtab.sh_size)
1283 return;
1284
1285 nsyms = symtab.sh_size / sizeof(struct elf_sym);
31e31b8a 1286
49918a75
PB
1287 i = 0;
1288 while (i < nsyms) {
689f936f 1289#ifdef BSWAP_NEEDED
49918a75 1290 bswap_sym(syms + i);
689f936f 1291#endif
49918a75
PB
1292 // Throw away entries which we do not need.
1293 if (syms[i].st_shndx == SHN_UNDEF ||
1294 syms[i].st_shndx >= SHN_LORESERVE ||
1295 ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
1296 nsyms--;
1297 if (i < nsyms) {
1298 syms[i] = syms[nsyms];
1299 }
1300 continue;
1301 }
1302#if defined(TARGET_ARM) || defined (TARGET_MIPS)
1303 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
1304 syms[i].st_value &= ~(target_ulong)1;
0774bed1 1305#endif
49918a75 1306 i++;
0774bed1 1307 }
49918a75
PB
1308 syms = realloc(syms, nsyms * sizeof(*syms));
1309
1310 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f
FB
1311
1312 lseek(fd, strtab.sh_offset, SEEK_SET);
1313 if (read(fd, strings, strtab.sh_size) != strtab.sh_size)
49918a75
PB
1314 return;
1315 s->disas_num_syms = nsyms;
1316#if ELF_CLASS == ELFCLASS32
1317 s->disas_symtab.elf32 = syms;
1318 s->lookup_symbol = lookup_symbolxx;
1319#else
1320 s->disas_symtab.elf64 = syms;
1321 s->lookup_symbol = lookup_symbolxx;
1322#endif
e80cfcfc
FB
1323 s->next = syminfos;
1324 syminfos = s;
689f936f 1325}
31e31b8a 1326
e5fe0c52
PB
1327int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
1328 struct image_info * info)
31e31b8a
FB
1329{
1330 struct elfhdr elf_ex;
1331 struct elfhdr interp_elf_ex;
1332 struct exec interp_ex;
1333 int interpreter_fd = -1; /* avoid warning */
992f48a0 1334 abi_ulong load_addr, load_bias;
31e31b8a
FB
1335 int load_addr_set = 0;
1336 unsigned int interpreter_type = INTERPRETER_NONE;
1337 unsigned char ibcs2_interpreter;
1338 int i;
992f48a0 1339 abi_ulong mapped_addr;
31e31b8a
FB
1340 struct elf_phdr * elf_ppnt;
1341 struct elf_phdr *elf_phdata;
992f48a0 1342 abi_ulong elf_bss, k, elf_brk;
31e31b8a
FB
1343 int retval;
1344 char * elf_interpreter;
992f48a0 1345 abi_ulong elf_entry, interp_load_addr = 0;
31e31b8a 1346 int status;
992f48a0
BS
1347 abi_ulong start_code, end_code, start_data, end_data;
1348 abi_ulong reloc_func_desc = 0;
1349 abi_ulong elf_stack;
31e31b8a
FB
1350 char passed_fileno[6];
1351
1352 ibcs2_interpreter = 0;
1353 status = 0;
1354 load_addr = 0;
09bfb054 1355 load_bias = 0;
31e31b8a
FB
1356 elf_ex = *((struct elfhdr *) bprm->buf); /* exec-header */
1357#ifdef BSWAP_NEEDED
1358 bswap_ehdr(&elf_ex);
1359#endif
1360
31e31b8a
FB
1361 /* First of all, some simple consistency checks */
1362 if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) ||
1363 (! elf_check_arch(elf_ex.e_machine))) {
1364 return -ENOEXEC;
1365 }
1366
e5fe0c52
PB
1367 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
1368 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
1369 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
1370 if (!bprm->p) {
1371 retval = -E2BIG;
1372 }
1373
31e31b8a 1374 /* Now read in all of the header information */
31e31b8a
FB
1375 elf_phdata = (struct elf_phdr *)malloc(elf_ex.e_phentsize*elf_ex.e_phnum);
1376 if (elf_phdata == NULL) {
1377 return -ENOMEM;
1378 }
1379
1380 retval = lseek(bprm->fd, elf_ex.e_phoff, SEEK_SET);
1381 if(retval > 0) {
5fafdf24 1382 retval = read(bprm->fd, (char *) elf_phdata,
31e31b8a
FB
1383 elf_ex.e_phentsize * elf_ex.e_phnum);
1384 }
1385
1386 if (retval < 0) {
1387 perror("load_elf_binary");
1388 exit(-1);
1389 free (elf_phdata);
1390 return -errno;
1391 }
1392
b17780d5
FB
1393#ifdef BSWAP_NEEDED
1394 elf_ppnt = elf_phdata;
1395 for (i=0; i<elf_ex.e_phnum; i++, elf_ppnt++) {
1396 bswap_phdr(elf_ppnt);
1397 }
1398#endif
31e31b8a
FB
1399 elf_ppnt = elf_phdata;
1400
1401 elf_bss = 0;
1402 elf_brk = 0;
1403
1404
992f48a0 1405 elf_stack = ~((abi_ulong)0UL);
31e31b8a 1406 elf_interpreter = NULL;
992f48a0 1407 start_code = ~((abi_ulong)0UL);
31e31b8a 1408 end_code = 0;
863cf0b7 1409 start_data = 0;
31e31b8a 1410 end_data = 0;
98448f58 1411 interp_ex.a_info = 0;
31e31b8a
FB
1412
1413 for(i=0;i < elf_ex.e_phnum; i++) {
1414 if (elf_ppnt->p_type == PT_INTERP) {
1415 if ( elf_interpreter != NULL )
1416 {
1417 free (elf_phdata);
1418 free(elf_interpreter);
1419 close(bprm->fd);
1420 return -EINVAL;
1421 }
1422
1423 /* This is the program interpreter used for
1424 * shared libraries - for now assume that this
1425 * is an a.out format binary
1426 */
1427
32ce6337 1428 elf_interpreter = (char *)malloc(elf_ppnt->p_filesz);
31e31b8a
FB
1429
1430 if (elf_interpreter == NULL) {
1431 free (elf_phdata);
1432 close(bprm->fd);
1433 return -ENOMEM;
1434 }
1435
31e31b8a
FB
1436 retval = lseek(bprm->fd, elf_ppnt->p_offset, SEEK_SET);
1437 if(retval >= 0) {
32ce6337 1438 retval = read(bprm->fd, elf_interpreter, elf_ppnt->p_filesz);
31e31b8a
FB
1439 }
1440 if(retval < 0) {
1441 perror("load_elf_binary2");
1442 exit(-1);
5fafdf24 1443 }
31e31b8a
FB
1444
1445 /* If the program interpreter is one of these two,
1446 then assume an iBCS2 image. Otherwise assume
1447 a native linux image. */
1448
1449 /* JRP - Need to add X86 lib dir stuff here... */
1450
1451 if (strcmp(elf_interpreter,"/usr/lib/libc.so.1") == 0 ||
1452 strcmp(elf_interpreter,"/usr/lib/ld.so.1") == 0) {
1453 ibcs2_interpreter = 1;
1454 }
1455
1456#if 0
1457 printf("Using ELF interpreter %s\n", elf_interpreter);
1458#endif
1459 if (retval >= 0) {
32ce6337 1460 retval = open(path(elf_interpreter), O_RDONLY);
31e31b8a
FB
1461 if(retval >= 0) {
1462 interpreter_fd = retval;
1463 }
1464 else {
1465 perror(elf_interpreter);
1466 exit(-1);
1467 /* retval = -errno; */
1468 }
1469 }
1470
1471 if (retval >= 0) {
1472 retval = lseek(interpreter_fd, 0, SEEK_SET);
1473 if(retval >= 0) {
1474 retval = read(interpreter_fd,bprm->buf,128);
1475 }
1476 }
1477 if (retval >= 0) {
1478 interp_ex = *((struct exec *) bprm->buf); /* aout exec-header */
1479 interp_elf_ex=*((struct elfhdr *) bprm->buf); /* elf exec-header */
1480 }
1481 if (retval < 0) {
1482 perror("load_elf_binary3");
1483 exit(-1);
1484 free (elf_phdata);
1485 free(elf_interpreter);
1486 close(bprm->fd);
1487 return retval;
1488 }
1489 }
1490 elf_ppnt++;
1491 }
1492
1493 /* Some simple consistency checks for the interpreter */
1494 if (elf_interpreter){
1495 interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT;
1496
1497 /* Now figure out which format our binary is */
1498 if ((N_MAGIC(interp_ex) != OMAGIC) && (N_MAGIC(interp_ex) != ZMAGIC) &&
1499 (N_MAGIC(interp_ex) != QMAGIC)) {
1500 interpreter_type = INTERPRETER_ELF;
1501 }
1502
1503 if (interp_elf_ex.e_ident[0] != 0x7f ||
b55266b5 1504 strncmp((char *)&interp_elf_ex.e_ident[1], "ELF",3) != 0) {
31e31b8a
FB
1505 interpreter_type &= ~INTERPRETER_ELF;
1506 }
1507
1508 if (!interpreter_type) {
1509 free(elf_interpreter);
1510 free(elf_phdata);
1511 close(bprm->fd);
1512 return -ELIBBAD;
1513 }
1514 }
1515
1516 /* OK, we are done with that, now set up the arg stuff,
1517 and then start this sucker up */
1518
e5fe0c52 1519 {
31e31b8a
FB
1520 char * passed_p;
1521
1522 if (interpreter_type == INTERPRETER_AOUT) {
eba2af63 1523 snprintf(passed_fileno, sizeof(passed_fileno), "%d", bprm->fd);
31e31b8a
FB
1524 passed_p = passed_fileno;
1525
1526 if (elf_interpreter) {
e5fe0c52 1527 bprm->p = copy_elf_strings(1,&passed_p,bprm->page,bprm->p);
31e31b8a
FB
1528 bprm->argc++;
1529 }
1530 }
1531 if (!bprm->p) {
1532 if (elf_interpreter) {
1533 free(elf_interpreter);
1534 }
1535 free (elf_phdata);
1536 close(bprm->fd);
1537 return -E2BIG;
1538 }
1539 }
1540
1541 /* OK, This is the point of no return */
1542 info->end_data = 0;
1543 info->end_code = 0;
992f48a0 1544 info->start_mmap = (abi_ulong)ELF_START_MMAP;
31e31b8a 1545 info->mmap = 0;
992f48a0 1546 elf_entry = (abi_ulong) elf_ex.e_entry;
31e31b8a 1547
379f6698
PB
1548#if defined(CONFIG_USE_GUEST_BASE)
1549 /*
1550 * In case where user has not explicitly set the guest_base, we
1551 * probe here that should we set it automatically.
1552 */
1553 if (!have_guest_base) {
1554 /*
1555 * Go through ELF program header table and find out whether
1556 * any of the segments drop below our current mmap_min_addr and
1557 * in that case set guest_base to corresponding address.
1558 */
1559 for (i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum;
1560 i++, elf_ppnt++) {
1561 if (elf_ppnt->p_type != PT_LOAD)
1562 continue;
1563 if (HOST_PAGE_ALIGN(elf_ppnt->p_vaddr) < mmap_min_addr) {
1564 guest_base = HOST_PAGE_ALIGN(mmap_min_addr);
1565 break;
1566 }
1567 }
1568 }
1569#endif /* CONFIG_USE_GUEST_BASE */
1570
31e31b8a
FB
1571 /* Do this so that we can load the interpreter, if need be. We will
1572 change some of these later */
1573 info->rss = 0;
1574 bprm->p = setup_arg_pages(bprm->p, bprm, info);
1575 info->start_stack = bprm->p;
1576
1577 /* Now we do a little grungy work by mmaping the ELF image into
1578 * the correct location in memory. At this point, we assume that
1579 * the image should be loaded at fixed address, not at a variable
1580 * address.
1581 */
1582
31e31b8a 1583 for(i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) {
09bfb054
FB
1584 int elf_prot = 0;
1585 int elf_flags = 0;
992f48a0 1586 abi_ulong error;
3b46e624 1587
09bfb054
FB
1588 if (elf_ppnt->p_type != PT_LOAD)
1589 continue;
3b46e624 1590
09bfb054
FB
1591 if (elf_ppnt->p_flags & PF_R) elf_prot |= PROT_READ;
1592 if (elf_ppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1593 if (elf_ppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1594 elf_flags = MAP_PRIVATE | MAP_DENYWRITE;
1595 if (elf_ex.e_type == ET_EXEC || load_addr_set) {
1596 elf_flags |= MAP_FIXED;
1597 } else if (elf_ex.e_type == ET_DYN) {
1598 /* Try and get dynamic programs out of the way of the default mmap
1599 base, as well as whatever program they might try to exec. This
1600 is because the brk will follow the loader, and is not movable. */
1601 /* NOTE: for qemu, we do a big mmap to get enough space
e91c8a77 1602 without hardcoding any address */
54936004 1603 error = target_mmap(0, ET_DYN_MAP_SIZE,
5fafdf24 1604 PROT_NONE, MAP_PRIVATE | MAP_ANON,
54936004 1605 -1, 0);
09bfb054
FB
1606 if (error == -1) {
1607 perror("mmap");
1608 exit(-1);
1609 }
54936004 1610 load_bias = TARGET_ELF_PAGESTART(error - elf_ppnt->p_vaddr);
09bfb054 1611 }
3b46e624 1612
54936004
FB
1613 error = target_mmap(TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr),
1614 (elf_ppnt->p_filesz +
1615 TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)),
1616 elf_prot,
1617 (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE),
1618 bprm->fd,
5fafdf24 1619 (elf_ppnt->p_offset -
54936004 1620 TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)));
09bfb054
FB
1621 if (error == -1) {
1622 perror("mmap");
1623 exit(-1);
1624 }
31e31b8a
FB
1625
1626#ifdef LOW_ELF_STACK
54936004
FB
1627 if (TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr) < elf_stack)
1628 elf_stack = TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr);
31e31b8a 1629#endif
3b46e624 1630
09bfb054
FB
1631 if (!load_addr_set) {
1632 load_addr_set = 1;
1633 load_addr = elf_ppnt->p_vaddr - elf_ppnt->p_offset;
1634 if (elf_ex.e_type == ET_DYN) {
1635 load_bias += error -
54936004 1636 TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr);
09bfb054 1637 load_addr += load_bias;
84409ddb 1638 reloc_func_desc = load_bias;
09bfb054
FB
1639 }
1640 }
1641 k = elf_ppnt->p_vaddr;
5fafdf24 1642 if (k < start_code)
09bfb054 1643 start_code = k;
863cf0b7
JM
1644 if (start_data < k)
1645 start_data = k;
09bfb054 1646 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
5fafdf24 1647 if (k > elf_bss)
09bfb054
FB
1648 elf_bss = k;
1649 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1650 end_code = k;
5fafdf24 1651 if (end_data < k)
09bfb054
FB
1652 end_data = k;
1653 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1654 if (k > elf_brk) elf_brk = k;
31e31b8a
FB
1655 }
1656
09bfb054
FB
1657 elf_entry += load_bias;
1658 elf_bss += load_bias;
1659 elf_brk += load_bias;
1660 start_code += load_bias;
1661 end_code += load_bias;
863cf0b7 1662 start_data += load_bias;
09bfb054
FB
1663 end_data += load_bias;
1664
31e31b8a
FB
1665 if (elf_interpreter) {
1666 if (interpreter_type & 1) {
1667 elf_entry = load_aout_interp(&interp_ex, interpreter_fd);
1668 }
1669 else if (interpreter_type & 2) {
1670 elf_entry = load_elf_interp(&interp_elf_ex, interpreter_fd,
1671 &interp_load_addr);
1672 }
84409ddb 1673 reloc_func_desc = interp_load_addr;
31e31b8a
FB
1674
1675 close(interpreter_fd);
1676 free(elf_interpreter);
1677
992f48a0 1678 if (elf_entry == ~((abi_ulong)0UL)) {
31e31b8a
FB
1679 printf("Unable to load interpreter\n");
1680 free(elf_phdata);
1681 exit(-1);
1682 return 0;
1683 }
1684 }
1685
1686 free(elf_phdata);
1687
93fcfe39 1688 if (qemu_log_enabled())
689f936f
FB
1689 load_symbols(&elf_ex, bprm->fd);
1690
31e31b8a
FB
1691 if (interpreter_type != INTERPRETER_AOUT) close(bprm->fd);
1692 info->personality = (ibcs2_interpreter ? PER_SVR4 : PER_LINUX);
1693
1694#ifdef LOW_ELF_STACK
1695 info->start_stack = bprm->p = elf_stack - 4;
1696#endif
53a5960a 1697 bprm->p = create_elf_tables(bprm->p,
31e31b8a
FB
1698 bprm->argc,
1699 bprm->envc,
a1516e92 1700 &elf_ex,
09bfb054 1701 load_addr, load_bias,
31e31b8a
FB
1702 interp_load_addr,
1703 (interpreter_type == INTERPRETER_AOUT ? 0 : 1),
1704 info);
92a343da 1705 info->load_addr = reloc_func_desc;
31e31b8a
FB
1706 info->start_brk = info->brk = elf_brk;
1707 info->end_code = end_code;
1708 info->start_code = start_code;
863cf0b7 1709 info->start_data = start_data;
31e31b8a
FB
1710 info->end_data = end_data;
1711 info->start_stack = bprm->p;
1712
1713 /* Calling set_brk effectively mmaps the pages that we need for the bss and break
1714 sections */
1715 set_brk(elf_bss, elf_brk);
1716
768a4a36 1717 padzero(elf_bss, elf_brk);
31e31b8a
FB
1718
1719#if 0
1720 printf("(start_brk) %x\n" , info->start_brk);
1721 printf("(end_code) %x\n" , info->end_code);
1722 printf("(start_code) %x\n" , info->start_code);
1723 printf("(end_data) %x\n" , info->end_data);
1724 printf("(start_stack) %x\n" , info->start_stack);
1725 printf("(brk) %x\n" , info->brk);
1726#endif
1727
1728 if ( info->personality == PER_SVR4 )
1729 {
1730 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1731 and some applications "depend" upon this behavior.
1732 Since we do not have the power to recompile these, we
1733 emulate the SVr4 behavior. Sigh. */
83fb7adf 1734 mapped_addr = target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
54936004 1735 MAP_FIXED | MAP_PRIVATE, -1, 0);
31e31b8a
FB
1736 }
1737
31e31b8a
FB
1738 info->entry = elf_entry;
1739
edf8e2af
MW
1740#ifdef USE_ELF_CORE_DUMP
1741 bprm->core_dump = &elf_core_dump;
1742#endif
1743
31e31b8a
FB
1744 return 0;
1745}
1746
edf8e2af
MW
1747#ifdef USE_ELF_CORE_DUMP
1748
1749/*
1750 * Definitions to generate Intel SVR4-like core files.
a2547a13 1751 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
1752 * tacked on the front to prevent clashes with linux definitions,
1753 * and the typedef forms have been avoided. This is mostly like
1754 * the SVR4 structure, but more Linuxy, with things that Linux does
1755 * not support and which gdb doesn't really use excluded.
1756 *
1757 * Fields we don't dump (their contents is zero) in linux-user qemu
1758 * are marked with XXX.
1759 *
1760 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
1761 *
1762 * Porting ELF coredump for target is (quite) simple process. First you
1763 * define ELF_USE_CORE_DUMP in target ELF code (where init_thread() for
1764 * the target resides):
1765 *
1766 * #define USE_ELF_CORE_DUMP
1767 *
1768 * Next you define type of register set used for dumping. ELF specification
1769 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
1770 *
a2547a13 1771 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 1772 * #define ELF_NREG <number of registers>
a2547a13 1773 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af
MW
1774 *
1775 * Then define following types to match target types. Actual types can
1776 * be found from linux kernel (arch/<ARCH>/include/asm/posix_types.h):
1777 *
1778 * typedef <target_uid_type> target_uid_t;
1779 * typedef <target_gid_type> target_gid_t;
1780 * typedef <target_pid_type> target_pid_t;
1781 *
1782 * Last step is to implement target specific function that copies registers
1783 * from given cpu into just specified register set. Prototype is:
1784 *
a2547a13
LD
1785 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
1786 * const CPUState *env);
edf8e2af
MW
1787 *
1788 * Parameters:
1789 * regs - copy register values into here (allocated and zeroed by caller)
1790 * env - copy registers from here
1791 *
1792 * Example for ARM target is provided in this file.
1793 */
1794
1795/* An ELF note in memory */
1796struct memelfnote {
1797 const char *name;
1798 size_t namesz;
1799 size_t namesz_rounded;
1800 int type;
1801 size_t datasz;
1802 void *data;
1803 size_t notesz;
1804};
1805
a2547a13 1806struct target_elf_siginfo {
edf8e2af
MW
1807 int si_signo; /* signal number */
1808 int si_code; /* extra code */
1809 int si_errno; /* errno */
1810};
1811
a2547a13
LD
1812struct target_elf_prstatus {
1813 struct target_elf_siginfo pr_info; /* Info associated with signal */
edf8e2af
MW
1814 short pr_cursig; /* Current signal */
1815 target_ulong pr_sigpend; /* XXX */
1816 target_ulong pr_sighold; /* XXX */
1817 target_pid_t pr_pid;
1818 target_pid_t pr_ppid;
1819 target_pid_t pr_pgrp;
1820 target_pid_t pr_sid;
1821 struct target_timeval pr_utime; /* XXX User time */
1822 struct target_timeval pr_stime; /* XXX System time */
1823 struct target_timeval pr_cutime; /* XXX Cumulative user time */
1824 struct target_timeval pr_cstime; /* XXX Cumulative system time */
a2547a13 1825 target_elf_gregset_t pr_reg; /* GP registers */
edf8e2af
MW
1826 int pr_fpvalid; /* XXX */
1827};
1828
1829#define ELF_PRARGSZ (80) /* Number of chars for args */
1830
a2547a13 1831struct target_elf_prpsinfo {
edf8e2af
MW
1832 char pr_state; /* numeric process state */
1833 char pr_sname; /* char for pr_state */
1834 char pr_zomb; /* zombie */
1835 char pr_nice; /* nice val */
1836 target_ulong pr_flag; /* flags */
1837 target_uid_t pr_uid;
1838 target_gid_t pr_gid;
1839 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
1840 /* Lots missing */
1841 char pr_fname[16]; /* filename of executable */
1842 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
1843};
1844
1845/* Here is the structure in which status of each thread is captured. */
1846struct elf_thread_status {
1847 TAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 1848 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
1849#if 0
1850 elf_fpregset_t fpu; /* NT_PRFPREG */
1851 struct task_struct *thread;
1852 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1853#endif
1854 struct memelfnote notes[1];
1855 int num_notes;
1856};
1857
1858struct elf_note_info {
1859 struct memelfnote *notes;
a2547a13
LD
1860 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
1861 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af
MW
1862
1863 TAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
1864#if 0
1865 /*
1866 * Current version of ELF coredump doesn't support
1867 * dumping fp regs etc.
1868 */
1869 elf_fpregset_t *fpu;
1870 elf_fpxregset_t *xfpu;
1871 int thread_status_size;
1872#endif
1873 int notes_size;
1874 int numnote;
1875};
1876
1877struct vm_area_struct {
1878 abi_ulong vma_start; /* start vaddr of memory region */
1879 abi_ulong vma_end; /* end vaddr of memory region */
1880 abi_ulong vma_flags; /* protection etc. flags for the region */
1881 TAILQ_ENTRY(vm_area_struct) vma_link;
1882};
1883
1884struct mm_struct {
1885 TAILQ_HEAD(, vm_area_struct) mm_mmap;
1886 int mm_count; /* number of mappings */
1887};
1888
1889static struct mm_struct *vma_init(void);
1890static void vma_delete(struct mm_struct *);
1891static int vma_add_mapping(struct mm_struct *, abi_ulong,
1892 abi_ulong, abi_ulong);
1893static int vma_get_mapping_count(const struct mm_struct *);
1894static struct vm_area_struct *vma_first(const struct mm_struct *);
1895static struct vm_area_struct *vma_next(struct vm_area_struct *);
1896static abi_ulong vma_dump_size(const struct vm_area_struct *);
1897static int vma_walker(void *priv, unsigned long start, unsigned long end,
1898 unsigned long flags);
1899
1900static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
1901static void fill_note(struct memelfnote *, const char *, int,
1902 unsigned int, void *);
a2547a13
LD
1903static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
1904static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
1905static void fill_auxv_note(struct memelfnote *, const TaskState *);
1906static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
1907static size_t note_size(const struct memelfnote *);
1908static void free_note_info(struct elf_note_info *);
1909static int fill_note_info(struct elf_note_info *, long, const CPUState *);
1910static void fill_thread_info(struct elf_note_info *, const CPUState *);
1911static int core_dump_filename(const TaskState *, char *, size_t);
1912
1913static int dump_write(int, const void *, size_t);
1914static int write_note(struct memelfnote *, int);
1915static int write_note_info(struct elf_note_info *, int);
1916
1917#ifdef BSWAP_NEEDED
a2547a13
LD
1918static void bswap_prstatus(struct target_elf_prstatus *);
1919static void bswap_psinfo(struct target_elf_prpsinfo *);
edf8e2af 1920
a2547a13 1921static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af
MW
1922{
1923 prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo);
1924 prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code);
1925 prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno);
1926 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
1927 prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend);
1928 prstatus->pr_sighold = tswapl(prstatus->pr_sighold);
1929 prstatus->pr_pid = tswap32(prstatus->pr_pid);
1930 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
1931 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
1932 prstatus->pr_sid = tswap32(prstatus->pr_sid);
1933 /* cpu times are not filled, so we skip them */
1934 /* regs should be in correct format already */
1935 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
1936}
1937
a2547a13 1938static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af
MW
1939{
1940 psinfo->pr_flag = tswapl(psinfo->pr_flag);
1941 psinfo->pr_uid = tswap16(psinfo->pr_uid);
1942 psinfo->pr_gid = tswap16(psinfo->pr_gid);
1943 psinfo->pr_pid = tswap32(psinfo->pr_pid);
1944 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
1945 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
1946 psinfo->pr_sid = tswap32(psinfo->pr_sid);
1947}
1948#endif /* BSWAP_NEEDED */
1949
1950/*
1951 * Minimal support for linux memory regions. These are needed
1952 * when we are finding out what memory exactly belongs to
1953 * emulated process. No locks needed here, as long as
1954 * thread that received the signal is stopped.
1955 */
1956
1957static struct mm_struct *vma_init(void)
1958{
1959 struct mm_struct *mm;
1960
1961 if ((mm = qemu_malloc(sizeof (*mm))) == NULL)
1962 return (NULL);
1963
1964 mm->mm_count = 0;
1965 TAILQ_INIT(&mm->mm_mmap);
1966
1967 return (mm);
1968}
1969
1970static void vma_delete(struct mm_struct *mm)
1971{
1972 struct vm_area_struct *vma;
1973
1974 while ((vma = vma_first(mm)) != NULL) {
1975 TAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
1976 qemu_free(vma);
1977 }
1978 qemu_free(mm);
1979}
1980
1981static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
1982 abi_ulong end, abi_ulong flags)
1983{
1984 struct vm_area_struct *vma;
1985
1986 if ((vma = qemu_mallocz(sizeof (*vma))) == NULL)
1987 return (-1);
1988
1989 vma->vma_start = start;
1990 vma->vma_end = end;
1991 vma->vma_flags = flags;
1992
1993 TAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
1994 mm->mm_count++;
1995
1996 return (0);
1997}
1998
1999static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2000{
2001 return (TAILQ_FIRST(&mm->mm_mmap));
2002}
2003
2004static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2005{
2006 return (TAILQ_NEXT(vma, vma_link));
2007}
2008
2009static int vma_get_mapping_count(const struct mm_struct *mm)
2010{
2011 return (mm->mm_count);
2012}
2013
2014/*
2015 * Calculate file (dump) size of given memory region.
2016 */
2017static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2018{
2019 /* if we cannot even read the first page, skip it */
2020 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2021 return (0);
2022
2023 /*
2024 * Usually we don't dump executable pages as they contain
2025 * non-writable code that debugger can read directly from
2026 * target library etc. However, thread stacks are marked
2027 * also executable so we read in first page of given region
2028 * and check whether it contains elf header. If there is
2029 * no elf header, we dump it.
2030 */
2031 if (vma->vma_flags & PROT_EXEC) {
2032 char page[TARGET_PAGE_SIZE];
2033
2034 copy_from_user(page, vma->vma_start, sizeof (page));
2035 if ((page[EI_MAG0] == ELFMAG0) &&
2036 (page[EI_MAG1] == ELFMAG1) &&
2037 (page[EI_MAG2] == ELFMAG2) &&
2038 (page[EI_MAG3] == ELFMAG3)) {
2039 /*
2040 * Mappings are possibly from ELF binary. Don't dump
2041 * them.
2042 */
2043 return (0);
2044 }
2045 }
2046
2047 return (vma->vma_end - vma->vma_start);
2048}
2049
2050static int vma_walker(void *priv, unsigned long start, unsigned long end,
2051 unsigned long flags)
2052{
2053 struct mm_struct *mm = (struct mm_struct *)priv;
2054
2055 /*
2056 * Don't dump anything that qemu has reserved for internal use.
2057 */
2058 if (flags & PAGE_RESERVED)
2059 return (0);
2060
2061 vma_add_mapping(mm, start, end, flags);
2062 return (0);
2063}
2064
2065static void fill_note(struct memelfnote *note, const char *name, int type,
2066 unsigned int sz, void *data)
2067{
2068 unsigned int namesz;
2069
2070 namesz = strlen(name) + 1;
2071 note->name = name;
2072 note->namesz = namesz;
2073 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2074 note->type = type;
2075 note->datasz = roundup(sz, sizeof (int32_t));;
2076 note->data = data;
2077
2078 /*
2079 * We calculate rounded up note size here as specified by
2080 * ELF document.
2081 */
2082 note->notesz = sizeof (struct elf_note) +
2083 note->namesz_rounded + note->datasz;
2084}
2085
2086static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2087 uint32_t flags)
2088{
2089 (void) memset(elf, 0, sizeof(*elf));
2090
2091 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2092 elf->e_ident[EI_CLASS] = ELF_CLASS;
2093 elf->e_ident[EI_DATA] = ELF_DATA;
2094 elf->e_ident[EI_VERSION] = EV_CURRENT;
2095 elf->e_ident[EI_OSABI] = ELF_OSABI;
2096
2097 elf->e_type = ET_CORE;
2098 elf->e_machine = machine;
2099 elf->e_version = EV_CURRENT;
2100 elf->e_phoff = sizeof(struct elfhdr);
2101 elf->e_flags = flags;
2102 elf->e_ehsize = sizeof(struct elfhdr);
2103 elf->e_phentsize = sizeof(struct elf_phdr);
2104 elf->e_phnum = segs;
2105
2106#ifdef BSWAP_NEEDED
2107 bswap_ehdr(elf);
2108#endif
2109}
2110
2111static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2112{
2113 phdr->p_type = PT_NOTE;
2114 phdr->p_offset = offset;
2115 phdr->p_vaddr = 0;
2116 phdr->p_paddr = 0;
2117 phdr->p_filesz = sz;
2118 phdr->p_memsz = 0;
2119 phdr->p_flags = 0;
2120 phdr->p_align = 0;
2121
2122#ifdef BSWAP_NEEDED
2123 bswap_phdr(phdr);
2124#endif
2125}
2126
2127static size_t note_size(const struct memelfnote *note)
2128{
2129 return (note->notesz);
2130}
2131
a2547a13 2132static void fill_prstatus(struct target_elf_prstatus *prstatus,
edf8e2af
MW
2133 const TaskState *ts, int signr)
2134{
2135 (void) memset(prstatus, 0, sizeof (*prstatus));
2136 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2137 prstatus->pr_pid = ts->ts_tid;
2138 prstatus->pr_ppid = getppid();
2139 prstatus->pr_pgrp = getpgrp();
2140 prstatus->pr_sid = getsid(0);
2141
2142#ifdef BSWAP_NEEDED
2143 bswap_prstatus(prstatus);
2144#endif
2145}
2146
a2547a13 2147static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af
MW
2148{
2149 char *filename, *base_filename;
2150 unsigned int i, len;
2151
2152 (void) memset(psinfo, 0, sizeof (*psinfo));
2153
2154 len = ts->info->arg_end - ts->info->arg_start;
2155 if (len >= ELF_PRARGSZ)
2156 len = ELF_PRARGSZ - 1;
2157 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2158 return -EFAULT;
2159 for (i = 0; i < len; i++)
2160 if (psinfo->pr_psargs[i] == 0)
2161 psinfo->pr_psargs[i] = ' ';
2162 psinfo->pr_psargs[len] = 0;
2163
2164 psinfo->pr_pid = getpid();
2165 psinfo->pr_ppid = getppid();
2166 psinfo->pr_pgrp = getpgrp();
2167 psinfo->pr_sid = getsid(0);
2168 psinfo->pr_uid = getuid();
2169 psinfo->pr_gid = getgid();
2170
2171 filename = strdup(ts->bprm->filename);
2172 base_filename = strdup(basename(filename));
2173 (void) strncpy(psinfo->pr_fname, base_filename,
2174 sizeof(psinfo->pr_fname));
2175 free(base_filename);
2176 free(filename);
2177
2178#ifdef BSWAP_NEEDED
2179 bswap_psinfo(psinfo);
2180#endif
2181 return (0);
2182}
2183
2184static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2185{
2186 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2187 elf_addr_t orig_auxv = auxv;
2188 abi_ulong val;
2189 void *ptr;
2190 int i, len;
2191
2192 /*
2193 * Auxiliary vector is stored in target process stack. It contains
2194 * {type, value} pairs that we need to dump into note. This is not
2195 * strictly necessary but we do it here for sake of completeness.
2196 */
2197
2198 /* find out lenght of the vector, AT_NULL is terminator */
2199 i = len = 0;
2200 do {
2201 get_user_ual(val, auxv);
2202 i += 2;
2203 auxv += 2 * sizeof (elf_addr_t);
2204 } while (val != AT_NULL);
2205 len = i * sizeof (elf_addr_t);
2206
2207 /* read in whole auxv vector and copy it to memelfnote */
2208 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2209 if (ptr != NULL) {
2210 fill_note(note, "CORE", NT_AUXV, len, ptr);
2211 unlock_user(ptr, auxv, len);
2212 }
2213}
2214
2215/*
2216 * Constructs name of coredump file. We have following convention
2217 * for the name:
2218 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2219 *
2220 * Returns 0 in case of success, -1 otherwise (errno is set).
2221 */
2222static int core_dump_filename(const TaskState *ts, char *buf,
2223 size_t bufsize)
2224{
2225 char timestamp[64];
2226 char *filename = NULL;
2227 char *base_filename = NULL;
2228 struct timeval tv;
2229 struct tm tm;
2230
2231 assert(bufsize >= PATH_MAX);
2232
2233 if (gettimeofday(&tv, NULL) < 0) {
2234 (void) fprintf(stderr, "unable to get current timestamp: %s",
2235 strerror(errno));
2236 return (-1);
2237 }
2238
2239 filename = strdup(ts->bprm->filename);
2240 base_filename = strdup(basename(filename));
2241 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2242 localtime_r(&tv.tv_sec, &tm));
2243 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2244 base_filename, timestamp, (int)getpid());
2245 free(base_filename);
2246 free(filename);
2247
2248 return (0);
2249}
2250
2251static int dump_write(int fd, const void *ptr, size_t size)
2252{
2253 const char *bufp = (const char *)ptr;
2254 ssize_t bytes_written, bytes_left;
2255 struct rlimit dumpsize;
2256 off_t pos;
2257
2258 bytes_written = 0;
2259 getrlimit(RLIMIT_CORE, &dumpsize);
2260 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2261 if (errno == ESPIPE) { /* not a seekable stream */
2262 bytes_left = size;
2263 } else {
2264 return pos;
2265 }
2266 } else {
2267 if (dumpsize.rlim_cur <= pos) {
2268 return -1;
2269 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2270 bytes_left = size;
2271 } else {
2272 size_t limit_left=dumpsize.rlim_cur - pos;
2273 bytes_left = limit_left >= size ? size : limit_left ;
2274 }
2275 }
2276
2277 /*
2278 * In normal conditions, single write(2) should do but
2279 * in case of socket etc. this mechanism is more portable.
2280 */
2281 do {
2282 bytes_written = write(fd, bufp, bytes_left);
2283 if (bytes_written < 0) {
2284 if (errno == EINTR)
2285 continue;
2286 return (-1);
2287 } else if (bytes_written == 0) { /* eof */
2288 return (-1);
2289 }
2290 bufp += bytes_written;
2291 bytes_left -= bytes_written;
2292 } while (bytes_left > 0);
2293
2294 return (0);
2295}
2296
2297static int write_note(struct memelfnote *men, int fd)
2298{
2299 struct elf_note en;
2300
2301 en.n_namesz = men->namesz;
2302 en.n_type = men->type;
2303 en.n_descsz = men->datasz;
2304
2305#ifdef BSWAP_NEEDED
2306 bswap_note(&en);
2307#endif
2308
2309 if (dump_write(fd, &en, sizeof(en)) != 0)
2310 return (-1);
2311 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2312 return (-1);
2313 if (dump_write(fd, men->data, men->datasz) != 0)
2314 return (-1);
2315
2316 return (0);
2317}
2318
2319static void fill_thread_info(struct elf_note_info *info, const CPUState *env)
2320{
2321 TaskState *ts = (TaskState *)env->opaque;
2322 struct elf_thread_status *ets;
2323
2324 ets = qemu_mallocz(sizeof (*ets));
2325 ets->num_notes = 1; /* only prstatus is dumped */
2326 fill_prstatus(&ets->prstatus, ts, 0);
2327 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2328 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2329 &ets->prstatus);
2330
2331 TAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2332
2333 info->notes_size += note_size(&ets->notes[0]);
2334}
2335
2336static int fill_note_info(struct elf_note_info *info,
2337 long signr, const CPUState *env)
2338{
2339#define NUMNOTES 3
2340 CPUState *cpu = NULL;
2341 TaskState *ts = (TaskState *)env->opaque;
2342 int i;
2343
2344 (void) memset(info, 0, sizeof (*info));
2345
2346 TAILQ_INIT(&info->thread_list);
2347
2348 info->notes = qemu_mallocz(NUMNOTES * sizeof (struct memelfnote));
2349 if (info->notes == NULL)
2350 return (-ENOMEM);
2351 info->prstatus = qemu_mallocz(sizeof (*info->prstatus));
2352 if (info->prstatus == NULL)
2353 return (-ENOMEM);
2354 info->psinfo = qemu_mallocz(sizeof (*info->psinfo));
2355 if (info->prstatus == NULL)
2356 return (-ENOMEM);
2357
2358 /*
2359 * First fill in status (and registers) of current thread
2360 * including process info & aux vector.
2361 */
2362 fill_prstatus(info->prstatus, ts, signr);
2363 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2364 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2365 sizeof (*info->prstatus), info->prstatus);
2366 fill_psinfo(info->psinfo, ts);
2367 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2368 sizeof (*info->psinfo), info->psinfo);
2369 fill_auxv_note(&info->notes[2], ts);
2370 info->numnote = 3;
2371
2372 info->notes_size = 0;
2373 for (i = 0; i < info->numnote; i++)
2374 info->notes_size += note_size(&info->notes[i]);
2375
2376 /* read and fill status of all threads */
2377 cpu_list_lock();
2378 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2379 if (cpu == thread_env)
2380 continue;
2381 fill_thread_info(info, cpu);
2382 }
2383 cpu_list_unlock();
2384
2385 return (0);
2386}
2387
2388static void free_note_info(struct elf_note_info *info)
2389{
2390 struct elf_thread_status *ets;
2391
2392 while (!TAILQ_EMPTY(&info->thread_list)) {
2393 ets = TAILQ_FIRST(&info->thread_list);
2394 TAILQ_REMOVE(&info->thread_list, ets, ets_link);
2395 qemu_free(ets);
2396 }
2397
2398 qemu_free(info->prstatus);
2399 qemu_free(info->psinfo);
2400 qemu_free(info->notes);
2401}
2402
2403static int write_note_info(struct elf_note_info *info, int fd)
2404{
2405 struct elf_thread_status *ets;
2406 int i, error = 0;
2407
2408 /* write prstatus, psinfo and auxv for current thread */
2409 for (i = 0; i < info->numnote; i++)
2410 if ((error = write_note(&info->notes[i], fd)) != 0)
2411 return (error);
2412
2413 /* write prstatus for each thread */
2414 for (ets = info->thread_list.tqh_first; ets != NULL;
2415 ets = ets->ets_link.tqe_next) {
2416 if ((error = write_note(&ets->notes[0], fd)) != 0)
2417 return (error);
2418 }
2419
2420 return (0);
2421}
2422
2423/*
2424 * Write out ELF coredump.
2425 *
2426 * See documentation of ELF object file format in:
2427 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2428 *
2429 * Coredump format in linux is following:
2430 *
2431 * 0 +----------------------+ \
2432 * | ELF header | ET_CORE |
2433 * +----------------------+ |
2434 * | ELF program headers | |--- headers
2435 * | - NOTE section | |
2436 * | - PT_LOAD sections | |
2437 * +----------------------+ /
2438 * | NOTEs: |
2439 * | - NT_PRSTATUS |
2440 * | - NT_PRSINFO |
2441 * | - NT_AUXV |
2442 * +----------------------+ <-- aligned to target page
2443 * | Process memory dump |
2444 * : :
2445 * . .
2446 * : :
2447 * | |
2448 * +----------------------+
2449 *
2450 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2451 * NT_PRSINFO -> struct elf_prpsinfo
2452 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2453 *
2454 * Format follows System V format as close as possible. Current
2455 * version limitations are as follows:
2456 * - no floating point registers are dumped
2457 *
2458 * Function returns 0 in case of success, negative errno otherwise.
2459 *
2460 * TODO: make this work also during runtime: it should be
2461 * possible to force coredump from running process and then
2462 * continue processing. For example qemu could set up SIGUSR2
2463 * handler (provided that target process haven't registered
2464 * handler for that) that does the dump when signal is received.
2465 */
2466static int elf_core_dump(int signr, const CPUState *env)
2467{
2468 const TaskState *ts = (const TaskState *)env->opaque;
2469 struct vm_area_struct *vma = NULL;
2470 char corefile[PATH_MAX];
2471 struct elf_note_info info;
2472 struct elfhdr elf;
2473 struct elf_phdr phdr;
2474 struct rlimit dumpsize;
2475 struct mm_struct *mm = NULL;
2476 off_t offset = 0, data_offset = 0;
2477 int segs = 0;
2478 int fd = -1;
2479
2480 errno = 0;
2481 getrlimit(RLIMIT_CORE, &dumpsize);
2482 if (dumpsize.rlim_cur == 0)
2483 return 0;
2484
2485 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2486 return (-errno);
2487
2488 if ((fd = open(corefile, O_WRONLY | O_CREAT,
2489 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2490 return (-errno);
2491
2492 /*
2493 * Walk through target process memory mappings and
2494 * set up structure containing this information. After
2495 * this point vma_xxx functions can be used.
2496 */
2497 if ((mm = vma_init()) == NULL)
2498 goto out;
2499
2500 walk_memory_regions(mm, vma_walker);
2501 segs = vma_get_mapping_count(mm);
2502
2503 /*
2504 * Construct valid coredump ELF header. We also
2505 * add one more segment for notes.
2506 */
2507 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2508 if (dump_write(fd, &elf, sizeof (elf)) != 0)
2509 goto out;
2510
2511 /* fill in in-memory version of notes */
2512 if (fill_note_info(&info, signr, env) < 0)
2513 goto out;
2514
2515 offset += sizeof (elf); /* elf header */
2516 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
2517
2518 /* write out notes program header */
2519 fill_elf_note_phdr(&phdr, info.notes_size, offset);
2520
2521 offset += info.notes_size;
2522 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2523 goto out;
2524
2525 /*
2526 * ELF specification wants data to start at page boundary so
2527 * we align it here.
2528 */
2529 offset = roundup(offset, ELF_EXEC_PAGESIZE);
2530
2531 /*
2532 * Write program headers for memory regions mapped in
2533 * the target process.
2534 */
2535 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2536 (void) memset(&phdr, 0, sizeof (phdr));
2537
2538 phdr.p_type = PT_LOAD;
2539 phdr.p_offset = offset;
2540 phdr.p_vaddr = vma->vma_start;
2541 phdr.p_paddr = 0;
2542 phdr.p_filesz = vma_dump_size(vma);
2543 offset += phdr.p_filesz;
2544 phdr.p_memsz = vma->vma_end - vma->vma_start;
2545 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2546 if (vma->vma_flags & PROT_WRITE)
2547 phdr.p_flags |= PF_W;
2548 if (vma->vma_flags & PROT_EXEC)
2549 phdr.p_flags |= PF_X;
2550 phdr.p_align = ELF_EXEC_PAGESIZE;
2551
2552 dump_write(fd, &phdr, sizeof (phdr));
2553 }
2554
2555 /*
2556 * Next we write notes just after program headers. No
2557 * alignment needed here.
2558 */
2559 if (write_note_info(&info, fd) < 0)
2560 goto out;
2561
2562 /* align data to page boundary */
2563 data_offset = lseek(fd, 0, SEEK_CUR);
2564 data_offset = TARGET_PAGE_ALIGN(data_offset);
2565 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
2566 goto out;
2567
2568 /*
2569 * Finally we can dump process memory into corefile as well.
2570 */
2571 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2572 abi_ulong addr;
2573 abi_ulong end;
2574
2575 end = vma->vma_start + vma_dump_size(vma);
2576
2577 for (addr = vma->vma_start; addr < end;
2578 addr += TARGET_PAGE_SIZE) {
2579 char page[TARGET_PAGE_SIZE];
2580 int error;
2581
2582 /*
2583 * Read in page from target process memory and
2584 * write it to coredump file.
2585 */
2586 error = copy_from_user(page, addr, sizeof (page));
2587 if (error != 0) {
2588 (void) fprintf(stderr, "unable to dump " TARGET_FMT_lx "\n",
2589 addr);
2590 errno = -error;
2591 goto out;
2592 }
2593 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
2594 goto out;
2595 }
2596 }
2597
2598out:
2599 free_note_info(&info);
2600 if (mm != NULL)
2601 vma_delete(mm);
2602 (void) close(fd);
2603
2604 if (errno != 0)
2605 return (-errno);
2606 return (0);
2607}
2608
2609#endif /* USE_ELF_CORE_DUMP */
2610
31e31b8a
FB
2611static int load_aout_interp(void * exptr, int interp_fd)
2612{
2613 printf("a.out interpreter not yet supported\n");
2614 return(0);
2615}
2616
e5fe0c52
PB
2617void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
2618{
2619 init_thread(regs, infop);
2620}