]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
hmp: implemented io apic dump state for TCG
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
edf8e2af
MW
2#include <sys/time.h>
3#include <sys/param.h>
31e31b8a
FB
4
5#include <stdio.h>
6#include <sys/types.h>
7#include <fcntl.h>
31e31b8a
FB
8#include <errno.h>
9#include <unistd.h>
10#include <sys/mman.h>
edf8e2af 11#include <sys/resource.h>
31e31b8a
FB
12#include <stdlib.h>
13#include <string.h>
edf8e2af 14#include <time.h>
31e31b8a 15
3ef693a0 16#include "qemu.h"
76cad711 17#include "disas/disas.h"
31e31b8a 18
e58ffeb3 19#ifdef _ARCH_PPC64
a6cc84f4 20#undef ARCH_DLINFO
21#undef ELF_PLATFORM
22#undef ELF_HWCAP
ad6919dc 23#undef ELF_HWCAP2
a6cc84f4 24#undef ELF_CLASS
25#undef ELF_DATA
26#undef ELF_ARCH
27#endif
28
edf8e2af
MW
29#define ELF_OSABI ELFOSABI_SYSV
30
cb33da57
BS
31/* from personality.h */
32
33/*
34 * Flags for bug emulation.
35 *
36 * These occupy the top three bytes.
37 */
38enum {
d97ef72e
RH
39 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
40 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
41 descriptors (signal handling) */
42 MMAP_PAGE_ZERO = 0x0100000,
43 ADDR_COMPAT_LAYOUT = 0x0200000,
44 READ_IMPLIES_EXEC = 0x0400000,
45 ADDR_LIMIT_32BIT = 0x0800000,
46 SHORT_INODE = 0x1000000,
47 WHOLE_SECONDS = 0x2000000,
48 STICKY_TIMEOUTS = 0x4000000,
49 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
50};
51
52/*
53 * Personality types.
54 *
55 * These go in the low byte. Avoid using the top bit, it will
56 * conflict with error returns.
57 */
58enum {
d97ef72e
RH
59 PER_LINUX = 0x0000,
60 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
61 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
62 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
65 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
66 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
67 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
68 PER_BSD = 0x0006,
69 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
70 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
71 PER_LINUX32 = 0x0008,
72 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
73 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
74 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
75 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
76 PER_RISCOS = 0x000c,
77 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
78 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
79 PER_OSF4 = 0x000f, /* OSF/1 v4 */
80 PER_HPUX = 0x0010,
81 PER_MASK = 0x00ff,
cb33da57
BS
82};
83
84/*
85 * Return the base personality without flags.
86 */
d97ef72e 87#define personality(pers) (pers & PER_MASK)
cb33da57 88
83fb7adf
FB
89/* this flag is uneffective under linux too, should be deleted */
90#ifndef MAP_DENYWRITE
91#define MAP_DENYWRITE 0
92#endif
93
94/* should probably go in elf.h */
95#ifndef ELIBBAD
96#define ELIBBAD 80
97#endif
98
28490231
RH
99#ifdef TARGET_WORDS_BIGENDIAN
100#define ELF_DATA ELFDATA2MSB
101#else
102#define ELF_DATA ELFDATA2LSB
103#endif
104
a29f998d 105#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
106typedef abi_ullong target_elf_greg_t;
107#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
108#else
109typedef abi_ulong target_elf_greg_t;
110#define tswapreg(ptr) tswapal(ptr)
111#endif
112
21e807fa 113#ifdef USE_UID16
1ddd592f
PB
114typedef abi_ushort target_uid_t;
115typedef abi_ushort target_gid_t;
21e807fa 116#else
f8fd4fc4
PB
117typedef abi_uint target_uid_t;
118typedef abi_uint target_gid_t;
21e807fa 119#endif
f8fd4fc4 120typedef abi_int target_pid_t;
21e807fa 121
30ac07d4
FB
122#ifdef TARGET_I386
123
15338fd7
FB
124#define ELF_PLATFORM get_elf_platform()
125
126static const char *get_elf_platform(void)
127{
128 static char elf_platform[] = "i386";
a2247f8e 129 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
130 if (family > 6)
131 family = 6;
132 if (family >= 3)
133 elf_platform[1] = '0' + family;
134 return elf_platform;
135}
136
137#define ELF_HWCAP get_elf_hwcap()
138
139static uint32_t get_elf_hwcap(void)
140{
a2247f8e
AF
141 X86CPU *cpu = X86_CPU(thread_cpu);
142
143 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
144}
145
84409ddb
JM
146#ifdef TARGET_X86_64
147#define ELF_START_MMAP 0x2aaaaab000ULL
148#define elf_check_arch(x) ( ((x) == ELF_ARCH) )
149
150#define ELF_CLASS ELFCLASS64
84409ddb
JM
151#define ELF_ARCH EM_X86_64
152
153static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154{
155 regs->rax = 0;
156 regs->rsp = infop->start_stack;
157 regs->rip = infop->entry;
158}
159
9edc5d79 160#define ELF_NREG 27
c227f099 161typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
162
163/*
164 * Note that ELF_NREG should be 29 as there should be place for
165 * TRAPNO and ERR "registers" as well but linux doesn't dump
166 * those.
167 *
168 * See linux kernel: arch/x86/include/asm/elf.h
169 */
05390248 170static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
171{
172 (*regs)[0] = env->regs[15];
173 (*regs)[1] = env->regs[14];
174 (*regs)[2] = env->regs[13];
175 (*regs)[3] = env->regs[12];
176 (*regs)[4] = env->regs[R_EBP];
177 (*regs)[5] = env->regs[R_EBX];
178 (*regs)[6] = env->regs[11];
179 (*regs)[7] = env->regs[10];
180 (*regs)[8] = env->regs[9];
181 (*regs)[9] = env->regs[8];
182 (*regs)[10] = env->regs[R_EAX];
183 (*regs)[11] = env->regs[R_ECX];
184 (*regs)[12] = env->regs[R_EDX];
185 (*regs)[13] = env->regs[R_ESI];
186 (*regs)[14] = env->regs[R_EDI];
187 (*regs)[15] = env->regs[R_EAX]; /* XXX */
188 (*regs)[16] = env->eip;
189 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
190 (*regs)[18] = env->eflags;
191 (*regs)[19] = env->regs[R_ESP];
192 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
193 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
195 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
196 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
197 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
198 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
199}
200
84409ddb
JM
201#else
202
30ac07d4
FB
203#define ELF_START_MMAP 0x80000000
204
30ac07d4
FB
205/*
206 * This is used to ensure we don't load something for the wrong architecture.
207 */
208#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
209
210/*
211 * These are used to set parameters in the core dumps.
212 */
d97ef72e 213#define ELF_CLASS ELFCLASS32
d97ef72e 214#define ELF_ARCH EM_386
30ac07d4 215
d97ef72e
RH
216static inline void init_thread(struct target_pt_regs *regs,
217 struct image_info *infop)
b346ff46
FB
218{
219 regs->esp = infop->start_stack;
220 regs->eip = infop->entry;
e5fe0c52
PB
221
222 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
223 starts %edx contains a pointer to a function which might be
224 registered using `atexit'. This provides a mean for the
225 dynamic linker to call DT_FINI functions for shared libraries
226 that have been loaded before the code runs.
227
228 A value of 0 tells we have no such handler. */
229 regs->edx = 0;
b346ff46 230}
9edc5d79 231
9edc5d79 232#define ELF_NREG 17
c227f099 233typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
234
235/*
236 * Note that ELF_NREG should be 19 as there should be place for
237 * TRAPNO and ERR "registers" as well but linux doesn't dump
238 * those.
239 *
240 * See linux kernel: arch/x86/include/asm/elf.h
241 */
05390248 242static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
243{
244 (*regs)[0] = env->regs[R_EBX];
245 (*regs)[1] = env->regs[R_ECX];
246 (*regs)[2] = env->regs[R_EDX];
247 (*regs)[3] = env->regs[R_ESI];
248 (*regs)[4] = env->regs[R_EDI];
249 (*regs)[5] = env->regs[R_EBP];
250 (*regs)[6] = env->regs[R_EAX];
251 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
252 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
253 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
254 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
255 (*regs)[11] = env->regs[R_EAX]; /* XXX */
256 (*regs)[12] = env->eip;
257 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
258 (*regs)[14] = env->eflags;
259 (*regs)[15] = env->regs[R_ESP];
260 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
261}
84409ddb 262#endif
b346ff46 263
9edc5d79 264#define USE_ELF_CORE_DUMP
d97ef72e 265#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
266
267#endif
268
269#ifdef TARGET_ARM
270
24e76ff0
PM
271#ifndef TARGET_AARCH64
272/* 32 bit ARM definitions */
273
b346ff46
FB
274#define ELF_START_MMAP 0x80000000
275
99033cae 276#define elf_check_arch(x) ((x) == ELF_MACHINE)
b346ff46 277
99033cae 278#define ELF_ARCH ELF_MACHINE
d97ef72e 279#define ELF_CLASS ELFCLASS32
b346ff46 280
d97ef72e
RH
281static inline void init_thread(struct target_pt_regs *regs,
282 struct image_info *infop)
b346ff46 283{
992f48a0 284 abi_long stack = infop->start_stack;
b346ff46 285 memset(regs, 0, sizeof(*regs));
99033cae 286
b346ff46 287 regs->ARM_cpsr = 0x10;
0240ded8 288 if (infop->entry & 1)
d97ef72e 289 regs->ARM_cpsr |= CPSR_T;
0240ded8 290 regs->ARM_pc = infop->entry & 0xfffffffe;
b346ff46 291 regs->ARM_sp = infop->start_stack;
2f619698
FB
292 /* FIXME - what to for failure of get_user()? */
293 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
294 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
a1516e92 295 /* XXX: it seems that r0 is zeroed after ! */
e5fe0c52
PB
296 regs->ARM_r0 = 0;
297 /* For uClinux PIC binaries. */
863cf0b7 298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
e5fe0c52 299 regs->ARM_r10 = infop->start_data;
b346ff46
FB
300}
301
edf8e2af 302#define ELF_NREG 18
c227f099 303typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 304
05390248 305static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 306{
86cd7b2d
PB
307 (*regs)[0] = tswapreg(env->regs[0]);
308 (*regs)[1] = tswapreg(env->regs[1]);
309 (*regs)[2] = tswapreg(env->regs[2]);
310 (*regs)[3] = tswapreg(env->regs[3]);
311 (*regs)[4] = tswapreg(env->regs[4]);
312 (*regs)[5] = tswapreg(env->regs[5]);
313 (*regs)[6] = tswapreg(env->regs[6]);
314 (*regs)[7] = tswapreg(env->regs[7]);
315 (*regs)[8] = tswapreg(env->regs[8]);
316 (*regs)[9] = tswapreg(env->regs[9]);
317 (*regs)[10] = tswapreg(env->regs[10]);
318 (*regs)[11] = tswapreg(env->regs[11]);
319 (*regs)[12] = tswapreg(env->regs[12]);
320 (*regs)[13] = tswapreg(env->regs[13]);
321 (*regs)[14] = tswapreg(env->regs[14]);
322 (*regs)[15] = tswapreg(env->regs[15]);
323
324 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
325 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
326}
327
30ac07d4 328#define USE_ELF_CORE_DUMP
d97ef72e 329#define ELF_EXEC_PAGESIZE 4096
30ac07d4 330
afce2927
FB
331enum
332{
d97ef72e
RH
333 ARM_HWCAP_ARM_SWP = 1 << 0,
334 ARM_HWCAP_ARM_HALF = 1 << 1,
335 ARM_HWCAP_ARM_THUMB = 1 << 2,
336 ARM_HWCAP_ARM_26BIT = 1 << 3,
337 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
338 ARM_HWCAP_ARM_FPA = 1 << 5,
339 ARM_HWCAP_ARM_VFP = 1 << 6,
340 ARM_HWCAP_ARM_EDSP = 1 << 7,
341 ARM_HWCAP_ARM_JAVA = 1 << 8,
342 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
343 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
344 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
345 ARM_HWCAP_ARM_NEON = 1 << 12,
346 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
347 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
348 ARM_HWCAP_ARM_TLS = 1 << 15,
349 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
350 ARM_HWCAP_ARM_IDIVA = 1 << 17,
351 ARM_HWCAP_ARM_IDIVT = 1 << 18,
352 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
353 ARM_HWCAP_ARM_LPAE = 1 << 20,
354 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
355};
356
ad6919dc
PM
357enum {
358 ARM_HWCAP2_ARM_AES = 1 << 0,
359 ARM_HWCAP2_ARM_PMULL = 1 << 1,
360 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
361 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
362 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
363};
364
6b1275ff
PM
365/* The commpage only exists for 32 bit kernels */
366
806d1021
MI
367#define TARGET_HAS_VALIDATE_GUEST_SPACE
368/* Return 1 if the proposed guest space is suitable for the guest.
369 * Return 0 if the proposed guest space isn't suitable, but another
370 * address space should be tried.
371 * Return -1 if there is no way the proposed guest space can be
372 * valid regardless of the base.
373 * The guest code may leave a page mapped and populate it if the
374 * address is suitable.
375 */
376static int validate_guest_space(unsigned long guest_base,
377 unsigned long guest_size)
97cc7560
DDAG
378{
379 unsigned long real_start, test_page_addr;
380
381 /* We need to check that we can force a fault on access to the
382 * commpage at 0xffff0fxx
383 */
384 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
385
386 /* If the commpage lies within the already allocated guest space,
387 * then there is no way we can allocate it.
388 */
389 if (test_page_addr >= guest_base
390 && test_page_addr <= (guest_base + guest_size)) {
391 return -1;
392 }
393
97cc7560
DDAG
394 /* Note it needs to be writeable to let us initialise it */
395 real_start = (unsigned long)
396 mmap((void *)test_page_addr, qemu_host_page_size,
397 PROT_READ | PROT_WRITE,
398 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
399
400 /* If we can't map it then try another address */
401 if (real_start == -1ul) {
402 return 0;
403 }
404
405 if (real_start != test_page_addr) {
406 /* OS didn't put the page where we asked - unmap and reject */
407 munmap((void *)real_start, qemu_host_page_size);
408 return 0;
409 }
410
411 /* Leave the page mapped
412 * Populate it (mmap should have left it all 0'd)
413 */
414
415 /* Kernel helper versions */
416 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
417
418 /* Now it's populated make it RO */
419 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
420 perror("Protecting guest commpage");
421 exit(-1);
422 }
423
424 return 1; /* All good */
425}
adf050b1
BC
426
427#define ELF_HWCAP get_elf_hwcap()
ad6919dc 428#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
429
430static uint32_t get_elf_hwcap(void)
431{
a2247f8e 432 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
433 uint32_t hwcaps = 0;
434
435 hwcaps |= ARM_HWCAP_ARM_SWP;
436 hwcaps |= ARM_HWCAP_ARM_HALF;
437 hwcaps |= ARM_HWCAP_ARM_THUMB;
438 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
439
440 /* probe for the extra features */
441#define GET_FEATURE(feat, hwcap) \
a2247f8e 442 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
24682654
PM
443 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
444 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
445 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
446 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
447 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
448 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
450 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
451 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
452 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
453 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
454 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
455 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
456 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
457 * to our VFP_FP16 feature bit.
458 */
459 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
460 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
461
462 return hwcaps;
463}
afce2927 464
ad6919dc
PM
465static uint32_t get_elf_hwcap2(void)
466{
467 ARMCPU *cpu = ARM_CPU(thread_cpu);
468 uint32_t hwcaps = 0;
469
470 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
4e624eda 471 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
f1ecb913
AB
472 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
473 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
ad6919dc
PM
474 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
475 return hwcaps;
476}
477
478#undef GET_FEATURE
479
24e76ff0
PM
480#else
481/* 64 bit ARM definitions */
482#define ELF_START_MMAP 0x80000000
483
484#define elf_check_arch(x) ((x) == ELF_MACHINE)
485
486#define ELF_ARCH ELF_MACHINE
487#define ELF_CLASS ELFCLASS64
488#define ELF_PLATFORM "aarch64"
489
490static inline void init_thread(struct target_pt_regs *regs,
491 struct image_info *infop)
492{
493 abi_long stack = infop->start_stack;
494 memset(regs, 0, sizeof(*regs));
495
496 regs->pc = infop->entry & ~0x3ULL;
497 regs->sp = stack;
498}
499
500#define ELF_NREG 34
501typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
502
503static void elf_core_copy_regs(target_elf_gregset_t *regs,
504 const CPUARMState *env)
505{
506 int i;
507
508 for (i = 0; i < 32; i++) {
509 (*regs)[i] = tswapreg(env->xregs[i]);
510 }
511 (*regs)[32] = tswapreg(env->pc);
512 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
513}
514
515#define USE_ELF_CORE_DUMP
516#define ELF_EXEC_PAGESIZE 4096
517
518enum {
519 ARM_HWCAP_A64_FP = 1 << 0,
520 ARM_HWCAP_A64_ASIMD = 1 << 1,
521 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
522 ARM_HWCAP_A64_AES = 1 << 3,
523 ARM_HWCAP_A64_PMULL = 1 << 4,
524 ARM_HWCAP_A64_SHA1 = 1 << 5,
525 ARM_HWCAP_A64_SHA2 = 1 << 6,
526 ARM_HWCAP_A64_CRC32 = 1 << 7,
527};
528
529#define ELF_HWCAP get_elf_hwcap()
530
531static uint32_t get_elf_hwcap(void)
532{
533 ARMCPU *cpu = ARM_CPU(thread_cpu);
534 uint32_t hwcaps = 0;
535
536 hwcaps |= ARM_HWCAP_A64_FP;
537 hwcaps |= ARM_HWCAP_A64_ASIMD;
538
539 /* probe for the extra features */
540#define GET_FEATURE(feat, hwcap) \
541 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
5acc765c 542 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
411bdc78 543 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
f6fe04d5
PM
544 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
545 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
130f2e7d 546 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
24e76ff0
PM
547#undef GET_FEATURE
548
549 return hwcaps;
550}
551
552#endif /* not TARGET_AARCH64 */
553#endif /* TARGET_ARM */
30ac07d4 554
d2fbca94
GX
555#ifdef TARGET_UNICORE32
556
557#define ELF_START_MMAP 0x80000000
558
559#define elf_check_arch(x) ((x) == EM_UNICORE32)
560
561#define ELF_CLASS ELFCLASS32
562#define ELF_DATA ELFDATA2LSB
563#define ELF_ARCH EM_UNICORE32
564
565static inline void init_thread(struct target_pt_regs *regs,
566 struct image_info *infop)
567{
568 abi_long stack = infop->start_stack;
569 memset(regs, 0, sizeof(*regs));
570 regs->UC32_REG_asr = 0x10;
571 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
572 regs->UC32_REG_sp = infop->start_stack;
573 /* FIXME - what to for failure of get_user()? */
574 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
575 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
576 /* XXX: it seems that r0 is zeroed after ! */
577 regs->UC32_REG_00 = 0;
578}
579
580#define ELF_NREG 34
581typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
582
05390248 583static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
d2fbca94
GX
584{
585 (*regs)[0] = env->regs[0];
586 (*regs)[1] = env->regs[1];
587 (*regs)[2] = env->regs[2];
588 (*regs)[3] = env->regs[3];
589 (*regs)[4] = env->regs[4];
590 (*regs)[5] = env->regs[5];
591 (*regs)[6] = env->regs[6];
592 (*regs)[7] = env->regs[7];
593 (*regs)[8] = env->regs[8];
594 (*regs)[9] = env->regs[9];
595 (*regs)[10] = env->regs[10];
596 (*regs)[11] = env->regs[11];
597 (*regs)[12] = env->regs[12];
598 (*regs)[13] = env->regs[13];
599 (*regs)[14] = env->regs[14];
600 (*regs)[15] = env->regs[15];
601 (*regs)[16] = env->regs[16];
602 (*regs)[17] = env->regs[17];
603 (*regs)[18] = env->regs[18];
604 (*regs)[19] = env->regs[19];
605 (*regs)[20] = env->regs[20];
606 (*regs)[21] = env->regs[21];
607 (*regs)[22] = env->regs[22];
608 (*regs)[23] = env->regs[23];
609 (*regs)[24] = env->regs[24];
610 (*regs)[25] = env->regs[25];
611 (*regs)[26] = env->regs[26];
612 (*regs)[27] = env->regs[27];
613 (*regs)[28] = env->regs[28];
614 (*regs)[29] = env->regs[29];
615 (*regs)[30] = env->regs[30];
616 (*regs)[31] = env->regs[31];
617
05390248 618 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
d2fbca94
GX
619 (*regs)[33] = env->regs[0]; /* XXX */
620}
621
622#define USE_ELF_CORE_DUMP
623#define ELF_EXEC_PAGESIZE 4096
624
625#define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
626
627#endif
628
853d6f7a 629#ifdef TARGET_SPARC
a315a145 630#ifdef TARGET_SPARC64
853d6f7a
FB
631
632#define ELF_START_MMAP 0x80000000
cf973e46
AT
633#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
634 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 635#ifndef TARGET_ABI32
cb33da57 636#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
637#else
638#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
639#endif
853d6f7a 640
a315a145 641#define ELF_CLASS ELFCLASS64
5ef54116
FB
642#define ELF_ARCH EM_SPARCV9
643
d97ef72e 644#define STACK_BIAS 2047
a315a145 645
d97ef72e
RH
646static inline void init_thread(struct target_pt_regs *regs,
647 struct image_info *infop)
a315a145 648{
992f48a0 649#ifndef TARGET_ABI32
a315a145 650 regs->tstate = 0;
992f48a0 651#endif
a315a145
FB
652 regs->pc = infop->entry;
653 regs->npc = regs->pc + 4;
654 regs->y = 0;
992f48a0
BS
655#ifdef TARGET_ABI32
656 regs->u_regs[14] = infop->start_stack - 16 * 4;
657#else
cb33da57
BS
658 if (personality(infop->personality) == PER_LINUX32)
659 regs->u_regs[14] = infop->start_stack - 16 * 4;
660 else
661 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 662#endif
a315a145
FB
663}
664
665#else
666#define ELF_START_MMAP 0x80000000
cf973e46
AT
667#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
668 | HWCAP_SPARC_MULDIV)
a315a145
FB
669#define elf_check_arch(x) ( (x) == EM_SPARC )
670
853d6f7a 671#define ELF_CLASS ELFCLASS32
853d6f7a
FB
672#define ELF_ARCH EM_SPARC
673
d97ef72e
RH
674static inline void init_thread(struct target_pt_regs *regs,
675 struct image_info *infop)
853d6f7a 676{
f5155289
FB
677 regs->psr = 0;
678 regs->pc = infop->entry;
679 regs->npc = regs->pc + 4;
680 regs->y = 0;
681 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
682}
683
a315a145 684#endif
853d6f7a
FB
685#endif
686
67867308
FB
687#ifdef TARGET_PPC
688
689#define ELF_START_MMAP 0x80000000
690
e85e7c6e 691#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
692
693#define elf_check_arch(x) ( (x) == EM_PPC64 )
694
d97ef72e 695#define ELF_CLASS ELFCLASS64
84409ddb
JM
696
697#else
698
67867308
FB
699#define elf_check_arch(x) ( (x) == EM_PPC )
700
d97ef72e 701#define ELF_CLASS ELFCLASS32
84409ddb
JM
702
703#endif
704
d97ef72e 705#define ELF_ARCH EM_PPC
67867308 706
df84e4f3
NF
707/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
708 See arch/powerpc/include/asm/cputable.h. */
709enum {
3efa9a67 710 QEMU_PPC_FEATURE_32 = 0x80000000,
711 QEMU_PPC_FEATURE_64 = 0x40000000,
712 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
713 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
714 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
715 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
716 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
717 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
718 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
719 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
720 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
721 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
722 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
723 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
724 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
725 QEMU_PPC_FEATURE_CELL = 0x00010000,
726 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
727 QEMU_PPC_FEATURE_SMT = 0x00004000,
728 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
729 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
730 QEMU_PPC_FEATURE_PA6T = 0x00000800,
731 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
732 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
733 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
734 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
735 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
736
737 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
738 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
739
740 /* Feature definitions in AT_HWCAP2. */
741 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
742 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
743 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
744 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
745 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
746 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
df84e4f3
NF
747};
748
749#define ELF_HWCAP get_elf_hwcap()
750
751static uint32_t get_elf_hwcap(void)
752{
a2247f8e 753 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
754 uint32_t features = 0;
755
756 /* We don't have to be terribly complete here; the high points are
757 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 758#define GET_FEATURE(flag, feature) \
a2247f8e 759 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
0e019746
TM
760#define GET_FEATURE2(flag, feature) \
761 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
3efa9a67 762 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
763 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
764 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
765 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
766 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
767 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
768 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
769 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
770 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
771 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
772 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
773 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
774 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 775#undef GET_FEATURE
0e019746 776#undef GET_FEATURE2
df84e4f3
NF
777
778 return features;
779}
780
a60438dd
TM
781#define ELF_HWCAP2 get_elf_hwcap2()
782
783static uint32_t get_elf_hwcap2(void)
784{
785 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
786 uint32_t features = 0;
787
788#define GET_FEATURE(flag, feature) \
789 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
790#define GET_FEATURE2(flag, feature) \
791 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
792
793 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
794 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
795 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
796 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
797
798#undef GET_FEATURE
799#undef GET_FEATURE2
800
801 return features;
802}
803
f5155289
FB
804/*
805 * The requirements here are:
806 * - keep the final alignment of sp (sp & 0xf)
807 * - make sure the 32-bit value at the first 16 byte aligned position of
808 * AUXV is greater than 16 for glibc compatibility.
809 * AT_IGNOREPPC is used for that.
810 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
811 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
812 */
0bccf03d 813#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
814#define ARCH_DLINFO \
815 do { \
623e250a
TM
816 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
817 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
818 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
d97ef72e
RH
819 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
820 /* \
821 * Now handle glibc compatibility. \
822 */ \
823 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
824 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
825 } while (0)
f5155289 826
67867308
FB
827static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
828{
67867308 829 _regs->gpr[1] = infop->start_stack;
e85e7c6e 830#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 831 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
832 uint64_t val;
833 get_user_u64(val, infop->entry + 8);
834 _regs->gpr[2] = val + infop->load_bias;
835 get_user_u64(val, infop->entry);
836 infop->entry = val + infop->load_bias;
d90b94cd
DK
837 } else {
838 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
839 }
84409ddb 840#endif
67867308
FB
841 _regs->nip = infop->entry;
842}
843
e2f3e741
NF
844/* See linux kernel: arch/powerpc/include/asm/elf.h. */
845#define ELF_NREG 48
846typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
847
05390248 848static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
849{
850 int i;
851 target_ulong ccr = 0;
852
853 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 854 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
855 }
856
86cd7b2d
PB
857 (*regs)[32] = tswapreg(env->nip);
858 (*regs)[33] = tswapreg(env->msr);
859 (*regs)[35] = tswapreg(env->ctr);
860 (*regs)[36] = tswapreg(env->lr);
861 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
862
863 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
864 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
865 }
86cd7b2d 866 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
867}
868
869#define USE_ELF_CORE_DUMP
d97ef72e 870#define ELF_EXEC_PAGESIZE 4096
67867308
FB
871
872#endif
873
048f6b4d
FB
874#ifdef TARGET_MIPS
875
876#define ELF_START_MMAP 0x80000000
877
878#define elf_check_arch(x) ( (x) == EM_MIPS )
879
388bb21a
TS
880#ifdef TARGET_MIPS64
881#define ELF_CLASS ELFCLASS64
882#else
048f6b4d 883#define ELF_CLASS ELFCLASS32
388bb21a 884#endif
048f6b4d
FB
885#define ELF_ARCH EM_MIPS
886
d97ef72e
RH
887static inline void init_thread(struct target_pt_regs *regs,
888 struct image_info *infop)
048f6b4d 889{
623a930e 890 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
891 regs->cp0_epc = infop->entry;
892 regs->regs[29] = infop->start_stack;
893}
894
51e52606
NF
895/* See linux kernel: arch/mips/include/asm/elf.h. */
896#define ELF_NREG 45
897typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
898
899/* See linux kernel: arch/mips/include/asm/reg.h. */
900enum {
901#ifdef TARGET_MIPS64
902 TARGET_EF_R0 = 0,
903#else
904 TARGET_EF_R0 = 6,
905#endif
906 TARGET_EF_R26 = TARGET_EF_R0 + 26,
907 TARGET_EF_R27 = TARGET_EF_R0 + 27,
908 TARGET_EF_LO = TARGET_EF_R0 + 32,
909 TARGET_EF_HI = TARGET_EF_R0 + 33,
910 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
911 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
912 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
913 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
914};
915
916/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 917static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
918{
919 int i;
920
921 for (i = 0; i < TARGET_EF_R0; i++) {
922 (*regs)[i] = 0;
923 }
924 (*regs)[TARGET_EF_R0] = 0;
925
926 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 927 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
928 }
929
930 (*regs)[TARGET_EF_R26] = 0;
931 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
932 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
933 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
934 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
935 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
936 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
937 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
938}
939
940#define USE_ELF_CORE_DUMP
388bb21a
TS
941#define ELF_EXEC_PAGESIZE 4096
942
048f6b4d
FB
943#endif /* TARGET_MIPS */
944
b779e29e
EI
945#ifdef TARGET_MICROBLAZE
946
947#define ELF_START_MMAP 0x80000000
948
0d5d4699 949#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
950
951#define ELF_CLASS ELFCLASS32
0d5d4699 952#define ELF_ARCH EM_MICROBLAZE
b779e29e 953
d97ef72e
RH
954static inline void init_thread(struct target_pt_regs *regs,
955 struct image_info *infop)
b779e29e
EI
956{
957 regs->pc = infop->entry;
958 regs->r1 = infop->start_stack;
959
960}
961
b779e29e
EI
962#define ELF_EXEC_PAGESIZE 4096
963
e4cbd44d
EI
964#define USE_ELF_CORE_DUMP
965#define ELF_NREG 38
966typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
967
968/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 969static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
970{
971 int i, pos = 0;
972
973 for (i = 0; i < 32; i++) {
86cd7b2d 974 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
975 }
976
977 for (i = 0; i < 6; i++) {
86cd7b2d 978 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
979 }
980}
981
b779e29e
EI
982#endif /* TARGET_MICROBLAZE */
983
d962783e
JL
984#ifdef TARGET_OPENRISC
985
986#define ELF_START_MMAP 0x08000000
987
988#define elf_check_arch(x) ((x) == EM_OPENRISC)
989
990#define ELF_ARCH EM_OPENRISC
991#define ELF_CLASS ELFCLASS32
992#define ELF_DATA ELFDATA2MSB
993
994static inline void init_thread(struct target_pt_regs *regs,
995 struct image_info *infop)
996{
997 regs->pc = infop->entry;
998 regs->gpr[1] = infop->start_stack;
999}
1000
1001#define USE_ELF_CORE_DUMP
1002#define ELF_EXEC_PAGESIZE 8192
1003
1004/* See linux kernel arch/openrisc/include/asm/elf.h. */
1005#define ELF_NREG 34 /* gprs and pc, sr */
1006typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1007
1008static void elf_core_copy_regs(target_elf_gregset_t *regs,
1009 const CPUOpenRISCState *env)
1010{
1011 int i;
1012
1013 for (i = 0; i < 32; i++) {
86cd7b2d 1014 (*regs)[i] = tswapreg(env->gpr[i]);
d962783e
JL
1015 }
1016
86cd7b2d
PB
1017 (*regs)[32] = tswapreg(env->pc);
1018 (*regs)[33] = tswapreg(env->sr);
d962783e
JL
1019}
1020#define ELF_HWCAP 0
1021#define ELF_PLATFORM NULL
1022
1023#endif /* TARGET_OPENRISC */
1024
fdf9b3e8
FB
1025#ifdef TARGET_SH4
1026
1027#define ELF_START_MMAP 0x80000000
1028
1029#define elf_check_arch(x) ( (x) == EM_SH )
1030
1031#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1032#define ELF_ARCH EM_SH
1033
d97ef72e
RH
1034static inline void init_thread(struct target_pt_regs *regs,
1035 struct image_info *infop)
fdf9b3e8 1036{
d97ef72e
RH
1037 /* Check other registers XXXXX */
1038 regs->pc = infop->entry;
1039 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1040}
1041
7631c97e
NF
1042/* See linux kernel: arch/sh/include/asm/elf.h. */
1043#define ELF_NREG 23
1044typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1045
1046/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1047enum {
1048 TARGET_REG_PC = 16,
1049 TARGET_REG_PR = 17,
1050 TARGET_REG_SR = 18,
1051 TARGET_REG_GBR = 19,
1052 TARGET_REG_MACH = 20,
1053 TARGET_REG_MACL = 21,
1054 TARGET_REG_SYSCALL = 22
1055};
1056
d97ef72e 1057static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1058 const CPUSH4State *env)
7631c97e
NF
1059{
1060 int i;
1061
1062 for (i = 0; i < 16; i++) {
86cd7b2d 1063 (*regs[i]) = tswapreg(env->gregs[i]);
7631c97e
NF
1064 }
1065
86cd7b2d
PB
1066 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1067 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1068 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1069 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1070 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1071 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1072 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1073}
1074
1075#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1076#define ELF_EXEC_PAGESIZE 4096
1077
e42fd944
RH
1078enum {
1079 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1080 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1081 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1082 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1083 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1084 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1085 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1086 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1087 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1088 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1089};
1090
1091#define ELF_HWCAP get_elf_hwcap()
1092
1093static uint32_t get_elf_hwcap(void)
1094{
1095 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1096 uint32_t hwcap = 0;
1097
1098 hwcap |= SH_CPU_HAS_FPU;
1099
1100 if (cpu->env.features & SH_FEATURE_SH4A) {
1101 hwcap |= SH_CPU_HAS_LLSC;
1102 }
1103
1104 return hwcap;
1105}
1106
fdf9b3e8
FB
1107#endif
1108
48733d19
TS
1109#ifdef TARGET_CRIS
1110
1111#define ELF_START_MMAP 0x80000000
1112
1113#define elf_check_arch(x) ( (x) == EM_CRIS )
1114
1115#define ELF_CLASS ELFCLASS32
48733d19
TS
1116#define ELF_ARCH EM_CRIS
1117
d97ef72e
RH
1118static inline void init_thread(struct target_pt_regs *regs,
1119 struct image_info *infop)
48733d19 1120{
d97ef72e 1121 regs->erp = infop->entry;
48733d19
TS
1122}
1123
48733d19
TS
1124#define ELF_EXEC_PAGESIZE 8192
1125
1126#endif
1127
e6e5906b
PB
1128#ifdef TARGET_M68K
1129
1130#define ELF_START_MMAP 0x80000000
1131
1132#define elf_check_arch(x) ( (x) == EM_68K )
1133
d97ef72e 1134#define ELF_CLASS ELFCLASS32
d97ef72e 1135#define ELF_ARCH EM_68K
e6e5906b
PB
1136
1137/* ??? Does this need to do anything?
d97ef72e 1138 #define ELF_PLAT_INIT(_r) */
e6e5906b 1139
d97ef72e
RH
1140static inline void init_thread(struct target_pt_regs *regs,
1141 struct image_info *infop)
e6e5906b
PB
1142{
1143 regs->usp = infop->start_stack;
1144 regs->sr = 0;
1145 regs->pc = infop->entry;
1146}
1147
7a93cc55
NF
1148/* See linux kernel: arch/m68k/include/asm/elf.h. */
1149#define ELF_NREG 20
1150typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1151
05390248 1152static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1153{
86cd7b2d
PB
1154 (*regs)[0] = tswapreg(env->dregs[1]);
1155 (*regs)[1] = tswapreg(env->dregs[2]);
1156 (*regs)[2] = tswapreg(env->dregs[3]);
1157 (*regs)[3] = tswapreg(env->dregs[4]);
1158 (*regs)[4] = tswapreg(env->dregs[5]);
1159 (*regs)[5] = tswapreg(env->dregs[6]);
1160 (*regs)[6] = tswapreg(env->dregs[7]);
1161 (*regs)[7] = tswapreg(env->aregs[0]);
1162 (*regs)[8] = tswapreg(env->aregs[1]);
1163 (*regs)[9] = tswapreg(env->aregs[2]);
1164 (*regs)[10] = tswapreg(env->aregs[3]);
1165 (*regs)[11] = tswapreg(env->aregs[4]);
1166 (*regs)[12] = tswapreg(env->aregs[5]);
1167 (*regs)[13] = tswapreg(env->aregs[6]);
1168 (*regs)[14] = tswapreg(env->dregs[0]);
1169 (*regs)[15] = tswapreg(env->aregs[7]);
1170 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1171 (*regs)[17] = tswapreg(env->sr);
1172 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1173 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1174}
1175
1176#define USE_ELF_CORE_DUMP
d97ef72e 1177#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1178
1179#endif
1180
7a3148a9
JM
1181#ifdef TARGET_ALPHA
1182
1183#define ELF_START_MMAP (0x30000000000ULL)
1184
1185#define elf_check_arch(x) ( (x) == ELF_ARCH )
1186
1187#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1188#define ELF_ARCH EM_ALPHA
1189
d97ef72e
RH
1190static inline void init_thread(struct target_pt_regs *regs,
1191 struct image_info *infop)
7a3148a9
JM
1192{
1193 regs->pc = infop->entry;
1194 regs->ps = 8;
1195 regs->usp = infop->start_stack;
7a3148a9
JM
1196}
1197
7a3148a9
JM
1198#define ELF_EXEC_PAGESIZE 8192
1199
1200#endif /* TARGET_ALPHA */
1201
a4c075f1
UH
1202#ifdef TARGET_S390X
1203
1204#define ELF_START_MMAP (0x20000000000ULL)
1205
1206#define elf_check_arch(x) ( (x) == ELF_ARCH )
1207
1208#define ELF_CLASS ELFCLASS64
1209#define ELF_DATA ELFDATA2MSB
1210#define ELF_ARCH EM_S390
1211
1212static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1213{
1214 regs->psw.addr = infop->entry;
1215 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1216 regs->gprs[15] = infop->start_stack;
1217}
1218
1219#endif /* TARGET_S390X */
1220
b16189b2
CG
1221#ifdef TARGET_TILEGX
1222
1223/* 42 bits real used address, a half for user mode */
1224#define ELF_START_MMAP (0x00000020000000000ULL)
1225
1226#define elf_check_arch(x) ((x) == EM_TILEGX)
1227
1228#define ELF_CLASS ELFCLASS64
1229#define ELF_DATA ELFDATA2LSB
1230#define ELF_ARCH EM_TILEGX
1231
1232static inline void init_thread(struct target_pt_regs *regs,
1233 struct image_info *infop)
1234{
1235 regs->pc = infop->entry;
1236 regs->sp = infop->start_stack;
1237
1238}
1239
1240#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1241
1242#endif /* TARGET_TILEGX */
1243
15338fd7
FB
1244#ifndef ELF_PLATFORM
1245#define ELF_PLATFORM (NULL)
1246#endif
1247
1248#ifndef ELF_HWCAP
1249#define ELF_HWCAP 0
1250#endif
1251
992f48a0 1252#ifdef TARGET_ABI32
cb33da57 1253#undef ELF_CLASS
992f48a0 1254#define ELF_CLASS ELFCLASS32
cb33da57
BS
1255#undef bswaptls
1256#define bswaptls(ptr) bswap32s(ptr)
1257#endif
1258
31e31b8a 1259#include "elf.h"
09bfb054 1260
09bfb054
FB
1261struct exec
1262{
d97ef72e
RH
1263 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1264 unsigned int a_text; /* length of text, in bytes */
1265 unsigned int a_data; /* length of data, in bytes */
1266 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1267 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1268 unsigned int a_entry; /* start address */
1269 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1270 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1271};
1272
1273
1274#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1275#define OMAGIC 0407
1276#define NMAGIC 0410
1277#define ZMAGIC 0413
1278#define QMAGIC 0314
1279
31e31b8a 1280/* Necessary parameters */
54936004 1281#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
79cb1f1d
YK
1282#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1283 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1284#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1285
ad1c7e0f 1286#define DLINFO_ITEMS 14
31e31b8a 1287
09bfb054
FB
1288static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1289{
d97ef72e 1290 memcpy(to, from, n);
09bfb054 1291}
d691f669 1292
31e31b8a 1293#ifdef BSWAP_NEEDED
92a31b1f 1294static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1295{
d97ef72e
RH
1296 bswap16s(&ehdr->e_type); /* Object file type */
1297 bswap16s(&ehdr->e_machine); /* Architecture */
1298 bswap32s(&ehdr->e_version); /* Object file version */
1299 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1300 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1301 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1302 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1303 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1304 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1305 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1306 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1307 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1308 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1309}
1310
991f8f0c 1311static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1312{
991f8f0c
RH
1313 int i;
1314 for (i = 0; i < phnum; ++i, ++phdr) {
1315 bswap32s(&phdr->p_type); /* Segment type */
1316 bswap32s(&phdr->p_flags); /* Segment flags */
1317 bswaptls(&phdr->p_offset); /* Segment file offset */
1318 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1319 bswaptls(&phdr->p_paddr); /* Segment physical address */
1320 bswaptls(&phdr->p_filesz); /* Segment size in file */
1321 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1322 bswaptls(&phdr->p_align); /* Segment alignment */
1323 }
31e31b8a 1324}
689f936f 1325
991f8f0c 1326static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1327{
991f8f0c
RH
1328 int i;
1329 for (i = 0; i < shnum; ++i, ++shdr) {
1330 bswap32s(&shdr->sh_name);
1331 bswap32s(&shdr->sh_type);
1332 bswaptls(&shdr->sh_flags);
1333 bswaptls(&shdr->sh_addr);
1334 bswaptls(&shdr->sh_offset);
1335 bswaptls(&shdr->sh_size);
1336 bswap32s(&shdr->sh_link);
1337 bswap32s(&shdr->sh_info);
1338 bswaptls(&shdr->sh_addralign);
1339 bswaptls(&shdr->sh_entsize);
1340 }
689f936f
FB
1341}
1342
7a3148a9 1343static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1344{
1345 bswap32s(&sym->st_name);
7a3148a9
JM
1346 bswaptls(&sym->st_value);
1347 bswaptls(&sym->st_size);
689f936f
FB
1348 bswap16s(&sym->st_shndx);
1349}
991f8f0c
RH
1350#else
1351static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1352static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1353static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1354static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
1355#endif
1356
edf8e2af 1357#ifdef USE_ELF_CORE_DUMP
9349b4f9 1358static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1359#endif /* USE_ELF_CORE_DUMP */
682674b8 1360static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1361
9058abdd
RH
1362/* Verify the portions of EHDR within E_IDENT for the target.
1363 This can be performed before bswapping the entire header. */
1364static bool elf_check_ident(struct elfhdr *ehdr)
1365{
1366 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1367 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1368 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1369 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1370 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1371 && ehdr->e_ident[EI_DATA] == ELF_DATA
1372 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1373}
1374
1375/* Verify the portions of EHDR outside of E_IDENT for the target.
1376 This has to wait until after bswapping the header. */
1377static bool elf_check_ehdr(struct elfhdr *ehdr)
1378{
1379 return (elf_check_arch(ehdr->e_machine)
1380 && ehdr->e_ehsize == sizeof(struct elfhdr)
1381 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1382 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1383}
1384
31e31b8a 1385/*
e5fe0c52 1386 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1387 * memory to free pages in kernel mem. These are in a format ready
1388 * to be put directly into the top of new user memory.
1389 *
1390 */
992f48a0
BS
1391static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1392 abi_ulong p)
31e31b8a
FB
1393{
1394 char *tmp, *tmp1, *pag = NULL;
1395 int len, offset = 0;
1396
1397 if (!p) {
d97ef72e 1398 return 0; /* bullet-proofing */
31e31b8a
FB
1399 }
1400 while (argc-- > 0) {
edf779ff
FB
1401 tmp = argv[argc];
1402 if (!tmp) {
d97ef72e
RH
1403 fprintf(stderr, "VFS: argc is wrong");
1404 exit(-1);
1405 }
edf779ff 1406 tmp1 = tmp;
d97ef72e
RH
1407 while (*tmp++);
1408 len = tmp - tmp1;
1409 if (p < len) { /* this shouldn't happen - 128kB */
1410 return 0;
1411 }
1412 while (len) {
1413 --p; --tmp; --len;
1414 if (--offset < 0) {
1415 offset = p % TARGET_PAGE_SIZE;
53a5960a 1416 pag = (char *)page[p/TARGET_PAGE_SIZE];
44a91cae 1417 if (!pag) {
7dd47667 1418 pag = g_try_malloc0(TARGET_PAGE_SIZE);
53a5960a 1419 page[p/TARGET_PAGE_SIZE] = pag;
44a91cae
FB
1420 if (!pag)
1421 return 0;
d97ef72e
RH
1422 }
1423 }
1424 if (len == 0 || offset == 0) {
1425 *(pag + offset) = *tmp;
1426 }
1427 else {
1428 int bytes_to_copy = (len > offset) ? offset : len;
1429 tmp -= bytes_to_copy;
1430 p -= bytes_to_copy;
1431 offset -= bytes_to_copy;
1432 len -= bytes_to_copy;
1433 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1434 }
1435 }
31e31b8a
FB
1436 }
1437 return p;
1438}
1439
992f48a0
BS
1440static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1441 struct image_info *info)
53a5960a 1442{
60dcbcb5 1443 abi_ulong stack_base, size, error, guard;
31e31b8a 1444 int i;
31e31b8a 1445
09bfb054 1446 /* Create enough stack to hold everything. If we don't use
60dcbcb5 1447 it for args, we'll use it for something else. */
703e0e89 1448 size = guest_stack_size;
60dcbcb5 1449 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
54936004 1450 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
60dcbcb5
RH
1451 }
1452 guard = TARGET_PAGE_SIZE;
1453 if (guard < qemu_real_host_page_size) {
1454 guard = qemu_real_host_page_size;
1455 }
1456
1457 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1458 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1459 if (error == -1) {
60dcbcb5 1460 perror("mmap stack");
09bfb054
FB
1461 exit(-1);
1462 }
31e31b8a 1463
60dcbcb5
RH
1464 /* We reserve one extra page at the top of the stack as guard. */
1465 target_mprotect(error, guard, PROT_NONE);
1466
1467 info->stack_limit = error + guard;
1468 stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
31e31b8a 1469 p += stack_base;
09bfb054 1470
31e31b8a 1471 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
d97ef72e
RH
1472 if (bprm->page[i]) {
1473 info->rss++;
579a97f7 1474 /* FIXME - check return value of memcpy_to_target() for failure */
d97ef72e 1475 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
7dd47667 1476 g_free(bprm->page[i]);
d97ef72e 1477 }
53a5960a 1478 stack_base += TARGET_PAGE_SIZE;
31e31b8a
FB
1479 }
1480 return p;
1481}
1482
cf129f3a
RH
1483/* Map and zero the bss. We need to explicitly zero any fractional pages
1484 after the data section (i.e. bss). */
1485static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1486{
cf129f3a
RH
1487 uintptr_t host_start, host_map_start, host_end;
1488
1489 last_bss = TARGET_PAGE_ALIGN(last_bss);
1490
1491 /* ??? There is confusion between qemu_real_host_page_size and
1492 qemu_host_page_size here and elsewhere in target_mmap, which
1493 may lead to the end of the data section mapping from the file
1494 not being mapped. At least there was an explicit test and
1495 comment for that here, suggesting that "the file size must
1496 be known". The comment probably pre-dates the introduction
1497 of the fstat system call in target_mmap which does in fact
1498 find out the size. What isn't clear is if the workaround
1499 here is still actually needed. For now, continue with it,
1500 but merge it with the "normal" mmap that would allocate the bss. */
1501
1502 host_start = (uintptr_t) g2h(elf_bss);
1503 host_end = (uintptr_t) g2h(last_bss);
1504 host_map_start = (host_start + qemu_real_host_page_size - 1);
1505 host_map_start &= -qemu_real_host_page_size;
1506
1507 if (host_map_start < host_end) {
1508 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1509 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1510 if (p == MAP_FAILED) {
1511 perror("cannot mmap brk");
1512 exit(-1);
853d6f7a 1513 }
f46e9a0b 1514 }
853d6f7a 1515
f46e9a0b
TM
1516 /* Ensure that the bss page(s) are valid */
1517 if ((page_get_flags(last_bss-1) & prot) != prot) {
1518 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1519 }
31e31b8a 1520
cf129f3a
RH
1521 if (host_start < host_map_start) {
1522 memset((void *)host_start, 0, host_map_start - host_start);
1523 }
1524}
53a5960a 1525
1af02e83
MF
1526#ifdef CONFIG_USE_FDPIC
1527static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1528{
1529 uint16_t n;
1530 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1531
1532 /* elf32_fdpic_loadseg */
1533 n = info->nsegs;
1534 while (n--) {
1535 sp -= 12;
1536 put_user_u32(loadsegs[n].addr, sp+0);
1537 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1538 put_user_u32(loadsegs[n].p_memsz, sp+8);
1539 }
1540
1541 /* elf32_fdpic_loadmap */
1542 sp -= 4;
1543 put_user_u16(0, sp+0); /* version */
1544 put_user_u16(info->nsegs, sp+2); /* nsegs */
1545
1546 info->personality = PER_LINUX_FDPIC;
1547 info->loadmap_addr = sp;
1548
1549 return sp;
1550}
1551#endif
1552
992f48a0 1553static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1554 struct elfhdr *exec,
1555 struct image_info *info,
1556 struct image_info *interp_info)
31e31b8a 1557{
d97ef72e 1558 abi_ulong sp;
125b0f55 1559 abi_ulong sp_auxv;
d97ef72e 1560 int size;
14322bad
LA
1561 int i;
1562 abi_ulong u_rand_bytes;
1563 uint8_t k_rand_bytes[16];
d97ef72e
RH
1564 abi_ulong u_platform;
1565 const char *k_platform;
1566 const int n = sizeof(elf_addr_t);
1567
1568 sp = p;
1af02e83
MF
1569
1570#ifdef CONFIG_USE_FDPIC
1571 /* Needs to be before we load the env/argc/... */
1572 if (elf_is_fdpic(exec)) {
1573 /* Need 4 byte alignment for these structs */
1574 sp &= ~3;
1575 sp = loader_build_fdpic_loadmap(info, sp);
1576 info->other_info = interp_info;
1577 if (interp_info) {
1578 interp_info->other_info = info;
1579 sp = loader_build_fdpic_loadmap(interp_info, sp);
1580 }
1581 }
1582#endif
1583
d97ef72e
RH
1584 u_platform = 0;
1585 k_platform = ELF_PLATFORM;
1586 if (k_platform) {
1587 size_t len = strlen(k_platform) + 1;
1588 sp -= (len + n - 1) & ~(n - 1);
1589 u_platform = sp;
1590 /* FIXME - check return value of memcpy_to_target() for failure */
1591 memcpy_to_target(sp, k_platform, len);
1592 }
14322bad
LA
1593
1594 /*
1595 * Generate 16 random bytes for userspace PRNG seeding (not
1596 * cryptically secure but it's not the aim of QEMU).
1597 */
14322bad
LA
1598 for (i = 0; i < 16; i++) {
1599 k_rand_bytes[i] = rand();
1600 }
1601 sp -= 16;
1602 u_rand_bytes = sp;
1603 /* FIXME - check return value of memcpy_to_target() for failure */
1604 memcpy_to_target(sp, k_rand_bytes, 16);
1605
d97ef72e
RH
1606 /*
1607 * Force 16 byte _final_ alignment here for generality.
1608 */
1609 sp = sp &~ (abi_ulong)15;
1610 size = (DLINFO_ITEMS + 1) * 2;
1611 if (k_platform)
1612 size += 2;
f5155289 1613#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1614 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1615#endif
1616#ifdef ELF_HWCAP2
1617 size += 2;
f5155289 1618#endif
d97ef72e 1619 size += envc + argc + 2;
b9329d4b 1620 size += 1; /* argc itself */
d97ef72e
RH
1621 size *= n;
1622 if (size & 15)
1623 sp -= 16 - (size & 15);
1624
1625 /* This is correct because Linux defines
1626 * elf_addr_t as Elf32_Off / Elf64_Off
1627 */
1628#define NEW_AUX_ENT(id, val) do { \
1629 sp -= n; put_user_ual(val, sp); \
1630 sp -= n; put_user_ual(id, sp); \
1631 } while(0)
1632
125b0f55 1633 sp_auxv = sp;
d97ef72e
RH
1634 NEW_AUX_ENT (AT_NULL, 0);
1635
1636 /* There must be exactly DLINFO_ITEMS entries here. */
8e62a717 1637 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1638 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1639 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
a70daba3 1640 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
8e62a717 1641 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1642 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1643 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1644 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1645 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1646 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1647 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1648 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1649 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad
LA
1650 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1651
ad6919dc
PM
1652#ifdef ELF_HWCAP2
1653 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1654#endif
1655
d97ef72e
RH
1656 if (k_platform)
1657 NEW_AUX_ENT(AT_PLATFORM, u_platform);
f5155289 1658#ifdef ARCH_DLINFO
d97ef72e
RH
1659 /*
1660 * ARCH_DLINFO must come last so platform specific code can enforce
1661 * special alignment requirements on the AUXV if necessary (eg. PPC).
1662 */
1663 ARCH_DLINFO;
f5155289
FB
1664#endif
1665#undef NEW_AUX_ENT
1666
d97ef72e 1667 info->saved_auxv = sp;
125b0f55 1668 info->auxv_len = sp_auxv - sp;
edf8e2af 1669
b9329d4b 1670 sp = loader_build_argptr(envc, argc, sp, p, 0);
8c0f0a60
JH
1671 /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1672 assert(sp_auxv - sp == size);
d97ef72e 1673 return sp;
31e31b8a
FB
1674}
1675
806d1021 1676#ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
97cc7560 1677/* If the guest doesn't have a validation function just agree */
806d1021
MI
1678static int validate_guest_space(unsigned long guest_base,
1679 unsigned long guest_size)
97cc7560
DDAG
1680{
1681 return 1;
1682}
1683#endif
1684
dce10401
MI
1685unsigned long init_guest_space(unsigned long host_start,
1686 unsigned long host_size,
1687 unsigned long guest_start,
1688 bool fixed)
1689{
1690 unsigned long current_start, real_start;
1691 int flags;
1692
1693 assert(host_start || host_size);
1694
1695 /* If just a starting address is given, then just verify that
1696 * address. */
1697 if (host_start && !host_size) {
806d1021 1698 if (validate_guest_space(host_start, host_size) == 1) {
dce10401
MI
1699 return host_start;
1700 } else {
1701 return (unsigned long)-1;
1702 }
1703 }
1704
1705 /* Setup the initial flags and start address. */
1706 current_start = host_start & qemu_host_page_mask;
1707 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1708 if (fixed) {
1709 flags |= MAP_FIXED;
1710 }
1711
1712 /* Otherwise, a non-zero size region of memory needs to be mapped
1713 * and validated. */
1714 while (1) {
806d1021
MI
1715 unsigned long real_size = host_size;
1716
dce10401
MI
1717 /* Do not use mmap_find_vma here because that is limited to the
1718 * guest address space. We are going to make the
1719 * guest address space fit whatever we're given.
1720 */
1721 real_start = (unsigned long)
1722 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1723 if (real_start == (unsigned long)-1) {
1724 return (unsigned long)-1;
1725 }
1726
806d1021
MI
1727 /* Ensure the address is properly aligned. */
1728 if (real_start & ~qemu_host_page_mask) {
1729 munmap((void *)real_start, host_size);
1730 real_size = host_size + qemu_host_page_size;
1731 real_start = (unsigned long)
1732 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1733 if (real_start == (unsigned long)-1) {
1734 return (unsigned long)-1;
1735 }
1736 real_start = HOST_PAGE_ALIGN(real_start);
1737 }
1738
1739 /* Check to see if the address is valid. */
1740 if (!host_start || real_start == current_start) {
1741 int valid = validate_guest_space(real_start - guest_start,
1742 real_size);
1743 if (valid == 1) {
1744 break;
1745 } else if (valid == -1) {
1746 return (unsigned long)-1;
1747 }
1748 /* valid == 0, so try again. */
dce10401
MI
1749 }
1750
1751 /* That address didn't work. Unmap and try a different one.
1752 * The address the host picked because is typically right at
1753 * the top of the host address space and leaves the guest with
1754 * no usable address space. Resort to a linear search. We
1755 * already compensated for mmap_min_addr, so this should not
1756 * happen often. Probably means we got unlucky and host
1757 * address space randomization put a shared library somewhere
1758 * inconvenient.
1759 */
1760 munmap((void *)real_start, host_size);
1761 current_start += qemu_host_page_size;
1762 if (host_start == current_start) {
1763 /* Theoretically possible if host doesn't have any suitably
1764 * aligned areas. Normally the first mmap will fail.
1765 */
1766 return (unsigned long)-1;
1767 }
1768 }
1769
806d1021
MI
1770 qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
1771
dce10401
MI
1772 return real_start;
1773}
1774
f3ed1f5d
PM
1775static void probe_guest_base(const char *image_name,
1776 abi_ulong loaddr, abi_ulong hiaddr)
1777{
1778 /* Probe for a suitable guest base address, if the user has not set
1779 * it explicitly, and set guest_base appropriately.
1780 * In case of error we will print a suitable message and exit.
1781 */
f3ed1f5d
PM
1782 const char *errmsg;
1783 if (!have_guest_base && !reserved_va) {
1784 unsigned long host_start, real_start, host_size;
1785
1786 /* Round addresses to page boundaries. */
1787 loaddr &= qemu_host_page_mask;
1788 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1789
1790 if (loaddr < mmap_min_addr) {
1791 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1792 } else {
1793 host_start = loaddr;
1794 if (host_start != loaddr) {
1795 errmsg = "Address overflow loading ELF binary";
1796 goto exit_errmsg;
1797 }
1798 }
1799 host_size = hiaddr - loaddr;
dce10401
MI
1800
1801 /* Setup the initial guest memory space with ranges gleaned from
1802 * the ELF image that is being loaded.
1803 */
1804 real_start = init_guest_space(host_start, host_size, loaddr, false);
1805 if (real_start == (unsigned long)-1) {
1806 errmsg = "Unable to find space for application";
1807 goto exit_errmsg;
f3ed1f5d 1808 }
dce10401
MI
1809 guest_base = real_start - loaddr;
1810
f3ed1f5d
PM
1811 qemu_log("Relocating guest address space from 0x"
1812 TARGET_ABI_FMT_lx " to 0x%lx\n",
1813 loaddr, real_start);
f3ed1f5d
PM
1814 }
1815 return;
1816
f3ed1f5d
PM
1817exit_errmsg:
1818 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1819 exit(-1);
f3ed1f5d
PM
1820}
1821
1822
8e62a717 1823/* Load an ELF image into the address space.
31e31b8a 1824
8e62a717
RH
1825 IMAGE_NAME is the filename of the image, to use in error messages.
1826 IMAGE_FD is the open file descriptor for the image.
1827
1828 BPRM_BUF is a copy of the beginning of the file; this of course
1829 contains the elf file header at offset 0. It is assumed that this
1830 buffer is sufficiently aligned to present no problems to the host
1831 in accessing data at aligned offsets within the buffer.
1832
1833 On return: INFO values will be filled in, as necessary or available. */
1834
1835static void load_elf_image(const char *image_name, int image_fd,
bf858897 1836 struct image_info *info, char **pinterp_name,
8e62a717 1837 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 1838{
8e62a717
RH
1839 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1840 struct elf_phdr *phdr;
1841 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1842 int i, retval;
1843 const char *errmsg;
5fafdf24 1844
8e62a717
RH
1845 /* First of all, some simple consistency checks */
1846 errmsg = "Invalid ELF image for this architecture";
1847 if (!elf_check_ident(ehdr)) {
1848 goto exit_errmsg;
1849 }
1850 bswap_ehdr(ehdr);
1851 if (!elf_check_ehdr(ehdr)) {
1852 goto exit_errmsg;
d97ef72e 1853 }
5fafdf24 1854
8e62a717
RH
1855 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1856 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1857 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 1858 } else {
8e62a717
RH
1859 phdr = (struct elf_phdr *) alloca(i);
1860 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 1861 if (retval != i) {
8e62a717 1862 goto exit_read;
9955ffac 1863 }
d97ef72e 1864 }
8e62a717 1865 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 1866
1af02e83
MF
1867#ifdef CONFIG_USE_FDPIC
1868 info->nsegs = 0;
1869 info->pt_dynamic_addr = 0;
1870#endif
1871
682674b8
RH
1872 /* Find the maximum size of the image and allocate an appropriate
1873 amount of memory to handle that. */
1874 loaddr = -1, hiaddr = 0;
8e62a717
RH
1875 for (i = 0; i < ehdr->e_phnum; ++i) {
1876 if (phdr[i].p_type == PT_LOAD) {
a93934fe 1877 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
1878 if (a < loaddr) {
1879 loaddr = a;
1880 }
ccf661f8 1881 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
1882 if (a > hiaddr) {
1883 hiaddr = a;
1884 }
1af02e83
MF
1885#ifdef CONFIG_USE_FDPIC
1886 ++info->nsegs;
1887#endif
682674b8
RH
1888 }
1889 }
1890
1891 load_addr = loaddr;
8e62a717 1892 if (ehdr->e_type == ET_DYN) {
682674b8
RH
1893 /* The image indicates that it can be loaded anywhere. Find a
1894 location that can hold the memory space required. If the
1895 image is pre-linked, LOADDR will be non-zero. Since we do
1896 not supply MAP_FIXED here we'll use that address if and
1897 only if it remains available. */
1898 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1899 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1900 -1, 0);
1901 if (load_addr == -1) {
8e62a717 1902 goto exit_perror;
d97ef72e 1903 }
bf858897
RH
1904 } else if (pinterp_name != NULL) {
1905 /* This is the main executable. Make sure that the low
1906 address does not conflict with MMAP_MIN_ADDR or the
1907 QEMU application itself. */
f3ed1f5d 1908 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 1909 }
682674b8 1910 load_bias = load_addr - loaddr;
d97ef72e 1911
1af02e83
MF
1912#ifdef CONFIG_USE_FDPIC
1913 {
1914 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 1915 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
1916
1917 for (i = 0; i < ehdr->e_phnum; ++i) {
1918 switch (phdr[i].p_type) {
1919 case PT_DYNAMIC:
1920 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1921 break;
1922 case PT_LOAD:
1923 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1924 loadsegs->p_vaddr = phdr[i].p_vaddr;
1925 loadsegs->p_memsz = phdr[i].p_memsz;
1926 ++loadsegs;
1927 break;
1928 }
1929 }
1930 }
1931#endif
1932
8e62a717
RH
1933 info->load_bias = load_bias;
1934 info->load_addr = load_addr;
1935 info->entry = ehdr->e_entry + load_bias;
1936 info->start_code = -1;
1937 info->end_code = 0;
1938 info->start_data = -1;
1939 info->end_data = 0;
1940 info->brk = 0;
d8fd2954 1941 info->elf_flags = ehdr->e_flags;
8e62a717
RH
1942
1943 for (i = 0; i < ehdr->e_phnum; i++) {
1944 struct elf_phdr *eppnt = phdr + i;
d97ef72e 1945 if (eppnt->p_type == PT_LOAD) {
682674b8 1946 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
d97ef72e 1947 int elf_prot = 0;
d97ef72e
RH
1948
1949 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1950 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1951 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 1952
682674b8
RH
1953 vaddr = load_bias + eppnt->p_vaddr;
1954 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1955 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1956
1957 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1958 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 1959 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 1960 if (error == -1) {
8e62a717 1961 goto exit_perror;
09bfb054 1962 }
09bfb054 1963
682674b8
RH
1964 vaddr_ef = vaddr + eppnt->p_filesz;
1965 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 1966
cf129f3a 1967 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
1968 if (vaddr_ef < vaddr_em) {
1969 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 1970 }
8e62a717
RH
1971
1972 /* Find the full program boundaries. */
1973 if (elf_prot & PROT_EXEC) {
1974 if (vaddr < info->start_code) {
1975 info->start_code = vaddr;
1976 }
1977 if (vaddr_ef > info->end_code) {
1978 info->end_code = vaddr_ef;
1979 }
1980 }
1981 if (elf_prot & PROT_WRITE) {
1982 if (vaddr < info->start_data) {
1983 info->start_data = vaddr;
1984 }
1985 if (vaddr_ef > info->end_data) {
1986 info->end_data = vaddr_ef;
1987 }
1988 if (vaddr_em > info->brk) {
1989 info->brk = vaddr_em;
1990 }
1991 }
bf858897
RH
1992 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1993 char *interp_name;
1994
1995 if (*pinterp_name) {
1996 errmsg = "Multiple PT_INTERP entries";
1997 goto exit_errmsg;
1998 }
1999 interp_name = malloc(eppnt->p_filesz);
2000 if (!interp_name) {
2001 goto exit_perror;
2002 }
2003
2004 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2005 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2006 eppnt->p_filesz);
2007 } else {
2008 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2009 eppnt->p_offset);
2010 if (retval != eppnt->p_filesz) {
2011 goto exit_perror;
2012 }
2013 }
2014 if (interp_name[eppnt->p_filesz - 1] != 0) {
2015 errmsg = "Invalid PT_INTERP entry";
2016 goto exit_errmsg;
2017 }
2018 *pinterp_name = interp_name;
d97ef72e 2019 }
682674b8 2020 }
5fafdf24 2021
8e62a717
RH
2022 if (info->end_data == 0) {
2023 info->start_data = info->end_code;
2024 info->end_data = info->end_code;
2025 info->brk = info->end_code;
2026 }
2027
682674b8 2028 if (qemu_log_enabled()) {
8e62a717 2029 load_symbols(ehdr, image_fd, load_bias);
682674b8 2030 }
31e31b8a 2031
8e62a717
RH
2032 close(image_fd);
2033 return;
2034
2035 exit_read:
2036 if (retval >= 0) {
2037 errmsg = "Incomplete read of file header";
2038 goto exit_errmsg;
2039 }
2040 exit_perror:
2041 errmsg = strerror(errno);
2042 exit_errmsg:
2043 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2044 exit(-1);
2045}
2046
2047static void load_elf_interp(const char *filename, struct image_info *info,
2048 char bprm_buf[BPRM_BUF_SIZE])
2049{
2050 int fd, retval;
2051
2052 fd = open(path(filename), O_RDONLY);
2053 if (fd < 0) {
2054 goto exit_perror;
2055 }
31e31b8a 2056
8e62a717
RH
2057 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2058 if (retval < 0) {
2059 goto exit_perror;
2060 }
2061 if (retval < BPRM_BUF_SIZE) {
2062 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2063 }
2064
bf858897 2065 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2066 return;
2067
2068 exit_perror:
2069 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2070 exit(-1);
31e31b8a
FB
2071}
2072
49918a75
PB
2073static int symfind(const void *s0, const void *s1)
2074{
c7c530cd 2075 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2076 struct elf_sym *sym = (struct elf_sym *)s1;
2077 int result = 0;
c7c530cd 2078 if (addr < sym->st_value) {
49918a75 2079 result = -1;
c7c530cd 2080 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2081 result = 1;
2082 }
2083 return result;
2084}
2085
2086static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2087{
2088#if ELF_CLASS == ELFCLASS32
2089 struct elf_sym *syms = s->disas_symtab.elf32;
2090#else
2091 struct elf_sym *syms = s->disas_symtab.elf64;
2092#endif
2093
2094 // binary search
49918a75
PB
2095 struct elf_sym *sym;
2096
c7c530cd 2097 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2098 if (sym != NULL) {
49918a75
PB
2099 return s->disas_strtab + sym->st_name;
2100 }
2101
2102 return "";
2103}
2104
2105/* FIXME: This should use elf_ops.h */
2106static int symcmp(const void *s0, const void *s1)
2107{
2108 struct elf_sym *sym0 = (struct elf_sym *)s0;
2109 struct elf_sym *sym1 = (struct elf_sym *)s1;
2110 return (sym0->st_value < sym1->st_value)
2111 ? -1
2112 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2113}
2114
689f936f 2115/* Best attempt to load symbols from this ELF object. */
682674b8 2116static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2117{
682674b8
RH
2118 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2119 struct elf_shdr *shdr;
b9475279
CV
2120 char *strings = NULL;
2121 struct syminfo *s = NULL;
2122 struct elf_sym *new_syms, *syms = NULL;
689f936f 2123
682674b8
RH
2124 shnum = hdr->e_shnum;
2125 i = shnum * sizeof(struct elf_shdr);
2126 shdr = (struct elf_shdr *)alloca(i);
2127 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2128 return;
2129 }
2130
2131 bswap_shdr(shdr, shnum);
2132 for (i = 0; i < shnum; ++i) {
2133 if (shdr[i].sh_type == SHT_SYMTAB) {
2134 sym_idx = i;
2135 str_idx = shdr[i].sh_link;
49918a75
PB
2136 goto found;
2137 }
689f936f 2138 }
682674b8
RH
2139
2140 /* There will be no symbol table if the file was stripped. */
2141 return;
689f936f
FB
2142
2143 found:
682674b8 2144 /* Now know where the strtab and symtab are. Snarf them. */
e80cfcfc 2145 s = malloc(sizeof(*s));
682674b8 2146 if (!s) {
b9475279 2147 goto give_up;
682674b8 2148 }
5fafdf24 2149
682674b8
RH
2150 i = shdr[str_idx].sh_size;
2151 s->disas_strtab = strings = malloc(i);
2152 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
b9475279 2153 goto give_up;
682674b8 2154 }
49918a75 2155
682674b8
RH
2156 i = shdr[sym_idx].sh_size;
2157 syms = malloc(i);
2158 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
b9475279 2159 goto give_up;
682674b8 2160 }
31e31b8a 2161
682674b8
RH
2162 nsyms = i / sizeof(struct elf_sym);
2163 for (i = 0; i < nsyms; ) {
49918a75 2164 bswap_sym(syms + i);
682674b8
RH
2165 /* Throw away entries which we do not need. */
2166 if (syms[i].st_shndx == SHN_UNDEF
2167 || syms[i].st_shndx >= SHN_LORESERVE
2168 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2169 if (i < --nsyms) {
49918a75
PB
2170 syms[i] = syms[nsyms];
2171 }
682674b8 2172 } else {
49918a75 2173#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2174 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2175 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2176#endif
682674b8
RH
2177 syms[i].st_value += load_bias;
2178 i++;
2179 }
0774bed1 2180 }
49918a75 2181
b9475279
CV
2182 /* No "useful" symbol. */
2183 if (nsyms == 0) {
2184 goto give_up;
2185 }
2186
5d5c9930
RH
2187 /* Attempt to free the storage associated with the local symbols
2188 that we threw away. Whether or not this has any effect on the
2189 memory allocation depends on the malloc implementation and how
2190 many symbols we managed to discard. */
8d79de6e
SW
2191 new_syms = realloc(syms, nsyms * sizeof(*syms));
2192 if (new_syms == NULL) {
b9475279 2193 goto give_up;
5d5c9930 2194 }
8d79de6e 2195 syms = new_syms;
5d5c9930 2196
49918a75 2197 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2198
49918a75
PB
2199 s->disas_num_syms = nsyms;
2200#if ELF_CLASS == ELFCLASS32
2201 s->disas_symtab.elf32 = syms;
49918a75
PB
2202#else
2203 s->disas_symtab.elf64 = syms;
49918a75 2204#endif
682674b8 2205 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2206 s->next = syminfos;
2207 syminfos = s;
b9475279
CV
2208
2209 return;
2210
2211give_up:
2212 free(s);
2213 free(strings);
2214 free(syms);
689f936f 2215}
31e31b8a 2216
f0116c54 2217int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2218{
8e62a717 2219 struct image_info interp_info;
31e31b8a 2220 struct elfhdr elf_ex;
8e62a717 2221 char *elf_interpreter = NULL;
31e31b8a 2222
bf858897
RH
2223 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2224 info->mmap = 0;
2225 info->rss = 0;
2226
2227 load_elf_image(bprm->filename, bprm->fd, info,
2228 &elf_interpreter, bprm->buf);
31e31b8a 2229
bf858897
RH
2230 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2231 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2232 when we load the interpreter. */
2233 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2234
e5fe0c52
PB
2235 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
2236 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
2237 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
2238 if (!bprm->p) {
bf858897
RH
2239 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2240 exit(-1);
379f6698 2241 }
379f6698 2242
31e31b8a
FB
2243 /* Do this so that we can load the interpreter, if need be. We will
2244 change some of these later */
31e31b8a 2245 bprm->p = setup_arg_pages(bprm->p, bprm, info);
31e31b8a 2246
8e62a717
RH
2247 if (elf_interpreter) {
2248 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2249
8e62a717
RH
2250 /* If the program interpreter is one of these two, then assume
2251 an iBCS2 image. Otherwise assume a native linux image. */
2252
2253 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2254 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2255 info->personality = PER_SVR4;
31e31b8a 2256
8e62a717
RH
2257 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2258 and some applications "depend" upon this behavior. Since
2259 we do not have the power to recompile these, we emulate
2260 the SVr4 behavior. Sigh. */
2261 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2262 MAP_FIXED | MAP_PRIVATE, -1, 0);
2263 }
31e31b8a
FB
2264 }
2265
8e62a717
RH
2266 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2267 info, (elf_interpreter ? &interp_info : NULL));
2268 info->start_stack = bprm->p;
2269
2270 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2271 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2272 point as a function descriptor. Do this after creating elf tables
2273 so that we copy the original program entry point into the AUXV. */
2274 if (elf_interpreter) {
8e78064e 2275 info->load_bias = interp_info.load_bias;
8e62a717 2276 info->entry = interp_info.entry;
bf858897 2277 free(elf_interpreter);
8e62a717 2278 }
31e31b8a 2279
edf8e2af
MW
2280#ifdef USE_ELF_CORE_DUMP
2281 bprm->core_dump = &elf_core_dump;
2282#endif
2283
31e31b8a
FB
2284 return 0;
2285}
2286
edf8e2af 2287#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2288/*
2289 * Definitions to generate Intel SVR4-like core files.
a2547a13 2290 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2291 * tacked on the front to prevent clashes with linux definitions,
2292 * and the typedef forms have been avoided. This is mostly like
2293 * the SVR4 structure, but more Linuxy, with things that Linux does
2294 * not support and which gdb doesn't really use excluded.
2295 *
2296 * Fields we don't dump (their contents is zero) in linux-user qemu
2297 * are marked with XXX.
2298 *
2299 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2300 *
2301 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2302 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2303 * the target resides):
2304 *
2305 * #define USE_ELF_CORE_DUMP
2306 *
2307 * Next you define type of register set used for dumping. ELF specification
2308 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2309 *
c227f099 2310 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2311 * #define ELF_NREG <number of registers>
c227f099 2312 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2313 *
edf8e2af
MW
2314 * Last step is to implement target specific function that copies registers
2315 * from given cpu into just specified register set. Prototype is:
2316 *
c227f099 2317 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2318 * const CPUArchState *env);
edf8e2af
MW
2319 *
2320 * Parameters:
2321 * regs - copy register values into here (allocated and zeroed by caller)
2322 * env - copy registers from here
2323 *
2324 * Example for ARM target is provided in this file.
2325 */
2326
2327/* An ELF note in memory */
2328struct memelfnote {
2329 const char *name;
2330 size_t namesz;
2331 size_t namesz_rounded;
2332 int type;
2333 size_t datasz;
80f5ce75 2334 size_t datasz_rounded;
edf8e2af
MW
2335 void *data;
2336 size_t notesz;
2337};
2338
a2547a13 2339struct target_elf_siginfo {
f8fd4fc4
PB
2340 abi_int si_signo; /* signal number */
2341 abi_int si_code; /* extra code */
2342 abi_int si_errno; /* errno */
edf8e2af
MW
2343};
2344
a2547a13
LD
2345struct target_elf_prstatus {
2346 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2347 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2348 abi_ulong pr_sigpend; /* XXX */
2349 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2350 target_pid_t pr_pid;
2351 target_pid_t pr_ppid;
2352 target_pid_t pr_pgrp;
2353 target_pid_t pr_sid;
edf8e2af
MW
2354 struct target_timeval pr_utime; /* XXX User time */
2355 struct target_timeval pr_stime; /* XXX System time */
2356 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2357 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2358 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2359 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2360};
2361
2362#define ELF_PRARGSZ (80) /* Number of chars for args */
2363
a2547a13 2364struct target_elf_prpsinfo {
edf8e2af
MW
2365 char pr_state; /* numeric process state */
2366 char pr_sname; /* char for pr_state */
2367 char pr_zomb; /* zombie */
2368 char pr_nice; /* nice val */
ca98ac83 2369 abi_ulong pr_flag; /* flags */
c227f099
AL
2370 target_uid_t pr_uid;
2371 target_gid_t pr_gid;
2372 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2373 /* Lots missing */
2374 char pr_fname[16]; /* filename of executable */
2375 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2376};
2377
2378/* Here is the structure in which status of each thread is captured. */
2379struct elf_thread_status {
72cf2d4f 2380 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2381 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2382#if 0
2383 elf_fpregset_t fpu; /* NT_PRFPREG */
2384 struct task_struct *thread;
2385 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2386#endif
2387 struct memelfnote notes[1];
2388 int num_notes;
2389};
2390
2391struct elf_note_info {
2392 struct memelfnote *notes;
a2547a13
LD
2393 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2394 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2395
72cf2d4f 2396 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2397#if 0
2398 /*
2399 * Current version of ELF coredump doesn't support
2400 * dumping fp regs etc.
2401 */
2402 elf_fpregset_t *fpu;
2403 elf_fpxregset_t *xfpu;
2404 int thread_status_size;
2405#endif
2406 int notes_size;
2407 int numnote;
2408};
2409
2410struct vm_area_struct {
1a1c4db9
MI
2411 target_ulong vma_start; /* start vaddr of memory region */
2412 target_ulong vma_end; /* end vaddr of memory region */
2413 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2414 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2415};
2416
2417struct mm_struct {
72cf2d4f 2418 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2419 int mm_count; /* number of mappings */
2420};
2421
2422static struct mm_struct *vma_init(void);
2423static void vma_delete(struct mm_struct *);
1a1c4db9
MI
2424static int vma_add_mapping(struct mm_struct *, target_ulong,
2425 target_ulong, abi_ulong);
edf8e2af
MW
2426static int vma_get_mapping_count(const struct mm_struct *);
2427static struct vm_area_struct *vma_first(const struct mm_struct *);
2428static struct vm_area_struct *vma_next(struct vm_area_struct *);
2429static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 2430static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2431 unsigned long flags);
edf8e2af
MW
2432
2433static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2434static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2435 unsigned int, void *);
a2547a13
LD
2436static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2437static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2438static void fill_auxv_note(struct memelfnote *, const TaskState *);
2439static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2440static size_t note_size(const struct memelfnote *);
2441static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2442static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2443static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2444static int core_dump_filename(const TaskState *, char *, size_t);
2445
2446static int dump_write(int, const void *, size_t);
2447static int write_note(struct memelfnote *, int);
2448static int write_note_info(struct elf_note_info *, int);
2449
2450#ifdef BSWAP_NEEDED
a2547a13 2451static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2452{
ca98ac83
PB
2453 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2454 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2455 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2456 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
2457 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2458 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
2459 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2460 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2461 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2462 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2463 /* cpu times are not filled, so we skip them */
2464 /* regs should be in correct format already */
2465 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2466}
2467
a2547a13 2468static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 2469{
ca98ac83 2470 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
2471 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2472 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2473 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2474 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2475 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2476 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2477}
991f8f0c
RH
2478
2479static void bswap_note(struct elf_note *en)
2480{
2481 bswap32s(&en->n_namesz);
2482 bswap32s(&en->n_descsz);
2483 bswap32s(&en->n_type);
2484}
2485#else
2486static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2487static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2488static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2489#endif /* BSWAP_NEEDED */
2490
2491/*
2492 * Minimal support for linux memory regions. These are needed
2493 * when we are finding out what memory exactly belongs to
2494 * emulated process. No locks needed here, as long as
2495 * thread that received the signal is stopped.
2496 */
2497
2498static struct mm_struct *vma_init(void)
2499{
2500 struct mm_struct *mm;
2501
7267c094 2502 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
2503 return (NULL);
2504
2505 mm->mm_count = 0;
72cf2d4f 2506 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2507
2508 return (mm);
2509}
2510
2511static void vma_delete(struct mm_struct *mm)
2512{
2513 struct vm_area_struct *vma;
2514
2515 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2516 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 2517 g_free(vma);
edf8e2af 2518 }
7267c094 2519 g_free(mm);
edf8e2af
MW
2520}
2521
1a1c4db9
MI
2522static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2523 target_ulong end, abi_ulong flags)
edf8e2af
MW
2524{
2525 struct vm_area_struct *vma;
2526
7267c094 2527 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
2528 return (-1);
2529
2530 vma->vma_start = start;
2531 vma->vma_end = end;
2532 vma->vma_flags = flags;
2533
72cf2d4f 2534 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2535 mm->mm_count++;
2536
2537 return (0);
2538}
2539
2540static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2541{
72cf2d4f 2542 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2543}
2544
2545static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2546{
72cf2d4f 2547 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2548}
2549
2550static int vma_get_mapping_count(const struct mm_struct *mm)
2551{
2552 return (mm->mm_count);
2553}
2554
2555/*
2556 * Calculate file (dump) size of given memory region.
2557 */
2558static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2559{
2560 /* if we cannot even read the first page, skip it */
2561 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2562 return (0);
2563
2564 /*
2565 * Usually we don't dump executable pages as they contain
2566 * non-writable code that debugger can read directly from
2567 * target library etc. However, thread stacks are marked
2568 * also executable so we read in first page of given region
2569 * and check whether it contains elf header. If there is
2570 * no elf header, we dump it.
2571 */
2572 if (vma->vma_flags & PROT_EXEC) {
2573 char page[TARGET_PAGE_SIZE];
2574
2575 copy_from_user(page, vma->vma_start, sizeof (page));
2576 if ((page[EI_MAG0] == ELFMAG0) &&
2577 (page[EI_MAG1] == ELFMAG1) &&
2578 (page[EI_MAG2] == ELFMAG2) &&
2579 (page[EI_MAG3] == ELFMAG3)) {
2580 /*
2581 * Mappings are possibly from ELF binary. Don't dump
2582 * them.
2583 */
2584 return (0);
2585 }
2586 }
2587
2588 return (vma->vma_end - vma->vma_start);
2589}
2590
1a1c4db9 2591static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2592 unsigned long flags)
edf8e2af
MW
2593{
2594 struct mm_struct *mm = (struct mm_struct *)priv;
2595
edf8e2af
MW
2596 vma_add_mapping(mm, start, end, flags);
2597 return (0);
2598}
2599
2600static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 2601 unsigned int sz, void *data)
edf8e2af
MW
2602{
2603 unsigned int namesz;
2604
2605 namesz = strlen(name) + 1;
2606 note->name = name;
2607 note->namesz = namesz;
2608 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2609 note->type = type;
80f5ce75
LV
2610 note->datasz = sz;
2611 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2612
edf8e2af
MW
2613 note->data = data;
2614
2615 /*
2616 * We calculate rounded up note size here as specified by
2617 * ELF document.
2618 */
2619 note->notesz = sizeof (struct elf_note) +
80f5ce75 2620 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
2621}
2622
2623static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 2624 uint32_t flags)
edf8e2af
MW
2625{
2626 (void) memset(elf, 0, sizeof(*elf));
2627
2628 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2629 elf->e_ident[EI_CLASS] = ELF_CLASS;
2630 elf->e_ident[EI_DATA] = ELF_DATA;
2631 elf->e_ident[EI_VERSION] = EV_CURRENT;
2632 elf->e_ident[EI_OSABI] = ELF_OSABI;
2633
2634 elf->e_type = ET_CORE;
2635 elf->e_machine = machine;
2636 elf->e_version = EV_CURRENT;
2637 elf->e_phoff = sizeof(struct elfhdr);
2638 elf->e_flags = flags;
2639 elf->e_ehsize = sizeof(struct elfhdr);
2640 elf->e_phentsize = sizeof(struct elf_phdr);
2641 elf->e_phnum = segs;
2642
edf8e2af 2643 bswap_ehdr(elf);
edf8e2af
MW
2644}
2645
2646static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2647{
2648 phdr->p_type = PT_NOTE;
2649 phdr->p_offset = offset;
2650 phdr->p_vaddr = 0;
2651 phdr->p_paddr = 0;
2652 phdr->p_filesz = sz;
2653 phdr->p_memsz = 0;
2654 phdr->p_flags = 0;
2655 phdr->p_align = 0;
2656
991f8f0c 2657 bswap_phdr(phdr, 1);
edf8e2af
MW
2658}
2659
2660static size_t note_size(const struct memelfnote *note)
2661{
2662 return (note->notesz);
2663}
2664
a2547a13 2665static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 2666 const TaskState *ts, int signr)
edf8e2af
MW
2667{
2668 (void) memset(prstatus, 0, sizeof (*prstatus));
2669 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2670 prstatus->pr_pid = ts->ts_tid;
2671 prstatus->pr_ppid = getppid();
2672 prstatus->pr_pgrp = getpgrp();
2673 prstatus->pr_sid = getsid(0);
2674
edf8e2af 2675 bswap_prstatus(prstatus);
edf8e2af
MW
2676}
2677
a2547a13 2678static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 2679{
900cfbca 2680 char *base_filename;
edf8e2af
MW
2681 unsigned int i, len;
2682
2683 (void) memset(psinfo, 0, sizeof (*psinfo));
2684
2685 len = ts->info->arg_end - ts->info->arg_start;
2686 if (len >= ELF_PRARGSZ)
2687 len = ELF_PRARGSZ - 1;
2688 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2689 return -EFAULT;
2690 for (i = 0; i < len; i++)
2691 if (psinfo->pr_psargs[i] == 0)
2692 psinfo->pr_psargs[i] = ' ';
2693 psinfo->pr_psargs[len] = 0;
2694
2695 psinfo->pr_pid = getpid();
2696 psinfo->pr_ppid = getppid();
2697 psinfo->pr_pgrp = getpgrp();
2698 psinfo->pr_sid = getsid(0);
2699 psinfo->pr_uid = getuid();
2700 psinfo->pr_gid = getgid();
2701
900cfbca
JM
2702 base_filename = g_path_get_basename(ts->bprm->filename);
2703 /*
2704 * Using strncpy here is fine: at max-length,
2705 * this field is not NUL-terminated.
2706 */
edf8e2af 2707 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 2708 sizeof(psinfo->pr_fname));
edf8e2af 2709
900cfbca 2710 g_free(base_filename);
edf8e2af 2711 bswap_psinfo(psinfo);
edf8e2af
MW
2712 return (0);
2713}
2714
2715static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2716{
2717 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2718 elf_addr_t orig_auxv = auxv;
edf8e2af 2719 void *ptr;
125b0f55 2720 int len = ts->info->auxv_len;
edf8e2af
MW
2721
2722 /*
2723 * Auxiliary vector is stored in target process stack. It contains
2724 * {type, value} pairs that we need to dump into note. This is not
2725 * strictly necessary but we do it here for sake of completeness.
2726 */
2727
edf8e2af
MW
2728 /* read in whole auxv vector and copy it to memelfnote */
2729 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2730 if (ptr != NULL) {
2731 fill_note(note, "CORE", NT_AUXV, len, ptr);
2732 unlock_user(ptr, auxv, len);
2733 }
2734}
2735
2736/*
2737 * Constructs name of coredump file. We have following convention
2738 * for the name:
2739 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2740 *
2741 * Returns 0 in case of success, -1 otherwise (errno is set).
2742 */
2743static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 2744 size_t bufsize)
edf8e2af
MW
2745{
2746 char timestamp[64];
2747 char *filename = NULL;
2748 char *base_filename = NULL;
2749 struct timeval tv;
2750 struct tm tm;
2751
2752 assert(bufsize >= PATH_MAX);
2753
2754 if (gettimeofday(&tv, NULL) < 0) {
2755 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 2756 strerror(errno));
edf8e2af
MW
2757 return (-1);
2758 }
2759
2760 filename = strdup(ts->bprm->filename);
2761 base_filename = strdup(basename(filename));
2762 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 2763 localtime_r(&tv.tv_sec, &tm));
edf8e2af 2764 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 2765 base_filename, timestamp, (int)getpid());
edf8e2af
MW
2766 free(base_filename);
2767 free(filename);
2768
2769 return (0);
2770}
2771
2772static int dump_write(int fd, const void *ptr, size_t size)
2773{
2774 const char *bufp = (const char *)ptr;
2775 ssize_t bytes_written, bytes_left;
2776 struct rlimit dumpsize;
2777 off_t pos;
2778
2779 bytes_written = 0;
2780 getrlimit(RLIMIT_CORE, &dumpsize);
2781 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2782 if (errno == ESPIPE) { /* not a seekable stream */
2783 bytes_left = size;
2784 } else {
2785 return pos;
2786 }
2787 } else {
2788 if (dumpsize.rlim_cur <= pos) {
2789 return -1;
2790 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2791 bytes_left = size;
2792 } else {
2793 size_t limit_left=dumpsize.rlim_cur - pos;
2794 bytes_left = limit_left >= size ? size : limit_left ;
2795 }
2796 }
2797
2798 /*
2799 * In normal conditions, single write(2) should do but
2800 * in case of socket etc. this mechanism is more portable.
2801 */
2802 do {
2803 bytes_written = write(fd, bufp, bytes_left);
2804 if (bytes_written < 0) {
2805 if (errno == EINTR)
2806 continue;
2807 return (-1);
2808 } else if (bytes_written == 0) { /* eof */
2809 return (-1);
2810 }
2811 bufp += bytes_written;
2812 bytes_left -= bytes_written;
2813 } while (bytes_left > 0);
2814
2815 return (0);
2816}
2817
2818static int write_note(struct memelfnote *men, int fd)
2819{
2820 struct elf_note en;
2821
2822 en.n_namesz = men->namesz;
2823 en.n_type = men->type;
2824 en.n_descsz = men->datasz;
2825
edf8e2af 2826 bswap_note(&en);
edf8e2af
MW
2827
2828 if (dump_write(fd, &en, sizeof(en)) != 0)
2829 return (-1);
2830 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2831 return (-1);
80f5ce75 2832 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
2833 return (-1);
2834
2835 return (0);
2836}
2837
9349b4f9 2838static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 2839{
0429a971
AF
2840 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2841 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
2842 struct elf_thread_status *ets;
2843
7267c094 2844 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
2845 ets->num_notes = 1; /* only prstatus is dumped */
2846 fill_prstatus(&ets->prstatus, ts, 0);
2847 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2848 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 2849 &ets->prstatus);
edf8e2af 2850
72cf2d4f 2851 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
2852
2853 info->notes_size += note_size(&ets->notes[0]);
2854}
2855
6afafa86
PM
2856static void init_note_info(struct elf_note_info *info)
2857{
2858 /* Initialize the elf_note_info structure so that it is at
2859 * least safe to call free_note_info() on it. Must be
2860 * called before calling fill_note_info().
2861 */
2862 memset(info, 0, sizeof (*info));
2863 QTAILQ_INIT(&info->thread_list);
2864}
2865
edf8e2af 2866static int fill_note_info(struct elf_note_info *info,
9349b4f9 2867 long signr, const CPUArchState *env)
edf8e2af
MW
2868{
2869#define NUMNOTES 3
0429a971
AF
2870 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2871 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
2872 int i;
2873
7267c094 2874 info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
edf8e2af
MW
2875 if (info->notes == NULL)
2876 return (-ENOMEM);
7267c094 2877 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
2878 if (info->prstatus == NULL)
2879 return (-ENOMEM);
7267c094 2880 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
2881 if (info->prstatus == NULL)
2882 return (-ENOMEM);
2883
2884 /*
2885 * First fill in status (and registers) of current thread
2886 * including process info & aux vector.
2887 */
2888 fill_prstatus(info->prstatus, ts, signr);
2889 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2890 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 2891 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
2892 fill_psinfo(info->psinfo, ts);
2893 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 2894 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
2895 fill_auxv_note(&info->notes[2], ts);
2896 info->numnote = 3;
2897
2898 info->notes_size = 0;
2899 for (i = 0; i < info->numnote; i++)
2900 info->notes_size += note_size(&info->notes[i]);
2901
2902 /* read and fill status of all threads */
2903 cpu_list_lock();
bdc44640 2904 CPU_FOREACH(cpu) {
a2247f8e 2905 if (cpu == thread_cpu) {
edf8e2af 2906 continue;
182735ef
AF
2907 }
2908 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
2909 }
2910 cpu_list_unlock();
2911
2912 return (0);
2913}
2914
2915static void free_note_info(struct elf_note_info *info)
2916{
2917 struct elf_thread_status *ets;
2918
72cf2d4f
BS
2919 while (!QTAILQ_EMPTY(&info->thread_list)) {
2920 ets = QTAILQ_FIRST(&info->thread_list);
2921 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 2922 g_free(ets);
edf8e2af
MW
2923 }
2924
7267c094
AL
2925 g_free(info->prstatus);
2926 g_free(info->psinfo);
2927 g_free(info->notes);
edf8e2af
MW
2928}
2929
2930static int write_note_info(struct elf_note_info *info, int fd)
2931{
2932 struct elf_thread_status *ets;
2933 int i, error = 0;
2934
2935 /* write prstatus, psinfo and auxv for current thread */
2936 for (i = 0; i < info->numnote; i++)
2937 if ((error = write_note(&info->notes[i], fd)) != 0)
2938 return (error);
2939
2940 /* write prstatus for each thread */
52a53afe 2941 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
2942 if ((error = write_note(&ets->notes[0], fd)) != 0)
2943 return (error);
2944 }
2945
2946 return (0);
2947}
2948
2949/*
2950 * Write out ELF coredump.
2951 *
2952 * See documentation of ELF object file format in:
2953 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2954 *
2955 * Coredump format in linux is following:
2956 *
2957 * 0 +----------------------+ \
2958 * | ELF header | ET_CORE |
2959 * +----------------------+ |
2960 * | ELF program headers | |--- headers
2961 * | - NOTE section | |
2962 * | - PT_LOAD sections | |
2963 * +----------------------+ /
2964 * | NOTEs: |
2965 * | - NT_PRSTATUS |
2966 * | - NT_PRSINFO |
2967 * | - NT_AUXV |
2968 * +----------------------+ <-- aligned to target page
2969 * | Process memory dump |
2970 * : :
2971 * . .
2972 * : :
2973 * | |
2974 * +----------------------+
2975 *
2976 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2977 * NT_PRSINFO -> struct elf_prpsinfo
2978 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2979 *
2980 * Format follows System V format as close as possible. Current
2981 * version limitations are as follows:
2982 * - no floating point registers are dumped
2983 *
2984 * Function returns 0 in case of success, negative errno otherwise.
2985 *
2986 * TODO: make this work also during runtime: it should be
2987 * possible to force coredump from running process and then
2988 * continue processing. For example qemu could set up SIGUSR2
2989 * handler (provided that target process haven't registered
2990 * handler for that) that does the dump when signal is received.
2991 */
9349b4f9 2992static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 2993{
0429a971
AF
2994 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2995 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
2996 struct vm_area_struct *vma = NULL;
2997 char corefile[PATH_MAX];
2998 struct elf_note_info info;
2999 struct elfhdr elf;
3000 struct elf_phdr phdr;
3001 struct rlimit dumpsize;
3002 struct mm_struct *mm = NULL;
3003 off_t offset = 0, data_offset = 0;
3004 int segs = 0;
3005 int fd = -1;
3006
6afafa86
PM
3007 init_note_info(&info);
3008
edf8e2af
MW
3009 errno = 0;
3010 getrlimit(RLIMIT_CORE, &dumpsize);
3011 if (dumpsize.rlim_cur == 0)
d97ef72e 3012 return 0;
edf8e2af
MW
3013
3014 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3015 return (-errno);
3016
3017 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3018 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3019 return (-errno);
3020
3021 /*
3022 * Walk through target process memory mappings and
3023 * set up structure containing this information. After
3024 * this point vma_xxx functions can be used.
3025 */
3026 if ((mm = vma_init()) == NULL)
3027 goto out;
3028
3029 walk_memory_regions(mm, vma_walker);
3030 segs = vma_get_mapping_count(mm);
3031
3032 /*
3033 * Construct valid coredump ELF header. We also
3034 * add one more segment for notes.
3035 */
3036 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3037 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3038 goto out;
3039
b6af0975 3040 /* fill in the in-memory version of notes */
edf8e2af
MW
3041 if (fill_note_info(&info, signr, env) < 0)
3042 goto out;
3043
3044 offset += sizeof (elf); /* elf header */
3045 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3046
3047 /* write out notes program header */
3048 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3049
3050 offset += info.notes_size;
3051 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3052 goto out;
3053
3054 /*
3055 * ELF specification wants data to start at page boundary so
3056 * we align it here.
3057 */
80f5ce75 3058 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3059
3060 /*
3061 * Write program headers for memory regions mapped in
3062 * the target process.
3063 */
3064 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3065 (void) memset(&phdr, 0, sizeof (phdr));
3066
3067 phdr.p_type = PT_LOAD;
3068 phdr.p_offset = offset;
3069 phdr.p_vaddr = vma->vma_start;
3070 phdr.p_paddr = 0;
3071 phdr.p_filesz = vma_dump_size(vma);
3072 offset += phdr.p_filesz;
3073 phdr.p_memsz = vma->vma_end - vma->vma_start;
3074 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3075 if (vma->vma_flags & PROT_WRITE)
3076 phdr.p_flags |= PF_W;
3077 if (vma->vma_flags & PROT_EXEC)
3078 phdr.p_flags |= PF_X;
3079 phdr.p_align = ELF_EXEC_PAGESIZE;
3080
80f5ce75 3081 bswap_phdr(&phdr, 1);
edf8e2af
MW
3082 dump_write(fd, &phdr, sizeof (phdr));
3083 }
3084
3085 /*
3086 * Next we write notes just after program headers. No
3087 * alignment needed here.
3088 */
3089 if (write_note_info(&info, fd) < 0)
3090 goto out;
3091
3092 /* align data to page boundary */
edf8e2af
MW
3093 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3094 goto out;
3095
3096 /*
3097 * Finally we can dump process memory into corefile as well.
3098 */
3099 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3100 abi_ulong addr;
3101 abi_ulong end;
3102
3103 end = vma->vma_start + vma_dump_size(vma);
3104
3105 for (addr = vma->vma_start; addr < end;
d97ef72e 3106 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3107 char page[TARGET_PAGE_SIZE];
3108 int error;
3109
3110 /*
3111 * Read in page from target process memory and
3112 * write it to coredump file.
3113 */
3114 error = copy_from_user(page, addr, sizeof (page));
3115 if (error != 0) {
49995e17 3116 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3117 addr);
edf8e2af
MW
3118 errno = -error;
3119 goto out;
3120 }
3121 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3122 goto out;
3123 }
3124 }
3125
d97ef72e 3126 out:
edf8e2af
MW
3127 free_note_info(&info);
3128 if (mm != NULL)
3129 vma_delete(mm);
3130 (void) close(fd);
3131
3132 if (errno != 0)
3133 return (-errno);
3134 return (0);
3135}
edf8e2af
MW
3136#endif /* USE_ELF_CORE_DUMP */
3137
e5fe0c52
PB
3138void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3139{
3140 init_thread(regs, infop);
3141}