]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
linux_user: elfload: Default ELF_MACHINE to ELF_ARCH
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
edf8e2af
MW
2#include <sys/time.h>
3#include <sys/param.h>
31e31b8a
FB
4
5#include <stdio.h>
6#include <sys/types.h>
7#include <fcntl.h>
31e31b8a
FB
8#include <errno.h>
9#include <unistd.h>
10#include <sys/mman.h>
edf8e2af 11#include <sys/resource.h>
31e31b8a
FB
12#include <stdlib.h>
13#include <string.h>
edf8e2af 14#include <time.h>
31e31b8a 15
3ef693a0 16#include "qemu.h"
76cad711 17#include "disas/disas.h"
31e31b8a 18
e58ffeb3 19#ifdef _ARCH_PPC64
a6cc84f4 20#undef ARCH_DLINFO
21#undef ELF_PLATFORM
22#undef ELF_HWCAP
ad6919dc 23#undef ELF_HWCAP2
a6cc84f4 24#undef ELF_CLASS
25#undef ELF_DATA
26#undef ELF_ARCH
27#endif
28
edf8e2af
MW
29#define ELF_OSABI ELFOSABI_SYSV
30
cb33da57
BS
31/* from personality.h */
32
33/*
34 * Flags for bug emulation.
35 *
36 * These occupy the top three bytes.
37 */
38enum {
d97ef72e
RH
39 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
40 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
41 descriptors (signal handling) */
42 MMAP_PAGE_ZERO = 0x0100000,
43 ADDR_COMPAT_LAYOUT = 0x0200000,
44 READ_IMPLIES_EXEC = 0x0400000,
45 ADDR_LIMIT_32BIT = 0x0800000,
46 SHORT_INODE = 0x1000000,
47 WHOLE_SECONDS = 0x2000000,
48 STICKY_TIMEOUTS = 0x4000000,
49 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
50};
51
52/*
53 * Personality types.
54 *
55 * These go in the low byte. Avoid using the top bit, it will
56 * conflict with error returns.
57 */
58enum {
d97ef72e
RH
59 PER_LINUX = 0x0000,
60 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
61 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
62 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
65 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
66 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
67 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
68 PER_BSD = 0x0006,
69 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
70 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
71 PER_LINUX32 = 0x0008,
72 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
73 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
74 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
75 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
76 PER_RISCOS = 0x000c,
77 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
78 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
79 PER_OSF4 = 0x000f, /* OSF/1 v4 */
80 PER_HPUX = 0x0010,
81 PER_MASK = 0x00ff,
cb33da57
BS
82};
83
84/*
85 * Return the base personality without flags.
86 */
d97ef72e 87#define personality(pers) (pers & PER_MASK)
cb33da57 88
83fb7adf
FB
89/* this flag is uneffective under linux too, should be deleted */
90#ifndef MAP_DENYWRITE
91#define MAP_DENYWRITE 0
92#endif
93
94/* should probably go in elf.h */
95#ifndef ELIBBAD
96#define ELIBBAD 80
97#endif
98
28490231
RH
99#ifdef TARGET_WORDS_BIGENDIAN
100#define ELF_DATA ELFDATA2MSB
101#else
102#define ELF_DATA ELFDATA2LSB
103#endif
104
a29f998d 105#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
106typedef abi_ullong target_elf_greg_t;
107#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
108#else
109typedef abi_ulong target_elf_greg_t;
110#define tswapreg(ptr) tswapal(ptr)
111#endif
112
21e807fa 113#ifdef USE_UID16
1ddd592f
PB
114typedef abi_ushort target_uid_t;
115typedef abi_ushort target_gid_t;
21e807fa 116#else
f8fd4fc4
PB
117typedef abi_uint target_uid_t;
118typedef abi_uint target_gid_t;
21e807fa 119#endif
f8fd4fc4 120typedef abi_int target_pid_t;
21e807fa 121
30ac07d4
FB
122#ifdef TARGET_I386
123
15338fd7
FB
124#define ELF_PLATFORM get_elf_platform()
125
126static const char *get_elf_platform(void)
127{
128 static char elf_platform[] = "i386";
a2247f8e 129 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
130 if (family > 6)
131 family = 6;
132 if (family >= 3)
133 elf_platform[1] = '0' + family;
134 return elf_platform;
135}
136
137#define ELF_HWCAP get_elf_hwcap()
138
139static uint32_t get_elf_hwcap(void)
140{
a2247f8e
AF
141 X86CPU *cpu = X86_CPU(thread_cpu);
142
143 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
144}
145
84409ddb
JM
146#ifdef TARGET_X86_64
147#define ELF_START_MMAP 0x2aaaaab000ULL
148#define elf_check_arch(x) ( ((x) == ELF_ARCH) )
149
150#define ELF_CLASS ELFCLASS64
84409ddb
JM
151#define ELF_ARCH EM_X86_64
152
153static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154{
155 regs->rax = 0;
156 regs->rsp = infop->start_stack;
157 regs->rip = infop->entry;
158}
159
9edc5d79 160#define ELF_NREG 27
c227f099 161typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
162
163/*
164 * Note that ELF_NREG should be 29 as there should be place for
165 * TRAPNO and ERR "registers" as well but linux doesn't dump
166 * those.
167 *
168 * See linux kernel: arch/x86/include/asm/elf.h
169 */
05390248 170static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
171{
172 (*regs)[0] = env->regs[15];
173 (*regs)[1] = env->regs[14];
174 (*regs)[2] = env->regs[13];
175 (*regs)[3] = env->regs[12];
176 (*regs)[4] = env->regs[R_EBP];
177 (*regs)[5] = env->regs[R_EBX];
178 (*regs)[6] = env->regs[11];
179 (*regs)[7] = env->regs[10];
180 (*regs)[8] = env->regs[9];
181 (*regs)[9] = env->regs[8];
182 (*regs)[10] = env->regs[R_EAX];
183 (*regs)[11] = env->regs[R_ECX];
184 (*regs)[12] = env->regs[R_EDX];
185 (*regs)[13] = env->regs[R_ESI];
186 (*regs)[14] = env->regs[R_EDI];
187 (*regs)[15] = env->regs[R_EAX]; /* XXX */
188 (*regs)[16] = env->eip;
189 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
190 (*regs)[18] = env->eflags;
191 (*regs)[19] = env->regs[R_ESP];
192 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
193 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
195 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
196 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
197 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
198 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
199}
200
84409ddb
JM
201#else
202
30ac07d4
FB
203#define ELF_START_MMAP 0x80000000
204
30ac07d4
FB
205/*
206 * This is used to ensure we don't load something for the wrong architecture.
207 */
208#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
209
210/*
211 * These are used to set parameters in the core dumps.
212 */
d97ef72e 213#define ELF_CLASS ELFCLASS32
d97ef72e 214#define ELF_ARCH EM_386
30ac07d4 215
d97ef72e
RH
216static inline void init_thread(struct target_pt_regs *regs,
217 struct image_info *infop)
b346ff46
FB
218{
219 regs->esp = infop->start_stack;
220 regs->eip = infop->entry;
e5fe0c52
PB
221
222 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
223 starts %edx contains a pointer to a function which might be
224 registered using `atexit'. This provides a mean for the
225 dynamic linker to call DT_FINI functions for shared libraries
226 that have been loaded before the code runs.
227
228 A value of 0 tells we have no such handler. */
229 regs->edx = 0;
b346ff46 230}
9edc5d79 231
9edc5d79 232#define ELF_NREG 17
c227f099 233typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
234
235/*
236 * Note that ELF_NREG should be 19 as there should be place for
237 * TRAPNO and ERR "registers" as well but linux doesn't dump
238 * those.
239 *
240 * See linux kernel: arch/x86/include/asm/elf.h
241 */
05390248 242static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
243{
244 (*regs)[0] = env->regs[R_EBX];
245 (*regs)[1] = env->regs[R_ECX];
246 (*regs)[2] = env->regs[R_EDX];
247 (*regs)[3] = env->regs[R_ESI];
248 (*regs)[4] = env->regs[R_EDI];
249 (*regs)[5] = env->regs[R_EBP];
250 (*regs)[6] = env->regs[R_EAX];
251 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
252 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
253 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
254 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
255 (*regs)[11] = env->regs[R_EAX]; /* XXX */
256 (*regs)[12] = env->eip;
257 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
258 (*regs)[14] = env->eflags;
259 (*regs)[15] = env->regs[R_ESP];
260 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
261}
84409ddb 262#endif
b346ff46 263
9edc5d79 264#define USE_ELF_CORE_DUMP
d97ef72e 265#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
266
267#endif
268
269#ifdef TARGET_ARM
270
24e76ff0
PM
271#ifndef TARGET_AARCH64
272/* 32 bit ARM definitions */
273
b346ff46
FB
274#define ELF_START_MMAP 0x80000000
275
99033cae 276#define elf_check_arch(x) ((x) == ELF_MACHINE)
b346ff46 277
99033cae 278#define ELF_ARCH ELF_MACHINE
d97ef72e 279#define ELF_CLASS ELFCLASS32
b346ff46 280
d97ef72e
RH
281static inline void init_thread(struct target_pt_regs *regs,
282 struct image_info *infop)
b346ff46 283{
992f48a0 284 abi_long stack = infop->start_stack;
b346ff46 285 memset(regs, 0, sizeof(*regs));
99033cae 286
b346ff46 287 regs->ARM_cpsr = 0x10;
0240ded8 288 if (infop->entry & 1)
d97ef72e 289 regs->ARM_cpsr |= CPSR_T;
0240ded8 290 regs->ARM_pc = infop->entry & 0xfffffffe;
b346ff46 291 regs->ARM_sp = infop->start_stack;
2f619698
FB
292 /* FIXME - what to for failure of get_user()? */
293 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
294 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
a1516e92 295 /* XXX: it seems that r0 is zeroed after ! */
e5fe0c52
PB
296 regs->ARM_r0 = 0;
297 /* For uClinux PIC binaries. */
863cf0b7 298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
e5fe0c52 299 regs->ARM_r10 = infop->start_data;
b346ff46
FB
300}
301
edf8e2af 302#define ELF_NREG 18
c227f099 303typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 304
05390248 305static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 306{
86cd7b2d
PB
307 (*regs)[0] = tswapreg(env->regs[0]);
308 (*regs)[1] = tswapreg(env->regs[1]);
309 (*regs)[2] = tswapreg(env->regs[2]);
310 (*regs)[3] = tswapreg(env->regs[3]);
311 (*regs)[4] = tswapreg(env->regs[4]);
312 (*regs)[5] = tswapreg(env->regs[5]);
313 (*regs)[6] = tswapreg(env->regs[6]);
314 (*regs)[7] = tswapreg(env->regs[7]);
315 (*regs)[8] = tswapreg(env->regs[8]);
316 (*regs)[9] = tswapreg(env->regs[9]);
317 (*regs)[10] = tswapreg(env->regs[10]);
318 (*regs)[11] = tswapreg(env->regs[11]);
319 (*regs)[12] = tswapreg(env->regs[12]);
320 (*regs)[13] = tswapreg(env->regs[13]);
321 (*regs)[14] = tswapreg(env->regs[14]);
322 (*regs)[15] = tswapreg(env->regs[15]);
323
324 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
325 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
326}
327
30ac07d4 328#define USE_ELF_CORE_DUMP
d97ef72e 329#define ELF_EXEC_PAGESIZE 4096
30ac07d4 330
afce2927
FB
331enum
332{
d97ef72e
RH
333 ARM_HWCAP_ARM_SWP = 1 << 0,
334 ARM_HWCAP_ARM_HALF = 1 << 1,
335 ARM_HWCAP_ARM_THUMB = 1 << 2,
336 ARM_HWCAP_ARM_26BIT = 1 << 3,
337 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
338 ARM_HWCAP_ARM_FPA = 1 << 5,
339 ARM_HWCAP_ARM_VFP = 1 << 6,
340 ARM_HWCAP_ARM_EDSP = 1 << 7,
341 ARM_HWCAP_ARM_JAVA = 1 << 8,
342 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
343 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
344 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
345 ARM_HWCAP_ARM_NEON = 1 << 12,
346 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
347 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
348 ARM_HWCAP_ARM_TLS = 1 << 15,
349 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
350 ARM_HWCAP_ARM_IDIVA = 1 << 17,
351 ARM_HWCAP_ARM_IDIVT = 1 << 18,
352 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
353 ARM_HWCAP_ARM_LPAE = 1 << 20,
354 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
355};
356
ad6919dc
PM
357enum {
358 ARM_HWCAP2_ARM_AES = 1 << 0,
359 ARM_HWCAP2_ARM_PMULL = 1 << 1,
360 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
361 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
362 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
363};
364
6b1275ff
PM
365/* The commpage only exists for 32 bit kernels */
366
806d1021
MI
367#define TARGET_HAS_VALIDATE_GUEST_SPACE
368/* Return 1 if the proposed guest space is suitable for the guest.
369 * Return 0 if the proposed guest space isn't suitable, but another
370 * address space should be tried.
371 * Return -1 if there is no way the proposed guest space can be
372 * valid regardless of the base.
373 * The guest code may leave a page mapped and populate it if the
374 * address is suitable.
375 */
376static int validate_guest_space(unsigned long guest_base,
377 unsigned long guest_size)
97cc7560
DDAG
378{
379 unsigned long real_start, test_page_addr;
380
381 /* We need to check that we can force a fault on access to the
382 * commpage at 0xffff0fxx
383 */
384 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
385
386 /* If the commpage lies within the already allocated guest space,
387 * then there is no way we can allocate it.
388 */
389 if (test_page_addr >= guest_base
390 && test_page_addr <= (guest_base + guest_size)) {
391 return -1;
392 }
393
97cc7560
DDAG
394 /* Note it needs to be writeable to let us initialise it */
395 real_start = (unsigned long)
396 mmap((void *)test_page_addr, qemu_host_page_size,
397 PROT_READ | PROT_WRITE,
398 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
399
400 /* If we can't map it then try another address */
401 if (real_start == -1ul) {
402 return 0;
403 }
404
405 if (real_start != test_page_addr) {
406 /* OS didn't put the page where we asked - unmap and reject */
407 munmap((void *)real_start, qemu_host_page_size);
408 return 0;
409 }
410
411 /* Leave the page mapped
412 * Populate it (mmap should have left it all 0'd)
413 */
414
415 /* Kernel helper versions */
416 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
417
418 /* Now it's populated make it RO */
419 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
420 perror("Protecting guest commpage");
421 exit(-1);
422 }
423
424 return 1; /* All good */
425}
adf050b1
BC
426
427#define ELF_HWCAP get_elf_hwcap()
ad6919dc 428#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
429
430static uint32_t get_elf_hwcap(void)
431{
a2247f8e 432 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
433 uint32_t hwcaps = 0;
434
435 hwcaps |= ARM_HWCAP_ARM_SWP;
436 hwcaps |= ARM_HWCAP_ARM_HALF;
437 hwcaps |= ARM_HWCAP_ARM_THUMB;
438 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
439
440 /* probe for the extra features */
441#define GET_FEATURE(feat, hwcap) \
a2247f8e 442 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
24682654
PM
443 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
444 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
445 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
446 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
447 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
448 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
450 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
451 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
452 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
453 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
454 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
455 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
456 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
457 * to our VFP_FP16 feature bit.
458 */
459 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
460 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
461
462 return hwcaps;
463}
afce2927 464
ad6919dc
PM
465static uint32_t get_elf_hwcap2(void)
466{
467 ARMCPU *cpu = ARM_CPU(thread_cpu);
468 uint32_t hwcaps = 0;
469
470 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
4e624eda 471 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
f1ecb913
AB
472 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
473 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
ad6919dc
PM
474 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
475 return hwcaps;
476}
477
478#undef GET_FEATURE
479
24e76ff0
PM
480#else
481/* 64 bit ARM definitions */
482#define ELF_START_MMAP 0x80000000
483
484#define elf_check_arch(x) ((x) == ELF_MACHINE)
485
486#define ELF_ARCH ELF_MACHINE
487#define ELF_CLASS ELFCLASS64
488#define ELF_PLATFORM "aarch64"
489
490static inline void init_thread(struct target_pt_regs *regs,
491 struct image_info *infop)
492{
493 abi_long stack = infop->start_stack;
494 memset(regs, 0, sizeof(*regs));
495
496 regs->pc = infop->entry & ~0x3ULL;
497 regs->sp = stack;
498}
499
500#define ELF_NREG 34
501typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
502
503static void elf_core_copy_regs(target_elf_gregset_t *regs,
504 const CPUARMState *env)
505{
506 int i;
507
508 for (i = 0; i < 32; i++) {
509 (*regs)[i] = tswapreg(env->xregs[i]);
510 }
511 (*regs)[32] = tswapreg(env->pc);
512 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
513}
514
515#define USE_ELF_CORE_DUMP
516#define ELF_EXEC_PAGESIZE 4096
517
518enum {
519 ARM_HWCAP_A64_FP = 1 << 0,
520 ARM_HWCAP_A64_ASIMD = 1 << 1,
521 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
522 ARM_HWCAP_A64_AES = 1 << 3,
523 ARM_HWCAP_A64_PMULL = 1 << 4,
524 ARM_HWCAP_A64_SHA1 = 1 << 5,
525 ARM_HWCAP_A64_SHA2 = 1 << 6,
526 ARM_HWCAP_A64_CRC32 = 1 << 7,
527};
528
529#define ELF_HWCAP get_elf_hwcap()
530
531static uint32_t get_elf_hwcap(void)
532{
533 ARMCPU *cpu = ARM_CPU(thread_cpu);
534 uint32_t hwcaps = 0;
535
536 hwcaps |= ARM_HWCAP_A64_FP;
537 hwcaps |= ARM_HWCAP_A64_ASIMD;
538
539 /* probe for the extra features */
540#define GET_FEATURE(feat, hwcap) \
541 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
5acc765c 542 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
411bdc78 543 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
f6fe04d5
PM
544 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
545 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
130f2e7d 546 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
24e76ff0
PM
547#undef GET_FEATURE
548
549 return hwcaps;
550}
551
552#endif /* not TARGET_AARCH64 */
553#endif /* TARGET_ARM */
30ac07d4 554
d2fbca94
GX
555#ifdef TARGET_UNICORE32
556
557#define ELF_START_MMAP 0x80000000
558
559#define elf_check_arch(x) ((x) == EM_UNICORE32)
560
561#define ELF_CLASS ELFCLASS32
562#define ELF_DATA ELFDATA2LSB
563#define ELF_ARCH EM_UNICORE32
564
565static inline void init_thread(struct target_pt_regs *regs,
566 struct image_info *infop)
567{
568 abi_long stack = infop->start_stack;
569 memset(regs, 0, sizeof(*regs));
570 regs->UC32_REG_asr = 0x10;
571 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
572 regs->UC32_REG_sp = infop->start_stack;
573 /* FIXME - what to for failure of get_user()? */
574 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
575 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
576 /* XXX: it seems that r0 is zeroed after ! */
577 regs->UC32_REG_00 = 0;
578}
579
580#define ELF_NREG 34
581typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
582
05390248 583static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
d2fbca94
GX
584{
585 (*regs)[0] = env->regs[0];
586 (*regs)[1] = env->regs[1];
587 (*regs)[2] = env->regs[2];
588 (*regs)[3] = env->regs[3];
589 (*regs)[4] = env->regs[4];
590 (*regs)[5] = env->regs[5];
591 (*regs)[6] = env->regs[6];
592 (*regs)[7] = env->regs[7];
593 (*regs)[8] = env->regs[8];
594 (*regs)[9] = env->regs[9];
595 (*regs)[10] = env->regs[10];
596 (*regs)[11] = env->regs[11];
597 (*regs)[12] = env->regs[12];
598 (*regs)[13] = env->regs[13];
599 (*regs)[14] = env->regs[14];
600 (*regs)[15] = env->regs[15];
601 (*regs)[16] = env->regs[16];
602 (*regs)[17] = env->regs[17];
603 (*regs)[18] = env->regs[18];
604 (*regs)[19] = env->regs[19];
605 (*regs)[20] = env->regs[20];
606 (*regs)[21] = env->regs[21];
607 (*regs)[22] = env->regs[22];
608 (*regs)[23] = env->regs[23];
609 (*regs)[24] = env->regs[24];
610 (*regs)[25] = env->regs[25];
611 (*regs)[26] = env->regs[26];
612 (*regs)[27] = env->regs[27];
613 (*regs)[28] = env->regs[28];
614 (*regs)[29] = env->regs[29];
615 (*regs)[30] = env->regs[30];
616 (*regs)[31] = env->regs[31];
617
05390248 618 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
d2fbca94
GX
619 (*regs)[33] = env->regs[0]; /* XXX */
620}
621
622#define USE_ELF_CORE_DUMP
623#define ELF_EXEC_PAGESIZE 4096
624
625#define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
626
627#endif
628
853d6f7a 629#ifdef TARGET_SPARC
a315a145 630#ifdef TARGET_SPARC64
853d6f7a
FB
631
632#define ELF_START_MMAP 0x80000000
cf973e46
AT
633#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
634 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 635#ifndef TARGET_ABI32
cb33da57 636#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
637#else
638#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
639#endif
853d6f7a 640
a315a145 641#define ELF_CLASS ELFCLASS64
5ef54116
FB
642#define ELF_ARCH EM_SPARCV9
643
d97ef72e 644#define STACK_BIAS 2047
a315a145 645
d97ef72e
RH
646static inline void init_thread(struct target_pt_regs *regs,
647 struct image_info *infop)
a315a145 648{
992f48a0 649#ifndef TARGET_ABI32
a315a145 650 regs->tstate = 0;
992f48a0 651#endif
a315a145
FB
652 regs->pc = infop->entry;
653 regs->npc = regs->pc + 4;
654 regs->y = 0;
992f48a0
BS
655#ifdef TARGET_ABI32
656 regs->u_regs[14] = infop->start_stack - 16 * 4;
657#else
cb33da57
BS
658 if (personality(infop->personality) == PER_LINUX32)
659 regs->u_regs[14] = infop->start_stack - 16 * 4;
660 else
661 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 662#endif
a315a145
FB
663}
664
665#else
666#define ELF_START_MMAP 0x80000000
cf973e46
AT
667#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
668 | HWCAP_SPARC_MULDIV)
a315a145
FB
669#define elf_check_arch(x) ( (x) == EM_SPARC )
670
853d6f7a 671#define ELF_CLASS ELFCLASS32
853d6f7a
FB
672#define ELF_ARCH EM_SPARC
673
d97ef72e
RH
674static inline void init_thread(struct target_pt_regs *regs,
675 struct image_info *infop)
853d6f7a 676{
f5155289
FB
677 regs->psr = 0;
678 regs->pc = infop->entry;
679 regs->npc = regs->pc + 4;
680 regs->y = 0;
681 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
682}
683
a315a145 684#endif
853d6f7a
FB
685#endif
686
67867308
FB
687#ifdef TARGET_PPC
688
689#define ELF_START_MMAP 0x80000000
690
e85e7c6e 691#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
692
693#define elf_check_arch(x) ( (x) == EM_PPC64 )
694
d97ef72e 695#define ELF_CLASS ELFCLASS64
84409ddb
JM
696
697#else
698
67867308
FB
699#define elf_check_arch(x) ( (x) == EM_PPC )
700
d97ef72e 701#define ELF_CLASS ELFCLASS32
84409ddb
JM
702
703#endif
704
d97ef72e 705#define ELF_ARCH EM_PPC
67867308 706
df84e4f3
NF
707/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
708 See arch/powerpc/include/asm/cputable.h. */
709enum {
3efa9a67 710 QEMU_PPC_FEATURE_32 = 0x80000000,
711 QEMU_PPC_FEATURE_64 = 0x40000000,
712 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
713 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
714 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
715 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
716 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
717 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
718 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
719 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
720 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
721 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
722 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
723 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
724 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
725 QEMU_PPC_FEATURE_CELL = 0x00010000,
726 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
727 QEMU_PPC_FEATURE_SMT = 0x00004000,
728 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
729 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
730 QEMU_PPC_FEATURE_PA6T = 0x00000800,
731 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
732 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
733 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
734 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
735 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
736
737 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
738 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
739
740 /* Feature definitions in AT_HWCAP2. */
741 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
742 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
743 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
744 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
745 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
746 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
df84e4f3
NF
747};
748
749#define ELF_HWCAP get_elf_hwcap()
750
751static uint32_t get_elf_hwcap(void)
752{
a2247f8e 753 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
754 uint32_t features = 0;
755
756 /* We don't have to be terribly complete here; the high points are
757 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 758#define GET_FEATURE(flag, feature) \
a2247f8e 759 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
0e019746
TM
760#define GET_FEATURE2(flag, feature) \
761 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
3efa9a67 762 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
763 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
764 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
765 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
766 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
767 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
768 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
769 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
770 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
771 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
772 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
773 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
774 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 775#undef GET_FEATURE
0e019746 776#undef GET_FEATURE2
df84e4f3
NF
777
778 return features;
779}
780
a60438dd
TM
781#define ELF_HWCAP2 get_elf_hwcap2()
782
783static uint32_t get_elf_hwcap2(void)
784{
785 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
786 uint32_t features = 0;
787
788#define GET_FEATURE(flag, feature) \
789 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
790#define GET_FEATURE2(flag, feature) \
791 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
792
793 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
794 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
795 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
796 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
797
798#undef GET_FEATURE
799#undef GET_FEATURE2
800
801 return features;
802}
803
f5155289
FB
804/*
805 * The requirements here are:
806 * - keep the final alignment of sp (sp & 0xf)
807 * - make sure the 32-bit value at the first 16 byte aligned position of
808 * AUXV is greater than 16 for glibc compatibility.
809 * AT_IGNOREPPC is used for that.
810 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
811 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
812 */
0bccf03d 813#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
814#define ARCH_DLINFO \
815 do { \
623e250a
TM
816 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
817 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
818 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
d97ef72e
RH
819 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
820 /* \
821 * Now handle glibc compatibility. \
822 */ \
823 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
824 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
825 } while (0)
f5155289 826
67867308
FB
827static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
828{
67867308 829 _regs->gpr[1] = infop->start_stack;
e85e7c6e 830#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 831 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
832 uint64_t val;
833 get_user_u64(val, infop->entry + 8);
834 _regs->gpr[2] = val + infop->load_bias;
835 get_user_u64(val, infop->entry);
836 infop->entry = val + infop->load_bias;
d90b94cd
DK
837 } else {
838 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
839 }
84409ddb 840#endif
67867308
FB
841 _regs->nip = infop->entry;
842}
843
e2f3e741
NF
844/* See linux kernel: arch/powerpc/include/asm/elf.h. */
845#define ELF_NREG 48
846typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
847
05390248 848static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
849{
850 int i;
851 target_ulong ccr = 0;
852
853 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 854 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
855 }
856
86cd7b2d
PB
857 (*regs)[32] = tswapreg(env->nip);
858 (*regs)[33] = tswapreg(env->msr);
859 (*regs)[35] = tswapreg(env->ctr);
860 (*regs)[36] = tswapreg(env->lr);
861 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
862
863 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
864 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
865 }
86cd7b2d 866 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
867}
868
869#define USE_ELF_CORE_DUMP
d97ef72e 870#define ELF_EXEC_PAGESIZE 4096
67867308
FB
871
872#endif
873
048f6b4d
FB
874#ifdef TARGET_MIPS
875
876#define ELF_START_MMAP 0x80000000
877
878#define elf_check_arch(x) ( (x) == EM_MIPS )
879
388bb21a
TS
880#ifdef TARGET_MIPS64
881#define ELF_CLASS ELFCLASS64
882#else
048f6b4d 883#define ELF_CLASS ELFCLASS32
388bb21a 884#endif
048f6b4d
FB
885#define ELF_ARCH EM_MIPS
886
d97ef72e
RH
887static inline void init_thread(struct target_pt_regs *regs,
888 struct image_info *infop)
048f6b4d 889{
623a930e 890 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
891 regs->cp0_epc = infop->entry;
892 regs->regs[29] = infop->start_stack;
893}
894
51e52606
NF
895/* See linux kernel: arch/mips/include/asm/elf.h. */
896#define ELF_NREG 45
897typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
898
899/* See linux kernel: arch/mips/include/asm/reg.h. */
900enum {
901#ifdef TARGET_MIPS64
902 TARGET_EF_R0 = 0,
903#else
904 TARGET_EF_R0 = 6,
905#endif
906 TARGET_EF_R26 = TARGET_EF_R0 + 26,
907 TARGET_EF_R27 = TARGET_EF_R0 + 27,
908 TARGET_EF_LO = TARGET_EF_R0 + 32,
909 TARGET_EF_HI = TARGET_EF_R0 + 33,
910 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
911 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
912 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
913 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
914};
915
916/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 917static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
918{
919 int i;
920
921 for (i = 0; i < TARGET_EF_R0; i++) {
922 (*regs)[i] = 0;
923 }
924 (*regs)[TARGET_EF_R0] = 0;
925
926 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 927 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
928 }
929
930 (*regs)[TARGET_EF_R26] = 0;
931 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
932 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
933 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
934 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
935 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
936 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
937 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
938}
939
940#define USE_ELF_CORE_DUMP
388bb21a
TS
941#define ELF_EXEC_PAGESIZE 4096
942
048f6b4d
FB
943#endif /* TARGET_MIPS */
944
b779e29e
EI
945#ifdef TARGET_MICROBLAZE
946
947#define ELF_START_MMAP 0x80000000
948
0d5d4699 949#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
950
951#define ELF_CLASS ELFCLASS32
0d5d4699 952#define ELF_ARCH EM_MICROBLAZE
b779e29e 953
d97ef72e
RH
954static inline void init_thread(struct target_pt_regs *regs,
955 struct image_info *infop)
b779e29e
EI
956{
957 regs->pc = infop->entry;
958 regs->r1 = infop->start_stack;
959
960}
961
b779e29e
EI
962#define ELF_EXEC_PAGESIZE 4096
963
e4cbd44d
EI
964#define USE_ELF_CORE_DUMP
965#define ELF_NREG 38
966typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
967
968/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 969static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
970{
971 int i, pos = 0;
972
973 for (i = 0; i < 32; i++) {
86cd7b2d 974 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
975 }
976
977 for (i = 0; i < 6; i++) {
86cd7b2d 978 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
979 }
980}
981
b779e29e
EI
982#endif /* TARGET_MICROBLAZE */
983
d962783e
JL
984#ifdef TARGET_OPENRISC
985
986#define ELF_START_MMAP 0x08000000
987
988#define elf_check_arch(x) ((x) == EM_OPENRISC)
989
990#define ELF_ARCH EM_OPENRISC
991#define ELF_CLASS ELFCLASS32
992#define ELF_DATA ELFDATA2MSB
993
994static inline void init_thread(struct target_pt_regs *regs,
995 struct image_info *infop)
996{
997 regs->pc = infop->entry;
998 regs->gpr[1] = infop->start_stack;
999}
1000
1001#define USE_ELF_CORE_DUMP
1002#define ELF_EXEC_PAGESIZE 8192
1003
1004/* See linux kernel arch/openrisc/include/asm/elf.h. */
1005#define ELF_NREG 34 /* gprs and pc, sr */
1006typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1007
1008static void elf_core_copy_regs(target_elf_gregset_t *regs,
1009 const CPUOpenRISCState *env)
1010{
1011 int i;
1012
1013 for (i = 0; i < 32; i++) {
86cd7b2d 1014 (*regs)[i] = tswapreg(env->gpr[i]);
d962783e
JL
1015 }
1016
86cd7b2d
PB
1017 (*regs)[32] = tswapreg(env->pc);
1018 (*regs)[33] = tswapreg(env->sr);
d962783e
JL
1019}
1020#define ELF_HWCAP 0
1021#define ELF_PLATFORM NULL
1022
1023#endif /* TARGET_OPENRISC */
1024
fdf9b3e8
FB
1025#ifdef TARGET_SH4
1026
1027#define ELF_START_MMAP 0x80000000
1028
1029#define elf_check_arch(x) ( (x) == EM_SH )
1030
1031#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1032#define ELF_ARCH EM_SH
1033
d97ef72e
RH
1034static inline void init_thread(struct target_pt_regs *regs,
1035 struct image_info *infop)
fdf9b3e8 1036{
d97ef72e
RH
1037 /* Check other registers XXXXX */
1038 regs->pc = infop->entry;
1039 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1040}
1041
7631c97e
NF
1042/* See linux kernel: arch/sh/include/asm/elf.h. */
1043#define ELF_NREG 23
1044typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1045
1046/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1047enum {
1048 TARGET_REG_PC = 16,
1049 TARGET_REG_PR = 17,
1050 TARGET_REG_SR = 18,
1051 TARGET_REG_GBR = 19,
1052 TARGET_REG_MACH = 20,
1053 TARGET_REG_MACL = 21,
1054 TARGET_REG_SYSCALL = 22
1055};
1056
d97ef72e 1057static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1058 const CPUSH4State *env)
7631c97e
NF
1059{
1060 int i;
1061
1062 for (i = 0; i < 16; i++) {
86cd7b2d 1063 (*regs[i]) = tswapreg(env->gregs[i]);
7631c97e
NF
1064 }
1065
86cd7b2d
PB
1066 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1067 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1068 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1069 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1070 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1071 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1072 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1073}
1074
1075#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1076#define ELF_EXEC_PAGESIZE 4096
1077
e42fd944
RH
1078enum {
1079 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1080 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1081 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1082 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1083 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1084 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1085 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1086 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1087 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1088 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1089};
1090
1091#define ELF_HWCAP get_elf_hwcap()
1092
1093static uint32_t get_elf_hwcap(void)
1094{
1095 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1096 uint32_t hwcap = 0;
1097
1098 hwcap |= SH_CPU_HAS_FPU;
1099
1100 if (cpu->env.features & SH_FEATURE_SH4A) {
1101 hwcap |= SH_CPU_HAS_LLSC;
1102 }
1103
1104 return hwcap;
1105}
1106
fdf9b3e8
FB
1107#endif
1108
48733d19
TS
1109#ifdef TARGET_CRIS
1110
1111#define ELF_START_MMAP 0x80000000
1112
1113#define elf_check_arch(x) ( (x) == EM_CRIS )
1114
1115#define ELF_CLASS ELFCLASS32
48733d19
TS
1116#define ELF_ARCH EM_CRIS
1117
d97ef72e
RH
1118static inline void init_thread(struct target_pt_regs *regs,
1119 struct image_info *infop)
48733d19 1120{
d97ef72e 1121 regs->erp = infop->entry;
48733d19
TS
1122}
1123
48733d19
TS
1124#define ELF_EXEC_PAGESIZE 8192
1125
1126#endif
1127
e6e5906b
PB
1128#ifdef TARGET_M68K
1129
1130#define ELF_START_MMAP 0x80000000
1131
1132#define elf_check_arch(x) ( (x) == EM_68K )
1133
d97ef72e 1134#define ELF_CLASS ELFCLASS32
d97ef72e 1135#define ELF_ARCH EM_68K
e6e5906b
PB
1136
1137/* ??? Does this need to do anything?
d97ef72e 1138 #define ELF_PLAT_INIT(_r) */
e6e5906b 1139
d97ef72e
RH
1140static inline void init_thread(struct target_pt_regs *regs,
1141 struct image_info *infop)
e6e5906b
PB
1142{
1143 regs->usp = infop->start_stack;
1144 regs->sr = 0;
1145 regs->pc = infop->entry;
1146}
1147
7a93cc55
NF
1148/* See linux kernel: arch/m68k/include/asm/elf.h. */
1149#define ELF_NREG 20
1150typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1151
05390248 1152static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1153{
86cd7b2d
PB
1154 (*regs)[0] = tswapreg(env->dregs[1]);
1155 (*regs)[1] = tswapreg(env->dregs[2]);
1156 (*regs)[2] = tswapreg(env->dregs[3]);
1157 (*regs)[3] = tswapreg(env->dregs[4]);
1158 (*regs)[4] = tswapreg(env->dregs[5]);
1159 (*regs)[5] = tswapreg(env->dregs[6]);
1160 (*regs)[6] = tswapreg(env->dregs[7]);
1161 (*regs)[7] = tswapreg(env->aregs[0]);
1162 (*regs)[8] = tswapreg(env->aregs[1]);
1163 (*regs)[9] = tswapreg(env->aregs[2]);
1164 (*regs)[10] = tswapreg(env->aregs[3]);
1165 (*regs)[11] = tswapreg(env->aregs[4]);
1166 (*regs)[12] = tswapreg(env->aregs[5]);
1167 (*regs)[13] = tswapreg(env->aregs[6]);
1168 (*regs)[14] = tswapreg(env->dregs[0]);
1169 (*regs)[15] = tswapreg(env->aregs[7]);
1170 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1171 (*regs)[17] = tswapreg(env->sr);
1172 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1173 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1174}
1175
1176#define USE_ELF_CORE_DUMP
d97ef72e 1177#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1178
1179#endif
1180
7a3148a9
JM
1181#ifdef TARGET_ALPHA
1182
1183#define ELF_START_MMAP (0x30000000000ULL)
1184
1185#define elf_check_arch(x) ( (x) == ELF_ARCH )
1186
1187#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1188#define ELF_ARCH EM_ALPHA
1189
d97ef72e
RH
1190static inline void init_thread(struct target_pt_regs *regs,
1191 struct image_info *infop)
7a3148a9
JM
1192{
1193 regs->pc = infop->entry;
1194 regs->ps = 8;
1195 regs->usp = infop->start_stack;
7a3148a9
JM
1196}
1197
7a3148a9
JM
1198#define ELF_EXEC_PAGESIZE 8192
1199
1200#endif /* TARGET_ALPHA */
1201
a4c075f1
UH
1202#ifdef TARGET_S390X
1203
1204#define ELF_START_MMAP (0x20000000000ULL)
1205
1206#define elf_check_arch(x) ( (x) == ELF_ARCH )
1207
1208#define ELF_CLASS ELFCLASS64
1209#define ELF_DATA ELFDATA2MSB
1210#define ELF_ARCH EM_S390
1211
1212static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1213{
1214 regs->psw.addr = infop->entry;
1215 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1216 regs->gprs[15] = infop->start_stack;
1217}
1218
1219#endif /* TARGET_S390X */
1220
b16189b2
CG
1221#ifdef TARGET_TILEGX
1222
1223/* 42 bits real used address, a half for user mode */
1224#define ELF_START_MMAP (0x00000020000000000ULL)
1225
1226#define elf_check_arch(x) ((x) == EM_TILEGX)
1227
1228#define ELF_CLASS ELFCLASS64
1229#define ELF_DATA ELFDATA2LSB
1230#define ELF_ARCH EM_TILEGX
1231
1232static inline void init_thread(struct target_pt_regs *regs,
1233 struct image_info *infop)
1234{
1235 regs->pc = infop->entry;
1236 regs->sp = infop->start_stack;
1237
1238}
1239
1240#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1241
1242#endif /* TARGET_TILEGX */
1243
15338fd7
FB
1244#ifndef ELF_PLATFORM
1245#define ELF_PLATFORM (NULL)
1246#endif
1247
75be901c
PC
1248#ifndef ELF_MACHINE
1249#define ELF_MACHINE ELF_ARCH
1250#endif
1251
15338fd7
FB
1252#ifndef ELF_HWCAP
1253#define ELF_HWCAP 0
1254#endif
1255
992f48a0 1256#ifdef TARGET_ABI32
cb33da57 1257#undef ELF_CLASS
992f48a0 1258#define ELF_CLASS ELFCLASS32
cb33da57
BS
1259#undef bswaptls
1260#define bswaptls(ptr) bswap32s(ptr)
1261#endif
1262
31e31b8a 1263#include "elf.h"
09bfb054 1264
09bfb054
FB
1265struct exec
1266{
d97ef72e
RH
1267 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1268 unsigned int a_text; /* length of text, in bytes */
1269 unsigned int a_data; /* length of data, in bytes */
1270 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1271 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1272 unsigned int a_entry; /* start address */
1273 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1274 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1275};
1276
1277
1278#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1279#define OMAGIC 0407
1280#define NMAGIC 0410
1281#define ZMAGIC 0413
1282#define QMAGIC 0314
1283
31e31b8a 1284/* Necessary parameters */
54936004 1285#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
79cb1f1d
YK
1286#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1287 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1288#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1289
ad1c7e0f 1290#define DLINFO_ITEMS 14
31e31b8a 1291
09bfb054
FB
1292static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1293{
d97ef72e 1294 memcpy(to, from, n);
09bfb054 1295}
d691f669 1296
31e31b8a 1297#ifdef BSWAP_NEEDED
92a31b1f 1298static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1299{
d97ef72e
RH
1300 bswap16s(&ehdr->e_type); /* Object file type */
1301 bswap16s(&ehdr->e_machine); /* Architecture */
1302 bswap32s(&ehdr->e_version); /* Object file version */
1303 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1304 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1305 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1306 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1307 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1308 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1309 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1310 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1311 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1312 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1313}
1314
991f8f0c 1315static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1316{
991f8f0c
RH
1317 int i;
1318 for (i = 0; i < phnum; ++i, ++phdr) {
1319 bswap32s(&phdr->p_type); /* Segment type */
1320 bswap32s(&phdr->p_flags); /* Segment flags */
1321 bswaptls(&phdr->p_offset); /* Segment file offset */
1322 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1323 bswaptls(&phdr->p_paddr); /* Segment physical address */
1324 bswaptls(&phdr->p_filesz); /* Segment size in file */
1325 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1326 bswaptls(&phdr->p_align); /* Segment alignment */
1327 }
31e31b8a 1328}
689f936f 1329
991f8f0c 1330static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1331{
991f8f0c
RH
1332 int i;
1333 for (i = 0; i < shnum; ++i, ++shdr) {
1334 bswap32s(&shdr->sh_name);
1335 bswap32s(&shdr->sh_type);
1336 bswaptls(&shdr->sh_flags);
1337 bswaptls(&shdr->sh_addr);
1338 bswaptls(&shdr->sh_offset);
1339 bswaptls(&shdr->sh_size);
1340 bswap32s(&shdr->sh_link);
1341 bswap32s(&shdr->sh_info);
1342 bswaptls(&shdr->sh_addralign);
1343 bswaptls(&shdr->sh_entsize);
1344 }
689f936f
FB
1345}
1346
7a3148a9 1347static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1348{
1349 bswap32s(&sym->st_name);
7a3148a9
JM
1350 bswaptls(&sym->st_value);
1351 bswaptls(&sym->st_size);
689f936f
FB
1352 bswap16s(&sym->st_shndx);
1353}
991f8f0c
RH
1354#else
1355static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1356static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1357static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1358static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
1359#endif
1360
edf8e2af 1361#ifdef USE_ELF_CORE_DUMP
9349b4f9 1362static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1363#endif /* USE_ELF_CORE_DUMP */
682674b8 1364static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1365
9058abdd
RH
1366/* Verify the portions of EHDR within E_IDENT for the target.
1367 This can be performed before bswapping the entire header. */
1368static bool elf_check_ident(struct elfhdr *ehdr)
1369{
1370 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1371 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1372 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1373 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1374 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1375 && ehdr->e_ident[EI_DATA] == ELF_DATA
1376 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1377}
1378
1379/* Verify the portions of EHDR outside of E_IDENT for the target.
1380 This has to wait until after bswapping the header. */
1381static bool elf_check_ehdr(struct elfhdr *ehdr)
1382{
1383 return (elf_check_arch(ehdr->e_machine)
1384 && ehdr->e_ehsize == sizeof(struct elfhdr)
1385 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1386 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1387}
1388
31e31b8a 1389/*
e5fe0c52 1390 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1391 * memory to free pages in kernel mem. These are in a format ready
1392 * to be put directly into the top of new user memory.
1393 *
1394 */
992f48a0
BS
1395static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1396 abi_ulong p)
31e31b8a
FB
1397{
1398 char *tmp, *tmp1, *pag = NULL;
1399 int len, offset = 0;
1400
1401 if (!p) {
d97ef72e 1402 return 0; /* bullet-proofing */
31e31b8a
FB
1403 }
1404 while (argc-- > 0) {
edf779ff
FB
1405 tmp = argv[argc];
1406 if (!tmp) {
d97ef72e
RH
1407 fprintf(stderr, "VFS: argc is wrong");
1408 exit(-1);
1409 }
edf779ff 1410 tmp1 = tmp;
d97ef72e
RH
1411 while (*tmp++);
1412 len = tmp - tmp1;
1413 if (p < len) { /* this shouldn't happen - 128kB */
1414 return 0;
1415 }
1416 while (len) {
1417 --p; --tmp; --len;
1418 if (--offset < 0) {
1419 offset = p % TARGET_PAGE_SIZE;
53a5960a 1420 pag = (char *)page[p/TARGET_PAGE_SIZE];
44a91cae 1421 if (!pag) {
7dd47667 1422 pag = g_try_malloc0(TARGET_PAGE_SIZE);
53a5960a 1423 page[p/TARGET_PAGE_SIZE] = pag;
44a91cae
FB
1424 if (!pag)
1425 return 0;
d97ef72e
RH
1426 }
1427 }
1428 if (len == 0 || offset == 0) {
1429 *(pag + offset) = *tmp;
1430 }
1431 else {
1432 int bytes_to_copy = (len > offset) ? offset : len;
1433 tmp -= bytes_to_copy;
1434 p -= bytes_to_copy;
1435 offset -= bytes_to_copy;
1436 len -= bytes_to_copy;
1437 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1438 }
1439 }
31e31b8a
FB
1440 }
1441 return p;
1442}
1443
992f48a0
BS
1444static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1445 struct image_info *info)
53a5960a 1446{
60dcbcb5 1447 abi_ulong stack_base, size, error, guard;
31e31b8a 1448 int i;
31e31b8a 1449
09bfb054 1450 /* Create enough stack to hold everything. If we don't use
60dcbcb5 1451 it for args, we'll use it for something else. */
703e0e89 1452 size = guest_stack_size;
60dcbcb5 1453 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
54936004 1454 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
60dcbcb5
RH
1455 }
1456 guard = TARGET_PAGE_SIZE;
1457 if (guard < qemu_real_host_page_size) {
1458 guard = qemu_real_host_page_size;
1459 }
1460
1461 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1462 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1463 if (error == -1) {
60dcbcb5 1464 perror("mmap stack");
09bfb054
FB
1465 exit(-1);
1466 }
31e31b8a 1467
60dcbcb5
RH
1468 /* We reserve one extra page at the top of the stack as guard. */
1469 target_mprotect(error, guard, PROT_NONE);
1470
1471 info->stack_limit = error + guard;
1472 stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
31e31b8a 1473 p += stack_base;
09bfb054 1474
31e31b8a 1475 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
d97ef72e
RH
1476 if (bprm->page[i]) {
1477 info->rss++;
579a97f7 1478 /* FIXME - check return value of memcpy_to_target() for failure */
d97ef72e 1479 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
7dd47667 1480 g_free(bprm->page[i]);
d97ef72e 1481 }
53a5960a 1482 stack_base += TARGET_PAGE_SIZE;
31e31b8a
FB
1483 }
1484 return p;
1485}
1486
cf129f3a
RH
1487/* Map and zero the bss. We need to explicitly zero any fractional pages
1488 after the data section (i.e. bss). */
1489static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1490{
cf129f3a
RH
1491 uintptr_t host_start, host_map_start, host_end;
1492
1493 last_bss = TARGET_PAGE_ALIGN(last_bss);
1494
1495 /* ??? There is confusion between qemu_real_host_page_size and
1496 qemu_host_page_size here and elsewhere in target_mmap, which
1497 may lead to the end of the data section mapping from the file
1498 not being mapped. At least there was an explicit test and
1499 comment for that here, suggesting that "the file size must
1500 be known". The comment probably pre-dates the introduction
1501 of the fstat system call in target_mmap which does in fact
1502 find out the size. What isn't clear is if the workaround
1503 here is still actually needed. For now, continue with it,
1504 but merge it with the "normal" mmap that would allocate the bss. */
1505
1506 host_start = (uintptr_t) g2h(elf_bss);
1507 host_end = (uintptr_t) g2h(last_bss);
1508 host_map_start = (host_start + qemu_real_host_page_size - 1);
1509 host_map_start &= -qemu_real_host_page_size;
1510
1511 if (host_map_start < host_end) {
1512 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1513 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1514 if (p == MAP_FAILED) {
1515 perror("cannot mmap brk");
1516 exit(-1);
853d6f7a 1517 }
f46e9a0b 1518 }
853d6f7a 1519
f46e9a0b
TM
1520 /* Ensure that the bss page(s) are valid */
1521 if ((page_get_flags(last_bss-1) & prot) != prot) {
1522 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1523 }
31e31b8a 1524
cf129f3a
RH
1525 if (host_start < host_map_start) {
1526 memset((void *)host_start, 0, host_map_start - host_start);
1527 }
1528}
53a5960a 1529
1af02e83
MF
1530#ifdef CONFIG_USE_FDPIC
1531static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1532{
1533 uint16_t n;
1534 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1535
1536 /* elf32_fdpic_loadseg */
1537 n = info->nsegs;
1538 while (n--) {
1539 sp -= 12;
1540 put_user_u32(loadsegs[n].addr, sp+0);
1541 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1542 put_user_u32(loadsegs[n].p_memsz, sp+8);
1543 }
1544
1545 /* elf32_fdpic_loadmap */
1546 sp -= 4;
1547 put_user_u16(0, sp+0); /* version */
1548 put_user_u16(info->nsegs, sp+2); /* nsegs */
1549
1550 info->personality = PER_LINUX_FDPIC;
1551 info->loadmap_addr = sp;
1552
1553 return sp;
1554}
1555#endif
1556
992f48a0 1557static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1558 struct elfhdr *exec,
1559 struct image_info *info,
1560 struct image_info *interp_info)
31e31b8a 1561{
d97ef72e 1562 abi_ulong sp;
125b0f55 1563 abi_ulong sp_auxv;
d97ef72e 1564 int size;
14322bad
LA
1565 int i;
1566 abi_ulong u_rand_bytes;
1567 uint8_t k_rand_bytes[16];
d97ef72e
RH
1568 abi_ulong u_platform;
1569 const char *k_platform;
1570 const int n = sizeof(elf_addr_t);
1571
1572 sp = p;
1af02e83
MF
1573
1574#ifdef CONFIG_USE_FDPIC
1575 /* Needs to be before we load the env/argc/... */
1576 if (elf_is_fdpic(exec)) {
1577 /* Need 4 byte alignment for these structs */
1578 sp &= ~3;
1579 sp = loader_build_fdpic_loadmap(info, sp);
1580 info->other_info = interp_info;
1581 if (interp_info) {
1582 interp_info->other_info = info;
1583 sp = loader_build_fdpic_loadmap(interp_info, sp);
1584 }
1585 }
1586#endif
1587
d97ef72e
RH
1588 u_platform = 0;
1589 k_platform = ELF_PLATFORM;
1590 if (k_platform) {
1591 size_t len = strlen(k_platform) + 1;
1592 sp -= (len + n - 1) & ~(n - 1);
1593 u_platform = sp;
1594 /* FIXME - check return value of memcpy_to_target() for failure */
1595 memcpy_to_target(sp, k_platform, len);
1596 }
14322bad
LA
1597
1598 /*
1599 * Generate 16 random bytes for userspace PRNG seeding (not
1600 * cryptically secure but it's not the aim of QEMU).
1601 */
14322bad
LA
1602 for (i = 0; i < 16; i++) {
1603 k_rand_bytes[i] = rand();
1604 }
1605 sp -= 16;
1606 u_rand_bytes = sp;
1607 /* FIXME - check return value of memcpy_to_target() for failure */
1608 memcpy_to_target(sp, k_rand_bytes, 16);
1609
d97ef72e
RH
1610 /*
1611 * Force 16 byte _final_ alignment here for generality.
1612 */
1613 sp = sp &~ (abi_ulong)15;
1614 size = (DLINFO_ITEMS + 1) * 2;
1615 if (k_platform)
1616 size += 2;
f5155289 1617#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1618 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1619#endif
1620#ifdef ELF_HWCAP2
1621 size += 2;
f5155289 1622#endif
d97ef72e 1623 size += envc + argc + 2;
b9329d4b 1624 size += 1; /* argc itself */
d97ef72e
RH
1625 size *= n;
1626 if (size & 15)
1627 sp -= 16 - (size & 15);
1628
1629 /* This is correct because Linux defines
1630 * elf_addr_t as Elf32_Off / Elf64_Off
1631 */
1632#define NEW_AUX_ENT(id, val) do { \
1633 sp -= n; put_user_ual(val, sp); \
1634 sp -= n; put_user_ual(id, sp); \
1635 } while(0)
1636
125b0f55 1637 sp_auxv = sp;
d97ef72e
RH
1638 NEW_AUX_ENT (AT_NULL, 0);
1639
1640 /* There must be exactly DLINFO_ITEMS entries here. */
8e62a717 1641 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1642 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1643 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
a70daba3 1644 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
8e62a717 1645 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1646 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1647 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1648 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1649 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1650 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1651 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1652 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1653 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad
LA
1654 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1655
ad6919dc
PM
1656#ifdef ELF_HWCAP2
1657 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1658#endif
1659
d97ef72e
RH
1660 if (k_platform)
1661 NEW_AUX_ENT(AT_PLATFORM, u_platform);
f5155289 1662#ifdef ARCH_DLINFO
d97ef72e
RH
1663 /*
1664 * ARCH_DLINFO must come last so platform specific code can enforce
1665 * special alignment requirements on the AUXV if necessary (eg. PPC).
1666 */
1667 ARCH_DLINFO;
f5155289
FB
1668#endif
1669#undef NEW_AUX_ENT
1670
d97ef72e 1671 info->saved_auxv = sp;
125b0f55 1672 info->auxv_len = sp_auxv - sp;
edf8e2af 1673
b9329d4b 1674 sp = loader_build_argptr(envc, argc, sp, p, 0);
8c0f0a60
JH
1675 /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1676 assert(sp_auxv - sp == size);
d97ef72e 1677 return sp;
31e31b8a
FB
1678}
1679
806d1021 1680#ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
97cc7560 1681/* If the guest doesn't have a validation function just agree */
806d1021
MI
1682static int validate_guest_space(unsigned long guest_base,
1683 unsigned long guest_size)
97cc7560
DDAG
1684{
1685 return 1;
1686}
1687#endif
1688
dce10401
MI
1689unsigned long init_guest_space(unsigned long host_start,
1690 unsigned long host_size,
1691 unsigned long guest_start,
1692 bool fixed)
1693{
1694 unsigned long current_start, real_start;
1695 int flags;
1696
1697 assert(host_start || host_size);
1698
1699 /* If just a starting address is given, then just verify that
1700 * address. */
1701 if (host_start && !host_size) {
806d1021 1702 if (validate_guest_space(host_start, host_size) == 1) {
dce10401
MI
1703 return host_start;
1704 } else {
1705 return (unsigned long)-1;
1706 }
1707 }
1708
1709 /* Setup the initial flags and start address. */
1710 current_start = host_start & qemu_host_page_mask;
1711 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1712 if (fixed) {
1713 flags |= MAP_FIXED;
1714 }
1715
1716 /* Otherwise, a non-zero size region of memory needs to be mapped
1717 * and validated. */
1718 while (1) {
806d1021
MI
1719 unsigned long real_size = host_size;
1720
dce10401
MI
1721 /* Do not use mmap_find_vma here because that is limited to the
1722 * guest address space. We are going to make the
1723 * guest address space fit whatever we're given.
1724 */
1725 real_start = (unsigned long)
1726 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1727 if (real_start == (unsigned long)-1) {
1728 return (unsigned long)-1;
1729 }
1730
806d1021
MI
1731 /* Ensure the address is properly aligned. */
1732 if (real_start & ~qemu_host_page_mask) {
1733 munmap((void *)real_start, host_size);
1734 real_size = host_size + qemu_host_page_size;
1735 real_start = (unsigned long)
1736 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1737 if (real_start == (unsigned long)-1) {
1738 return (unsigned long)-1;
1739 }
1740 real_start = HOST_PAGE_ALIGN(real_start);
1741 }
1742
1743 /* Check to see if the address is valid. */
1744 if (!host_start || real_start == current_start) {
1745 int valid = validate_guest_space(real_start - guest_start,
1746 real_size);
1747 if (valid == 1) {
1748 break;
1749 } else if (valid == -1) {
1750 return (unsigned long)-1;
1751 }
1752 /* valid == 0, so try again. */
dce10401
MI
1753 }
1754
1755 /* That address didn't work. Unmap and try a different one.
1756 * The address the host picked because is typically right at
1757 * the top of the host address space and leaves the guest with
1758 * no usable address space. Resort to a linear search. We
1759 * already compensated for mmap_min_addr, so this should not
1760 * happen often. Probably means we got unlucky and host
1761 * address space randomization put a shared library somewhere
1762 * inconvenient.
1763 */
1764 munmap((void *)real_start, host_size);
1765 current_start += qemu_host_page_size;
1766 if (host_start == current_start) {
1767 /* Theoretically possible if host doesn't have any suitably
1768 * aligned areas. Normally the first mmap will fail.
1769 */
1770 return (unsigned long)-1;
1771 }
1772 }
1773
806d1021
MI
1774 qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
1775
dce10401
MI
1776 return real_start;
1777}
1778
f3ed1f5d
PM
1779static void probe_guest_base(const char *image_name,
1780 abi_ulong loaddr, abi_ulong hiaddr)
1781{
1782 /* Probe for a suitable guest base address, if the user has not set
1783 * it explicitly, and set guest_base appropriately.
1784 * In case of error we will print a suitable message and exit.
1785 */
f3ed1f5d
PM
1786 const char *errmsg;
1787 if (!have_guest_base && !reserved_va) {
1788 unsigned long host_start, real_start, host_size;
1789
1790 /* Round addresses to page boundaries. */
1791 loaddr &= qemu_host_page_mask;
1792 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1793
1794 if (loaddr < mmap_min_addr) {
1795 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1796 } else {
1797 host_start = loaddr;
1798 if (host_start != loaddr) {
1799 errmsg = "Address overflow loading ELF binary";
1800 goto exit_errmsg;
1801 }
1802 }
1803 host_size = hiaddr - loaddr;
dce10401
MI
1804
1805 /* Setup the initial guest memory space with ranges gleaned from
1806 * the ELF image that is being loaded.
1807 */
1808 real_start = init_guest_space(host_start, host_size, loaddr, false);
1809 if (real_start == (unsigned long)-1) {
1810 errmsg = "Unable to find space for application";
1811 goto exit_errmsg;
f3ed1f5d 1812 }
dce10401
MI
1813 guest_base = real_start - loaddr;
1814
f3ed1f5d
PM
1815 qemu_log("Relocating guest address space from 0x"
1816 TARGET_ABI_FMT_lx " to 0x%lx\n",
1817 loaddr, real_start);
f3ed1f5d
PM
1818 }
1819 return;
1820
f3ed1f5d
PM
1821exit_errmsg:
1822 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1823 exit(-1);
f3ed1f5d
PM
1824}
1825
1826
8e62a717 1827/* Load an ELF image into the address space.
31e31b8a 1828
8e62a717
RH
1829 IMAGE_NAME is the filename of the image, to use in error messages.
1830 IMAGE_FD is the open file descriptor for the image.
1831
1832 BPRM_BUF is a copy of the beginning of the file; this of course
1833 contains the elf file header at offset 0. It is assumed that this
1834 buffer is sufficiently aligned to present no problems to the host
1835 in accessing data at aligned offsets within the buffer.
1836
1837 On return: INFO values will be filled in, as necessary or available. */
1838
1839static void load_elf_image(const char *image_name, int image_fd,
bf858897 1840 struct image_info *info, char **pinterp_name,
8e62a717 1841 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 1842{
8e62a717
RH
1843 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1844 struct elf_phdr *phdr;
1845 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1846 int i, retval;
1847 const char *errmsg;
5fafdf24 1848
8e62a717
RH
1849 /* First of all, some simple consistency checks */
1850 errmsg = "Invalid ELF image for this architecture";
1851 if (!elf_check_ident(ehdr)) {
1852 goto exit_errmsg;
1853 }
1854 bswap_ehdr(ehdr);
1855 if (!elf_check_ehdr(ehdr)) {
1856 goto exit_errmsg;
d97ef72e 1857 }
5fafdf24 1858
8e62a717
RH
1859 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1860 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1861 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 1862 } else {
8e62a717
RH
1863 phdr = (struct elf_phdr *) alloca(i);
1864 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 1865 if (retval != i) {
8e62a717 1866 goto exit_read;
9955ffac 1867 }
d97ef72e 1868 }
8e62a717 1869 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 1870
1af02e83
MF
1871#ifdef CONFIG_USE_FDPIC
1872 info->nsegs = 0;
1873 info->pt_dynamic_addr = 0;
1874#endif
1875
682674b8
RH
1876 /* Find the maximum size of the image and allocate an appropriate
1877 amount of memory to handle that. */
1878 loaddr = -1, hiaddr = 0;
8e62a717
RH
1879 for (i = 0; i < ehdr->e_phnum; ++i) {
1880 if (phdr[i].p_type == PT_LOAD) {
a93934fe 1881 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
1882 if (a < loaddr) {
1883 loaddr = a;
1884 }
ccf661f8 1885 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
1886 if (a > hiaddr) {
1887 hiaddr = a;
1888 }
1af02e83
MF
1889#ifdef CONFIG_USE_FDPIC
1890 ++info->nsegs;
1891#endif
682674b8
RH
1892 }
1893 }
1894
1895 load_addr = loaddr;
8e62a717 1896 if (ehdr->e_type == ET_DYN) {
682674b8
RH
1897 /* The image indicates that it can be loaded anywhere. Find a
1898 location that can hold the memory space required. If the
1899 image is pre-linked, LOADDR will be non-zero. Since we do
1900 not supply MAP_FIXED here we'll use that address if and
1901 only if it remains available. */
1902 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1903 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1904 -1, 0);
1905 if (load_addr == -1) {
8e62a717 1906 goto exit_perror;
d97ef72e 1907 }
bf858897
RH
1908 } else if (pinterp_name != NULL) {
1909 /* This is the main executable. Make sure that the low
1910 address does not conflict with MMAP_MIN_ADDR or the
1911 QEMU application itself. */
f3ed1f5d 1912 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 1913 }
682674b8 1914 load_bias = load_addr - loaddr;
d97ef72e 1915
1af02e83
MF
1916#ifdef CONFIG_USE_FDPIC
1917 {
1918 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 1919 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
1920
1921 for (i = 0; i < ehdr->e_phnum; ++i) {
1922 switch (phdr[i].p_type) {
1923 case PT_DYNAMIC:
1924 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1925 break;
1926 case PT_LOAD:
1927 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1928 loadsegs->p_vaddr = phdr[i].p_vaddr;
1929 loadsegs->p_memsz = phdr[i].p_memsz;
1930 ++loadsegs;
1931 break;
1932 }
1933 }
1934 }
1935#endif
1936
8e62a717
RH
1937 info->load_bias = load_bias;
1938 info->load_addr = load_addr;
1939 info->entry = ehdr->e_entry + load_bias;
1940 info->start_code = -1;
1941 info->end_code = 0;
1942 info->start_data = -1;
1943 info->end_data = 0;
1944 info->brk = 0;
d8fd2954 1945 info->elf_flags = ehdr->e_flags;
8e62a717
RH
1946
1947 for (i = 0; i < ehdr->e_phnum; i++) {
1948 struct elf_phdr *eppnt = phdr + i;
d97ef72e 1949 if (eppnt->p_type == PT_LOAD) {
682674b8 1950 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
d97ef72e 1951 int elf_prot = 0;
d97ef72e
RH
1952
1953 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1954 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1955 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 1956
682674b8
RH
1957 vaddr = load_bias + eppnt->p_vaddr;
1958 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1959 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1960
1961 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1962 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 1963 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 1964 if (error == -1) {
8e62a717 1965 goto exit_perror;
09bfb054 1966 }
09bfb054 1967
682674b8
RH
1968 vaddr_ef = vaddr + eppnt->p_filesz;
1969 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 1970
cf129f3a 1971 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
1972 if (vaddr_ef < vaddr_em) {
1973 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 1974 }
8e62a717
RH
1975
1976 /* Find the full program boundaries. */
1977 if (elf_prot & PROT_EXEC) {
1978 if (vaddr < info->start_code) {
1979 info->start_code = vaddr;
1980 }
1981 if (vaddr_ef > info->end_code) {
1982 info->end_code = vaddr_ef;
1983 }
1984 }
1985 if (elf_prot & PROT_WRITE) {
1986 if (vaddr < info->start_data) {
1987 info->start_data = vaddr;
1988 }
1989 if (vaddr_ef > info->end_data) {
1990 info->end_data = vaddr_ef;
1991 }
1992 if (vaddr_em > info->brk) {
1993 info->brk = vaddr_em;
1994 }
1995 }
bf858897
RH
1996 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1997 char *interp_name;
1998
1999 if (*pinterp_name) {
2000 errmsg = "Multiple PT_INTERP entries";
2001 goto exit_errmsg;
2002 }
2003 interp_name = malloc(eppnt->p_filesz);
2004 if (!interp_name) {
2005 goto exit_perror;
2006 }
2007
2008 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2009 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2010 eppnt->p_filesz);
2011 } else {
2012 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2013 eppnt->p_offset);
2014 if (retval != eppnt->p_filesz) {
2015 goto exit_perror;
2016 }
2017 }
2018 if (interp_name[eppnt->p_filesz - 1] != 0) {
2019 errmsg = "Invalid PT_INTERP entry";
2020 goto exit_errmsg;
2021 }
2022 *pinterp_name = interp_name;
d97ef72e 2023 }
682674b8 2024 }
5fafdf24 2025
8e62a717
RH
2026 if (info->end_data == 0) {
2027 info->start_data = info->end_code;
2028 info->end_data = info->end_code;
2029 info->brk = info->end_code;
2030 }
2031
682674b8 2032 if (qemu_log_enabled()) {
8e62a717 2033 load_symbols(ehdr, image_fd, load_bias);
682674b8 2034 }
31e31b8a 2035
8e62a717
RH
2036 close(image_fd);
2037 return;
2038
2039 exit_read:
2040 if (retval >= 0) {
2041 errmsg = "Incomplete read of file header";
2042 goto exit_errmsg;
2043 }
2044 exit_perror:
2045 errmsg = strerror(errno);
2046 exit_errmsg:
2047 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2048 exit(-1);
2049}
2050
2051static void load_elf_interp(const char *filename, struct image_info *info,
2052 char bprm_buf[BPRM_BUF_SIZE])
2053{
2054 int fd, retval;
2055
2056 fd = open(path(filename), O_RDONLY);
2057 if (fd < 0) {
2058 goto exit_perror;
2059 }
31e31b8a 2060
8e62a717
RH
2061 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2062 if (retval < 0) {
2063 goto exit_perror;
2064 }
2065 if (retval < BPRM_BUF_SIZE) {
2066 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2067 }
2068
bf858897 2069 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2070 return;
2071
2072 exit_perror:
2073 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2074 exit(-1);
31e31b8a
FB
2075}
2076
49918a75
PB
2077static int symfind(const void *s0, const void *s1)
2078{
c7c530cd 2079 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2080 struct elf_sym *sym = (struct elf_sym *)s1;
2081 int result = 0;
c7c530cd 2082 if (addr < sym->st_value) {
49918a75 2083 result = -1;
c7c530cd 2084 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2085 result = 1;
2086 }
2087 return result;
2088}
2089
2090static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2091{
2092#if ELF_CLASS == ELFCLASS32
2093 struct elf_sym *syms = s->disas_symtab.elf32;
2094#else
2095 struct elf_sym *syms = s->disas_symtab.elf64;
2096#endif
2097
2098 // binary search
49918a75
PB
2099 struct elf_sym *sym;
2100
c7c530cd 2101 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2102 if (sym != NULL) {
49918a75
PB
2103 return s->disas_strtab + sym->st_name;
2104 }
2105
2106 return "";
2107}
2108
2109/* FIXME: This should use elf_ops.h */
2110static int symcmp(const void *s0, const void *s1)
2111{
2112 struct elf_sym *sym0 = (struct elf_sym *)s0;
2113 struct elf_sym *sym1 = (struct elf_sym *)s1;
2114 return (sym0->st_value < sym1->st_value)
2115 ? -1
2116 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2117}
2118
689f936f 2119/* Best attempt to load symbols from this ELF object. */
682674b8 2120static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2121{
682674b8
RH
2122 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2123 struct elf_shdr *shdr;
b9475279
CV
2124 char *strings = NULL;
2125 struct syminfo *s = NULL;
2126 struct elf_sym *new_syms, *syms = NULL;
689f936f 2127
682674b8
RH
2128 shnum = hdr->e_shnum;
2129 i = shnum * sizeof(struct elf_shdr);
2130 shdr = (struct elf_shdr *)alloca(i);
2131 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2132 return;
2133 }
2134
2135 bswap_shdr(shdr, shnum);
2136 for (i = 0; i < shnum; ++i) {
2137 if (shdr[i].sh_type == SHT_SYMTAB) {
2138 sym_idx = i;
2139 str_idx = shdr[i].sh_link;
49918a75
PB
2140 goto found;
2141 }
689f936f 2142 }
682674b8
RH
2143
2144 /* There will be no symbol table if the file was stripped. */
2145 return;
689f936f
FB
2146
2147 found:
682674b8 2148 /* Now know where the strtab and symtab are. Snarf them. */
e80cfcfc 2149 s = malloc(sizeof(*s));
682674b8 2150 if (!s) {
b9475279 2151 goto give_up;
682674b8 2152 }
5fafdf24 2153
682674b8
RH
2154 i = shdr[str_idx].sh_size;
2155 s->disas_strtab = strings = malloc(i);
2156 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
b9475279 2157 goto give_up;
682674b8 2158 }
49918a75 2159
682674b8
RH
2160 i = shdr[sym_idx].sh_size;
2161 syms = malloc(i);
2162 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
b9475279 2163 goto give_up;
682674b8 2164 }
31e31b8a 2165
682674b8
RH
2166 nsyms = i / sizeof(struct elf_sym);
2167 for (i = 0; i < nsyms; ) {
49918a75 2168 bswap_sym(syms + i);
682674b8
RH
2169 /* Throw away entries which we do not need. */
2170 if (syms[i].st_shndx == SHN_UNDEF
2171 || syms[i].st_shndx >= SHN_LORESERVE
2172 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2173 if (i < --nsyms) {
49918a75
PB
2174 syms[i] = syms[nsyms];
2175 }
682674b8 2176 } else {
49918a75 2177#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2178 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2179 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2180#endif
682674b8
RH
2181 syms[i].st_value += load_bias;
2182 i++;
2183 }
0774bed1 2184 }
49918a75 2185
b9475279
CV
2186 /* No "useful" symbol. */
2187 if (nsyms == 0) {
2188 goto give_up;
2189 }
2190
5d5c9930
RH
2191 /* Attempt to free the storage associated with the local symbols
2192 that we threw away. Whether or not this has any effect on the
2193 memory allocation depends on the malloc implementation and how
2194 many symbols we managed to discard. */
8d79de6e
SW
2195 new_syms = realloc(syms, nsyms * sizeof(*syms));
2196 if (new_syms == NULL) {
b9475279 2197 goto give_up;
5d5c9930 2198 }
8d79de6e 2199 syms = new_syms;
5d5c9930 2200
49918a75 2201 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2202
49918a75
PB
2203 s->disas_num_syms = nsyms;
2204#if ELF_CLASS == ELFCLASS32
2205 s->disas_symtab.elf32 = syms;
49918a75
PB
2206#else
2207 s->disas_symtab.elf64 = syms;
49918a75 2208#endif
682674b8 2209 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2210 s->next = syminfos;
2211 syminfos = s;
b9475279
CV
2212
2213 return;
2214
2215give_up:
2216 free(s);
2217 free(strings);
2218 free(syms);
689f936f 2219}
31e31b8a 2220
f0116c54 2221int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2222{
8e62a717 2223 struct image_info interp_info;
31e31b8a 2224 struct elfhdr elf_ex;
8e62a717 2225 char *elf_interpreter = NULL;
31e31b8a 2226
bf858897
RH
2227 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2228 info->mmap = 0;
2229 info->rss = 0;
2230
2231 load_elf_image(bprm->filename, bprm->fd, info,
2232 &elf_interpreter, bprm->buf);
31e31b8a 2233
bf858897
RH
2234 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2235 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2236 when we load the interpreter. */
2237 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2238
e5fe0c52
PB
2239 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
2240 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
2241 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
2242 if (!bprm->p) {
bf858897
RH
2243 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2244 exit(-1);
379f6698 2245 }
379f6698 2246
31e31b8a
FB
2247 /* Do this so that we can load the interpreter, if need be. We will
2248 change some of these later */
31e31b8a 2249 bprm->p = setup_arg_pages(bprm->p, bprm, info);
31e31b8a 2250
8e62a717
RH
2251 if (elf_interpreter) {
2252 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2253
8e62a717
RH
2254 /* If the program interpreter is one of these two, then assume
2255 an iBCS2 image. Otherwise assume a native linux image. */
2256
2257 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2258 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2259 info->personality = PER_SVR4;
31e31b8a 2260
8e62a717
RH
2261 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2262 and some applications "depend" upon this behavior. Since
2263 we do not have the power to recompile these, we emulate
2264 the SVr4 behavior. Sigh. */
2265 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2266 MAP_FIXED | MAP_PRIVATE, -1, 0);
2267 }
31e31b8a
FB
2268 }
2269
8e62a717
RH
2270 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2271 info, (elf_interpreter ? &interp_info : NULL));
2272 info->start_stack = bprm->p;
2273
2274 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2275 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2276 point as a function descriptor. Do this after creating elf tables
2277 so that we copy the original program entry point into the AUXV. */
2278 if (elf_interpreter) {
8e78064e 2279 info->load_bias = interp_info.load_bias;
8e62a717 2280 info->entry = interp_info.entry;
bf858897 2281 free(elf_interpreter);
8e62a717 2282 }
31e31b8a 2283
edf8e2af
MW
2284#ifdef USE_ELF_CORE_DUMP
2285 bprm->core_dump = &elf_core_dump;
2286#endif
2287
31e31b8a
FB
2288 return 0;
2289}
2290
edf8e2af 2291#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2292/*
2293 * Definitions to generate Intel SVR4-like core files.
a2547a13 2294 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2295 * tacked on the front to prevent clashes with linux definitions,
2296 * and the typedef forms have been avoided. This is mostly like
2297 * the SVR4 structure, but more Linuxy, with things that Linux does
2298 * not support and which gdb doesn't really use excluded.
2299 *
2300 * Fields we don't dump (their contents is zero) in linux-user qemu
2301 * are marked with XXX.
2302 *
2303 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2304 *
2305 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2306 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2307 * the target resides):
2308 *
2309 * #define USE_ELF_CORE_DUMP
2310 *
2311 * Next you define type of register set used for dumping. ELF specification
2312 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2313 *
c227f099 2314 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2315 * #define ELF_NREG <number of registers>
c227f099 2316 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2317 *
edf8e2af
MW
2318 * Last step is to implement target specific function that copies registers
2319 * from given cpu into just specified register set. Prototype is:
2320 *
c227f099 2321 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2322 * const CPUArchState *env);
edf8e2af
MW
2323 *
2324 * Parameters:
2325 * regs - copy register values into here (allocated and zeroed by caller)
2326 * env - copy registers from here
2327 *
2328 * Example for ARM target is provided in this file.
2329 */
2330
2331/* An ELF note in memory */
2332struct memelfnote {
2333 const char *name;
2334 size_t namesz;
2335 size_t namesz_rounded;
2336 int type;
2337 size_t datasz;
80f5ce75 2338 size_t datasz_rounded;
edf8e2af
MW
2339 void *data;
2340 size_t notesz;
2341};
2342
a2547a13 2343struct target_elf_siginfo {
f8fd4fc4
PB
2344 abi_int si_signo; /* signal number */
2345 abi_int si_code; /* extra code */
2346 abi_int si_errno; /* errno */
edf8e2af
MW
2347};
2348
a2547a13
LD
2349struct target_elf_prstatus {
2350 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2351 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2352 abi_ulong pr_sigpend; /* XXX */
2353 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2354 target_pid_t pr_pid;
2355 target_pid_t pr_ppid;
2356 target_pid_t pr_pgrp;
2357 target_pid_t pr_sid;
edf8e2af
MW
2358 struct target_timeval pr_utime; /* XXX User time */
2359 struct target_timeval pr_stime; /* XXX System time */
2360 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2361 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2362 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2363 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2364};
2365
2366#define ELF_PRARGSZ (80) /* Number of chars for args */
2367
a2547a13 2368struct target_elf_prpsinfo {
edf8e2af
MW
2369 char pr_state; /* numeric process state */
2370 char pr_sname; /* char for pr_state */
2371 char pr_zomb; /* zombie */
2372 char pr_nice; /* nice val */
ca98ac83 2373 abi_ulong pr_flag; /* flags */
c227f099
AL
2374 target_uid_t pr_uid;
2375 target_gid_t pr_gid;
2376 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2377 /* Lots missing */
2378 char pr_fname[16]; /* filename of executable */
2379 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2380};
2381
2382/* Here is the structure in which status of each thread is captured. */
2383struct elf_thread_status {
72cf2d4f 2384 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2385 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2386#if 0
2387 elf_fpregset_t fpu; /* NT_PRFPREG */
2388 struct task_struct *thread;
2389 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2390#endif
2391 struct memelfnote notes[1];
2392 int num_notes;
2393};
2394
2395struct elf_note_info {
2396 struct memelfnote *notes;
a2547a13
LD
2397 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2398 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2399
72cf2d4f 2400 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2401#if 0
2402 /*
2403 * Current version of ELF coredump doesn't support
2404 * dumping fp regs etc.
2405 */
2406 elf_fpregset_t *fpu;
2407 elf_fpxregset_t *xfpu;
2408 int thread_status_size;
2409#endif
2410 int notes_size;
2411 int numnote;
2412};
2413
2414struct vm_area_struct {
1a1c4db9
MI
2415 target_ulong vma_start; /* start vaddr of memory region */
2416 target_ulong vma_end; /* end vaddr of memory region */
2417 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2418 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2419};
2420
2421struct mm_struct {
72cf2d4f 2422 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2423 int mm_count; /* number of mappings */
2424};
2425
2426static struct mm_struct *vma_init(void);
2427static void vma_delete(struct mm_struct *);
1a1c4db9
MI
2428static int vma_add_mapping(struct mm_struct *, target_ulong,
2429 target_ulong, abi_ulong);
edf8e2af
MW
2430static int vma_get_mapping_count(const struct mm_struct *);
2431static struct vm_area_struct *vma_first(const struct mm_struct *);
2432static struct vm_area_struct *vma_next(struct vm_area_struct *);
2433static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 2434static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2435 unsigned long flags);
edf8e2af
MW
2436
2437static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2438static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2439 unsigned int, void *);
a2547a13
LD
2440static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2441static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2442static void fill_auxv_note(struct memelfnote *, const TaskState *);
2443static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2444static size_t note_size(const struct memelfnote *);
2445static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2446static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2447static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2448static int core_dump_filename(const TaskState *, char *, size_t);
2449
2450static int dump_write(int, const void *, size_t);
2451static int write_note(struct memelfnote *, int);
2452static int write_note_info(struct elf_note_info *, int);
2453
2454#ifdef BSWAP_NEEDED
a2547a13 2455static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2456{
ca98ac83
PB
2457 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2458 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2459 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2460 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
2461 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2462 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
2463 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2464 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2465 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2466 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2467 /* cpu times are not filled, so we skip them */
2468 /* regs should be in correct format already */
2469 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2470}
2471
a2547a13 2472static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 2473{
ca98ac83 2474 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
2475 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2476 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2477 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2478 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2479 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2480 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2481}
991f8f0c
RH
2482
2483static void bswap_note(struct elf_note *en)
2484{
2485 bswap32s(&en->n_namesz);
2486 bswap32s(&en->n_descsz);
2487 bswap32s(&en->n_type);
2488}
2489#else
2490static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2491static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2492static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2493#endif /* BSWAP_NEEDED */
2494
2495/*
2496 * Minimal support for linux memory regions. These are needed
2497 * when we are finding out what memory exactly belongs to
2498 * emulated process. No locks needed here, as long as
2499 * thread that received the signal is stopped.
2500 */
2501
2502static struct mm_struct *vma_init(void)
2503{
2504 struct mm_struct *mm;
2505
7267c094 2506 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
2507 return (NULL);
2508
2509 mm->mm_count = 0;
72cf2d4f 2510 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2511
2512 return (mm);
2513}
2514
2515static void vma_delete(struct mm_struct *mm)
2516{
2517 struct vm_area_struct *vma;
2518
2519 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2520 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 2521 g_free(vma);
edf8e2af 2522 }
7267c094 2523 g_free(mm);
edf8e2af
MW
2524}
2525
1a1c4db9
MI
2526static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2527 target_ulong end, abi_ulong flags)
edf8e2af
MW
2528{
2529 struct vm_area_struct *vma;
2530
7267c094 2531 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
2532 return (-1);
2533
2534 vma->vma_start = start;
2535 vma->vma_end = end;
2536 vma->vma_flags = flags;
2537
72cf2d4f 2538 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2539 mm->mm_count++;
2540
2541 return (0);
2542}
2543
2544static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2545{
72cf2d4f 2546 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2547}
2548
2549static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2550{
72cf2d4f 2551 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2552}
2553
2554static int vma_get_mapping_count(const struct mm_struct *mm)
2555{
2556 return (mm->mm_count);
2557}
2558
2559/*
2560 * Calculate file (dump) size of given memory region.
2561 */
2562static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2563{
2564 /* if we cannot even read the first page, skip it */
2565 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2566 return (0);
2567
2568 /*
2569 * Usually we don't dump executable pages as they contain
2570 * non-writable code that debugger can read directly from
2571 * target library etc. However, thread stacks are marked
2572 * also executable so we read in first page of given region
2573 * and check whether it contains elf header. If there is
2574 * no elf header, we dump it.
2575 */
2576 if (vma->vma_flags & PROT_EXEC) {
2577 char page[TARGET_PAGE_SIZE];
2578
2579 copy_from_user(page, vma->vma_start, sizeof (page));
2580 if ((page[EI_MAG0] == ELFMAG0) &&
2581 (page[EI_MAG1] == ELFMAG1) &&
2582 (page[EI_MAG2] == ELFMAG2) &&
2583 (page[EI_MAG3] == ELFMAG3)) {
2584 /*
2585 * Mappings are possibly from ELF binary. Don't dump
2586 * them.
2587 */
2588 return (0);
2589 }
2590 }
2591
2592 return (vma->vma_end - vma->vma_start);
2593}
2594
1a1c4db9 2595static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2596 unsigned long flags)
edf8e2af
MW
2597{
2598 struct mm_struct *mm = (struct mm_struct *)priv;
2599
edf8e2af
MW
2600 vma_add_mapping(mm, start, end, flags);
2601 return (0);
2602}
2603
2604static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 2605 unsigned int sz, void *data)
edf8e2af
MW
2606{
2607 unsigned int namesz;
2608
2609 namesz = strlen(name) + 1;
2610 note->name = name;
2611 note->namesz = namesz;
2612 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2613 note->type = type;
80f5ce75
LV
2614 note->datasz = sz;
2615 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2616
edf8e2af
MW
2617 note->data = data;
2618
2619 /*
2620 * We calculate rounded up note size here as specified by
2621 * ELF document.
2622 */
2623 note->notesz = sizeof (struct elf_note) +
80f5ce75 2624 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
2625}
2626
2627static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 2628 uint32_t flags)
edf8e2af
MW
2629{
2630 (void) memset(elf, 0, sizeof(*elf));
2631
2632 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2633 elf->e_ident[EI_CLASS] = ELF_CLASS;
2634 elf->e_ident[EI_DATA] = ELF_DATA;
2635 elf->e_ident[EI_VERSION] = EV_CURRENT;
2636 elf->e_ident[EI_OSABI] = ELF_OSABI;
2637
2638 elf->e_type = ET_CORE;
2639 elf->e_machine = machine;
2640 elf->e_version = EV_CURRENT;
2641 elf->e_phoff = sizeof(struct elfhdr);
2642 elf->e_flags = flags;
2643 elf->e_ehsize = sizeof(struct elfhdr);
2644 elf->e_phentsize = sizeof(struct elf_phdr);
2645 elf->e_phnum = segs;
2646
edf8e2af 2647 bswap_ehdr(elf);
edf8e2af
MW
2648}
2649
2650static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2651{
2652 phdr->p_type = PT_NOTE;
2653 phdr->p_offset = offset;
2654 phdr->p_vaddr = 0;
2655 phdr->p_paddr = 0;
2656 phdr->p_filesz = sz;
2657 phdr->p_memsz = 0;
2658 phdr->p_flags = 0;
2659 phdr->p_align = 0;
2660
991f8f0c 2661 bswap_phdr(phdr, 1);
edf8e2af
MW
2662}
2663
2664static size_t note_size(const struct memelfnote *note)
2665{
2666 return (note->notesz);
2667}
2668
a2547a13 2669static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 2670 const TaskState *ts, int signr)
edf8e2af
MW
2671{
2672 (void) memset(prstatus, 0, sizeof (*prstatus));
2673 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2674 prstatus->pr_pid = ts->ts_tid;
2675 prstatus->pr_ppid = getppid();
2676 prstatus->pr_pgrp = getpgrp();
2677 prstatus->pr_sid = getsid(0);
2678
edf8e2af 2679 bswap_prstatus(prstatus);
edf8e2af
MW
2680}
2681
a2547a13 2682static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 2683{
900cfbca 2684 char *base_filename;
edf8e2af
MW
2685 unsigned int i, len;
2686
2687 (void) memset(psinfo, 0, sizeof (*psinfo));
2688
2689 len = ts->info->arg_end - ts->info->arg_start;
2690 if (len >= ELF_PRARGSZ)
2691 len = ELF_PRARGSZ - 1;
2692 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2693 return -EFAULT;
2694 for (i = 0; i < len; i++)
2695 if (psinfo->pr_psargs[i] == 0)
2696 psinfo->pr_psargs[i] = ' ';
2697 psinfo->pr_psargs[len] = 0;
2698
2699 psinfo->pr_pid = getpid();
2700 psinfo->pr_ppid = getppid();
2701 psinfo->pr_pgrp = getpgrp();
2702 psinfo->pr_sid = getsid(0);
2703 psinfo->pr_uid = getuid();
2704 psinfo->pr_gid = getgid();
2705
900cfbca
JM
2706 base_filename = g_path_get_basename(ts->bprm->filename);
2707 /*
2708 * Using strncpy here is fine: at max-length,
2709 * this field is not NUL-terminated.
2710 */
edf8e2af 2711 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 2712 sizeof(psinfo->pr_fname));
edf8e2af 2713
900cfbca 2714 g_free(base_filename);
edf8e2af 2715 bswap_psinfo(psinfo);
edf8e2af
MW
2716 return (0);
2717}
2718
2719static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2720{
2721 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2722 elf_addr_t orig_auxv = auxv;
edf8e2af 2723 void *ptr;
125b0f55 2724 int len = ts->info->auxv_len;
edf8e2af
MW
2725
2726 /*
2727 * Auxiliary vector is stored in target process stack. It contains
2728 * {type, value} pairs that we need to dump into note. This is not
2729 * strictly necessary but we do it here for sake of completeness.
2730 */
2731
edf8e2af
MW
2732 /* read in whole auxv vector and copy it to memelfnote */
2733 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2734 if (ptr != NULL) {
2735 fill_note(note, "CORE", NT_AUXV, len, ptr);
2736 unlock_user(ptr, auxv, len);
2737 }
2738}
2739
2740/*
2741 * Constructs name of coredump file. We have following convention
2742 * for the name:
2743 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2744 *
2745 * Returns 0 in case of success, -1 otherwise (errno is set).
2746 */
2747static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 2748 size_t bufsize)
edf8e2af
MW
2749{
2750 char timestamp[64];
2751 char *filename = NULL;
2752 char *base_filename = NULL;
2753 struct timeval tv;
2754 struct tm tm;
2755
2756 assert(bufsize >= PATH_MAX);
2757
2758 if (gettimeofday(&tv, NULL) < 0) {
2759 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 2760 strerror(errno));
edf8e2af
MW
2761 return (-1);
2762 }
2763
2764 filename = strdup(ts->bprm->filename);
2765 base_filename = strdup(basename(filename));
2766 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 2767 localtime_r(&tv.tv_sec, &tm));
edf8e2af 2768 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 2769 base_filename, timestamp, (int)getpid());
edf8e2af
MW
2770 free(base_filename);
2771 free(filename);
2772
2773 return (0);
2774}
2775
2776static int dump_write(int fd, const void *ptr, size_t size)
2777{
2778 const char *bufp = (const char *)ptr;
2779 ssize_t bytes_written, bytes_left;
2780 struct rlimit dumpsize;
2781 off_t pos;
2782
2783 bytes_written = 0;
2784 getrlimit(RLIMIT_CORE, &dumpsize);
2785 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2786 if (errno == ESPIPE) { /* not a seekable stream */
2787 bytes_left = size;
2788 } else {
2789 return pos;
2790 }
2791 } else {
2792 if (dumpsize.rlim_cur <= pos) {
2793 return -1;
2794 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2795 bytes_left = size;
2796 } else {
2797 size_t limit_left=dumpsize.rlim_cur - pos;
2798 bytes_left = limit_left >= size ? size : limit_left ;
2799 }
2800 }
2801
2802 /*
2803 * In normal conditions, single write(2) should do but
2804 * in case of socket etc. this mechanism is more portable.
2805 */
2806 do {
2807 bytes_written = write(fd, bufp, bytes_left);
2808 if (bytes_written < 0) {
2809 if (errno == EINTR)
2810 continue;
2811 return (-1);
2812 } else if (bytes_written == 0) { /* eof */
2813 return (-1);
2814 }
2815 bufp += bytes_written;
2816 bytes_left -= bytes_written;
2817 } while (bytes_left > 0);
2818
2819 return (0);
2820}
2821
2822static int write_note(struct memelfnote *men, int fd)
2823{
2824 struct elf_note en;
2825
2826 en.n_namesz = men->namesz;
2827 en.n_type = men->type;
2828 en.n_descsz = men->datasz;
2829
edf8e2af 2830 bswap_note(&en);
edf8e2af
MW
2831
2832 if (dump_write(fd, &en, sizeof(en)) != 0)
2833 return (-1);
2834 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2835 return (-1);
80f5ce75 2836 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
2837 return (-1);
2838
2839 return (0);
2840}
2841
9349b4f9 2842static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 2843{
0429a971
AF
2844 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2845 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
2846 struct elf_thread_status *ets;
2847
7267c094 2848 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
2849 ets->num_notes = 1; /* only prstatus is dumped */
2850 fill_prstatus(&ets->prstatus, ts, 0);
2851 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2852 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 2853 &ets->prstatus);
edf8e2af 2854
72cf2d4f 2855 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
2856
2857 info->notes_size += note_size(&ets->notes[0]);
2858}
2859
6afafa86
PM
2860static void init_note_info(struct elf_note_info *info)
2861{
2862 /* Initialize the elf_note_info structure so that it is at
2863 * least safe to call free_note_info() on it. Must be
2864 * called before calling fill_note_info().
2865 */
2866 memset(info, 0, sizeof (*info));
2867 QTAILQ_INIT(&info->thread_list);
2868}
2869
edf8e2af 2870static int fill_note_info(struct elf_note_info *info,
9349b4f9 2871 long signr, const CPUArchState *env)
edf8e2af
MW
2872{
2873#define NUMNOTES 3
0429a971
AF
2874 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2875 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
2876 int i;
2877
7267c094 2878 info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
edf8e2af
MW
2879 if (info->notes == NULL)
2880 return (-ENOMEM);
7267c094 2881 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
2882 if (info->prstatus == NULL)
2883 return (-ENOMEM);
7267c094 2884 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
2885 if (info->prstatus == NULL)
2886 return (-ENOMEM);
2887
2888 /*
2889 * First fill in status (and registers) of current thread
2890 * including process info & aux vector.
2891 */
2892 fill_prstatus(info->prstatus, ts, signr);
2893 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2894 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 2895 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
2896 fill_psinfo(info->psinfo, ts);
2897 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 2898 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
2899 fill_auxv_note(&info->notes[2], ts);
2900 info->numnote = 3;
2901
2902 info->notes_size = 0;
2903 for (i = 0; i < info->numnote; i++)
2904 info->notes_size += note_size(&info->notes[i]);
2905
2906 /* read and fill status of all threads */
2907 cpu_list_lock();
bdc44640 2908 CPU_FOREACH(cpu) {
a2247f8e 2909 if (cpu == thread_cpu) {
edf8e2af 2910 continue;
182735ef
AF
2911 }
2912 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
2913 }
2914 cpu_list_unlock();
2915
2916 return (0);
2917}
2918
2919static void free_note_info(struct elf_note_info *info)
2920{
2921 struct elf_thread_status *ets;
2922
72cf2d4f
BS
2923 while (!QTAILQ_EMPTY(&info->thread_list)) {
2924 ets = QTAILQ_FIRST(&info->thread_list);
2925 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 2926 g_free(ets);
edf8e2af
MW
2927 }
2928
7267c094
AL
2929 g_free(info->prstatus);
2930 g_free(info->psinfo);
2931 g_free(info->notes);
edf8e2af
MW
2932}
2933
2934static int write_note_info(struct elf_note_info *info, int fd)
2935{
2936 struct elf_thread_status *ets;
2937 int i, error = 0;
2938
2939 /* write prstatus, psinfo and auxv for current thread */
2940 for (i = 0; i < info->numnote; i++)
2941 if ((error = write_note(&info->notes[i], fd)) != 0)
2942 return (error);
2943
2944 /* write prstatus for each thread */
52a53afe 2945 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
2946 if ((error = write_note(&ets->notes[0], fd)) != 0)
2947 return (error);
2948 }
2949
2950 return (0);
2951}
2952
2953/*
2954 * Write out ELF coredump.
2955 *
2956 * See documentation of ELF object file format in:
2957 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2958 *
2959 * Coredump format in linux is following:
2960 *
2961 * 0 +----------------------+ \
2962 * | ELF header | ET_CORE |
2963 * +----------------------+ |
2964 * | ELF program headers | |--- headers
2965 * | - NOTE section | |
2966 * | - PT_LOAD sections | |
2967 * +----------------------+ /
2968 * | NOTEs: |
2969 * | - NT_PRSTATUS |
2970 * | - NT_PRSINFO |
2971 * | - NT_AUXV |
2972 * +----------------------+ <-- aligned to target page
2973 * | Process memory dump |
2974 * : :
2975 * . .
2976 * : :
2977 * | |
2978 * +----------------------+
2979 *
2980 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2981 * NT_PRSINFO -> struct elf_prpsinfo
2982 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2983 *
2984 * Format follows System V format as close as possible. Current
2985 * version limitations are as follows:
2986 * - no floating point registers are dumped
2987 *
2988 * Function returns 0 in case of success, negative errno otherwise.
2989 *
2990 * TODO: make this work also during runtime: it should be
2991 * possible to force coredump from running process and then
2992 * continue processing. For example qemu could set up SIGUSR2
2993 * handler (provided that target process haven't registered
2994 * handler for that) that does the dump when signal is received.
2995 */
9349b4f9 2996static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 2997{
0429a971
AF
2998 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2999 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3000 struct vm_area_struct *vma = NULL;
3001 char corefile[PATH_MAX];
3002 struct elf_note_info info;
3003 struct elfhdr elf;
3004 struct elf_phdr phdr;
3005 struct rlimit dumpsize;
3006 struct mm_struct *mm = NULL;
3007 off_t offset = 0, data_offset = 0;
3008 int segs = 0;
3009 int fd = -1;
3010
6afafa86
PM
3011 init_note_info(&info);
3012
edf8e2af
MW
3013 errno = 0;
3014 getrlimit(RLIMIT_CORE, &dumpsize);
3015 if (dumpsize.rlim_cur == 0)
d97ef72e 3016 return 0;
edf8e2af
MW
3017
3018 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3019 return (-errno);
3020
3021 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3022 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3023 return (-errno);
3024
3025 /*
3026 * Walk through target process memory mappings and
3027 * set up structure containing this information. After
3028 * this point vma_xxx functions can be used.
3029 */
3030 if ((mm = vma_init()) == NULL)
3031 goto out;
3032
3033 walk_memory_regions(mm, vma_walker);
3034 segs = vma_get_mapping_count(mm);
3035
3036 /*
3037 * Construct valid coredump ELF header. We also
3038 * add one more segment for notes.
3039 */
3040 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3041 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3042 goto out;
3043
b6af0975 3044 /* fill in the in-memory version of notes */
edf8e2af
MW
3045 if (fill_note_info(&info, signr, env) < 0)
3046 goto out;
3047
3048 offset += sizeof (elf); /* elf header */
3049 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3050
3051 /* write out notes program header */
3052 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3053
3054 offset += info.notes_size;
3055 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3056 goto out;
3057
3058 /*
3059 * ELF specification wants data to start at page boundary so
3060 * we align it here.
3061 */
80f5ce75 3062 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3063
3064 /*
3065 * Write program headers for memory regions mapped in
3066 * the target process.
3067 */
3068 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3069 (void) memset(&phdr, 0, sizeof (phdr));
3070
3071 phdr.p_type = PT_LOAD;
3072 phdr.p_offset = offset;
3073 phdr.p_vaddr = vma->vma_start;
3074 phdr.p_paddr = 0;
3075 phdr.p_filesz = vma_dump_size(vma);
3076 offset += phdr.p_filesz;
3077 phdr.p_memsz = vma->vma_end - vma->vma_start;
3078 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3079 if (vma->vma_flags & PROT_WRITE)
3080 phdr.p_flags |= PF_W;
3081 if (vma->vma_flags & PROT_EXEC)
3082 phdr.p_flags |= PF_X;
3083 phdr.p_align = ELF_EXEC_PAGESIZE;
3084
80f5ce75 3085 bswap_phdr(&phdr, 1);
edf8e2af
MW
3086 dump_write(fd, &phdr, sizeof (phdr));
3087 }
3088
3089 /*
3090 * Next we write notes just after program headers. No
3091 * alignment needed here.
3092 */
3093 if (write_note_info(&info, fd) < 0)
3094 goto out;
3095
3096 /* align data to page boundary */
edf8e2af
MW
3097 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3098 goto out;
3099
3100 /*
3101 * Finally we can dump process memory into corefile as well.
3102 */
3103 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3104 abi_ulong addr;
3105 abi_ulong end;
3106
3107 end = vma->vma_start + vma_dump_size(vma);
3108
3109 for (addr = vma->vma_start; addr < end;
d97ef72e 3110 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3111 char page[TARGET_PAGE_SIZE];
3112 int error;
3113
3114 /*
3115 * Read in page from target process memory and
3116 * write it to coredump file.
3117 */
3118 error = copy_from_user(page, addr, sizeof (page));
3119 if (error != 0) {
49995e17 3120 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3121 addr);
edf8e2af
MW
3122 errno = -error;
3123 goto out;
3124 }
3125 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3126 goto out;
3127 }
3128 }
3129
d97ef72e 3130 out:
edf8e2af
MW
3131 free_note_info(&info);
3132 if (mm != NULL)
3133 vma_delete(mm);
3134 (void) close(fd);
3135
3136 if (errno != 0)
3137 return (-errno);
3138 return (0);
3139}
edf8e2af
MW
3140#endif /* USE_ELF_CORE_DUMP */
3141
e5fe0c52
PB
3142void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3143{
3144 init_thread(regs, infop);
3145}