]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
linux-user: fix O_NONBLOCK in signalfd4() and eventfd2() syscalls
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
30ab9ef2 6#include <sys/shm.h>
31e31b8a 7
3ef693a0 8#include "qemu.h"
76cad711 9#include "disas/disas.h"
ce543844 10#include "qemu/bitops.h"
f348b6d1 11#include "qemu/path.h"
dc5e9ac7 12#include "qemu/queue.h"
c6a2377f 13#include "qemu/guest-random.h"
6fd59449 14#include "qemu/units.h"
ee947430 15#include "qemu/selfmap.h"
c7f17e7b 16#include "qapi/error.h"
31e31b8a 17
e58ffeb3 18#ifdef _ARCH_PPC64
a6cc84f4 19#undef ARCH_DLINFO
20#undef ELF_PLATFORM
21#undef ELF_HWCAP
ad6919dc 22#undef ELF_HWCAP2
a6cc84f4 23#undef ELF_CLASS
24#undef ELF_DATA
25#undef ELF_ARCH
26#endif
27
edf8e2af
MW
28#define ELF_OSABI ELFOSABI_SYSV
29
cb33da57
BS
30/* from personality.h */
31
32/*
33 * Flags for bug emulation.
34 *
35 * These occupy the top three bytes.
36 */
37enum {
d97ef72e
RH
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
40 descriptors (signal handling) */
41 MMAP_PAGE_ZERO = 0x0100000,
42 ADDR_COMPAT_LAYOUT = 0x0200000,
43 READ_IMPLIES_EXEC = 0x0400000,
44 ADDR_LIMIT_32BIT = 0x0800000,
45 SHORT_INODE = 0x1000000,
46 WHOLE_SECONDS = 0x2000000,
47 STICKY_TIMEOUTS = 0x4000000,
48 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
49};
50
51/*
52 * Personality types.
53 *
54 * These go in the low byte. Avoid using the top bit, it will
55 * conflict with error returns.
56 */
57enum {
d97ef72e
RH
58 PER_LINUX = 0x0000,
59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
67 PER_BSD = 0x0006,
68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70 PER_LINUX32 = 0x0008,
71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75 PER_RISCOS = 0x000c,
76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78 PER_OSF4 = 0x000f, /* OSF/1 v4 */
79 PER_HPUX = 0x0010,
80 PER_MASK = 0x00ff,
cb33da57
BS
81};
82
83/*
84 * Return the base personality without flags.
85 */
d97ef72e 86#define personality(pers) (pers & PER_MASK)
cb33da57 87
3cb10cfa
CL
88int info_is_fdpic(struct image_info *info)
89{
90 return info->personality == PER_LINUX_FDPIC;
91}
92
83fb7adf
FB
93/* this flag is uneffective under linux too, should be deleted */
94#ifndef MAP_DENYWRITE
95#define MAP_DENYWRITE 0
96#endif
97
98/* should probably go in elf.h */
99#ifndef ELIBBAD
100#define ELIBBAD 80
101#endif
102
28490231
RH
103#ifdef TARGET_WORDS_BIGENDIAN
104#define ELF_DATA ELFDATA2MSB
105#else
106#define ELF_DATA ELFDATA2LSB
107#endif
108
a29f998d 109#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
110typedef abi_ullong target_elf_greg_t;
111#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
112#else
113typedef abi_ulong target_elf_greg_t;
114#define tswapreg(ptr) tswapal(ptr)
115#endif
116
21e807fa 117#ifdef USE_UID16
1ddd592f
PB
118typedef abi_ushort target_uid_t;
119typedef abi_ushort target_gid_t;
21e807fa 120#else
f8fd4fc4
PB
121typedef abi_uint target_uid_t;
122typedef abi_uint target_gid_t;
21e807fa 123#endif
f8fd4fc4 124typedef abi_int target_pid_t;
21e807fa 125
30ac07d4
FB
126#ifdef TARGET_I386
127
15338fd7
FB
128#define ELF_PLATFORM get_elf_platform()
129
130static const char *get_elf_platform(void)
131{
132 static char elf_platform[] = "i386";
a2247f8e 133 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
134 if (family > 6)
135 family = 6;
136 if (family >= 3)
137 elf_platform[1] = '0' + family;
138 return elf_platform;
139}
140
141#define ELF_HWCAP get_elf_hwcap()
142
143static uint32_t get_elf_hwcap(void)
144{
a2247f8e
AF
145 X86CPU *cpu = X86_CPU(thread_cpu);
146
147 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
148}
149
84409ddb
JM
150#ifdef TARGET_X86_64
151#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
152
153#define ELF_CLASS ELFCLASS64
84409ddb
JM
154#define ELF_ARCH EM_X86_64
155
156static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
157{
158 regs->rax = 0;
159 regs->rsp = infop->start_stack;
160 regs->rip = infop->entry;
161}
162
9edc5d79 163#define ELF_NREG 27
c227f099 164typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
165
166/*
167 * Note that ELF_NREG should be 29 as there should be place for
168 * TRAPNO and ERR "registers" as well but linux doesn't dump
169 * those.
170 *
171 * See linux kernel: arch/x86/include/asm/elf.h
172 */
05390248 173static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
174{
175 (*regs)[0] = env->regs[15];
176 (*regs)[1] = env->regs[14];
177 (*regs)[2] = env->regs[13];
178 (*regs)[3] = env->regs[12];
179 (*regs)[4] = env->regs[R_EBP];
180 (*regs)[5] = env->regs[R_EBX];
181 (*regs)[6] = env->regs[11];
182 (*regs)[7] = env->regs[10];
183 (*regs)[8] = env->regs[9];
184 (*regs)[9] = env->regs[8];
185 (*regs)[10] = env->regs[R_EAX];
186 (*regs)[11] = env->regs[R_ECX];
187 (*regs)[12] = env->regs[R_EDX];
188 (*regs)[13] = env->regs[R_ESI];
189 (*regs)[14] = env->regs[R_EDI];
190 (*regs)[15] = env->regs[R_EAX]; /* XXX */
191 (*regs)[16] = env->eip;
192 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
193 (*regs)[18] = env->eflags;
194 (*regs)[19] = env->regs[R_ESP];
195 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
196 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
197 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
198 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
199 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
200 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
201 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
202}
203
84409ddb
JM
204#else
205
30ac07d4
FB
206#define ELF_START_MMAP 0x80000000
207
30ac07d4
FB
208/*
209 * This is used to ensure we don't load something for the wrong architecture.
210 */
211#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
212
213/*
214 * These are used to set parameters in the core dumps.
215 */
d97ef72e 216#define ELF_CLASS ELFCLASS32
d97ef72e 217#define ELF_ARCH EM_386
30ac07d4 218
d97ef72e
RH
219static inline void init_thread(struct target_pt_regs *regs,
220 struct image_info *infop)
b346ff46
FB
221{
222 regs->esp = infop->start_stack;
223 regs->eip = infop->entry;
e5fe0c52
PB
224
225 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
226 starts %edx contains a pointer to a function which might be
227 registered using `atexit'. This provides a mean for the
228 dynamic linker to call DT_FINI functions for shared libraries
229 that have been loaded before the code runs.
230
231 A value of 0 tells we have no such handler. */
232 regs->edx = 0;
b346ff46 233}
9edc5d79 234
9edc5d79 235#define ELF_NREG 17
c227f099 236typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
237
238/*
239 * Note that ELF_NREG should be 19 as there should be place for
240 * TRAPNO and ERR "registers" as well but linux doesn't dump
241 * those.
242 *
243 * See linux kernel: arch/x86/include/asm/elf.h
244 */
05390248 245static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
246{
247 (*regs)[0] = env->regs[R_EBX];
248 (*regs)[1] = env->regs[R_ECX];
249 (*regs)[2] = env->regs[R_EDX];
250 (*regs)[3] = env->regs[R_ESI];
251 (*regs)[4] = env->regs[R_EDI];
252 (*regs)[5] = env->regs[R_EBP];
253 (*regs)[6] = env->regs[R_EAX];
254 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
255 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
256 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
257 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
258 (*regs)[11] = env->regs[R_EAX]; /* XXX */
259 (*regs)[12] = env->eip;
260 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
261 (*regs)[14] = env->eflags;
262 (*regs)[15] = env->regs[R_ESP];
263 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
264}
84409ddb 265#endif
b346ff46 266
9edc5d79 267#define USE_ELF_CORE_DUMP
d97ef72e 268#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
269
270#endif
271
272#ifdef TARGET_ARM
273
24e76ff0
PM
274#ifndef TARGET_AARCH64
275/* 32 bit ARM definitions */
276
b346ff46
FB
277#define ELF_START_MMAP 0x80000000
278
b597c3f7 279#define ELF_ARCH EM_ARM
d97ef72e 280#define ELF_CLASS ELFCLASS32
b346ff46 281
d97ef72e
RH
282static inline void init_thread(struct target_pt_regs *regs,
283 struct image_info *infop)
b346ff46 284{
992f48a0 285 abi_long stack = infop->start_stack;
b346ff46 286 memset(regs, 0, sizeof(*regs));
99033cae 287
167e4cdc
PM
288 regs->uregs[16] = ARM_CPU_MODE_USR;
289 if (infop->entry & 1) {
290 regs->uregs[16] |= CPSR_T;
291 }
292 regs->uregs[15] = infop->entry & 0xfffffffe;
293 regs->uregs[13] = infop->start_stack;
2f619698 294 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
295 get_user_ual(regs->uregs[2], stack + 8); /* envp */
296 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 297 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 298 regs->uregs[0] = 0;
e5fe0c52 299 /* For uClinux PIC binaries. */
863cf0b7 300 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 301 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
302
303 /* Support ARM FDPIC. */
304 if (info_is_fdpic(infop)) {
305 /* As described in the ABI document, r7 points to the loadmap info
306 * prepared by the kernel. If an interpreter is needed, r8 points
307 * to the interpreter loadmap and r9 points to the interpreter
308 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
309 * r9 points to the main program PT_DYNAMIC info.
310 */
311 regs->uregs[7] = infop->loadmap_addr;
312 if (infop->interpreter_loadmap_addr) {
313 /* Executable is dynamically loaded. */
314 regs->uregs[8] = infop->interpreter_loadmap_addr;
315 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
316 } else {
317 regs->uregs[8] = 0;
318 regs->uregs[9] = infop->pt_dynamic_addr;
319 }
320 }
b346ff46
FB
321}
322
edf8e2af 323#define ELF_NREG 18
c227f099 324typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 325
05390248 326static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 327{
86cd7b2d
PB
328 (*regs)[0] = tswapreg(env->regs[0]);
329 (*regs)[1] = tswapreg(env->regs[1]);
330 (*regs)[2] = tswapreg(env->regs[2]);
331 (*regs)[3] = tswapreg(env->regs[3]);
332 (*regs)[4] = tswapreg(env->regs[4]);
333 (*regs)[5] = tswapreg(env->regs[5]);
334 (*regs)[6] = tswapreg(env->regs[6]);
335 (*regs)[7] = tswapreg(env->regs[7]);
336 (*regs)[8] = tswapreg(env->regs[8]);
337 (*regs)[9] = tswapreg(env->regs[9]);
338 (*regs)[10] = tswapreg(env->regs[10]);
339 (*regs)[11] = tswapreg(env->regs[11]);
340 (*regs)[12] = tswapreg(env->regs[12]);
341 (*regs)[13] = tswapreg(env->regs[13]);
342 (*regs)[14] = tswapreg(env->regs[14]);
343 (*regs)[15] = tswapreg(env->regs[15]);
344
345 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
346 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
347}
348
30ac07d4 349#define USE_ELF_CORE_DUMP
d97ef72e 350#define ELF_EXEC_PAGESIZE 4096
30ac07d4 351
afce2927
FB
352enum
353{
d97ef72e
RH
354 ARM_HWCAP_ARM_SWP = 1 << 0,
355 ARM_HWCAP_ARM_HALF = 1 << 1,
356 ARM_HWCAP_ARM_THUMB = 1 << 2,
357 ARM_HWCAP_ARM_26BIT = 1 << 3,
358 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
359 ARM_HWCAP_ARM_FPA = 1 << 5,
360 ARM_HWCAP_ARM_VFP = 1 << 6,
361 ARM_HWCAP_ARM_EDSP = 1 << 7,
362 ARM_HWCAP_ARM_JAVA = 1 << 8,
363 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
364 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
365 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
366 ARM_HWCAP_ARM_NEON = 1 << 12,
367 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
368 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
369 ARM_HWCAP_ARM_TLS = 1 << 15,
370 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
371 ARM_HWCAP_ARM_IDIVA = 1 << 17,
372 ARM_HWCAP_ARM_IDIVT = 1 << 18,
373 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
374 ARM_HWCAP_ARM_LPAE = 1 << 20,
375 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
376};
377
ad6919dc
PM
378enum {
379 ARM_HWCAP2_ARM_AES = 1 << 0,
380 ARM_HWCAP2_ARM_PMULL = 1 << 1,
381 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
382 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
383 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
384};
385
6b1275ff
PM
386/* The commpage only exists for 32 bit kernels */
387
ee947430 388#define ARM_COMMPAGE (intptr_t)0xffff0f00u
806d1021 389
ee947430
AB
390static bool init_guest_commpage(void)
391{
392 void *want = g2h(ARM_COMMPAGE & -qemu_host_page_size);
393 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
5c3e87f3 394 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
97cc7560 395
ee947430
AB
396 if (addr == MAP_FAILED) {
397 perror("Allocating guest commpage");
398 exit(EXIT_FAILURE);
97cc7560 399 }
ee947430
AB
400 if (addr != want) {
401 return false;
97cc7560
DDAG
402 }
403
ee947430
AB
404 /* Set kernel helper versions; rest of page is 0. */
405 __put_user(5, (uint32_t *)g2h(0xffff0ffcu));
97cc7560 406
ee947430 407 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
97cc7560 408 perror("Protecting guest commpage");
ee947430 409 exit(EXIT_FAILURE);
97cc7560 410 }
ee947430 411 return true;
97cc7560 412}
adf050b1
BC
413
414#define ELF_HWCAP get_elf_hwcap()
ad6919dc 415#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
416
417static uint32_t get_elf_hwcap(void)
418{
a2247f8e 419 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
420 uint32_t hwcaps = 0;
421
422 hwcaps |= ARM_HWCAP_ARM_SWP;
423 hwcaps |= ARM_HWCAP_ARM_HALF;
424 hwcaps |= ARM_HWCAP_ARM_THUMB;
425 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
426
427 /* probe for the extra features */
428#define GET_FEATURE(feat, hwcap) \
a2247f8e 429 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
962fcbf2
RH
430
431#define GET_FEATURE_ID(feat, hwcap) \
432 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
433
24682654
PM
434 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
435 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
24682654 439 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
bfa8a370 440 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
873b73c0
PM
441 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
442 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
bfa8a370
RH
443 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
444
445 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
446 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
447 hwcaps |= ARM_HWCAP_ARM_VFPv3;
448 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
449 hwcaps |= ARM_HWCAP_ARM_VFPD32;
450 } else {
451 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
452 }
453 }
454 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
adf050b1
BC
455
456 return hwcaps;
457}
afce2927 458
ad6919dc
PM
459static uint32_t get_elf_hwcap2(void)
460{
461 ARMCPU *cpu = ARM_CPU(thread_cpu);
462 uint32_t hwcaps = 0;
463
962fcbf2
RH
464 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
465 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
466 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
467 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
468 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
ad6919dc
PM
469 return hwcaps;
470}
471
472#undef GET_FEATURE
962fcbf2 473#undef GET_FEATURE_ID
ad6919dc 474
13ec4ec3
RH
475#define ELF_PLATFORM get_elf_platform()
476
477static const char *get_elf_platform(void)
478{
479 CPUARMState *env = thread_cpu->env_ptr;
480
481#ifdef TARGET_WORDS_BIGENDIAN
482# define END "b"
483#else
484# define END "l"
485#endif
486
487 if (arm_feature(env, ARM_FEATURE_V8)) {
488 return "v8" END;
489 } else if (arm_feature(env, ARM_FEATURE_V7)) {
490 if (arm_feature(env, ARM_FEATURE_M)) {
491 return "v7m" END;
492 } else {
493 return "v7" END;
494 }
495 } else if (arm_feature(env, ARM_FEATURE_V6)) {
496 return "v6" END;
497 } else if (arm_feature(env, ARM_FEATURE_V5)) {
498 return "v5" END;
499 } else {
500 return "v4" END;
501 }
502
503#undef END
504}
505
24e76ff0
PM
506#else
507/* 64 bit ARM definitions */
508#define ELF_START_MMAP 0x80000000
509
b597c3f7 510#define ELF_ARCH EM_AARCH64
24e76ff0 511#define ELF_CLASS ELFCLASS64
e20e3ec9
RH
512#ifdef TARGET_WORDS_BIGENDIAN
513# define ELF_PLATFORM "aarch64_be"
514#else
515# define ELF_PLATFORM "aarch64"
516#endif
24e76ff0
PM
517
518static inline void init_thread(struct target_pt_regs *regs,
519 struct image_info *infop)
520{
521 abi_long stack = infop->start_stack;
522 memset(regs, 0, sizeof(*regs));
523
524 regs->pc = infop->entry & ~0x3ULL;
525 regs->sp = stack;
526}
527
528#define ELF_NREG 34
529typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
530
531static void elf_core_copy_regs(target_elf_gregset_t *regs,
532 const CPUARMState *env)
533{
534 int i;
535
536 for (i = 0; i < 32; i++) {
537 (*regs)[i] = tswapreg(env->xregs[i]);
538 }
539 (*regs)[32] = tswapreg(env->pc);
540 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
541}
542
543#define USE_ELF_CORE_DUMP
544#define ELF_EXEC_PAGESIZE 4096
545
546enum {
547 ARM_HWCAP_A64_FP = 1 << 0,
548 ARM_HWCAP_A64_ASIMD = 1 << 1,
549 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
550 ARM_HWCAP_A64_AES = 1 << 3,
551 ARM_HWCAP_A64_PMULL = 1 << 4,
552 ARM_HWCAP_A64_SHA1 = 1 << 5,
553 ARM_HWCAP_A64_SHA2 = 1 << 6,
554 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
555 ARM_HWCAP_A64_ATOMICS = 1 << 8,
556 ARM_HWCAP_A64_FPHP = 1 << 9,
557 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
558 ARM_HWCAP_A64_CPUID = 1 << 11,
559 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
560 ARM_HWCAP_A64_JSCVT = 1 << 13,
561 ARM_HWCAP_A64_FCMA = 1 << 14,
562 ARM_HWCAP_A64_LRCPC = 1 << 15,
563 ARM_HWCAP_A64_DCPOP = 1 << 16,
564 ARM_HWCAP_A64_SHA3 = 1 << 17,
565 ARM_HWCAP_A64_SM3 = 1 << 18,
566 ARM_HWCAP_A64_SM4 = 1 << 19,
567 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
568 ARM_HWCAP_A64_SHA512 = 1 << 21,
569 ARM_HWCAP_A64_SVE = 1 << 22,
0083a1fa
RH
570 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
571 ARM_HWCAP_A64_DIT = 1 << 24,
572 ARM_HWCAP_A64_USCAT = 1 << 25,
573 ARM_HWCAP_A64_ILRCPC = 1 << 26,
574 ARM_HWCAP_A64_FLAGM = 1 << 27,
575 ARM_HWCAP_A64_SSBS = 1 << 28,
576 ARM_HWCAP_A64_SB = 1 << 29,
577 ARM_HWCAP_A64_PACA = 1 << 30,
578 ARM_HWCAP_A64_PACG = 1UL << 31,
2041df4a
RH
579
580 ARM_HWCAP2_A64_DCPODP = 1 << 0,
581 ARM_HWCAP2_A64_SVE2 = 1 << 1,
582 ARM_HWCAP2_A64_SVEAES = 1 << 2,
583 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
584 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
585 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
586 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
587 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
588 ARM_HWCAP2_A64_FRINT = 1 << 8,
24e76ff0
PM
589};
590
2041df4a
RH
591#define ELF_HWCAP get_elf_hwcap()
592#define ELF_HWCAP2 get_elf_hwcap2()
593
594#define GET_FEATURE_ID(feat, hwcap) \
595 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
24e76ff0
PM
596
597static uint32_t get_elf_hwcap(void)
598{
599 ARMCPU *cpu = ARM_CPU(thread_cpu);
600 uint32_t hwcaps = 0;
601
602 hwcaps |= ARM_HWCAP_A64_FP;
603 hwcaps |= ARM_HWCAP_A64_ASIMD;
37020ff1 604 hwcaps |= ARM_HWCAP_A64_CPUID;
24e76ff0
PM
605
606 /* probe for the extra features */
962fcbf2
RH
607
608 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
609 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
610 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
611 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
612 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
613 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
614 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
615 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
616 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
5763190f 617 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
962fcbf2
RH
618 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
619 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
620 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
621 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
cd208a1c 622 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
29d26ab2 623 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
1c9af3a9
RH
624 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
625 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
9888bd1e 626 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
b89d9c98 627 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
0d57b499 628 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
2677cf9f 629 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
a1229109 630 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
962fcbf2 631
2041df4a
RH
632 return hwcaps;
633}
634
635static uint32_t get_elf_hwcap2(void)
636{
637 ARMCPU *cpu = ARM_CPU(thread_cpu);
638 uint32_t hwcaps = 0;
639
0d57b499 640 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
2041df4a
RH
641 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
642 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
24e76ff0
PM
643
644 return hwcaps;
645}
646
2041df4a
RH
647#undef GET_FEATURE_ID
648
24e76ff0
PM
649#endif /* not TARGET_AARCH64 */
650#endif /* TARGET_ARM */
30ac07d4 651
853d6f7a 652#ifdef TARGET_SPARC
a315a145 653#ifdef TARGET_SPARC64
853d6f7a
FB
654
655#define ELF_START_MMAP 0x80000000
cf973e46
AT
656#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
657 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 658#ifndef TARGET_ABI32
cb33da57 659#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
660#else
661#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
662#endif
853d6f7a 663
a315a145 664#define ELF_CLASS ELFCLASS64
5ef54116
FB
665#define ELF_ARCH EM_SPARCV9
666
d97ef72e 667#define STACK_BIAS 2047
a315a145 668
d97ef72e
RH
669static inline void init_thread(struct target_pt_regs *regs,
670 struct image_info *infop)
a315a145 671{
992f48a0 672#ifndef TARGET_ABI32
a315a145 673 regs->tstate = 0;
992f48a0 674#endif
a315a145
FB
675 regs->pc = infop->entry;
676 regs->npc = regs->pc + 4;
677 regs->y = 0;
992f48a0
BS
678#ifdef TARGET_ABI32
679 regs->u_regs[14] = infop->start_stack - 16 * 4;
680#else
cb33da57
BS
681 if (personality(infop->personality) == PER_LINUX32)
682 regs->u_regs[14] = infop->start_stack - 16 * 4;
683 else
684 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 685#endif
a315a145
FB
686}
687
688#else
689#define ELF_START_MMAP 0x80000000
cf973e46
AT
690#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
691 | HWCAP_SPARC_MULDIV)
a315a145 692
853d6f7a 693#define ELF_CLASS ELFCLASS32
853d6f7a
FB
694#define ELF_ARCH EM_SPARC
695
d97ef72e
RH
696static inline void init_thread(struct target_pt_regs *regs,
697 struct image_info *infop)
853d6f7a 698{
f5155289
FB
699 regs->psr = 0;
700 regs->pc = infop->entry;
701 regs->npc = regs->pc + 4;
702 regs->y = 0;
703 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
704}
705
a315a145 706#endif
853d6f7a
FB
707#endif
708
67867308
FB
709#ifdef TARGET_PPC
710
4ecd4d16 711#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
712#define ELF_START_MMAP 0x80000000
713
e85e7c6e 714#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
715
716#define elf_check_arch(x) ( (x) == EM_PPC64 )
717
d97ef72e 718#define ELF_CLASS ELFCLASS64
84409ddb
JM
719
720#else
721
d97ef72e 722#define ELF_CLASS ELFCLASS32
84409ddb
JM
723
724#endif
725
d97ef72e 726#define ELF_ARCH EM_PPC
67867308 727
df84e4f3
NF
728/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
729 See arch/powerpc/include/asm/cputable.h. */
730enum {
3efa9a67 731 QEMU_PPC_FEATURE_32 = 0x80000000,
732 QEMU_PPC_FEATURE_64 = 0x40000000,
733 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
734 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
735 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
736 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
737 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
738 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
739 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
740 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
741 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
742 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
743 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
744 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
745 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
746 QEMU_PPC_FEATURE_CELL = 0x00010000,
747 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
748 QEMU_PPC_FEATURE_SMT = 0x00004000,
749 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
750 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
751 QEMU_PPC_FEATURE_PA6T = 0x00000800,
752 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
753 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
754 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
755 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
756 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
757
758 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
759 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
760
761 /* Feature definitions in AT_HWCAP2. */
762 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
763 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
764 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
765 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
766 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
767 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
24c373ec
LV
768 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
769 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
be0c46d4 770 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
24c373ec
LV
771 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
772 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
773 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
774 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
df84e4f3
NF
775};
776
777#define ELF_HWCAP get_elf_hwcap()
778
779static uint32_t get_elf_hwcap(void)
780{
a2247f8e 781 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
782 uint32_t features = 0;
783
784 /* We don't have to be terribly complete here; the high points are
785 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 786#define GET_FEATURE(flag, feature) \
a2247f8e 787 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
788#define GET_FEATURE2(flags, feature) \
789 do { \
790 if ((cpu->env.insns_flags2 & flags) == flags) { \
791 features |= feature; \
792 } \
793 } while (0)
3efa9a67 794 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
795 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
796 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
797 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
798 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
799 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
800 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
801 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
802 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
803 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
804 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
805 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
806 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 807#undef GET_FEATURE
0e019746 808#undef GET_FEATURE2
df84e4f3
NF
809
810 return features;
811}
812
a60438dd
TM
813#define ELF_HWCAP2 get_elf_hwcap2()
814
815static uint32_t get_elf_hwcap2(void)
816{
817 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
818 uint32_t features = 0;
819
820#define GET_FEATURE(flag, feature) \
821 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
822#define GET_FEATURE2(flag, feature) \
823 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
824
825 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
826 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
827 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
24c373ec
LV
828 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
829 QEMU_PPC_FEATURE2_VEC_CRYPTO);
830 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
831 QEMU_PPC_FEATURE2_DARN);
a60438dd
TM
832
833#undef GET_FEATURE
834#undef GET_FEATURE2
835
836 return features;
837}
838
f5155289
FB
839/*
840 * The requirements here are:
841 * - keep the final alignment of sp (sp & 0xf)
842 * - make sure the 32-bit value at the first 16 byte aligned position of
843 * AUXV is greater than 16 for glibc compatibility.
844 * AT_IGNOREPPC is used for that.
845 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
846 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
847 */
0bccf03d 848#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
849#define ARCH_DLINFO \
850 do { \
623e250a 851 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 852 /* \
82991bed
PM
853 * Handle glibc compatibility: these magic entries must \
854 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
855 */ \
856 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
857 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
858 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
859 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
860 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 861 } while (0)
f5155289 862
67867308
FB
863static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
864{
67867308 865 _regs->gpr[1] = infop->start_stack;
e85e7c6e 866#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 867 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
868 uint64_t val;
869 get_user_u64(val, infop->entry + 8);
870 _regs->gpr[2] = val + infop->load_bias;
871 get_user_u64(val, infop->entry);
872 infop->entry = val + infop->load_bias;
d90b94cd
DK
873 } else {
874 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
875 }
84409ddb 876#endif
67867308
FB
877 _regs->nip = infop->entry;
878}
879
e2f3e741
NF
880/* See linux kernel: arch/powerpc/include/asm/elf.h. */
881#define ELF_NREG 48
882typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
883
05390248 884static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
885{
886 int i;
887 target_ulong ccr = 0;
888
889 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 890 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
891 }
892
86cd7b2d
PB
893 (*regs)[32] = tswapreg(env->nip);
894 (*regs)[33] = tswapreg(env->msr);
895 (*regs)[35] = tswapreg(env->ctr);
896 (*regs)[36] = tswapreg(env->lr);
897 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
898
899 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
900 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
901 }
86cd7b2d 902 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
903}
904
905#define USE_ELF_CORE_DUMP
d97ef72e 906#define ELF_EXEC_PAGESIZE 4096
67867308
FB
907
908#endif
909
048f6b4d
FB
910#ifdef TARGET_MIPS
911
912#define ELF_START_MMAP 0x80000000
913
388bb21a
TS
914#ifdef TARGET_MIPS64
915#define ELF_CLASS ELFCLASS64
916#else
048f6b4d 917#define ELF_CLASS ELFCLASS32
388bb21a 918#endif
048f6b4d
FB
919#define ELF_ARCH EM_MIPS
920
f72541f3
AM
921#define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
922
ace3d654
CMAB
923#ifdef TARGET_ABI_MIPSN32
924#define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
925#else
926#define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
927#endif
928
d97ef72e
RH
929static inline void init_thread(struct target_pt_regs *regs,
930 struct image_info *infop)
048f6b4d 931{
623a930e 932 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
933 regs->cp0_epc = infop->entry;
934 regs->regs[29] = infop->start_stack;
935}
936
51e52606
NF
937/* See linux kernel: arch/mips/include/asm/elf.h. */
938#define ELF_NREG 45
939typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
940
941/* See linux kernel: arch/mips/include/asm/reg.h. */
942enum {
943#ifdef TARGET_MIPS64
944 TARGET_EF_R0 = 0,
945#else
946 TARGET_EF_R0 = 6,
947#endif
948 TARGET_EF_R26 = TARGET_EF_R0 + 26,
949 TARGET_EF_R27 = TARGET_EF_R0 + 27,
950 TARGET_EF_LO = TARGET_EF_R0 + 32,
951 TARGET_EF_HI = TARGET_EF_R0 + 33,
952 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
953 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
954 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
955 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
956};
957
958/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 959static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
960{
961 int i;
962
963 for (i = 0; i < TARGET_EF_R0; i++) {
964 (*regs)[i] = 0;
965 }
966 (*regs)[TARGET_EF_R0] = 0;
967
968 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 969 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
970 }
971
972 (*regs)[TARGET_EF_R26] = 0;
973 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
974 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
975 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
976 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
977 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
978 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
979 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
980}
981
982#define USE_ELF_CORE_DUMP
388bb21a
TS
983#define ELF_EXEC_PAGESIZE 4096
984
46a1ee4f
JC
985/* See arch/mips/include/uapi/asm/hwcap.h. */
986enum {
987 HWCAP_MIPS_R6 = (1 << 0),
988 HWCAP_MIPS_MSA = (1 << 1),
9ea313ba
PMD
989 HWCAP_MIPS_CRC32 = (1 << 2),
990 HWCAP_MIPS_MIPS16 = (1 << 3),
991 HWCAP_MIPS_MDMX = (1 << 4),
992 HWCAP_MIPS_MIPS3D = (1 << 5),
993 HWCAP_MIPS_SMARTMIPS = (1 << 6),
994 HWCAP_MIPS_DSP = (1 << 7),
995 HWCAP_MIPS_DSP2 = (1 << 8),
996 HWCAP_MIPS_DSP3 = (1 << 9),
997 HWCAP_MIPS_MIPS16E2 = (1 << 10),
998 HWCAP_LOONGSON_MMI = (1 << 11),
999 HWCAP_LOONGSON_EXT = (1 << 12),
1000 HWCAP_LOONGSON_EXT2 = (1 << 13),
1001 HWCAP_LOONGSON_CPUCFG = (1 << 14),
46a1ee4f
JC
1002};
1003
1004#define ELF_HWCAP get_elf_hwcap()
1005
7d9a3d96 1006#define GET_FEATURE_INSN(_flag, _hwcap) \
6dd97bfc
PMD
1007 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1008
388765a0
PMD
1009#define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1010 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1011
ce543844
PMD
1012#define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1013 do { \
1014 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1015 hwcaps |= _hwcap; \
1016 } \
1017 } while (0)
1018
46a1ee4f
JC
1019static uint32_t get_elf_hwcap(void)
1020{
1021 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1022 uint32_t hwcaps = 0;
1023
ce543844
PMD
1024 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1025 2, HWCAP_MIPS_R6);
388765a0 1026 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
53673d0f
PMD
1027 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1028 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
46a1ee4f 1029
46a1ee4f
JC
1030 return hwcaps;
1031}
1032
ce543844 1033#undef GET_FEATURE_REG_EQU
388765a0 1034#undef GET_FEATURE_REG_SET
7d9a3d96 1035#undef GET_FEATURE_INSN
6dd97bfc 1036
048f6b4d
FB
1037#endif /* TARGET_MIPS */
1038
b779e29e
EI
1039#ifdef TARGET_MICROBLAZE
1040
1041#define ELF_START_MMAP 0x80000000
1042
0d5d4699 1043#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
1044
1045#define ELF_CLASS ELFCLASS32
0d5d4699 1046#define ELF_ARCH EM_MICROBLAZE
b779e29e 1047
d97ef72e
RH
1048static inline void init_thread(struct target_pt_regs *regs,
1049 struct image_info *infop)
b779e29e
EI
1050{
1051 regs->pc = infop->entry;
1052 regs->r1 = infop->start_stack;
1053
1054}
1055
b779e29e
EI
1056#define ELF_EXEC_PAGESIZE 4096
1057
e4cbd44d
EI
1058#define USE_ELF_CORE_DUMP
1059#define ELF_NREG 38
1060typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1061
1062/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1063static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
1064{
1065 int i, pos = 0;
1066
1067 for (i = 0; i < 32; i++) {
86cd7b2d 1068 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
1069 }
1070
af20a93a 1071 (*regs)[pos++] = tswapreg(env->pc);
1074c0fb 1072 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
af20a93a
RH
1073 (*regs)[pos++] = 0;
1074 (*regs)[pos++] = tswapreg(env->ear);
1075 (*regs)[pos++] = 0;
1076 (*regs)[pos++] = tswapreg(env->esr);
e4cbd44d
EI
1077}
1078
b779e29e
EI
1079#endif /* TARGET_MICROBLAZE */
1080
a0a839b6
MV
1081#ifdef TARGET_NIOS2
1082
1083#define ELF_START_MMAP 0x80000000
1084
1085#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1086
1087#define ELF_CLASS ELFCLASS32
1088#define ELF_ARCH EM_ALTERA_NIOS2
1089
1090static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1091{
1092 regs->ea = infop->entry;
1093 regs->sp = infop->start_stack;
1094 regs->estatus = 0x3;
1095}
1096
1097#define ELF_EXEC_PAGESIZE 4096
1098
1099#define USE_ELF_CORE_DUMP
1100#define ELF_NREG 49
1101typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1102
1103/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1104static void elf_core_copy_regs(target_elf_gregset_t *regs,
1105 const CPUNios2State *env)
1106{
1107 int i;
1108
1109 (*regs)[0] = -1;
1110 for (i = 1; i < 8; i++) /* r0-r7 */
1111 (*regs)[i] = tswapreg(env->regs[i + 7]);
1112
1113 for (i = 8; i < 16; i++) /* r8-r15 */
1114 (*regs)[i] = tswapreg(env->regs[i - 8]);
1115
1116 for (i = 16; i < 24; i++) /* r16-r23 */
1117 (*regs)[i] = tswapreg(env->regs[i + 7]);
1118 (*regs)[24] = -1; /* R_ET */
1119 (*regs)[25] = -1; /* R_BT */
1120 (*regs)[26] = tswapreg(env->regs[R_GP]);
1121 (*regs)[27] = tswapreg(env->regs[R_SP]);
1122 (*regs)[28] = tswapreg(env->regs[R_FP]);
1123 (*regs)[29] = tswapreg(env->regs[R_EA]);
1124 (*regs)[30] = -1; /* R_SSTATUS */
1125 (*regs)[31] = tswapreg(env->regs[R_RA]);
1126
1127 (*regs)[32] = tswapreg(env->regs[R_PC]);
1128
1129 (*regs)[33] = -1; /* R_STATUS */
1130 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1131
1132 for (i = 35; i < 49; i++) /* ... */
1133 (*regs)[i] = -1;
1134}
1135
1136#endif /* TARGET_NIOS2 */
1137
d962783e
JL
1138#ifdef TARGET_OPENRISC
1139
1140#define ELF_START_MMAP 0x08000000
1141
d962783e
JL
1142#define ELF_ARCH EM_OPENRISC
1143#define ELF_CLASS ELFCLASS32
1144#define ELF_DATA ELFDATA2MSB
1145
1146static inline void init_thread(struct target_pt_regs *regs,
1147 struct image_info *infop)
1148{
1149 regs->pc = infop->entry;
1150 regs->gpr[1] = infop->start_stack;
1151}
1152
1153#define USE_ELF_CORE_DUMP
1154#define ELF_EXEC_PAGESIZE 8192
1155
1156/* See linux kernel arch/openrisc/include/asm/elf.h. */
1157#define ELF_NREG 34 /* gprs and pc, sr */
1158typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1159
1160static void elf_core_copy_regs(target_elf_gregset_t *regs,
1161 const CPUOpenRISCState *env)
1162{
1163 int i;
1164
1165 for (i = 0; i < 32; i++) {
d89e71e8 1166 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1167 }
86cd7b2d 1168 (*regs)[32] = tswapreg(env->pc);
84775c43 1169 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1170}
1171#define ELF_HWCAP 0
1172#define ELF_PLATFORM NULL
1173
1174#endif /* TARGET_OPENRISC */
1175
fdf9b3e8
FB
1176#ifdef TARGET_SH4
1177
1178#define ELF_START_MMAP 0x80000000
1179
fdf9b3e8 1180#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1181#define ELF_ARCH EM_SH
1182
d97ef72e
RH
1183static inline void init_thread(struct target_pt_regs *regs,
1184 struct image_info *infop)
fdf9b3e8 1185{
d97ef72e
RH
1186 /* Check other registers XXXXX */
1187 regs->pc = infop->entry;
1188 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1189}
1190
7631c97e
NF
1191/* See linux kernel: arch/sh/include/asm/elf.h. */
1192#define ELF_NREG 23
1193typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1194
1195/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1196enum {
1197 TARGET_REG_PC = 16,
1198 TARGET_REG_PR = 17,
1199 TARGET_REG_SR = 18,
1200 TARGET_REG_GBR = 19,
1201 TARGET_REG_MACH = 20,
1202 TARGET_REG_MACL = 21,
1203 TARGET_REG_SYSCALL = 22
1204};
1205
d97ef72e 1206static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1207 const CPUSH4State *env)
7631c97e
NF
1208{
1209 int i;
1210
1211 for (i = 0; i < 16; i++) {
72cd500b 1212 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1213 }
1214
86cd7b2d
PB
1215 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1216 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1217 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1218 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1219 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1220 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1221 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1222}
1223
1224#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1225#define ELF_EXEC_PAGESIZE 4096
1226
e42fd944
RH
1227enum {
1228 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1229 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1230 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1231 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1232 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1233 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1234 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1235 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1236 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1237 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1238};
1239
1240#define ELF_HWCAP get_elf_hwcap()
1241
1242static uint32_t get_elf_hwcap(void)
1243{
1244 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1245 uint32_t hwcap = 0;
1246
1247 hwcap |= SH_CPU_HAS_FPU;
1248
1249 if (cpu->env.features & SH_FEATURE_SH4A) {
1250 hwcap |= SH_CPU_HAS_LLSC;
1251 }
1252
1253 return hwcap;
1254}
1255
fdf9b3e8
FB
1256#endif
1257
48733d19
TS
1258#ifdef TARGET_CRIS
1259
1260#define ELF_START_MMAP 0x80000000
1261
48733d19 1262#define ELF_CLASS ELFCLASS32
48733d19
TS
1263#define ELF_ARCH EM_CRIS
1264
d97ef72e
RH
1265static inline void init_thread(struct target_pt_regs *regs,
1266 struct image_info *infop)
48733d19 1267{
d97ef72e 1268 regs->erp = infop->entry;
48733d19
TS
1269}
1270
48733d19
TS
1271#define ELF_EXEC_PAGESIZE 8192
1272
1273#endif
1274
e6e5906b
PB
1275#ifdef TARGET_M68K
1276
1277#define ELF_START_MMAP 0x80000000
1278
d97ef72e 1279#define ELF_CLASS ELFCLASS32
d97ef72e 1280#define ELF_ARCH EM_68K
e6e5906b
PB
1281
1282/* ??? Does this need to do anything?
d97ef72e 1283 #define ELF_PLAT_INIT(_r) */
e6e5906b 1284
d97ef72e
RH
1285static inline void init_thread(struct target_pt_regs *regs,
1286 struct image_info *infop)
e6e5906b
PB
1287{
1288 regs->usp = infop->start_stack;
1289 regs->sr = 0;
1290 regs->pc = infop->entry;
1291}
1292
7a93cc55
NF
1293/* See linux kernel: arch/m68k/include/asm/elf.h. */
1294#define ELF_NREG 20
1295typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1296
05390248 1297static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1298{
86cd7b2d
PB
1299 (*regs)[0] = tswapreg(env->dregs[1]);
1300 (*regs)[1] = tswapreg(env->dregs[2]);
1301 (*regs)[2] = tswapreg(env->dregs[3]);
1302 (*regs)[3] = tswapreg(env->dregs[4]);
1303 (*regs)[4] = tswapreg(env->dregs[5]);
1304 (*regs)[5] = tswapreg(env->dregs[6]);
1305 (*regs)[6] = tswapreg(env->dregs[7]);
1306 (*regs)[7] = tswapreg(env->aregs[0]);
1307 (*regs)[8] = tswapreg(env->aregs[1]);
1308 (*regs)[9] = tswapreg(env->aregs[2]);
1309 (*regs)[10] = tswapreg(env->aregs[3]);
1310 (*regs)[11] = tswapreg(env->aregs[4]);
1311 (*regs)[12] = tswapreg(env->aregs[5]);
1312 (*regs)[13] = tswapreg(env->aregs[6]);
1313 (*regs)[14] = tswapreg(env->dregs[0]);
1314 (*regs)[15] = tswapreg(env->aregs[7]);
1315 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1316 (*regs)[17] = tswapreg(env->sr);
1317 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1318 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1319}
1320
1321#define USE_ELF_CORE_DUMP
d97ef72e 1322#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1323
1324#endif
1325
7a3148a9
JM
1326#ifdef TARGET_ALPHA
1327
1328#define ELF_START_MMAP (0x30000000000ULL)
1329
7a3148a9 1330#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1331#define ELF_ARCH EM_ALPHA
1332
d97ef72e
RH
1333static inline void init_thread(struct target_pt_regs *regs,
1334 struct image_info *infop)
7a3148a9
JM
1335{
1336 regs->pc = infop->entry;
1337 regs->ps = 8;
1338 regs->usp = infop->start_stack;
7a3148a9
JM
1339}
1340
7a3148a9
JM
1341#define ELF_EXEC_PAGESIZE 8192
1342
1343#endif /* TARGET_ALPHA */
1344
a4c075f1
UH
1345#ifdef TARGET_S390X
1346
1347#define ELF_START_MMAP (0x20000000000ULL)
1348
a4c075f1
UH
1349#define ELF_CLASS ELFCLASS64
1350#define ELF_DATA ELFDATA2MSB
1351#define ELF_ARCH EM_S390
1352
6d88baf1
DH
1353#include "elf.h"
1354
1355#define ELF_HWCAP get_elf_hwcap()
1356
1357#define GET_FEATURE(_feat, _hwcap) \
1358 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1359
1360static uint32_t get_elf_hwcap(void)
1361{
1362 /*
1363 * Let's assume we always have esan3 and zarch.
1364 * 31-bit processes can use 64-bit registers (high gprs).
1365 */
1366 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1367
1368 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1369 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1370 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1371 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1372 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1373 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1374 hwcap |= HWCAP_S390_ETF3EH;
1375 }
1376 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1377
1378 return hwcap;
1379}
1380
a4c075f1
UH
1381static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1382{
1383 regs->psw.addr = infop->entry;
1384 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1385 regs->gprs[15] = infop->start_stack;
1386}
1387
1388#endif /* TARGET_S390X */
1389
b16189b2
CG
1390#ifdef TARGET_TILEGX
1391
1392/* 42 bits real used address, a half for user mode */
1393#define ELF_START_MMAP (0x00000020000000000ULL)
1394
1395#define elf_check_arch(x) ((x) == EM_TILEGX)
1396
1397#define ELF_CLASS ELFCLASS64
1398#define ELF_DATA ELFDATA2LSB
1399#define ELF_ARCH EM_TILEGX
1400
1401static inline void init_thread(struct target_pt_regs *regs,
1402 struct image_info *infop)
1403{
1404 regs->pc = infop->entry;
1405 regs->sp = infop->start_stack;
1406
1407}
1408
1409#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1410
1411#endif /* TARGET_TILEGX */
1412
47ae93cd
MC
1413#ifdef TARGET_RISCV
1414
1415#define ELF_START_MMAP 0x80000000
1416#define ELF_ARCH EM_RISCV
1417
1418#ifdef TARGET_RISCV32
1419#define ELF_CLASS ELFCLASS32
1420#else
1421#define ELF_CLASS ELFCLASS64
1422#endif
1423
1424static inline void init_thread(struct target_pt_regs *regs,
1425 struct image_info *infop)
1426{
1427 regs->sepc = infop->entry;
1428 regs->sp = infop->start_stack;
1429}
1430
1431#define ELF_EXEC_PAGESIZE 4096
1432
1433#endif /* TARGET_RISCV */
1434
7c248bcd
RH
1435#ifdef TARGET_HPPA
1436
1437#define ELF_START_MMAP 0x80000000
1438#define ELF_CLASS ELFCLASS32
1439#define ELF_ARCH EM_PARISC
1440#define ELF_PLATFORM "PARISC"
1441#define STACK_GROWS_DOWN 0
1442#define STACK_ALIGNMENT 64
1443
1444static inline void init_thread(struct target_pt_regs *regs,
1445 struct image_info *infop)
1446{
1447 regs->iaoq[0] = infop->entry;
1448 regs->iaoq[1] = infop->entry + 4;
1449 regs->gr[23] = 0;
1450 regs->gr[24] = infop->arg_start;
1451 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1452 /* The top-of-stack contains a linkage buffer. */
1453 regs->gr[30] = infop->start_stack + 64;
1454 regs->gr[31] = infop->entry;
1455}
1456
1457#endif /* TARGET_HPPA */
1458
ba7651fb
MF
1459#ifdef TARGET_XTENSA
1460
1461#define ELF_START_MMAP 0x20000000
1462
1463#define ELF_CLASS ELFCLASS32
1464#define ELF_ARCH EM_XTENSA
1465
1466static inline void init_thread(struct target_pt_regs *regs,
1467 struct image_info *infop)
1468{
1469 regs->windowbase = 0;
1470 regs->windowstart = 1;
1471 regs->areg[1] = infop->start_stack;
1472 regs->pc = infop->entry;
1473}
1474
1475/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1476#define ELF_NREG 128
1477typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1478
1479enum {
1480 TARGET_REG_PC,
1481 TARGET_REG_PS,
1482 TARGET_REG_LBEG,
1483 TARGET_REG_LEND,
1484 TARGET_REG_LCOUNT,
1485 TARGET_REG_SAR,
1486 TARGET_REG_WINDOWSTART,
1487 TARGET_REG_WINDOWBASE,
1488 TARGET_REG_THREADPTR,
1489 TARGET_REG_AR0 = 64,
1490};
1491
1492static void elf_core_copy_regs(target_elf_gregset_t *regs,
1493 const CPUXtensaState *env)
1494{
1495 unsigned i;
1496
1497 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1498 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1499 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1500 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1501 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1502 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1503 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1504 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1505 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1506 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1507 for (i = 0; i < env->config->nareg; ++i) {
1508 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1509 }
1510}
1511
1512#define USE_ELF_CORE_DUMP
1513#define ELF_EXEC_PAGESIZE 4096
1514
1515#endif /* TARGET_XTENSA */
1516
15338fd7
FB
1517#ifndef ELF_PLATFORM
1518#define ELF_PLATFORM (NULL)
1519#endif
1520
75be901c
PC
1521#ifndef ELF_MACHINE
1522#define ELF_MACHINE ELF_ARCH
1523#endif
1524
d276a604
PC
1525#ifndef elf_check_arch
1526#define elf_check_arch(x) ((x) == ELF_ARCH)
1527#endif
1528
ace3d654
CMAB
1529#ifndef elf_check_abi
1530#define elf_check_abi(x) (1)
1531#endif
1532
15338fd7
FB
1533#ifndef ELF_HWCAP
1534#define ELF_HWCAP 0
1535#endif
1536
7c4ee5bc
RH
1537#ifndef STACK_GROWS_DOWN
1538#define STACK_GROWS_DOWN 1
1539#endif
1540
1541#ifndef STACK_ALIGNMENT
1542#define STACK_ALIGNMENT 16
1543#endif
1544
992f48a0 1545#ifdef TARGET_ABI32
cb33da57 1546#undef ELF_CLASS
992f48a0 1547#define ELF_CLASS ELFCLASS32
cb33da57
BS
1548#undef bswaptls
1549#define bswaptls(ptr) bswap32s(ptr)
1550#endif
1551
31e31b8a 1552#include "elf.h"
09bfb054 1553
e8384b37
RH
1554/* We must delay the following stanzas until after "elf.h". */
1555#if defined(TARGET_AARCH64)
1556
1557static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1558 const uint32_t *data,
1559 struct image_info *info,
1560 Error **errp)
1561{
1562 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1563 if (pr_datasz != sizeof(uint32_t)) {
1564 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1565 return false;
1566 }
1567 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1568 info->note_flags = *data;
1569 }
1570 return true;
1571}
1572#define ARCH_USE_GNU_PROPERTY 1
1573
1574#else
1575
83f990eb
RH
1576static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1577 const uint32_t *data,
1578 struct image_info *info,
1579 Error **errp)
1580{
1581 g_assert_not_reached();
1582}
1583#define ARCH_USE_GNU_PROPERTY 0
1584
e8384b37
RH
1585#endif
1586
09bfb054
FB
1587struct exec
1588{
d97ef72e
RH
1589 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1590 unsigned int a_text; /* length of text, in bytes */
1591 unsigned int a_data; /* length of data, in bytes */
1592 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1593 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1594 unsigned int a_entry; /* start address */
1595 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1596 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1597};
1598
1599
1600#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1601#define OMAGIC 0407
1602#define NMAGIC 0410
1603#define ZMAGIC 0413
1604#define QMAGIC 0314
1605
31e31b8a 1606/* Necessary parameters */
94894ff2
SB
1607#define TARGET_ELF_EXEC_PAGESIZE \
1608 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1609 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1610#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
79cb1f1d
YK
1611#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1612 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1613#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1614
e0d1673d 1615#define DLINFO_ITEMS 16
31e31b8a 1616
09bfb054
FB
1617static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1618{
d97ef72e 1619 memcpy(to, from, n);
09bfb054 1620}
d691f669 1621
31e31b8a 1622#ifdef BSWAP_NEEDED
92a31b1f 1623static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1624{
d97ef72e
RH
1625 bswap16s(&ehdr->e_type); /* Object file type */
1626 bswap16s(&ehdr->e_machine); /* Architecture */
1627 bswap32s(&ehdr->e_version); /* Object file version */
1628 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1629 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1630 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1631 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1632 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1633 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1634 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1635 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1636 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1637 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1638}
1639
991f8f0c 1640static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1641{
991f8f0c
RH
1642 int i;
1643 for (i = 0; i < phnum; ++i, ++phdr) {
1644 bswap32s(&phdr->p_type); /* Segment type */
1645 bswap32s(&phdr->p_flags); /* Segment flags */
1646 bswaptls(&phdr->p_offset); /* Segment file offset */
1647 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1648 bswaptls(&phdr->p_paddr); /* Segment physical address */
1649 bswaptls(&phdr->p_filesz); /* Segment size in file */
1650 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1651 bswaptls(&phdr->p_align); /* Segment alignment */
1652 }
31e31b8a 1653}
689f936f 1654
991f8f0c 1655static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1656{
991f8f0c
RH
1657 int i;
1658 for (i = 0; i < shnum; ++i, ++shdr) {
1659 bswap32s(&shdr->sh_name);
1660 bswap32s(&shdr->sh_type);
1661 bswaptls(&shdr->sh_flags);
1662 bswaptls(&shdr->sh_addr);
1663 bswaptls(&shdr->sh_offset);
1664 bswaptls(&shdr->sh_size);
1665 bswap32s(&shdr->sh_link);
1666 bswap32s(&shdr->sh_info);
1667 bswaptls(&shdr->sh_addralign);
1668 bswaptls(&shdr->sh_entsize);
1669 }
689f936f
FB
1670}
1671
7a3148a9 1672static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1673{
1674 bswap32s(&sym->st_name);
7a3148a9
JM
1675 bswaptls(&sym->st_value);
1676 bswaptls(&sym->st_size);
689f936f
FB
1677 bswap16s(&sym->st_shndx);
1678}
5dd0db52
SM
1679
1680#ifdef TARGET_MIPS
1681static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1682{
1683 bswap16s(&abiflags->version);
1684 bswap32s(&abiflags->ases);
1685 bswap32s(&abiflags->isa_ext);
1686 bswap32s(&abiflags->flags1);
1687 bswap32s(&abiflags->flags2);
1688}
1689#endif
991f8f0c
RH
1690#else
1691static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1692static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1693static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1694static inline void bswap_sym(struct elf_sym *sym) { }
5dd0db52
SM
1695#ifdef TARGET_MIPS
1696static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1697#endif
31e31b8a
FB
1698#endif
1699
edf8e2af 1700#ifdef USE_ELF_CORE_DUMP
9349b4f9 1701static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1702#endif /* USE_ELF_CORE_DUMP */
682674b8 1703static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1704
9058abdd
RH
1705/* Verify the portions of EHDR within E_IDENT for the target.
1706 This can be performed before bswapping the entire header. */
1707static bool elf_check_ident(struct elfhdr *ehdr)
1708{
1709 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1710 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1711 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1712 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1713 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1714 && ehdr->e_ident[EI_DATA] == ELF_DATA
1715 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1716}
1717
1718/* Verify the portions of EHDR outside of E_IDENT for the target.
1719 This has to wait until after bswapping the header. */
1720static bool elf_check_ehdr(struct elfhdr *ehdr)
1721{
1722 return (elf_check_arch(ehdr->e_machine)
ace3d654 1723 && elf_check_abi(ehdr->e_flags)
9058abdd
RH
1724 && ehdr->e_ehsize == sizeof(struct elfhdr)
1725 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1726 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1727}
1728
31e31b8a 1729/*
e5fe0c52 1730 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1731 * memory to free pages in kernel mem. These are in a format ready
1732 * to be put directly into the top of new user memory.
1733 *
1734 */
59baae9a
SB
1735static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1736 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1737{
59baae9a 1738 char *tmp;
7c4ee5bc 1739 int len, i;
59baae9a 1740 abi_ulong top = p;
31e31b8a
FB
1741
1742 if (!p) {
d97ef72e 1743 return 0; /* bullet-proofing */
31e31b8a 1744 }
59baae9a 1745
7c4ee5bc
RH
1746 if (STACK_GROWS_DOWN) {
1747 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1748 for (i = argc - 1; i >= 0; --i) {
1749 tmp = argv[i];
1750 if (!tmp) {
1751 fprintf(stderr, "VFS: argc is wrong");
1752 exit(-1);
1753 }
1754 len = strlen(tmp) + 1;
1755 tmp += len;
59baae9a 1756
7c4ee5bc
RH
1757 if (len > (p - stack_limit)) {
1758 return 0;
1759 }
1760 while (len) {
1761 int bytes_to_copy = (len > offset) ? offset : len;
1762 tmp -= bytes_to_copy;
1763 p -= bytes_to_copy;
1764 offset -= bytes_to_copy;
1765 len -= bytes_to_copy;
1766
1767 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1768
1769 if (offset == 0) {
1770 memcpy_to_target(p, scratch, top - p);
1771 top = p;
1772 offset = TARGET_PAGE_SIZE;
1773 }
1774 }
d97ef72e 1775 }
7c4ee5bc
RH
1776 if (p != top) {
1777 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1778 }
7c4ee5bc
RH
1779 } else {
1780 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1781 for (i = 0; i < argc; ++i) {
1782 tmp = argv[i];
1783 if (!tmp) {
1784 fprintf(stderr, "VFS: argc is wrong");
1785 exit(-1);
1786 }
1787 len = strlen(tmp) + 1;
1788 if (len > (stack_limit - p)) {
1789 return 0;
1790 }
1791 while (len) {
1792 int bytes_to_copy = (len > remaining) ? remaining : len;
1793
1794 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1795
1796 tmp += bytes_to_copy;
1797 remaining -= bytes_to_copy;
1798 p += bytes_to_copy;
1799 len -= bytes_to_copy;
1800
1801 if (remaining == 0) {
1802 memcpy_to_target(top, scratch, p - top);
1803 top = p;
1804 remaining = TARGET_PAGE_SIZE;
1805 }
d97ef72e
RH
1806 }
1807 }
7c4ee5bc
RH
1808 if (p != top) {
1809 memcpy_to_target(top, scratch, p - top);
1810 }
59baae9a
SB
1811 }
1812
31e31b8a
FB
1813 return p;
1814}
1815
59baae9a
SB
1816/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1817 * argument/environment space. Newer kernels (>2.6.33) allow more,
1818 * dependent on stack size, but guarantee at least 32 pages for
1819 * backwards compatibility.
1820 */
1821#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1822
1823static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1824 struct image_info *info)
53a5960a 1825{
59baae9a 1826 abi_ulong size, error, guard;
31e31b8a 1827
703e0e89 1828 size = guest_stack_size;
59baae9a
SB
1829 if (size < STACK_LOWER_LIMIT) {
1830 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1831 }
1832 guard = TARGET_PAGE_SIZE;
1833 if (guard < qemu_real_host_page_size) {
1834 guard = qemu_real_host_page_size;
1835 }
1836
1837 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1838 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1839 if (error == -1) {
60dcbcb5 1840 perror("mmap stack");
09bfb054
FB
1841 exit(-1);
1842 }
31e31b8a 1843
60dcbcb5 1844 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1845 if (STACK_GROWS_DOWN) {
1846 target_mprotect(error, guard, PROT_NONE);
1847 info->stack_limit = error + guard;
1848 return info->stack_limit + size - sizeof(void *);
1849 } else {
1850 target_mprotect(error + size, guard, PROT_NONE);
1851 info->stack_limit = error + size;
1852 return error;
1853 }
31e31b8a
FB
1854}
1855
cf129f3a
RH
1856/* Map and zero the bss. We need to explicitly zero any fractional pages
1857 after the data section (i.e. bss). */
1858static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1859{
cf129f3a
RH
1860 uintptr_t host_start, host_map_start, host_end;
1861
1862 last_bss = TARGET_PAGE_ALIGN(last_bss);
1863
1864 /* ??? There is confusion between qemu_real_host_page_size and
1865 qemu_host_page_size here and elsewhere in target_mmap, which
1866 may lead to the end of the data section mapping from the file
1867 not being mapped. At least there was an explicit test and
1868 comment for that here, suggesting that "the file size must
1869 be known". The comment probably pre-dates the introduction
1870 of the fstat system call in target_mmap which does in fact
1871 find out the size. What isn't clear is if the workaround
1872 here is still actually needed. For now, continue with it,
1873 but merge it with the "normal" mmap that would allocate the bss. */
1874
1875 host_start = (uintptr_t) g2h(elf_bss);
1876 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1877 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1878
1879 if (host_map_start < host_end) {
1880 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1881 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1882 if (p == MAP_FAILED) {
1883 perror("cannot mmap brk");
1884 exit(-1);
853d6f7a 1885 }
f46e9a0b 1886 }
853d6f7a 1887
f46e9a0b
TM
1888 /* Ensure that the bss page(s) are valid */
1889 if ((page_get_flags(last_bss-1) & prot) != prot) {
1890 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1891 }
31e31b8a 1892
cf129f3a
RH
1893 if (host_start < host_map_start) {
1894 memset((void *)host_start, 0, host_map_start - host_start);
1895 }
1896}
53a5960a 1897
cf58affe
CL
1898#ifdef TARGET_ARM
1899static int elf_is_fdpic(struct elfhdr *exec)
1900{
1901 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1902}
1903#else
a99856cd
CL
1904/* Default implementation, always false. */
1905static int elf_is_fdpic(struct elfhdr *exec)
1906{
1907 return 0;
1908}
cf58affe 1909#endif
a99856cd 1910
1af02e83
MF
1911static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1912{
1913 uint16_t n;
1914 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1915
1916 /* elf32_fdpic_loadseg */
1917 n = info->nsegs;
1918 while (n--) {
1919 sp -= 12;
1920 put_user_u32(loadsegs[n].addr, sp+0);
1921 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1922 put_user_u32(loadsegs[n].p_memsz, sp+8);
1923 }
1924
1925 /* elf32_fdpic_loadmap */
1926 sp -= 4;
1927 put_user_u16(0, sp+0); /* version */
1928 put_user_u16(info->nsegs, sp+2); /* nsegs */
1929
1930 info->personality = PER_LINUX_FDPIC;
1931 info->loadmap_addr = sp;
1932
1933 return sp;
1934}
1af02e83 1935
992f48a0 1936static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1937 struct elfhdr *exec,
1938 struct image_info *info,
1939 struct image_info *interp_info)
31e31b8a 1940{
d97ef72e 1941 abi_ulong sp;
7c4ee5bc 1942 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1943 int size;
14322bad
LA
1944 int i;
1945 abi_ulong u_rand_bytes;
1946 uint8_t k_rand_bytes[16];
d97ef72e
RH
1947 abi_ulong u_platform;
1948 const char *k_platform;
1949 const int n = sizeof(elf_addr_t);
1950
1951 sp = p;
1af02e83 1952
1af02e83
MF
1953 /* Needs to be before we load the env/argc/... */
1954 if (elf_is_fdpic(exec)) {
1955 /* Need 4 byte alignment for these structs */
1956 sp &= ~3;
1957 sp = loader_build_fdpic_loadmap(info, sp);
1958 info->other_info = interp_info;
1959 if (interp_info) {
1960 interp_info->other_info = info;
1961 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
1962 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1963 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1964 } else {
1965 info->interpreter_loadmap_addr = 0;
1966 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
1967 }
1968 }
1af02e83 1969
d97ef72e
RH
1970 u_platform = 0;
1971 k_platform = ELF_PLATFORM;
1972 if (k_platform) {
1973 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1974 if (STACK_GROWS_DOWN) {
1975 sp -= (len + n - 1) & ~(n - 1);
1976 u_platform = sp;
1977 /* FIXME - check return value of memcpy_to_target() for failure */
1978 memcpy_to_target(sp, k_platform, len);
1979 } else {
1980 memcpy_to_target(sp, k_platform, len);
1981 u_platform = sp;
1982 sp += len + 1;
1983 }
1984 }
1985
1986 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1987 * the argv and envp pointers.
1988 */
1989 if (STACK_GROWS_DOWN) {
1990 sp = QEMU_ALIGN_DOWN(sp, 16);
1991 } else {
1992 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1993 }
14322bad
LA
1994
1995 /*
c6a2377f 1996 * Generate 16 random bytes for userspace PRNG seeding.
14322bad 1997 */
c6a2377f 1998 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
7c4ee5bc
RH
1999 if (STACK_GROWS_DOWN) {
2000 sp -= 16;
2001 u_rand_bytes = sp;
2002 /* FIXME - check return value of memcpy_to_target() for failure */
2003 memcpy_to_target(sp, k_rand_bytes, 16);
2004 } else {
2005 memcpy_to_target(sp, k_rand_bytes, 16);
2006 u_rand_bytes = sp;
2007 sp += 16;
2008 }
14322bad 2009
d97ef72e
RH
2010 size = (DLINFO_ITEMS + 1) * 2;
2011 if (k_platform)
2012 size += 2;
f5155289 2013#ifdef DLINFO_ARCH_ITEMS
d97ef72e 2014 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
2015#endif
2016#ifdef ELF_HWCAP2
2017 size += 2;
f5155289 2018#endif
f516511e
PM
2019 info->auxv_len = size * n;
2020
d97ef72e 2021 size += envc + argc + 2;
b9329d4b 2022 size += 1; /* argc itself */
d97ef72e 2023 size *= n;
7c4ee5bc
RH
2024
2025 /* Allocate space and finalize stack alignment for entry now. */
2026 if (STACK_GROWS_DOWN) {
2027 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2028 sp = u_argc;
2029 } else {
2030 u_argc = sp;
2031 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2032 }
2033
2034 u_argv = u_argc + n;
2035 u_envp = u_argv + (argc + 1) * n;
2036 u_auxv = u_envp + (envc + 1) * n;
2037 info->saved_auxv = u_auxv;
2038 info->arg_start = u_argv;
2039 info->arg_end = u_argv + argc * n;
d97ef72e
RH
2040
2041 /* This is correct because Linux defines
2042 * elf_addr_t as Elf32_Off / Elf64_Off
2043 */
2044#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
2045 put_user_ual(id, u_auxv); u_auxv += n; \
2046 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
2047 } while(0)
2048
82991bed
PM
2049#ifdef ARCH_DLINFO
2050 /*
2051 * ARCH_DLINFO must come first so platform specific code can enforce
2052 * special alignment requirements on the AUXV if necessary (eg. PPC).
2053 */
2054 ARCH_DLINFO;
2055#endif
f516511e
PM
2056 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2057 * on info->auxv_len will trigger.
2058 */
8e62a717 2059 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
2060 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2061 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
2062 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2063 /* Target doesn't support host page size alignment */
2064 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2065 } else {
2066 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2067 qemu_host_page_size)));
2068 }
8e62a717 2069 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 2070 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 2071 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
2072 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2073 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2074 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2075 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2076 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2077 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 2078 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 2079 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
e0d1673d 2080 NEW_AUX_ENT(AT_EXECFN, info->file_string);
14322bad 2081
ad6919dc
PM
2082#ifdef ELF_HWCAP2
2083 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2084#endif
2085
7c4ee5bc 2086 if (u_platform) {
d97ef72e 2087 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 2088 }
7c4ee5bc 2089 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
2090#undef NEW_AUX_ENT
2091
f516511e
PM
2092 /* Check that our initial calculation of the auxv length matches how much
2093 * we actually put into it.
2094 */
2095 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
2096
2097 put_user_ual(argc, u_argc);
2098
2099 p = info->arg_strings;
2100 for (i = 0; i < argc; ++i) {
2101 put_user_ual(p, u_argv);
2102 u_argv += n;
2103 p += target_strlen(p) + 1;
2104 }
2105 put_user_ual(0, u_argv);
2106
2107 p = info->env_strings;
2108 for (i = 0; i < envc; ++i) {
2109 put_user_ual(p, u_envp);
2110 u_envp += n;
2111 p += target_strlen(p) + 1;
2112 }
2113 put_user_ual(0, u_envp);
edf8e2af 2114
d97ef72e 2115 return sp;
31e31b8a
FB
2116}
2117
ee947430
AB
2118#ifndef ARM_COMMPAGE
2119#define ARM_COMMPAGE 0
2120#define init_guest_commpage() true
8756e136 2121#endif
dce10401 2122
ee947430
AB
2123static void pgb_fail_in_use(const char *image_name)
2124{
2125 error_report("%s: requires virtual address space that is in use "
2126 "(omit the -B option or choose a different value)",
2127 image_name);
2128 exit(EXIT_FAILURE);
2129}
dce10401 2130
ee947430
AB
2131static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2132 abi_ulong guest_hiaddr, long align)
2133{
2134 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2135 void *addr, *test;
2a53535a 2136
ee947430
AB
2137 if (!QEMU_IS_ALIGNED(guest_base, align)) {
2138 fprintf(stderr, "Requested guest base 0x%lx does not satisfy "
2139 "host minimum alignment (0x%lx)\n",
2140 guest_base, align);
2141 exit(EXIT_FAILURE);
2142 }
2143
2144 /* Sanity check the guest binary. */
2145 if (reserved_va) {
2146 if (guest_hiaddr > reserved_va) {
2147 error_report("%s: requires more than reserved virtual "
2148 "address space (0x%" PRIx64 " > 0x%lx)",
2149 image_name, (uint64_t)guest_hiaddr, reserved_va);
2150 exit(EXIT_FAILURE);
2a53535a 2151 }
ee947430 2152 } else {
a932eec4 2153#if HOST_LONG_BITS < TARGET_ABI_BITS
ee947430
AB
2154 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2155 error_report("%s: requires more virtual address space "
2156 "than the host can provide (0x%" PRIx64 ")",
2157 image_name, (uint64_t)guest_hiaddr - guest_base);
2158 exit(EXIT_FAILURE);
2a53535a 2159 }
a932eec4 2160#endif
2a53535a 2161 }
2a53535a 2162
ee947430
AB
2163 /*
2164 * Expand the allocation to the entire reserved_va.
2165 * Exclude the mmap_min_addr hole.
2166 */
2167 if (reserved_va) {
2168 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2169 : mmap_min_addr - guest_base);
2170 guest_hiaddr = reserved_va;
2171 }
806d1021 2172
ee947430
AB
2173 /* Reserve the address space for the binary, or reserved_va. */
2174 test = g2h(guest_loaddr);
2175 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2176 if (test != addr) {
2177 pgb_fail_in_use(image_name);
2178 }
2179}
2180
ad592e37
AB
2181/**
2182 * pgd_find_hole_fallback: potential mmap address
2183 * @guest_size: size of available space
2184 * @brk: location of break
2185 * @align: memory alignment
2186 *
2187 * This is a fallback method for finding a hole in the host address
2188 * space if we don't have the benefit of being able to access
2189 * /proc/self/map. It can potentially take a very long time as we can
2190 * only dumbly iterate up the host address space seeing if the
2191 * allocation would work.
2192 */
5c3e87f3
AB
2193static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2194 long align, uintptr_t offset)
ad592e37
AB
2195{
2196 uintptr_t base;
2197
2198 /* Start (aligned) at the bottom and work our way up */
2199 base = ROUND_UP(mmap_min_addr, align);
2200
2201 while (true) {
2202 uintptr_t align_start, end;
2203 align_start = ROUND_UP(base, align);
5c3e87f3 2204 end = align_start + guest_size + offset;
ad592e37
AB
2205
2206 /* if brk is anywhere in the range give ourselves some room to grow. */
2207 if (align_start <= brk && brk < end) {
2208 base = brk + (16 * MiB);
2209 continue;
2210 } else if (align_start + guest_size < align_start) {
2211 /* we have run out of space */
2212 return -1;
2213 } else {
2667e069
AB
2214 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2215 MAP_FIXED_NOREPLACE;
ad592e37
AB
2216 void * mmap_start = mmap((void *) align_start, guest_size,
2217 PROT_NONE, flags, -1, 0);
2218 if (mmap_start != MAP_FAILED) {
2219 munmap((void *) align_start, guest_size);
36d2dbc7
PM
2220 if (MAP_FIXED_NOREPLACE != 0 ||
2221 mmap_start == (void *) align_start) {
2667e069
AB
2222 return (uintptr_t) mmap_start + offset;
2223 }
ad592e37
AB
2224 }
2225 base += qemu_host_page_size;
2226 }
2227 }
2228}
2229
ee947430
AB
2230/* Return value for guest_base, or -1 if no hole found. */
2231static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
5c3e87f3 2232 long align, uintptr_t offset)
ee947430
AB
2233{
2234 GSList *maps, *iter;
2235 uintptr_t this_start, this_end, next_start, brk;
2236 intptr_t ret = -1;
2237
2238 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2239
2240 maps = read_self_maps();
dce10401 2241
ee947430
AB
2242 /* Read brk after we've read the maps, which will malloc. */
2243 brk = (uintptr_t)sbrk(0);
2244
ad592e37 2245 if (!maps) {
5c3e87f3 2246 return pgd_find_hole_fallback(guest_size, brk, align, offset);
ad592e37
AB
2247 }
2248
ee947430
AB
2249 /* The first hole is before the first map entry. */
2250 this_start = mmap_min_addr;
2251
2252 for (iter = maps; iter;
2253 this_start = next_start, iter = g_slist_next(iter)) {
2254 uintptr_t align_start, hole_size;
2255
2256 this_end = ((MapInfo *)iter->data)->start;
2257 next_start = ((MapInfo *)iter->data)->end;
5c3e87f3 2258 align_start = ROUND_UP(this_start + offset, align);
ee947430
AB
2259
2260 /* Skip holes that are too small. */
2261 if (align_start >= this_end) {
2262 continue;
2263 }
2264 hole_size = this_end - align_start;
2265 if (hole_size < guest_size) {
2266 continue;
aac362e4
LS
2267 }
2268
ee947430
AB
2269 /* If this hole contains brk, give ourselves some room to grow. */
2270 if (this_start <= brk && brk < this_end) {
2271 hole_size -= guest_size;
2272 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2273 align_start += 1 * GiB;
2274 } else if (hole_size >= 16 * MiB) {
2275 align_start += 16 * MiB;
2276 } else {
2277 align_start = (this_end - guest_size) & -align;
2278 if (align_start < this_start) {
2279 continue;
2280 }
806d1021 2281 }
806d1021
MI
2282 }
2283
ee947430
AB
2284 /* Record the lowest successful match. */
2285 if (ret < 0) {
2286 ret = align_start - guest_loaddr;
dce10401 2287 }
ee947430
AB
2288 /* If this hole contains the identity map, select it. */
2289 if (align_start <= guest_loaddr &&
2290 guest_loaddr + guest_size <= this_end) {
2291 ret = 0;
b859040d 2292 }
ee947430
AB
2293 /* If this hole ends above the identity map, stop looking. */
2294 if (this_end >= guest_loaddr) {
2295 break;
dce10401
MI
2296 }
2297 }
ee947430 2298 free_self_maps(maps);
dce10401 2299
ee947430 2300 return ret;
dce10401
MI
2301}
2302
ee947430
AB
2303static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2304 abi_ulong orig_hiaddr, long align)
f3ed1f5d 2305{
ee947430
AB
2306 uintptr_t loaddr = orig_loaddr;
2307 uintptr_t hiaddr = orig_hiaddr;
5c3e87f3 2308 uintptr_t offset = 0;
ee947430 2309 uintptr_t addr;
f3ed1f5d 2310
ee947430
AB
2311 if (hiaddr != orig_hiaddr) {
2312 error_report("%s: requires virtual address space that the "
2313 "host cannot provide (0x%" PRIx64 ")",
2314 image_name, (uint64_t)orig_hiaddr);
2315 exit(EXIT_FAILURE);
2316 }
f3ed1f5d 2317
ee947430
AB
2318 loaddr &= -align;
2319 if (ARM_COMMPAGE) {
2320 /*
2321 * Extend the allocation to include the commpage.
5c3e87f3
AB
2322 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2323 * need to ensure there is space bellow the guest_base so we
2324 * can map the commpage in the place needed when the address
2325 * arithmetic wraps around.
ee947430
AB
2326 */
2327 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
5c3e87f3 2328 hiaddr = (uintptr_t) 4 << 30;
f3ed1f5d 2329 } else {
5c3e87f3 2330 offset = -(ARM_COMMPAGE & -align);
f3ed1f5d 2331 }
ee947430 2332 }
dce10401 2333
5c3e87f3 2334 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
ee947430
AB
2335 if (addr == -1) {
2336 /*
2337 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2338 * that can satisfy both. But as the normal arm32 link base address
2339 * is ~32k, and we extend down to include the commpage, making the
2340 * overhead only ~96k, this is unlikely.
dce10401 2341 */
ee947430
AB
2342 error_report("%s: Unable to allocate %#zx bytes of "
2343 "virtual address space", image_name,
2344 (size_t)(hiaddr - loaddr));
2345 exit(EXIT_FAILURE);
2346 }
2347
2348 guest_base = addr;
2349}
dce10401 2350
ee947430
AB
2351static void pgb_dynamic(const char *image_name, long align)
2352{
2353 /*
2354 * The executable is dynamic and does not require a fixed address.
2355 * All we need is a commpage that satisfies align.
2356 * If we do not need a commpage, leave guest_base == 0.
2357 */
2358 if (ARM_COMMPAGE) {
2359 uintptr_t addr, commpage;
2360
2361 /* 64-bit hosts should have used reserved_va. */
2362 assert(sizeof(uintptr_t) == 4);
2363
2364 /*
2365 * By putting the commpage at the first hole, that puts guest_base
2366 * just above that, and maximises the positive guest addresses.
2367 */
2368 commpage = ARM_COMMPAGE & -align;
5c3e87f3 2369 addr = pgb_find_hole(commpage, -commpage, align, 0);
ee947430
AB
2370 assert(addr != -1);
2371 guest_base = addr;
2372 }
2373}
2374
2375static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2376 abi_ulong guest_hiaddr, long align)
2377{
c1f6ad79 2378 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
ee947430
AB
2379 void *addr, *test;
2380
2381 if (guest_hiaddr > reserved_va) {
2382 error_report("%s: requires more than reserved virtual "
2383 "address space (0x%" PRIx64 " > 0x%lx)",
2384 image_name, (uint64_t)guest_hiaddr, reserved_va);
2385 exit(EXIT_FAILURE);
f3ed1f5d 2386 }
f3ed1f5d 2387
ee947430
AB
2388 /* Widen the "image" to the entire reserved address space. */
2389 pgb_static(image_name, 0, reserved_va, align);
2390
2667e069 2391 /* osdep.h defines this as 0 if it's missing */
c1f6ad79 2392 flags |= MAP_FIXED_NOREPLACE;
c1f6ad79 2393
ee947430
AB
2394 /* Reserve the memory on the host. */
2395 assert(guest_base != 0);
2396 test = g2h(0);
2397 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
fb730c86 2398 if (addr == MAP_FAILED || addr != test) {
ee947430 2399 error_report("Unable to reserve 0x%lx bytes of virtual address "
fb730c86
AB
2400 "space at %p (%s) for use as guest address space (check your"
2401 "virtual memory ulimit setting, min_mmap_addr or reserve less "
2402 "using -R option)", reserved_va, test, strerror(errno));
ee947430
AB
2403 exit(EXIT_FAILURE);
2404 }
f3ed1f5d
PM
2405}
2406
ee947430
AB
2407void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2408 abi_ulong guest_hiaddr)
2409{
2410 /* In order to use host shmat, we must be able to honor SHMLBA. */
2411 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2412
2413 if (have_guest_base) {
2414 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2415 } else if (reserved_va) {
2416 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2417 } else if (guest_loaddr) {
2418 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2419 } else {
2420 pgb_dynamic(image_name, align);
2421 }
2422
2423 /* Reserve and initialize the commpage. */
2424 if (!init_guest_commpage()) {
2425 /*
2426 * With have_guest_base, the user has selected the address and
2427 * we are trying to work with that. Otherwise, we have selected
2428 * free space and init_guest_commpage must succeeded.
2429 */
2430 assert(have_guest_base);
2431 pgb_fail_in_use(image_name);
2432 }
2433
2434 assert(QEMU_IS_ALIGNED(guest_base, align));
2435 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2436 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2437}
f3ed1f5d 2438
83f990eb
RH
2439enum {
2440 /* The string "GNU\0" as a magic number. */
2441 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2442 NOTE_DATA_SZ = 1 * KiB,
2443 NOTE_NAME_SZ = 4,
2444 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2445};
2446
2447/*
2448 * Process a single gnu_property entry.
2449 * Return false for error.
2450 */
2451static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2452 struct image_info *info, bool have_prev_type,
2453 uint32_t *prev_type, Error **errp)
2454{
2455 uint32_t pr_type, pr_datasz, step;
2456
2457 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2458 goto error_data;
2459 }
2460 datasz -= *off;
2461 data += *off / sizeof(uint32_t);
2462
2463 if (datasz < 2 * sizeof(uint32_t)) {
2464 goto error_data;
2465 }
2466 pr_type = data[0];
2467 pr_datasz = data[1];
2468 data += 2;
2469 datasz -= 2 * sizeof(uint32_t);
2470 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2471 if (step > datasz) {
2472 goto error_data;
2473 }
2474
2475 /* Properties are supposed to be unique and sorted on pr_type. */
2476 if (have_prev_type && pr_type <= *prev_type) {
2477 if (pr_type == *prev_type) {
2478 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2479 } else {
2480 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2481 }
2482 return false;
2483 }
2484 *prev_type = pr_type;
2485
2486 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2487 return false;
2488 }
2489
2490 *off += 2 * sizeof(uint32_t) + step;
2491 return true;
2492
2493 error_data:
2494 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2495 return false;
2496}
2497
2498/* Process NT_GNU_PROPERTY_TYPE_0. */
2499static bool parse_elf_properties(int image_fd,
2500 struct image_info *info,
2501 const struct elf_phdr *phdr,
2502 char bprm_buf[BPRM_BUF_SIZE],
2503 Error **errp)
2504{
2505 union {
2506 struct elf_note nhdr;
2507 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2508 } note;
2509
2510 int n, off, datasz;
2511 bool have_prev_type;
2512 uint32_t prev_type;
2513
2514 /* Unless the arch requires properties, ignore them. */
2515 if (!ARCH_USE_GNU_PROPERTY) {
2516 return true;
2517 }
2518
2519 /* If the properties are crazy large, that's too bad. */
2520 n = phdr->p_filesz;
2521 if (n > sizeof(note)) {
2522 error_setg(errp, "PT_GNU_PROPERTY too large");
2523 return false;
2524 }
2525 if (n < sizeof(note.nhdr)) {
2526 error_setg(errp, "PT_GNU_PROPERTY too small");
2527 return false;
2528 }
2529
2530 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2531 memcpy(&note, bprm_buf + phdr->p_offset, n);
2532 } else {
2533 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2534 if (len != n) {
2535 error_setg_errno(errp, errno, "Error reading file header");
2536 return false;
2537 }
2538 }
2539
2540 /*
2541 * The contents of a valid PT_GNU_PROPERTY is a sequence
2542 * of uint32_t -- swap them all now.
2543 */
2544#ifdef BSWAP_NEEDED
2545 for (int i = 0; i < n / 4; i++) {
2546 bswap32s(note.data + i);
2547 }
2548#endif
2549
2550 /*
2551 * Note that nhdr is 3 words, and that the "name" described by namesz
2552 * immediately follows nhdr and is thus at the 4th word. Further, all
2553 * of the inputs to the kernel's round_up are multiples of 4.
2554 */
2555 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2556 note.nhdr.n_namesz != NOTE_NAME_SZ ||
2557 note.data[3] != GNU0_MAGIC) {
2558 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2559 return false;
2560 }
2561 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2562
2563 datasz = note.nhdr.n_descsz + off;
2564 if (datasz > n) {
2565 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2566 return false;
2567 }
2568
2569 have_prev_type = false;
2570 prev_type = 0;
2571 while (1) {
2572 if (off == datasz) {
2573 return true; /* end, exit ok */
2574 }
2575 if (!parse_elf_property(note.data, &off, datasz, info,
2576 have_prev_type, &prev_type, errp)) {
2577 return false;
2578 }
2579 have_prev_type = true;
2580 }
2581}
2582
8e62a717 2583/* Load an ELF image into the address space.
31e31b8a 2584
8e62a717
RH
2585 IMAGE_NAME is the filename of the image, to use in error messages.
2586 IMAGE_FD is the open file descriptor for the image.
2587
2588 BPRM_BUF is a copy of the beginning of the file; this of course
2589 contains the elf file header at offset 0. It is assumed that this
2590 buffer is sufficiently aligned to present no problems to the host
2591 in accessing data at aligned offsets within the buffer.
2592
2593 On return: INFO values will be filled in, as necessary or available. */
2594
2595static void load_elf_image(const char *image_name, int image_fd,
bf858897 2596 struct image_info *info, char **pinterp_name,
8e62a717 2597 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2598{
8e62a717
RH
2599 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2600 struct elf_phdr *phdr;
2601 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
e8384b37 2602 int i, retval, prot_exec;
c7f17e7b 2603 Error *err = NULL;
5fafdf24 2604
8e62a717 2605 /* First of all, some simple consistency checks */
8e62a717 2606 if (!elf_check_ident(ehdr)) {
c7f17e7b 2607 error_setg(&err, "Invalid ELF image for this architecture");
8e62a717
RH
2608 goto exit_errmsg;
2609 }
2610 bswap_ehdr(ehdr);
2611 if (!elf_check_ehdr(ehdr)) {
c7f17e7b 2612 error_setg(&err, "Invalid ELF image for this architecture");
8e62a717 2613 goto exit_errmsg;
d97ef72e 2614 }
5fafdf24 2615
8e62a717
RH
2616 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2617 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2618 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2619 } else {
8e62a717
RH
2620 phdr = (struct elf_phdr *) alloca(i);
2621 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2622 if (retval != i) {
8e62a717 2623 goto exit_read;
9955ffac 2624 }
d97ef72e 2625 }
8e62a717 2626 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2627
1af02e83
MF
2628 info->nsegs = 0;
2629 info->pt_dynamic_addr = 0;
1af02e83 2630
98c1076c
AB
2631 mmap_lock();
2632
8a1a5274
RH
2633 /*
2634 * Find the maximum size of the image and allocate an appropriate
2635 * amount of memory to handle that. Locate the interpreter, if any.
2636 */
682674b8 2637 loaddr = -1, hiaddr = 0;
33143c44 2638 info->alignment = 0;
8e62a717 2639 for (i = 0; i < ehdr->e_phnum; ++i) {
4d9d535a
RH
2640 struct elf_phdr *eppnt = phdr + i;
2641 if (eppnt->p_type == PT_LOAD) {
2642 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
682674b8
RH
2643 if (a < loaddr) {
2644 loaddr = a;
2645 }
4d9d535a 2646 a = eppnt->p_vaddr + eppnt->p_memsz;
682674b8
RH
2647 if (a > hiaddr) {
2648 hiaddr = a;
2649 }
1af02e83 2650 ++info->nsegs;
4d9d535a 2651 info->alignment |= eppnt->p_align;
8a1a5274
RH
2652 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2653 g_autofree char *interp_name = NULL;
2654
2655 if (*pinterp_name) {
c7f17e7b 2656 error_setg(&err, "Multiple PT_INTERP entries");
8a1a5274
RH
2657 goto exit_errmsg;
2658 }
c7f17e7b 2659
8a1a5274 2660 interp_name = g_malloc(eppnt->p_filesz);
8a1a5274
RH
2661
2662 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2663 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2664 eppnt->p_filesz);
2665 } else {
2666 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2667 eppnt->p_offset);
2668 if (retval != eppnt->p_filesz) {
c7f17e7b 2669 goto exit_read;
8a1a5274
RH
2670 }
2671 }
2672 if (interp_name[eppnt->p_filesz - 1] != 0) {
c7f17e7b 2673 error_setg(&err, "Invalid PT_INTERP entry");
8a1a5274
RH
2674 goto exit_errmsg;
2675 }
2676 *pinterp_name = g_steal_pointer(&interp_name);
83f990eb
RH
2677 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2678 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2679 goto exit_errmsg;
2680 }
682674b8
RH
2681 }
2682 }
2683
6fd59449
RH
2684 if (pinterp_name != NULL) {
2685 /*
2686 * This is the main executable.
2687 *
2688 * Reserve extra space for brk.
2689 * We hold on to this space while placing the interpreter
2690 * and the stack, lest they be placed immediately after
2691 * the data segment and block allocation from the brk.
2692 *
2693 * 16MB is chosen as "large enough" without being so large
2694 * as to allow the result to not fit with a 32-bit guest on
2695 * a 32-bit host.
2696 */
2697 info->reserve_brk = 16 * MiB;
2698 hiaddr += info->reserve_brk;
2699
2700 if (ehdr->e_type == ET_EXEC) {
2701 /*
2702 * Make sure that the low address does not conflict with
2703 * MMAP_MIN_ADDR or the QEMU application itself.
2704 */
2705 probe_guest_base(image_name, loaddr, hiaddr);
ee947430
AB
2706 } else {
2707 /*
2708 * The binary is dynamic, but we still need to
2709 * select guest_base. In this case we pass a size.
2710 */
2711 probe_guest_base(image_name, 0, hiaddr - loaddr);
d97ef72e 2712 }
6fd59449
RH
2713 }
2714
2715 /*
2716 * Reserve address space for all of this.
2717 *
2718 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2719 * exactly the address range that is required.
2720 *
2721 * Otherwise this is ET_DYN, and we are searching for a location
2722 * that can hold the memory space required. If the image is
2723 * pre-linked, LOADDR will be non-zero, and the kernel should
2724 * honor that address if it happens to be free.
2725 *
2726 * In both cases, we will overwrite pages in this range with mappings
2727 * from the executable.
2728 */
2729 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2730 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2731 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2732 -1, 0);
2733 if (load_addr == -1) {
c7f17e7b 2734 goto exit_mmap;
d97ef72e 2735 }
682674b8 2736 load_bias = load_addr - loaddr;
d97ef72e 2737
a99856cd 2738 if (elf_is_fdpic(ehdr)) {
1af02e83 2739 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2740 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2741
2742 for (i = 0; i < ehdr->e_phnum; ++i) {
2743 switch (phdr[i].p_type) {
2744 case PT_DYNAMIC:
2745 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2746 break;
2747 case PT_LOAD:
2748 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2749 loadsegs->p_vaddr = phdr[i].p_vaddr;
2750 loadsegs->p_memsz = phdr[i].p_memsz;
2751 ++loadsegs;
2752 break;
2753 }
2754 }
2755 }
1af02e83 2756
8e62a717 2757 info->load_bias = load_bias;
dc12567a
JK
2758 info->code_offset = load_bias;
2759 info->data_offset = load_bias;
8e62a717
RH
2760 info->load_addr = load_addr;
2761 info->entry = ehdr->e_entry + load_bias;
2762 info->start_code = -1;
2763 info->end_code = 0;
2764 info->start_data = -1;
2765 info->end_data = 0;
2766 info->brk = 0;
d8fd2954 2767 info->elf_flags = ehdr->e_flags;
8e62a717 2768
e8384b37
RH
2769 prot_exec = PROT_EXEC;
2770#ifdef TARGET_AARCH64
2771 /*
2772 * If the BTI feature is present, this indicates that the executable
2773 * pages of the startup binary should be mapped with PROT_BTI, so that
2774 * branch targets are enforced.
2775 *
2776 * The startup binary is either the interpreter or the static executable.
2777 * The interpreter is responsible for all pages of a dynamic executable.
2778 *
2779 * Elf notes are backward compatible to older cpus.
2780 * Do not enable BTI unless it is supported.
2781 */
2782 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2783 && (pinterp_name == NULL || *pinterp_name == 0)
2784 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2785 prot_exec |= TARGET_PROT_BTI;
2786 }
2787#endif
2788
8e62a717
RH
2789 for (i = 0; i < ehdr->e_phnum; i++) {
2790 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2791 if (eppnt->p_type == PT_LOAD) {
94894ff2 2792 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
d97ef72e 2793 int elf_prot = 0;
d97ef72e 2794
e5eaf570
RH
2795 if (eppnt->p_flags & PF_R) {
2796 elf_prot |= PROT_READ;
2797 }
2798 if (eppnt->p_flags & PF_W) {
2799 elf_prot |= PROT_WRITE;
2800 }
2801 if (eppnt->p_flags & PF_X) {
e8384b37 2802 elf_prot |= prot_exec;
e5eaf570 2803 }
d97ef72e 2804
682674b8
RH
2805 vaddr = load_bias + eppnt->p_vaddr;
2806 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2807 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
94894ff2 2808 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
682674b8 2809
d87146bc
GM
2810 /*
2811 * Some segments may be completely empty without any backing file
2812 * segment, in that case just let zero_bss allocate an empty buffer
2813 * for it.
2814 */
2815 if (eppnt->p_filesz != 0) {
2816 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2817 MAP_PRIVATE | MAP_FIXED,
2818 image_fd, eppnt->p_offset - vaddr_po);
2819
2820 if (error == -1) {
c7f17e7b 2821 goto exit_mmap;
d87146bc 2822 }
09bfb054 2823 }
09bfb054 2824
682674b8
RH
2825 vaddr_ef = vaddr + eppnt->p_filesz;
2826 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 2827
cf129f3a 2828 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
2829 if (vaddr_ef < vaddr_em) {
2830 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 2831 }
8e62a717
RH
2832
2833 /* Find the full program boundaries. */
2834 if (elf_prot & PROT_EXEC) {
2835 if (vaddr < info->start_code) {
2836 info->start_code = vaddr;
2837 }
2838 if (vaddr_ef > info->end_code) {
2839 info->end_code = vaddr_ef;
2840 }
2841 }
2842 if (elf_prot & PROT_WRITE) {
2843 if (vaddr < info->start_data) {
2844 info->start_data = vaddr;
2845 }
2846 if (vaddr_ef > info->end_data) {
2847 info->end_data = vaddr_ef;
2848 }
8a045188
TB
2849 }
2850 if (vaddr_em > info->brk) {
2851 info->brk = vaddr_em;
8e62a717 2852 }
5dd0db52
SM
2853#ifdef TARGET_MIPS
2854 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2855 Mips_elf_abiflags_v0 abiflags;
2856 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
c7f17e7b 2857 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
5dd0db52
SM
2858 goto exit_errmsg;
2859 }
2860 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2861 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2862 sizeof(Mips_elf_abiflags_v0));
2863 } else {
2864 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2865 eppnt->p_offset);
2866 if (retval != sizeof(Mips_elf_abiflags_v0)) {
c7f17e7b 2867 goto exit_read;
5dd0db52
SM
2868 }
2869 }
2870 bswap_mips_abiflags(&abiflags);
c94cb6c9 2871 info->fp_abi = abiflags.fp_abi;
5dd0db52 2872#endif
d97ef72e 2873 }
682674b8 2874 }
5fafdf24 2875
8e62a717
RH
2876 if (info->end_data == 0) {
2877 info->start_data = info->end_code;
2878 info->end_data = info->end_code;
8e62a717
RH
2879 }
2880
682674b8 2881 if (qemu_log_enabled()) {
8e62a717 2882 load_symbols(ehdr, image_fd, load_bias);
682674b8 2883 }
31e31b8a 2884
98c1076c
AB
2885 mmap_unlock();
2886
8e62a717
RH
2887 close(image_fd);
2888 return;
2889
2890 exit_read:
2891 if (retval >= 0) {
c7f17e7b
RH
2892 error_setg(&err, "Incomplete read of file header");
2893 } else {
2894 error_setg_errno(&err, errno, "Error reading file header");
8e62a717 2895 }
c7f17e7b
RH
2896 goto exit_errmsg;
2897 exit_mmap:
2898 error_setg_errno(&err, errno, "Error mapping file");
2899 goto exit_errmsg;
8e62a717 2900 exit_errmsg:
c7f17e7b 2901 error_reportf_err(err, "%s: ", image_name);
8e62a717
RH
2902 exit(-1);
2903}
2904
2905static void load_elf_interp(const char *filename, struct image_info *info,
2906 char bprm_buf[BPRM_BUF_SIZE])
2907{
2908 int fd, retval;
808f6563 2909 Error *err = NULL;
8e62a717
RH
2910
2911 fd = open(path(filename), O_RDONLY);
2912 if (fd < 0) {
808f6563
RH
2913 error_setg_file_open(&err, errno, filename);
2914 error_report_err(err);
2915 exit(-1);
8e62a717 2916 }
31e31b8a 2917
8e62a717
RH
2918 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2919 if (retval < 0) {
808f6563
RH
2920 error_setg_errno(&err, errno, "Error reading file header");
2921 error_reportf_err(err, "%s: ", filename);
2922 exit(-1);
8e62a717 2923 }
808f6563 2924
8e62a717
RH
2925 if (retval < BPRM_BUF_SIZE) {
2926 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2927 }
2928
bf858897 2929 load_elf_image(filename, fd, info, NULL, bprm_buf);
31e31b8a
FB
2930}
2931
49918a75
PB
2932static int symfind(const void *s0, const void *s1)
2933{
c7c530cd 2934 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2935 struct elf_sym *sym = (struct elf_sym *)s1;
2936 int result = 0;
c7c530cd 2937 if (addr < sym->st_value) {
49918a75 2938 result = -1;
c7c530cd 2939 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2940 result = 1;
2941 }
2942 return result;
2943}
2944
2945static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2946{
2947#if ELF_CLASS == ELFCLASS32
2948 struct elf_sym *syms = s->disas_symtab.elf32;
2949#else
2950 struct elf_sym *syms = s->disas_symtab.elf64;
2951#endif
2952
2953 // binary search
49918a75
PB
2954 struct elf_sym *sym;
2955
c7c530cd 2956 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2957 if (sym != NULL) {
49918a75
PB
2958 return s->disas_strtab + sym->st_name;
2959 }
2960
2961 return "";
2962}
2963
2964/* FIXME: This should use elf_ops.h */
2965static int symcmp(const void *s0, const void *s1)
2966{
2967 struct elf_sym *sym0 = (struct elf_sym *)s0;
2968 struct elf_sym *sym1 = (struct elf_sym *)s1;
2969 return (sym0->st_value < sym1->st_value)
2970 ? -1
2971 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2972}
2973
689f936f 2974/* Best attempt to load symbols from this ELF object. */
682674b8 2975static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2976{
682674b8 2977 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 2978 uint64_t segsz;
682674b8 2979 struct elf_shdr *shdr;
b9475279
CV
2980 char *strings = NULL;
2981 struct syminfo *s = NULL;
2982 struct elf_sym *new_syms, *syms = NULL;
689f936f 2983
682674b8
RH
2984 shnum = hdr->e_shnum;
2985 i = shnum * sizeof(struct elf_shdr);
2986 shdr = (struct elf_shdr *)alloca(i);
2987 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2988 return;
2989 }
2990
2991 bswap_shdr(shdr, shnum);
2992 for (i = 0; i < shnum; ++i) {
2993 if (shdr[i].sh_type == SHT_SYMTAB) {
2994 sym_idx = i;
2995 str_idx = shdr[i].sh_link;
49918a75
PB
2996 goto found;
2997 }
689f936f 2998 }
682674b8
RH
2999
3000 /* There will be no symbol table if the file was stripped. */
3001 return;
689f936f
FB
3002
3003 found:
682674b8 3004 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 3005 s = g_try_new(struct syminfo, 1);
682674b8 3006 if (!s) {
b9475279 3007 goto give_up;
682674b8 3008 }
5fafdf24 3009
1e06262d
PM
3010 segsz = shdr[str_idx].sh_size;
3011 s->disas_strtab = strings = g_try_malloc(segsz);
3012 if (!strings ||
3013 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 3014 goto give_up;
682674b8 3015 }
49918a75 3016
1e06262d
PM
3017 segsz = shdr[sym_idx].sh_size;
3018 syms = g_try_malloc(segsz);
3019 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 3020 goto give_up;
682674b8 3021 }
31e31b8a 3022
1e06262d
PM
3023 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3024 /* Implausibly large symbol table: give up rather than ploughing
3025 * on with the number of symbols calculation overflowing
3026 */
3027 goto give_up;
3028 }
3029 nsyms = segsz / sizeof(struct elf_sym);
682674b8 3030 for (i = 0; i < nsyms; ) {
49918a75 3031 bswap_sym(syms + i);
682674b8
RH
3032 /* Throw away entries which we do not need. */
3033 if (syms[i].st_shndx == SHN_UNDEF
3034 || syms[i].st_shndx >= SHN_LORESERVE
3035 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3036 if (i < --nsyms) {
49918a75
PB
3037 syms[i] = syms[nsyms];
3038 }
682674b8 3039 } else {
49918a75 3040#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
3041 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3042 syms[i].st_value &= ~(target_ulong)1;
0774bed1 3043#endif
682674b8
RH
3044 syms[i].st_value += load_bias;
3045 i++;
3046 }
0774bed1 3047 }
49918a75 3048
b9475279
CV
3049 /* No "useful" symbol. */
3050 if (nsyms == 0) {
3051 goto give_up;
3052 }
3053
5d5c9930
RH
3054 /* Attempt to free the storage associated with the local symbols
3055 that we threw away. Whether or not this has any effect on the
3056 memory allocation depends on the malloc implementation and how
3057 many symbols we managed to discard. */
0ef9ea29 3058 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 3059 if (new_syms == NULL) {
b9475279 3060 goto give_up;
5d5c9930 3061 }
8d79de6e 3062 syms = new_syms;
5d5c9930 3063
49918a75 3064 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 3065
49918a75
PB
3066 s->disas_num_syms = nsyms;
3067#if ELF_CLASS == ELFCLASS32
3068 s->disas_symtab.elf32 = syms;
49918a75
PB
3069#else
3070 s->disas_symtab.elf64 = syms;
49918a75 3071#endif
682674b8 3072 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
3073 s->next = syminfos;
3074 syminfos = s;
b9475279
CV
3075
3076 return;
3077
3078give_up:
0ef9ea29
PM
3079 g_free(s);
3080 g_free(strings);
3081 g_free(syms);
689f936f 3082}
31e31b8a 3083
768fe76e
YS
3084uint32_t get_elf_eflags(int fd)
3085{
3086 struct elfhdr ehdr;
3087 off_t offset;
3088 int ret;
3089
3090 /* Read ELF header */
3091 offset = lseek(fd, 0, SEEK_SET);
3092 if (offset == (off_t) -1) {
3093 return 0;
3094 }
3095 ret = read(fd, &ehdr, sizeof(ehdr));
3096 if (ret < sizeof(ehdr)) {
3097 return 0;
3098 }
3099 offset = lseek(fd, offset, SEEK_SET);
3100 if (offset == (off_t) -1) {
3101 return 0;
3102 }
3103
3104 /* Check ELF signature */
3105 if (!elf_check_ident(&ehdr)) {
3106 return 0;
3107 }
3108
3109 /* check header */
3110 bswap_ehdr(&ehdr);
3111 if (!elf_check_ehdr(&ehdr)) {
3112 return 0;
3113 }
3114
3115 /* return architecture id */
3116 return ehdr.e_flags;
3117}
3118
f0116c54 3119int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 3120{
8e62a717 3121 struct image_info interp_info;
31e31b8a 3122 struct elfhdr elf_ex;
8e62a717 3123 char *elf_interpreter = NULL;
59baae9a 3124 char *scratch;
31e31b8a 3125
abcac736
DS
3126 memset(&interp_info, 0, sizeof(interp_info));
3127#ifdef TARGET_MIPS
3128 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3129#endif
3130
bf858897 3131 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
3132
3133 load_elf_image(bprm->filename, bprm->fd, info,
3134 &elf_interpreter, bprm->buf);
31e31b8a 3135
bf858897
RH
3136 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3137 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3138 when we load the interpreter. */
3139 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 3140
59baae9a
SB
3141 /* Do this so that we can load the interpreter, if need be. We will
3142 change some of these later */
3143 bprm->p = setup_arg_pages(bprm, info);
3144
3145 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
3146 if (STACK_GROWS_DOWN) {
3147 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3148 bprm->p, info->stack_limit);
3149 info->file_string = bprm->p;
3150 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3151 bprm->p, info->stack_limit);
3152 info->env_strings = bprm->p;
3153 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3154 bprm->p, info->stack_limit);
3155 info->arg_strings = bprm->p;
3156 } else {
3157 info->arg_strings = bprm->p;
3158 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3159 bprm->p, info->stack_limit);
3160 info->env_strings = bprm->p;
3161 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3162 bprm->p, info->stack_limit);
3163 info->file_string = bprm->p;
3164 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3165 bprm->p, info->stack_limit);
3166 }
3167
59baae9a
SB
3168 g_free(scratch);
3169
e5fe0c52 3170 if (!bprm->p) {
bf858897
RH
3171 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3172 exit(-1);
379f6698 3173 }
379f6698 3174
8e62a717
RH
3175 if (elf_interpreter) {
3176 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 3177
8e62a717
RH
3178 /* If the program interpreter is one of these two, then assume
3179 an iBCS2 image. Otherwise assume a native linux image. */
3180
3181 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3182 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3183 info->personality = PER_SVR4;
31e31b8a 3184
8e62a717
RH
3185 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3186 and some applications "depend" upon this behavior. Since
3187 we do not have the power to recompile these, we emulate
3188 the SVr4 behavior. Sigh. */
3189 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 3190 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 3191 }
c94cb6c9
SM
3192#ifdef TARGET_MIPS
3193 info->interp_fp_abi = interp_info.fp_abi;
3194#endif
31e31b8a
FB
3195 }
3196
8e62a717
RH
3197 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3198 info, (elf_interpreter ? &interp_info : NULL));
3199 info->start_stack = bprm->p;
3200
3201 /* If we have an interpreter, set that as the program's entry point.
8e78064e 3202 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
3203 point as a function descriptor. Do this after creating elf tables
3204 so that we copy the original program entry point into the AUXV. */
3205 if (elf_interpreter) {
8e78064e 3206 info->load_bias = interp_info.load_bias;
8e62a717 3207 info->entry = interp_info.entry;
2b323087 3208 g_free(elf_interpreter);
8e62a717 3209 }
31e31b8a 3210
edf8e2af
MW
3211#ifdef USE_ELF_CORE_DUMP
3212 bprm->core_dump = &elf_core_dump;
3213#endif
3214
6fd59449
RH
3215 /*
3216 * If we reserved extra space for brk, release it now.
3217 * The implementation of do_brk in syscalls.c expects to be able
3218 * to mmap pages in this space.
3219 */
3220 if (info->reserve_brk) {
3221 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3222 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3223 target_munmap(start_brk, end_brk - start_brk);
3224 }
3225
31e31b8a
FB
3226 return 0;
3227}
3228
edf8e2af 3229#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
3230/*
3231 * Definitions to generate Intel SVR4-like core files.
a2547a13 3232 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
3233 * tacked on the front to prevent clashes with linux definitions,
3234 * and the typedef forms have been avoided. This is mostly like
3235 * the SVR4 structure, but more Linuxy, with things that Linux does
3236 * not support and which gdb doesn't really use excluded.
3237 *
3238 * Fields we don't dump (their contents is zero) in linux-user qemu
3239 * are marked with XXX.
3240 *
3241 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3242 *
3243 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 3244 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
3245 * the target resides):
3246 *
3247 * #define USE_ELF_CORE_DUMP
3248 *
3249 * Next you define type of register set used for dumping. ELF specification
3250 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3251 *
c227f099 3252 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 3253 * #define ELF_NREG <number of registers>
c227f099 3254 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 3255 *
edf8e2af
MW
3256 * Last step is to implement target specific function that copies registers
3257 * from given cpu into just specified register set. Prototype is:
3258 *
c227f099 3259 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 3260 * const CPUArchState *env);
edf8e2af
MW
3261 *
3262 * Parameters:
3263 * regs - copy register values into here (allocated and zeroed by caller)
3264 * env - copy registers from here
3265 *
3266 * Example for ARM target is provided in this file.
3267 */
3268
3269/* An ELF note in memory */
3270struct memelfnote {
3271 const char *name;
3272 size_t namesz;
3273 size_t namesz_rounded;
3274 int type;
3275 size_t datasz;
80f5ce75 3276 size_t datasz_rounded;
edf8e2af
MW
3277 void *data;
3278 size_t notesz;
3279};
3280
a2547a13 3281struct target_elf_siginfo {
f8fd4fc4
PB
3282 abi_int si_signo; /* signal number */
3283 abi_int si_code; /* extra code */
3284 abi_int si_errno; /* errno */
edf8e2af
MW
3285};
3286
a2547a13
LD
3287struct target_elf_prstatus {
3288 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 3289 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
3290 abi_ulong pr_sigpend; /* XXX */
3291 abi_ulong pr_sighold; /* XXX */
c227f099
AL
3292 target_pid_t pr_pid;
3293 target_pid_t pr_ppid;
3294 target_pid_t pr_pgrp;
3295 target_pid_t pr_sid;
edf8e2af
MW
3296 struct target_timeval pr_utime; /* XXX User time */
3297 struct target_timeval pr_stime; /* XXX System time */
3298 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3299 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 3300 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 3301 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
3302};
3303
3304#define ELF_PRARGSZ (80) /* Number of chars for args */
3305
a2547a13 3306struct target_elf_prpsinfo {
edf8e2af
MW
3307 char pr_state; /* numeric process state */
3308 char pr_sname; /* char for pr_state */
3309 char pr_zomb; /* zombie */
3310 char pr_nice; /* nice val */
ca98ac83 3311 abi_ulong pr_flag; /* flags */
c227f099
AL
3312 target_uid_t pr_uid;
3313 target_gid_t pr_gid;
3314 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af 3315 /* Lots missing */
d7eb2b92 3316 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
edf8e2af
MW
3317 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3318};
3319
3320/* Here is the structure in which status of each thread is captured. */
3321struct elf_thread_status {
72cf2d4f 3322 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 3323 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
3324#if 0
3325 elf_fpregset_t fpu; /* NT_PRFPREG */
3326 struct task_struct *thread;
3327 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3328#endif
3329 struct memelfnote notes[1];
3330 int num_notes;
3331};
3332
3333struct elf_note_info {
3334 struct memelfnote *notes;
a2547a13
LD
3335 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3336 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 3337
b58deb34 3338 QTAILQ_HEAD(, elf_thread_status) thread_list;
edf8e2af
MW
3339#if 0
3340 /*
3341 * Current version of ELF coredump doesn't support
3342 * dumping fp regs etc.
3343 */
3344 elf_fpregset_t *fpu;
3345 elf_fpxregset_t *xfpu;
3346 int thread_status_size;
3347#endif
3348 int notes_size;
3349 int numnote;
3350};
3351
3352struct vm_area_struct {
1a1c4db9
MI
3353 target_ulong vma_start; /* start vaddr of memory region */
3354 target_ulong vma_end; /* end vaddr of memory region */
3355 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 3356 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
3357};
3358
3359struct mm_struct {
72cf2d4f 3360 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
3361 int mm_count; /* number of mappings */
3362};
3363
3364static struct mm_struct *vma_init(void);
3365static void vma_delete(struct mm_struct *);
1a1c4db9
MI
3366static int vma_add_mapping(struct mm_struct *, target_ulong,
3367 target_ulong, abi_ulong);
edf8e2af
MW
3368static int vma_get_mapping_count(const struct mm_struct *);
3369static struct vm_area_struct *vma_first(const struct mm_struct *);
3370static struct vm_area_struct *vma_next(struct vm_area_struct *);
3371static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 3372static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3373 unsigned long flags);
edf8e2af
MW
3374
3375static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3376static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 3377 unsigned int, void *);
a2547a13
LD
3378static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3379static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
3380static void fill_auxv_note(struct memelfnote *, const TaskState *);
3381static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3382static size_t note_size(const struct memelfnote *);
3383static void free_note_info(struct elf_note_info *);
9349b4f9
AF
3384static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3385static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
3386static int core_dump_filename(const TaskState *, char *, size_t);
3387
3388static int dump_write(int, const void *, size_t);
3389static int write_note(struct memelfnote *, int);
3390static int write_note_info(struct elf_note_info *, int);
3391
3392#ifdef BSWAP_NEEDED
a2547a13 3393static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 3394{
ca98ac83
PB
3395 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3396 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3397 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 3398 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
3399 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3400 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
3401 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3402 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3403 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3404 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3405 /* cpu times are not filled, so we skip them */
3406 /* regs should be in correct format already */
3407 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3408}
3409
a2547a13 3410static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 3411{
ca98ac83 3412 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
3413 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3414 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3415 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3416 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3417 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3418 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3419}
991f8f0c
RH
3420
3421static void bswap_note(struct elf_note *en)
3422{
3423 bswap32s(&en->n_namesz);
3424 bswap32s(&en->n_descsz);
3425 bswap32s(&en->n_type);
3426}
3427#else
3428static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3429static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3430static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
3431#endif /* BSWAP_NEEDED */
3432
3433/*
3434 * Minimal support for linux memory regions. These are needed
3435 * when we are finding out what memory exactly belongs to
3436 * emulated process. No locks needed here, as long as
3437 * thread that received the signal is stopped.
3438 */
3439
3440static struct mm_struct *vma_init(void)
3441{
3442 struct mm_struct *mm;
3443
7267c094 3444 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
3445 return (NULL);
3446
3447 mm->mm_count = 0;
72cf2d4f 3448 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
3449
3450 return (mm);
3451}
3452
3453static void vma_delete(struct mm_struct *mm)
3454{
3455 struct vm_area_struct *vma;
3456
3457 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 3458 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 3459 g_free(vma);
edf8e2af 3460 }
7267c094 3461 g_free(mm);
edf8e2af
MW
3462}
3463
1a1c4db9
MI
3464static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3465 target_ulong end, abi_ulong flags)
edf8e2af
MW
3466{
3467 struct vm_area_struct *vma;
3468
7267c094 3469 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
3470 return (-1);
3471
3472 vma->vma_start = start;
3473 vma->vma_end = end;
3474 vma->vma_flags = flags;
3475
72cf2d4f 3476 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
3477 mm->mm_count++;
3478
3479 return (0);
3480}
3481
3482static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3483{
72cf2d4f 3484 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
3485}
3486
3487static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3488{
72cf2d4f 3489 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
3490}
3491
3492static int vma_get_mapping_count(const struct mm_struct *mm)
3493{
3494 return (mm->mm_count);
3495}
3496
3497/*
3498 * Calculate file (dump) size of given memory region.
3499 */
3500static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3501{
3502 /* if we cannot even read the first page, skip it */
3503 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3504 return (0);
3505
3506 /*
3507 * Usually we don't dump executable pages as they contain
3508 * non-writable code that debugger can read directly from
3509 * target library etc. However, thread stacks are marked
3510 * also executable so we read in first page of given region
3511 * and check whether it contains elf header. If there is
3512 * no elf header, we dump it.
3513 */
3514 if (vma->vma_flags & PROT_EXEC) {
3515 char page[TARGET_PAGE_SIZE];
3516
022625a8
PM
3517 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3518 return 0;
3519 }
edf8e2af
MW
3520 if ((page[EI_MAG0] == ELFMAG0) &&
3521 (page[EI_MAG1] == ELFMAG1) &&
3522 (page[EI_MAG2] == ELFMAG2) &&
3523 (page[EI_MAG3] == ELFMAG3)) {
3524 /*
3525 * Mappings are possibly from ELF binary. Don't dump
3526 * them.
3527 */
3528 return (0);
3529 }
3530 }
3531
3532 return (vma->vma_end - vma->vma_start);
3533}
3534
1a1c4db9 3535static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3536 unsigned long flags)
edf8e2af
MW
3537{
3538 struct mm_struct *mm = (struct mm_struct *)priv;
3539
edf8e2af
MW
3540 vma_add_mapping(mm, start, end, flags);
3541 return (0);
3542}
3543
3544static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 3545 unsigned int sz, void *data)
edf8e2af
MW
3546{
3547 unsigned int namesz;
3548
3549 namesz = strlen(name) + 1;
3550 note->name = name;
3551 note->namesz = namesz;
3552 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3553 note->type = type;
80f5ce75
LV
3554 note->datasz = sz;
3555 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3556
edf8e2af
MW
3557 note->data = data;
3558
3559 /*
3560 * We calculate rounded up note size here as specified by
3561 * ELF document.
3562 */
3563 note->notesz = sizeof (struct elf_note) +
80f5ce75 3564 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
3565}
3566
3567static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 3568 uint32_t flags)
edf8e2af
MW
3569{
3570 (void) memset(elf, 0, sizeof(*elf));
3571
3572 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3573 elf->e_ident[EI_CLASS] = ELF_CLASS;
3574 elf->e_ident[EI_DATA] = ELF_DATA;
3575 elf->e_ident[EI_VERSION] = EV_CURRENT;
3576 elf->e_ident[EI_OSABI] = ELF_OSABI;
3577
3578 elf->e_type = ET_CORE;
3579 elf->e_machine = machine;
3580 elf->e_version = EV_CURRENT;
3581 elf->e_phoff = sizeof(struct elfhdr);
3582 elf->e_flags = flags;
3583 elf->e_ehsize = sizeof(struct elfhdr);
3584 elf->e_phentsize = sizeof(struct elf_phdr);
3585 elf->e_phnum = segs;
3586
edf8e2af 3587 bswap_ehdr(elf);
edf8e2af
MW
3588}
3589
3590static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3591{
3592 phdr->p_type = PT_NOTE;
3593 phdr->p_offset = offset;
3594 phdr->p_vaddr = 0;
3595 phdr->p_paddr = 0;
3596 phdr->p_filesz = sz;
3597 phdr->p_memsz = 0;
3598 phdr->p_flags = 0;
3599 phdr->p_align = 0;
3600
991f8f0c 3601 bswap_phdr(phdr, 1);
edf8e2af
MW
3602}
3603
3604static size_t note_size(const struct memelfnote *note)
3605{
3606 return (note->notesz);
3607}
3608
a2547a13 3609static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 3610 const TaskState *ts, int signr)
edf8e2af
MW
3611{
3612 (void) memset(prstatus, 0, sizeof (*prstatus));
3613 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3614 prstatus->pr_pid = ts->ts_tid;
3615 prstatus->pr_ppid = getppid();
3616 prstatus->pr_pgrp = getpgrp();
3617 prstatus->pr_sid = getsid(0);
3618
edf8e2af 3619 bswap_prstatus(prstatus);
edf8e2af
MW
3620}
3621
a2547a13 3622static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 3623{
900cfbca 3624 char *base_filename;
edf8e2af
MW
3625 unsigned int i, len;
3626
3627 (void) memset(psinfo, 0, sizeof (*psinfo));
3628
3629 len = ts->info->arg_end - ts->info->arg_start;
3630 if (len >= ELF_PRARGSZ)
3631 len = ELF_PRARGSZ - 1;
3632 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3633 return -EFAULT;
3634 for (i = 0; i < len; i++)
3635 if (psinfo->pr_psargs[i] == 0)
3636 psinfo->pr_psargs[i] = ' ';
3637 psinfo->pr_psargs[len] = 0;
3638
3639 psinfo->pr_pid = getpid();
3640 psinfo->pr_ppid = getppid();
3641 psinfo->pr_pgrp = getpgrp();
3642 psinfo->pr_sid = getsid(0);
3643 psinfo->pr_uid = getuid();
3644 psinfo->pr_gid = getgid();
3645
900cfbca
JM
3646 base_filename = g_path_get_basename(ts->bprm->filename);
3647 /*
3648 * Using strncpy here is fine: at max-length,
3649 * this field is not NUL-terminated.
3650 */
edf8e2af 3651 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 3652 sizeof(psinfo->pr_fname));
edf8e2af 3653
900cfbca 3654 g_free(base_filename);
edf8e2af 3655 bswap_psinfo(psinfo);
edf8e2af
MW
3656 return (0);
3657}
3658
3659static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3660{
3661 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3662 elf_addr_t orig_auxv = auxv;
edf8e2af 3663 void *ptr;
125b0f55 3664 int len = ts->info->auxv_len;
edf8e2af
MW
3665
3666 /*
3667 * Auxiliary vector is stored in target process stack. It contains
3668 * {type, value} pairs that we need to dump into note. This is not
3669 * strictly necessary but we do it here for sake of completeness.
3670 */
3671
edf8e2af
MW
3672 /* read in whole auxv vector and copy it to memelfnote */
3673 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3674 if (ptr != NULL) {
3675 fill_note(note, "CORE", NT_AUXV, len, ptr);
3676 unlock_user(ptr, auxv, len);
3677 }
3678}
3679
3680/*
3681 * Constructs name of coredump file. We have following convention
3682 * for the name:
3683 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3684 *
3685 * Returns 0 in case of success, -1 otherwise (errno is set).
3686 */
3687static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 3688 size_t bufsize)
edf8e2af
MW
3689{
3690 char timestamp[64];
edf8e2af
MW
3691 char *base_filename = NULL;
3692 struct timeval tv;
3693 struct tm tm;
3694
3695 assert(bufsize >= PATH_MAX);
3696
3697 if (gettimeofday(&tv, NULL) < 0) {
3698 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 3699 strerror(errno));
edf8e2af
MW
3700 return (-1);
3701 }
3702
b8da57fa 3703 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 3704 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 3705 localtime_r(&tv.tv_sec, &tm));
edf8e2af 3706 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 3707 base_filename, timestamp, (int)getpid());
b8da57fa 3708 g_free(base_filename);
edf8e2af
MW
3709
3710 return (0);
3711}
3712
3713static int dump_write(int fd, const void *ptr, size_t size)
3714{
3715 const char *bufp = (const char *)ptr;
3716 ssize_t bytes_written, bytes_left;
3717 struct rlimit dumpsize;
3718 off_t pos;
3719
3720 bytes_written = 0;
3721 getrlimit(RLIMIT_CORE, &dumpsize);
3722 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3723 if (errno == ESPIPE) { /* not a seekable stream */
3724 bytes_left = size;
3725 } else {
3726 return pos;
3727 }
3728 } else {
3729 if (dumpsize.rlim_cur <= pos) {
3730 return -1;
3731 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3732 bytes_left = size;
3733 } else {
3734 size_t limit_left=dumpsize.rlim_cur - pos;
3735 bytes_left = limit_left >= size ? size : limit_left ;
3736 }
3737 }
3738
3739 /*
3740 * In normal conditions, single write(2) should do but
3741 * in case of socket etc. this mechanism is more portable.
3742 */
3743 do {
3744 bytes_written = write(fd, bufp, bytes_left);
3745 if (bytes_written < 0) {
3746 if (errno == EINTR)
3747 continue;
3748 return (-1);
3749 } else if (bytes_written == 0) { /* eof */
3750 return (-1);
3751 }
3752 bufp += bytes_written;
3753 bytes_left -= bytes_written;
3754 } while (bytes_left > 0);
3755
3756 return (0);
3757}
3758
3759static int write_note(struct memelfnote *men, int fd)
3760{
3761 struct elf_note en;
3762
3763 en.n_namesz = men->namesz;
3764 en.n_type = men->type;
3765 en.n_descsz = men->datasz;
3766
edf8e2af 3767 bswap_note(&en);
edf8e2af
MW
3768
3769 if (dump_write(fd, &en, sizeof(en)) != 0)
3770 return (-1);
3771 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3772 return (-1);
80f5ce75 3773 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3774 return (-1);
3775
3776 return (0);
3777}
3778
9349b4f9 3779static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3780{
29a0af61 3781 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3782 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3783 struct elf_thread_status *ets;
3784
7267c094 3785 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3786 ets->num_notes = 1; /* only prstatus is dumped */
3787 fill_prstatus(&ets->prstatus, ts, 0);
3788 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3789 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3790 &ets->prstatus);
edf8e2af 3791
72cf2d4f 3792 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3793
3794 info->notes_size += note_size(&ets->notes[0]);
3795}
3796
6afafa86
PM
3797static void init_note_info(struct elf_note_info *info)
3798{
3799 /* Initialize the elf_note_info structure so that it is at
3800 * least safe to call free_note_info() on it. Must be
3801 * called before calling fill_note_info().
3802 */
3803 memset(info, 0, sizeof (*info));
3804 QTAILQ_INIT(&info->thread_list);
3805}
3806
edf8e2af 3807static int fill_note_info(struct elf_note_info *info,
9349b4f9 3808 long signr, const CPUArchState *env)
edf8e2af
MW
3809{
3810#define NUMNOTES 3
29a0af61 3811 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3812 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3813 int i;
3814
c78d65e8 3815 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3816 if (info->notes == NULL)
3817 return (-ENOMEM);
7267c094 3818 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3819 if (info->prstatus == NULL)
3820 return (-ENOMEM);
7267c094 3821 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3822 if (info->prstatus == NULL)
3823 return (-ENOMEM);
3824
3825 /*
3826 * First fill in status (and registers) of current thread
3827 * including process info & aux vector.
3828 */
3829 fill_prstatus(info->prstatus, ts, signr);
3830 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3831 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3832 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3833 fill_psinfo(info->psinfo, ts);
3834 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3835 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3836 fill_auxv_note(&info->notes[2], ts);
3837 info->numnote = 3;
3838
3839 info->notes_size = 0;
3840 for (i = 0; i < info->numnote; i++)
3841 info->notes_size += note_size(&info->notes[i]);
3842
3843 /* read and fill status of all threads */
3844 cpu_list_lock();
bdc44640 3845 CPU_FOREACH(cpu) {
a2247f8e 3846 if (cpu == thread_cpu) {
edf8e2af 3847 continue;
182735ef
AF
3848 }
3849 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3850 }
3851 cpu_list_unlock();
3852
3853 return (0);
3854}
3855
3856static void free_note_info(struct elf_note_info *info)
3857{
3858 struct elf_thread_status *ets;
3859
72cf2d4f
BS
3860 while (!QTAILQ_EMPTY(&info->thread_list)) {
3861 ets = QTAILQ_FIRST(&info->thread_list);
3862 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3863 g_free(ets);
edf8e2af
MW
3864 }
3865
7267c094
AL
3866 g_free(info->prstatus);
3867 g_free(info->psinfo);
3868 g_free(info->notes);
edf8e2af
MW
3869}
3870
3871static int write_note_info(struct elf_note_info *info, int fd)
3872{
3873 struct elf_thread_status *ets;
3874 int i, error = 0;
3875
3876 /* write prstatus, psinfo and auxv for current thread */
3877 for (i = 0; i < info->numnote; i++)
3878 if ((error = write_note(&info->notes[i], fd)) != 0)
3879 return (error);
3880
3881 /* write prstatus for each thread */
52a53afe 3882 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3883 if ((error = write_note(&ets->notes[0], fd)) != 0)
3884 return (error);
3885 }
3886
3887 return (0);
3888}
3889
3890/*
3891 * Write out ELF coredump.
3892 *
3893 * See documentation of ELF object file format in:
3894 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3895 *
3896 * Coredump format in linux is following:
3897 *
3898 * 0 +----------------------+ \
3899 * | ELF header | ET_CORE |
3900 * +----------------------+ |
3901 * | ELF program headers | |--- headers
3902 * | - NOTE section | |
3903 * | - PT_LOAD sections | |
3904 * +----------------------+ /
3905 * | NOTEs: |
3906 * | - NT_PRSTATUS |
3907 * | - NT_PRSINFO |
3908 * | - NT_AUXV |
3909 * +----------------------+ <-- aligned to target page
3910 * | Process memory dump |
3911 * : :
3912 * . .
3913 * : :
3914 * | |
3915 * +----------------------+
3916 *
3917 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3918 * NT_PRSINFO -> struct elf_prpsinfo
3919 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3920 *
3921 * Format follows System V format as close as possible. Current
3922 * version limitations are as follows:
3923 * - no floating point registers are dumped
3924 *
3925 * Function returns 0 in case of success, negative errno otherwise.
3926 *
3927 * TODO: make this work also during runtime: it should be
3928 * possible to force coredump from running process and then
3929 * continue processing. For example qemu could set up SIGUSR2
3930 * handler (provided that target process haven't registered
3931 * handler for that) that does the dump when signal is received.
3932 */
9349b4f9 3933static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3934{
29a0af61 3935 const CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3936 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3937 struct vm_area_struct *vma = NULL;
3938 char corefile[PATH_MAX];
3939 struct elf_note_info info;
3940 struct elfhdr elf;
3941 struct elf_phdr phdr;
3942 struct rlimit dumpsize;
3943 struct mm_struct *mm = NULL;
3944 off_t offset = 0, data_offset = 0;
3945 int segs = 0;
3946 int fd = -1;
3947
6afafa86
PM
3948 init_note_info(&info);
3949
edf8e2af
MW
3950 errno = 0;
3951 getrlimit(RLIMIT_CORE, &dumpsize);
3952 if (dumpsize.rlim_cur == 0)
d97ef72e 3953 return 0;
edf8e2af
MW
3954
3955 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3956 return (-errno);
3957
3958 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3959 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3960 return (-errno);
3961
3962 /*
3963 * Walk through target process memory mappings and
3964 * set up structure containing this information. After
3965 * this point vma_xxx functions can be used.
3966 */
3967 if ((mm = vma_init()) == NULL)
3968 goto out;
3969
3970 walk_memory_regions(mm, vma_walker);
3971 segs = vma_get_mapping_count(mm);
3972
3973 /*
3974 * Construct valid coredump ELF header. We also
3975 * add one more segment for notes.
3976 */
3977 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3978 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3979 goto out;
3980
b6af0975 3981 /* fill in the in-memory version of notes */
edf8e2af
MW
3982 if (fill_note_info(&info, signr, env) < 0)
3983 goto out;
3984
3985 offset += sizeof (elf); /* elf header */
3986 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3987
3988 /* write out notes program header */
3989 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3990
3991 offset += info.notes_size;
3992 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3993 goto out;
3994
3995 /*
3996 * ELF specification wants data to start at page boundary so
3997 * we align it here.
3998 */
80f5ce75 3999 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
4000
4001 /*
4002 * Write program headers for memory regions mapped in
4003 * the target process.
4004 */
4005 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4006 (void) memset(&phdr, 0, sizeof (phdr));
4007
4008 phdr.p_type = PT_LOAD;
4009 phdr.p_offset = offset;
4010 phdr.p_vaddr = vma->vma_start;
4011 phdr.p_paddr = 0;
4012 phdr.p_filesz = vma_dump_size(vma);
4013 offset += phdr.p_filesz;
4014 phdr.p_memsz = vma->vma_end - vma->vma_start;
4015 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4016 if (vma->vma_flags & PROT_WRITE)
4017 phdr.p_flags |= PF_W;
4018 if (vma->vma_flags & PROT_EXEC)
4019 phdr.p_flags |= PF_X;
4020 phdr.p_align = ELF_EXEC_PAGESIZE;
4021
80f5ce75 4022 bswap_phdr(&phdr, 1);
772034b6
PM
4023 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4024 goto out;
4025 }
edf8e2af
MW
4026 }
4027
4028 /*
4029 * Next we write notes just after program headers. No
4030 * alignment needed here.
4031 */
4032 if (write_note_info(&info, fd) < 0)
4033 goto out;
4034
4035 /* align data to page boundary */
edf8e2af
MW
4036 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4037 goto out;
4038
4039 /*
4040 * Finally we can dump process memory into corefile as well.
4041 */
4042 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4043 abi_ulong addr;
4044 abi_ulong end;
4045
4046 end = vma->vma_start + vma_dump_size(vma);
4047
4048 for (addr = vma->vma_start; addr < end;
d97ef72e 4049 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
4050 char page[TARGET_PAGE_SIZE];
4051 int error;
4052
4053 /*
4054 * Read in page from target process memory and
4055 * write it to coredump file.
4056 */
4057 error = copy_from_user(page, addr, sizeof (page));
4058 if (error != 0) {
49995e17 4059 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 4060 addr);
edf8e2af
MW
4061 errno = -error;
4062 goto out;
4063 }
4064 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4065 goto out;
4066 }
4067 }
4068
d97ef72e 4069 out:
edf8e2af
MW
4070 free_note_info(&info);
4071 if (mm != NULL)
4072 vma_delete(mm);
4073 (void) close(fd);
4074
4075 if (errno != 0)
4076 return (-errno);
4077 return (0);
4078}
edf8e2af
MW
4079#endif /* USE_ELF_CORE_DUMP */
4080
e5fe0c52
PB
4081void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4082{
4083 init_thread(regs, infop);
4084}