]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
include/exec: Change reserved_va semantics to last byte
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
30ab9ef2 6#include <sys/shm.h>
31e31b8a 7
3ef693a0 8#include "qemu.h"
3b249d26 9#include "user-internals.h"
db2af69d 10#include "signal-common.h"
3ad0a769 11#include "loader.h"
5423e6d3 12#include "user-mmap.h"
76cad711 13#include "disas/disas.h"
ce543844 14#include "qemu/bitops.h"
f348b6d1 15#include "qemu/path.h"
dc5e9ac7 16#include "qemu/queue.h"
c6a2377f 17#include "qemu/guest-random.h"
6fd59449 18#include "qemu/units.h"
ee947430 19#include "qemu/selfmap.h"
c7f17e7b 20#include "qapi/error.h"
cc37d98b 21#include "qemu/error-report.h"
db2af69d 22#include "target_signal.h"
7c10cb38 23#include "accel/tcg/debuginfo.h"
31e31b8a 24
e58ffeb3 25#ifdef _ARCH_PPC64
a6cc84f4 26#undef ARCH_DLINFO
27#undef ELF_PLATFORM
28#undef ELF_HWCAP
ad6919dc 29#undef ELF_HWCAP2
a6cc84f4 30#undef ELF_CLASS
31#undef ELF_DATA
32#undef ELF_ARCH
33#endif
34
edf8e2af
MW
35#define ELF_OSABI ELFOSABI_SYSV
36
cb33da57
BS
37/* from personality.h */
38
39/*
40 * Flags for bug emulation.
41 *
42 * These occupy the top three bytes.
43 */
44enum {
d97ef72e
RH
45 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
46 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
47 descriptors (signal handling) */
48 MMAP_PAGE_ZERO = 0x0100000,
49 ADDR_COMPAT_LAYOUT = 0x0200000,
50 READ_IMPLIES_EXEC = 0x0400000,
51 ADDR_LIMIT_32BIT = 0x0800000,
52 SHORT_INODE = 0x1000000,
53 WHOLE_SECONDS = 0x2000000,
54 STICKY_TIMEOUTS = 0x4000000,
55 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
56};
57
58/*
59 * Personality types.
60 *
61 * These go in the low byte. Avoid using the top bit, it will
62 * conflict with error returns.
63 */
64enum {
d97ef72e
RH
65 PER_LINUX = 0x0000,
66 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
67 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
68 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
69 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
70 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
71 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
72 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
73 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
74 PER_BSD = 0x0006,
75 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
76 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
77 PER_LINUX32 = 0x0008,
78 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
79 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
80 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
81 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
82 PER_RISCOS = 0x000c,
83 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
84 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
85 PER_OSF4 = 0x000f, /* OSF/1 v4 */
86 PER_HPUX = 0x0010,
87 PER_MASK = 0x00ff,
cb33da57
BS
88};
89
90/*
91 * Return the base personality without flags.
92 */
d97ef72e 93#define personality(pers) (pers & PER_MASK)
cb33da57 94
3cb10cfa
CL
95int info_is_fdpic(struct image_info *info)
96{
97 return info->personality == PER_LINUX_FDPIC;
98}
99
83fb7adf
FB
100/* this flag is uneffective under linux too, should be deleted */
101#ifndef MAP_DENYWRITE
102#define MAP_DENYWRITE 0
103#endif
104
105/* should probably go in elf.h */
106#ifndef ELIBBAD
107#define ELIBBAD 80
108#endif
109
ee3eb3a7 110#if TARGET_BIG_ENDIAN
28490231
RH
111#define ELF_DATA ELFDATA2MSB
112#else
113#define ELF_DATA ELFDATA2LSB
114#endif
115
a29f998d 116#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
117typedef abi_ullong target_elf_greg_t;
118#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
119#else
120typedef abi_ulong target_elf_greg_t;
121#define tswapreg(ptr) tswapal(ptr)
122#endif
123
21e807fa 124#ifdef USE_UID16
1ddd592f
PB
125typedef abi_ushort target_uid_t;
126typedef abi_ushort target_gid_t;
21e807fa 127#else
f8fd4fc4
PB
128typedef abi_uint target_uid_t;
129typedef abi_uint target_gid_t;
21e807fa 130#endif
f8fd4fc4 131typedef abi_int target_pid_t;
21e807fa 132
30ac07d4
FB
133#ifdef TARGET_I386
134
15338fd7
FB
135#define ELF_HWCAP get_elf_hwcap()
136
137static uint32_t get_elf_hwcap(void)
138{
a2247f8e
AF
139 X86CPU *cpu = X86_CPU(thread_cpu);
140
141 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
142}
143
84409ddb
JM
144#ifdef TARGET_X86_64
145#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
146
147#define ELF_CLASS ELFCLASS64
84409ddb
JM
148#define ELF_ARCH EM_X86_64
149
9263ba84
RH
150#define ELF_PLATFORM "x86_64"
151
84409ddb
JM
152static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
153{
154 regs->rax = 0;
155 regs->rsp = infop->start_stack;
156 regs->rip = infop->entry;
157}
158
9edc5d79 159#define ELF_NREG 27
c227f099 160typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
161
162/*
163 * Note that ELF_NREG should be 29 as there should be place for
164 * TRAPNO and ERR "registers" as well but linux doesn't dump
165 * those.
166 *
167 * See linux kernel: arch/x86/include/asm/elf.h
168 */
05390248 169static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79 170{
030912e0
IL
171 (*regs)[0] = tswapreg(env->regs[15]);
172 (*regs)[1] = tswapreg(env->regs[14]);
173 (*regs)[2] = tswapreg(env->regs[13]);
174 (*regs)[3] = tswapreg(env->regs[12]);
175 (*regs)[4] = tswapreg(env->regs[R_EBP]);
176 (*regs)[5] = tswapreg(env->regs[R_EBX]);
177 (*regs)[6] = tswapreg(env->regs[11]);
178 (*regs)[7] = tswapreg(env->regs[10]);
179 (*regs)[8] = tswapreg(env->regs[9]);
180 (*regs)[9] = tswapreg(env->regs[8]);
181 (*regs)[10] = tswapreg(env->regs[R_EAX]);
182 (*regs)[11] = tswapreg(env->regs[R_ECX]);
183 (*regs)[12] = tswapreg(env->regs[R_EDX]);
184 (*regs)[13] = tswapreg(env->regs[R_ESI]);
185 (*regs)[14] = tswapreg(env->regs[R_EDI]);
186 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
187 (*regs)[16] = tswapreg(env->eip);
188 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
189 (*regs)[18] = tswapreg(env->eflags);
190 (*regs)[19] = tswapreg(env->regs[R_ESP]);
191 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
192 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
193 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
194 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
195 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
196 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
197 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
9edc5d79
MW
198}
199
d461b73e
RH
200#if ULONG_MAX > UINT32_MAX
201#define INIT_GUEST_COMMPAGE
202static bool init_guest_commpage(void)
203{
204 /*
205 * The vsyscall page is at a high negative address aka kernel space,
206 * which means that we cannot actually allocate it with target_mmap.
207 * We still should be able to use page_set_flags, unless the user
208 * has specified -R reserved_va, which would trigger an assert().
209 */
210 if (reserved_va != 0 &&
95059f9c 211 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
d461b73e
RH
212 error_report("Cannot allocate vsyscall page");
213 exit(EXIT_FAILURE);
214 }
215 page_set_flags(TARGET_VSYSCALL_PAGE,
49840a4a 216 TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
d461b73e
RH
217 PAGE_EXEC | PAGE_VALID);
218 return true;
219}
220#endif
84409ddb
JM
221#else
222
30ac07d4
FB
223#define ELF_START_MMAP 0x80000000
224
30ac07d4
FB
225/*
226 * This is used to ensure we don't load something for the wrong architecture.
227 */
228#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
229
230/*
231 * These are used to set parameters in the core dumps.
232 */
d97ef72e 233#define ELF_CLASS ELFCLASS32
d97ef72e 234#define ELF_ARCH EM_386
30ac07d4 235
9263ba84 236#define ELF_PLATFORM get_elf_platform()
872f3d04 237#define EXSTACK_DEFAULT true
9263ba84
RH
238
239static const char *get_elf_platform(void)
240{
241 static char elf_platform[] = "i386";
242 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
243 if (family > 6) {
244 family = 6;
245 }
246 if (family >= 3) {
247 elf_platform[1] = '0' + family;
248 }
249 return elf_platform;
250}
251
d97ef72e
RH
252static inline void init_thread(struct target_pt_regs *regs,
253 struct image_info *infop)
b346ff46
FB
254{
255 regs->esp = infop->start_stack;
256 regs->eip = infop->entry;
e5fe0c52
PB
257
258 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
259 starts %edx contains a pointer to a function which might be
260 registered using `atexit'. This provides a mean for the
261 dynamic linker to call DT_FINI functions for shared libraries
262 that have been loaded before the code runs.
263
264 A value of 0 tells we have no such handler. */
265 regs->edx = 0;
b346ff46 266}
9edc5d79 267
9edc5d79 268#define ELF_NREG 17
c227f099 269typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
270
271/*
272 * Note that ELF_NREG should be 19 as there should be place for
273 * TRAPNO and ERR "registers" as well but linux doesn't dump
274 * those.
275 *
276 * See linux kernel: arch/x86/include/asm/elf.h
277 */
05390248 278static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79 279{
030912e0
IL
280 (*regs)[0] = tswapreg(env->regs[R_EBX]);
281 (*regs)[1] = tswapreg(env->regs[R_ECX]);
282 (*regs)[2] = tswapreg(env->regs[R_EDX]);
283 (*regs)[3] = tswapreg(env->regs[R_ESI]);
284 (*regs)[4] = tswapreg(env->regs[R_EDI]);
285 (*regs)[5] = tswapreg(env->regs[R_EBP]);
286 (*regs)[6] = tswapreg(env->regs[R_EAX]);
287 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
288 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
289 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
290 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
291 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
292 (*regs)[12] = tswapreg(env->eip);
293 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
294 (*regs)[14] = tswapreg(env->eflags);
295 (*regs)[15] = tswapreg(env->regs[R_ESP]);
296 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
9edc5d79 297}
84409ddb 298#endif
b346ff46 299
9edc5d79 300#define USE_ELF_CORE_DUMP
d97ef72e 301#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
302
303#endif
304
305#ifdef TARGET_ARM
306
24e76ff0
PM
307#ifndef TARGET_AARCH64
308/* 32 bit ARM definitions */
309
b346ff46
FB
310#define ELF_START_MMAP 0x80000000
311
b597c3f7 312#define ELF_ARCH EM_ARM
d97ef72e 313#define ELF_CLASS ELFCLASS32
872f3d04 314#define EXSTACK_DEFAULT true
b346ff46 315
d97ef72e
RH
316static inline void init_thread(struct target_pt_regs *regs,
317 struct image_info *infop)
b346ff46 318{
992f48a0 319 abi_long stack = infop->start_stack;
b346ff46 320 memset(regs, 0, sizeof(*regs));
99033cae 321
167e4cdc
PM
322 regs->uregs[16] = ARM_CPU_MODE_USR;
323 if (infop->entry & 1) {
324 regs->uregs[16] |= CPSR_T;
325 }
326 regs->uregs[15] = infop->entry & 0xfffffffe;
327 regs->uregs[13] = infop->start_stack;
2f619698 328 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
329 get_user_ual(regs->uregs[2], stack + 8); /* envp */
330 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 331 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 332 regs->uregs[0] = 0;
e5fe0c52 333 /* For uClinux PIC binaries. */
863cf0b7 334 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 335 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
336
337 /* Support ARM FDPIC. */
338 if (info_is_fdpic(infop)) {
339 /* As described in the ABI document, r7 points to the loadmap info
340 * prepared by the kernel. If an interpreter is needed, r8 points
341 * to the interpreter loadmap and r9 points to the interpreter
342 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
343 * r9 points to the main program PT_DYNAMIC info.
344 */
345 regs->uregs[7] = infop->loadmap_addr;
346 if (infop->interpreter_loadmap_addr) {
347 /* Executable is dynamically loaded. */
348 regs->uregs[8] = infop->interpreter_loadmap_addr;
349 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
350 } else {
351 regs->uregs[8] = 0;
352 regs->uregs[9] = infop->pt_dynamic_addr;
353 }
354 }
b346ff46
FB
355}
356
edf8e2af 357#define ELF_NREG 18
c227f099 358typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 359
05390248 360static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 361{
86cd7b2d
PB
362 (*regs)[0] = tswapreg(env->regs[0]);
363 (*regs)[1] = tswapreg(env->regs[1]);
364 (*regs)[2] = tswapreg(env->regs[2]);
365 (*regs)[3] = tswapreg(env->regs[3]);
366 (*regs)[4] = tswapreg(env->regs[4]);
367 (*regs)[5] = tswapreg(env->regs[5]);
368 (*regs)[6] = tswapreg(env->regs[6]);
369 (*regs)[7] = tswapreg(env->regs[7]);
370 (*regs)[8] = tswapreg(env->regs[8]);
371 (*regs)[9] = tswapreg(env->regs[9]);
372 (*regs)[10] = tswapreg(env->regs[10]);
373 (*regs)[11] = tswapreg(env->regs[11]);
374 (*regs)[12] = tswapreg(env->regs[12]);
375 (*regs)[13] = tswapreg(env->regs[13]);
376 (*regs)[14] = tswapreg(env->regs[14]);
377 (*regs)[15] = tswapreg(env->regs[15]);
378
379 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
380 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
381}
382
30ac07d4 383#define USE_ELF_CORE_DUMP
d97ef72e 384#define ELF_EXEC_PAGESIZE 4096
30ac07d4 385
afce2927
FB
386enum
387{
d97ef72e
RH
388 ARM_HWCAP_ARM_SWP = 1 << 0,
389 ARM_HWCAP_ARM_HALF = 1 << 1,
390 ARM_HWCAP_ARM_THUMB = 1 << 2,
391 ARM_HWCAP_ARM_26BIT = 1 << 3,
392 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
393 ARM_HWCAP_ARM_FPA = 1 << 5,
394 ARM_HWCAP_ARM_VFP = 1 << 6,
395 ARM_HWCAP_ARM_EDSP = 1 << 7,
396 ARM_HWCAP_ARM_JAVA = 1 << 8,
397 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
398 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
399 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
400 ARM_HWCAP_ARM_NEON = 1 << 12,
401 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
402 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
403 ARM_HWCAP_ARM_TLS = 1 << 15,
404 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
405 ARM_HWCAP_ARM_IDIVA = 1 << 17,
406 ARM_HWCAP_ARM_IDIVT = 1 << 18,
407 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
408 ARM_HWCAP_ARM_LPAE = 1 << 20,
409 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
410};
411
ad6919dc
PM
412enum {
413 ARM_HWCAP2_ARM_AES = 1 << 0,
414 ARM_HWCAP2_ARM_PMULL = 1 << 1,
415 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
416 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
417 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
418};
419
6b1275ff
PM
420/* The commpage only exists for 32 bit kernels */
421
66346faf 422#define HI_COMMPAGE (intptr_t)0xffff0f00u
806d1021 423
ee947430
AB
424static bool init_guest_commpage(void)
425{
fbd3c4cf
RH
426 abi_ptr commpage = HI_COMMPAGE & -qemu_host_page_size;
427 void *want = g2h_untagged(commpage);
ee947430 428 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
5c3e87f3 429 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
97cc7560 430
ee947430
AB
431 if (addr == MAP_FAILED) {
432 perror("Allocating guest commpage");
433 exit(EXIT_FAILURE);
97cc7560 434 }
ee947430
AB
435 if (addr != want) {
436 return false;
97cc7560
DDAG
437 }
438
ee947430 439 /* Set kernel helper versions; rest of page is 0. */
3e8f1628 440 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
97cc7560 441
ee947430 442 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
97cc7560 443 perror("Protecting guest commpage");
ee947430 444 exit(EXIT_FAILURE);
97cc7560 445 }
fbd3c4cf 446
49840a4a 447 page_set_flags(commpage, commpage | ~qemu_host_page_mask,
fbd3c4cf 448 PAGE_READ | PAGE_EXEC | PAGE_VALID);
ee947430 449 return true;
97cc7560 450}
adf050b1
BC
451
452#define ELF_HWCAP get_elf_hwcap()
ad6919dc 453#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
454
455static uint32_t get_elf_hwcap(void)
456{
a2247f8e 457 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
458 uint32_t hwcaps = 0;
459
460 hwcaps |= ARM_HWCAP_ARM_SWP;
461 hwcaps |= ARM_HWCAP_ARM_HALF;
462 hwcaps |= ARM_HWCAP_ARM_THUMB;
463 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
464
465 /* probe for the extra features */
466#define GET_FEATURE(feat, hwcap) \
a2247f8e 467 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
962fcbf2
RH
468
469#define GET_FEATURE_ID(feat, hwcap) \
470 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
471
24682654
PM
472 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
473 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
474 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
475 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
476 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
24682654 477 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
bfa8a370 478 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
873b73c0
PM
479 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
480 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
bfa8a370
RH
481 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
482
483 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
484 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
485 hwcaps |= ARM_HWCAP_ARM_VFPv3;
486 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
487 hwcaps |= ARM_HWCAP_ARM_VFPD32;
488 } else {
489 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
490 }
491 }
492 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
adf050b1
BC
493
494 return hwcaps;
495}
afce2927 496
ad6919dc
PM
497static uint32_t get_elf_hwcap2(void)
498{
499 ARMCPU *cpu = ARM_CPU(thread_cpu);
500 uint32_t hwcaps = 0;
501
962fcbf2
RH
502 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
503 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
504 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
505 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
506 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
ad6919dc
PM
507 return hwcaps;
508}
509
510#undef GET_FEATURE
962fcbf2 511#undef GET_FEATURE_ID
ad6919dc 512
13ec4ec3
RH
513#define ELF_PLATFORM get_elf_platform()
514
515static const char *get_elf_platform(void)
516{
517 CPUARMState *env = thread_cpu->env_ptr;
518
ee3eb3a7 519#if TARGET_BIG_ENDIAN
13ec4ec3
RH
520# define END "b"
521#else
522# define END "l"
523#endif
524
525 if (arm_feature(env, ARM_FEATURE_V8)) {
526 return "v8" END;
527 } else if (arm_feature(env, ARM_FEATURE_V7)) {
528 if (arm_feature(env, ARM_FEATURE_M)) {
529 return "v7m" END;
530 } else {
531 return "v7" END;
532 }
533 } else if (arm_feature(env, ARM_FEATURE_V6)) {
534 return "v6" END;
535 } else if (arm_feature(env, ARM_FEATURE_V5)) {
536 return "v5" END;
537 } else {
538 return "v4" END;
539 }
540
541#undef END
542}
543
24e76ff0
PM
544#else
545/* 64 bit ARM definitions */
546#define ELF_START_MMAP 0x80000000
547
b597c3f7 548#define ELF_ARCH EM_AARCH64
24e76ff0 549#define ELF_CLASS ELFCLASS64
ee3eb3a7 550#if TARGET_BIG_ENDIAN
e20e3ec9
RH
551# define ELF_PLATFORM "aarch64_be"
552#else
553# define ELF_PLATFORM "aarch64"
554#endif
24e76ff0
PM
555
556static inline void init_thread(struct target_pt_regs *regs,
557 struct image_info *infop)
558{
559 abi_long stack = infop->start_stack;
560 memset(regs, 0, sizeof(*regs));
561
562 regs->pc = infop->entry & ~0x3ULL;
563 regs->sp = stack;
564}
565
566#define ELF_NREG 34
567typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
568
569static void elf_core_copy_regs(target_elf_gregset_t *regs,
570 const CPUARMState *env)
571{
572 int i;
573
574 for (i = 0; i < 32; i++) {
575 (*regs)[i] = tswapreg(env->xregs[i]);
576 }
577 (*regs)[32] = tswapreg(env->pc);
578 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
579}
580
581#define USE_ELF_CORE_DUMP
582#define ELF_EXEC_PAGESIZE 4096
583
584enum {
585 ARM_HWCAP_A64_FP = 1 << 0,
586 ARM_HWCAP_A64_ASIMD = 1 << 1,
587 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
588 ARM_HWCAP_A64_AES = 1 << 3,
589 ARM_HWCAP_A64_PMULL = 1 << 4,
590 ARM_HWCAP_A64_SHA1 = 1 << 5,
591 ARM_HWCAP_A64_SHA2 = 1 << 6,
592 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
593 ARM_HWCAP_A64_ATOMICS = 1 << 8,
594 ARM_HWCAP_A64_FPHP = 1 << 9,
595 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
596 ARM_HWCAP_A64_CPUID = 1 << 11,
597 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
598 ARM_HWCAP_A64_JSCVT = 1 << 13,
599 ARM_HWCAP_A64_FCMA = 1 << 14,
600 ARM_HWCAP_A64_LRCPC = 1 << 15,
601 ARM_HWCAP_A64_DCPOP = 1 << 16,
602 ARM_HWCAP_A64_SHA3 = 1 << 17,
603 ARM_HWCAP_A64_SM3 = 1 << 18,
604 ARM_HWCAP_A64_SM4 = 1 << 19,
605 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
606 ARM_HWCAP_A64_SHA512 = 1 << 21,
607 ARM_HWCAP_A64_SVE = 1 << 22,
0083a1fa
RH
608 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
609 ARM_HWCAP_A64_DIT = 1 << 24,
610 ARM_HWCAP_A64_USCAT = 1 << 25,
611 ARM_HWCAP_A64_ILRCPC = 1 << 26,
612 ARM_HWCAP_A64_FLAGM = 1 << 27,
613 ARM_HWCAP_A64_SSBS = 1 << 28,
614 ARM_HWCAP_A64_SB = 1 << 29,
615 ARM_HWCAP_A64_PACA = 1 << 30,
616 ARM_HWCAP_A64_PACG = 1UL << 31,
2041df4a
RH
617
618 ARM_HWCAP2_A64_DCPODP = 1 << 0,
619 ARM_HWCAP2_A64_SVE2 = 1 << 1,
620 ARM_HWCAP2_A64_SVEAES = 1 << 2,
621 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
622 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
623 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
624 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
625 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
626 ARM_HWCAP2_A64_FRINT = 1 << 8,
68948d18
RH
627 ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
628 ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
629 ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
630 ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
631 ARM_HWCAP2_A64_I8MM = 1 << 13,
632 ARM_HWCAP2_A64_BF16 = 1 << 14,
633 ARM_HWCAP2_A64_DGH = 1 << 15,
634 ARM_HWCAP2_A64_RNG = 1 << 16,
635 ARM_HWCAP2_A64_BTI = 1 << 17,
636 ARM_HWCAP2_A64_MTE = 1 << 18,
f9982cea
RH
637 ARM_HWCAP2_A64_ECV = 1 << 19,
638 ARM_HWCAP2_A64_AFP = 1 << 20,
639 ARM_HWCAP2_A64_RPRES = 1 << 21,
640 ARM_HWCAP2_A64_MTE3 = 1 << 22,
641 ARM_HWCAP2_A64_SME = 1 << 23,
642 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24,
643 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25,
644 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26,
645 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27,
646 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28,
647 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29,
648 ARM_HWCAP2_A64_SME_FA64 = 1 << 30,
24e76ff0
PM
649};
650
2041df4a
RH
651#define ELF_HWCAP get_elf_hwcap()
652#define ELF_HWCAP2 get_elf_hwcap2()
653
654#define GET_FEATURE_ID(feat, hwcap) \
655 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
24e76ff0
PM
656
657static uint32_t get_elf_hwcap(void)
658{
659 ARMCPU *cpu = ARM_CPU(thread_cpu);
660 uint32_t hwcaps = 0;
661
662 hwcaps |= ARM_HWCAP_A64_FP;
663 hwcaps |= ARM_HWCAP_A64_ASIMD;
37020ff1 664 hwcaps |= ARM_HWCAP_A64_CPUID;
24e76ff0
PM
665
666 /* probe for the extra features */
962fcbf2
RH
667
668 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
669 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
670 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
671 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
672 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
673 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
674 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
675 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
676 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
5763190f 677 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
962fcbf2
RH
678 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
679 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
680 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
681 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
cd208a1c 682 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
29d26ab2 683 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
1c9af3a9
RH
684 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
685 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
9888bd1e 686 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
b89d9c98 687 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
0d57b499 688 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
2677cf9f 689 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
a1229109 690 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
962fcbf2 691
2041df4a
RH
692 return hwcaps;
693}
694
695static uint32_t get_elf_hwcap2(void)
696{
697 ARMCPU *cpu = ARM_CPU(thread_cpu);
698 uint32_t hwcaps = 0;
699
0d57b499 700 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
cdc8d8b2
RH
701 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
702 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
703 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
704 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
705 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
706 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
2041df4a
RH
707 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
708 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
cdc8d8b2
RH
709 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
710 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
711 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
6c47a905 712 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
cdc8d8b2 713 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
6c47a905 714 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
68948d18
RH
715 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
716 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
717 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
f9982cea
RH
718 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
719 ARM_HWCAP2_A64_SME_F32F32 |
720 ARM_HWCAP2_A64_SME_B16F32 |
721 ARM_HWCAP2_A64_SME_F16F32 |
722 ARM_HWCAP2_A64_SME_I8I32));
723 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
724 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
725 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
24e76ff0
PM
726
727 return hwcaps;
728}
729
2041df4a
RH
730#undef GET_FEATURE_ID
731
24e76ff0
PM
732#endif /* not TARGET_AARCH64 */
733#endif /* TARGET_ARM */
30ac07d4 734
853d6f7a 735#ifdef TARGET_SPARC
a315a145 736#ifdef TARGET_SPARC64
853d6f7a
FB
737
738#define ELF_START_MMAP 0x80000000
cf973e46
AT
739#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
740 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 741#ifndef TARGET_ABI32
cb33da57 742#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
743#else
744#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
745#endif
853d6f7a 746
a315a145 747#define ELF_CLASS ELFCLASS64
5ef54116 748#define ELF_ARCH EM_SPARCV9
a315a145
FB
749#else
750#define ELF_START_MMAP 0x80000000
cf973e46
AT
751#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
752 | HWCAP_SPARC_MULDIV)
853d6f7a 753#define ELF_CLASS ELFCLASS32
853d6f7a 754#define ELF_ARCH EM_SPARC
089a2256 755#endif /* TARGET_SPARC64 */
853d6f7a 756
d97ef72e
RH
757static inline void init_thread(struct target_pt_regs *regs,
758 struct image_info *infop)
853d6f7a 759{
089a2256 760 /* Note that target_cpu_copy_regs does not read psr/tstate. */
f5155289
FB
761 regs->pc = infop->entry;
762 regs->npc = regs->pc + 4;
763 regs->y = 0;
089a2256
RH
764 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
765 - TARGET_STACK_BIAS);
853d6f7a 766}
089a2256 767#endif /* TARGET_SPARC */
853d6f7a 768
67867308
FB
769#ifdef TARGET_PPC
770
4ecd4d16 771#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
772#define ELF_START_MMAP 0x80000000
773
74154d7e 774#if defined(TARGET_PPC64)
84409ddb
JM
775
776#define elf_check_arch(x) ( (x) == EM_PPC64 )
777
d97ef72e 778#define ELF_CLASS ELFCLASS64
84409ddb
JM
779
780#else
781
d97ef72e 782#define ELF_CLASS ELFCLASS32
872f3d04 783#define EXSTACK_DEFAULT true
84409ddb
JM
784
785#endif
786
d97ef72e 787#define ELF_ARCH EM_PPC
67867308 788
df84e4f3
NF
789/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
790 See arch/powerpc/include/asm/cputable.h. */
791enum {
3efa9a67 792 QEMU_PPC_FEATURE_32 = 0x80000000,
793 QEMU_PPC_FEATURE_64 = 0x40000000,
794 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
795 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
796 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
797 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
798 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
799 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
800 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
801 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
802 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
803 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
804 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
805 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
806 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
807 QEMU_PPC_FEATURE_CELL = 0x00010000,
808 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
809 QEMU_PPC_FEATURE_SMT = 0x00004000,
810 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
811 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
812 QEMU_PPC_FEATURE_PA6T = 0x00000800,
813 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
814 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
815 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
816 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
817 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
818
819 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
820 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
821
822 /* Feature definitions in AT_HWCAP2. */
823 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
824 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
825 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
826 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
827 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
828 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
24c373ec
LV
829 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
830 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
be0c46d4 831 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
24c373ec
LV
832 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
833 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
834 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
835 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
96c343cc
JS
836 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
837 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
df84e4f3
NF
838};
839
840#define ELF_HWCAP get_elf_hwcap()
841
842static uint32_t get_elf_hwcap(void)
843{
a2247f8e 844 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
845 uint32_t features = 0;
846
847 /* We don't have to be terribly complete here; the high points are
848 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 849#define GET_FEATURE(flag, feature) \
a2247f8e 850 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
851#define GET_FEATURE2(flags, feature) \
852 do { \
853 if ((cpu->env.insns_flags2 & flags) == flags) { \
854 features |= feature; \
855 } \
856 } while (0)
3efa9a67 857 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
858 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
859 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
860 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
861 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
862 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
863 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
864 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
865 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
866 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
867 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
868 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
869 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 870#undef GET_FEATURE
0e019746 871#undef GET_FEATURE2
df84e4f3
NF
872
873 return features;
874}
875
a60438dd
TM
876#define ELF_HWCAP2 get_elf_hwcap2()
877
878static uint32_t get_elf_hwcap2(void)
879{
880 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
881 uint32_t features = 0;
882
883#define GET_FEATURE(flag, feature) \
884 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
885#define GET_FEATURE2(flag, feature) \
886 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
887
888 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
889 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
890 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
24c373ec
LV
891 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
892 QEMU_PPC_FEATURE2_VEC_CRYPTO);
893 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
8a589aeb 894 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
96c343cc
JS
895 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
896 QEMU_PPC_FEATURE2_MMA);
a60438dd
TM
897
898#undef GET_FEATURE
899#undef GET_FEATURE2
900
901 return features;
902}
903
f5155289
FB
904/*
905 * The requirements here are:
906 * - keep the final alignment of sp (sp & 0xf)
907 * - make sure the 32-bit value at the first 16 byte aligned position of
908 * AUXV is greater than 16 for glibc compatibility.
909 * AT_IGNOREPPC is used for that.
910 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
911 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
912 */
0bccf03d 913#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
914#define ARCH_DLINFO \
915 do { \
623e250a 916 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 917 /* \
82991bed
PM
918 * Handle glibc compatibility: these magic entries must \
919 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
920 */ \
921 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
922 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
923 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
924 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
925 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 926 } while (0)
f5155289 927
67867308
FB
928static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
929{
67867308 930 _regs->gpr[1] = infop->start_stack;
74154d7e 931#if defined(TARGET_PPC64)
d90b94cd 932 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
933 uint64_t val;
934 get_user_u64(val, infop->entry + 8);
935 _regs->gpr[2] = val + infop->load_bias;
936 get_user_u64(val, infop->entry);
937 infop->entry = val + infop->load_bias;
d90b94cd
DK
938 } else {
939 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
940 }
84409ddb 941#endif
67867308
FB
942 _regs->nip = infop->entry;
943}
944
e2f3e741
NF
945/* See linux kernel: arch/powerpc/include/asm/elf.h. */
946#define ELF_NREG 48
947typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
948
05390248 949static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
950{
951 int i;
952 target_ulong ccr = 0;
953
954 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 955 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
956 }
957
86cd7b2d
PB
958 (*regs)[32] = tswapreg(env->nip);
959 (*regs)[33] = tswapreg(env->msr);
960 (*regs)[35] = tswapreg(env->ctr);
961 (*regs)[36] = tswapreg(env->lr);
10de0521 962 (*regs)[37] = tswapreg(cpu_read_xer(env));
e2f3e741
NF
963
964 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
965 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
966 }
86cd7b2d 967 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
968}
969
970#define USE_ELF_CORE_DUMP
d97ef72e 971#define ELF_EXEC_PAGESIZE 4096
67867308
FB
972
973#endif
974
3418fe25
SG
975#ifdef TARGET_LOONGARCH64
976
977#define ELF_START_MMAP 0x80000000
978
979#define ELF_CLASS ELFCLASS64
980#define ELF_ARCH EM_LOONGARCH
872f3d04 981#define EXSTACK_DEFAULT true
3418fe25
SG
982
983#define elf_check_arch(x) ((x) == EM_LOONGARCH)
984
985static inline void init_thread(struct target_pt_regs *regs,
986 struct image_info *infop)
987{
988 /*Set crmd PG,DA = 1,0 */
989 regs->csr.crmd = 2 << 3;
990 regs->csr.era = infop->entry;
991 regs->regs[3] = infop->start_stack;
992}
993
994/* See linux kernel: arch/loongarch/include/asm/elf.h */
995#define ELF_NREG 45
996typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
997
998enum {
999 TARGET_EF_R0 = 0,
1000 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1001 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1002};
1003
1004static void elf_core_copy_regs(target_elf_gregset_t *regs,
1005 const CPULoongArchState *env)
1006{
1007 int i;
1008
1009 (*regs)[TARGET_EF_R0] = 0;
1010
1011 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1012 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1013 }
1014
1015 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1016 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1017}
1018
1019#define USE_ELF_CORE_DUMP
1020#define ELF_EXEC_PAGESIZE 4096
1021
1022#define ELF_HWCAP get_elf_hwcap()
1023
1024/* See arch/loongarch/include/uapi/asm/hwcap.h */
1025enum {
1026 HWCAP_LOONGARCH_CPUCFG = (1 << 0),
1027 HWCAP_LOONGARCH_LAM = (1 << 1),
1028 HWCAP_LOONGARCH_UAL = (1 << 2),
1029 HWCAP_LOONGARCH_FPU = (1 << 3),
1030 HWCAP_LOONGARCH_LSX = (1 << 4),
1031 HWCAP_LOONGARCH_LASX = (1 << 5),
1032 HWCAP_LOONGARCH_CRC32 = (1 << 6),
1033 HWCAP_LOONGARCH_COMPLEX = (1 << 7),
1034 HWCAP_LOONGARCH_CRYPTO = (1 << 8),
1035 HWCAP_LOONGARCH_LVZ = (1 << 9),
1036 HWCAP_LOONGARCH_LBT_X86 = (1 << 10),
1037 HWCAP_LOONGARCH_LBT_ARM = (1 << 11),
1038 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1039};
1040
1041static uint32_t get_elf_hwcap(void)
1042{
1043 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1044 uint32_t hwcaps = 0;
1045
1046 hwcaps |= HWCAP_LOONGARCH_CRC32;
1047
1048 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1049 hwcaps |= HWCAP_LOONGARCH_UAL;
1050 }
1051
1052 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1053 hwcaps |= HWCAP_LOONGARCH_FPU;
1054 }
1055
1056 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1057 hwcaps |= HWCAP_LOONGARCH_LAM;
1058 }
1059
1060 return hwcaps;
1061}
1062
1063#define ELF_PLATFORM "loongarch"
1064
1065#endif /* TARGET_LOONGARCH64 */
1066
048f6b4d
FB
1067#ifdef TARGET_MIPS
1068
1069#define ELF_START_MMAP 0x80000000
1070
388bb21a
TS
1071#ifdef TARGET_MIPS64
1072#define ELF_CLASS ELFCLASS64
1073#else
048f6b4d 1074#define ELF_CLASS ELFCLASS32
388bb21a 1075#endif
048f6b4d 1076#define ELF_ARCH EM_MIPS
872f3d04 1077#define EXSTACK_DEFAULT true
048f6b4d 1078
ace3d654
CMAB
1079#ifdef TARGET_ABI_MIPSN32
1080#define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1081#else
1082#define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1083#endif
1084
fbf47c18
JY
1085#define ELF_BASE_PLATFORM get_elf_base_platform()
1086
1087#define MATCH_PLATFORM_INSN(_flags, _base_platform) \
1088 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1089 { return _base_platform; } } while (0)
1090
1091static const char *get_elf_base_platform(void)
1092{
1093 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1094
1095 /* 64 bit ISAs goes first */
1096 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1097 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1098 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1099 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1100 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1101 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1102 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1103
1104 /* 32 bit ISAs */
1105 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1106 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1107 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1108 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1109 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1110
1111 /* Fallback */
1112 return "mips";
1113}
1114#undef MATCH_PLATFORM_INSN
1115
d97ef72e
RH
1116static inline void init_thread(struct target_pt_regs *regs,
1117 struct image_info *infop)
048f6b4d 1118{
623a930e 1119 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
1120 regs->cp0_epc = infop->entry;
1121 regs->regs[29] = infop->start_stack;
1122}
1123
51e52606
NF
1124/* See linux kernel: arch/mips/include/asm/elf.h. */
1125#define ELF_NREG 45
1126typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1127
1128/* See linux kernel: arch/mips/include/asm/reg.h. */
1129enum {
1130#ifdef TARGET_MIPS64
1131 TARGET_EF_R0 = 0,
1132#else
1133 TARGET_EF_R0 = 6,
1134#endif
1135 TARGET_EF_R26 = TARGET_EF_R0 + 26,
1136 TARGET_EF_R27 = TARGET_EF_R0 + 27,
1137 TARGET_EF_LO = TARGET_EF_R0 + 32,
1138 TARGET_EF_HI = TARGET_EF_R0 + 33,
1139 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1140 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1141 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1142 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1143};
1144
1145/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1146static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
1147{
1148 int i;
1149
1150 for (i = 0; i < TARGET_EF_R0; i++) {
1151 (*regs)[i] = 0;
1152 }
1153 (*regs)[TARGET_EF_R0] = 0;
1154
1155 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 1156 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
1157 }
1158
1159 (*regs)[TARGET_EF_R26] = 0;
1160 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
1161 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1162 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1163 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1164 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1165 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1166 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
1167}
1168
1169#define USE_ELF_CORE_DUMP
388bb21a
TS
1170#define ELF_EXEC_PAGESIZE 4096
1171
46a1ee4f
JC
1172/* See arch/mips/include/uapi/asm/hwcap.h. */
1173enum {
1174 HWCAP_MIPS_R6 = (1 << 0),
1175 HWCAP_MIPS_MSA = (1 << 1),
9ea313ba
PMD
1176 HWCAP_MIPS_CRC32 = (1 << 2),
1177 HWCAP_MIPS_MIPS16 = (1 << 3),
1178 HWCAP_MIPS_MDMX = (1 << 4),
1179 HWCAP_MIPS_MIPS3D = (1 << 5),
1180 HWCAP_MIPS_SMARTMIPS = (1 << 6),
1181 HWCAP_MIPS_DSP = (1 << 7),
1182 HWCAP_MIPS_DSP2 = (1 << 8),
1183 HWCAP_MIPS_DSP3 = (1 << 9),
1184 HWCAP_MIPS_MIPS16E2 = (1 << 10),
1185 HWCAP_LOONGSON_MMI = (1 << 11),
1186 HWCAP_LOONGSON_EXT = (1 << 12),
1187 HWCAP_LOONGSON_EXT2 = (1 << 13),
1188 HWCAP_LOONGSON_CPUCFG = (1 << 14),
46a1ee4f
JC
1189};
1190
1191#define ELF_HWCAP get_elf_hwcap()
1192
7d9a3d96 1193#define GET_FEATURE_INSN(_flag, _hwcap) \
6dd97bfc
PMD
1194 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1195
388765a0
PMD
1196#define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1197 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1198
ce543844
PMD
1199#define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1200 do { \
1201 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1202 hwcaps |= _hwcap; \
1203 } \
1204 } while (0)
1205
46a1ee4f
JC
1206static uint32_t get_elf_hwcap(void)
1207{
1208 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1209 uint32_t hwcaps = 0;
1210
ce543844
PMD
1211 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1212 2, HWCAP_MIPS_R6);
388765a0 1213 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
53673d0f
PMD
1214 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1215 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
46a1ee4f 1216
46a1ee4f
JC
1217 return hwcaps;
1218}
1219
ce543844 1220#undef GET_FEATURE_REG_EQU
388765a0 1221#undef GET_FEATURE_REG_SET
7d9a3d96 1222#undef GET_FEATURE_INSN
6dd97bfc 1223
048f6b4d
FB
1224#endif /* TARGET_MIPS */
1225
b779e29e
EI
1226#ifdef TARGET_MICROBLAZE
1227
1228#define ELF_START_MMAP 0x80000000
1229
0d5d4699 1230#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
1231
1232#define ELF_CLASS ELFCLASS32
0d5d4699 1233#define ELF_ARCH EM_MICROBLAZE
b779e29e 1234
d97ef72e
RH
1235static inline void init_thread(struct target_pt_regs *regs,
1236 struct image_info *infop)
b779e29e
EI
1237{
1238 regs->pc = infop->entry;
1239 regs->r1 = infop->start_stack;
1240
1241}
1242
b779e29e
EI
1243#define ELF_EXEC_PAGESIZE 4096
1244
e4cbd44d
EI
1245#define USE_ELF_CORE_DUMP
1246#define ELF_NREG 38
1247typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1248
1249/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1250static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
1251{
1252 int i, pos = 0;
1253
1254 for (i = 0; i < 32; i++) {
86cd7b2d 1255 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
1256 }
1257
af20a93a 1258 (*regs)[pos++] = tswapreg(env->pc);
1074c0fb 1259 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
af20a93a
RH
1260 (*regs)[pos++] = 0;
1261 (*regs)[pos++] = tswapreg(env->ear);
1262 (*regs)[pos++] = 0;
1263 (*regs)[pos++] = tswapreg(env->esr);
e4cbd44d
EI
1264}
1265
b779e29e
EI
1266#endif /* TARGET_MICROBLAZE */
1267
a0a839b6
MV
1268#ifdef TARGET_NIOS2
1269
1270#define ELF_START_MMAP 0x80000000
1271
1272#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1273
1274#define ELF_CLASS ELFCLASS32
1275#define ELF_ARCH EM_ALTERA_NIOS2
1276
1277static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1278{
1279 regs->ea = infop->entry;
1280 regs->sp = infop->start_stack;
a0a839b6
MV
1281}
1282
f5ef0e51
RH
1283#define LO_COMMPAGE TARGET_PAGE_SIZE
1284
1285static bool init_guest_commpage(void)
1286{
1287 static const uint8_t kuser_page[4 + 2 * 64] = {
1288 /* __kuser_helper_version */
1289 [0x00] = 0x02, 0x00, 0x00, 0x00,
1290
1291 /* __kuser_cmpxchg */
1292 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */
1293 0x3a, 0x28, 0x00, 0xf8, /* ret */
1294
1295 /* __kuser_sigtramp */
1296 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */
1297 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */
1298 };
1299
1300 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1301 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1302 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1303
1304 if (addr == MAP_FAILED) {
1305 perror("Allocating guest commpage");
1306 exit(EXIT_FAILURE);
1307 }
1308 if (addr != want) {
1309 return false;
1310 }
1311
1312 memcpy(addr, kuser_page, sizeof(kuser_page));
1313
1314 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1315 perror("Protecting guest commpage");
1316 exit(EXIT_FAILURE);
1317 }
1318
49840a4a 1319 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
f5ef0e51
RH
1320 PAGE_READ | PAGE_EXEC | PAGE_VALID);
1321 return true;
1322}
1323
a0a839b6
MV
1324#define ELF_EXEC_PAGESIZE 4096
1325
1326#define USE_ELF_CORE_DUMP
1327#define ELF_NREG 49
1328typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1329
1330/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1331static void elf_core_copy_regs(target_elf_gregset_t *regs,
1332 const CPUNios2State *env)
1333{
1334 int i;
1335
1336 (*regs)[0] = -1;
1337 for (i = 1; i < 8; i++) /* r0-r7 */
1338 (*regs)[i] = tswapreg(env->regs[i + 7]);
1339
1340 for (i = 8; i < 16; i++) /* r8-r15 */
1341 (*regs)[i] = tswapreg(env->regs[i - 8]);
1342
1343 for (i = 16; i < 24; i++) /* r16-r23 */
1344 (*regs)[i] = tswapreg(env->regs[i + 7]);
1345 (*regs)[24] = -1; /* R_ET */
1346 (*regs)[25] = -1; /* R_BT */
1347 (*regs)[26] = tswapreg(env->regs[R_GP]);
1348 (*regs)[27] = tswapreg(env->regs[R_SP]);
1349 (*regs)[28] = tswapreg(env->regs[R_FP]);
1350 (*regs)[29] = tswapreg(env->regs[R_EA]);
1351 (*regs)[30] = -1; /* R_SSTATUS */
1352 (*regs)[31] = tswapreg(env->regs[R_RA]);
1353
17a406ee 1354 (*regs)[32] = tswapreg(env->pc);
a0a839b6
MV
1355
1356 (*regs)[33] = -1; /* R_STATUS */
1357 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1358
1359 for (i = 35; i < 49; i++) /* ... */
1360 (*regs)[i] = -1;
1361}
1362
1363#endif /* TARGET_NIOS2 */
1364
d962783e
JL
1365#ifdef TARGET_OPENRISC
1366
1367#define ELF_START_MMAP 0x08000000
1368
d962783e
JL
1369#define ELF_ARCH EM_OPENRISC
1370#define ELF_CLASS ELFCLASS32
1371#define ELF_DATA ELFDATA2MSB
1372
1373static inline void init_thread(struct target_pt_regs *regs,
1374 struct image_info *infop)
1375{
1376 regs->pc = infop->entry;
1377 regs->gpr[1] = infop->start_stack;
1378}
1379
1380#define USE_ELF_CORE_DUMP
1381#define ELF_EXEC_PAGESIZE 8192
1382
1383/* See linux kernel arch/openrisc/include/asm/elf.h. */
1384#define ELF_NREG 34 /* gprs and pc, sr */
1385typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1386
1387static void elf_core_copy_regs(target_elf_gregset_t *regs,
1388 const CPUOpenRISCState *env)
1389{
1390 int i;
1391
1392 for (i = 0; i < 32; i++) {
d89e71e8 1393 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1394 }
86cd7b2d 1395 (*regs)[32] = tswapreg(env->pc);
84775c43 1396 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1397}
1398#define ELF_HWCAP 0
1399#define ELF_PLATFORM NULL
1400
1401#endif /* TARGET_OPENRISC */
1402
fdf9b3e8
FB
1403#ifdef TARGET_SH4
1404
1405#define ELF_START_MMAP 0x80000000
1406
fdf9b3e8 1407#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1408#define ELF_ARCH EM_SH
1409
d97ef72e
RH
1410static inline void init_thread(struct target_pt_regs *regs,
1411 struct image_info *infop)
fdf9b3e8 1412{
d97ef72e
RH
1413 /* Check other registers XXXXX */
1414 regs->pc = infop->entry;
1415 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1416}
1417
7631c97e
NF
1418/* See linux kernel: arch/sh/include/asm/elf.h. */
1419#define ELF_NREG 23
1420typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1421
1422/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1423enum {
1424 TARGET_REG_PC = 16,
1425 TARGET_REG_PR = 17,
1426 TARGET_REG_SR = 18,
1427 TARGET_REG_GBR = 19,
1428 TARGET_REG_MACH = 20,
1429 TARGET_REG_MACL = 21,
1430 TARGET_REG_SYSCALL = 22
1431};
1432
d97ef72e 1433static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1434 const CPUSH4State *env)
7631c97e
NF
1435{
1436 int i;
1437
1438 for (i = 0; i < 16; i++) {
72cd500b 1439 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1440 }
1441
86cd7b2d
PB
1442 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1443 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1444 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1445 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1446 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1447 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1448 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1449}
1450
1451#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1452#define ELF_EXEC_PAGESIZE 4096
1453
e42fd944
RH
1454enum {
1455 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1456 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1457 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1458 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1459 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1460 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1461 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1462 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1463 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1464 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1465};
1466
1467#define ELF_HWCAP get_elf_hwcap()
1468
1469static uint32_t get_elf_hwcap(void)
1470{
1471 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1472 uint32_t hwcap = 0;
1473
1474 hwcap |= SH_CPU_HAS_FPU;
1475
1476 if (cpu->env.features & SH_FEATURE_SH4A) {
1477 hwcap |= SH_CPU_HAS_LLSC;
1478 }
1479
1480 return hwcap;
1481}
1482
fdf9b3e8
FB
1483#endif
1484
48733d19
TS
1485#ifdef TARGET_CRIS
1486
1487#define ELF_START_MMAP 0x80000000
1488
48733d19 1489#define ELF_CLASS ELFCLASS32
48733d19
TS
1490#define ELF_ARCH EM_CRIS
1491
d97ef72e
RH
1492static inline void init_thread(struct target_pt_regs *regs,
1493 struct image_info *infop)
48733d19 1494{
d97ef72e 1495 regs->erp = infop->entry;
48733d19
TS
1496}
1497
48733d19
TS
1498#define ELF_EXEC_PAGESIZE 8192
1499
1500#endif
1501
e6e5906b
PB
1502#ifdef TARGET_M68K
1503
1504#define ELF_START_MMAP 0x80000000
1505
d97ef72e 1506#define ELF_CLASS ELFCLASS32
d97ef72e 1507#define ELF_ARCH EM_68K
e6e5906b
PB
1508
1509/* ??? Does this need to do anything?
d97ef72e 1510 #define ELF_PLAT_INIT(_r) */
e6e5906b 1511
d97ef72e
RH
1512static inline void init_thread(struct target_pt_regs *regs,
1513 struct image_info *infop)
e6e5906b
PB
1514{
1515 regs->usp = infop->start_stack;
1516 regs->sr = 0;
1517 regs->pc = infop->entry;
1518}
1519
7a93cc55
NF
1520/* See linux kernel: arch/m68k/include/asm/elf.h. */
1521#define ELF_NREG 20
1522typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1523
05390248 1524static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1525{
86cd7b2d
PB
1526 (*regs)[0] = tswapreg(env->dregs[1]);
1527 (*regs)[1] = tswapreg(env->dregs[2]);
1528 (*regs)[2] = tswapreg(env->dregs[3]);
1529 (*regs)[3] = tswapreg(env->dregs[4]);
1530 (*regs)[4] = tswapreg(env->dregs[5]);
1531 (*regs)[5] = tswapreg(env->dregs[6]);
1532 (*regs)[6] = tswapreg(env->dregs[7]);
1533 (*regs)[7] = tswapreg(env->aregs[0]);
1534 (*regs)[8] = tswapreg(env->aregs[1]);
1535 (*regs)[9] = tswapreg(env->aregs[2]);
1536 (*regs)[10] = tswapreg(env->aregs[3]);
1537 (*regs)[11] = tswapreg(env->aregs[4]);
1538 (*regs)[12] = tswapreg(env->aregs[5]);
1539 (*regs)[13] = tswapreg(env->aregs[6]);
1540 (*regs)[14] = tswapreg(env->dregs[0]);
1541 (*regs)[15] = tswapreg(env->aregs[7]);
1542 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1543 (*regs)[17] = tswapreg(env->sr);
1544 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1545 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1546}
1547
1548#define USE_ELF_CORE_DUMP
d97ef72e 1549#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1550
1551#endif
1552
7a3148a9
JM
1553#ifdef TARGET_ALPHA
1554
1555#define ELF_START_MMAP (0x30000000000ULL)
1556
7a3148a9 1557#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1558#define ELF_ARCH EM_ALPHA
1559
d97ef72e
RH
1560static inline void init_thread(struct target_pt_regs *regs,
1561 struct image_info *infop)
7a3148a9
JM
1562{
1563 regs->pc = infop->entry;
1564 regs->ps = 8;
1565 regs->usp = infop->start_stack;
7a3148a9
JM
1566}
1567
7a3148a9
JM
1568#define ELF_EXEC_PAGESIZE 8192
1569
1570#endif /* TARGET_ALPHA */
1571
a4c075f1
UH
1572#ifdef TARGET_S390X
1573
1574#define ELF_START_MMAP (0x20000000000ULL)
1575
a4c075f1
UH
1576#define ELF_CLASS ELFCLASS64
1577#define ELF_DATA ELFDATA2MSB
1578#define ELF_ARCH EM_S390
1579
6d88baf1
DH
1580#include "elf.h"
1581
1582#define ELF_HWCAP get_elf_hwcap()
1583
1584#define GET_FEATURE(_feat, _hwcap) \
1585 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1586
1587static uint32_t get_elf_hwcap(void)
1588{
1589 /*
1590 * Let's assume we always have esan3 and zarch.
1591 * 31-bit processes can use 64-bit registers (high gprs).
1592 */
1593 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1594
1595 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1596 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1597 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1598 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1599 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1600 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1601 hwcap |= HWCAP_S390_ETF3EH;
1602 }
1603 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
da215c23 1604 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
6d88baf1
DH
1605
1606 return hwcap;
1607}
1608
a4c075f1
UH
1609static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1610{
1611 regs->psw.addr = infop->entry;
1612 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1613 regs->gprs[15] = infop->start_stack;
1614}
1615
4a1e8931
IL
1616/* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1617#define ELF_NREG 27
1618typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1619
1620enum {
1621 TARGET_REG_PSWM = 0,
1622 TARGET_REG_PSWA = 1,
1623 TARGET_REG_GPRS = 2,
1624 TARGET_REG_ARS = 18,
1625 TARGET_REG_ORIG_R2 = 26,
1626};
1627
1628static void elf_core_copy_regs(target_elf_gregset_t *regs,
1629 const CPUS390XState *env)
1630{
1631 int i;
1632 uint32_t *aregs;
1633
1634 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1635 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1636 for (i = 0; i < 16; i++) {
1637 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1638 }
1639 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1640 for (i = 0; i < 16; i++) {
1641 aregs[i] = tswap32(env->aregs[i]);
1642 }
1643 (*regs)[TARGET_REG_ORIG_R2] = 0;
1644}
1645
1646#define USE_ELF_CORE_DUMP
1647#define ELF_EXEC_PAGESIZE 4096
1648
a4c075f1
UH
1649#endif /* TARGET_S390X */
1650
47ae93cd
MC
1651#ifdef TARGET_RISCV
1652
1653#define ELF_START_MMAP 0x80000000
1654#define ELF_ARCH EM_RISCV
1655
1656#ifdef TARGET_RISCV32
1657#define ELF_CLASS ELFCLASS32
1658#else
1659#define ELF_CLASS ELFCLASS64
1660#endif
1661
cb46938c
KC
1662#define ELF_HWCAP get_elf_hwcap()
1663
1664static uint32_t get_elf_hwcap(void)
1665{
1666#define MISA_BIT(EXT) (1 << (EXT - 'A'))
1667 RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1668 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1669 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1670
e91a7227 1671 return cpu->env.misa_ext & mask;
cb46938c
KC
1672#undef MISA_BIT
1673}
1674
47ae93cd
MC
1675static inline void init_thread(struct target_pt_regs *regs,
1676 struct image_info *infop)
1677{
1678 regs->sepc = infop->entry;
1679 regs->sp = infop->start_stack;
1680}
1681
1682#define ELF_EXEC_PAGESIZE 4096
1683
1684#endif /* TARGET_RISCV */
1685
7c248bcd
RH
1686#ifdef TARGET_HPPA
1687
1688#define ELF_START_MMAP 0x80000000
1689#define ELF_CLASS ELFCLASS32
1690#define ELF_ARCH EM_PARISC
1691#define ELF_PLATFORM "PARISC"
1692#define STACK_GROWS_DOWN 0
1693#define STACK_ALIGNMENT 64
1694
1695static inline void init_thread(struct target_pt_regs *regs,
1696 struct image_info *infop)
1697{
1698 regs->iaoq[0] = infop->entry;
1699 regs->iaoq[1] = infop->entry + 4;
1700 regs->gr[23] = 0;
60f1c801
RH
1701 regs->gr[24] = infop->argv;
1702 regs->gr[25] = infop->argc;
7c248bcd
RH
1703 /* The top-of-stack contains a linkage buffer. */
1704 regs->gr[30] = infop->start_stack + 64;
1705 regs->gr[31] = infop->entry;
1706}
1707
eee816c0
RH
1708#define LO_COMMPAGE 0
1709
1710static bool init_guest_commpage(void)
1711{
1712 void *want = g2h_untagged(LO_COMMPAGE);
1713 void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1714 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1715
1716 if (addr == MAP_FAILED) {
1717 perror("Allocating guest commpage");
1718 exit(EXIT_FAILURE);
1719 }
1720 if (addr != want) {
1721 return false;
1722 }
1723
1724 /*
1725 * On Linux, page zero is normally marked execute only + gateway.
1726 * Normal read or write is supposed to fail (thus PROT_NONE above),
1727 * but specific offsets have kernel code mapped to raise permissions
1728 * and implement syscalls. Here, simply mark the page executable.
1729 * Special case the entry points during translation (see do_page_zero).
1730 */
49840a4a 1731 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
eee816c0
RH
1732 PAGE_EXEC | PAGE_VALID);
1733 return true;
1734}
1735
7c248bcd
RH
1736#endif /* TARGET_HPPA */
1737
ba7651fb
MF
1738#ifdef TARGET_XTENSA
1739
1740#define ELF_START_MMAP 0x20000000
1741
1742#define ELF_CLASS ELFCLASS32
1743#define ELF_ARCH EM_XTENSA
1744
1745static inline void init_thread(struct target_pt_regs *regs,
1746 struct image_info *infop)
1747{
1748 regs->windowbase = 0;
1749 regs->windowstart = 1;
1750 regs->areg[1] = infop->start_stack;
1751 regs->pc = infop->entry;
d2796be6
MF
1752 if (info_is_fdpic(infop)) {
1753 regs->areg[4] = infop->loadmap_addr;
1754 regs->areg[5] = infop->interpreter_loadmap_addr;
1755 if (infop->interpreter_loadmap_addr) {
1756 regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1757 } else {
1758 regs->areg[6] = infop->pt_dynamic_addr;
1759 }
1760 }
ba7651fb
MF
1761}
1762
1763/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1764#define ELF_NREG 128
1765typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1766
1767enum {
1768 TARGET_REG_PC,
1769 TARGET_REG_PS,
1770 TARGET_REG_LBEG,
1771 TARGET_REG_LEND,
1772 TARGET_REG_LCOUNT,
1773 TARGET_REG_SAR,
1774 TARGET_REG_WINDOWSTART,
1775 TARGET_REG_WINDOWBASE,
1776 TARGET_REG_THREADPTR,
1777 TARGET_REG_AR0 = 64,
1778};
1779
1780static void elf_core_copy_regs(target_elf_gregset_t *regs,
1781 const CPUXtensaState *env)
1782{
1783 unsigned i;
1784
1785 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1786 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1787 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1788 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1789 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1790 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1791 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1792 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1793 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1794 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1795 for (i = 0; i < env->config->nareg; ++i) {
1796 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1797 }
1798}
1799
1800#define USE_ELF_CORE_DUMP
1801#define ELF_EXEC_PAGESIZE 4096
1802
1803#endif /* TARGET_XTENSA */
1804
d2a56bd2
TS
1805#ifdef TARGET_HEXAGON
1806
1807#define ELF_START_MMAP 0x20000000
1808
1809#define ELF_CLASS ELFCLASS32
1810#define ELF_ARCH EM_HEXAGON
1811
1812static inline void init_thread(struct target_pt_regs *regs,
1813 struct image_info *infop)
1814{
1815 regs->sepc = infop->entry;
1816 regs->sp = infop->start_stack;
1817}
1818
1819#endif /* TARGET_HEXAGON */
1820
fcdc0ab4
JY
1821#ifndef ELF_BASE_PLATFORM
1822#define ELF_BASE_PLATFORM (NULL)
1823#endif
1824
15338fd7
FB
1825#ifndef ELF_PLATFORM
1826#define ELF_PLATFORM (NULL)
1827#endif
1828
75be901c
PC
1829#ifndef ELF_MACHINE
1830#define ELF_MACHINE ELF_ARCH
1831#endif
1832
d276a604
PC
1833#ifndef elf_check_arch
1834#define elf_check_arch(x) ((x) == ELF_ARCH)
1835#endif
1836
ace3d654
CMAB
1837#ifndef elf_check_abi
1838#define elf_check_abi(x) (1)
1839#endif
1840
15338fd7
FB
1841#ifndef ELF_HWCAP
1842#define ELF_HWCAP 0
1843#endif
1844
7c4ee5bc
RH
1845#ifndef STACK_GROWS_DOWN
1846#define STACK_GROWS_DOWN 1
1847#endif
1848
1849#ifndef STACK_ALIGNMENT
1850#define STACK_ALIGNMENT 16
1851#endif
1852
992f48a0 1853#ifdef TARGET_ABI32
cb33da57 1854#undef ELF_CLASS
992f48a0 1855#define ELF_CLASS ELFCLASS32
cb33da57
BS
1856#undef bswaptls
1857#define bswaptls(ptr) bswap32s(ptr)
1858#endif
1859
872f3d04
RH
1860#ifndef EXSTACK_DEFAULT
1861#define EXSTACK_DEFAULT false
1862#endif
1863
31e31b8a 1864#include "elf.h"
09bfb054 1865
e8384b37
RH
1866/* We must delay the following stanzas until after "elf.h". */
1867#if defined(TARGET_AARCH64)
1868
1869static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1870 const uint32_t *data,
1871 struct image_info *info,
1872 Error **errp)
1873{
1874 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1875 if (pr_datasz != sizeof(uint32_t)) {
1876 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1877 return false;
1878 }
1879 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1880 info->note_flags = *data;
1881 }
1882 return true;
1883}
1884#define ARCH_USE_GNU_PROPERTY 1
1885
1886#else
1887
83f990eb
RH
1888static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1889 const uint32_t *data,
1890 struct image_info *info,
1891 Error **errp)
1892{
1893 g_assert_not_reached();
1894}
1895#define ARCH_USE_GNU_PROPERTY 0
1896
e8384b37
RH
1897#endif
1898
09bfb054
FB
1899struct exec
1900{
d97ef72e
RH
1901 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1902 unsigned int a_text; /* length of text, in bytes */
1903 unsigned int a_data; /* length of data, in bytes */
1904 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1905 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1906 unsigned int a_entry; /* start address */
1907 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1908 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1909};
1910
1911
1912#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1913#define OMAGIC 0407
1914#define NMAGIC 0410
1915#define ZMAGIC 0413
1916#define QMAGIC 0314
1917
31e31b8a 1918/* Necessary parameters */
94894ff2
SB
1919#define TARGET_ELF_EXEC_PAGESIZE \
1920 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1921 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1922#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
79cb1f1d
YK
1923#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1924 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1925#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1926
e0d1673d 1927#define DLINFO_ITEMS 16
31e31b8a 1928
09bfb054
FB
1929static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1930{
d97ef72e 1931 memcpy(to, from, n);
09bfb054 1932}
d691f669 1933
31e31b8a 1934#ifdef BSWAP_NEEDED
92a31b1f 1935static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1936{
d97ef72e
RH
1937 bswap16s(&ehdr->e_type); /* Object file type */
1938 bswap16s(&ehdr->e_machine); /* Architecture */
1939 bswap32s(&ehdr->e_version); /* Object file version */
1940 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1941 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1942 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1943 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1944 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1945 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1946 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1947 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1948 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1949 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1950}
1951
991f8f0c 1952static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1953{
991f8f0c
RH
1954 int i;
1955 for (i = 0; i < phnum; ++i, ++phdr) {
1956 bswap32s(&phdr->p_type); /* Segment type */
1957 bswap32s(&phdr->p_flags); /* Segment flags */
1958 bswaptls(&phdr->p_offset); /* Segment file offset */
1959 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1960 bswaptls(&phdr->p_paddr); /* Segment physical address */
1961 bswaptls(&phdr->p_filesz); /* Segment size in file */
1962 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1963 bswaptls(&phdr->p_align); /* Segment alignment */
1964 }
31e31b8a 1965}
689f936f 1966
991f8f0c 1967static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1968{
991f8f0c
RH
1969 int i;
1970 for (i = 0; i < shnum; ++i, ++shdr) {
1971 bswap32s(&shdr->sh_name);
1972 bswap32s(&shdr->sh_type);
1973 bswaptls(&shdr->sh_flags);
1974 bswaptls(&shdr->sh_addr);
1975 bswaptls(&shdr->sh_offset);
1976 bswaptls(&shdr->sh_size);
1977 bswap32s(&shdr->sh_link);
1978 bswap32s(&shdr->sh_info);
1979 bswaptls(&shdr->sh_addralign);
1980 bswaptls(&shdr->sh_entsize);
1981 }
689f936f
FB
1982}
1983
7a3148a9 1984static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1985{
1986 bswap32s(&sym->st_name);
7a3148a9
JM
1987 bswaptls(&sym->st_value);
1988 bswaptls(&sym->st_size);
689f936f
FB
1989 bswap16s(&sym->st_shndx);
1990}
5dd0db52
SM
1991
1992#ifdef TARGET_MIPS
1993static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1994{
1995 bswap16s(&abiflags->version);
1996 bswap32s(&abiflags->ases);
1997 bswap32s(&abiflags->isa_ext);
1998 bswap32s(&abiflags->flags1);
1999 bswap32s(&abiflags->flags2);
2000}
2001#endif
991f8f0c
RH
2002#else
2003static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2004static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2005static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2006static inline void bswap_sym(struct elf_sym *sym) { }
5dd0db52
SM
2007#ifdef TARGET_MIPS
2008static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2009#endif
31e31b8a
FB
2010#endif
2011
edf8e2af 2012#ifdef USE_ELF_CORE_DUMP
9349b4f9 2013static int elf_core_dump(int, const CPUArchState *);
edf8e2af 2014#endif /* USE_ELF_CORE_DUMP */
682674b8 2015static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 2016
9058abdd
RH
2017/* Verify the portions of EHDR within E_IDENT for the target.
2018 This can be performed before bswapping the entire header. */
2019static bool elf_check_ident(struct elfhdr *ehdr)
2020{
2021 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2022 && ehdr->e_ident[EI_MAG1] == ELFMAG1
2023 && ehdr->e_ident[EI_MAG2] == ELFMAG2
2024 && ehdr->e_ident[EI_MAG3] == ELFMAG3
2025 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2026 && ehdr->e_ident[EI_DATA] == ELF_DATA
2027 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2028}
2029
2030/* Verify the portions of EHDR outside of E_IDENT for the target.
2031 This has to wait until after bswapping the header. */
2032static bool elf_check_ehdr(struct elfhdr *ehdr)
2033{
2034 return (elf_check_arch(ehdr->e_machine)
ace3d654 2035 && elf_check_abi(ehdr->e_flags)
9058abdd
RH
2036 && ehdr->e_ehsize == sizeof(struct elfhdr)
2037 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
2038 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2039}
2040
31e31b8a 2041/*
e5fe0c52 2042 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
2043 * memory to free pages in kernel mem. These are in a format ready
2044 * to be put directly into the top of new user memory.
2045 *
2046 */
59baae9a
SB
2047static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2048 abi_ulong p, abi_ulong stack_limit)
31e31b8a 2049{
59baae9a 2050 char *tmp;
7c4ee5bc 2051 int len, i;
59baae9a 2052 abi_ulong top = p;
31e31b8a
FB
2053
2054 if (!p) {
d97ef72e 2055 return 0; /* bullet-proofing */
31e31b8a 2056 }
59baae9a 2057
7c4ee5bc
RH
2058 if (STACK_GROWS_DOWN) {
2059 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2060 for (i = argc - 1; i >= 0; --i) {
2061 tmp = argv[i];
2062 if (!tmp) {
2063 fprintf(stderr, "VFS: argc is wrong");
2064 exit(-1);
2065 }
2066 len = strlen(tmp) + 1;
2067 tmp += len;
59baae9a 2068
7c4ee5bc
RH
2069 if (len > (p - stack_limit)) {
2070 return 0;
2071 }
2072 while (len) {
2073 int bytes_to_copy = (len > offset) ? offset : len;
2074 tmp -= bytes_to_copy;
2075 p -= bytes_to_copy;
2076 offset -= bytes_to_copy;
2077 len -= bytes_to_copy;
2078
2079 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2080
2081 if (offset == 0) {
2082 memcpy_to_target(p, scratch, top - p);
2083 top = p;
2084 offset = TARGET_PAGE_SIZE;
2085 }
2086 }
d97ef72e 2087 }
7c4ee5bc
RH
2088 if (p != top) {
2089 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 2090 }
7c4ee5bc
RH
2091 } else {
2092 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2093 for (i = 0; i < argc; ++i) {
2094 tmp = argv[i];
2095 if (!tmp) {
2096 fprintf(stderr, "VFS: argc is wrong");
2097 exit(-1);
2098 }
2099 len = strlen(tmp) + 1;
2100 if (len > (stack_limit - p)) {
2101 return 0;
2102 }
2103 while (len) {
2104 int bytes_to_copy = (len > remaining) ? remaining : len;
2105
2106 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2107
2108 tmp += bytes_to_copy;
2109 remaining -= bytes_to_copy;
2110 p += bytes_to_copy;
2111 len -= bytes_to_copy;
2112
2113 if (remaining == 0) {
2114 memcpy_to_target(top, scratch, p - top);
2115 top = p;
2116 remaining = TARGET_PAGE_SIZE;
2117 }
d97ef72e
RH
2118 }
2119 }
7c4ee5bc
RH
2120 if (p != top) {
2121 memcpy_to_target(top, scratch, p - top);
2122 }
59baae9a
SB
2123 }
2124
31e31b8a
FB
2125 return p;
2126}
2127
59baae9a
SB
2128/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2129 * argument/environment space. Newer kernels (>2.6.33) allow more,
2130 * dependent on stack size, but guarantee at least 32 pages for
2131 * backwards compatibility.
2132 */
2133#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2134
2135static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 2136 struct image_info *info)
53a5960a 2137{
59baae9a 2138 abi_ulong size, error, guard;
872f3d04 2139 int prot;
31e31b8a 2140
703e0e89 2141 size = guest_stack_size;
59baae9a
SB
2142 if (size < STACK_LOWER_LIMIT) {
2143 size = STACK_LOWER_LIMIT;
60dcbcb5 2144 }
f4388205
HD
2145
2146 if (STACK_GROWS_DOWN) {
2147 guard = TARGET_PAGE_SIZE;
2148 if (guard < qemu_real_host_page_size()) {
2149 guard = qemu_real_host_page_size();
2150 }
2151 } else {
2152 /* no guard page for hppa target where stack grows upwards. */
2153 guard = 0;
60dcbcb5
RH
2154 }
2155
872f3d04
RH
2156 prot = PROT_READ | PROT_WRITE;
2157 if (info->exec_stack) {
2158 prot |= PROT_EXEC;
2159 }
2160 error = target_mmap(0, size + guard, prot,
60dcbcb5 2161 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 2162 if (error == -1) {
60dcbcb5 2163 perror("mmap stack");
09bfb054
FB
2164 exit(-1);
2165 }
31e31b8a 2166
60dcbcb5 2167 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
2168 if (STACK_GROWS_DOWN) {
2169 target_mprotect(error, guard, PROT_NONE);
2170 info->stack_limit = error + guard;
2171 return info->stack_limit + size - sizeof(void *);
2172 } else {
7c4ee5bc
RH
2173 info->stack_limit = error + size;
2174 return error;
2175 }
31e31b8a
FB
2176}
2177
cf129f3a
RH
2178/* Map and zero the bss. We need to explicitly zero any fractional pages
2179 after the data section (i.e. bss). */
2180static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 2181{
cf129f3a
RH
2182 uintptr_t host_start, host_map_start, host_end;
2183
2184 last_bss = TARGET_PAGE_ALIGN(last_bss);
2185
2186 /* ??? There is confusion between qemu_real_host_page_size and
2187 qemu_host_page_size here and elsewhere in target_mmap, which
2188 may lead to the end of the data section mapping from the file
2189 not being mapped. At least there was an explicit test and
2190 comment for that here, suggesting that "the file size must
2191 be known". The comment probably pre-dates the introduction
2192 of the fstat system call in target_mmap which does in fact
2193 find out the size. What isn't clear is if the workaround
2194 here is still actually needed. For now, continue with it,
2195 but merge it with the "normal" mmap that would allocate the bss. */
2196
3e8f1628
RH
2197 host_start = (uintptr_t) g2h_untagged(elf_bss);
2198 host_end = (uintptr_t) g2h_untagged(last_bss);
0c2d70c4 2199 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
2200
2201 if (host_map_start < host_end) {
2202 void *p = mmap((void *)host_map_start, host_end - host_map_start,
2203 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2204 if (p == MAP_FAILED) {
2205 perror("cannot mmap brk");
2206 exit(-1);
853d6f7a 2207 }
f46e9a0b 2208 }
853d6f7a 2209
f46e9a0b
TM
2210 /* Ensure that the bss page(s) are valid */
2211 if ((page_get_flags(last_bss-1) & prot) != prot) {
49840a4a
RH
2212 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss - 1,
2213 prot | PAGE_VALID);
cf129f3a 2214 }
31e31b8a 2215
cf129f3a
RH
2216 if (host_start < host_map_start) {
2217 memset((void *)host_start, 0, host_map_start - host_start);
2218 }
2219}
53a5960a 2220
d2796be6 2221#if defined(TARGET_ARM)
cf58affe
CL
2222static int elf_is_fdpic(struct elfhdr *exec)
2223{
2224 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2225}
d2796be6
MF
2226#elif defined(TARGET_XTENSA)
2227static int elf_is_fdpic(struct elfhdr *exec)
2228{
2229 return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2230}
cf58affe 2231#else
a99856cd
CL
2232/* Default implementation, always false. */
2233static int elf_is_fdpic(struct elfhdr *exec)
2234{
2235 return 0;
2236}
cf58affe 2237#endif
a99856cd 2238
1af02e83
MF
2239static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2240{
2241 uint16_t n;
2242 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2243
2244 /* elf32_fdpic_loadseg */
2245 n = info->nsegs;
2246 while (n--) {
2247 sp -= 12;
2248 put_user_u32(loadsegs[n].addr, sp+0);
2249 put_user_u32(loadsegs[n].p_vaddr, sp+4);
2250 put_user_u32(loadsegs[n].p_memsz, sp+8);
2251 }
2252
2253 /* elf32_fdpic_loadmap */
2254 sp -= 4;
2255 put_user_u16(0, sp+0); /* version */
2256 put_user_u16(info->nsegs, sp+2); /* nsegs */
2257
2258 info->personality = PER_LINUX_FDPIC;
2259 info->loadmap_addr = sp;
2260
2261 return sp;
2262}
1af02e83 2263
992f48a0 2264static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
2265 struct elfhdr *exec,
2266 struct image_info *info,
2267 struct image_info *interp_info)
31e31b8a 2268{
d97ef72e 2269 abi_ulong sp;
7c4ee5bc 2270 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 2271 int size;
14322bad
LA
2272 int i;
2273 abi_ulong u_rand_bytes;
2274 uint8_t k_rand_bytes[16];
fcdc0ab4
JY
2275 abi_ulong u_platform, u_base_platform;
2276 const char *k_platform, *k_base_platform;
d97ef72e
RH
2277 const int n = sizeof(elf_addr_t);
2278
2279 sp = p;
1af02e83 2280
1af02e83
MF
2281 /* Needs to be before we load the env/argc/... */
2282 if (elf_is_fdpic(exec)) {
2283 /* Need 4 byte alignment for these structs */
2284 sp &= ~3;
2285 sp = loader_build_fdpic_loadmap(info, sp);
2286 info->other_info = interp_info;
2287 if (interp_info) {
2288 interp_info->other_info = info;
2289 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
2290 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2291 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2292 } else {
2293 info->interpreter_loadmap_addr = 0;
2294 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
2295 }
2296 }
1af02e83 2297
fcdc0ab4
JY
2298 u_base_platform = 0;
2299 k_base_platform = ELF_BASE_PLATFORM;
2300 if (k_base_platform) {
2301 size_t len = strlen(k_base_platform) + 1;
2302 if (STACK_GROWS_DOWN) {
2303 sp -= (len + n - 1) & ~(n - 1);
2304 u_base_platform = sp;
2305 /* FIXME - check return value of memcpy_to_target() for failure */
2306 memcpy_to_target(sp, k_base_platform, len);
2307 } else {
2308 memcpy_to_target(sp, k_base_platform, len);
2309 u_base_platform = sp;
2310 sp += len + 1;
2311 }
2312 }
2313
d97ef72e
RH
2314 u_platform = 0;
2315 k_platform = ELF_PLATFORM;
2316 if (k_platform) {
2317 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
2318 if (STACK_GROWS_DOWN) {
2319 sp -= (len + n - 1) & ~(n - 1);
2320 u_platform = sp;
2321 /* FIXME - check return value of memcpy_to_target() for failure */
2322 memcpy_to_target(sp, k_platform, len);
2323 } else {
2324 memcpy_to_target(sp, k_platform, len);
2325 u_platform = sp;
2326 sp += len + 1;
2327 }
2328 }
2329
2330 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2331 * the argv and envp pointers.
2332 */
2333 if (STACK_GROWS_DOWN) {
2334 sp = QEMU_ALIGN_DOWN(sp, 16);
2335 } else {
2336 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 2337 }
14322bad
LA
2338
2339 /*
c6a2377f 2340 * Generate 16 random bytes for userspace PRNG seeding.
14322bad 2341 */
c6a2377f 2342 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
7c4ee5bc
RH
2343 if (STACK_GROWS_DOWN) {
2344 sp -= 16;
2345 u_rand_bytes = sp;
2346 /* FIXME - check return value of memcpy_to_target() for failure */
2347 memcpy_to_target(sp, k_rand_bytes, 16);
2348 } else {
2349 memcpy_to_target(sp, k_rand_bytes, 16);
2350 u_rand_bytes = sp;
2351 sp += 16;
2352 }
14322bad 2353
d97ef72e 2354 size = (DLINFO_ITEMS + 1) * 2;
fcdc0ab4
JY
2355 if (k_base_platform)
2356 size += 2;
d97ef72e
RH
2357 if (k_platform)
2358 size += 2;
f5155289 2359#ifdef DLINFO_ARCH_ITEMS
d97ef72e 2360 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
2361#endif
2362#ifdef ELF_HWCAP2
2363 size += 2;
f5155289 2364#endif
f516511e
PM
2365 info->auxv_len = size * n;
2366
d97ef72e 2367 size += envc + argc + 2;
b9329d4b 2368 size += 1; /* argc itself */
d97ef72e 2369 size *= n;
7c4ee5bc
RH
2370
2371 /* Allocate space and finalize stack alignment for entry now. */
2372 if (STACK_GROWS_DOWN) {
2373 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2374 sp = u_argc;
2375 } else {
2376 u_argc = sp;
2377 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2378 }
2379
2380 u_argv = u_argc + n;
2381 u_envp = u_argv + (argc + 1) * n;
2382 u_auxv = u_envp + (envc + 1) * n;
2383 info->saved_auxv = u_auxv;
60f1c801
RH
2384 info->argc = argc;
2385 info->envc = envc;
2386 info->argv = u_argv;
2387 info->envp = u_envp;
d97ef72e
RH
2388
2389 /* This is correct because Linux defines
2390 * elf_addr_t as Elf32_Off / Elf64_Off
2391 */
2392#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
2393 put_user_ual(id, u_auxv); u_auxv += n; \
2394 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
2395 } while(0)
2396
82991bed
PM
2397#ifdef ARCH_DLINFO
2398 /*
2399 * ARCH_DLINFO must come first so platform specific code can enforce
2400 * special alignment requirements on the AUXV if necessary (eg. PPC).
2401 */
2402 ARCH_DLINFO;
2403#endif
f516511e
PM
2404 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2405 * on info->auxv_len will trigger.
2406 */
8e62a717 2407 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
2408 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2409 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
2410 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2411 /* Target doesn't support host page size alignment */
2412 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2413 } else {
2414 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2415 qemu_host_page_size)));
2416 }
8e62a717 2417 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 2418 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 2419 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
2420 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2421 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2422 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2423 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2424 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2425 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 2426 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 2427 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
e0d1673d 2428 NEW_AUX_ENT(AT_EXECFN, info->file_string);
14322bad 2429
ad6919dc
PM
2430#ifdef ELF_HWCAP2
2431 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2432#endif
2433
fcdc0ab4
JY
2434 if (u_base_platform) {
2435 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2436 }
7c4ee5bc 2437 if (u_platform) {
d97ef72e 2438 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 2439 }
7c4ee5bc 2440 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
2441#undef NEW_AUX_ENT
2442
f516511e
PM
2443 /* Check that our initial calculation of the auxv length matches how much
2444 * we actually put into it.
2445 */
2446 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
2447
2448 put_user_ual(argc, u_argc);
2449
2450 p = info->arg_strings;
2451 for (i = 0; i < argc; ++i) {
2452 put_user_ual(p, u_argv);
2453 u_argv += n;
2454 p += target_strlen(p) + 1;
2455 }
2456 put_user_ual(0, u_argv);
2457
2458 p = info->env_strings;
2459 for (i = 0; i < envc; ++i) {
2460 put_user_ual(p, u_envp);
2461 u_envp += n;
2462 p += target_strlen(p) + 1;
2463 }
2464 put_user_ual(0, u_envp);
edf8e2af 2465
d97ef72e 2466 return sp;
31e31b8a
FB
2467}
2468
f5ef0e51 2469#if defined(HI_COMMPAGE)
eee816c0 2470#define LO_COMMPAGE -1
f5ef0e51
RH
2471#elif defined(LO_COMMPAGE)
2472#define HI_COMMPAGE 0
2473#else
66346faf 2474#define HI_COMMPAGE 0
eee816c0 2475#define LO_COMMPAGE -1
d461b73e 2476#ifndef INIT_GUEST_COMMPAGE
ee947430 2477#define init_guest_commpage() true
8756e136 2478#endif
d461b73e 2479#endif
dce10401 2480
ee947430
AB
2481static void pgb_fail_in_use(const char *image_name)
2482{
2483 error_report("%s: requires virtual address space that is in use "
2484 "(omit the -B option or choose a different value)",
2485 image_name);
2486 exit(EXIT_FAILURE);
2487}
dce10401 2488
ee947430
AB
2489static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2490 abi_ulong guest_hiaddr, long align)
2491{
2492 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2493 void *addr, *test;
2a53535a 2494
ee947430 2495 if (!QEMU_IS_ALIGNED(guest_base, align)) {
5ca870b9 2496 fprintf(stderr, "Requested guest base %p does not satisfy "
ee947430 2497 "host minimum alignment (0x%lx)\n",
5ca870b9 2498 (void *)guest_base, align);
ee947430
AB
2499 exit(EXIT_FAILURE);
2500 }
2501
2502 /* Sanity check the guest binary. */
2503 if (reserved_va) {
2504 if (guest_hiaddr > reserved_va) {
2505 error_report("%s: requires more than reserved virtual "
2506 "address space (0x%" PRIx64 " > 0x%lx)",
95059f9c 2507 image_name, (uint64_t)guest_hiaddr, reserved_va);
ee947430 2508 exit(EXIT_FAILURE);
2a53535a 2509 }
ee947430 2510 } else {
a932eec4 2511#if HOST_LONG_BITS < TARGET_ABI_BITS
ee947430
AB
2512 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2513 error_report("%s: requires more virtual address space "
2514 "than the host can provide (0x%" PRIx64 ")",
a3a67f54 2515 image_name, (uint64_t)guest_hiaddr + 1 - guest_base);
ee947430 2516 exit(EXIT_FAILURE);
2a53535a 2517 }
a932eec4 2518#endif
2a53535a 2519 }
2a53535a 2520
ee947430
AB
2521 /*
2522 * Expand the allocation to the entire reserved_va.
2523 * Exclude the mmap_min_addr hole.
2524 */
2525 if (reserved_va) {
2526 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2527 : mmap_min_addr - guest_base);
95059f9c 2528 guest_hiaddr = reserved_va;
ee947430 2529 }
806d1021 2530
ee947430 2531 /* Reserve the address space for the binary, or reserved_va. */
3e8f1628 2532 test = g2h_untagged(guest_loaddr);
a3a67f54 2533 addr = mmap(test, guest_hiaddr - guest_loaddr + 1, PROT_NONE, flags, -1, 0);
ee947430
AB
2534 if (test != addr) {
2535 pgb_fail_in_use(image_name);
2536 }
e7588237 2537 qemu_log_mask(CPU_LOG_PAGE,
a3a67f54
RH
2538 "%s: base @ %p for %" PRIu64 " bytes\n",
2539 __func__, addr, (uint64_t)guest_hiaddr - guest_loaddr + 1);
ee947430
AB
2540}
2541
ad592e37
AB
2542/**
2543 * pgd_find_hole_fallback: potential mmap address
2544 * @guest_size: size of available space
2545 * @brk: location of break
2546 * @align: memory alignment
2547 *
2548 * This is a fallback method for finding a hole in the host address
2549 * space if we don't have the benefit of being able to access
2550 * /proc/self/map. It can potentially take a very long time as we can
2551 * only dumbly iterate up the host address space seeing if the
2552 * allocation would work.
2553 */
5c3e87f3
AB
2554static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2555 long align, uintptr_t offset)
ad592e37
AB
2556{
2557 uintptr_t base;
2558
2559 /* Start (aligned) at the bottom and work our way up */
2560 base = ROUND_UP(mmap_min_addr, align);
2561
2562 while (true) {
2563 uintptr_t align_start, end;
2564 align_start = ROUND_UP(base, align);
5c3e87f3 2565 end = align_start + guest_size + offset;
ad592e37
AB
2566
2567 /* if brk is anywhere in the range give ourselves some room to grow. */
2568 if (align_start <= brk && brk < end) {
2569 base = brk + (16 * MiB);
2570 continue;
2571 } else if (align_start + guest_size < align_start) {
2572 /* we have run out of space */
2573 return -1;
2574 } else {
2667e069
AB
2575 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2576 MAP_FIXED_NOREPLACE;
ad592e37
AB
2577 void * mmap_start = mmap((void *) align_start, guest_size,
2578 PROT_NONE, flags, -1, 0);
2579 if (mmap_start != MAP_FAILED) {
7e588fbc 2580 munmap(mmap_start, guest_size);
934eed51 2581 if (mmap_start == (void *) align_start) {
e7588237
AB
2582 qemu_log_mask(CPU_LOG_PAGE,
2583 "%s: base @ %p for %" PRIdPTR" bytes\n",
2584 __func__, mmap_start + offset, guest_size);
2667e069
AB
2585 return (uintptr_t) mmap_start + offset;
2586 }
ad592e37
AB
2587 }
2588 base += qemu_host_page_size;
2589 }
2590 }
2591}
2592
ee947430
AB
2593/* Return value for guest_base, or -1 if no hole found. */
2594static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
5c3e87f3 2595 long align, uintptr_t offset)
ee947430
AB
2596{
2597 GSList *maps, *iter;
2598 uintptr_t this_start, this_end, next_start, brk;
2599 intptr_t ret = -1;
2600
2601 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2602
2603 maps = read_self_maps();
dce10401 2604
ee947430
AB
2605 /* Read brk after we've read the maps, which will malloc. */
2606 brk = (uintptr_t)sbrk(0);
2607
ad592e37 2608 if (!maps) {
190674f3 2609 return pgd_find_hole_fallback(guest_size, brk, align, offset);
ad592e37
AB
2610 }
2611
ee947430
AB
2612 /* The first hole is before the first map entry. */
2613 this_start = mmap_min_addr;
2614
2615 for (iter = maps; iter;
2616 this_start = next_start, iter = g_slist_next(iter)) {
2617 uintptr_t align_start, hole_size;
2618
2619 this_end = ((MapInfo *)iter->data)->start;
2620 next_start = ((MapInfo *)iter->data)->end;
5c3e87f3 2621 align_start = ROUND_UP(this_start + offset, align);
ee947430
AB
2622
2623 /* Skip holes that are too small. */
2624 if (align_start >= this_end) {
2625 continue;
2626 }
2627 hole_size = this_end - align_start;
2628 if (hole_size < guest_size) {
2629 continue;
aac362e4
LS
2630 }
2631
ee947430
AB
2632 /* If this hole contains brk, give ourselves some room to grow. */
2633 if (this_start <= brk && brk < this_end) {
2634 hole_size -= guest_size;
2635 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2636 align_start += 1 * GiB;
2637 } else if (hole_size >= 16 * MiB) {
2638 align_start += 16 * MiB;
2639 } else {
2640 align_start = (this_end - guest_size) & -align;
2641 if (align_start < this_start) {
2642 continue;
2643 }
806d1021 2644 }
806d1021
MI
2645 }
2646
ee947430
AB
2647 /* Record the lowest successful match. */
2648 if (ret < 0) {
190674f3 2649 ret = align_start;
dce10401 2650 }
ee947430
AB
2651 /* If this hole contains the identity map, select it. */
2652 if (align_start <= guest_loaddr &&
2653 guest_loaddr + guest_size <= this_end) {
2654 ret = 0;
b859040d 2655 }
ee947430
AB
2656 /* If this hole ends above the identity map, stop looking. */
2657 if (this_end >= guest_loaddr) {
2658 break;
dce10401
MI
2659 }
2660 }
ee947430 2661 free_self_maps(maps);
dce10401 2662
e7588237
AB
2663 if (ret != -1) {
2664 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR
2665 " for %" PRIuPTR " bytes\n",
2666 __func__, ret, guest_size);
2667 }
2668
ee947430 2669 return ret;
dce10401
MI
2670}
2671
ee947430
AB
2672static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2673 abi_ulong orig_hiaddr, long align)
f3ed1f5d 2674{
ee947430
AB
2675 uintptr_t loaddr = orig_loaddr;
2676 uintptr_t hiaddr = orig_hiaddr;
5c3e87f3 2677 uintptr_t offset = 0;
ee947430 2678 uintptr_t addr;
f3ed1f5d 2679
ee947430
AB
2680 if (hiaddr != orig_hiaddr) {
2681 error_report("%s: requires virtual address space that the "
2682 "host cannot provide (0x%" PRIx64 ")",
a3a67f54 2683 image_name, (uint64_t)orig_hiaddr + 1);
ee947430
AB
2684 exit(EXIT_FAILURE);
2685 }
f3ed1f5d 2686
ee947430 2687 loaddr &= -align;
66346faf 2688 if (HI_COMMPAGE) {
ee947430
AB
2689 /*
2690 * Extend the allocation to include the commpage.
5c3e87f3
AB
2691 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2692 * need to ensure there is space bellow the guest_base so we
2693 * can map the commpage in the place needed when the address
2694 * arithmetic wraps around.
ee947430
AB
2695 */
2696 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
a3a67f54 2697 hiaddr = UINT32_MAX;
f3ed1f5d 2698 } else {
66346faf 2699 offset = -(HI_COMMPAGE & -align);
f3ed1f5d 2700 }
eee816c0 2701 } else if (LO_COMMPAGE != -1) {
f5ef0e51 2702 loaddr = MIN(loaddr, LO_COMMPAGE & -align);
ee947430 2703 }
dce10401 2704
a3a67f54 2705 addr = pgb_find_hole(loaddr, hiaddr - loaddr + 1, align, offset);
ee947430
AB
2706 if (addr == -1) {
2707 /*
66346faf 2708 * If HI_COMMPAGE, there *might* be a non-consecutive allocation
ee947430
AB
2709 * that can satisfy both. But as the normal arm32 link base address
2710 * is ~32k, and we extend down to include the commpage, making the
2711 * overhead only ~96k, this is unlikely.
dce10401 2712 */
ee947430
AB
2713 error_report("%s: Unable to allocate %#zx bytes of "
2714 "virtual address space", image_name,
2715 (size_t)(hiaddr - loaddr));
2716 exit(EXIT_FAILURE);
2717 }
2718
2719 guest_base = addr;
e7588237
AB
2720
2721 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n",
2722 __func__, addr, hiaddr - loaddr);
ee947430 2723}
dce10401 2724
ee947430
AB
2725static void pgb_dynamic(const char *image_name, long align)
2726{
2727 /*
2728 * The executable is dynamic and does not require a fixed address.
2729 * All we need is a commpage that satisfies align.
2730 * If we do not need a commpage, leave guest_base == 0.
2731 */
66346faf 2732 if (HI_COMMPAGE) {
ee947430
AB
2733 uintptr_t addr, commpage;
2734
2735 /* 64-bit hosts should have used reserved_va. */
2736 assert(sizeof(uintptr_t) == 4);
2737
2738 /*
2739 * By putting the commpage at the first hole, that puts guest_base
2740 * just above that, and maximises the positive guest addresses.
2741 */
66346faf 2742 commpage = HI_COMMPAGE & -align;
5c3e87f3 2743 addr = pgb_find_hole(commpage, -commpage, align, 0);
ee947430
AB
2744 assert(addr != -1);
2745 guest_base = addr;
2746 }
2747}
2748
2749static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2750 abi_ulong guest_hiaddr, long align)
2751{
c1f6ad79 2752 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
ee947430
AB
2753 void *addr, *test;
2754
2755 if (guest_hiaddr > reserved_va) {
2756 error_report("%s: requires more than reserved virtual "
2757 "address space (0x%" PRIx64 " > 0x%lx)",
95059f9c 2758 image_name, (uint64_t)guest_hiaddr, reserved_va);
ee947430 2759 exit(EXIT_FAILURE);
f3ed1f5d 2760 }
f3ed1f5d 2761
ee947430
AB
2762 /* Widen the "image" to the entire reserved address space. */
2763 pgb_static(image_name, 0, reserved_va, align);
2764
2667e069 2765 /* osdep.h defines this as 0 if it's missing */
c1f6ad79 2766 flags |= MAP_FIXED_NOREPLACE;
c1f6ad79 2767
ee947430
AB
2768 /* Reserve the memory on the host. */
2769 assert(guest_base != 0);
3e8f1628 2770 test = g2h_untagged(0);
95059f9c 2771 addr = mmap(test, reserved_va + 1, PROT_NONE, flags, -1, 0);
fb730c86 2772 if (addr == MAP_FAILED || addr != test) {
ee947430 2773 error_report("Unable to reserve 0x%lx bytes of virtual address "
87966743 2774 "space at %p (%s) for use as guest address space (check your "
fb730c86 2775 "virtual memory ulimit setting, min_mmap_addr or reserve less "
95059f9c 2776 "using -R option)", reserved_va + 1, test, strerror(errno));
ee947430
AB
2777 exit(EXIT_FAILURE);
2778 }
e7588237
AB
2779
2780 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n",
95059f9c 2781 __func__, addr, reserved_va + 1);
f3ed1f5d
PM
2782}
2783
ee947430
AB
2784void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2785 abi_ulong guest_hiaddr)
2786{
2787 /* In order to use host shmat, we must be able to honor SHMLBA. */
2788 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2789
2790 if (have_guest_base) {
2791 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2792 } else if (reserved_va) {
2793 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2794 } else if (guest_loaddr) {
2795 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2796 } else {
2797 pgb_dynamic(image_name, align);
2798 }
2799
2800 /* Reserve and initialize the commpage. */
2801 if (!init_guest_commpage()) {
2802 /*
2803 * With have_guest_base, the user has selected the address and
2804 * we are trying to work with that. Otherwise, we have selected
2805 * free space and init_guest_commpage must succeeded.
2806 */
2807 assert(have_guest_base);
2808 pgb_fail_in_use(image_name);
2809 }
2810
2811 assert(QEMU_IS_ALIGNED(guest_base, align));
2812 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2813 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2814}
f3ed1f5d 2815
83f990eb
RH
2816enum {
2817 /* The string "GNU\0" as a magic number. */
2818 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2819 NOTE_DATA_SZ = 1 * KiB,
2820 NOTE_NAME_SZ = 4,
2821 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2822};
2823
2824/*
2825 * Process a single gnu_property entry.
2826 * Return false for error.
2827 */
2828static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2829 struct image_info *info, bool have_prev_type,
2830 uint32_t *prev_type, Error **errp)
2831{
2832 uint32_t pr_type, pr_datasz, step;
2833
2834 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2835 goto error_data;
2836 }
2837 datasz -= *off;
2838 data += *off / sizeof(uint32_t);
2839
2840 if (datasz < 2 * sizeof(uint32_t)) {
2841 goto error_data;
2842 }
2843 pr_type = data[0];
2844 pr_datasz = data[1];
2845 data += 2;
2846 datasz -= 2 * sizeof(uint32_t);
2847 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2848 if (step > datasz) {
2849 goto error_data;
2850 }
2851
2852 /* Properties are supposed to be unique and sorted on pr_type. */
2853 if (have_prev_type && pr_type <= *prev_type) {
2854 if (pr_type == *prev_type) {
2855 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2856 } else {
2857 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2858 }
2859 return false;
2860 }
2861 *prev_type = pr_type;
2862
2863 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2864 return false;
2865 }
2866
2867 *off += 2 * sizeof(uint32_t) + step;
2868 return true;
2869
2870 error_data:
2871 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2872 return false;
2873}
2874
2875/* Process NT_GNU_PROPERTY_TYPE_0. */
2876static bool parse_elf_properties(int image_fd,
2877 struct image_info *info,
2878 const struct elf_phdr *phdr,
2879 char bprm_buf[BPRM_BUF_SIZE],
2880 Error **errp)
2881{
2882 union {
2883 struct elf_note nhdr;
2884 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2885 } note;
2886
2887 int n, off, datasz;
2888 bool have_prev_type;
2889 uint32_t prev_type;
2890
2891 /* Unless the arch requires properties, ignore them. */
2892 if (!ARCH_USE_GNU_PROPERTY) {
2893 return true;
2894 }
2895
2896 /* If the properties are crazy large, that's too bad. */
2897 n = phdr->p_filesz;
2898 if (n > sizeof(note)) {
2899 error_setg(errp, "PT_GNU_PROPERTY too large");
2900 return false;
2901 }
2902 if (n < sizeof(note.nhdr)) {
2903 error_setg(errp, "PT_GNU_PROPERTY too small");
2904 return false;
2905 }
2906
2907 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2908 memcpy(&note, bprm_buf + phdr->p_offset, n);
2909 } else {
2910 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2911 if (len != n) {
2912 error_setg_errno(errp, errno, "Error reading file header");
2913 return false;
2914 }
2915 }
2916
2917 /*
2918 * The contents of a valid PT_GNU_PROPERTY is a sequence
2919 * of uint32_t -- swap them all now.
2920 */
2921#ifdef BSWAP_NEEDED
2922 for (int i = 0; i < n / 4; i++) {
2923 bswap32s(note.data + i);
2924 }
2925#endif
2926
2927 /*
2928 * Note that nhdr is 3 words, and that the "name" described by namesz
2929 * immediately follows nhdr and is thus at the 4th word. Further, all
2930 * of the inputs to the kernel's round_up are multiples of 4.
2931 */
2932 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2933 note.nhdr.n_namesz != NOTE_NAME_SZ ||
2934 note.data[3] != GNU0_MAGIC) {
2935 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2936 return false;
2937 }
2938 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2939
2940 datasz = note.nhdr.n_descsz + off;
2941 if (datasz > n) {
2942 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2943 return false;
2944 }
2945
2946 have_prev_type = false;
2947 prev_type = 0;
2948 while (1) {
2949 if (off == datasz) {
2950 return true; /* end, exit ok */
2951 }
2952 if (!parse_elf_property(note.data, &off, datasz, info,
2953 have_prev_type, &prev_type, errp)) {
2954 return false;
2955 }
2956 have_prev_type = true;
2957 }
2958}
2959
8e62a717 2960/* Load an ELF image into the address space.
31e31b8a 2961
8e62a717
RH
2962 IMAGE_NAME is the filename of the image, to use in error messages.
2963 IMAGE_FD is the open file descriptor for the image.
2964
2965 BPRM_BUF is a copy of the beginning of the file; this of course
2966 contains the elf file header at offset 0. It is assumed that this
2967 buffer is sufficiently aligned to present no problems to the host
2968 in accessing data at aligned offsets within the buffer.
2969
2970 On return: INFO values will be filled in, as necessary or available. */
2971
2972static void load_elf_image(const char *image_name, int image_fd,
bf858897 2973 struct image_info *info, char **pinterp_name,
8e62a717 2974 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2975{
8e62a717
RH
2976 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2977 struct elf_phdr *phdr;
2978 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
e8384b37 2979 int i, retval, prot_exec;
c7f17e7b 2980 Error *err = NULL;
5fafdf24 2981
8e62a717 2982 /* First of all, some simple consistency checks */
8e62a717 2983 if (!elf_check_ident(ehdr)) {
c7f17e7b 2984 error_setg(&err, "Invalid ELF image for this architecture");
8e62a717
RH
2985 goto exit_errmsg;
2986 }
2987 bswap_ehdr(ehdr);
2988 if (!elf_check_ehdr(ehdr)) {
c7f17e7b 2989 error_setg(&err, "Invalid ELF image for this architecture");
8e62a717 2990 goto exit_errmsg;
d97ef72e 2991 }
5fafdf24 2992
8e62a717
RH
2993 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2994 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2995 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2996 } else {
8e62a717
RH
2997 phdr = (struct elf_phdr *) alloca(i);
2998 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2999 if (retval != i) {
8e62a717 3000 goto exit_read;
9955ffac 3001 }
d97ef72e 3002 }
8e62a717 3003 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 3004
1af02e83
MF
3005 info->nsegs = 0;
3006 info->pt_dynamic_addr = 0;
1af02e83 3007
98c1076c
AB
3008 mmap_lock();
3009
8a1a5274
RH
3010 /*
3011 * Find the maximum size of the image and allocate an appropriate
3012 * amount of memory to handle that. Locate the interpreter, if any.
3013 */
682674b8 3014 loaddr = -1, hiaddr = 0;
33143c44 3015 info->alignment = 0;
872f3d04 3016 info->exec_stack = EXSTACK_DEFAULT;
8e62a717 3017 for (i = 0; i < ehdr->e_phnum; ++i) {
4d9d535a
RH
3018 struct elf_phdr *eppnt = phdr + i;
3019 if (eppnt->p_type == PT_LOAD) {
3020 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
682674b8
RH
3021 if (a < loaddr) {
3022 loaddr = a;
3023 }
a3a67f54 3024 a = eppnt->p_vaddr + eppnt->p_memsz - 1;
682674b8
RH
3025 if (a > hiaddr) {
3026 hiaddr = a;
3027 }
1af02e83 3028 ++info->nsegs;
4d9d535a 3029 info->alignment |= eppnt->p_align;
8a1a5274
RH
3030 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3031 g_autofree char *interp_name = NULL;
3032
3033 if (*pinterp_name) {
c7f17e7b 3034 error_setg(&err, "Multiple PT_INTERP entries");
8a1a5274
RH
3035 goto exit_errmsg;
3036 }
c7f17e7b 3037
8a1a5274 3038 interp_name = g_malloc(eppnt->p_filesz);
8a1a5274
RH
3039
3040 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3041 memcpy(interp_name, bprm_buf + eppnt->p_offset,
3042 eppnt->p_filesz);
3043 } else {
3044 retval = pread(image_fd, interp_name, eppnt->p_filesz,
3045 eppnt->p_offset);
3046 if (retval != eppnt->p_filesz) {
c7f17e7b 3047 goto exit_read;
8a1a5274
RH
3048 }
3049 }
3050 if (interp_name[eppnt->p_filesz - 1] != 0) {
c7f17e7b 3051 error_setg(&err, "Invalid PT_INTERP entry");
8a1a5274
RH
3052 goto exit_errmsg;
3053 }
3054 *pinterp_name = g_steal_pointer(&interp_name);
83f990eb
RH
3055 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3056 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3057 goto exit_errmsg;
3058 }
872f3d04
RH
3059 } else if (eppnt->p_type == PT_GNU_STACK) {
3060 info->exec_stack = eppnt->p_flags & PF_X;
682674b8
RH
3061 }
3062 }
3063
6fd59449
RH
3064 if (pinterp_name != NULL) {
3065 /*
3066 * This is the main executable.
3067 *
3068 * Reserve extra space for brk.
3069 * We hold on to this space while placing the interpreter
3070 * and the stack, lest they be placed immediately after
3071 * the data segment and block allocation from the brk.
3072 *
11d36727
AB
3073 * 16MB is chosen as "large enough" without being so large as
3074 * to allow the result to not fit with a 32-bit guest on a
3075 * 32-bit host. However some 64 bit guests (e.g. s390x)
3076 * attempt to place their heap further ahead and currently
3077 * nothing stops them smashing into QEMUs address space.
6fd59449 3078 */
11d36727
AB
3079#if TARGET_LONG_BITS == 64
3080 info->reserve_brk = 32 * MiB;
3081#else
6fd59449 3082 info->reserve_brk = 16 * MiB;
11d36727 3083#endif
6fd59449
RH
3084 hiaddr += info->reserve_brk;
3085
3086 if (ehdr->e_type == ET_EXEC) {
3087 /*
3088 * Make sure that the low address does not conflict with
3089 * MMAP_MIN_ADDR or the QEMU application itself.
3090 */
3091 probe_guest_base(image_name, loaddr, hiaddr);
ee947430
AB
3092 } else {
3093 /*
3094 * The binary is dynamic, but we still need to
3095 * select guest_base. In this case we pass a size.
3096 */
3097 probe_guest_base(image_name, 0, hiaddr - loaddr);
d97ef72e 3098 }
6fd59449
RH
3099 }
3100
3101 /*
3102 * Reserve address space for all of this.
3103 *
3104 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
3105 * exactly the address range that is required.
3106 *
3107 * Otherwise this is ET_DYN, and we are searching for a location
3108 * that can hold the memory space required. If the image is
3109 * pre-linked, LOADDR will be non-zero, and the kernel should
3110 * honor that address if it happens to be free.
3111 *
3112 * In both cases, we will overwrite pages in this range with mappings
3113 * from the executable.
3114 */
a3a67f54 3115 load_addr = target_mmap(loaddr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
6fd59449
RH
3116 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3117 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
3118 -1, 0);
3119 if (load_addr == -1) {
c7f17e7b 3120 goto exit_mmap;
d97ef72e 3121 }
682674b8 3122 load_bias = load_addr - loaddr;
d97ef72e 3123
a99856cd 3124 if (elf_is_fdpic(ehdr)) {
1af02e83 3125 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 3126 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
3127
3128 for (i = 0; i < ehdr->e_phnum; ++i) {
3129 switch (phdr[i].p_type) {
3130 case PT_DYNAMIC:
3131 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3132 break;
3133 case PT_LOAD:
3134 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3135 loadsegs->p_vaddr = phdr[i].p_vaddr;
3136 loadsegs->p_memsz = phdr[i].p_memsz;
3137 ++loadsegs;
3138 break;
3139 }
3140 }
3141 }
1af02e83 3142
8e62a717 3143 info->load_bias = load_bias;
dc12567a
JK
3144 info->code_offset = load_bias;
3145 info->data_offset = load_bias;
8e62a717
RH
3146 info->load_addr = load_addr;
3147 info->entry = ehdr->e_entry + load_bias;
3148 info->start_code = -1;
3149 info->end_code = 0;
3150 info->start_data = -1;
3151 info->end_data = 0;
3152 info->brk = 0;
d8fd2954 3153 info->elf_flags = ehdr->e_flags;
8e62a717 3154
e8384b37
RH
3155 prot_exec = PROT_EXEC;
3156#ifdef TARGET_AARCH64
3157 /*
3158 * If the BTI feature is present, this indicates that the executable
3159 * pages of the startup binary should be mapped with PROT_BTI, so that
3160 * branch targets are enforced.
3161 *
3162 * The startup binary is either the interpreter or the static executable.
3163 * The interpreter is responsible for all pages of a dynamic executable.
3164 *
3165 * Elf notes are backward compatible to older cpus.
3166 * Do not enable BTI unless it is supported.
3167 */
3168 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3169 && (pinterp_name == NULL || *pinterp_name == 0)
3170 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3171 prot_exec |= TARGET_PROT_BTI;
3172 }
3173#endif
3174
8e62a717
RH
3175 for (i = 0; i < ehdr->e_phnum; i++) {
3176 struct elf_phdr *eppnt = phdr + i;
d97ef72e 3177 if (eppnt->p_type == PT_LOAD) {
94894ff2 3178 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
d97ef72e 3179 int elf_prot = 0;
d97ef72e 3180
e5eaf570
RH
3181 if (eppnt->p_flags & PF_R) {
3182 elf_prot |= PROT_READ;
3183 }
3184 if (eppnt->p_flags & PF_W) {
3185 elf_prot |= PROT_WRITE;
3186 }
3187 if (eppnt->p_flags & PF_X) {
e8384b37 3188 elf_prot |= prot_exec;
e5eaf570 3189 }
d97ef72e 3190
682674b8
RH
3191 vaddr = load_bias + eppnt->p_vaddr;
3192 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
3193 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
22d113b5
GM
3194
3195 vaddr_ef = vaddr + eppnt->p_filesz;
3196 vaddr_em = vaddr + eppnt->p_memsz;
682674b8 3197
d87146bc 3198 /*
22d113b5
GM
3199 * Some segments may be completely empty, with a non-zero p_memsz
3200 * but no backing file segment.
d87146bc
GM
3201 */
3202 if (eppnt->p_filesz != 0) {
22d113b5 3203 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
d87146bc
GM
3204 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3205 MAP_PRIVATE | MAP_FIXED,
3206 image_fd, eppnt->p_offset - vaddr_po);
3207
3208 if (error == -1) {
c7f17e7b 3209 goto exit_mmap;
d87146bc 3210 }
09bfb054 3211
22d113b5
GM
3212 /*
3213 * If the load segment requests extra zeros (e.g. bss), map it.
3214 */
3215 if (eppnt->p_filesz < eppnt->p_memsz) {
3216 zero_bss(vaddr_ef, vaddr_em, elf_prot);
3217 }
3218 } else if (eppnt->p_memsz != 0) {
3219 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
3220 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3221 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
3222 -1, 0);
31e31b8a 3223
22d113b5
GM
3224 if (error == -1) {
3225 goto exit_mmap;
3226 }
cf129f3a 3227 }
8e62a717
RH
3228
3229 /* Find the full program boundaries. */
3230 if (elf_prot & PROT_EXEC) {
3231 if (vaddr < info->start_code) {
3232 info->start_code = vaddr;
3233 }
3234 if (vaddr_ef > info->end_code) {
3235 info->end_code = vaddr_ef;
3236 }
3237 }
3238 if (elf_prot & PROT_WRITE) {
3239 if (vaddr < info->start_data) {
3240 info->start_data = vaddr;
3241 }
3242 if (vaddr_ef > info->end_data) {
3243 info->end_data = vaddr_ef;
3244 }
8a045188
TB
3245 }
3246 if (vaddr_em > info->brk) {
3247 info->brk = vaddr_em;
8e62a717 3248 }
5dd0db52
SM
3249#ifdef TARGET_MIPS
3250 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3251 Mips_elf_abiflags_v0 abiflags;
3252 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
c7f17e7b 3253 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
5dd0db52
SM
3254 goto exit_errmsg;
3255 }
3256 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3257 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3258 sizeof(Mips_elf_abiflags_v0));
3259 } else {
3260 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3261 eppnt->p_offset);
3262 if (retval != sizeof(Mips_elf_abiflags_v0)) {
c7f17e7b 3263 goto exit_read;
5dd0db52
SM
3264 }
3265 }
3266 bswap_mips_abiflags(&abiflags);
c94cb6c9 3267 info->fp_abi = abiflags.fp_abi;
5dd0db52 3268#endif
d97ef72e 3269 }
682674b8 3270 }
5fafdf24 3271
8e62a717
RH
3272 if (info->end_data == 0) {
3273 info->start_data = info->end_code;
3274 info->end_data = info->end_code;
8e62a717
RH
3275 }
3276
682674b8 3277 if (qemu_log_enabled()) {
8e62a717 3278 load_symbols(ehdr, image_fd, load_bias);
682674b8 3279 }
31e31b8a 3280
7c10cb38
IL
3281 debuginfo_report_elf(image_name, image_fd, load_bias);
3282
98c1076c
AB
3283 mmap_unlock();
3284
8e62a717
RH
3285 close(image_fd);
3286 return;
3287
3288 exit_read:
3289 if (retval >= 0) {
c7f17e7b
RH
3290 error_setg(&err, "Incomplete read of file header");
3291 } else {
3292 error_setg_errno(&err, errno, "Error reading file header");
8e62a717 3293 }
c7f17e7b
RH
3294 goto exit_errmsg;
3295 exit_mmap:
3296 error_setg_errno(&err, errno, "Error mapping file");
3297 goto exit_errmsg;
8e62a717 3298 exit_errmsg:
c7f17e7b 3299 error_reportf_err(err, "%s: ", image_name);
8e62a717
RH
3300 exit(-1);
3301}
3302
3303static void load_elf_interp(const char *filename, struct image_info *info,
3304 char bprm_buf[BPRM_BUF_SIZE])
3305{
3306 int fd, retval;
808f6563 3307 Error *err = NULL;
8e62a717
RH
3308
3309 fd = open(path(filename), O_RDONLY);
3310 if (fd < 0) {
808f6563
RH
3311 error_setg_file_open(&err, errno, filename);
3312 error_report_err(err);
3313 exit(-1);
8e62a717 3314 }
31e31b8a 3315
8e62a717
RH
3316 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3317 if (retval < 0) {
808f6563
RH
3318 error_setg_errno(&err, errno, "Error reading file header");
3319 error_reportf_err(err, "%s: ", filename);
3320 exit(-1);
8e62a717 3321 }
808f6563 3322
8e62a717
RH
3323 if (retval < BPRM_BUF_SIZE) {
3324 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3325 }
3326
bf858897 3327 load_elf_image(filename, fd, info, NULL, bprm_buf);
31e31b8a
FB
3328}
3329
49918a75
PB
3330static int symfind(const void *s0, const void *s1)
3331{
c7c530cd 3332 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
3333 struct elf_sym *sym = (struct elf_sym *)s1;
3334 int result = 0;
c7c530cd 3335 if (addr < sym->st_value) {
49918a75 3336 result = -1;
c7c530cd 3337 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
3338 result = 1;
3339 }
3340 return result;
3341}
3342
3343static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
3344{
3345#if ELF_CLASS == ELFCLASS32
3346 struct elf_sym *syms = s->disas_symtab.elf32;
3347#else
3348 struct elf_sym *syms = s->disas_symtab.elf64;
3349#endif
3350
3351 // binary search
49918a75
PB
3352 struct elf_sym *sym;
3353
c7c530cd 3354 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 3355 if (sym != NULL) {
49918a75
PB
3356 return s->disas_strtab + sym->st_name;
3357 }
3358
3359 return "";
3360}
3361
3362/* FIXME: This should use elf_ops.h */
3363static int symcmp(const void *s0, const void *s1)
3364{
3365 struct elf_sym *sym0 = (struct elf_sym *)s0;
3366 struct elf_sym *sym1 = (struct elf_sym *)s1;
3367 return (sym0->st_value < sym1->st_value)
3368 ? -1
3369 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3370}
3371
689f936f 3372/* Best attempt to load symbols from this ELF object. */
682674b8 3373static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 3374{
682674b8 3375 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 3376 uint64_t segsz;
682674b8 3377 struct elf_shdr *shdr;
b9475279
CV
3378 char *strings = NULL;
3379 struct syminfo *s = NULL;
3380 struct elf_sym *new_syms, *syms = NULL;
689f936f 3381
682674b8
RH
3382 shnum = hdr->e_shnum;
3383 i = shnum * sizeof(struct elf_shdr);
3384 shdr = (struct elf_shdr *)alloca(i);
3385 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3386 return;
3387 }
3388
3389 bswap_shdr(shdr, shnum);
3390 for (i = 0; i < shnum; ++i) {
3391 if (shdr[i].sh_type == SHT_SYMTAB) {
3392 sym_idx = i;
3393 str_idx = shdr[i].sh_link;
49918a75
PB
3394 goto found;
3395 }
689f936f 3396 }
682674b8
RH
3397
3398 /* There will be no symbol table if the file was stripped. */
3399 return;
689f936f
FB
3400
3401 found:
682674b8 3402 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 3403 s = g_try_new(struct syminfo, 1);
682674b8 3404 if (!s) {
b9475279 3405 goto give_up;
682674b8 3406 }
5fafdf24 3407
1e06262d
PM
3408 segsz = shdr[str_idx].sh_size;
3409 s->disas_strtab = strings = g_try_malloc(segsz);
3410 if (!strings ||
3411 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 3412 goto give_up;
682674b8 3413 }
49918a75 3414
1e06262d
PM
3415 segsz = shdr[sym_idx].sh_size;
3416 syms = g_try_malloc(segsz);
3417 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 3418 goto give_up;
682674b8 3419 }
31e31b8a 3420
1e06262d
PM
3421 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3422 /* Implausibly large symbol table: give up rather than ploughing
3423 * on with the number of symbols calculation overflowing
3424 */
3425 goto give_up;
3426 }
3427 nsyms = segsz / sizeof(struct elf_sym);
682674b8 3428 for (i = 0; i < nsyms; ) {
49918a75 3429 bswap_sym(syms + i);
682674b8
RH
3430 /* Throw away entries which we do not need. */
3431 if (syms[i].st_shndx == SHN_UNDEF
3432 || syms[i].st_shndx >= SHN_LORESERVE
3433 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3434 if (i < --nsyms) {
49918a75
PB
3435 syms[i] = syms[nsyms];
3436 }
682674b8 3437 } else {
49918a75 3438#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
3439 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3440 syms[i].st_value &= ~(target_ulong)1;
0774bed1 3441#endif
682674b8
RH
3442 syms[i].st_value += load_bias;
3443 i++;
3444 }
0774bed1 3445 }
49918a75 3446
b9475279
CV
3447 /* No "useful" symbol. */
3448 if (nsyms == 0) {
3449 goto give_up;
3450 }
3451
5d5c9930
RH
3452 /* Attempt to free the storage associated with the local symbols
3453 that we threw away. Whether or not this has any effect on the
3454 memory allocation depends on the malloc implementation and how
3455 many symbols we managed to discard. */
0ef9ea29 3456 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 3457 if (new_syms == NULL) {
b9475279 3458 goto give_up;
5d5c9930 3459 }
8d79de6e 3460 syms = new_syms;
5d5c9930 3461
49918a75 3462 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 3463
49918a75
PB
3464 s->disas_num_syms = nsyms;
3465#if ELF_CLASS == ELFCLASS32
3466 s->disas_symtab.elf32 = syms;
49918a75
PB
3467#else
3468 s->disas_symtab.elf64 = syms;
49918a75 3469#endif
682674b8 3470 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
3471 s->next = syminfos;
3472 syminfos = s;
b9475279
CV
3473
3474 return;
3475
3476give_up:
0ef9ea29
PM
3477 g_free(s);
3478 g_free(strings);
3479 g_free(syms);
689f936f 3480}
31e31b8a 3481
768fe76e
YS
3482uint32_t get_elf_eflags(int fd)
3483{
3484 struct elfhdr ehdr;
3485 off_t offset;
3486 int ret;
3487
3488 /* Read ELF header */
3489 offset = lseek(fd, 0, SEEK_SET);
3490 if (offset == (off_t) -1) {
3491 return 0;
3492 }
3493 ret = read(fd, &ehdr, sizeof(ehdr));
3494 if (ret < sizeof(ehdr)) {
3495 return 0;
3496 }
3497 offset = lseek(fd, offset, SEEK_SET);
3498 if (offset == (off_t) -1) {
3499 return 0;
3500 }
3501
3502 /* Check ELF signature */
3503 if (!elf_check_ident(&ehdr)) {
3504 return 0;
3505 }
3506
3507 /* check header */
3508 bswap_ehdr(&ehdr);
3509 if (!elf_check_ehdr(&ehdr)) {
3510 return 0;
3511 }
3512
3513 /* return architecture id */
3514 return ehdr.e_flags;
3515}
3516
f0116c54 3517int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 3518{
8e62a717 3519 struct image_info interp_info;
31e31b8a 3520 struct elfhdr elf_ex;
8e62a717 3521 char *elf_interpreter = NULL;
59baae9a 3522 char *scratch;
31e31b8a 3523
abcac736
DS
3524 memset(&interp_info, 0, sizeof(interp_info));
3525#ifdef TARGET_MIPS
3526 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3527#endif
3528
bf858897 3529 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
3530
3531 load_elf_image(bprm->filename, bprm->fd, info,
3532 &elf_interpreter, bprm->buf);
31e31b8a 3533
bf858897
RH
3534 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3535 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3536 when we load the interpreter. */
3537 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 3538
59baae9a
SB
3539 /* Do this so that we can load the interpreter, if need be. We will
3540 change some of these later */
3541 bprm->p = setup_arg_pages(bprm, info);
3542
3543 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
3544 if (STACK_GROWS_DOWN) {
3545 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3546 bprm->p, info->stack_limit);
3547 info->file_string = bprm->p;
3548 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3549 bprm->p, info->stack_limit);
3550 info->env_strings = bprm->p;
3551 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3552 bprm->p, info->stack_limit);
3553 info->arg_strings = bprm->p;
3554 } else {
3555 info->arg_strings = bprm->p;
3556 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3557 bprm->p, info->stack_limit);
3558 info->env_strings = bprm->p;
3559 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3560 bprm->p, info->stack_limit);
3561 info->file_string = bprm->p;
3562 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3563 bprm->p, info->stack_limit);
3564 }
3565
59baae9a
SB
3566 g_free(scratch);
3567
e5fe0c52 3568 if (!bprm->p) {
bf858897
RH
3569 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3570 exit(-1);
379f6698 3571 }
379f6698 3572
8e62a717
RH
3573 if (elf_interpreter) {
3574 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 3575
8e62a717
RH
3576 /* If the program interpreter is one of these two, then assume
3577 an iBCS2 image. Otherwise assume a native linux image. */
3578
3579 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3580 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3581 info->personality = PER_SVR4;
31e31b8a 3582
8e62a717
RH
3583 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3584 and some applications "depend" upon this behavior. Since
3585 we do not have the power to recompile these, we emulate
3586 the SVr4 behavior. Sigh. */
3587 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 3588 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 3589 }
c94cb6c9
SM
3590#ifdef TARGET_MIPS
3591 info->interp_fp_abi = interp_info.fp_abi;
3592#endif
31e31b8a
FB
3593 }
3594
db2af69d
RH
3595 /*
3596 * TODO: load a vdso, which would also contain the signal trampolines.
3597 * Otherwise, allocate a private page to hold them.
3598 */
3599 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
802ae45e
LV
3600 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3601 PROT_READ | PROT_WRITE,
3602 MAP_PRIVATE | MAP_ANON, -1, 0);
3603 if (tramp_page == -1) {
3604 return -errno;
3605 }
3606
db2af69d
RH
3607 setup_sigtramp(tramp_page);
3608 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3609 }
3610
8e62a717
RH
3611 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3612 info, (elf_interpreter ? &interp_info : NULL));
3613 info->start_stack = bprm->p;
3614
3615 /* If we have an interpreter, set that as the program's entry point.
8e78064e 3616 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
3617 point as a function descriptor. Do this after creating elf tables
3618 so that we copy the original program entry point into the AUXV. */
3619 if (elf_interpreter) {
8e78064e 3620 info->load_bias = interp_info.load_bias;
8e62a717 3621 info->entry = interp_info.entry;
2b323087 3622 g_free(elf_interpreter);
8e62a717 3623 }
31e31b8a 3624
edf8e2af
MW
3625#ifdef USE_ELF_CORE_DUMP
3626 bprm->core_dump = &elf_core_dump;
3627#endif
3628
6fd59449
RH
3629 /*
3630 * If we reserved extra space for brk, release it now.
3631 * The implementation of do_brk in syscalls.c expects to be able
3632 * to mmap pages in this space.
3633 */
3634 if (info->reserve_brk) {
3635 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3636 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3637 target_munmap(start_brk, end_brk - start_brk);
3638 }
3639
31e31b8a
FB
3640 return 0;
3641}
3642
edf8e2af 3643#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
3644/*
3645 * Definitions to generate Intel SVR4-like core files.
a2547a13 3646 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
3647 * tacked on the front to prevent clashes with linux definitions,
3648 * and the typedef forms have been avoided. This is mostly like
3649 * the SVR4 structure, but more Linuxy, with things that Linux does
3650 * not support and which gdb doesn't really use excluded.
3651 *
3652 * Fields we don't dump (their contents is zero) in linux-user qemu
3653 * are marked with XXX.
3654 *
3655 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3656 *
3657 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 3658 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
3659 * the target resides):
3660 *
3661 * #define USE_ELF_CORE_DUMP
3662 *
3663 * Next you define type of register set used for dumping. ELF specification
3664 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3665 *
c227f099 3666 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 3667 * #define ELF_NREG <number of registers>
c227f099 3668 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 3669 *
edf8e2af
MW
3670 * Last step is to implement target specific function that copies registers
3671 * from given cpu into just specified register set. Prototype is:
3672 *
c227f099 3673 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 3674 * const CPUArchState *env);
edf8e2af
MW
3675 *
3676 * Parameters:
3677 * regs - copy register values into here (allocated and zeroed by caller)
3678 * env - copy registers from here
3679 *
3680 * Example for ARM target is provided in this file.
3681 */
3682
3683/* An ELF note in memory */
3684struct memelfnote {
3685 const char *name;
3686 size_t namesz;
3687 size_t namesz_rounded;
3688 int type;
3689 size_t datasz;
80f5ce75 3690 size_t datasz_rounded;
edf8e2af
MW
3691 void *data;
3692 size_t notesz;
3693};
3694
a2547a13 3695struct target_elf_siginfo {
f8fd4fc4
PB
3696 abi_int si_signo; /* signal number */
3697 abi_int si_code; /* extra code */
3698 abi_int si_errno; /* errno */
edf8e2af
MW
3699};
3700
a2547a13
LD
3701struct target_elf_prstatus {
3702 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 3703 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
3704 abi_ulong pr_sigpend; /* XXX */
3705 abi_ulong pr_sighold; /* XXX */
c227f099
AL
3706 target_pid_t pr_pid;
3707 target_pid_t pr_ppid;
3708 target_pid_t pr_pgrp;
3709 target_pid_t pr_sid;
edf8e2af
MW
3710 struct target_timeval pr_utime; /* XXX User time */
3711 struct target_timeval pr_stime; /* XXX System time */
3712 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3713 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 3714 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 3715 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
3716};
3717
3718#define ELF_PRARGSZ (80) /* Number of chars for args */
3719
a2547a13 3720struct target_elf_prpsinfo {
edf8e2af
MW
3721 char pr_state; /* numeric process state */
3722 char pr_sname; /* char for pr_state */
3723 char pr_zomb; /* zombie */
3724 char pr_nice; /* nice val */
ca98ac83 3725 abi_ulong pr_flag; /* flags */
c227f099
AL
3726 target_uid_t pr_uid;
3727 target_gid_t pr_gid;
3728 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af 3729 /* Lots missing */
d7eb2b92 3730 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
edf8e2af
MW
3731 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3732};
3733
3734/* Here is the structure in which status of each thread is captured. */
3735struct elf_thread_status {
72cf2d4f 3736 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 3737 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
3738#if 0
3739 elf_fpregset_t fpu; /* NT_PRFPREG */
3740 struct task_struct *thread;
3741 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3742#endif
3743 struct memelfnote notes[1];
3744 int num_notes;
3745};
3746
3747struct elf_note_info {
3748 struct memelfnote *notes;
a2547a13
LD
3749 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3750 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 3751
b58deb34 3752 QTAILQ_HEAD(, elf_thread_status) thread_list;
edf8e2af
MW
3753#if 0
3754 /*
3755 * Current version of ELF coredump doesn't support
3756 * dumping fp regs etc.
3757 */
3758 elf_fpregset_t *fpu;
3759 elf_fpxregset_t *xfpu;
3760 int thread_status_size;
3761#endif
3762 int notes_size;
3763 int numnote;
3764};
3765
3766struct vm_area_struct {
1a1c4db9
MI
3767 target_ulong vma_start; /* start vaddr of memory region */
3768 target_ulong vma_end; /* end vaddr of memory region */
3769 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 3770 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
3771};
3772
3773struct mm_struct {
72cf2d4f 3774 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
3775 int mm_count; /* number of mappings */
3776};
3777
3778static struct mm_struct *vma_init(void);
3779static void vma_delete(struct mm_struct *);
1a1c4db9
MI
3780static int vma_add_mapping(struct mm_struct *, target_ulong,
3781 target_ulong, abi_ulong);
edf8e2af
MW
3782static int vma_get_mapping_count(const struct mm_struct *);
3783static struct vm_area_struct *vma_first(const struct mm_struct *);
3784static struct vm_area_struct *vma_next(struct vm_area_struct *);
3785static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 3786static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3787 unsigned long flags);
edf8e2af
MW
3788
3789static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3790static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 3791 unsigned int, void *);
a2547a13
LD
3792static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3793static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
3794static void fill_auxv_note(struct memelfnote *, const TaskState *);
3795static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3796static size_t note_size(const struct memelfnote *);
3797static void free_note_info(struct elf_note_info *);
9349b4f9
AF
3798static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3799static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
3800
3801static int dump_write(int, const void *, size_t);
3802static int write_note(struct memelfnote *, int);
3803static int write_note_info(struct elf_note_info *, int);
3804
3805#ifdef BSWAP_NEEDED
a2547a13 3806static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 3807{
ca98ac83
PB
3808 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3809 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3810 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 3811 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
3812 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3813 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
3814 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3815 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3816 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3817 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3818 /* cpu times are not filled, so we skip them */
3819 /* regs should be in correct format already */
3820 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3821}
3822
a2547a13 3823static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 3824{
ca98ac83 3825 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
3826 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3827 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3828 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3829 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3830 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3831 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3832}
991f8f0c
RH
3833
3834static void bswap_note(struct elf_note *en)
3835{
3836 bswap32s(&en->n_namesz);
3837 bswap32s(&en->n_descsz);
3838 bswap32s(&en->n_type);
3839}
3840#else
3841static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3842static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3843static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
3844#endif /* BSWAP_NEEDED */
3845
3846/*
3847 * Minimal support for linux memory regions. These are needed
3848 * when we are finding out what memory exactly belongs to
3849 * emulated process. No locks needed here, as long as
3850 * thread that received the signal is stopped.
3851 */
3852
3853static struct mm_struct *vma_init(void)
3854{
3855 struct mm_struct *mm;
3856
7267c094 3857 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
3858 return (NULL);
3859
3860 mm->mm_count = 0;
72cf2d4f 3861 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
3862
3863 return (mm);
3864}
3865
3866static void vma_delete(struct mm_struct *mm)
3867{
3868 struct vm_area_struct *vma;
3869
3870 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 3871 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 3872 g_free(vma);
edf8e2af 3873 }
7267c094 3874 g_free(mm);
edf8e2af
MW
3875}
3876
1a1c4db9
MI
3877static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3878 target_ulong end, abi_ulong flags)
edf8e2af
MW
3879{
3880 struct vm_area_struct *vma;
3881
7267c094 3882 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
3883 return (-1);
3884
3885 vma->vma_start = start;
3886 vma->vma_end = end;
3887 vma->vma_flags = flags;
3888
72cf2d4f 3889 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
3890 mm->mm_count++;
3891
3892 return (0);
3893}
3894
3895static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3896{
72cf2d4f 3897 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
3898}
3899
3900static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3901{
72cf2d4f 3902 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
3903}
3904
3905static int vma_get_mapping_count(const struct mm_struct *mm)
3906{
3907 return (mm->mm_count);
3908}
3909
3910/*
3911 * Calculate file (dump) size of given memory region.
3912 */
3913static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3914{
3915 /* if we cannot even read the first page, skip it */
c7169b02 3916 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
edf8e2af
MW
3917 return (0);
3918
3919 /*
3920 * Usually we don't dump executable pages as they contain
3921 * non-writable code that debugger can read directly from
3922 * target library etc. However, thread stacks are marked
3923 * also executable so we read in first page of given region
3924 * and check whether it contains elf header. If there is
3925 * no elf header, we dump it.
3926 */
3927 if (vma->vma_flags & PROT_EXEC) {
3928 char page[TARGET_PAGE_SIZE];
3929
022625a8
PM
3930 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3931 return 0;
3932 }
edf8e2af
MW
3933 if ((page[EI_MAG0] == ELFMAG0) &&
3934 (page[EI_MAG1] == ELFMAG1) &&
3935 (page[EI_MAG2] == ELFMAG2) &&
3936 (page[EI_MAG3] == ELFMAG3)) {
3937 /*
3938 * Mappings are possibly from ELF binary. Don't dump
3939 * them.
3940 */
3941 return (0);
3942 }
3943 }
3944
3945 return (vma->vma_end - vma->vma_start);
3946}
3947
1a1c4db9 3948static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3949 unsigned long flags)
edf8e2af
MW
3950{
3951 struct mm_struct *mm = (struct mm_struct *)priv;
3952
edf8e2af
MW
3953 vma_add_mapping(mm, start, end, flags);
3954 return (0);
3955}
3956
3957static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 3958 unsigned int sz, void *data)
edf8e2af
MW
3959{
3960 unsigned int namesz;
3961
3962 namesz = strlen(name) + 1;
3963 note->name = name;
3964 note->namesz = namesz;
3965 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3966 note->type = type;
80f5ce75
LV
3967 note->datasz = sz;
3968 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3969
edf8e2af
MW
3970 note->data = data;
3971
3972 /*
3973 * We calculate rounded up note size here as specified by
3974 * ELF document.
3975 */
3976 note->notesz = sizeof (struct elf_note) +
80f5ce75 3977 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
3978}
3979
3980static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 3981 uint32_t flags)
edf8e2af
MW
3982{
3983 (void) memset(elf, 0, sizeof(*elf));
3984
3985 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3986 elf->e_ident[EI_CLASS] = ELF_CLASS;
3987 elf->e_ident[EI_DATA] = ELF_DATA;
3988 elf->e_ident[EI_VERSION] = EV_CURRENT;
3989 elf->e_ident[EI_OSABI] = ELF_OSABI;
3990
3991 elf->e_type = ET_CORE;
3992 elf->e_machine = machine;
3993 elf->e_version = EV_CURRENT;
3994 elf->e_phoff = sizeof(struct elfhdr);
3995 elf->e_flags = flags;
3996 elf->e_ehsize = sizeof(struct elfhdr);
3997 elf->e_phentsize = sizeof(struct elf_phdr);
3998 elf->e_phnum = segs;
3999
edf8e2af 4000 bswap_ehdr(elf);
edf8e2af
MW
4001}
4002
4003static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4004{
4005 phdr->p_type = PT_NOTE;
4006 phdr->p_offset = offset;
4007 phdr->p_vaddr = 0;
4008 phdr->p_paddr = 0;
4009 phdr->p_filesz = sz;
4010 phdr->p_memsz = 0;
4011 phdr->p_flags = 0;
4012 phdr->p_align = 0;
4013
991f8f0c 4014 bswap_phdr(phdr, 1);
edf8e2af
MW
4015}
4016
4017static size_t note_size(const struct memelfnote *note)
4018{
4019 return (note->notesz);
4020}
4021
a2547a13 4022static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 4023 const TaskState *ts, int signr)
edf8e2af
MW
4024{
4025 (void) memset(prstatus, 0, sizeof (*prstatus));
4026 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4027 prstatus->pr_pid = ts->ts_tid;
4028 prstatus->pr_ppid = getppid();
4029 prstatus->pr_pgrp = getpgrp();
4030 prstatus->pr_sid = getsid(0);
4031
edf8e2af 4032 bswap_prstatus(prstatus);
edf8e2af
MW
4033}
4034
a2547a13 4035static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 4036{
900cfbca 4037 char *base_filename;
edf8e2af
MW
4038 unsigned int i, len;
4039
4040 (void) memset(psinfo, 0, sizeof (*psinfo));
4041
5f779a3a 4042 len = ts->info->env_strings - ts->info->arg_strings;
edf8e2af
MW
4043 if (len >= ELF_PRARGSZ)
4044 len = ELF_PRARGSZ - 1;
5f779a3a 4045 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
edf8e2af 4046 return -EFAULT;
5f779a3a 4047 }
edf8e2af
MW
4048 for (i = 0; i < len; i++)
4049 if (psinfo->pr_psargs[i] == 0)
4050 psinfo->pr_psargs[i] = ' ';
4051 psinfo->pr_psargs[len] = 0;
4052
4053 psinfo->pr_pid = getpid();
4054 psinfo->pr_ppid = getppid();
4055 psinfo->pr_pgrp = getpgrp();
4056 psinfo->pr_sid = getsid(0);
4057 psinfo->pr_uid = getuid();
4058 psinfo->pr_gid = getgid();
4059
900cfbca
JM
4060 base_filename = g_path_get_basename(ts->bprm->filename);
4061 /*
4062 * Using strncpy here is fine: at max-length,
4063 * this field is not NUL-terminated.
4064 */
edf8e2af 4065 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 4066 sizeof(psinfo->pr_fname));
edf8e2af 4067
900cfbca 4068 g_free(base_filename);
edf8e2af 4069 bswap_psinfo(psinfo);
edf8e2af
MW
4070 return (0);
4071}
4072
4073static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4074{
4075 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4076 elf_addr_t orig_auxv = auxv;
edf8e2af 4077 void *ptr;
125b0f55 4078 int len = ts->info->auxv_len;
edf8e2af
MW
4079
4080 /*
4081 * Auxiliary vector is stored in target process stack. It contains
4082 * {type, value} pairs that we need to dump into note. This is not
4083 * strictly necessary but we do it here for sake of completeness.
4084 */
4085
edf8e2af
MW
4086 /* read in whole auxv vector and copy it to memelfnote */
4087 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4088 if (ptr != NULL) {
4089 fill_note(note, "CORE", NT_AUXV, len, ptr);
4090 unlock_user(ptr, auxv, len);
4091 }
4092}
4093
4094/*
4095 * Constructs name of coredump file. We have following convention
4096 * for the name:
4097 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4098 *
68af19ad 4099 * Returns the filename
edf8e2af 4100 */
68af19ad 4101static char *core_dump_filename(const TaskState *ts)
edf8e2af 4102{
68af19ad
DB
4103 g_autoptr(GDateTime) now = g_date_time_new_now_local();
4104 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4105 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 4106
68af19ad
DB
4107 return g_strdup_printf("qemu_%s_%s_%d.core",
4108 base_filename, nowstr, (int)getpid());
edf8e2af
MW
4109}
4110
4111static int dump_write(int fd, const void *ptr, size_t size)
4112{
4113 const char *bufp = (const char *)ptr;
4114 ssize_t bytes_written, bytes_left;
4115 struct rlimit dumpsize;
4116 off_t pos;
4117
4118 bytes_written = 0;
4119 getrlimit(RLIMIT_CORE, &dumpsize);
4120 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4121 if (errno == ESPIPE) { /* not a seekable stream */
4122 bytes_left = size;
4123 } else {
4124 return pos;
4125 }
4126 } else {
4127 if (dumpsize.rlim_cur <= pos) {
4128 return -1;
4129 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4130 bytes_left = size;
4131 } else {
4132 size_t limit_left=dumpsize.rlim_cur - pos;
4133 bytes_left = limit_left >= size ? size : limit_left ;
4134 }
4135 }
4136
4137 /*
4138 * In normal conditions, single write(2) should do but
4139 * in case of socket etc. this mechanism is more portable.
4140 */
4141 do {
4142 bytes_written = write(fd, bufp, bytes_left);
4143 if (bytes_written < 0) {
4144 if (errno == EINTR)
4145 continue;
4146 return (-1);
4147 } else if (bytes_written == 0) { /* eof */
4148 return (-1);
4149 }
4150 bufp += bytes_written;
4151 bytes_left -= bytes_written;
4152 } while (bytes_left > 0);
4153
4154 return (0);
4155}
4156
4157static int write_note(struct memelfnote *men, int fd)
4158{
4159 struct elf_note en;
4160
4161 en.n_namesz = men->namesz;
4162 en.n_type = men->type;
4163 en.n_descsz = men->datasz;
4164
edf8e2af 4165 bswap_note(&en);
edf8e2af
MW
4166
4167 if (dump_write(fd, &en, sizeof(en)) != 0)
4168 return (-1);
4169 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4170 return (-1);
80f5ce75 4171 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
4172 return (-1);
4173
4174 return (0);
4175}
4176
9349b4f9 4177static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 4178{
29a0af61 4179 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 4180 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
4181 struct elf_thread_status *ets;
4182
7267c094 4183 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
4184 ets->num_notes = 1; /* only prstatus is dumped */
4185 fill_prstatus(&ets->prstatus, ts, 0);
4186 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4187 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 4188 &ets->prstatus);
edf8e2af 4189
72cf2d4f 4190 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
4191
4192 info->notes_size += note_size(&ets->notes[0]);
4193}
4194
6afafa86
PM
4195static void init_note_info(struct elf_note_info *info)
4196{
4197 /* Initialize the elf_note_info structure so that it is at
4198 * least safe to call free_note_info() on it. Must be
4199 * called before calling fill_note_info().
4200 */
4201 memset(info, 0, sizeof (*info));
4202 QTAILQ_INIT(&info->thread_list);
4203}
4204
edf8e2af 4205static int fill_note_info(struct elf_note_info *info,
9349b4f9 4206 long signr, const CPUArchState *env)
edf8e2af
MW
4207{
4208#define NUMNOTES 3
29a0af61 4209 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 4210 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
4211 int i;
4212
c78d65e8 4213 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
4214 if (info->notes == NULL)
4215 return (-ENOMEM);
7267c094 4216 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
4217 if (info->prstatus == NULL)
4218 return (-ENOMEM);
7267c094 4219 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
4220 if (info->prstatus == NULL)
4221 return (-ENOMEM);
4222
4223 /*
4224 * First fill in status (and registers) of current thread
4225 * including process info & aux vector.
4226 */
4227 fill_prstatus(info->prstatus, ts, signr);
4228 elf_core_copy_regs(&info->prstatus->pr_reg, env);
4229 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 4230 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
4231 fill_psinfo(info->psinfo, ts);
4232 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 4233 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
4234 fill_auxv_note(&info->notes[2], ts);
4235 info->numnote = 3;
4236
4237 info->notes_size = 0;
4238 for (i = 0; i < info->numnote; i++)
4239 info->notes_size += note_size(&info->notes[i]);
4240
4241 /* read and fill status of all threads */
4242 cpu_list_lock();
bdc44640 4243 CPU_FOREACH(cpu) {
a2247f8e 4244 if (cpu == thread_cpu) {
edf8e2af 4245 continue;
182735ef 4246 }
2f6f4290 4247 fill_thread_info(info, cpu->env_ptr);
edf8e2af
MW
4248 }
4249 cpu_list_unlock();
4250
4251 return (0);
4252}
4253
4254static void free_note_info(struct elf_note_info *info)
4255{
4256 struct elf_thread_status *ets;
4257
72cf2d4f
BS
4258 while (!QTAILQ_EMPTY(&info->thread_list)) {
4259 ets = QTAILQ_FIRST(&info->thread_list);
4260 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 4261 g_free(ets);
edf8e2af
MW
4262 }
4263
7267c094
AL
4264 g_free(info->prstatus);
4265 g_free(info->psinfo);
4266 g_free(info->notes);
edf8e2af
MW
4267}
4268
4269static int write_note_info(struct elf_note_info *info, int fd)
4270{
4271 struct elf_thread_status *ets;
4272 int i, error = 0;
4273
4274 /* write prstatus, psinfo and auxv for current thread */
4275 for (i = 0; i < info->numnote; i++)
4276 if ((error = write_note(&info->notes[i], fd)) != 0)
4277 return (error);
4278
4279 /* write prstatus for each thread */
52a53afe 4280 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
4281 if ((error = write_note(&ets->notes[0], fd)) != 0)
4282 return (error);
4283 }
4284
4285 return (0);
4286}
4287
4288/*
4289 * Write out ELF coredump.
4290 *
4291 * See documentation of ELF object file format in:
4292 * http://www.caldera.com/developers/devspecs/gabi41.pdf
4293 *
4294 * Coredump format in linux is following:
4295 *
4296 * 0 +----------------------+ \
4297 * | ELF header | ET_CORE |
4298 * +----------------------+ |
4299 * | ELF program headers | |--- headers
4300 * | - NOTE section | |
4301 * | - PT_LOAD sections | |
4302 * +----------------------+ /
4303 * | NOTEs: |
4304 * | - NT_PRSTATUS |
4305 * | - NT_PRSINFO |
4306 * | - NT_AUXV |
4307 * +----------------------+ <-- aligned to target page
4308 * | Process memory dump |
4309 * : :
4310 * . .
4311 * : :
4312 * | |
4313 * +----------------------+
4314 *
4315 * NT_PRSTATUS -> struct elf_prstatus (per thread)
4316 * NT_PRSINFO -> struct elf_prpsinfo
4317 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4318 *
4319 * Format follows System V format as close as possible. Current
4320 * version limitations are as follows:
4321 * - no floating point registers are dumped
4322 *
4323 * Function returns 0 in case of success, negative errno otherwise.
4324 *
4325 * TODO: make this work also during runtime: it should be
4326 * possible to force coredump from running process and then
4327 * continue processing. For example qemu could set up SIGUSR2
4328 * handler (provided that target process haven't registered
4329 * handler for that) that does the dump when signal is received.
4330 */
9349b4f9 4331static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 4332{
29a0af61 4333 const CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 4334 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af 4335 struct vm_area_struct *vma = NULL;
68af19ad 4336 g_autofree char *corefile = NULL;
edf8e2af
MW
4337 struct elf_note_info info;
4338 struct elfhdr elf;
4339 struct elf_phdr phdr;
4340 struct rlimit dumpsize;
4341 struct mm_struct *mm = NULL;
4342 off_t offset = 0, data_offset = 0;
4343 int segs = 0;
4344 int fd = -1;
4345
6afafa86
PM
4346 init_note_info(&info);
4347
edf8e2af
MW
4348 errno = 0;
4349 getrlimit(RLIMIT_CORE, &dumpsize);
4350 if (dumpsize.rlim_cur == 0)
d97ef72e 4351 return 0;
edf8e2af 4352
68af19ad 4353 corefile = core_dump_filename(ts);
edf8e2af
MW
4354
4355 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 4356 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
4357 return (-errno);
4358
4359 /*
4360 * Walk through target process memory mappings and
4361 * set up structure containing this information. After
4362 * this point vma_xxx functions can be used.
4363 */
4364 if ((mm = vma_init()) == NULL)
4365 goto out;
4366
4367 walk_memory_regions(mm, vma_walker);
4368 segs = vma_get_mapping_count(mm);
4369
4370 /*
4371 * Construct valid coredump ELF header. We also
4372 * add one more segment for notes.
4373 */
4374 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4375 if (dump_write(fd, &elf, sizeof (elf)) != 0)
4376 goto out;
4377
b6af0975 4378 /* fill in the in-memory version of notes */
edf8e2af
MW
4379 if (fill_note_info(&info, signr, env) < 0)
4380 goto out;
4381
4382 offset += sizeof (elf); /* elf header */
4383 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
4384
4385 /* write out notes program header */
4386 fill_elf_note_phdr(&phdr, info.notes_size, offset);
4387
4388 offset += info.notes_size;
4389 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4390 goto out;
4391
4392 /*
4393 * ELF specification wants data to start at page boundary so
4394 * we align it here.
4395 */
80f5ce75 4396 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
4397
4398 /*
4399 * Write program headers for memory regions mapped in
4400 * the target process.
4401 */
4402 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4403 (void) memset(&phdr, 0, sizeof (phdr));
4404
4405 phdr.p_type = PT_LOAD;
4406 phdr.p_offset = offset;
4407 phdr.p_vaddr = vma->vma_start;
4408 phdr.p_paddr = 0;
4409 phdr.p_filesz = vma_dump_size(vma);
4410 offset += phdr.p_filesz;
4411 phdr.p_memsz = vma->vma_end - vma->vma_start;
4412 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4413 if (vma->vma_flags & PROT_WRITE)
4414 phdr.p_flags |= PF_W;
4415 if (vma->vma_flags & PROT_EXEC)
4416 phdr.p_flags |= PF_X;
4417 phdr.p_align = ELF_EXEC_PAGESIZE;
4418
80f5ce75 4419 bswap_phdr(&phdr, 1);
772034b6
PM
4420 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4421 goto out;
4422 }
edf8e2af
MW
4423 }
4424
4425 /*
4426 * Next we write notes just after program headers. No
4427 * alignment needed here.
4428 */
4429 if (write_note_info(&info, fd) < 0)
4430 goto out;
4431
4432 /* align data to page boundary */
edf8e2af
MW
4433 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4434 goto out;
4435
4436 /*
4437 * Finally we can dump process memory into corefile as well.
4438 */
4439 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4440 abi_ulong addr;
4441 abi_ulong end;
4442
4443 end = vma->vma_start + vma_dump_size(vma);
4444
4445 for (addr = vma->vma_start; addr < end;
d97ef72e 4446 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
4447 char page[TARGET_PAGE_SIZE];
4448 int error;
4449
4450 /*
4451 * Read in page from target process memory and
4452 * write it to coredump file.
4453 */
4454 error = copy_from_user(page, addr, sizeof (page));
4455 if (error != 0) {
49995e17 4456 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 4457 addr);
edf8e2af
MW
4458 errno = -error;
4459 goto out;
4460 }
4461 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4462 goto out;
4463 }
4464 }
4465
d97ef72e 4466 out:
edf8e2af
MW
4467 free_note_info(&info);
4468 if (mm != NULL)
4469 vma_delete(mm);
4470 (void) close(fd);
4471
4472 if (errno != 0)
4473 return (-errno);
4474 return (0);
4475}
edf8e2af
MW
4476#endif /* USE_ELF_CORE_DUMP */
4477
e5fe0c52
PB
4478void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4479{
4480 init_thread(regs, infop);
4481}