]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
target/arm: Convert v8 extensions from feature bits to isar tests
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
31e31b8a 6
3ef693a0 7#include "qemu.h"
76cad711 8#include "disas/disas.h"
f348b6d1 9#include "qemu/path.h"
31e31b8a 10
e58ffeb3 11#ifdef _ARCH_PPC64
a6cc84f4 12#undef ARCH_DLINFO
13#undef ELF_PLATFORM
14#undef ELF_HWCAP
ad6919dc 15#undef ELF_HWCAP2
a6cc84f4 16#undef ELF_CLASS
17#undef ELF_DATA
18#undef ELF_ARCH
19#endif
20
edf8e2af
MW
21#define ELF_OSABI ELFOSABI_SYSV
22
cb33da57
BS
23/* from personality.h */
24
25/*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30enum {
d97ef72e
RH
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
42};
43
44/*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50enum {
d97ef72e
RH
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
cb33da57
BS
74};
75
76/*
77 * Return the base personality without flags.
78 */
d97ef72e 79#define personality(pers) (pers & PER_MASK)
cb33da57 80
3cb10cfa
CL
81int info_is_fdpic(struct image_info *info)
82{
83 return info->personality == PER_LINUX_FDPIC;
84}
85
83fb7adf
FB
86/* this flag is uneffective under linux too, should be deleted */
87#ifndef MAP_DENYWRITE
88#define MAP_DENYWRITE 0
89#endif
90
91/* should probably go in elf.h */
92#ifndef ELIBBAD
93#define ELIBBAD 80
94#endif
95
28490231
RH
96#ifdef TARGET_WORDS_BIGENDIAN
97#define ELF_DATA ELFDATA2MSB
98#else
99#define ELF_DATA ELFDATA2LSB
100#endif
101
a29f998d 102#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
103typedef abi_ullong target_elf_greg_t;
104#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
105#else
106typedef abi_ulong target_elf_greg_t;
107#define tswapreg(ptr) tswapal(ptr)
108#endif
109
21e807fa 110#ifdef USE_UID16
1ddd592f
PB
111typedef abi_ushort target_uid_t;
112typedef abi_ushort target_gid_t;
21e807fa 113#else
f8fd4fc4
PB
114typedef abi_uint target_uid_t;
115typedef abi_uint target_gid_t;
21e807fa 116#endif
f8fd4fc4 117typedef abi_int target_pid_t;
21e807fa 118
30ac07d4
FB
119#ifdef TARGET_I386
120
15338fd7
FB
121#define ELF_PLATFORM get_elf_platform()
122
123static const char *get_elf_platform(void)
124{
125 static char elf_platform[] = "i386";
a2247f8e 126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
127 if (family > 6)
128 family = 6;
129 if (family >= 3)
130 elf_platform[1] = '0' + family;
131 return elf_platform;
132}
133
134#define ELF_HWCAP get_elf_hwcap()
135
136static uint32_t get_elf_hwcap(void)
137{
a2247f8e
AF
138 X86CPU *cpu = X86_CPU(thread_cpu);
139
140 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
141}
142
84409ddb
JM
143#ifdef TARGET_X86_64
144#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
145
146#define ELF_CLASS ELFCLASS64
84409ddb
JM
147#define ELF_ARCH EM_X86_64
148
149static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150{
151 regs->rax = 0;
152 regs->rsp = infop->start_stack;
153 regs->rip = infop->entry;
154}
155
9edc5d79 156#define ELF_NREG 27
c227f099 157typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
158
159/*
160 * Note that ELF_NREG should be 29 as there should be place for
161 * TRAPNO and ERR "registers" as well but linux doesn't dump
162 * those.
163 *
164 * See linux kernel: arch/x86/include/asm/elf.h
165 */
05390248 166static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
167{
168 (*regs)[0] = env->regs[15];
169 (*regs)[1] = env->regs[14];
170 (*regs)[2] = env->regs[13];
171 (*regs)[3] = env->regs[12];
172 (*regs)[4] = env->regs[R_EBP];
173 (*regs)[5] = env->regs[R_EBX];
174 (*regs)[6] = env->regs[11];
175 (*regs)[7] = env->regs[10];
176 (*regs)[8] = env->regs[9];
177 (*regs)[9] = env->regs[8];
178 (*regs)[10] = env->regs[R_EAX];
179 (*regs)[11] = env->regs[R_ECX];
180 (*regs)[12] = env->regs[R_EDX];
181 (*regs)[13] = env->regs[R_ESI];
182 (*regs)[14] = env->regs[R_EDI];
183 (*regs)[15] = env->regs[R_EAX]; /* XXX */
184 (*regs)[16] = env->eip;
185 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186 (*regs)[18] = env->eflags;
187 (*regs)[19] = env->regs[R_ESP];
188 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195}
196
84409ddb
JM
197#else
198
30ac07d4
FB
199#define ELF_START_MMAP 0x80000000
200
30ac07d4
FB
201/*
202 * This is used to ensure we don't load something for the wrong architecture.
203 */
204#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205
206/*
207 * These are used to set parameters in the core dumps.
208 */
d97ef72e 209#define ELF_CLASS ELFCLASS32
d97ef72e 210#define ELF_ARCH EM_386
30ac07d4 211
d97ef72e
RH
212static inline void init_thread(struct target_pt_regs *regs,
213 struct image_info *infop)
b346ff46
FB
214{
215 regs->esp = infop->start_stack;
216 regs->eip = infop->entry;
e5fe0c52
PB
217
218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219 starts %edx contains a pointer to a function which might be
220 registered using `atexit'. This provides a mean for the
221 dynamic linker to call DT_FINI functions for shared libraries
222 that have been loaded before the code runs.
223
224 A value of 0 tells we have no such handler. */
225 regs->edx = 0;
b346ff46 226}
9edc5d79 227
9edc5d79 228#define ELF_NREG 17
c227f099 229typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
230
231/*
232 * Note that ELF_NREG should be 19 as there should be place for
233 * TRAPNO and ERR "registers" as well but linux doesn't dump
234 * those.
235 *
236 * See linux kernel: arch/x86/include/asm/elf.h
237 */
05390248 238static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
239{
240 (*regs)[0] = env->regs[R_EBX];
241 (*regs)[1] = env->regs[R_ECX];
242 (*regs)[2] = env->regs[R_EDX];
243 (*regs)[3] = env->regs[R_ESI];
244 (*regs)[4] = env->regs[R_EDI];
245 (*regs)[5] = env->regs[R_EBP];
246 (*regs)[6] = env->regs[R_EAX];
247 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251 (*regs)[11] = env->regs[R_EAX]; /* XXX */
252 (*regs)[12] = env->eip;
253 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254 (*regs)[14] = env->eflags;
255 (*regs)[15] = env->regs[R_ESP];
256 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257}
84409ddb 258#endif
b346ff46 259
9edc5d79 260#define USE_ELF_CORE_DUMP
d97ef72e 261#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
262
263#endif
264
265#ifdef TARGET_ARM
266
24e76ff0
PM
267#ifndef TARGET_AARCH64
268/* 32 bit ARM definitions */
269
b346ff46
FB
270#define ELF_START_MMAP 0x80000000
271
b597c3f7 272#define ELF_ARCH EM_ARM
d97ef72e 273#define ELF_CLASS ELFCLASS32
b346ff46 274
d97ef72e
RH
275static inline void init_thread(struct target_pt_regs *regs,
276 struct image_info *infop)
b346ff46 277{
992f48a0 278 abi_long stack = infop->start_stack;
b346ff46 279 memset(regs, 0, sizeof(*regs));
99033cae 280
167e4cdc
PM
281 regs->uregs[16] = ARM_CPU_MODE_USR;
282 if (infop->entry & 1) {
283 regs->uregs[16] |= CPSR_T;
284 }
285 regs->uregs[15] = infop->entry & 0xfffffffe;
286 regs->uregs[13] = infop->start_stack;
2f619698 287 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
288 get_user_ual(regs->uregs[2], stack + 8); /* envp */
289 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 290 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 291 regs->uregs[0] = 0;
e5fe0c52 292 /* For uClinux PIC binaries. */
863cf0b7 293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 294 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
295
296 /* Support ARM FDPIC. */
297 if (info_is_fdpic(infop)) {
298 /* As described in the ABI document, r7 points to the loadmap info
299 * prepared by the kernel. If an interpreter is needed, r8 points
300 * to the interpreter loadmap and r9 points to the interpreter
301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302 * r9 points to the main program PT_DYNAMIC info.
303 */
304 regs->uregs[7] = infop->loadmap_addr;
305 if (infop->interpreter_loadmap_addr) {
306 /* Executable is dynamically loaded. */
307 regs->uregs[8] = infop->interpreter_loadmap_addr;
308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309 } else {
310 regs->uregs[8] = 0;
311 regs->uregs[9] = infop->pt_dynamic_addr;
312 }
313 }
b346ff46
FB
314}
315
edf8e2af 316#define ELF_NREG 18
c227f099 317typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 318
05390248 319static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 320{
86cd7b2d
PB
321 (*regs)[0] = tswapreg(env->regs[0]);
322 (*regs)[1] = tswapreg(env->regs[1]);
323 (*regs)[2] = tswapreg(env->regs[2]);
324 (*regs)[3] = tswapreg(env->regs[3]);
325 (*regs)[4] = tswapreg(env->regs[4]);
326 (*regs)[5] = tswapreg(env->regs[5]);
327 (*regs)[6] = tswapreg(env->regs[6]);
328 (*regs)[7] = tswapreg(env->regs[7]);
329 (*regs)[8] = tswapreg(env->regs[8]);
330 (*regs)[9] = tswapreg(env->regs[9]);
331 (*regs)[10] = tswapreg(env->regs[10]);
332 (*regs)[11] = tswapreg(env->regs[11]);
333 (*regs)[12] = tswapreg(env->regs[12]);
334 (*regs)[13] = tswapreg(env->regs[13]);
335 (*regs)[14] = tswapreg(env->regs[14]);
336 (*regs)[15] = tswapreg(env->regs[15]);
337
338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
340}
341
30ac07d4 342#define USE_ELF_CORE_DUMP
d97ef72e 343#define ELF_EXEC_PAGESIZE 4096
30ac07d4 344
afce2927
FB
345enum
346{
d97ef72e
RH
347 ARM_HWCAP_ARM_SWP = 1 << 0,
348 ARM_HWCAP_ARM_HALF = 1 << 1,
349 ARM_HWCAP_ARM_THUMB = 1 << 2,
350 ARM_HWCAP_ARM_26BIT = 1 << 3,
351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352 ARM_HWCAP_ARM_FPA = 1 << 5,
353 ARM_HWCAP_ARM_VFP = 1 << 6,
354 ARM_HWCAP_ARM_EDSP = 1 << 7,
355 ARM_HWCAP_ARM_JAVA = 1 << 8,
356 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
357 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
358 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
359 ARM_HWCAP_ARM_NEON = 1 << 12,
360 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
362 ARM_HWCAP_ARM_TLS = 1 << 15,
363 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
364 ARM_HWCAP_ARM_IDIVA = 1 << 17,
365 ARM_HWCAP_ARM_IDIVT = 1 << 18,
366 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
367 ARM_HWCAP_ARM_LPAE = 1 << 20,
368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
369};
370
ad6919dc
PM
371enum {
372 ARM_HWCAP2_ARM_AES = 1 << 0,
373 ARM_HWCAP2_ARM_PMULL = 1 << 1,
374 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
375 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
376 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
377};
378
6b1275ff
PM
379/* The commpage only exists for 32 bit kernels */
380
806d1021
MI
381/* Return 1 if the proposed guest space is suitable for the guest.
382 * Return 0 if the proposed guest space isn't suitable, but another
383 * address space should be tried.
384 * Return -1 if there is no way the proposed guest space can be
385 * valid regardless of the base.
386 * The guest code may leave a page mapped and populate it if the
387 * address is suitable.
388 */
c3637eaf
LS
389static int init_guest_commpage(unsigned long guest_base,
390 unsigned long guest_size)
97cc7560
DDAG
391{
392 unsigned long real_start, test_page_addr;
393
394 /* We need to check that we can force a fault on access to the
395 * commpage at 0xffff0fxx
396 */
397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
398
399 /* If the commpage lies within the already allocated guest space,
400 * then there is no way we can allocate it.
955e304f
LS
401 *
402 * You may be thinking that that this check is redundant because
403 * we already validated the guest size against MAX_RESERVED_VA;
404 * but if qemu_host_page_mask is unusually large, then
405 * test_page_addr may be lower.
806d1021
MI
406 */
407 if (test_page_addr >= guest_base
e568f9df 408 && test_page_addr < (guest_base + guest_size)) {
806d1021
MI
409 return -1;
410 }
411
97cc7560
DDAG
412 /* Note it needs to be writeable to let us initialise it */
413 real_start = (unsigned long)
414 mmap((void *)test_page_addr, qemu_host_page_size,
415 PROT_READ | PROT_WRITE,
416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417
418 /* If we can't map it then try another address */
419 if (real_start == -1ul) {
420 return 0;
421 }
422
423 if (real_start != test_page_addr) {
424 /* OS didn't put the page where we asked - unmap and reject */
425 munmap((void *)real_start, qemu_host_page_size);
426 return 0;
427 }
428
429 /* Leave the page mapped
430 * Populate it (mmap should have left it all 0'd)
431 */
432
433 /* Kernel helper versions */
434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435
436 /* Now it's populated make it RO */
437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438 perror("Protecting guest commpage");
439 exit(-1);
440 }
441
442 return 1; /* All good */
443}
adf050b1
BC
444
445#define ELF_HWCAP get_elf_hwcap()
ad6919dc 446#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
447
448static uint32_t get_elf_hwcap(void)
449{
a2247f8e 450 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
451 uint32_t hwcaps = 0;
452
453 hwcaps |= ARM_HWCAP_ARM_SWP;
454 hwcaps |= ARM_HWCAP_ARM_HALF;
455 hwcaps |= ARM_HWCAP_ARM_THUMB;
456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
457
458 /* probe for the extra features */
459#define GET_FEATURE(feat, hwcap) \
a2247f8e 460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
962fcbf2
RH
461
462#define GET_FEATURE_ID(feat, hwcap) \
463 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
464
24682654
PM
465 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
466 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
467 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
468 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
469 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
470 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
471 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
472 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
473 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
474 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
475 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
476 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
477 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
478 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
479 * to our VFP_FP16 feature bit.
480 */
481 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
482 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
483
484 return hwcaps;
485}
afce2927 486
ad6919dc
PM
487static uint32_t get_elf_hwcap2(void)
488{
489 ARMCPU *cpu = ARM_CPU(thread_cpu);
490 uint32_t hwcaps = 0;
491
962fcbf2
RH
492 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
493 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
494 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
495 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
496 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
ad6919dc
PM
497 return hwcaps;
498}
499
500#undef GET_FEATURE
962fcbf2 501#undef GET_FEATURE_ID
ad6919dc 502
24e76ff0
PM
503#else
504/* 64 bit ARM definitions */
505#define ELF_START_MMAP 0x80000000
506
b597c3f7 507#define ELF_ARCH EM_AARCH64
24e76ff0
PM
508#define ELF_CLASS ELFCLASS64
509#define ELF_PLATFORM "aarch64"
510
511static inline void init_thread(struct target_pt_regs *regs,
512 struct image_info *infop)
513{
514 abi_long stack = infop->start_stack;
515 memset(regs, 0, sizeof(*regs));
516
517 regs->pc = infop->entry & ~0x3ULL;
518 regs->sp = stack;
519}
520
521#define ELF_NREG 34
522typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
523
524static void elf_core_copy_regs(target_elf_gregset_t *regs,
525 const CPUARMState *env)
526{
527 int i;
528
529 for (i = 0; i < 32; i++) {
530 (*regs)[i] = tswapreg(env->xregs[i]);
531 }
532 (*regs)[32] = tswapreg(env->pc);
533 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
534}
535
536#define USE_ELF_CORE_DUMP
537#define ELF_EXEC_PAGESIZE 4096
538
539enum {
540 ARM_HWCAP_A64_FP = 1 << 0,
541 ARM_HWCAP_A64_ASIMD = 1 << 1,
542 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
543 ARM_HWCAP_A64_AES = 1 << 3,
544 ARM_HWCAP_A64_PMULL = 1 << 4,
545 ARM_HWCAP_A64_SHA1 = 1 << 5,
546 ARM_HWCAP_A64_SHA2 = 1 << 6,
547 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
548 ARM_HWCAP_A64_ATOMICS = 1 << 8,
549 ARM_HWCAP_A64_FPHP = 1 << 9,
550 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
551 ARM_HWCAP_A64_CPUID = 1 << 11,
552 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
553 ARM_HWCAP_A64_JSCVT = 1 << 13,
554 ARM_HWCAP_A64_FCMA = 1 << 14,
555 ARM_HWCAP_A64_LRCPC = 1 << 15,
556 ARM_HWCAP_A64_DCPOP = 1 << 16,
557 ARM_HWCAP_A64_SHA3 = 1 << 17,
558 ARM_HWCAP_A64_SM3 = 1 << 18,
559 ARM_HWCAP_A64_SM4 = 1 << 19,
560 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
561 ARM_HWCAP_A64_SHA512 = 1 << 21,
562 ARM_HWCAP_A64_SVE = 1 << 22,
24e76ff0
PM
563};
564
565#define ELF_HWCAP get_elf_hwcap()
566
567static uint32_t get_elf_hwcap(void)
568{
569 ARMCPU *cpu = ARM_CPU(thread_cpu);
570 uint32_t hwcaps = 0;
571
572 hwcaps |= ARM_HWCAP_A64_FP;
573 hwcaps |= ARM_HWCAP_A64_ASIMD;
574
575 /* probe for the extra features */
576#define GET_FEATURE(feat, hwcap) \
577 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
962fcbf2
RH
578#define GET_FEATURE_ID(feat, hwcap) \
579 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
580
581 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
582 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
583 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
584 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
585 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
586 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
587 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
588 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
589 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
201b19d5
PM
590 GET_FEATURE(ARM_FEATURE_V8_FP16,
591 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
962fcbf2
RH
592 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
593 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
594 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
595 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
802ac0e1 596 GET_FEATURE(ARM_FEATURE_SVE, ARM_HWCAP_A64_SVE);
962fcbf2 597
24e76ff0 598#undef GET_FEATURE
962fcbf2 599#undef GET_FEATURE_ID
24e76ff0
PM
600
601 return hwcaps;
602}
603
604#endif /* not TARGET_AARCH64 */
605#endif /* TARGET_ARM */
30ac07d4 606
853d6f7a 607#ifdef TARGET_SPARC
a315a145 608#ifdef TARGET_SPARC64
853d6f7a
FB
609
610#define ELF_START_MMAP 0x80000000
cf973e46
AT
611#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
612 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 613#ifndef TARGET_ABI32
cb33da57 614#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
615#else
616#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
617#endif
853d6f7a 618
a315a145 619#define ELF_CLASS ELFCLASS64
5ef54116
FB
620#define ELF_ARCH EM_SPARCV9
621
d97ef72e 622#define STACK_BIAS 2047
a315a145 623
d97ef72e
RH
624static inline void init_thread(struct target_pt_regs *regs,
625 struct image_info *infop)
a315a145 626{
992f48a0 627#ifndef TARGET_ABI32
a315a145 628 regs->tstate = 0;
992f48a0 629#endif
a315a145
FB
630 regs->pc = infop->entry;
631 regs->npc = regs->pc + 4;
632 regs->y = 0;
992f48a0
BS
633#ifdef TARGET_ABI32
634 regs->u_regs[14] = infop->start_stack - 16 * 4;
635#else
cb33da57
BS
636 if (personality(infop->personality) == PER_LINUX32)
637 regs->u_regs[14] = infop->start_stack - 16 * 4;
638 else
639 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 640#endif
a315a145
FB
641}
642
643#else
644#define ELF_START_MMAP 0x80000000
cf973e46
AT
645#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
646 | HWCAP_SPARC_MULDIV)
a315a145 647
853d6f7a 648#define ELF_CLASS ELFCLASS32
853d6f7a
FB
649#define ELF_ARCH EM_SPARC
650
d97ef72e
RH
651static inline void init_thread(struct target_pt_regs *regs,
652 struct image_info *infop)
853d6f7a 653{
f5155289
FB
654 regs->psr = 0;
655 regs->pc = infop->entry;
656 regs->npc = regs->pc + 4;
657 regs->y = 0;
658 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
659}
660
a315a145 661#endif
853d6f7a
FB
662#endif
663
67867308
FB
664#ifdef TARGET_PPC
665
4ecd4d16 666#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
667#define ELF_START_MMAP 0x80000000
668
e85e7c6e 669#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
670
671#define elf_check_arch(x) ( (x) == EM_PPC64 )
672
d97ef72e 673#define ELF_CLASS ELFCLASS64
84409ddb
JM
674
675#else
676
d97ef72e 677#define ELF_CLASS ELFCLASS32
84409ddb
JM
678
679#endif
680
d97ef72e 681#define ELF_ARCH EM_PPC
67867308 682
df84e4f3
NF
683/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
684 See arch/powerpc/include/asm/cputable.h. */
685enum {
3efa9a67 686 QEMU_PPC_FEATURE_32 = 0x80000000,
687 QEMU_PPC_FEATURE_64 = 0x40000000,
688 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
689 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
690 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
691 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
692 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
693 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
694 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
695 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
696 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
697 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
698 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
699 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
700 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
701 QEMU_PPC_FEATURE_CELL = 0x00010000,
702 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
703 QEMU_PPC_FEATURE_SMT = 0x00004000,
704 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
705 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
706 QEMU_PPC_FEATURE_PA6T = 0x00000800,
707 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
708 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
709 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
710 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
711 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
712
713 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
714 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
715
716 /* Feature definitions in AT_HWCAP2. */
717 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
718 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
719 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
720 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
721 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
722 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
be0c46d4 723 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
df84e4f3
NF
724};
725
726#define ELF_HWCAP get_elf_hwcap()
727
728static uint32_t get_elf_hwcap(void)
729{
a2247f8e 730 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
731 uint32_t features = 0;
732
733 /* We don't have to be terribly complete here; the high points are
734 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 735#define GET_FEATURE(flag, feature) \
a2247f8e 736 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
737#define GET_FEATURE2(flags, feature) \
738 do { \
739 if ((cpu->env.insns_flags2 & flags) == flags) { \
740 features |= feature; \
741 } \
742 } while (0)
3efa9a67 743 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
744 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
745 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
746 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
747 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
748 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
749 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
750 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
751 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
752 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
753 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
754 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
755 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 756#undef GET_FEATURE
0e019746 757#undef GET_FEATURE2
df84e4f3
NF
758
759 return features;
760}
761
a60438dd
TM
762#define ELF_HWCAP2 get_elf_hwcap2()
763
764static uint32_t get_elf_hwcap2(void)
765{
766 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
767 uint32_t features = 0;
768
769#define GET_FEATURE(flag, feature) \
770 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
771#define GET_FEATURE2(flag, feature) \
772 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
773
774 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
775 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
776 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
777 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
be0c46d4 778 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
a60438dd
TM
779
780#undef GET_FEATURE
781#undef GET_FEATURE2
782
783 return features;
784}
785
f5155289
FB
786/*
787 * The requirements here are:
788 * - keep the final alignment of sp (sp & 0xf)
789 * - make sure the 32-bit value at the first 16 byte aligned position of
790 * AUXV is greater than 16 for glibc compatibility.
791 * AT_IGNOREPPC is used for that.
792 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
793 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
794 */
0bccf03d 795#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
796#define ARCH_DLINFO \
797 do { \
623e250a 798 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 799 /* \
82991bed
PM
800 * Handle glibc compatibility: these magic entries must \
801 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
802 */ \
803 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
804 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
805 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
806 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
807 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 808 } while (0)
f5155289 809
67867308
FB
810static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
811{
67867308 812 _regs->gpr[1] = infop->start_stack;
e85e7c6e 813#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 814 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
815 uint64_t val;
816 get_user_u64(val, infop->entry + 8);
817 _regs->gpr[2] = val + infop->load_bias;
818 get_user_u64(val, infop->entry);
819 infop->entry = val + infop->load_bias;
d90b94cd
DK
820 } else {
821 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
822 }
84409ddb 823#endif
67867308
FB
824 _regs->nip = infop->entry;
825}
826
e2f3e741
NF
827/* See linux kernel: arch/powerpc/include/asm/elf.h. */
828#define ELF_NREG 48
829typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
830
05390248 831static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
832{
833 int i;
834 target_ulong ccr = 0;
835
836 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 837 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
838 }
839
86cd7b2d
PB
840 (*regs)[32] = tswapreg(env->nip);
841 (*regs)[33] = tswapreg(env->msr);
842 (*regs)[35] = tswapreg(env->ctr);
843 (*regs)[36] = tswapreg(env->lr);
844 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
845
846 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
847 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
848 }
86cd7b2d 849 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
850}
851
852#define USE_ELF_CORE_DUMP
d97ef72e 853#define ELF_EXEC_PAGESIZE 4096
67867308
FB
854
855#endif
856
048f6b4d
FB
857#ifdef TARGET_MIPS
858
859#define ELF_START_MMAP 0x80000000
860
388bb21a
TS
861#ifdef TARGET_MIPS64
862#define ELF_CLASS ELFCLASS64
863#else
048f6b4d 864#define ELF_CLASS ELFCLASS32
388bb21a 865#endif
048f6b4d
FB
866#define ELF_ARCH EM_MIPS
867
f72541f3
AM
868#define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
869
d97ef72e
RH
870static inline void init_thread(struct target_pt_regs *regs,
871 struct image_info *infop)
048f6b4d 872{
623a930e 873 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
874 regs->cp0_epc = infop->entry;
875 regs->regs[29] = infop->start_stack;
876}
877
51e52606
NF
878/* See linux kernel: arch/mips/include/asm/elf.h. */
879#define ELF_NREG 45
880typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
881
882/* See linux kernel: arch/mips/include/asm/reg.h. */
883enum {
884#ifdef TARGET_MIPS64
885 TARGET_EF_R0 = 0,
886#else
887 TARGET_EF_R0 = 6,
888#endif
889 TARGET_EF_R26 = TARGET_EF_R0 + 26,
890 TARGET_EF_R27 = TARGET_EF_R0 + 27,
891 TARGET_EF_LO = TARGET_EF_R0 + 32,
892 TARGET_EF_HI = TARGET_EF_R0 + 33,
893 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
894 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
895 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
896 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
897};
898
899/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 900static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
901{
902 int i;
903
904 for (i = 0; i < TARGET_EF_R0; i++) {
905 (*regs)[i] = 0;
906 }
907 (*regs)[TARGET_EF_R0] = 0;
908
909 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 910 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
911 }
912
913 (*regs)[TARGET_EF_R26] = 0;
914 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
915 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
916 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
917 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
918 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
919 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
920 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
921}
922
923#define USE_ELF_CORE_DUMP
388bb21a
TS
924#define ELF_EXEC_PAGESIZE 4096
925
46a1ee4f
JC
926/* See arch/mips/include/uapi/asm/hwcap.h. */
927enum {
928 HWCAP_MIPS_R6 = (1 << 0),
929 HWCAP_MIPS_MSA = (1 << 1),
930};
931
932#define ELF_HWCAP get_elf_hwcap()
933
934static uint32_t get_elf_hwcap(void)
935{
936 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
937 uint32_t hwcaps = 0;
938
939#define GET_FEATURE(flag, hwcap) \
940 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
941
942 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
943 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
944
945#undef GET_FEATURE
946
947 return hwcaps;
948}
949
048f6b4d
FB
950#endif /* TARGET_MIPS */
951
b779e29e
EI
952#ifdef TARGET_MICROBLAZE
953
954#define ELF_START_MMAP 0x80000000
955
0d5d4699 956#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
957
958#define ELF_CLASS ELFCLASS32
0d5d4699 959#define ELF_ARCH EM_MICROBLAZE
b779e29e 960
d97ef72e
RH
961static inline void init_thread(struct target_pt_regs *regs,
962 struct image_info *infop)
b779e29e
EI
963{
964 regs->pc = infop->entry;
965 regs->r1 = infop->start_stack;
966
967}
968
b779e29e
EI
969#define ELF_EXEC_PAGESIZE 4096
970
e4cbd44d
EI
971#define USE_ELF_CORE_DUMP
972#define ELF_NREG 38
973typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
974
975/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 976static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
977{
978 int i, pos = 0;
979
980 for (i = 0; i < 32; i++) {
86cd7b2d 981 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
982 }
983
984 for (i = 0; i < 6; i++) {
86cd7b2d 985 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
986 }
987}
988
b779e29e
EI
989#endif /* TARGET_MICROBLAZE */
990
a0a839b6
MV
991#ifdef TARGET_NIOS2
992
993#define ELF_START_MMAP 0x80000000
994
995#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
996
997#define ELF_CLASS ELFCLASS32
998#define ELF_ARCH EM_ALTERA_NIOS2
999
1000static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1001{
1002 regs->ea = infop->entry;
1003 regs->sp = infop->start_stack;
1004 regs->estatus = 0x3;
1005}
1006
1007#define ELF_EXEC_PAGESIZE 4096
1008
1009#define USE_ELF_CORE_DUMP
1010#define ELF_NREG 49
1011typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1012
1013/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1014static void elf_core_copy_regs(target_elf_gregset_t *regs,
1015 const CPUNios2State *env)
1016{
1017 int i;
1018
1019 (*regs)[0] = -1;
1020 for (i = 1; i < 8; i++) /* r0-r7 */
1021 (*regs)[i] = tswapreg(env->regs[i + 7]);
1022
1023 for (i = 8; i < 16; i++) /* r8-r15 */
1024 (*regs)[i] = tswapreg(env->regs[i - 8]);
1025
1026 for (i = 16; i < 24; i++) /* r16-r23 */
1027 (*regs)[i] = tswapreg(env->regs[i + 7]);
1028 (*regs)[24] = -1; /* R_ET */
1029 (*regs)[25] = -1; /* R_BT */
1030 (*regs)[26] = tswapreg(env->regs[R_GP]);
1031 (*regs)[27] = tswapreg(env->regs[R_SP]);
1032 (*regs)[28] = tswapreg(env->regs[R_FP]);
1033 (*regs)[29] = tswapreg(env->regs[R_EA]);
1034 (*regs)[30] = -1; /* R_SSTATUS */
1035 (*regs)[31] = tswapreg(env->regs[R_RA]);
1036
1037 (*regs)[32] = tswapreg(env->regs[R_PC]);
1038
1039 (*regs)[33] = -1; /* R_STATUS */
1040 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1041
1042 for (i = 35; i < 49; i++) /* ... */
1043 (*regs)[i] = -1;
1044}
1045
1046#endif /* TARGET_NIOS2 */
1047
d962783e
JL
1048#ifdef TARGET_OPENRISC
1049
1050#define ELF_START_MMAP 0x08000000
1051
d962783e
JL
1052#define ELF_ARCH EM_OPENRISC
1053#define ELF_CLASS ELFCLASS32
1054#define ELF_DATA ELFDATA2MSB
1055
1056static inline void init_thread(struct target_pt_regs *regs,
1057 struct image_info *infop)
1058{
1059 regs->pc = infop->entry;
1060 regs->gpr[1] = infop->start_stack;
1061}
1062
1063#define USE_ELF_CORE_DUMP
1064#define ELF_EXEC_PAGESIZE 8192
1065
1066/* See linux kernel arch/openrisc/include/asm/elf.h. */
1067#define ELF_NREG 34 /* gprs and pc, sr */
1068typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1069
1070static void elf_core_copy_regs(target_elf_gregset_t *regs,
1071 const CPUOpenRISCState *env)
1072{
1073 int i;
1074
1075 for (i = 0; i < 32; i++) {
d89e71e8 1076 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1077 }
86cd7b2d 1078 (*regs)[32] = tswapreg(env->pc);
84775c43 1079 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1080}
1081#define ELF_HWCAP 0
1082#define ELF_PLATFORM NULL
1083
1084#endif /* TARGET_OPENRISC */
1085
fdf9b3e8
FB
1086#ifdef TARGET_SH4
1087
1088#define ELF_START_MMAP 0x80000000
1089
fdf9b3e8 1090#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1091#define ELF_ARCH EM_SH
1092
d97ef72e
RH
1093static inline void init_thread(struct target_pt_regs *regs,
1094 struct image_info *infop)
fdf9b3e8 1095{
d97ef72e
RH
1096 /* Check other registers XXXXX */
1097 regs->pc = infop->entry;
1098 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1099}
1100
7631c97e
NF
1101/* See linux kernel: arch/sh/include/asm/elf.h. */
1102#define ELF_NREG 23
1103typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1104
1105/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1106enum {
1107 TARGET_REG_PC = 16,
1108 TARGET_REG_PR = 17,
1109 TARGET_REG_SR = 18,
1110 TARGET_REG_GBR = 19,
1111 TARGET_REG_MACH = 20,
1112 TARGET_REG_MACL = 21,
1113 TARGET_REG_SYSCALL = 22
1114};
1115
d97ef72e 1116static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1117 const CPUSH4State *env)
7631c97e
NF
1118{
1119 int i;
1120
1121 for (i = 0; i < 16; i++) {
72cd500b 1122 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1123 }
1124
86cd7b2d
PB
1125 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1126 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1127 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1128 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1129 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1130 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1131 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1132}
1133
1134#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1135#define ELF_EXEC_PAGESIZE 4096
1136
e42fd944
RH
1137enum {
1138 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1139 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1140 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1141 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1142 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1143 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1144 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1145 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1146 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1147 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1148};
1149
1150#define ELF_HWCAP get_elf_hwcap()
1151
1152static uint32_t get_elf_hwcap(void)
1153{
1154 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1155 uint32_t hwcap = 0;
1156
1157 hwcap |= SH_CPU_HAS_FPU;
1158
1159 if (cpu->env.features & SH_FEATURE_SH4A) {
1160 hwcap |= SH_CPU_HAS_LLSC;
1161 }
1162
1163 return hwcap;
1164}
1165
fdf9b3e8
FB
1166#endif
1167
48733d19
TS
1168#ifdef TARGET_CRIS
1169
1170#define ELF_START_MMAP 0x80000000
1171
48733d19 1172#define ELF_CLASS ELFCLASS32
48733d19
TS
1173#define ELF_ARCH EM_CRIS
1174
d97ef72e
RH
1175static inline void init_thread(struct target_pt_regs *regs,
1176 struct image_info *infop)
48733d19 1177{
d97ef72e 1178 regs->erp = infop->entry;
48733d19
TS
1179}
1180
48733d19
TS
1181#define ELF_EXEC_PAGESIZE 8192
1182
1183#endif
1184
e6e5906b
PB
1185#ifdef TARGET_M68K
1186
1187#define ELF_START_MMAP 0x80000000
1188
d97ef72e 1189#define ELF_CLASS ELFCLASS32
d97ef72e 1190#define ELF_ARCH EM_68K
e6e5906b
PB
1191
1192/* ??? Does this need to do anything?
d97ef72e 1193 #define ELF_PLAT_INIT(_r) */
e6e5906b 1194
d97ef72e
RH
1195static inline void init_thread(struct target_pt_regs *regs,
1196 struct image_info *infop)
e6e5906b
PB
1197{
1198 regs->usp = infop->start_stack;
1199 regs->sr = 0;
1200 regs->pc = infop->entry;
1201}
1202
7a93cc55
NF
1203/* See linux kernel: arch/m68k/include/asm/elf.h. */
1204#define ELF_NREG 20
1205typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1206
05390248 1207static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1208{
86cd7b2d
PB
1209 (*regs)[0] = tswapreg(env->dregs[1]);
1210 (*regs)[1] = tswapreg(env->dregs[2]);
1211 (*regs)[2] = tswapreg(env->dregs[3]);
1212 (*regs)[3] = tswapreg(env->dregs[4]);
1213 (*regs)[4] = tswapreg(env->dregs[5]);
1214 (*regs)[5] = tswapreg(env->dregs[6]);
1215 (*regs)[6] = tswapreg(env->dregs[7]);
1216 (*regs)[7] = tswapreg(env->aregs[0]);
1217 (*regs)[8] = tswapreg(env->aregs[1]);
1218 (*regs)[9] = tswapreg(env->aregs[2]);
1219 (*regs)[10] = tswapreg(env->aregs[3]);
1220 (*regs)[11] = tswapreg(env->aregs[4]);
1221 (*regs)[12] = tswapreg(env->aregs[5]);
1222 (*regs)[13] = tswapreg(env->aregs[6]);
1223 (*regs)[14] = tswapreg(env->dregs[0]);
1224 (*regs)[15] = tswapreg(env->aregs[7]);
1225 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1226 (*regs)[17] = tswapreg(env->sr);
1227 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1228 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1229}
1230
1231#define USE_ELF_CORE_DUMP
d97ef72e 1232#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1233
1234#endif
1235
7a3148a9
JM
1236#ifdef TARGET_ALPHA
1237
1238#define ELF_START_MMAP (0x30000000000ULL)
1239
7a3148a9 1240#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1241#define ELF_ARCH EM_ALPHA
1242
d97ef72e
RH
1243static inline void init_thread(struct target_pt_regs *regs,
1244 struct image_info *infop)
7a3148a9
JM
1245{
1246 regs->pc = infop->entry;
1247 regs->ps = 8;
1248 regs->usp = infop->start_stack;
7a3148a9
JM
1249}
1250
7a3148a9
JM
1251#define ELF_EXEC_PAGESIZE 8192
1252
1253#endif /* TARGET_ALPHA */
1254
a4c075f1
UH
1255#ifdef TARGET_S390X
1256
1257#define ELF_START_MMAP (0x20000000000ULL)
1258
a4c075f1
UH
1259#define ELF_CLASS ELFCLASS64
1260#define ELF_DATA ELFDATA2MSB
1261#define ELF_ARCH EM_S390
1262
1263static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1264{
1265 regs->psw.addr = infop->entry;
1266 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1267 regs->gprs[15] = infop->start_stack;
1268}
1269
1270#endif /* TARGET_S390X */
1271
b16189b2
CG
1272#ifdef TARGET_TILEGX
1273
1274/* 42 bits real used address, a half for user mode */
1275#define ELF_START_MMAP (0x00000020000000000ULL)
1276
1277#define elf_check_arch(x) ((x) == EM_TILEGX)
1278
1279#define ELF_CLASS ELFCLASS64
1280#define ELF_DATA ELFDATA2LSB
1281#define ELF_ARCH EM_TILEGX
1282
1283static inline void init_thread(struct target_pt_regs *regs,
1284 struct image_info *infop)
1285{
1286 regs->pc = infop->entry;
1287 regs->sp = infop->start_stack;
1288
1289}
1290
1291#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1292
1293#endif /* TARGET_TILEGX */
1294
47ae93cd
MC
1295#ifdef TARGET_RISCV
1296
1297#define ELF_START_MMAP 0x80000000
1298#define ELF_ARCH EM_RISCV
1299
1300#ifdef TARGET_RISCV32
1301#define ELF_CLASS ELFCLASS32
1302#else
1303#define ELF_CLASS ELFCLASS64
1304#endif
1305
1306static inline void init_thread(struct target_pt_regs *regs,
1307 struct image_info *infop)
1308{
1309 regs->sepc = infop->entry;
1310 regs->sp = infop->start_stack;
1311}
1312
1313#define ELF_EXEC_PAGESIZE 4096
1314
1315#endif /* TARGET_RISCV */
1316
7c248bcd
RH
1317#ifdef TARGET_HPPA
1318
1319#define ELF_START_MMAP 0x80000000
1320#define ELF_CLASS ELFCLASS32
1321#define ELF_ARCH EM_PARISC
1322#define ELF_PLATFORM "PARISC"
1323#define STACK_GROWS_DOWN 0
1324#define STACK_ALIGNMENT 64
1325
1326static inline void init_thread(struct target_pt_regs *regs,
1327 struct image_info *infop)
1328{
1329 regs->iaoq[0] = infop->entry;
1330 regs->iaoq[1] = infop->entry + 4;
1331 regs->gr[23] = 0;
1332 regs->gr[24] = infop->arg_start;
1333 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1334 /* The top-of-stack contains a linkage buffer. */
1335 regs->gr[30] = infop->start_stack + 64;
1336 regs->gr[31] = infop->entry;
1337}
1338
1339#endif /* TARGET_HPPA */
1340
ba7651fb
MF
1341#ifdef TARGET_XTENSA
1342
1343#define ELF_START_MMAP 0x20000000
1344
1345#define ELF_CLASS ELFCLASS32
1346#define ELF_ARCH EM_XTENSA
1347
1348static inline void init_thread(struct target_pt_regs *regs,
1349 struct image_info *infop)
1350{
1351 regs->windowbase = 0;
1352 regs->windowstart = 1;
1353 regs->areg[1] = infop->start_stack;
1354 regs->pc = infop->entry;
1355}
1356
1357/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1358#define ELF_NREG 128
1359typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1360
1361enum {
1362 TARGET_REG_PC,
1363 TARGET_REG_PS,
1364 TARGET_REG_LBEG,
1365 TARGET_REG_LEND,
1366 TARGET_REG_LCOUNT,
1367 TARGET_REG_SAR,
1368 TARGET_REG_WINDOWSTART,
1369 TARGET_REG_WINDOWBASE,
1370 TARGET_REG_THREADPTR,
1371 TARGET_REG_AR0 = 64,
1372};
1373
1374static void elf_core_copy_regs(target_elf_gregset_t *regs,
1375 const CPUXtensaState *env)
1376{
1377 unsigned i;
1378
1379 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1380 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1381 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1382 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1383 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1384 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1385 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1386 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1387 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1388 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1389 for (i = 0; i < env->config->nareg; ++i) {
1390 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1391 }
1392}
1393
1394#define USE_ELF_CORE_DUMP
1395#define ELF_EXEC_PAGESIZE 4096
1396
1397#endif /* TARGET_XTENSA */
1398
15338fd7
FB
1399#ifndef ELF_PLATFORM
1400#define ELF_PLATFORM (NULL)
1401#endif
1402
75be901c
PC
1403#ifndef ELF_MACHINE
1404#define ELF_MACHINE ELF_ARCH
1405#endif
1406
d276a604
PC
1407#ifndef elf_check_arch
1408#define elf_check_arch(x) ((x) == ELF_ARCH)
1409#endif
1410
15338fd7
FB
1411#ifndef ELF_HWCAP
1412#define ELF_HWCAP 0
1413#endif
1414
7c4ee5bc
RH
1415#ifndef STACK_GROWS_DOWN
1416#define STACK_GROWS_DOWN 1
1417#endif
1418
1419#ifndef STACK_ALIGNMENT
1420#define STACK_ALIGNMENT 16
1421#endif
1422
992f48a0 1423#ifdef TARGET_ABI32
cb33da57 1424#undef ELF_CLASS
992f48a0 1425#define ELF_CLASS ELFCLASS32
cb33da57
BS
1426#undef bswaptls
1427#define bswaptls(ptr) bswap32s(ptr)
1428#endif
1429
31e31b8a 1430#include "elf.h"
09bfb054 1431
09bfb054
FB
1432struct exec
1433{
d97ef72e
RH
1434 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1435 unsigned int a_text; /* length of text, in bytes */
1436 unsigned int a_data; /* length of data, in bytes */
1437 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1438 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1439 unsigned int a_entry; /* start address */
1440 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1441 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1442};
1443
1444
1445#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1446#define OMAGIC 0407
1447#define NMAGIC 0410
1448#define ZMAGIC 0413
1449#define QMAGIC 0314
1450
31e31b8a 1451/* Necessary parameters */
94894ff2
SB
1452#define TARGET_ELF_EXEC_PAGESIZE \
1453 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1454 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1455#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
79cb1f1d
YK
1456#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1457 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1458#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1459
444cd5c3 1460#define DLINFO_ITEMS 15
31e31b8a 1461
09bfb054
FB
1462static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1463{
d97ef72e 1464 memcpy(to, from, n);
09bfb054 1465}
d691f669 1466
31e31b8a 1467#ifdef BSWAP_NEEDED
92a31b1f 1468static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1469{
d97ef72e
RH
1470 bswap16s(&ehdr->e_type); /* Object file type */
1471 bswap16s(&ehdr->e_machine); /* Architecture */
1472 bswap32s(&ehdr->e_version); /* Object file version */
1473 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1474 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1475 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1476 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1477 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1478 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1479 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1480 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1481 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1482 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1483}
1484
991f8f0c 1485static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1486{
991f8f0c
RH
1487 int i;
1488 for (i = 0; i < phnum; ++i, ++phdr) {
1489 bswap32s(&phdr->p_type); /* Segment type */
1490 bswap32s(&phdr->p_flags); /* Segment flags */
1491 bswaptls(&phdr->p_offset); /* Segment file offset */
1492 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1493 bswaptls(&phdr->p_paddr); /* Segment physical address */
1494 bswaptls(&phdr->p_filesz); /* Segment size in file */
1495 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1496 bswaptls(&phdr->p_align); /* Segment alignment */
1497 }
31e31b8a 1498}
689f936f 1499
991f8f0c 1500static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1501{
991f8f0c
RH
1502 int i;
1503 for (i = 0; i < shnum; ++i, ++shdr) {
1504 bswap32s(&shdr->sh_name);
1505 bswap32s(&shdr->sh_type);
1506 bswaptls(&shdr->sh_flags);
1507 bswaptls(&shdr->sh_addr);
1508 bswaptls(&shdr->sh_offset);
1509 bswaptls(&shdr->sh_size);
1510 bswap32s(&shdr->sh_link);
1511 bswap32s(&shdr->sh_info);
1512 bswaptls(&shdr->sh_addralign);
1513 bswaptls(&shdr->sh_entsize);
1514 }
689f936f
FB
1515}
1516
7a3148a9 1517static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1518{
1519 bswap32s(&sym->st_name);
7a3148a9
JM
1520 bswaptls(&sym->st_value);
1521 bswaptls(&sym->st_size);
689f936f
FB
1522 bswap16s(&sym->st_shndx);
1523}
991f8f0c
RH
1524#else
1525static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1526static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1527static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1528static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
1529#endif
1530
edf8e2af 1531#ifdef USE_ELF_CORE_DUMP
9349b4f9 1532static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1533#endif /* USE_ELF_CORE_DUMP */
682674b8 1534static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1535
9058abdd
RH
1536/* Verify the portions of EHDR within E_IDENT for the target.
1537 This can be performed before bswapping the entire header. */
1538static bool elf_check_ident(struct elfhdr *ehdr)
1539{
1540 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1541 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1542 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1543 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1544 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1545 && ehdr->e_ident[EI_DATA] == ELF_DATA
1546 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1547}
1548
1549/* Verify the portions of EHDR outside of E_IDENT for the target.
1550 This has to wait until after bswapping the header. */
1551static bool elf_check_ehdr(struct elfhdr *ehdr)
1552{
1553 return (elf_check_arch(ehdr->e_machine)
1554 && ehdr->e_ehsize == sizeof(struct elfhdr)
1555 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1556 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1557}
1558
31e31b8a 1559/*
e5fe0c52 1560 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1561 * memory to free pages in kernel mem. These are in a format ready
1562 * to be put directly into the top of new user memory.
1563 *
1564 */
59baae9a
SB
1565static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1566 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1567{
59baae9a 1568 char *tmp;
7c4ee5bc 1569 int len, i;
59baae9a 1570 abi_ulong top = p;
31e31b8a
FB
1571
1572 if (!p) {
d97ef72e 1573 return 0; /* bullet-proofing */
31e31b8a 1574 }
59baae9a 1575
7c4ee5bc
RH
1576 if (STACK_GROWS_DOWN) {
1577 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1578 for (i = argc - 1; i >= 0; --i) {
1579 tmp = argv[i];
1580 if (!tmp) {
1581 fprintf(stderr, "VFS: argc is wrong");
1582 exit(-1);
1583 }
1584 len = strlen(tmp) + 1;
1585 tmp += len;
59baae9a 1586
7c4ee5bc
RH
1587 if (len > (p - stack_limit)) {
1588 return 0;
1589 }
1590 while (len) {
1591 int bytes_to_copy = (len > offset) ? offset : len;
1592 tmp -= bytes_to_copy;
1593 p -= bytes_to_copy;
1594 offset -= bytes_to_copy;
1595 len -= bytes_to_copy;
1596
1597 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1598
1599 if (offset == 0) {
1600 memcpy_to_target(p, scratch, top - p);
1601 top = p;
1602 offset = TARGET_PAGE_SIZE;
1603 }
1604 }
d97ef72e 1605 }
7c4ee5bc
RH
1606 if (p != top) {
1607 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1608 }
7c4ee5bc
RH
1609 } else {
1610 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1611 for (i = 0; i < argc; ++i) {
1612 tmp = argv[i];
1613 if (!tmp) {
1614 fprintf(stderr, "VFS: argc is wrong");
1615 exit(-1);
1616 }
1617 len = strlen(tmp) + 1;
1618 if (len > (stack_limit - p)) {
1619 return 0;
1620 }
1621 while (len) {
1622 int bytes_to_copy = (len > remaining) ? remaining : len;
1623
1624 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1625
1626 tmp += bytes_to_copy;
1627 remaining -= bytes_to_copy;
1628 p += bytes_to_copy;
1629 len -= bytes_to_copy;
1630
1631 if (remaining == 0) {
1632 memcpy_to_target(top, scratch, p - top);
1633 top = p;
1634 remaining = TARGET_PAGE_SIZE;
1635 }
d97ef72e
RH
1636 }
1637 }
7c4ee5bc
RH
1638 if (p != top) {
1639 memcpy_to_target(top, scratch, p - top);
1640 }
59baae9a
SB
1641 }
1642
31e31b8a
FB
1643 return p;
1644}
1645
59baae9a
SB
1646/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1647 * argument/environment space. Newer kernels (>2.6.33) allow more,
1648 * dependent on stack size, but guarantee at least 32 pages for
1649 * backwards compatibility.
1650 */
1651#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1652
1653static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1654 struct image_info *info)
53a5960a 1655{
59baae9a 1656 abi_ulong size, error, guard;
31e31b8a 1657
703e0e89 1658 size = guest_stack_size;
59baae9a
SB
1659 if (size < STACK_LOWER_LIMIT) {
1660 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1661 }
1662 guard = TARGET_PAGE_SIZE;
1663 if (guard < qemu_real_host_page_size) {
1664 guard = qemu_real_host_page_size;
1665 }
1666
1667 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1668 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1669 if (error == -1) {
60dcbcb5 1670 perror("mmap stack");
09bfb054
FB
1671 exit(-1);
1672 }
31e31b8a 1673
60dcbcb5 1674 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1675 if (STACK_GROWS_DOWN) {
1676 target_mprotect(error, guard, PROT_NONE);
1677 info->stack_limit = error + guard;
1678 return info->stack_limit + size - sizeof(void *);
1679 } else {
1680 target_mprotect(error + size, guard, PROT_NONE);
1681 info->stack_limit = error + size;
1682 return error;
1683 }
31e31b8a
FB
1684}
1685
cf129f3a
RH
1686/* Map and zero the bss. We need to explicitly zero any fractional pages
1687 after the data section (i.e. bss). */
1688static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1689{
cf129f3a
RH
1690 uintptr_t host_start, host_map_start, host_end;
1691
1692 last_bss = TARGET_PAGE_ALIGN(last_bss);
1693
1694 /* ??? There is confusion between qemu_real_host_page_size and
1695 qemu_host_page_size here and elsewhere in target_mmap, which
1696 may lead to the end of the data section mapping from the file
1697 not being mapped. At least there was an explicit test and
1698 comment for that here, suggesting that "the file size must
1699 be known". The comment probably pre-dates the introduction
1700 of the fstat system call in target_mmap which does in fact
1701 find out the size. What isn't clear is if the workaround
1702 here is still actually needed. For now, continue with it,
1703 but merge it with the "normal" mmap that would allocate the bss. */
1704
1705 host_start = (uintptr_t) g2h(elf_bss);
1706 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1707 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1708
1709 if (host_map_start < host_end) {
1710 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1711 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1712 if (p == MAP_FAILED) {
1713 perror("cannot mmap brk");
1714 exit(-1);
853d6f7a 1715 }
f46e9a0b 1716 }
853d6f7a 1717
f46e9a0b
TM
1718 /* Ensure that the bss page(s) are valid */
1719 if ((page_get_flags(last_bss-1) & prot) != prot) {
1720 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1721 }
31e31b8a 1722
cf129f3a
RH
1723 if (host_start < host_map_start) {
1724 memset((void *)host_start, 0, host_map_start - host_start);
1725 }
1726}
53a5960a 1727
cf58affe
CL
1728#ifdef TARGET_ARM
1729static int elf_is_fdpic(struct elfhdr *exec)
1730{
1731 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1732}
1733#else
a99856cd
CL
1734/* Default implementation, always false. */
1735static int elf_is_fdpic(struct elfhdr *exec)
1736{
1737 return 0;
1738}
cf58affe 1739#endif
a99856cd 1740
1af02e83
MF
1741static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1742{
1743 uint16_t n;
1744 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1745
1746 /* elf32_fdpic_loadseg */
1747 n = info->nsegs;
1748 while (n--) {
1749 sp -= 12;
1750 put_user_u32(loadsegs[n].addr, sp+0);
1751 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1752 put_user_u32(loadsegs[n].p_memsz, sp+8);
1753 }
1754
1755 /* elf32_fdpic_loadmap */
1756 sp -= 4;
1757 put_user_u16(0, sp+0); /* version */
1758 put_user_u16(info->nsegs, sp+2); /* nsegs */
1759
1760 info->personality = PER_LINUX_FDPIC;
1761 info->loadmap_addr = sp;
1762
1763 return sp;
1764}
1af02e83 1765
992f48a0 1766static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1767 struct elfhdr *exec,
1768 struct image_info *info,
1769 struct image_info *interp_info)
31e31b8a 1770{
d97ef72e 1771 abi_ulong sp;
7c4ee5bc 1772 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1773 int size;
14322bad
LA
1774 int i;
1775 abi_ulong u_rand_bytes;
1776 uint8_t k_rand_bytes[16];
d97ef72e
RH
1777 abi_ulong u_platform;
1778 const char *k_platform;
1779 const int n = sizeof(elf_addr_t);
1780
1781 sp = p;
1af02e83 1782
1af02e83
MF
1783 /* Needs to be before we load the env/argc/... */
1784 if (elf_is_fdpic(exec)) {
1785 /* Need 4 byte alignment for these structs */
1786 sp &= ~3;
1787 sp = loader_build_fdpic_loadmap(info, sp);
1788 info->other_info = interp_info;
1789 if (interp_info) {
1790 interp_info->other_info = info;
1791 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
1792 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1793 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1794 } else {
1795 info->interpreter_loadmap_addr = 0;
1796 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
1797 }
1798 }
1af02e83 1799
d97ef72e
RH
1800 u_platform = 0;
1801 k_platform = ELF_PLATFORM;
1802 if (k_platform) {
1803 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1804 if (STACK_GROWS_DOWN) {
1805 sp -= (len + n - 1) & ~(n - 1);
1806 u_platform = sp;
1807 /* FIXME - check return value of memcpy_to_target() for failure */
1808 memcpy_to_target(sp, k_platform, len);
1809 } else {
1810 memcpy_to_target(sp, k_platform, len);
1811 u_platform = sp;
1812 sp += len + 1;
1813 }
1814 }
1815
1816 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1817 * the argv and envp pointers.
1818 */
1819 if (STACK_GROWS_DOWN) {
1820 sp = QEMU_ALIGN_DOWN(sp, 16);
1821 } else {
1822 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1823 }
14322bad
LA
1824
1825 /*
1826 * Generate 16 random bytes for userspace PRNG seeding (not
1827 * cryptically secure but it's not the aim of QEMU).
1828 */
14322bad
LA
1829 for (i = 0; i < 16; i++) {
1830 k_rand_bytes[i] = rand();
1831 }
7c4ee5bc
RH
1832 if (STACK_GROWS_DOWN) {
1833 sp -= 16;
1834 u_rand_bytes = sp;
1835 /* FIXME - check return value of memcpy_to_target() for failure */
1836 memcpy_to_target(sp, k_rand_bytes, 16);
1837 } else {
1838 memcpy_to_target(sp, k_rand_bytes, 16);
1839 u_rand_bytes = sp;
1840 sp += 16;
1841 }
14322bad 1842
d97ef72e
RH
1843 size = (DLINFO_ITEMS + 1) * 2;
1844 if (k_platform)
1845 size += 2;
f5155289 1846#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1847 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1848#endif
1849#ifdef ELF_HWCAP2
1850 size += 2;
f5155289 1851#endif
f516511e
PM
1852 info->auxv_len = size * n;
1853
d97ef72e 1854 size += envc + argc + 2;
b9329d4b 1855 size += 1; /* argc itself */
d97ef72e 1856 size *= n;
7c4ee5bc
RH
1857
1858 /* Allocate space and finalize stack alignment for entry now. */
1859 if (STACK_GROWS_DOWN) {
1860 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1861 sp = u_argc;
1862 } else {
1863 u_argc = sp;
1864 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1865 }
1866
1867 u_argv = u_argc + n;
1868 u_envp = u_argv + (argc + 1) * n;
1869 u_auxv = u_envp + (envc + 1) * n;
1870 info->saved_auxv = u_auxv;
1871 info->arg_start = u_argv;
1872 info->arg_end = u_argv + argc * n;
d97ef72e
RH
1873
1874 /* This is correct because Linux defines
1875 * elf_addr_t as Elf32_Off / Elf64_Off
1876 */
1877#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
1878 put_user_ual(id, u_auxv); u_auxv += n; \
1879 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
1880 } while(0)
1881
82991bed
PM
1882#ifdef ARCH_DLINFO
1883 /*
1884 * ARCH_DLINFO must come first so platform specific code can enforce
1885 * special alignment requirements on the AUXV if necessary (eg. PPC).
1886 */
1887 ARCH_DLINFO;
1888#endif
f516511e
PM
1889 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1890 * on info->auxv_len will trigger.
1891 */
8e62a717 1892 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1893 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1894 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
1895 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1896 /* Target doesn't support host page size alignment */
1897 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1898 } else {
1899 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1900 qemu_host_page_size)));
1901 }
8e62a717 1902 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1903 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1904 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1905 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1906 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1907 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1908 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1909 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1910 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 1911 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 1912 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
14322bad 1913
ad6919dc
PM
1914#ifdef ELF_HWCAP2
1915 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1916#endif
1917
7c4ee5bc 1918 if (u_platform) {
d97ef72e 1919 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 1920 }
7c4ee5bc 1921 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
1922#undef NEW_AUX_ENT
1923
f516511e
PM
1924 /* Check that our initial calculation of the auxv length matches how much
1925 * we actually put into it.
1926 */
1927 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
1928
1929 put_user_ual(argc, u_argc);
1930
1931 p = info->arg_strings;
1932 for (i = 0; i < argc; ++i) {
1933 put_user_ual(p, u_argv);
1934 u_argv += n;
1935 p += target_strlen(p) + 1;
1936 }
1937 put_user_ual(0, u_argv);
1938
1939 p = info->env_strings;
1940 for (i = 0; i < envc; ++i) {
1941 put_user_ual(p, u_envp);
1942 u_envp += n;
1943 p += target_strlen(p) + 1;
1944 }
1945 put_user_ual(0, u_envp);
edf8e2af 1946
d97ef72e 1947 return sp;
31e31b8a
FB
1948}
1949
dce10401
MI
1950unsigned long init_guest_space(unsigned long host_start,
1951 unsigned long host_size,
1952 unsigned long guest_start,
1953 bool fixed)
1954{
293f2060 1955 unsigned long current_start, aligned_start;
dce10401
MI
1956 int flags;
1957
1958 assert(host_start || host_size);
1959
1960 /* If just a starting address is given, then just verify that
1961 * address. */
1962 if (host_start && !host_size) {
8756e136 1963#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
c3637eaf 1964 if (init_guest_commpage(host_start, host_size) != 1) {
dce10401
MI
1965 return (unsigned long)-1;
1966 }
8756e136
LS
1967#endif
1968 return host_start;
dce10401
MI
1969 }
1970
1971 /* Setup the initial flags and start address. */
1972 current_start = host_start & qemu_host_page_mask;
1973 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1974 if (fixed) {
1975 flags |= MAP_FIXED;
1976 }
1977
1978 /* Otherwise, a non-zero size region of memory needs to be mapped
1979 * and validated. */
2a53535a
LS
1980
1981#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1982 /* On 32-bit ARM, we need to map not just the usable memory, but
1983 * also the commpage. Try to find a suitable place by allocating
1984 * a big chunk for all of it. If host_start, then the naive
1985 * strategy probably does good enough.
1986 */
1987 if (!host_start) {
1988 unsigned long guest_full_size, host_full_size, real_start;
1989
1990 guest_full_size =
1991 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
1992 host_full_size = guest_full_size - guest_start;
1993 real_start = (unsigned long)
1994 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
1995 if (real_start == (unsigned long)-1) {
1996 if (host_size < host_full_size - qemu_host_page_size) {
1997 /* We failed to map a continous segment, but we're
1998 * allowed to have a gap between the usable memory and
1999 * the commpage where other things can be mapped.
2000 * This sparseness gives us more flexibility to find
2001 * an address range.
2002 */
2003 goto naive;
2004 }
2005 return (unsigned long)-1;
2006 }
2007 munmap((void *)real_start, host_full_size);
2008 if (real_start & ~qemu_host_page_mask) {
2009 /* The same thing again, but with an extra qemu_host_page_size
2010 * so that we can shift around alignment.
2011 */
2012 unsigned long real_size = host_full_size + qemu_host_page_size;
2013 real_start = (unsigned long)
2014 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2015 if (real_start == (unsigned long)-1) {
2016 if (host_size < host_full_size - qemu_host_page_size) {
2017 goto naive;
2018 }
2019 return (unsigned long)-1;
2020 }
2021 munmap((void *)real_start, real_size);
2022 real_start = HOST_PAGE_ALIGN(real_start);
2023 }
2024 current_start = real_start;
2025 }
2026 naive:
2027#endif
2028
dce10401 2029 while (1) {
293f2060
LS
2030 unsigned long real_start, real_size, aligned_size;
2031 aligned_size = real_size = host_size;
806d1021 2032
dce10401
MI
2033 /* Do not use mmap_find_vma here because that is limited to the
2034 * guest address space. We are going to make the
2035 * guest address space fit whatever we're given.
2036 */
2037 real_start = (unsigned long)
2038 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2039 if (real_start == (unsigned long)-1) {
2040 return (unsigned long)-1;
2041 }
2042
aac362e4
LS
2043 /* Check to see if the address is valid. */
2044 if (host_start && real_start != current_start) {
2045 goto try_again;
2046 }
2047
806d1021
MI
2048 /* Ensure the address is properly aligned. */
2049 if (real_start & ~qemu_host_page_mask) {
293f2060
LS
2050 /* Ideally, we adjust like
2051 *
2052 * pages: [ ][ ][ ][ ][ ]
2053 * old: [ real ]
2054 * [ aligned ]
2055 * new: [ real ]
2056 * [ aligned ]
2057 *
2058 * But if there is something else mapped right after it,
2059 * then obviously it won't have room to grow, and the
2060 * kernel will put the new larger real someplace else with
2061 * unknown alignment (if we made it to here, then
2062 * fixed=false). Which is why we grow real by a full page
2063 * size, instead of by part of one; so that even if we get
2064 * moved, we can still guarantee alignment. But this does
2065 * mean that there is a padding of < 1 page both before
2066 * and after the aligned range; the "after" could could
2067 * cause problems for ARM emulation where it could butt in
2068 * to where we need to put the commpage.
2069 */
806d1021 2070 munmap((void *)real_start, host_size);
293f2060 2071 real_size = aligned_size + qemu_host_page_size;
806d1021
MI
2072 real_start = (unsigned long)
2073 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2074 if (real_start == (unsigned long)-1) {
2075 return (unsigned long)-1;
2076 }
293f2060
LS
2077 aligned_start = HOST_PAGE_ALIGN(real_start);
2078 } else {
2079 aligned_start = real_start;
806d1021
MI
2080 }
2081
8756e136 2082#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
7ad75eea
LS
2083 /* On 32-bit ARM, we need to also be able to map the commpage. */
2084 int valid = init_guest_commpage(aligned_start - guest_start,
2085 aligned_size + guest_start);
2086 if (valid == -1) {
2087 munmap((void *)real_start, real_size);
2088 return (unsigned long)-1;
2089 } else if (valid == 0) {
2090 goto try_again;
dce10401 2091 }
7ad75eea
LS
2092#endif
2093
2094 /* If nothing has said `return -1` or `goto try_again` yet,
2095 * then the address we have is good.
2096 */
2097 break;
dce10401 2098
7ad75eea 2099 try_again:
dce10401
MI
2100 /* That address didn't work. Unmap and try a different one.
2101 * The address the host picked because is typically right at
2102 * the top of the host address space and leaves the guest with
2103 * no usable address space. Resort to a linear search. We
2104 * already compensated for mmap_min_addr, so this should not
2105 * happen often. Probably means we got unlucky and host
2106 * address space randomization put a shared library somewhere
2107 * inconvenient.
8c17d862
LS
2108 *
2109 * This is probably a good strategy if host_start, but is
2110 * probably a bad strategy if not, which means we got here
2111 * because of trouble with ARM commpage setup.
dce10401 2112 */
293f2060 2113 munmap((void *)real_start, real_size);
dce10401
MI
2114 current_start += qemu_host_page_size;
2115 if (host_start == current_start) {
2116 /* Theoretically possible if host doesn't have any suitably
2117 * aligned areas. Normally the first mmap will fail.
2118 */
2119 return (unsigned long)-1;
2120 }
2121 }
2122
13829020 2123 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
806d1021 2124
293f2060 2125 return aligned_start;
dce10401
MI
2126}
2127
f3ed1f5d
PM
2128static void probe_guest_base(const char *image_name,
2129 abi_ulong loaddr, abi_ulong hiaddr)
2130{
2131 /* Probe for a suitable guest base address, if the user has not set
2132 * it explicitly, and set guest_base appropriately.
2133 * In case of error we will print a suitable message and exit.
2134 */
f3ed1f5d
PM
2135 const char *errmsg;
2136 if (!have_guest_base && !reserved_va) {
2137 unsigned long host_start, real_start, host_size;
2138
2139 /* Round addresses to page boundaries. */
2140 loaddr &= qemu_host_page_mask;
2141 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2142
2143 if (loaddr < mmap_min_addr) {
2144 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2145 } else {
2146 host_start = loaddr;
2147 if (host_start != loaddr) {
2148 errmsg = "Address overflow loading ELF binary";
2149 goto exit_errmsg;
2150 }
2151 }
2152 host_size = hiaddr - loaddr;
dce10401
MI
2153
2154 /* Setup the initial guest memory space with ranges gleaned from
2155 * the ELF image that is being loaded.
2156 */
2157 real_start = init_guest_space(host_start, host_size, loaddr, false);
2158 if (real_start == (unsigned long)-1) {
2159 errmsg = "Unable to find space for application";
2160 goto exit_errmsg;
f3ed1f5d 2161 }
dce10401
MI
2162 guest_base = real_start - loaddr;
2163
13829020
PB
2164 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2165 TARGET_ABI_FMT_lx " to 0x%lx\n",
2166 loaddr, real_start);
f3ed1f5d
PM
2167 }
2168 return;
2169
f3ed1f5d
PM
2170exit_errmsg:
2171 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2172 exit(-1);
f3ed1f5d
PM
2173}
2174
2175
8e62a717 2176/* Load an ELF image into the address space.
31e31b8a 2177
8e62a717
RH
2178 IMAGE_NAME is the filename of the image, to use in error messages.
2179 IMAGE_FD is the open file descriptor for the image.
2180
2181 BPRM_BUF is a copy of the beginning of the file; this of course
2182 contains the elf file header at offset 0. It is assumed that this
2183 buffer is sufficiently aligned to present no problems to the host
2184 in accessing data at aligned offsets within the buffer.
2185
2186 On return: INFO values will be filled in, as necessary or available. */
2187
2188static void load_elf_image(const char *image_name, int image_fd,
bf858897 2189 struct image_info *info, char **pinterp_name,
8e62a717 2190 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2191{
8e62a717
RH
2192 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2193 struct elf_phdr *phdr;
2194 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2195 int i, retval;
2196 const char *errmsg;
5fafdf24 2197
8e62a717
RH
2198 /* First of all, some simple consistency checks */
2199 errmsg = "Invalid ELF image for this architecture";
2200 if (!elf_check_ident(ehdr)) {
2201 goto exit_errmsg;
2202 }
2203 bswap_ehdr(ehdr);
2204 if (!elf_check_ehdr(ehdr)) {
2205 goto exit_errmsg;
d97ef72e 2206 }
5fafdf24 2207
8e62a717
RH
2208 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2209 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2210 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2211 } else {
8e62a717
RH
2212 phdr = (struct elf_phdr *) alloca(i);
2213 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2214 if (retval != i) {
8e62a717 2215 goto exit_read;
9955ffac 2216 }
d97ef72e 2217 }
8e62a717 2218 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2219
1af02e83
MF
2220 info->nsegs = 0;
2221 info->pt_dynamic_addr = 0;
1af02e83 2222
98c1076c
AB
2223 mmap_lock();
2224
682674b8
RH
2225 /* Find the maximum size of the image and allocate an appropriate
2226 amount of memory to handle that. */
2227 loaddr = -1, hiaddr = 0;
33143c44 2228 info->alignment = 0;
8e62a717
RH
2229 for (i = 0; i < ehdr->e_phnum; ++i) {
2230 if (phdr[i].p_type == PT_LOAD) {
a93934fe 2231 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
2232 if (a < loaddr) {
2233 loaddr = a;
2234 }
ccf661f8 2235 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
2236 if (a > hiaddr) {
2237 hiaddr = a;
2238 }
1af02e83 2239 ++info->nsegs;
33143c44 2240 info->alignment |= phdr[i].p_align;
682674b8
RH
2241 }
2242 }
2243
2244 load_addr = loaddr;
8e62a717 2245 if (ehdr->e_type == ET_DYN) {
682674b8
RH
2246 /* The image indicates that it can be loaded anywhere. Find a
2247 location that can hold the memory space required. If the
2248 image is pre-linked, LOADDR will be non-zero. Since we do
2249 not supply MAP_FIXED here we'll use that address if and
2250 only if it remains available. */
2251 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2252 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2253 -1, 0);
2254 if (load_addr == -1) {
8e62a717 2255 goto exit_perror;
d97ef72e 2256 }
bf858897
RH
2257 } else if (pinterp_name != NULL) {
2258 /* This is the main executable. Make sure that the low
2259 address does not conflict with MMAP_MIN_ADDR or the
2260 QEMU application itself. */
f3ed1f5d 2261 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 2262 }
682674b8 2263 load_bias = load_addr - loaddr;
d97ef72e 2264
a99856cd 2265 if (elf_is_fdpic(ehdr)) {
1af02e83 2266 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2267 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2268
2269 for (i = 0; i < ehdr->e_phnum; ++i) {
2270 switch (phdr[i].p_type) {
2271 case PT_DYNAMIC:
2272 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2273 break;
2274 case PT_LOAD:
2275 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2276 loadsegs->p_vaddr = phdr[i].p_vaddr;
2277 loadsegs->p_memsz = phdr[i].p_memsz;
2278 ++loadsegs;
2279 break;
2280 }
2281 }
2282 }
1af02e83 2283
8e62a717
RH
2284 info->load_bias = load_bias;
2285 info->load_addr = load_addr;
2286 info->entry = ehdr->e_entry + load_bias;
2287 info->start_code = -1;
2288 info->end_code = 0;
2289 info->start_data = -1;
2290 info->end_data = 0;
2291 info->brk = 0;
d8fd2954 2292 info->elf_flags = ehdr->e_flags;
8e62a717
RH
2293
2294 for (i = 0; i < ehdr->e_phnum; i++) {
2295 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2296 if (eppnt->p_type == PT_LOAD) {
94894ff2 2297 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
d97ef72e 2298 int elf_prot = 0;
d97ef72e
RH
2299
2300 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2301 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2302 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 2303
682674b8
RH
2304 vaddr = load_bias + eppnt->p_vaddr;
2305 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2306 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
94894ff2 2307 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
682674b8 2308
94894ff2 2309 error = target_mmap(vaddr_ps, vaddr_len,
682674b8 2310 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 2311 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 2312 if (error == -1) {
8e62a717 2313 goto exit_perror;
09bfb054 2314 }
09bfb054 2315
682674b8
RH
2316 vaddr_ef = vaddr + eppnt->p_filesz;
2317 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 2318
cf129f3a 2319 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
2320 if (vaddr_ef < vaddr_em) {
2321 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 2322 }
8e62a717
RH
2323
2324 /* Find the full program boundaries. */
2325 if (elf_prot & PROT_EXEC) {
2326 if (vaddr < info->start_code) {
2327 info->start_code = vaddr;
2328 }
2329 if (vaddr_ef > info->end_code) {
2330 info->end_code = vaddr_ef;
2331 }
2332 }
2333 if (elf_prot & PROT_WRITE) {
2334 if (vaddr < info->start_data) {
2335 info->start_data = vaddr;
2336 }
2337 if (vaddr_ef > info->end_data) {
2338 info->end_data = vaddr_ef;
2339 }
2340 if (vaddr_em > info->brk) {
2341 info->brk = vaddr_em;
2342 }
2343 }
bf858897
RH
2344 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2345 char *interp_name;
2346
2347 if (*pinterp_name) {
2348 errmsg = "Multiple PT_INTERP entries";
2349 goto exit_errmsg;
2350 }
2351 interp_name = malloc(eppnt->p_filesz);
2352 if (!interp_name) {
2353 goto exit_perror;
2354 }
2355
2356 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2357 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2358 eppnt->p_filesz);
2359 } else {
2360 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2361 eppnt->p_offset);
2362 if (retval != eppnt->p_filesz) {
2363 goto exit_perror;
2364 }
2365 }
2366 if (interp_name[eppnt->p_filesz - 1] != 0) {
2367 errmsg = "Invalid PT_INTERP entry";
2368 goto exit_errmsg;
2369 }
2370 *pinterp_name = interp_name;
d97ef72e 2371 }
682674b8 2372 }
5fafdf24 2373
8e62a717
RH
2374 if (info->end_data == 0) {
2375 info->start_data = info->end_code;
2376 info->end_data = info->end_code;
2377 info->brk = info->end_code;
2378 }
2379
682674b8 2380 if (qemu_log_enabled()) {
8e62a717 2381 load_symbols(ehdr, image_fd, load_bias);
682674b8 2382 }
31e31b8a 2383
98c1076c
AB
2384 mmap_unlock();
2385
8e62a717
RH
2386 close(image_fd);
2387 return;
2388
2389 exit_read:
2390 if (retval >= 0) {
2391 errmsg = "Incomplete read of file header";
2392 goto exit_errmsg;
2393 }
2394 exit_perror:
2395 errmsg = strerror(errno);
2396 exit_errmsg:
2397 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2398 exit(-1);
2399}
2400
2401static void load_elf_interp(const char *filename, struct image_info *info,
2402 char bprm_buf[BPRM_BUF_SIZE])
2403{
2404 int fd, retval;
2405
2406 fd = open(path(filename), O_RDONLY);
2407 if (fd < 0) {
2408 goto exit_perror;
2409 }
31e31b8a 2410
8e62a717
RH
2411 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2412 if (retval < 0) {
2413 goto exit_perror;
2414 }
2415 if (retval < BPRM_BUF_SIZE) {
2416 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2417 }
2418
bf858897 2419 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2420 return;
2421
2422 exit_perror:
2423 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2424 exit(-1);
31e31b8a
FB
2425}
2426
49918a75
PB
2427static int symfind(const void *s0, const void *s1)
2428{
c7c530cd 2429 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2430 struct elf_sym *sym = (struct elf_sym *)s1;
2431 int result = 0;
c7c530cd 2432 if (addr < sym->st_value) {
49918a75 2433 result = -1;
c7c530cd 2434 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2435 result = 1;
2436 }
2437 return result;
2438}
2439
2440static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2441{
2442#if ELF_CLASS == ELFCLASS32
2443 struct elf_sym *syms = s->disas_symtab.elf32;
2444#else
2445 struct elf_sym *syms = s->disas_symtab.elf64;
2446#endif
2447
2448 // binary search
49918a75
PB
2449 struct elf_sym *sym;
2450
c7c530cd 2451 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2452 if (sym != NULL) {
49918a75
PB
2453 return s->disas_strtab + sym->st_name;
2454 }
2455
2456 return "";
2457}
2458
2459/* FIXME: This should use elf_ops.h */
2460static int symcmp(const void *s0, const void *s1)
2461{
2462 struct elf_sym *sym0 = (struct elf_sym *)s0;
2463 struct elf_sym *sym1 = (struct elf_sym *)s1;
2464 return (sym0->st_value < sym1->st_value)
2465 ? -1
2466 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2467}
2468
689f936f 2469/* Best attempt to load symbols from this ELF object. */
682674b8 2470static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2471{
682674b8 2472 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 2473 uint64_t segsz;
682674b8 2474 struct elf_shdr *shdr;
b9475279
CV
2475 char *strings = NULL;
2476 struct syminfo *s = NULL;
2477 struct elf_sym *new_syms, *syms = NULL;
689f936f 2478
682674b8
RH
2479 shnum = hdr->e_shnum;
2480 i = shnum * sizeof(struct elf_shdr);
2481 shdr = (struct elf_shdr *)alloca(i);
2482 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2483 return;
2484 }
2485
2486 bswap_shdr(shdr, shnum);
2487 for (i = 0; i < shnum; ++i) {
2488 if (shdr[i].sh_type == SHT_SYMTAB) {
2489 sym_idx = i;
2490 str_idx = shdr[i].sh_link;
49918a75
PB
2491 goto found;
2492 }
689f936f 2493 }
682674b8
RH
2494
2495 /* There will be no symbol table if the file was stripped. */
2496 return;
689f936f
FB
2497
2498 found:
682674b8 2499 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 2500 s = g_try_new(struct syminfo, 1);
682674b8 2501 if (!s) {
b9475279 2502 goto give_up;
682674b8 2503 }
5fafdf24 2504
1e06262d
PM
2505 segsz = shdr[str_idx].sh_size;
2506 s->disas_strtab = strings = g_try_malloc(segsz);
2507 if (!strings ||
2508 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 2509 goto give_up;
682674b8 2510 }
49918a75 2511
1e06262d
PM
2512 segsz = shdr[sym_idx].sh_size;
2513 syms = g_try_malloc(segsz);
2514 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 2515 goto give_up;
682674b8 2516 }
31e31b8a 2517
1e06262d
PM
2518 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2519 /* Implausibly large symbol table: give up rather than ploughing
2520 * on with the number of symbols calculation overflowing
2521 */
2522 goto give_up;
2523 }
2524 nsyms = segsz / sizeof(struct elf_sym);
682674b8 2525 for (i = 0; i < nsyms; ) {
49918a75 2526 bswap_sym(syms + i);
682674b8
RH
2527 /* Throw away entries which we do not need. */
2528 if (syms[i].st_shndx == SHN_UNDEF
2529 || syms[i].st_shndx >= SHN_LORESERVE
2530 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2531 if (i < --nsyms) {
49918a75
PB
2532 syms[i] = syms[nsyms];
2533 }
682674b8 2534 } else {
49918a75 2535#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2536 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2537 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2538#endif
682674b8
RH
2539 syms[i].st_value += load_bias;
2540 i++;
2541 }
0774bed1 2542 }
49918a75 2543
b9475279
CV
2544 /* No "useful" symbol. */
2545 if (nsyms == 0) {
2546 goto give_up;
2547 }
2548
5d5c9930
RH
2549 /* Attempt to free the storage associated with the local symbols
2550 that we threw away. Whether or not this has any effect on the
2551 memory allocation depends on the malloc implementation and how
2552 many symbols we managed to discard. */
0ef9ea29 2553 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 2554 if (new_syms == NULL) {
b9475279 2555 goto give_up;
5d5c9930 2556 }
8d79de6e 2557 syms = new_syms;
5d5c9930 2558
49918a75 2559 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2560
49918a75
PB
2561 s->disas_num_syms = nsyms;
2562#if ELF_CLASS == ELFCLASS32
2563 s->disas_symtab.elf32 = syms;
49918a75
PB
2564#else
2565 s->disas_symtab.elf64 = syms;
49918a75 2566#endif
682674b8 2567 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2568 s->next = syminfos;
2569 syminfos = s;
b9475279
CV
2570
2571 return;
2572
2573give_up:
0ef9ea29
PM
2574 g_free(s);
2575 g_free(strings);
2576 g_free(syms);
689f936f 2577}
31e31b8a 2578
768fe76e
YS
2579uint32_t get_elf_eflags(int fd)
2580{
2581 struct elfhdr ehdr;
2582 off_t offset;
2583 int ret;
2584
2585 /* Read ELF header */
2586 offset = lseek(fd, 0, SEEK_SET);
2587 if (offset == (off_t) -1) {
2588 return 0;
2589 }
2590 ret = read(fd, &ehdr, sizeof(ehdr));
2591 if (ret < sizeof(ehdr)) {
2592 return 0;
2593 }
2594 offset = lseek(fd, offset, SEEK_SET);
2595 if (offset == (off_t) -1) {
2596 return 0;
2597 }
2598
2599 /* Check ELF signature */
2600 if (!elf_check_ident(&ehdr)) {
2601 return 0;
2602 }
2603
2604 /* check header */
2605 bswap_ehdr(&ehdr);
2606 if (!elf_check_ehdr(&ehdr)) {
2607 return 0;
2608 }
2609
2610 /* return architecture id */
2611 return ehdr.e_flags;
2612}
2613
f0116c54 2614int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2615{
8e62a717 2616 struct image_info interp_info;
31e31b8a 2617 struct elfhdr elf_ex;
8e62a717 2618 char *elf_interpreter = NULL;
59baae9a 2619 char *scratch;
31e31b8a 2620
bf858897 2621 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2622
2623 load_elf_image(bprm->filename, bprm->fd, info,
2624 &elf_interpreter, bprm->buf);
31e31b8a 2625
bf858897
RH
2626 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2627 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2628 when we load the interpreter. */
2629 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2630
59baae9a
SB
2631 /* Do this so that we can load the interpreter, if need be. We will
2632 change some of these later */
2633 bprm->p = setup_arg_pages(bprm, info);
2634
2635 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
2636 if (STACK_GROWS_DOWN) {
2637 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2638 bprm->p, info->stack_limit);
2639 info->file_string = bprm->p;
2640 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2641 bprm->p, info->stack_limit);
2642 info->env_strings = bprm->p;
2643 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2644 bprm->p, info->stack_limit);
2645 info->arg_strings = bprm->p;
2646 } else {
2647 info->arg_strings = bprm->p;
2648 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2649 bprm->p, info->stack_limit);
2650 info->env_strings = bprm->p;
2651 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2652 bprm->p, info->stack_limit);
2653 info->file_string = bprm->p;
2654 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2655 bprm->p, info->stack_limit);
2656 }
2657
59baae9a
SB
2658 g_free(scratch);
2659
e5fe0c52 2660 if (!bprm->p) {
bf858897
RH
2661 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2662 exit(-1);
379f6698 2663 }
379f6698 2664
8e62a717
RH
2665 if (elf_interpreter) {
2666 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2667
8e62a717
RH
2668 /* If the program interpreter is one of these two, then assume
2669 an iBCS2 image. Otherwise assume a native linux image. */
2670
2671 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2672 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2673 info->personality = PER_SVR4;
31e31b8a 2674
8e62a717
RH
2675 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2676 and some applications "depend" upon this behavior. Since
2677 we do not have the power to recompile these, we emulate
2678 the SVr4 behavior. Sigh. */
2679 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 2680 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 2681 }
31e31b8a
FB
2682 }
2683
8e62a717
RH
2684 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2685 info, (elf_interpreter ? &interp_info : NULL));
2686 info->start_stack = bprm->p;
2687
2688 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2689 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2690 point as a function descriptor. Do this after creating elf tables
2691 so that we copy the original program entry point into the AUXV. */
2692 if (elf_interpreter) {
8e78064e 2693 info->load_bias = interp_info.load_bias;
8e62a717 2694 info->entry = interp_info.entry;
bf858897 2695 free(elf_interpreter);
8e62a717 2696 }
31e31b8a 2697
edf8e2af
MW
2698#ifdef USE_ELF_CORE_DUMP
2699 bprm->core_dump = &elf_core_dump;
2700#endif
2701
31e31b8a
FB
2702 return 0;
2703}
2704
edf8e2af 2705#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2706/*
2707 * Definitions to generate Intel SVR4-like core files.
a2547a13 2708 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2709 * tacked on the front to prevent clashes with linux definitions,
2710 * and the typedef forms have been avoided. This is mostly like
2711 * the SVR4 structure, but more Linuxy, with things that Linux does
2712 * not support and which gdb doesn't really use excluded.
2713 *
2714 * Fields we don't dump (their contents is zero) in linux-user qemu
2715 * are marked with XXX.
2716 *
2717 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2718 *
2719 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2720 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2721 * the target resides):
2722 *
2723 * #define USE_ELF_CORE_DUMP
2724 *
2725 * Next you define type of register set used for dumping. ELF specification
2726 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2727 *
c227f099 2728 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2729 * #define ELF_NREG <number of registers>
c227f099 2730 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2731 *
edf8e2af
MW
2732 * Last step is to implement target specific function that copies registers
2733 * from given cpu into just specified register set. Prototype is:
2734 *
c227f099 2735 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2736 * const CPUArchState *env);
edf8e2af
MW
2737 *
2738 * Parameters:
2739 * regs - copy register values into here (allocated and zeroed by caller)
2740 * env - copy registers from here
2741 *
2742 * Example for ARM target is provided in this file.
2743 */
2744
2745/* An ELF note in memory */
2746struct memelfnote {
2747 const char *name;
2748 size_t namesz;
2749 size_t namesz_rounded;
2750 int type;
2751 size_t datasz;
80f5ce75 2752 size_t datasz_rounded;
edf8e2af
MW
2753 void *data;
2754 size_t notesz;
2755};
2756
a2547a13 2757struct target_elf_siginfo {
f8fd4fc4
PB
2758 abi_int si_signo; /* signal number */
2759 abi_int si_code; /* extra code */
2760 abi_int si_errno; /* errno */
edf8e2af
MW
2761};
2762
a2547a13
LD
2763struct target_elf_prstatus {
2764 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2765 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2766 abi_ulong pr_sigpend; /* XXX */
2767 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2768 target_pid_t pr_pid;
2769 target_pid_t pr_ppid;
2770 target_pid_t pr_pgrp;
2771 target_pid_t pr_sid;
edf8e2af
MW
2772 struct target_timeval pr_utime; /* XXX User time */
2773 struct target_timeval pr_stime; /* XXX System time */
2774 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2775 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2776 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2777 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2778};
2779
2780#define ELF_PRARGSZ (80) /* Number of chars for args */
2781
a2547a13 2782struct target_elf_prpsinfo {
edf8e2af
MW
2783 char pr_state; /* numeric process state */
2784 char pr_sname; /* char for pr_state */
2785 char pr_zomb; /* zombie */
2786 char pr_nice; /* nice val */
ca98ac83 2787 abi_ulong pr_flag; /* flags */
c227f099
AL
2788 target_uid_t pr_uid;
2789 target_gid_t pr_gid;
2790 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2791 /* Lots missing */
2792 char pr_fname[16]; /* filename of executable */
2793 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2794};
2795
2796/* Here is the structure in which status of each thread is captured. */
2797struct elf_thread_status {
72cf2d4f 2798 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2799 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2800#if 0
2801 elf_fpregset_t fpu; /* NT_PRFPREG */
2802 struct task_struct *thread;
2803 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2804#endif
2805 struct memelfnote notes[1];
2806 int num_notes;
2807};
2808
2809struct elf_note_info {
2810 struct memelfnote *notes;
a2547a13
LD
2811 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2812 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2813
72cf2d4f 2814 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2815#if 0
2816 /*
2817 * Current version of ELF coredump doesn't support
2818 * dumping fp regs etc.
2819 */
2820 elf_fpregset_t *fpu;
2821 elf_fpxregset_t *xfpu;
2822 int thread_status_size;
2823#endif
2824 int notes_size;
2825 int numnote;
2826};
2827
2828struct vm_area_struct {
1a1c4db9
MI
2829 target_ulong vma_start; /* start vaddr of memory region */
2830 target_ulong vma_end; /* end vaddr of memory region */
2831 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2832 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2833};
2834
2835struct mm_struct {
72cf2d4f 2836 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2837 int mm_count; /* number of mappings */
2838};
2839
2840static struct mm_struct *vma_init(void);
2841static void vma_delete(struct mm_struct *);
1a1c4db9
MI
2842static int vma_add_mapping(struct mm_struct *, target_ulong,
2843 target_ulong, abi_ulong);
edf8e2af
MW
2844static int vma_get_mapping_count(const struct mm_struct *);
2845static struct vm_area_struct *vma_first(const struct mm_struct *);
2846static struct vm_area_struct *vma_next(struct vm_area_struct *);
2847static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 2848static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2849 unsigned long flags);
edf8e2af
MW
2850
2851static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2852static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2853 unsigned int, void *);
a2547a13
LD
2854static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2855static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2856static void fill_auxv_note(struct memelfnote *, const TaskState *);
2857static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2858static size_t note_size(const struct memelfnote *);
2859static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2860static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2861static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2862static int core_dump_filename(const TaskState *, char *, size_t);
2863
2864static int dump_write(int, const void *, size_t);
2865static int write_note(struct memelfnote *, int);
2866static int write_note_info(struct elf_note_info *, int);
2867
2868#ifdef BSWAP_NEEDED
a2547a13 2869static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2870{
ca98ac83
PB
2871 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2872 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2873 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2874 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
2875 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2876 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
2877 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2878 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2879 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2880 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2881 /* cpu times are not filled, so we skip them */
2882 /* regs should be in correct format already */
2883 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2884}
2885
a2547a13 2886static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 2887{
ca98ac83 2888 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
2889 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2890 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2891 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2892 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2893 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2894 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2895}
991f8f0c
RH
2896
2897static void bswap_note(struct elf_note *en)
2898{
2899 bswap32s(&en->n_namesz);
2900 bswap32s(&en->n_descsz);
2901 bswap32s(&en->n_type);
2902}
2903#else
2904static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2905static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2906static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2907#endif /* BSWAP_NEEDED */
2908
2909/*
2910 * Minimal support for linux memory regions. These are needed
2911 * when we are finding out what memory exactly belongs to
2912 * emulated process. No locks needed here, as long as
2913 * thread that received the signal is stopped.
2914 */
2915
2916static struct mm_struct *vma_init(void)
2917{
2918 struct mm_struct *mm;
2919
7267c094 2920 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
2921 return (NULL);
2922
2923 mm->mm_count = 0;
72cf2d4f 2924 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2925
2926 return (mm);
2927}
2928
2929static void vma_delete(struct mm_struct *mm)
2930{
2931 struct vm_area_struct *vma;
2932
2933 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2934 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 2935 g_free(vma);
edf8e2af 2936 }
7267c094 2937 g_free(mm);
edf8e2af
MW
2938}
2939
1a1c4db9
MI
2940static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2941 target_ulong end, abi_ulong flags)
edf8e2af
MW
2942{
2943 struct vm_area_struct *vma;
2944
7267c094 2945 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
2946 return (-1);
2947
2948 vma->vma_start = start;
2949 vma->vma_end = end;
2950 vma->vma_flags = flags;
2951
72cf2d4f 2952 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2953 mm->mm_count++;
2954
2955 return (0);
2956}
2957
2958static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2959{
72cf2d4f 2960 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2961}
2962
2963static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2964{
72cf2d4f 2965 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2966}
2967
2968static int vma_get_mapping_count(const struct mm_struct *mm)
2969{
2970 return (mm->mm_count);
2971}
2972
2973/*
2974 * Calculate file (dump) size of given memory region.
2975 */
2976static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2977{
2978 /* if we cannot even read the first page, skip it */
2979 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2980 return (0);
2981
2982 /*
2983 * Usually we don't dump executable pages as they contain
2984 * non-writable code that debugger can read directly from
2985 * target library etc. However, thread stacks are marked
2986 * also executable so we read in first page of given region
2987 * and check whether it contains elf header. If there is
2988 * no elf header, we dump it.
2989 */
2990 if (vma->vma_flags & PROT_EXEC) {
2991 char page[TARGET_PAGE_SIZE];
2992
2993 copy_from_user(page, vma->vma_start, sizeof (page));
2994 if ((page[EI_MAG0] == ELFMAG0) &&
2995 (page[EI_MAG1] == ELFMAG1) &&
2996 (page[EI_MAG2] == ELFMAG2) &&
2997 (page[EI_MAG3] == ELFMAG3)) {
2998 /*
2999 * Mappings are possibly from ELF binary. Don't dump
3000 * them.
3001 */
3002 return (0);
3003 }
3004 }
3005
3006 return (vma->vma_end - vma->vma_start);
3007}
3008
1a1c4db9 3009static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3010 unsigned long flags)
edf8e2af
MW
3011{
3012 struct mm_struct *mm = (struct mm_struct *)priv;
3013
edf8e2af
MW
3014 vma_add_mapping(mm, start, end, flags);
3015 return (0);
3016}
3017
3018static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 3019 unsigned int sz, void *data)
edf8e2af
MW
3020{
3021 unsigned int namesz;
3022
3023 namesz = strlen(name) + 1;
3024 note->name = name;
3025 note->namesz = namesz;
3026 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3027 note->type = type;
80f5ce75
LV
3028 note->datasz = sz;
3029 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3030
edf8e2af
MW
3031 note->data = data;
3032
3033 /*
3034 * We calculate rounded up note size here as specified by
3035 * ELF document.
3036 */
3037 note->notesz = sizeof (struct elf_note) +
80f5ce75 3038 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
3039}
3040
3041static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 3042 uint32_t flags)
edf8e2af
MW
3043{
3044 (void) memset(elf, 0, sizeof(*elf));
3045
3046 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3047 elf->e_ident[EI_CLASS] = ELF_CLASS;
3048 elf->e_ident[EI_DATA] = ELF_DATA;
3049 elf->e_ident[EI_VERSION] = EV_CURRENT;
3050 elf->e_ident[EI_OSABI] = ELF_OSABI;
3051
3052 elf->e_type = ET_CORE;
3053 elf->e_machine = machine;
3054 elf->e_version = EV_CURRENT;
3055 elf->e_phoff = sizeof(struct elfhdr);
3056 elf->e_flags = flags;
3057 elf->e_ehsize = sizeof(struct elfhdr);
3058 elf->e_phentsize = sizeof(struct elf_phdr);
3059 elf->e_phnum = segs;
3060
edf8e2af 3061 bswap_ehdr(elf);
edf8e2af
MW
3062}
3063
3064static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3065{
3066 phdr->p_type = PT_NOTE;
3067 phdr->p_offset = offset;
3068 phdr->p_vaddr = 0;
3069 phdr->p_paddr = 0;
3070 phdr->p_filesz = sz;
3071 phdr->p_memsz = 0;
3072 phdr->p_flags = 0;
3073 phdr->p_align = 0;
3074
991f8f0c 3075 bswap_phdr(phdr, 1);
edf8e2af
MW
3076}
3077
3078static size_t note_size(const struct memelfnote *note)
3079{
3080 return (note->notesz);
3081}
3082
a2547a13 3083static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 3084 const TaskState *ts, int signr)
edf8e2af
MW
3085{
3086 (void) memset(prstatus, 0, sizeof (*prstatus));
3087 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3088 prstatus->pr_pid = ts->ts_tid;
3089 prstatus->pr_ppid = getppid();
3090 prstatus->pr_pgrp = getpgrp();
3091 prstatus->pr_sid = getsid(0);
3092
edf8e2af 3093 bswap_prstatus(prstatus);
edf8e2af
MW
3094}
3095
a2547a13 3096static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 3097{
900cfbca 3098 char *base_filename;
edf8e2af
MW
3099 unsigned int i, len;
3100
3101 (void) memset(psinfo, 0, sizeof (*psinfo));
3102
3103 len = ts->info->arg_end - ts->info->arg_start;
3104 if (len >= ELF_PRARGSZ)
3105 len = ELF_PRARGSZ - 1;
3106 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3107 return -EFAULT;
3108 for (i = 0; i < len; i++)
3109 if (psinfo->pr_psargs[i] == 0)
3110 psinfo->pr_psargs[i] = ' ';
3111 psinfo->pr_psargs[len] = 0;
3112
3113 psinfo->pr_pid = getpid();
3114 psinfo->pr_ppid = getppid();
3115 psinfo->pr_pgrp = getpgrp();
3116 psinfo->pr_sid = getsid(0);
3117 psinfo->pr_uid = getuid();
3118 psinfo->pr_gid = getgid();
3119
900cfbca
JM
3120 base_filename = g_path_get_basename(ts->bprm->filename);
3121 /*
3122 * Using strncpy here is fine: at max-length,
3123 * this field is not NUL-terminated.
3124 */
edf8e2af 3125 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 3126 sizeof(psinfo->pr_fname));
edf8e2af 3127
900cfbca 3128 g_free(base_filename);
edf8e2af 3129 bswap_psinfo(psinfo);
edf8e2af
MW
3130 return (0);
3131}
3132
3133static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3134{
3135 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3136 elf_addr_t orig_auxv = auxv;
edf8e2af 3137 void *ptr;
125b0f55 3138 int len = ts->info->auxv_len;
edf8e2af
MW
3139
3140 /*
3141 * Auxiliary vector is stored in target process stack. It contains
3142 * {type, value} pairs that we need to dump into note. This is not
3143 * strictly necessary but we do it here for sake of completeness.
3144 */
3145
edf8e2af
MW
3146 /* read in whole auxv vector and copy it to memelfnote */
3147 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3148 if (ptr != NULL) {
3149 fill_note(note, "CORE", NT_AUXV, len, ptr);
3150 unlock_user(ptr, auxv, len);
3151 }
3152}
3153
3154/*
3155 * Constructs name of coredump file. We have following convention
3156 * for the name:
3157 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3158 *
3159 * Returns 0 in case of success, -1 otherwise (errno is set).
3160 */
3161static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 3162 size_t bufsize)
edf8e2af
MW
3163{
3164 char timestamp[64];
edf8e2af
MW
3165 char *base_filename = NULL;
3166 struct timeval tv;
3167 struct tm tm;
3168
3169 assert(bufsize >= PATH_MAX);
3170
3171 if (gettimeofday(&tv, NULL) < 0) {
3172 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 3173 strerror(errno));
edf8e2af
MW
3174 return (-1);
3175 }
3176
b8da57fa 3177 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 3178 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 3179 localtime_r(&tv.tv_sec, &tm));
edf8e2af 3180 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 3181 base_filename, timestamp, (int)getpid());
b8da57fa 3182 g_free(base_filename);
edf8e2af
MW
3183
3184 return (0);
3185}
3186
3187static int dump_write(int fd, const void *ptr, size_t size)
3188{
3189 const char *bufp = (const char *)ptr;
3190 ssize_t bytes_written, bytes_left;
3191 struct rlimit dumpsize;
3192 off_t pos;
3193
3194 bytes_written = 0;
3195 getrlimit(RLIMIT_CORE, &dumpsize);
3196 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3197 if (errno == ESPIPE) { /* not a seekable stream */
3198 bytes_left = size;
3199 } else {
3200 return pos;
3201 }
3202 } else {
3203 if (dumpsize.rlim_cur <= pos) {
3204 return -1;
3205 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3206 bytes_left = size;
3207 } else {
3208 size_t limit_left=dumpsize.rlim_cur - pos;
3209 bytes_left = limit_left >= size ? size : limit_left ;
3210 }
3211 }
3212
3213 /*
3214 * In normal conditions, single write(2) should do but
3215 * in case of socket etc. this mechanism is more portable.
3216 */
3217 do {
3218 bytes_written = write(fd, bufp, bytes_left);
3219 if (bytes_written < 0) {
3220 if (errno == EINTR)
3221 continue;
3222 return (-1);
3223 } else if (bytes_written == 0) { /* eof */
3224 return (-1);
3225 }
3226 bufp += bytes_written;
3227 bytes_left -= bytes_written;
3228 } while (bytes_left > 0);
3229
3230 return (0);
3231}
3232
3233static int write_note(struct memelfnote *men, int fd)
3234{
3235 struct elf_note en;
3236
3237 en.n_namesz = men->namesz;
3238 en.n_type = men->type;
3239 en.n_descsz = men->datasz;
3240
edf8e2af 3241 bswap_note(&en);
edf8e2af
MW
3242
3243 if (dump_write(fd, &en, sizeof(en)) != 0)
3244 return (-1);
3245 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3246 return (-1);
80f5ce75 3247 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3248 return (-1);
3249
3250 return (0);
3251}
3252
9349b4f9 3253static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3254{
0429a971
AF
3255 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3256 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3257 struct elf_thread_status *ets;
3258
7267c094 3259 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3260 ets->num_notes = 1; /* only prstatus is dumped */
3261 fill_prstatus(&ets->prstatus, ts, 0);
3262 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3263 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3264 &ets->prstatus);
edf8e2af 3265
72cf2d4f 3266 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3267
3268 info->notes_size += note_size(&ets->notes[0]);
3269}
3270
6afafa86
PM
3271static void init_note_info(struct elf_note_info *info)
3272{
3273 /* Initialize the elf_note_info structure so that it is at
3274 * least safe to call free_note_info() on it. Must be
3275 * called before calling fill_note_info().
3276 */
3277 memset(info, 0, sizeof (*info));
3278 QTAILQ_INIT(&info->thread_list);
3279}
3280
edf8e2af 3281static int fill_note_info(struct elf_note_info *info,
9349b4f9 3282 long signr, const CPUArchState *env)
edf8e2af
MW
3283{
3284#define NUMNOTES 3
0429a971
AF
3285 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3286 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3287 int i;
3288
c78d65e8 3289 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3290 if (info->notes == NULL)
3291 return (-ENOMEM);
7267c094 3292 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3293 if (info->prstatus == NULL)
3294 return (-ENOMEM);
7267c094 3295 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3296 if (info->prstatus == NULL)
3297 return (-ENOMEM);
3298
3299 /*
3300 * First fill in status (and registers) of current thread
3301 * including process info & aux vector.
3302 */
3303 fill_prstatus(info->prstatus, ts, signr);
3304 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3305 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3306 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3307 fill_psinfo(info->psinfo, ts);
3308 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3309 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3310 fill_auxv_note(&info->notes[2], ts);
3311 info->numnote = 3;
3312
3313 info->notes_size = 0;
3314 for (i = 0; i < info->numnote; i++)
3315 info->notes_size += note_size(&info->notes[i]);
3316
3317 /* read and fill status of all threads */
3318 cpu_list_lock();
bdc44640 3319 CPU_FOREACH(cpu) {
a2247f8e 3320 if (cpu == thread_cpu) {
edf8e2af 3321 continue;
182735ef
AF
3322 }
3323 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3324 }
3325 cpu_list_unlock();
3326
3327 return (0);
3328}
3329
3330static void free_note_info(struct elf_note_info *info)
3331{
3332 struct elf_thread_status *ets;
3333
72cf2d4f
BS
3334 while (!QTAILQ_EMPTY(&info->thread_list)) {
3335 ets = QTAILQ_FIRST(&info->thread_list);
3336 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3337 g_free(ets);
edf8e2af
MW
3338 }
3339
7267c094
AL
3340 g_free(info->prstatus);
3341 g_free(info->psinfo);
3342 g_free(info->notes);
edf8e2af
MW
3343}
3344
3345static int write_note_info(struct elf_note_info *info, int fd)
3346{
3347 struct elf_thread_status *ets;
3348 int i, error = 0;
3349
3350 /* write prstatus, psinfo and auxv for current thread */
3351 for (i = 0; i < info->numnote; i++)
3352 if ((error = write_note(&info->notes[i], fd)) != 0)
3353 return (error);
3354
3355 /* write prstatus for each thread */
52a53afe 3356 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3357 if ((error = write_note(&ets->notes[0], fd)) != 0)
3358 return (error);
3359 }
3360
3361 return (0);
3362}
3363
3364/*
3365 * Write out ELF coredump.
3366 *
3367 * See documentation of ELF object file format in:
3368 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3369 *
3370 * Coredump format in linux is following:
3371 *
3372 * 0 +----------------------+ \
3373 * | ELF header | ET_CORE |
3374 * +----------------------+ |
3375 * | ELF program headers | |--- headers
3376 * | - NOTE section | |
3377 * | - PT_LOAD sections | |
3378 * +----------------------+ /
3379 * | NOTEs: |
3380 * | - NT_PRSTATUS |
3381 * | - NT_PRSINFO |
3382 * | - NT_AUXV |
3383 * +----------------------+ <-- aligned to target page
3384 * | Process memory dump |
3385 * : :
3386 * . .
3387 * : :
3388 * | |
3389 * +----------------------+
3390 *
3391 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3392 * NT_PRSINFO -> struct elf_prpsinfo
3393 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3394 *
3395 * Format follows System V format as close as possible. Current
3396 * version limitations are as follows:
3397 * - no floating point registers are dumped
3398 *
3399 * Function returns 0 in case of success, negative errno otherwise.
3400 *
3401 * TODO: make this work also during runtime: it should be
3402 * possible to force coredump from running process and then
3403 * continue processing. For example qemu could set up SIGUSR2
3404 * handler (provided that target process haven't registered
3405 * handler for that) that does the dump when signal is received.
3406 */
9349b4f9 3407static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3408{
0429a971
AF
3409 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3410 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3411 struct vm_area_struct *vma = NULL;
3412 char corefile[PATH_MAX];
3413 struct elf_note_info info;
3414 struct elfhdr elf;
3415 struct elf_phdr phdr;
3416 struct rlimit dumpsize;
3417 struct mm_struct *mm = NULL;
3418 off_t offset = 0, data_offset = 0;
3419 int segs = 0;
3420 int fd = -1;
3421
6afafa86
PM
3422 init_note_info(&info);
3423
edf8e2af
MW
3424 errno = 0;
3425 getrlimit(RLIMIT_CORE, &dumpsize);
3426 if (dumpsize.rlim_cur == 0)
d97ef72e 3427 return 0;
edf8e2af
MW
3428
3429 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3430 return (-errno);
3431
3432 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3433 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3434 return (-errno);
3435
3436 /*
3437 * Walk through target process memory mappings and
3438 * set up structure containing this information. After
3439 * this point vma_xxx functions can be used.
3440 */
3441 if ((mm = vma_init()) == NULL)
3442 goto out;
3443
3444 walk_memory_regions(mm, vma_walker);
3445 segs = vma_get_mapping_count(mm);
3446
3447 /*
3448 * Construct valid coredump ELF header. We also
3449 * add one more segment for notes.
3450 */
3451 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3452 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3453 goto out;
3454
b6af0975 3455 /* fill in the in-memory version of notes */
edf8e2af
MW
3456 if (fill_note_info(&info, signr, env) < 0)
3457 goto out;
3458
3459 offset += sizeof (elf); /* elf header */
3460 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3461
3462 /* write out notes program header */
3463 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3464
3465 offset += info.notes_size;
3466 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3467 goto out;
3468
3469 /*
3470 * ELF specification wants data to start at page boundary so
3471 * we align it here.
3472 */
80f5ce75 3473 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3474
3475 /*
3476 * Write program headers for memory regions mapped in
3477 * the target process.
3478 */
3479 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3480 (void) memset(&phdr, 0, sizeof (phdr));
3481
3482 phdr.p_type = PT_LOAD;
3483 phdr.p_offset = offset;
3484 phdr.p_vaddr = vma->vma_start;
3485 phdr.p_paddr = 0;
3486 phdr.p_filesz = vma_dump_size(vma);
3487 offset += phdr.p_filesz;
3488 phdr.p_memsz = vma->vma_end - vma->vma_start;
3489 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3490 if (vma->vma_flags & PROT_WRITE)
3491 phdr.p_flags |= PF_W;
3492 if (vma->vma_flags & PROT_EXEC)
3493 phdr.p_flags |= PF_X;
3494 phdr.p_align = ELF_EXEC_PAGESIZE;
3495
80f5ce75 3496 bswap_phdr(&phdr, 1);
772034b6
PM
3497 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3498 goto out;
3499 }
edf8e2af
MW
3500 }
3501
3502 /*
3503 * Next we write notes just after program headers. No
3504 * alignment needed here.
3505 */
3506 if (write_note_info(&info, fd) < 0)
3507 goto out;
3508
3509 /* align data to page boundary */
edf8e2af
MW
3510 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3511 goto out;
3512
3513 /*
3514 * Finally we can dump process memory into corefile as well.
3515 */
3516 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3517 abi_ulong addr;
3518 abi_ulong end;
3519
3520 end = vma->vma_start + vma_dump_size(vma);
3521
3522 for (addr = vma->vma_start; addr < end;
d97ef72e 3523 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3524 char page[TARGET_PAGE_SIZE];
3525 int error;
3526
3527 /*
3528 * Read in page from target process memory and
3529 * write it to coredump file.
3530 */
3531 error = copy_from_user(page, addr, sizeof (page));
3532 if (error != 0) {
49995e17 3533 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3534 addr);
edf8e2af
MW
3535 errno = -error;
3536 goto out;
3537 }
3538 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3539 goto out;
3540 }
3541 }
3542
d97ef72e 3543 out:
edf8e2af
MW
3544 free_note_info(&info);
3545 if (mm != NULL)
3546 vma_delete(mm);
3547 (void) close(fd);
3548
3549 if (errno != 0)
3550 return (-errno);
3551 return (0);
3552}
edf8e2af
MW
3553#endif /* USE_ELF_CORE_DUMP */
3554
e5fe0c52
PB
3555void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3556{
3557 init_thread(regs, infop);
3558}