]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
nios2: Add usermode binaries emulation
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
31e31b8a 6
3ef693a0 7#include "qemu.h"
76cad711 8#include "disas/disas.h"
f348b6d1 9#include "qemu/path.h"
31e31b8a 10
e58ffeb3 11#ifdef _ARCH_PPC64
a6cc84f4 12#undef ARCH_DLINFO
13#undef ELF_PLATFORM
14#undef ELF_HWCAP
ad6919dc 15#undef ELF_HWCAP2
a6cc84f4 16#undef ELF_CLASS
17#undef ELF_DATA
18#undef ELF_ARCH
19#endif
20
edf8e2af
MW
21#define ELF_OSABI ELFOSABI_SYSV
22
cb33da57
BS
23/* from personality.h */
24
25/*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30enum {
d97ef72e
RH
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
42};
43
44/*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50enum {
d97ef72e
RH
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
cb33da57
BS
74};
75
76/*
77 * Return the base personality without flags.
78 */
d97ef72e 79#define personality(pers) (pers & PER_MASK)
cb33da57 80
83fb7adf
FB
81/* this flag is uneffective under linux too, should be deleted */
82#ifndef MAP_DENYWRITE
83#define MAP_DENYWRITE 0
84#endif
85
86/* should probably go in elf.h */
87#ifndef ELIBBAD
88#define ELIBBAD 80
89#endif
90
28490231
RH
91#ifdef TARGET_WORDS_BIGENDIAN
92#define ELF_DATA ELFDATA2MSB
93#else
94#define ELF_DATA ELFDATA2LSB
95#endif
96
a29f998d 97#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
98typedef abi_ullong target_elf_greg_t;
99#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
100#else
101typedef abi_ulong target_elf_greg_t;
102#define tswapreg(ptr) tswapal(ptr)
103#endif
104
21e807fa 105#ifdef USE_UID16
1ddd592f
PB
106typedef abi_ushort target_uid_t;
107typedef abi_ushort target_gid_t;
21e807fa 108#else
f8fd4fc4
PB
109typedef abi_uint target_uid_t;
110typedef abi_uint target_gid_t;
21e807fa 111#endif
f8fd4fc4 112typedef abi_int target_pid_t;
21e807fa 113
30ac07d4
FB
114#ifdef TARGET_I386
115
15338fd7
FB
116#define ELF_PLATFORM get_elf_platform()
117
118static const char *get_elf_platform(void)
119{
120 static char elf_platform[] = "i386";
a2247f8e 121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
127}
128
129#define ELF_HWCAP get_elf_hwcap()
130
131static uint32_t get_elf_hwcap(void)
132{
a2247f8e
AF
133 X86CPU *cpu = X86_CPU(thread_cpu);
134
135 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
136}
137
84409ddb
JM
138#ifdef TARGET_X86_64
139#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
140
141#define ELF_CLASS ELFCLASS64
84409ddb
JM
142#define ELF_ARCH EM_X86_64
143
144static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
145{
146 regs->rax = 0;
147 regs->rsp = infop->start_stack;
148 regs->rip = infop->entry;
149}
150
9edc5d79 151#define ELF_NREG 27
c227f099 152typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
153
154/*
155 * Note that ELF_NREG should be 29 as there should be place for
156 * TRAPNO and ERR "registers" as well but linux doesn't dump
157 * those.
158 *
159 * See linux kernel: arch/x86/include/asm/elf.h
160 */
05390248 161static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
162{
163 (*regs)[0] = env->regs[15];
164 (*regs)[1] = env->regs[14];
165 (*regs)[2] = env->regs[13];
166 (*regs)[3] = env->regs[12];
167 (*regs)[4] = env->regs[R_EBP];
168 (*regs)[5] = env->regs[R_EBX];
169 (*regs)[6] = env->regs[11];
170 (*regs)[7] = env->regs[10];
171 (*regs)[8] = env->regs[9];
172 (*regs)[9] = env->regs[8];
173 (*regs)[10] = env->regs[R_EAX];
174 (*regs)[11] = env->regs[R_ECX];
175 (*regs)[12] = env->regs[R_EDX];
176 (*regs)[13] = env->regs[R_ESI];
177 (*regs)[14] = env->regs[R_EDI];
178 (*regs)[15] = env->regs[R_EAX]; /* XXX */
179 (*regs)[16] = env->eip;
180 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181 (*regs)[18] = env->eflags;
182 (*regs)[19] = env->regs[R_ESP];
183 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
190}
191
84409ddb
JM
192#else
193
30ac07d4
FB
194#define ELF_START_MMAP 0x80000000
195
30ac07d4
FB
196/*
197 * This is used to ensure we don't load something for the wrong architecture.
198 */
199#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
200
201/*
202 * These are used to set parameters in the core dumps.
203 */
d97ef72e 204#define ELF_CLASS ELFCLASS32
d97ef72e 205#define ELF_ARCH EM_386
30ac07d4 206
d97ef72e
RH
207static inline void init_thread(struct target_pt_regs *regs,
208 struct image_info *infop)
b346ff46
FB
209{
210 regs->esp = infop->start_stack;
211 regs->eip = infop->entry;
e5fe0c52
PB
212
213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214 starts %edx contains a pointer to a function which might be
215 registered using `atexit'. This provides a mean for the
216 dynamic linker to call DT_FINI functions for shared libraries
217 that have been loaded before the code runs.
218
219 A value of 0 tells we have no such handler. */
220 regs->edx = 0;
b346ff46 221}
9edc5d79 222
9edc5d79 223#define ELF_NREG 17
c227f099 224typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
225
226/*
227 * Note that ELF_NREG should be 19 as there should be place for
228 * TRAPNO and ERR "registers" as well but linux doesn't dump
229 * those.
230 *
231 * See linux kernel: arch/x86/include/asm/elf.h
232 */
05390248 233static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
234{
235 (*regs)[0] = env->regs[R_EBX];
236 (*regs)[1] = env->regs[R_ECX];
237 (*regs)[2] = env->regs[R_EDX];
238 (*regs)[3] = env->regs[R_ESI];
239 (*regs)[4] = env->regs[R_EDI];
240 (*regs)[5] = env->regs[R_EBP];
241 (*regs)[6] = env->regs[R_EAX];
242 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246 (*regs)[11] = env->regs[R_EAX]; /* XXX */
247 (*regs)[12] = env->eip;
248 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249 (*regs)[14] = env->eflags;
250 (*regs)[15] = env->regs[R_ESP];
251 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
252}
84409ddb 253#endif
b346ff46 254
9edc5d79 255#define USE_ELF_CORE_DUMP
d97ef72e 256#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
257
258#endif
259
260#ifdef TARGET_ARM
261
24e76ff0
PM
262#ifndef TARGET_AARCH64
263/* 32 bit ARM definitions */
264
b346ff46
FB
265#define ELF_START_MMAP 0x80000000
266
b597c3f7 267#define ELF_ARCH EM_ARM
d97ef72e 268#define ELF_CLASS ELFCLASS32
b346ff46 269
d97ef72e
RH
270static inline void init_thread(struct target_pt_regs *regs,
271 struct image_info *infop)
b346ff46 272{
992f48a0 273 abi_long stack = infop->start_stack;
b346ff46 274 memset(regs, 0, sizeof(*regs));
99033cae 275
167e4cdc
PM
276 regs->uregs[16] = ARM_CPU_MODE_USR;
277 if (infop->entry & 1) {
278 regs->uregs[16] |= CPSR_T;
279 }
280 regs->uregs[15] = infop->entry & 0xfffffffe;
281 regs->uregs[13] = infop->start_stack;
2f619698 282 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
283 get_user_ual(regs->uregs[2], stack + 8); /* envp */
284 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 285 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 286 regs->uregs[0] = 0;
e5fe0c52 287 /* For uClinux PIC binaries. */
863cf0b7 288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 289 regs->uregs[10] = infop->start_data;
b346ff46
FB
290}
291
edf8e2af 292#define ELF_NREG 18
c227f099 293typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 294
05390248 295static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 296{
86cd7b2d
PB
297 (*regs)[0] = tswapreg(env->regs[0]);
298 (*regs)[1] = tswapreg(env->regs[1]);
299 (*regs)[2] = tswapreg(env->regs[2]);
300 (*regs)[3] = tswapreg(env->regs[3]);
301 (*regs)[4] = tswapreg(env->regs[4]);
302 (*regs)[5] = tswapreg(env->regs[5]);
303 (*regs)[6] = tswapreg(env->regs[6]);
304 (*regs)[7] = tswapreg(env->regs[7]);
305 (*regs)[8] = tswapreg(env->regs[8]);
306 (*regs)[9] = tswapreg(env->regs[9]);
307 (*regs)[10] = tswapreg(env->regs[10]);
308 (*regs)[11] = tswapreg(env->regs[11]);
309 (*regs)[12] = tswapreg(env->regs[12]);
310 (*regs)[13] = tswapreg(env->regs[13]);
311 (*regs)[14] = tswapreg(env->regs[14]);
312 (*regs)[15] = tswapreg(env->regs[15]);
313
314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
316}
317
30ac07d4 318#define USE_ELF_CORE_DUMP
d97ef72e 319#define ELF_EXEC_PAGESIZE 4096
30ac07d4 320
afce2927
FB
321enum
322{
d97ef72e
RH
323 ARM_HWCAP_ARM_SWP = 1 << 0,
324 ARM_HWCAP_ARM_HALF = 1 << 1,
325 ARM_HWCAP_ARM_THUMB = 1 << 2,
326 ARM_HWCAP_ARM_26BIT = 1 << 3,
327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328 ARM_HWCAP_ARM_FPA = 1 << 5,
329 ARM_HWCAP_ARM_VFP = 1 << 6,
330 ARM_HWCAP_ARM_EDSP = 1 << 7,
331 ARM_HWCAP_ARM_JAVA = 1 << 8,
332 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
333 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
334 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
335 ARM_HWCAP_ARM_NEON = 1 << 12,
336 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
338 ARM_HWCAP_ARM_TLS = 1 << 15,
339 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
340 ARM_HWCAP_ARM_IDIVA = 1 << 17,
341 ARM_HWCAP_ARM_IDIVT = 1 << 18,
342 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
343 ARM_HWCAP_ARM_LPAE = 1 << 20,
344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
345};
346
ad6919dc
PM
347enum {
348 ARM_HWCAP2_ARM_AES = 1 << 0,
349 ARM_HWCAP2_ARM_PMULL = 1 << 1,
350 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
351 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
352 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
353};
354
6b1275ff
PM
355/* The commpage only exists for 32 bit kernels */
356
806d1021
MI
357#define TARGET_HAS_VALIDATE_GUEST_SPACE
358/* Return 1 if the proposed guest space is suitable for the guest.
359 * Return 0 if the proposed guest space isn't suitable, but another
360 * address space should be tried.
361 * Return -1 if there is no way the proposed guest space can be
362 * valid regardless of the base.
363 * The guest code may leave a page mapped and populate it if the
364 * address is suitable.
365 */
366static int validate_guest_space(unsigned long guest_base,
367 unsigned long guest_size)
97cc7560
DDAG
368{
369 unsigned long real_start, test_page_addr;
370
371 /* We need to check that we can force a fault on access to the
372 * commpage at 0xffff0fxx
373 */
374 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
375
376 /* If the commpage lies within the already allocated guest space,
377 * then there is no way we can allocate it.
378 */
379 if (test_page_addr >= guest_base
380 && test_page_addr <= (guest_base + guest_size)) {
381 return -1;
382 }
383
97cc7560
DDAG
384 /* Note it needs to be writeable to let us initialise it */
385 real_start = (unsigned long)
386 mmap((void *)test_page_addr, qemu_host_page_size,
387 PROT_READ | PROT_WRITE,
388 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
389
390 /* If we can't map it then try another address */
391 if (real_start == -1ul) {
392 return 0;
393 }
394
395 if (real_start != test_page_addr) {
396 /* OS didn't put the page where we asked - unmap and reject */
397 munmap((void *)real_start, qemu_host_page_size);
398 return 0;
399 }
400
401 /* Leave the page mapped
402 * Populate it (mmap should have left it all 0'd)
403 */
404
405 /* Kernel helper versions */
406 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
407
408 /* Now it's populated make it RO */
409 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
410 perror("Protecting guest commpage");
411 exit(-1);
412 }
413
414 return 1; /* All good */
415}
adf050b1
BC
416
417#define ELF_HWCAP get_elf_hwcap()
ad6919dc 418#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
419
420static uint32_t get_elf_hwcap(void)
421{
a2247f8e 422 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
423 uint32_t hwcaps = 0;
424
425 hwcaps |= ARM_HWCAP_ARM_SWP;
426 hwcaps |= ARM_HWCAP_ARM_HALF;
427 hwcaps |= ARM_HWCAP_ARM_THUMB;
428 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
429
430 /* probe for the extra features */
431#define GET_FEATURE(feat, hwcap) \
a2247f8e 432 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
24682654
PM
433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
434 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
435 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
440 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
441 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
442 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
443 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
444 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
445 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
446 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
447 * to our VFP_FP16 feature bit.
448 */
449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
450 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
451
452 return hwcaps;
453}
afce2927 454
ad6919dc
PM
455static uint32_t get_elf_hwcap2(void)
456{
457 ARMCPU *cpu = ARM_CPU(thread_cpu);
458 uint32_t hwcaps = 0;
459
460 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
4e624eda 461 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
f1ecb913
AB
462 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
463 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
ad6919dc
PM
464 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
465 return hwcaps;
466}
467
468#undef GET_FEATURE
469
24e76ff0
PM
470#else
471/* 64 bit ARM definitions */
472#define ELF_START_MMAP 0x80000000
473
b597c3f7 474#define ELF_ARCH EM_AARCH64
24e76ff0
PM
475#define ELF_CLASS ELFCLASS64
476#define ELF_PLATFORM "aarch64"
477
478static inline void init_thread(struct target_pt_regs *regs,
479 struct image_info *infop)
480{
481 abi_long stack = infop->start_stack;
482 memset(regs, 0, sizeof(*regs));
483
484 regs->pc = infop->entry & ~0x3ULL;
485 regs->sp = stack;
486}
487
488#define ELF_NREG 34
489typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
490
491static void elf_core_copy_regs(target_elf_gregset_t *regs,
492 const CPUARMState *env)
493{
494 int i;
495
496 for (i = 0; i < 32; i++) {
497 (*regs)[i] = tswapreg(env->xregs[i]);
498 }
499 (*regs)[32] = tswapreg(env->pc);
500 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
501}
502
503#define USE_ELF_CORE_DUMP
504#define ELF_EXEC_PAGESIZE 4096
505
506enum {
507 ARM_HWCAP_A64_FP = 1 << 0,
508 ARM_HWCAP_A64_ASIMD = 1 << 1,
509 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
510 ARM_HWCAP_A64_AES = 1 << 3,
511 ARM_HWCAP_A64_PMULL = 1 << 4,
512 ARM_HWCAP_A64_SHA1 = 1 << 5,
513 ARM_HWCAP_A64_SHA2 = 1 << 6,
514 ARM_HWCAP_A64_CRC32 = 1 << 7,
515};
516
517#define ELF_HWCAP get_elf_hwcap()
518
519static uint32_t get_elf_hwcap(void)
520{
521 ARMCPU *cpu = ARM_CPU(thread_cpu);
522 uint32_t hwcaps = 0;
523
524 hwcaps |= ARM_HWCAP_A64_FP;
525 hwcaps |= ARM_HWCAP_A64_ASIMD;
526
527 /* probe for the extra features */
528#define GET_FEATURE(feat, hwcap) \
529 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
5acc765c 530 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
411bdc78 531 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
f6fe04d5
PM
532 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
533 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
130f2e7d 534 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
24e76ff0
PM
535#undef GET_FEATURE
536
537 return hwcaps;
538}
539
540#endif /* not TARGET_AARCH64 */
541#endif /* TARGET_ARM */
30ac07d4 542
d2fbca94
GX
543#ifdef TARGET_UNICORE32
544
545#define ELF_START_MMAP 0x80000000
546
d2fbca94
GX
547#define ELF_CLASS ELFCLASS32
548#define ELF_DATA ELFDATA2LSB
549#define ELF_ARCH EM_UNICORE32
550
551static inline void init_thread(struct target_pt_regs *regs,
552 struct image_info *infop)
553{
554 abi_long stack = infop->start_stack;
555 memset(regs, 0, sizeof(*regs));
556 regs->UC32_REG_asr = 0x10;
557 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
558 regs->UC32_REG_sp = infop->start_stack;
559 /* FIXME - what to for failure of get_user()? */
560 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
561 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
562 /* XXX: it seems that r0 is zeroed after ! */
563 regs->UC32_REG_00 = 0;
564}
565
566#define ELF_NREG 34
567typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
568
05390248 569static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
d2fbca94
GX
570{
571 (*regs)[0] = env->regs[0];
572 (*regs)[1] = env->regs[1];
573 (*regs)[2] = env->regs[2];
574 (*regs)[3] = env->regs[3];
575 (*regs)[4] = env->regs[4];
576 (*regs)[5] = env->regs[5];
577 (*regs)[6] = env->regs[6];
578 (*regs)[7] = env->regs[7];
579 (*regs)[8] = env->regs[8];
580 (*regs)[9] = env->regs[9];
581 (*regs)[10] = env->regs[10];
582 (*regs)[11] = env->regs[11];
583 (*regs)[12] = env->regs[12];
584 (*regs)[13] = env->regs[13];
585 (*regs)[14] = env->regs[14];
586 (*regs)[15] = env->regs[15];
587 (*regs)[16] = env->regs[16];
588 (*regs)[17] = env->regs[17];
589 (*regs)[18] = env->regs[18];
590 (*regs)[19] = env->regs[19];
591 (*regs)[20] = env->regs[20];
592 (*regs)[21] = env->regs[21];
593 (*regs)[22] = env->regs[22];
594 (*regs)[23] = env->regs[23];
595 (*regs)[24] = env->regs[24];
596 (*regs)[25] = env->regs[25];
597 (*regs)[26] = env->regs[26];
598 (*regs)[27] = env->regs[27];
599 (*regs)[28] = env->regs[28];
600 (*regs)[29] = env->regs[29];
601 (*regs)[30] = env->regs[30];
602 (*regs)[31] = env->regs[31];
603
05390248 604 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
d2fbca94
GX
605 (*regs)[33] = env->regs[0]; /* XXX */
606}
607
608#define USE_ELF_CORE_DUMP
609#define ELF_EXEC_PAGESIZE 4096
610
611#define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
612
613#endif
614
853d6f7a 615#ifdef TARGET_SPARC
a315a145 616#ifdef TARGET_SPARC64
853d6f7a
FB
617
618#define ELF_START_MMAP 0x80000000
cf973e46
AT
619#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
620 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 621#ifndef TARGET_ABI32
cb33da57 622#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
623#else
624#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
625#endif
853d6f7a 626
a315a145 627#define ELF_CLASS ELFCLASS64
5ef54116
FB
628#define ELF_ARCH EM_SPARCV9
629
d97ef72e 630#define STACK_BIAS 2047
a315a145 631
d97ef72e
RH
632static inline void init_thread(struct target_pt_regs *regs,
633 struct image_info *infop)
a315a145 634{
992f48a0 635#ifndef TARGET_ABI32
a315a145 636 regs->tstate = 0;
992f48a0 637#endif
a315a145
FB
638 regs->pc = infop->entry;
639 regs->npc = regs->pc + 4;
640 regs->y = 0;
992f48a0
BS
641#ifdef TARGET_ABI32
642 regs->u_regs[14] = infop->start_stack - 16 * 4;
643#else
cb33da57
BS
644 if (personality(infop->personality) == PER_LINUX32)
645 regs->u_regs[14] = infop->start_stack - 16 * 4;
646 else
647 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 648#endif
a315a145
FB
649}
650
651#else
652#define ELF_START_MMAP 0x80000000
cf973e46
AT
653#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
654 | HWCAP_SPARC_MULDIV)
a315a145 655
853d6f7a 656#define ELF_CLASS ELFCLASS32
853d6f7a
FB
657#define ELF_ARCH EM_SPARC
658
d97ef72e
RH
659static inline void init_thread(struct target_pt_regs *regs,
660 struct image_info *infop)
853d6f7a 661{
f5155289
FB
662 regs->psr = 0;
663 regs->pc = infop->entry;
664 regs->npc = regs->pc + 4;
665 regs->y = 0;
666 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
667}
668
a315a145 669#endif
853d6f7a
FB
670#endif
671
67867308
FB
672#ifdef TARGET_PPC
673
4ecd4d16 674#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
675#define ELF_START_MMAP 0x80000000
676
e85e7c6e 677#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
678
679#define elf_check_arch(x) ( (x) == EM_PPC64 )
680
d97ef72e 681#define ELF_CLASS ELFCLASS64
84409ddb
JM
682
683#else
684
d97ef72e 685#define ELF_CLASS ELFCLASS32
84409ddb
JM
686
687#endif
688
d97ef72e 689#define ELF_ARCH EM_PPC
67867308 690
df84e4f3
NF
691/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
692 See arch/powerpc/include/asm/cputable.h. */
693enum {
3efa9a67 694 QEMU_PPC_FEATURE_32 = 0x80000000,
695 QEMU_PPC_FEATURE_64 = 0x40000000,
696 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
697 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
698 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
699 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
700 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
701 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
702 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
703 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
704 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
705 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
706 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
707 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
708 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
709 QEMU_PPC_FEATURE_CELL = 0x00010000,
710 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
711 QEMU_PPC_FEATURE_SMT = 0x00004000,
712 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
713 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
714 QEMU_PPC_FEATURE_PA6T = 0x00000800,
715 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
716 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
717 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
718 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
719 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
720
721 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
722 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
723
724 /* Feature definitions in AT_HWCAP2. */
725 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
726 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
727 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
728 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
729 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
730 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
df84e4f3
NF
731};
732
733#define ELF_HWCAP get_elf_hwcap()
734
735static uint32_t get_elf_hwcap(void)
736{
a2247f8e 737 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
738 uint32_t features = 0;
739
740 /* We don't have to be terribly complete here; the high points are
741 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 742#define GET_FEATURE(flag, feature) \
a2247f8e 743 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
744#define GET_FEATURE2(flags, feature) \
745 do { \
746 if ((cpu->env.insns_flags2 & flags) == flags) { \
747 features |= feature; \
748 } \
749 } while (0)
3efa9a67 750 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
751 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
752 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
753 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
754 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
755 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
756 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
757 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
758 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
759 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
760 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
761 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
762 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 763#undef GET_FEATURE
0e019746 764#undef GET_FEATURE2
df84e4f3
NF
765
766 return features;
767}
768
a60438dd
TM
769#define ELF_HWCAP2 get_elf_hwcap2()
770
771static uint32_t get_elf_hwcap2(void)
772{
773 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
774 uint32_t features = 0;
775
776#define GET_FEATURE(flag, feature) \
777 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
778#define GET_FEATURE2(flag, feature) \
779 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
780
781 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
782 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
783 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
784 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
785
786#undef GET_FEATURE
787#undef GET_FEATURE2
788
789 return features;
790}
791
f5155289
FB
792/*
793 * The requirements here are:
794 * - keep the final alignment of sp (sp & 0xf)
795 * - make sure the 32-bit value at the first 16 byte aligned position of
796 * AUXV is greater than 16 for glibc compatibility.
797 * AT_IGNOREPPC is used for that.
798 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
799 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
800 */
0bccf03d 801#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
802#define ARCH_DLINFO \
803 do { \
623e250a
TM
804 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
805 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
806 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
d97ef72e
RH
807 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
808 /* \
809 * Now handle glibc compatibility. \
810 */ \
811 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
812 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
813 } while (0)
f5155289 814
67867308
FB
815static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
816{
67867308 817 _regs->gpr[1] = infop->start_stack;
e85e7c6e 818#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 819 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
820 uint64_t val;
821 get_user_u64(val, infop->entry + 8);
822 _regs->gpr[2] = val + infop->load_bias;
823 get_user_u64(val, infop->entry);
824 infop->entry = val + infop->load_bias;
d90b94cd
DK
825 } else {
826 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
827 }
84409ddb 828#endif
67867308
FB
829 _regs->nip = infop->entry;
830}
831
e2f3e741
NF
832/* See linux kernel: arch/powerpc/include/asm/elf.h. */
833#define ELF_NREG 48
834typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
835
05390248 836static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
837{
838 int i;
839 target_ulong ccr = 0;
840
841 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 842 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
843 }
844
86cd7b2d
PB
845 (*regs)[32] = tswapreg(env->nip);
846 (*regs)[33] = tswapreg(env->msr);
847 (*regs)[35] = tswapreg(env->ctr);
848 (*regs)[36] = tswapreg(env->lr);
849 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
850
851 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
852 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
853 }
86cd7b2d 854 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
855}
856
857#define USE_ELF_CORE_DUMP
d97ef72e 858#define ELF_EXEC_PAGESIZE 4096
67867308
FB
859
860#endif
861
048f6b4d
FB
862#ifdef TARGET_MIPS
863
864#define ELF_START_MMAP 0x80000000
865
388bb21a
TS
866#ifdef TARGET_MIPS64
867#define ELF_CLASS ELFCLASS64
868#else
048f6b4d 869#define ELF_CLASS ELFCLASS32
388bb21a 870#endif
048f6b4d
FB
871#define ELF_ARCH EM_MIPS
872
d97ef72e
RH
873static inline void init_thread(struct target_pt_regs *regs,
874 struct image_info *infop)
048f6b4d 875{
623a930e 876 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
877 regs->cp0_epc = infop->entry;
878 regs->regs[29] = infop->start_stack;
879}
880
51e52606
NF
881/* See linux kernel: arch/mips/include/asm/elf.h. */
882#define ELF_NREG 45
883typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
884
885/* See linux kernel: arch/mips/include/asm/reg.h. */
886enum {
887#ifdef TARGET_MIPS64
888 TARGET_EF_R0 = 0,
889#else
890 TARGET_EF_R0 = 6,
891#endif
892 TARGET_EF_R26 = TARGET_EF_R0 + 26,
893 TARGET_EF_R27 = TARGET_EF_R0 + 27,
894 TARGET_EF_LO = TARGET_EF_R0 + 32,
895 TARGET_EF_HI = TARGET_EF_R0 + 33,
896 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
897 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
898 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
899 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
900};
901
902/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 903static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
904{
905 int i;
906
907 for (i = 0; i < TARGET_EF_R0; i++) {
908 (*regs)[i] = 0;
909 }
910 (*regs)[TARGET_EF_R0] = 0;
911
912 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 913 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
914 }
915
916 (*regs)[TARGET_EF_R26] = 0;
917 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
918 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
919 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
920 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
921 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
922 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
923 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
924}
925
926#define USE_ELF_CORE_DUMP
388bb21a
TS
927#define ELF_EXEC_PAGESIZE 4096
928
048f6b4d
FB
929#endif /* TARGET_MIPS */
930
b779e29e
EI
931#ifdef TARGET_MICROBLAZE
932
933#define ELF_START_MMAP 0x80000000
934
0d5d4699 935#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
936
937#define ELF_CLASS ELFCLASS32
0d5d4699 938#define ELF_ARCH EM_MICROBLAZE
b779e29e 939
d97ef72e
RH
940static inline void init_thread(struct target_pt_regs *regs,
941 struct image_info *infop)
b779e29e
EI
942{
943 regs->pc = infop->entry;
944 regs->r1 = infop->start_stack;
945
946}
947
b779e29e
EI
948#define ELF_EXEC_PAGESIZE 4096
949
e4cbd44d
EI
950#define USE_ELF_CORE_DUMP
951#define ELF_NREG 38
952typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
953
954/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 955static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
956{
957 int i, pos = 0;
958
959 for (i = 0; i < 32; i++) {
86cd7b2d 960 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
961 }
962
963 for (i = 0; i < 6; i++) {
86cd7b2d 964 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
965 }
966}
967
b779e29e
EI
968#endif /* TARGET_MICROBLAZE */
969
a0a839b6
MV
970#ifdef TARGET_NIOS2
971
972#define ELF_START_MMAP 0x80000000
973
974#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
975
976#define ELF_CLASS ELFCLASS32
977#define ELF_ARCH EM_ALTERA_NIOS2
978
979static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
980{
981 regs->ea = infop->entry;
982 regs->sp = infop->start_stack;
983 regs->estatus = 0x3;
984}
985
986#define ELF_EXEC_PAGESIZE 4096
987
988#define USE_ELF_CORE_DUMP
989#define ELF_NREG 49
990typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
991
992/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
993static void elf_core_copy_regs(target_elf_gregset_t *regs,
994 const CPUNios2State *env)
995{
996 int i;
997
998 (*regs)[0] = -1;
999 for (i = 1; i < 8; i++) /* r0-r7 */
1000 (*regs)[i] = tswapreg(env->regs[i + 7]);
1001
1002 for (i = 8; i < 16; i++) /* r8-r15 */
1003 (*regs)[i] = tswapreg(env->regs[i - 8]);
1004
1005 for (i = 16; i < 24; i++) /* r16-r23 */
1006 (*regs)[i] = tswapreg(env->regs[i + 7]);
1007 (*regs)[24] = -1; /* R_ET */
1008 (*regs)[25] = -1; /* R_BT */
1009 (*regs)[26] = tswapreg(env->regs[R_GP]);
1010 (*regs)[27] = tswapreg(env->regs[R_SP]);
1011 (*regs)[28] = tswapreg(env->regs[R_FP]);
1012 (*regs)[29] = tswapreg(env->regs[R_EA]);
1013 (*regs)[30] = -1; /* R_SSTATUS */
1014 (*regs)[31] = tswapreg(env->regs[R_RA]);
1015
1016 (*regs)[32] = tswapreg(env->regs[R_PC]);
1017
1018 (*regs)[33] = -1; /* R_STATUS */
1019 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1020
1021 for (i = 35; i < 49; i++) /* ... */
1022 (*regs)[i] = -1;
1023}
1024
1025#endif /* TARGET_NIOS2 */
1026
d962783e
JL
1027#ifdef TARGET_OPENRISC
1028
1029#define ELF_START_MMAP 0x08000000
1030
d962783e
JL
1031#define ELF_ARCH EM_OPENRISC
1032#define ELF_CLASS ELFCLASS32
1033#define ELF_DATA ELFDATA2MSB
1034
1035static inline void init_thread(struct target_pt_regs *regs,
1036 struct image_info *infop)
1037{
1038 regs->pc = infop->entry;
1039 regs->gpr[1] = infop->start_stack;
1040}
1041
1042#define USE_ELF_CORE_DUMP
1043#define ELF_EXEC_PAGESIZE 8192
1044
1045/* See linux kernel arch/openrisc/include/asm/elf.h. */
1046#define ELF_NREG 34 /* gprs and pc, sr */
1047typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1048
1049static void elf_core_copy_regs(target_elf_gregset_t *regs,
1050 const CPUOpenRISCState *env)
1051{
1052 int i;
1053
1054 for (i = 0; i < 32; i++) {
86cd7b2d 1055 (*regs)[i] = tswapreg(env->gpr[i]);
d962783e
JL
1056 }
1057
86cd7b2d
PB
1058 (*regs)[32] = tswapreg(env->pc);
1059 (*regs)[33] = tswapreg(env->sr);
d962783e
JL
1060}
1061#define ELF_HWCAP 0
1062#define ELF_PLATFORM NULL
1063
1064#endif /* TARGET_OPENRISC */
1065
fdf9b3e8
FB
1066#ifdef TARGET_SH4
1067
1068#define ELF_START_MMAP 0x80000000
1069
fdf9b3e8 1070#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1071#define ELF_ARCH EM_SH
1072
d97ef72e
RH
1073static inline void init_thread(struct target_pt_regs *regs,
1074 struct image_info *infop)
fdf9b3e8 1075{
d97ef72e
RH
1076 /* Check other registers XXXXX */
1077 regs->pc = infop->entry;
1078 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1079}
1080
7631c97e
NF
1081/* See linux kernel: arch/sh/include/asm/elf.h. */
1082#define ELF_NREG 23
1083typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1084
1085/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1086enum {
1087 TARGET_REG_PC = 16,
1088 TARGET_REG_PR = 17,
1089 TARGET_REG_SR = 18,
1090 TARGET_REG_GBR = 19,
1091 TARGET_REG_MACH = 20,
1092 TARGET_REG_MACL = 21,
1093 TARGET_REG_SYSCALL = 22
1094};
1095
d97ef72e 1096static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1097 const CPUSH4State *env)
7631c97e
NF
1098{
1099 int i;
1100
1101 for (i = 0; i < 16; i++) {
86cd7b2d 1102 (*regs[i]) = tswapreg(env->gregs[i]);
7631c97e
NF
1103 }
1104
86cd7b2d
PB
1105 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1106 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1107 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1108 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1109 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1110 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1111 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1112}
1113
1114#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1115#define ELF_EXEC_PAGESIZE 4096
1116
e42fd944
RH
1117enum {
1118 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1119 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1120 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1121 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1122 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1123 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1124 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1125 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1126 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1127 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1128};
1129
1130#define ELF_HWCAP get_elf_hwcap()
1131
1132static uint32_t get_elf_hwcap(void)
1133{
1134 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1135 uint32_t hwcap = 0;
1136
1137 hwcap |= SH_CPU_HAS_FPU;
1138
1139 if (cpu->env.features & SH_FEATURE_SH4A) {
1140 hwcap |= SH_CPU_HAS_LLSC;
1141 }
1142
1143 return hwcap;
1144}
1145
fdf9b3e8
FB
1146#endif
1147
48733d19
TS
1148#ifdef TARGET_CRIS
1149
1150#define ELF_START_MMAP 0x80000000
1151
48733d19 1152#define ELF_CLASS ELFCLASS32
48733d19
TS
1153#define ELF_ARCH EM_CRIS
1154
d97ef72e
RH
1155static inline void init_thread(struct target_pt_regs *regs,
1156 struct image_info *infop)
48733d19 1157{
d97ef72e 1158 regs->erp = infop->entry;
48733d19
TS
1159}
1160
48733d19
TS
1161#define ELF_EXEC_PAGESIZE 8192
1162
1163#endif
1164
e6e5906b
PB
1165#ifdef TARGET_M68K
1166
1167#define ELF_START_MMAP 0x80000000
1168
d97ef72e 1169#define ELF_CLASS ELFCLASS32
d97ef72e 1170#define ELF_ARCH EM_68K
e6e5906b
PB
1171
1172/* ??? Does this need to do anything?
d97ef72e 1173 #define ELF_PLAT_INIT(_r) */
e6e5906b 1174
d97ef72e
RH
1175static inline void init_thread(struct target_pt_regs *regs,
1176 struct image_info *infop)
e6e5906b
PB
1177{
1178 regs->usp = infop->start_stack;
1179 regs->sr = 0;
1180 regs->pc = infop->entry;
1181}
1182
7a93cc55
NF
1183/* See linux kernel: arch/m68k/include/asm/elf.h. */
1184#define ELF_NREG 20
1185typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1186
05390248 1187static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1188{
86cd7b2d
PB
1189 (*regs)[0] = tswapreg(env->dregs[1]);
1190 (*regs)[1] = tswapreg(env->dregs[2]);
1191 (*regs)[2] = tswapreg(env->dregs[3]);
1192 (*regs)[3] = tswapreg(env->dregs[4]);
1193 (*regs)[4] = tswapreg(env->dregs[5]);
1194 (*regs)[5] = tswapreg(env->dregs[6]);
1195 (*regs)[6] = tswapreg(env->dregs[7]);
1196 (*regs)[7] = tswapreg(env->aregs[0]);
1197 (*regs)[8] = tswapreg(env->aregs[1]);
1198 (*regs)[9] = tswapreg(env->aregs[2]);
1199 (*regs)[10] = tswapreg(env->aregs[3]);
1200 (*regs)[11] = tswapreg(env->aregs[4]);
1201 (*regs)[12] = tswapreg(env->aregs[5]);
1202 (*regs)[13] = tswapreg(env->aregs[6]);
1203 (*regs)[14] = tswapreg(env->dregs[0]);
1204 (*regs)[15] = tswapreg(env->aregs[7]);
1205 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1206 (*regs)[17] = tswapreg(env->sr);
1207 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1208 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1209}
1210
1211#define USE_ELF_CORE_DUMP
d97ef72e 1212#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1213
1214#endif
1215
7a3148a9
JM
1216#ifdef TARGET_ALPHA
1217
1218#define ELF_START_MMAP (0x30000000000ULL)
1219
7a3148a9 1220#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1221#define ELF_ARCH EM_ALPHA
1222
d97ef72e
RH
1223static inline void init_thread(struct target_pt_regs *regs,
1224 struct image_info *infop)
7a3148a9
JM
1225{
1226 regs->pc = infop->entry;
1227 regs->ps = 8;
1228 regs->usp = infop->start_stack;
7a3148a9
JM
1229}
1230
7a3148a9
JM
1231#define ELF_EXEC_PAGESIZE 8192
1232
1233#endif /* TARGET_ALPHA */
1234
a4c075f1
UH
1235#ifdef TARGET_S390X
1236
1237#define ELF_START_MMAP (0x20000000000ULL)
1238
a4c075f1
UH
1239#define ELF_CLASS ELFCLASS64
1240#define ELF_DATA ELFDATA2MSB
1241#define ELF_ARCH EM_S390
1242
1243static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1244{
1245 regs->psw.addr = infop->entry;
1246 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1247 regs->gprs[15] = infop->start_stack;
1248}
1249
1250#endif /* TARGET_S390X */
1251
b16189b2
CG
1252#ifdef TARGET_TILEGX
1253
1254/* 42 bits real used address, a half for user mode */
1255#define ELF_START_MMAP (0x00000020000000000ULL)
1256
1257#define elf_check_arch(x) ((x) == EM_TILEGX)
1258
1259#define ELF_CLASS ELFCLASS64
1260#define ELF_DATA ELFDATA2LSB
1261#define ELF_ARCH EM_TILEGX
1262
1263static inline void init_thread(struct target_pt_regs *regs,
1264 struct image_info *infop)
1265{
1266 regs->pc = infop->entry;
1267 regs->sp = infop->start_stack;
1268
1269}
1270
1271#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1272
1273#endif /* TARGET_TILEGX */
1274
7c248bcd
RH
1275#ifdef TARGET_HPPA
1276
1277#define ELF_START_MMAP 0x80000000
1278#define ELF_CLASS ELFCLASS32
1279#define ELF_ARCH EM_PARISC
1280#define ELF_PLATFORM "PARISC"
1281#define STACK_GROWS_DOWN 0
1282#define STACK_ALIGNMENT 64
1283
1284static inline void init_thread(struct target_pt_regs *regs,
1285 struct image_info *infop)
1286{
1287 regs->iaoq[0] = infop->entry;
1288 regs->iaoq[1] = infop->entry + 4;
1289 regs->gr[23] = 0;
1290 regs->gr[24] = infop->arg_start;
1291 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1292 /* The top-of-stack contains a linkage buffer. */
1293 regs->gr[30] = infop->start_stack + 64;
1294 regs->gr[31] = infop->entry;
1295}
1296
1297#endif /* TARGET_HPPA */
1298
15338fd7
FB
1299#ifndef ELF_PLATFORM
1300#define ELF_PLATFORM (NULL)
1301#endif
1302
75be901c
PC
1303#ifndef ELF_MACHINE
1304#define ELF_MACHINE ELF_ARCH
1305#endif
1306
d276a604
PC
1307#ifndef elf_check_arch
1308#define elf_check_arch(x) ((x) == ELF_ARCH)
1309#endif
1310
15338fd7
FB
1311#ifndef ELF_HWCAP
1312#define ELF_HWCAP 0
1313#endif
1314
7c4ee5bc
RH
1315#ifndef STACK_GROWS_DOWN
1316#define STACK_GROWS_DOWN 1
1317#endif
1318
1319#ifndef STACK_ALIGNMENT
1320#define STACK_ALIGNMENT 16
1321#endif
1322
992f48a0 1323#ifdef TARGET_ABI32
cb33da57 1324#undef ELF_CLASS
992f48a0 1325#define ELF_CLASS ELFCLASS32
cb33da57
BS
1326#undef bswaptls
1327#define bswaptls(ptr) bswap32s(ptr)
1328#endif
1329
31e31b8a 1330#include "elf.h"
09bfb054 1331
09bfb054
FB
1332struct exec
1333{
d97ef72e
RH
1334 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1335 unsigned int a_text; /* length of text, in bytes */
1336 unsigned int a_data; /* length of data, in bytes */
1337 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1338 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1339 unsigned int a_entry; /* start address */
1340 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1341 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1342};
1343
1344
1345#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1346#define OMAGIC 0407
1347#define NMAGIC 0410
1348#define ZMAGIC 0413
1349#define QMAGIC 0314
1350
31e31b8a 1351/* Necessary parameters */
54936004 1352#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
79cb1f1d
YK
1353#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1354 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1355#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1356
ad1c7e0f 1357#define DLINFO_ITEMS 14
31e31b8a 1358
09bfb054
FB
1359static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1360{
d97ef72e 1361 memcpy(to, from, n);
09bfb054 1362}
d691f669 1363
31e31b8a 1364#ifdef BSWAP_NEEDED
92a31b1f 1365static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1366{
d97ef72e
RH
1367 bswap16s(&ehdr->e_type); /* Object file type */
1368 bswap16s(&ehdr->e_machine); /* Architecture */
1369 bswap32s(&ehdr->e_version); /* Object file version */
1370 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1371 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1372 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1373 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1374 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1375 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1376 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1377 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1378 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1379 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1380}
1381
991f8f0c 1382static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1383{
991f8f0c
RH
1384 int i;
1385 for (i = 0; i < phnum; ++i, ++phdr) {
1386 bswap32s(&phdr->p_type); /* Segment type */
1387 bswap32s(&phdr->p_flags); /* Segment flags */
1388 bswaptls(&phdr->p_offset); /* Segment file offset */
1389 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1390 bswaptls(&phdr->p_paddr); /* Segment physical address */
1391 bswaptls(&phdr->p_filesz); /* Segment size in file */
1392 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1393 bswaptls(&phdr->p_align); /* Segment alignment */
1394 }
31e31b8a 1395}
689f936f 1396
991f8f0c 1397static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1398{
991f8f0c
RH
1399 int i;
1400 for (i = 0; i < shnum; ++i, ++shdr) {
1401 bswap32s(&shdr->sh_name);
1402 bswap32s(&shdr->sh_type);
1403 bswaptls(&shdr->sh_flags);
1404 bswaptls(&shdr->sh_addr);
1405 bswaptls(&shdr->sh_offset);
1406 bswaptls(&shdr->sh_size);
1407 bswap32s(&shdr->sh_link);
1408 bswap32s(&shdr->sh_info);
1409 bswaptls(&shdr->sh_addralign);
1410 bswaptls(&shdr->sh_entsize);
1411 }
689f936f
FB
1412}
1413
7a3148a9 1414static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1415{
1416 bswap32s(&sym->st_name);
7a3148a9
JM
1417 bswaptls(&sym->st_value);
1418 bswaptls(&sym->st_size);
689f936f
FB
1419 bswap16s(&sym->st_shndx);
1420}
991f8f0c
RH
1421#else
1422static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1423static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1424static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1425static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
1426#endif
1427
edf8e2af 1428#ifdef USE_ELF_CORE_DUMP
9349b4f9 1429static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1430#endif /* USE_ELF_CORE_DUMP */
682674b8 1431static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1432
9058abdd
RH
1433/* Verify the portions of EHDR within E_IDENT for the target.
1434 This can be performed before bswapping the entire header. */
1435static bool elf_check_ident(struct elfhdr *ehdr)
1436{
1437 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1438 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1439 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1440 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1441 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1442 && ehdr->e_ident[EI_DATA] == ELF_DATA
1443 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1444}
1445
1446/* Verify the portions of EHDR outside of E_IDENT for the target.
1447 This has to wait until after bswapping the header. */
1448static bool elf_check_ehdr(struct elfhdr *ehdr)
1449{
1450 return (elf_check_arch(ehdr->e_machine)
1451 && ehdr->e_ehsize == sizeof(struct elfhdr)
1452 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1453 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1454}
1455
31e31b8a 1456/*
e5fe0c52 1457 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1458 * memory to free pages in kernel mem. These are in a format ready
1459 * to be put directly into the top of new user memory.
1460 *
1461 */
59baae9a
SB
1462static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1463 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1464{
59baae9a 1465 char *tmp;
7c4ee5bc 1466 int len, i;
59baae9a 1467 abi_ulong top = p;
31e31b8a
FB
1468
1469 if (!p) {
d97ef72e 1470 return 0; /* bullet-proofing */
31e31b8a 1471 }
59baae9a 1472
7c4ee5bc
RH
1473 if (STACK_GROWS_DOWN) {
1474 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1475 for (i = argc - 1; i >= 0; --i) {
1476 tmp = argv[i];
1477 if (!tmp) {
1478 fprintf(stderr, "VFS: argc is wrong");
1479 exit(-1);
1480 }
1481 len = strlen(tmp) + 1;
1482 tmp += len;
59baae9a 1483
7c4ee5bc
RH
1484 if (len > (p - stack_limit)) {
1485 return 0;
1486 }
1487 while (len) {
1488 int bytes_to_copy = (len > offset) ? offset : len;
1489 tmp -= bytes_to_copy;
1490 p -= bytes_to_copy;
1491 offset -= bytes_to_copy;
1492 len -= bytes_to_copy;
1493
1494 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1495
1496 if (offset == 0) {
1497 memcpy_to_target(p, scratch, top - p);
1498 top = p;
1499 offset = TARGET_PAGE_SIZE;
1500 }
1501 }
d97ef72e 1502 }
7c4ee5bc
RH
1503 if (p != top) {
1504 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1505 }
7c4ee5bc
RH
1506 } else {
1507 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1508 for (i = 0; i < argc; ++i) {
1509 tmp = argv[i];
1510 if (!tmp) {
1511 fprintf(stderr, "VFS: argc is wrong");
1512 exit(-1);
1513 }
1514 len = strlen(tmp) + 1;
1515 if (len > (stack_limit - p)) {
1516 return 0;
1517 }
1518 while (len) {
1519 int bytes_to_copy = (len > remaining) ? remaining : len;
1520
1521 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1522
1523 tmp += bytes_to_copy;
1524 remaining -= bytes_to_copy;
1525 p += bytes_to_copy;
1526 len -= bytes_to_copy;
1527
1528 if (remaining == 0) {
1529 memcpy_to_target(top, scratch, p - top);
1530 top = p;
1531 remaining = TARGET_PAGE_SIZE;
1532 }
d97ef72e
RH
1533 }
1534 }
7c4ee5bc
RH
1535 if (p != top) {
1536 memcpy_to_target(top, scratch, p - top);
1537 }
59baae9a
SB
1538 }
1539
31e31b8a
FB
1540 return p;
1541}
1542
59baae9a
SB
1543/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1544 * argument/environment space. Newer kernels (>2.6.33) allow more,
1545 * dependent on stack size, but guarantee at least 32 pages for
1546 * backwards compatibility.
1547 */
1548#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1549
1550static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1551 struct image_info *info)
53a5960a 1552{
59baae9a 1553 abi_ulong size, error, guard;
31e31b8a 1554
703e0e89 1555 size = guest_stack_size;
59baae9a
SB
1556 if (size < STACK_LOWER_LIMIT) {
1557 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1558 }
1559 guard = TARGET_PAGE_SIZE;
1560 if (guard < qemu_real_host_page_size) {
1561 guard = qemu_real_host_page_size;
1562 }
1563
1564 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1565 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1566 if (error == -1) {
60dcbcb5 1567 perror("mmap stack");
09bfb054
FB
1568 exit(-1);
1569 }
31e31b8a 1570
60dcbcb5 1571 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1572 if (STACK_GROWS_DOWN) {
1573 target_mprotect(error, guard, PROT_NONE);
1574 info->stack_limit = error + guard;
1575 return info->stack_limit + size - sizeof(void *);
1576 } else {
1577 target_mprotect(error + size, guard, PROT_NONE);
1578 info->stack_limit = error + size;
1579 return error;
1580 }
31e31b8a
FB
1581}
1582
cf129f3a
RH
1583/* Map and zero the bss. We need to explicitly zero any fractional pages
1584 after the data section (i.e. bss). */
1585static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1586{
cf129f3a
RH
1587 uintptr_t host_start, host_map_start, host_end;
1588
1589 last_bss = TARGET_PAGE_ALIGN(last_bss);
1590
1591 /* ??? There is confusion between qemu_real_host_page_size and
1592 qemu_host_page_size here and elsewhere in target_mmap, which
1593 may lead to the end of the data section mapping from the file
1594 not being mapped. At least there was an explicit test and
1595 comment for that here, suggesting that "the file size must
1596 be known". The comment probably pre-dates the introduction
1597 of the fstat system call in target_mmap which does in fact
1598 find out the size. What isn't clear is if the workaround
1599 here is still actually needed. For now, continue with it,
1600 but merge it with the "normal" mmap that would allocate the bss. */
1601
1602 host_start = (uintptr_t) g2h(elf_bss);
1603 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1604 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1605
1606 if (host_map_start < host_end) {
1607 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1608 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1609 if (p == MAP_FAILED) {
1610 perror("cannot mmap brk");
1611 exit(-1);
853d6f7a 1612 }
f46e9a0b 1613 }
853d6f7a 1614
f46e9a0b
TM
1615 /* Ensure that the bss page(s) are valid */
1616 if ((page_get_flags(last_bss-1) & prot) != prot) {
1617 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1618 }
31e31b8a 1619
cf129f3a
RH
1620 if (host_start < host_map_start) {
1621 memset((void *)host_start, 0, host_map_start - host_start);
1622 }
1623}
53a5960a 1624
1af02e83
MF
1625#ifdef CONFIG_USE_FDPIC
1626static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1627{
1628 uint16_t n;
1629 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1630
1631 /* elf32_fdpic_loadseg */
1632 n = info->nsegs;
1633 while (n--) {
1634 sp -= 12;
1635 put_user_u32(loadsegs[n].addr, sp+0);
1636 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1637 put_user_u32(loadsegs[n].p_memsz, sp+8);
1638 }
1639
1640 /* elf32_fdpic_loadmap */
1641 sp -= 4;
1642 put_user_u16(0, sp+0); /* version */
1643 put_user_u16(info->nsegs, sp+2); /* nsegs */
1644
1645 info->personality = PER_LINUX_FDPIC;
1646 info->loadmap_addr = sp;
1647
1648 return sp;
1649}
1650#endif
1651
992f48a0 1652static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1653 struct elfhdr *exec,
1654 struct image_info *info,
1655 struct image_info *interp_info)
31e31b8a 1656{
d97ef72e 1657 abi_ulong sp;
7c4ee5bc 1658 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1659 int size;
14322bad
LA
1660 int i;
1661 abi_ulong u_rand_bytes;
1662 uint8_t k_rand_bytes[16];
d97ef72e
RH
1663 abi_ulong u_platform;
1664 const char *k_platform;
1665 const int n = sizeof(elf_addr_t);
1666
1667 sp = p;
1af02e83
MF
1668
1669#ifdef CONFIG_USE_FDPIC
1670 /* Needs to be before we load the env/argc/... */
1671 if (elf_is_fdpic(exec)) {
1672 /* Need 4 byte alignment for these structs */
1673 sp &= ~3;
1674 sp = loader_build_fdpic_loadmap(info, sp);
1675 info->other_info = interp_info;
1676 if (interp_info) {
1677 interp_info->other_info = info;
1678 sp = loader_build_fdpic_loadmap(interp_info, sp);
1679 }
1680 }
1681#endif
1682
d97ef72e
RH
1683 u_platform = 0;
1684 k_platform = ELF_PLATFORM;
1685 if (k_platform) {
1686 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1687 if (STACK_GROWS_DOWN) {
1688 sp -= (len + n - 1) & ~(n - 1);
1689 u_platform = sp;
1690 /* FIXME - check return value of memcpy_to_target() for failure */
1691 memcpy_to_target(sp, k_platform, len);
1692 } else {
1693 memcpy_to_target(sp, k_platform, len);
1694 u_platform = sp;
1695 sp += len + 1;
1696 }
1697 }
1698
1699 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1700 * the argv and envp pointers.
1701 */
1702 if (STACK_GROWS_DOWN) {
1703 sp = QEMU_ALIGN_DOWN(sp, 16);
1704 } else {
1705 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1706 }
14322bad
LA
1707
1708 /*
1709 * Generate 16 random bytes for userspace PRNG seeding (not
1710 * cryptically secure but it's not the aim of QEMU).
1711 */
14322bad
LA
1712 for (i = 0; i < 16; i++) {
1713 k_rand_bytes[i] = rand();
1714 }
7c4ee5bc
RH
1715 if (STACK_GROWS_DOWN) {
1716 sp -= 16;
1717 u_rand_bytes = sp;
1718 /* FIXME - check return value of memcpy_to_target() for failure */
1719 memcpy_to_target(sp, k_rand_bytes, 16);
1720 } else {
1721 memcpy_to_target(sp, k_rand_bytes, 16);
1722 u_rand_bytes = sp;
1723 sp += 16;
1724 }
14322bad 1725
d97ef72e
RH
1726 size = (DLINFO_ITEMS + 1) * 2;
1727 if (k_platform)
1728 size += 2;
f5155289 1729#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1730 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1731#endif
1732#ifdef ELF_HWCAP2
1733 size += 2;
f5155289 1734#endif
d97ef72e 1735 size += envc + argc + 2;
b9329d4b 1736 size += 1; /* argc itself */
d97ef72e 1737 size *= n;
7c4ee5bc
RH
1738
1739 /* Allocate space and finalize stack alignment for entry now. */
1740 if (STACK_GROWS_DOWN) {
1741 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1742 sp = u_argc;
1743 } else {
1744 u_argc = sp;
1745 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1746 }
1747
1748 u_argv = u_argc + n;
1749 u_envp = u_argv + (argc + 1) * n;
1750 u_auxv = u_envp + (envc + 1) * n;
1751 info->saved_auxv = u_auxv;
1752 info->arg_start = u_argv;
1753 info->arg_end = u_argv + argc * n;
d97ef72e
RH
1754
1755 /* This is correct because Linux defines
1756 * elf_addr_t as Elf32_Off / Elf64_Off
1757 */
1758#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
1759 put_user_ual(id, u_auxv); u_auxv += n; \
1760 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
1761 } while(0)
1762
d97ef72e 1763 /* There must be exactly DLINFO_ITEMS entries here. */
8e62a717 1764 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1765 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1766 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
a70daba3 1767 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
8e62a717 1768 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1769 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1770 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1771 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1772 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1773 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1774 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1775 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1776 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad
LA
1777 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1778
ad6919dc
PM
1779#ifdef ELF_HWCAP2
1780 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1781#endif
1782
7c4ee5bc 1783 if (u_platform) {
d97ef72e 1784 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 1785 }
f5155289 1786#ifdef ARCH_DLINFO
d97ef72e
RH
1787 /*
1788 * ARCH_DLINFO must come last so platform specific code can enforce
1789 * special alignment requirements on the AUXV if necessary (eg. PPC).
1790 */
1791 ARCH_DLINFO;
f5155289 1792#endif
7c4ee5bc 1793 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
1794#undef NEW_AUX_ENT
1795
7c4ee5bc
RH
1796 info->auxv_len = u_argv - info->saved_auxv;
1797
1798 put_user_ual(argc, u_argc);
1799
1800 p = info->arg_strings;
1801 for (i = 0; i < argc; ++i) {
1802 put_user_ual(p, u_argv);
1803 u_argv += n;
1804 p += target_strlen(p) + 1;
1805 }
1806 put_user_ual(0, u_argv);
1807
1808 p = info->env_strings;
1809 for (i = 0; i < envc; ++i) {
1810 put_user_ual(p, u_envp);
1811 u_envp += n;
1812 p += target_strlen(p) + 1;
1813 }
1814 put_user_ual(0, u_envp);
edf8e2af 1815
d97ef72e 1816 return sp;
31e31b8a
FB
1817}
1818
806d1021 1819#ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
97cc7560 1820/* If the guest doesn't have a validation function just agree */
806d1021
MI
1821static int validate_guest_space(unsigned long guest_base,
1822 unsigned long guest_size)
97cc7560
DDAG
1823{
1824 return 1;
1825}
1826#endif
1827
dce10401
MI
1828unsigned long init_guest_space(unsigned long host_start,
1829 unsigned long host_size,
1830 unsigned long guest_start,
1831 bool fixed)
1832{
1833 unsigned long current_start, real_start;
1834 int flags;
1835
1836 assert(host_start || host_size);
1837
1838 /* If just a starting address is given, then just verify that
1839 * address. */
1840 if (host_start && !host_size) {
806d1021 1841 if (validate_guest_space(host_start, host_size) == 1) {
dce10401
MI
1842 return host_start;
1843 } else {
1844 return (unsigned long)-1;
1845 }
1846 }
1847
1848 /* Setup the initial flags and start address. */
1849 current_start = host_start & qemu_host_page_mask;
1850 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1851 if (fixed) {
1852 flags |= MAP_FIXED;
1853 }
1854
1855 /* Otherwise, a non-zero size region of memory needs to be mapped
1856 * and validated. */
1857 while (1) {
806d1021
MI
1858 unsigned long real_size = host_size;
1859
dce10401
MI
1860 /* Do not use mmap_find_vma here because that is limited to the
1861 * guest address space. We are going to make the
1862 * guest address space fit whatever we're given.
1863 */
1864 real_start = (unsigned long)
1865 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1866 if (real_start == (unsigned long)-1) {
1867 return (unsigned long)-1;
1868 }
1869
806d1021
MI
1870 /* Ensure the address is properly aligned. */
1871 if (real_start & ~qemu_host_page_mask) {
1872 munmap((void *)real_start, host_size);
1873 real_size = host_size + qemu_host_page_size;
1874 real_start = (unsigned long)
1875 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1876 if (real_start == (unsigned long)-1) {
1877 return (unsigned long)-1;
1878 }
1879 real_start = HOST_PAGE_ALIGN(real_start);
1880 }
1881
1882 /* Check to see if the address is valid. */
1883 if (!host_start || real_start == current_start) {
1884 int valid = validate_guest_space(real_start - guest_start,
1885 real_size);
1886 if (valid == 1) {
1887 break;
1888 } else if (valid == -1) {
1889 return (unsigned long)-1;
1890 }
1891 /* valid == 0, so try again. */
dce10401
MI
1892 }
1893
1894 /* That address didn't work. Unmap and try a different one.
1895 * The address the host picked because is typically right at
1896 * the top of the host address space and leaves the guest with
1897 * no usable address space. Resort to a linear search. We
1898 * already compensated for mmap_min_addr, so this should not
1899 * happen often. Probably means we got unlucky and host
1900 * address space randomization put a shared library somewhere
1901 * inconvenient.
1902 */
1903 munmap((void *)real_start, host_size);
1904 current_start += qemu_host_page_size;
1905 if (host_start == current_start) {
1906 /* Theoretically possible if host doesn't have any suitably
1907 * aligned areas. Normally the first mmap will fail.
1908 */
1909 return (unsigned long)-1;
1910 }
1911 }
1912
13829020 1913 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
806d1021 1914
dce10401
MI
1915 return real_start;
1916}
1917
f3ed1f5d
PM
1918static void probe_guest_base(const char *image_name,
1919 abi_ulong loaddr, abi_ulong hiaddr)
1920{
1921 /* Probe for a suitable guest base address, if the user has not set
1922 * it explicitly, and set guest_base appropriately.
1923 * In case of error we will print a suitable message and exit.
1924 */
f3ed1f5d
PM
1925 const char *errmsg;
1926 if (!have_guest_base && !reserved_va) {
1927 unsigned long host_start, real_start, host_size;
1928
1929 /* Round addresses to page boundaries. */
1930 loaddr &= qemu_host_page_mask;
1931 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1932
1933 if (loaddr < mmap_min_addr) {
1934 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1935 } else {
1936 host_start = loaddr;
1937 if (host_start != loaddr) {
1938 errmsg = "Address overflow loading ELF binary";
1939 goto exit_errmsg;
1940 }
1941 }
1942 host_size = hiaddr - loaddr;
dce10401
MI
1943
1944 /* Setup the initial guest memory space with ranges gleaned from
1945 * the ELF image that is being loaded.
1946 */
1947 real_start = init_guest_space(host_start, host_size, loaddr, false);
1948 if (real_start == (unsigned long)-1) {
1949 errmsg = "Unable to find space for application";
1950 goto exit_errmsg;
f3ed1f5d 1951 }
dce10401
MI
1952 guest_base = real_start - loaddr;
1953
13829020
PB
1954 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1955 TARGET_ABI_FMT_lx " to 0x%lx\n",
1956 loaddr, real_start);
f3ed1f5d
PM
1957 }
1958 return;
1959
f3ed1f5d
PM
1960exit_errmsg:
1961 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1962 exit(-1);
f3ed1f5d
PM
1963}
1964
1965
8e62a717 1966/* Load an ELF image into the address space.
31e31b8a 1967
8e62a717
RH
1968 IMAGE_NAME is the filename of the image, to use in error messages.
1969 IMAGE_FD is the open file descriptor for the image.
1970
1971 BPRM_BUF is a copy of the beginning of the file; this of course
1972 contains the elf file header at offset 0. It is assumed that this
1973 buffer is sufficiently aligned to present no problems to the host
1974 in accessing data at aligned offsets within the buffer.
1975
1976 On return: INFO values will be filled in, as necessary or available. */
1977
1978static void load_elf_image(const char *image_name, int image_fd,
bf858897 1979 struct image_info *info, char **pinterp_name,
8e62a717 1980 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 1981{
8e62a717
RH
1982 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1983 struct elf_phdr *phdr;
1984 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1985 int i, retval;
1986 const char *errmsg;
5fafdf24 1987
8e62a717
RH
1988 /* First of all, some simple consistency checks */
1989 errmsg = "Invalid ELF image for this architecture";
1990 if (!elf_check_ident(ehdr)) {
1991 goto exit_errmsg;
1992 }
1993 bswap_ehdr(ehdr);
1994 if (!elf_check_ehdr(ehdr)) {
1995 goto exit_errmsg;
d97ef72e 1996 }
5fafdf24 1997
8e62a717
RH
1998 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1999 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2000 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2001 } else {
8e62a717
RH
2002 phdr = (struct elf_phdr *) alloca(i);
2003 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2004 if (retval != i) {
8e62a717 2005 goto exit_read;
9955ffac 2006 }
d97ef72e 2007 }
8e62a717 2008 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2009
1af02e83
MF
2010#ifdef CONFIG_USE_FDPIC
2011 info->nsegs = 0;
2012 info->pt_dynamic_addr = 0;
2013#endif
2014
98c1076c
AB
2015 mmap_lock();
2016
682674b8
RH
2017 /* Find the maximum size of the image and allocate an appropriate
2018 amount of memory to handle that. */
2019 loaddr = -1, hiaddr = 0;
8e62a717
RH
2020 for (i = 0; i < ehdr->e_phnum; ++i) {
2021 if (phdr[i].p_type == PT_LOAD) {
a93934fe 2022 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
2023 if (a < loaddr) {
2024 loaddr = a;
2025 }
ccf661f8 2026 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
2027 if (a > hiaddr) {
2028 hiaddr = a;
2029 }
1af02e83
MF
2030#ifdef CONFIG_USE_FDPIC
2031 ++info->nsegs;
2032#endif
682674b8
RH
2033 }
2034 }
2035
2036 load_addr = loaddr;
8e62a717 2037 if (ehdr->e_type == ET_DYN) {
682674b8
RH
2038 /* The image indicates that it can be loaded anywhere. Find a
2039 location that can hold the memory space required. If the
2040 image is pre-linked, LOADDR will be non-zero. Since we do
2041 not supply MAP_FIXED here we'll use that address if and
2042 only if it remains available. */
2043 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2044 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2045 -1, 0);
2046 if (load_addr == -1) {
8e62a717 2047 goto exit_perror;
d97ef72e 2048 }
bf858897
RH
2049 } else if (pinterp_name != NULL) {
2050 /* This is the main executable. Make sure that the low
2051 address does not conflict with MMAP_MIN_ADDR or the
2052 QEMU application itself. */
f3ed1f5d 2053 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 2054 }
682674b8 2055 load_bias = load_addr - loaddr;
d97ef72e 2056
1af02e83
MF
2057#ifdef CONFIG_USE_FDPIC
2058 {
2059 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2060 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2061
2062 for (i = 0; i < ehdr->e_phnum; ++i) {
2063 switch (phdr[i].p_type) {
2064 case PT_DYNAMIC:
2065 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2066 break;
2067 case PT_LOAD:
2068 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2069 loadsegs->p_vaddr = phdr[i].p_vaddr;
2070 loadsegs->p_memsz = phdr[i].p_memsz;
2071 ++loadsegs;
2072 break;
2073 }
2074 }
2075 }
2076#endif
2077
8e62a717
RH
2078 info->load_bias = load_bias;
2079 info->load_addr = load_addr;
2080 info->entry = ehdr->e_entry + load_bias;
2081 info->start_code = -1;
2082 info->end_code = 0;
2083 info->start_data = -1;
2084 info->end_data = 0;
2085 info->brk = 0;
d8fd2954 2086 info->elf_flags = ehdr->e_flags;
8e62a717
RH
2087
2088 for (i = 0; i < ehdr->e_phnum; i++) {
2089 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2090 if (eppnt->p_type == PT_LOAD) {
682674b8 2091 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
d97ef72e 2092 int elf_prot = 0;
d97ef72e
RH
2093
2094 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2095 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2096 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 2097
682674b8
RH
2098 vaddr = load_bias + eppnt->p_vaddr;
2099 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2100 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2101
2102 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2103 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 2104 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 2105 if (error == -1) {
8e62a717 2106 goto exit_perror;
09bfb054 2107 }
09bfb054 2108
682674b8
RH
2109 vaddr_ef = vaddr + eppnt->p_filesz;
2110 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 2111
cf129f3a 2112 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
2113 if (vaddr_ef < vaddr_em) {
2114 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 2115 }
8e62a717
RH
2116
2117 /* Find the full program boundaries. */
2118 if (elf_prot & PROT_EXEC) {
2119 if (vaddr < info->start_code) {
2120 info->start_code = vaddr;
2121 }
2122 if (vaddr_ef > info->end_code) {
2123 info->end_code = vaddr_ef;
2124 }
2125 }
2126 if (elf_prot & PROT_WRITE) {
2127 if (vaddr < info->start_data) {
2128 info->start_data = vaddr;
2129 }
2130 if (vaddr_ef > info->end_data) {
2131 info->end_data = vaddr_ef;
2132 }
2133 if (vaddr_em > info->brk) {
2134 info->brk = vaddr_em;
2135 }
2136 }
bf858897
RH
2137 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2138 char *interp_name;
2139
2140 if (*pinterp_name) {
2141 errmsg = "Multiple PT_INTERP entries";
2142 goto exit_errmsg;
2143 }
2144 interp_name = malloc(eppnt->p_filesz);
2145 if (!interp_name) {
2146 goto exit_perror;
2147 }
2148
2149 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2150 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2151 eppnt->p_filesz);
2152 } else {
2153 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2154 eppnt->p_offset);
2155 if (retval != eppnt->p_filesz) {
2156 goto exit_perror;
2157 }
2158 }
2159 if (interp_name[eppnt->p_filesz - 1] != 0) {
2160 errmsg = "Invalid PT_INTERP entry";
2161 goto exit_errmsg;
2162 }
2163 *pinterp_name = interp_name;
d97ef72e 2164 }
682674b8 2165 }
5fafdf24 2166
8e62a717
RH
2167 if (info->end_data == 0) {
2168 info->start_data = info->end_code;
2169 info->end_data = info->end_code;
2170 info->brk = info->end_code;
2171 }
2172
682674b8 2173 if (qemu_log_enabled()) {
8e62a717 2174 load_symbols(ehdr, image_fd, load_bias);
682674b8 2175 }
31e31b8a 2176
98c1076c
AB
2177 mmap_unlock();
2178
8e62a717
RH
2179 close(image_fd);
2180 return;
2181
2182 exit_read:
2183 if (retval >= 0) {
2184 errmsg = "Incomplete read of file header";
2185 goto exit_errmsg;
2186 }
2187 exit_perror:
2188 errmsg = strerror(errno);
2189 exit_errmsg:
2190 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2191 exit(-1);
2192}
2193
2194static void load_elf_interp(const char *filename, struct image_info *info,
2195 char bprm_buf[BPRM_BUF_SIZE])
2196{
2197 int fd, retval;
2198
2199 fd = open(path(filename), O_RDONLY);
2200 if (fd < 0) {
2201 goto exit_perror;
2202 }
31e31b8a 2203
8e62a717
RH
2204 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2205 if (retval < 0) {
2206 goto exit_perror;
2207 }
2208 if (retval < BPRM_BUF_SIZE) {
2209 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2210 }
2211
bf858897 2212 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2213 return;
2214
2215 exit_perror:
2216 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2217 exit(-1);
31e31b8a
FB
2218}
2219
49918a75
PB
2220static int symfind(const void *s0, const void *s1)
2221{
c7c530cd 2222 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2223 struct elf_sym *sym = (struct elf_sym *)s1;
2224 int result = 0;
c7c530cd 2225 if (addr < sym->st_value) {
49918a75 2226 result = -1;
c7c530cd 2227 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2228 result = 1;
2229 }
2230 return result;
2231}
2232
2233static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2234{
2235#if ELF_CLASS == ELFCLASS32
2236 struct elf_sym *syms = s->disas_symtab.elf32;
2237#else
2238 struct elf_sym *syms = s->disas_symtab.elf64;
2239#endif
2240
2241 // binary search
49918a75
PB
2242 struct elf_sym *sym;
2243
c7c530cd 2244 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2245 if (sym != NULL) {
49918a75
PB
2246 return s->disas_strtab + sym->st_name;
2247 }
2248
2249 return "";
2250}
2251
2252/* FIXME: This should use elf_ops.h */
2253static int symcmp(const void *s0, const void *s1)
2254{
2255 struct elf_sym *sym0 = (struct elf_sym *)s0;
2256 struct elf_sym *sym1 = (struct elf_sym *)s1;
2257 return (sym0->st_value < sym1->st_value)
2258 ? -1
2259 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2260}
2261
689f936f 2262/* Best attempt to load symbols from this ELF object. */
682674b8 2263static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2264{
682674b8
RH
2265 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2266 struct elf_shdr *shdr;
b9475279
CV
2267 char *strings = NULL;
2268 struct syminfo *s = NULL;
2269 struct elf_sym *new_syms, *syms = NULL;
689f936f 2270
682674b8
RH
2271 shnum = hdr->e_shnum;
2272 i = shnum * sizeof(struct elf_shdr);
2273 shdr = (struct elf_shdr *)alloca(i);
2274 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2275 return;
2276 }
2277
2278 bswap_shdr(shdr, shnum);
2279 for (i = 0; i < shnum; ++i) {
2280 if (shdr[i].sh_type == SHT_SYMTAB) {
2281 sym_idx = i;
2282 str_idx = shdr[i].sh_link;
49918a75
PB
2283 goto found;
2284 }
689f936f 2285 }
682674b8
RH
2286
2287 /* There will be no symbol table if the file was stripped. */
2288 return;
689f936f
FB
2289
2290 found:
682674b8 2291 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 2292 s = g_try_new(struct syminfo, 1);
682674b8 2293 if (!s) {
b9475279 2294 goto give_up;
682674b8 2295 }
5fafdf24 2296
682674b8 2297 i = shdr[str_idx].sh_size;
0ef9ea29 2298 s->disas_strtab = strings = g_try_malloc(i);
682674b8 2299 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
b9475279 2300 goto give_up;
682674b8 2301 }
49918a75 2302
682674b8 2303 i = shdr[sym_idx].sh_size;
0ef9ea29 2304 syms = g_try_malloc(i);
682674b8 2305 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
b9475279 2306 goto give_up;
682674b8 2307 }
31e31b8a 2308
682674b8
RH
2309 nsyms = i / sizeof(struct elf_sym);
2310 for (i = 0; i < nsyms; ) {
49918a75 2311 bswap_sym(syms + i);
682674b8
RH
2312 /* Throw away entries which we do not need. */
2313 if (syms[i].st_shndx == SHN_UNDEF
2314 || syms[i].st_shndx >= SHN_LORESERVE
2315 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2316 if (i < --nsyms) {
49918a75
PB
2317 syms[i] = syms[nsyms];
2318 }
682674b8 2319 } else {
49918a75 2320#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2321 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2322 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2323#endif
682674b8
RH
2324 syms[i].st_value += load_bias;
2325 i++;
2326 }
0774bed1 2327 }
49918a75 2328
b9475279
CV
2329 /* No "useful" symbol. */
2330 if (nsyms == 0) {
2331 goto give_up;
2332 }
2333
5d5c9930
RH
2334 /* Attempt to free the storage associated with the local symbols
2335 that we threw away. Whether or not this has any effect on the
2336 memory allocation depends on the malloc implementation and how
2337 many symbols we managed to discard. */
0ef9ea29 2338 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 2339 if (new_syms == NULL) {
b9475279 2340 goto give_up;
5d5c9930 2341 }
8d79de6e 2342 syms = new_syms;
5d5c9930 2343
49918a75 2344 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2345
49918a75
PB
2346 s->disas_num_syms = nsyms;
2347#if ELF_CLASS == ELFCLASS32
2348 s->disas_symtab.elf32 = syms;
49918a75
PB
2349#else
2350 s->disas_symtab.elf64 = syms;
49918a75 2351#endif
682674b8 2352 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2353 s->next = syminfos;
2354 syminfos = s;
b9475279
CV
2355
2356 return;
2357
2358give_up:
0ef9ea29
PM
2359 g_free(s);
2360 g_free(strings);
2361 g_free(syms);
689f936f 2362}
31e31b8a 2363
f0116c54 2364int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2365{
8e62a717 2366 struct image_info interp_info;
31e31b8a 2367 struct elfhdr elf_ex;
8e62a717 2368 char *elf_interpreter = NULL;
59baae9a 2369 char *scratch;
31e31b8a 2370
bf858897 2371 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2372
2373 load_elf_image(bprm->filename, bprm->fd, info,
2374 &elf_interpreter, bprm->buf);
31e31b8a 2375
bf858897
RH
2376 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2377 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2378 when we load the interpreter. */
2379 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2380
59baae9a
SB
2381 /* Do this so that we can load the interpreter, if need be. We will
2382 change some of these later */
2383 bprm->p = setup_arg_pages(bprm, info);
2384
2385 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
2386 if (STACK_GROWS_DOWN) {
2387 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2388 bprm->p, info->stack_limit);
2389 info->file_string = bprm->p;
2390 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2391 bprm->p, info->stack_limit);
2392 info->env_strings = bprm->p;
2393 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2394 bprm->p, info->stack_limit);
2395 info->arg_strings = bprm->p;
2396 } else {
2397 info->arg_strings = bprm->p;
2398 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2399 bprm->p, info->stack_limit);
2400 info->env_strings = bprm->p;
2401 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2402 bprm->p, info->stack_limit);
2403 info->file_string = bprm->p;
2404 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2405 bprm->p, info->stack_limit);
2406 }
2407
59baae9a
SB
2408 g_free(scratch);
2409
e5fe0c52 2410 if (!bprm->p) {
bf858897
RH
2411 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2412 exit(-1);
379f6698 2413 }
379f6698 2414
8e62a717
RH
2415 if (elf_interpreter) {
2416 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2417
8e62a717
RH
2418 /* If the program interpreter is one of these two, then assume
2419 an iBCS2 image. Otherwise assume a native linux image. */
2420
2421 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2422 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2423 info->personality = PER_SVR4;
31e31b8a 2424
8e62a717
RH
2425 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2426 and some applications "depend" upon this behavior. Since
2427 we do not have the power to recompile these, we emulate
2428 the SVr4 behavior. Sigh. */
2429 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 2430 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 2431 }
31e31b8a
FB
2432 }
2433
8e62a717
RH
2434 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2435 info, (elf_interpreter ? &interp_info : NULL));
2436 info->start_stack = bprm->p;
2437
2438 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2439 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2440 point as a function descriptor. Do this after creating elf tables
2441 so that we copy the original program entry point into the AUXV. */
2442 if (elf_interpreter) {
8e78064e 2443 info->load_bias = interp_info.load_bias;
8e62a717 2444 info->entry = interp_info.entry;
bf858897 2445 free(elf_interpreter);
8e62a717 2446 }
31e31b8a 2447
edf8e2af
MW
2448#ifdef USE_ELF_CORE_DUMP
2449 bprm->core_dump = &elf_core_dump;
2450#endif
2451
31e31b8a
FB
2452 return 0;
2453}
2454
edf8e2af 2455#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2456/*
2457 * Definitions to generate Intel SVR4-like core files.
a2547a13 2458 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2459 * tacked on the front to prevent clashes with linux definitions,
2460 * and the typedef forms have been avoided. This is mostly like
2461 * the SVR4 structure, but more Linuxy, with things that Linux does
2462 * not support and which gdb doesn't really use excluded.
2463 *
2464 * Fields we don't dump (their contents is zero) in linux-user qemu
2465 * are marked with XXX.
2466 *
2467 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2468 *
2469 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2470 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2471 * the target resides):
2472 *
2473 * #define USE_ELF_CORE_DUMP
2474 *
2475 * Next you define type of register set used for dumping. ELF specification
2476 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2477 *
c227f099 2478 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2479 * #define ELF_NREG <number of registers>
c227f099 2480 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2481 *
edf8e2af
MW
2482 * Last step is to implement target specific function that copies registers
2483 * from given cpu into just specified register set. Prototype is:
2484 *
c227f099 2485 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2486 * const CPUArchState *env);
edf8e2af
MW
2487 *
2488 * Parameters:
2489 * regs - copy register values into here (allocated and zeroed by caller)
2490 * env - copy registers from here
2491 *
2492 * Example for ARM target is provided in this file.
2493 */
2494
2495/* An ELF note in memory */
2496struct memelfnote {
2497 const char *name;
2498 size_t namesz;
2499 size_t namesz_rounded;
2500 int type;
2501 size_t datasz;
80f5ce75 2502 size_t datasz_rounded;
edf8e2af
MW
2503 void *data;
2504 size_t notesz;
2505};
2506
a2547a13 2507struct target_elf_siginfo {
f8fd4fc4
PB
2508 abi_int si_signo; /* signal number */
2509 abi_int si_code; /* extra code */
2510 abi_int si_errno; /* errno */
edf8e2af
MW
2511};
2512
a2547a13
LD
2513struct target_elf_prstatus {
2514 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2515 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2516 abi_ulong pr_sigpend; /* XXX */
2517 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2518 target_pid_t pr_pid;
2519 target_pid_t pr_ppid;
2520 target_pid_t pr_pgrp;
2521 target_pid_t pr_sid;
edf8e2af
MW
2522 struct target_timeval pr_utime; /* XXX User time */
2523 struct target_timeval pr_stime; /* XXX System time */
2524 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2525 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2526 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2527 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2528};
2529
2530#define ELF_PRARGSZ (80) /* Number of chars for args */
2531
a2547a13 2532struct target_elf_prpsinfo {
edf8e2af
MW
2533 char pr_state; /* numeric process state */
2534 char pr_sname; /* char for pr_state */
2535 char pr_zomb; /* zombie */
2536 char pr_nice; /* nice val */
ca98ac83 2537 abi_ulong pr_flag; /* flags */
c227f099
AL
2538 target_uid_t pr_uid;
2539 target_gid_t pr_gid;
2540 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2541 /* Lots missing */
2542 char pr_fname[16]; /* filename of executable */
2543 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2544};
2545
2546/* Here is the structure in which status of each thread is captured. */
2547struct elf_thread_status {
72cf2d4f 2548 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2549 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2550#if 0
2551 elf_fpregset_t fpu; /* NT_PRFPREG */
2552 struct task_struct *thread;
2553 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2554#endif
2555 struct memelfnote notes[1];
2556 int num_notes;
2557};
2558
2559struct elf_note_info {
2560 struct memelfnote *notes;
a2547a13
LD
2561 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2562 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2563
72cf2d4f 2564 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2565#if 0
2566 /*
2567 * Current version of ELF coredump doesn't support
2568 * dumping fp regs etc.
2569 */
2570 elf_fpregset_t *fpu;
2571 elf_fpxregset_t *xfpu;
2572 int thread_status_size;
2573#endif
2574 int notes_size;
2575 int numnote;
2576};
2577
2578struct vm_area_struct {
1a1c4db9
MI
2579 target_ulong vma_start; /* start vaddr of memory region */
2580 target_ulong vma_end; /* end vaddr of memory region */
2581 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2582 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2583};
2584
2585struct mm_struct {
72cf2d4f 2586 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2587 int mm_count; /* number of mappings */
2588};
2589
2590static struct mm_struct *vma_init(void);
2591static void vma_delete(struct mm_struct *);
1a1c4db9
MI
2592static int vma_add_mapping(struct mm_struct *, target_ulong,
2593 target_ulong, abi_ulong);
edf8e2af
MW
2594static int vma_get_mapping_count(const struct mm_struct *);
2595static struct vm_area_struct *vma_first(const struct mm_struct *);
2596static struct vm_area_struct *vma_next(struct vm_area_struct *);
2597static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 2598static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2599 unsigned long flags);
edf8e2af
MW
2600
2601static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2602static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2603 unsigned int, void *);
a2547a13
LD
2604static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2605static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2606static void fill_auxv_note(struct memelfnote *, const TaskState *);
2607static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2608static size_t note_size(const struct memelfnote *);
2609static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2610static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2611static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2612static int core_dump_filename(const TaskState *, char *, size_t);
2613
2614static int dump_write(int, const void *, size_t);
2615static int write_note(struct memelfnote *, int);
2616static int write_note_info(struct elf_note_info *, int);
2617
2618#ifdef BSWAP_NEEDED
a2547a13 2619static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2620{
ca98ac83
PB
2621 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2622 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2623 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2624 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
2625 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2626 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
2627 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2628 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2629 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2630 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2631 /* cpu times are not filled, so we skip them */
2632 /* regs should be in correct format already */
2633 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2634}
2635
a2547a13 2636static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 2637{
ca98ac83 2638 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
2639 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2640 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2641 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2642 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2643 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2644 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2645}
991f8f0c
RH
2646
2647static void bswap_note(struct elf_note *en)
2648{
2649 bswap32s(&en->n_namesz);
2650 bswap32s(&en->n_descsz);
2651 bswap32s(&en->n_type);
2652}
2653#else
2654static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2655static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2656static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2657#endif /* BSWAP_NEEDED */
2658
2659/*
2660 * Minimal support for linux memory regions. These are needed
2661 * when we are finding out what memory exactly belongs to
2662 * emulated process. No locks needed here, as long as
2663 * thread that received the signal is stopped.
2664 */
2665
2666static struct mm_struct *vma_init(void)
2667{
2668 struct mm_struct *mm;
2669
7267c094 2670 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
2671 return (NULL);
2672
2673 mm->mm_count = 0;
72cf2d4f 2674 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2675
2676 return (mm);
2677}
2678
2679static void vma_delete(struct mm_struct *mm)
2680{
2681 struct vm_area_struct *vma;
2682
2683 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2684 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 2685 g_free(vma);
edf8e2af 2686 }
7267c094 2687 g_free(mm);
edf8e2af
MW
2688}
2689
1a1c4db9
MI
2690static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2691 target_ulong end, abi_ulong flags)
edf8e2af
MW
2692{
2693 struct vm_area_struct *vma;
2694
7267c094 2695 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
2696 return (-1);
2697
2698 vma->vma_start = start;
2699 vma->vma_end = end;
2700 vma->vma_flags = flags;
2701
72cf2d4f 2702 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2703 mm->mm_count++;
2704
2705 return (0);
2706}
2707
2708static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2709{
72cf2d4f 2710 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2711}
2712
2713static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2714{
72cf2d4f 2715 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2716}
2717
2718static int vma_get_mapping_count(const struct mm_struct *mm)
2719{
2720 return (mm->mm_count);
2721}
2722
2723/*
2724 * Calculate file (dump) size of given memory region.
2725 */
2726static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2727{
2728 /* if we cannot even read the first page, skip it */
2729 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2730 return (0);
2731
2732 /*
2733 * Usually we don't dump executable pages as they contain
2734 * non-writable code that debugger can read directly from
2735 * target library etc. However, thread stacks are marked
2736 * also executable so we read in first page of given region
2737 * and check whether it contains elf header. If there is
2738 * no elf header, we dump it.
2739 */
2740 if (vma->vma_flags & PROT_EXEC) {
2741 char page[TARGET_PAGE_SIZE];
2742
2743 copy_from_user(page, vma->vma_start, sizeof (page));
2744 if ((page[EI_MAG0] == ELFMAG0) &&
2745 (page[EI_MAG1] == ELFMAG1) &&
2746 (page[EI_MAG2] == ELFMAG2) &&
2747 (page[EI_MAG3] == ELFMAG3)) {
2748 /*
2749 * Mappings are possibly from ELF binary. Don't dump
2750 * them.
2751 */
2752 return (0);
2753 }
2754 }
2755
2756 return (vma->vma_end - vma->vma_start);
2757}
2758
1a1c4db9 2759static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2760 unsigned long flags)
edf8e2af
MW
2761{
2762 struct mm_struct *mm = (struct mm_struct *)priv;
2763
edf8e2af
MW
2764 vma_add_mapping(mm, start, end, flags);
2765 return (0);
2766}
2767
2768static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 2769 unsigned int sz, void *data)
edf8e2af
MW
2770{
2771 unsigned int namesz;
2772
2773 namesz = strlen(name) + 1;
2774 note->name = name;
2775 note->namesz = namesz;
2776 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2777 note->type = type;
80f5ce75
LV
2778 note->datasz = sz;
2779 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2780
edf8e2af
MW
2781 note->data = data;
2782
2783 /*
2784 * We calculate rounded up note size here as specified by
2785 * ELF document.
2786 */
2787 note->notesz = sizeof (struct elf_note) +
80f5ce75 2788 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
2789}
2790
2791static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 2792 uint32_t flags)
edf8e2af
MW
2793{
2794 (void) memset(elf, 0, sizeof(*elf));
2795
2796 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2797 elf->e_ident[EI_CLASS] = ELF_CLASS;
2798 elf->e_ident[EI_DATA] = ELF_DATA;
2799 elf->e_ident[EI_VERSION] = EV_CURRENT;
2800 elf->e_ident[EI_OSABI] = ELF_OSABI;
2801
2802 elf->e_type = ET_CORE;
2803 elf->e_machine = machine;
2804 elf->e_version = EV_CURRENT;
2805 elf->e_phoff = sizeof(struct elfhdr);
2806 elf->e_flags = flags;
2807 elf->e_ehsize = sizeof(struct elfhdr);
2808 elf->e_phentsize = sizeof(struct elf_phdr);
2809 elf->e_phnum = segs;
2810
edf8e2af 2811 bswap_ehdr(elf);
edf8e2af
MW
2812}
2813
2814static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2815{
2816 phdr->p_type = PT_NOTE;
2817 phdr->p_offset = offset;
2818 phdr->p_vaddr = 0;
2819 phdr->p_paddr = 0;
2820 phdr->p_filesz = sz;
2821 phdr->p_memsz = 0;
2822 phdr->p_flags = 0;
2823 phdr->p_align = 0;
2824
991f8f0c 2825 bswap_phdr(phdr, 1);
edf8e2af
MW
2826}
2827
2828static size_t note_size(const struct memelfnote *note)
2829{
2830 return (note->notesz);
2831}
2832
a2547a13 2833static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 2834 const TaskState *ts, int signr)
edf8e2af
MW
2835{
2836 (void) memset(prstatus, 0, sizeof (*prstatus));
2837 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2838 prstatus->pr_pid = ts->ts_tid;
2839 prstatus->pr_ppid = getppid();
2840 prstatus->pr_pgrp = getpgrp();
2841 prstatus->pr_sid = getsid(0);
2842
edf8e2af 2843 bswap_prstatus(prstatus);
edf8e2af
MW
2844}
2845
a2547a13 2846static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 2847{
900cfbca 2848 char *base_filename;
edf8e2af
MW
2849 unsigned int i, len;
2850
2851 (void) memset(psinfo, 0, sizeof (*psinfo));
2852
2853 len = ts->info->arg_end - ts->info->arg_start;
2854 if (len >= ELF_PRARGSZ)
2855 len = ELF_PRARGSZ - 1;
2856 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2857 return -EFAULT;
2858 for (i = 0; i < len; i++)
2859 if (psinfo->pr_psargs[i] == 0)
2860 psinfo->pr_psargs[i] = ' ';
2861 psinfo->pr_psargs[len] = 0;
2862
2863 psinfo->pr_pid = getpid();
2864 psinfo->pr_ppid = getppid();
2865 psinfo->pr_pgrp = getpgrp();
2866 psinfo->pr_sid = getsid(0);
2867 psinfo->pr_uid = getuid();
2868 psinfo->pr_gid = getgid();
2869
900cfbca
JM
2870 base_filename = g_path_get_basename(ts->bprm->filename);
2871 /*
2872 * Using strncpy here is fine: at max-length,
2873 * this field is not NUL-terminated.
2874 */
edf8e2af 2875 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 2876 sizeof(psinfo->pr_fname));
edf8e2af 2877
900cfbca 2878 g_free(base_filename);
edf8e2af 2879 bswap_psinfo(psinfo);
edf8e2af
MW
2880 return (0);
2881}
2882
2883static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2884{
2885 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2886 elf_addr_t orig_auxv = auxv;
edf8e2af 2887 void *ptr;
125b0f55 2888 int len = ts->info->auxv_len;
edf8e2af
MW
2889
2890 /*
2891 * Auxiliary vector is stored in target process stack. It contains
2892 * {type, value} pairs that we need to dump into note. This is not
2893 * strictly necessary but we do it here for sake of completeness.
2894 */
2895
edf8e2af
MW
2896 /* read in whole auxv vector and copy it to memelfnote */
2897 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2898 if (ptr != NULL) {
2899 fill_note(note, "CORE", NT_AUXV, len, ptr);
2900 unlock_user(ptr, auxv, len);
2901 }
2902}
2903
2904/*
2905 * Constructs name of coredump file. We have following convention
2906 * for the name:
2907 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2908 *
2909 * Returns 0 in case of success, -1 otherwise (errno is set).
2910 */
2911static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 2912 size_t bufsize)
edf8e2af
MW
2913{
2914 char timestamp[64];
edf8e2af
MW
2915 char *base_filename = NULL;
2916 struct timeval tv;
2917 struct tm tm;
2918
2919 assert(bufsize >= PATH_MAX);
2920
2921 if (gettimeofday(&tv, NULL) < 0) {
2922 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 2923 strerror(errno));
edf8e2af
MW
2924 return (-1);
2925 }
2926
b8da57fa 2927 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 2928 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 2929 localtime_r(&tv.tv_sec, &tm));
edf8e2af 2930 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 2931 base_filename, timestamp, (int)getpid());
b8da57fa 2932 g_free(base_filename);
edf8e2af
MW
2933
2934 return (0);
2935}
2936
2937static int dump_write(int fd, const void *ptr, size_t size)
2938{
2939 const char *bufp = (const char *)ptr;
2940 ssize_t bytes_written, bytes_left;
2941 struct rlimit dumpsize;
2942 off_t pos;
2943
2944 bytes_written = 0;
2945 getrlimit(RLIMIT_CORE, &dumpsize);
2946 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2947 if (errno == ESPIPE) { /* not a seekable stream */
2948 bytes_left = size;
2949 } else {
2950 return pos;
2951 }
2952 } else {
2953 if (dumpsize.rlim_cur <= pos) {
2954 return -1;
2955 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2956 bytes_left = size;
2957 } else {
2958 size_t limit_left=dumpsize.rlim_cur - pos;
2959 bytes_left = limit_left >= size ? size : limit_left ;
2960 }
2961 }
2962
2963 /*
2964 * In normal conditions, single write(2) should do but
2965 * in case of socket etc. this mechanism is more portable.
2966 */
2967 do {
2968 bytes_written = write(fd, bufp, bytes_left);
2969 if (bytes_written < 0) {
2970 if (errno == EINTR)
2971 continue;
2972 return (-1);
2973 } else if (bytes_written == 0) { /* eof */
2974 return (-1);
2975 }
2976 bufp += bytes_written;
2977 bytes_left -= bytes_written;
2978 } while (bytes_left > 0);
2979
2980 return (0);
2981}
2982
2983static int write_note(struct memelfnote *men, int fd)
2984{
2985 struct elf_note en;
2986
2987 en.n_namesz = men->namesz;
2988 en.n_type = men->type;
2989 en.n_descsz = men->datasz;
2990
edf8e2af 2991 bswap_note(&en);
edf8e2af
MW
2992
2993 if (dump_write(fd, &en, sizeof(en)) != 0)
2994 return (-1);
2995 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2996 return (-1);
80f5ce75 2997 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
2998 return (-1);
2999
3000 return (0);
3001}
3002
9349b4f9 3003static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3004{
0429a971
AF
3005 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3006 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3007 struct elf_thread_status *ets;
3008
7267c094 3009 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3010 ets->num_notes = 1; /* only prstatus is dumped */
3011 fill_prstatus(&ets->prstatus, ts, 0);
3012 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3013 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3014 &ets->prstatus);
edf8e2af 3015
72cf2d4f 3016 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3017
3018 info->notes_size += note_size(&ets->notes[0]);
3019}
3020
6afafa86
PM
3021static void init_note_info(struct elf_note_info *info)
3022{
3023 /* Initialize the elf_note_info structure so that it is at
3024 * least safe to call free_note_info() on it. Must be
3025 * called before calling fill_note_info().
3026 */
3027 memset(info, 0, sizeof (*info));
3028 QTAILQ_INIT(&info->thread_list);
3029}
3030
edf8e2af 3031static int fill_note_info(struct elf_note_info *info,
9349b4f9 3032 long signr, const CPUArchState *env)
edf8e2af
MW
3033{
3034#define NUMNOTES 3
0429a971
AF
3035 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3036 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3037 int i;
3038
c78d65e8 3039 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3040 if (info->notes == NULL)
3041 return (-ENOMEM);
7267c094 3042 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3043 if (info->prstatus == NULL)
3044 return (-ENOMEM);
7267c094 3045 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3046 if (info->prstatus == NULL)
3047 return (-ENOMEM);
3048
3049 /*
3050 * First fill in status (and registers) of current thread
3051 * including process info & aux vector.
3052 */
3053 fill_prstatus(info->prstatus, ts, signr);
3054 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3055 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3056 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3057 fill_psinfo(info->psinfo, ts);
3058 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3059 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3060 fill_auxv_note(&info->notes[2], ts);
3061 info->numnote = 3;
3062
3063 info->notes_size = 0;
3064 for (i = 0; i < info->numnote; i++)
3065 info->notes_size += note_size(&info->notes[i]);
3066
3067 /* read and fill status of all threads */
3068 cpu_list_lock();
bdc44640 3069 CPU_FOREACH(cpu) {
a2247f8e 3070 if (cpu == thread_cpu) {
edf8e2af 3071 continue;
182735ef
AF
3072 }
3073 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3074 }
3075 cpu_list_unlock();
3076
3077 return (0);
3078}
3079
3080static void free_note_info(struct elf_note_info *info)
3081{
3082 struct elf_thread_status *ets;
3083
72cf2d4f
BS
3084 while (!QTAILQ_EMPTY(&info->thread_list)) {
3085 ets = QTAILQ_FIRST(&info->thread_list);
3086 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3087 g_free(ets);
edf8e2af
MW
3088 }
3089
7267c094
AL
3090 g_free(info->prstatus);
3091 g_free(info->psinfo);
3092 g_free(info->notes);
edf8e2af
MW
3093}
3094
3095static int write_note_info(struct elf_note_info *info, int fd)
3096{
3097 struct elf_thread_status *ets;
3098 int i, error = 0;
3099
3100 /* write prstatus, psinfo and auxv for current thread */
3101 for (i = 0; i < info->numnote; i++)
3102 if ((error = write_note(&info->notes[i], fd)) != 0)
3103 return (error);
3104
3105 /* write prstatus for each thread */
52a53afe 3106 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3107 if ((error = write_note(&ets->notes[0], fd)) != 0)
3108 return (error);
3109 }
3110
3111 return (0);
3112}
3113
3114/*
3115 * Write out ELF coredump.
3116 *
3117 * See documentation of ELF object file format in:
3118 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3119 *
3120 * Coredump format in linux is following:
3121 *
3122 * 0 +----------------------+ \
3123 * | ELF header | ET_CORE |
3124 * +----------------------+ |
3125 * | ELF program headers | |--- headers
3126 * | - NOTE section | |
3127 * | - PT_LOAD sections | |
3128 * +----------------------+ /
3129 * | NOTEs: |
3130 * | - NT_PRSTATUS |
3131 * | - NT_PRSINFO |
3132 * | - NT_AUXV |
3133 * +----------------------+ <-- aligned to target page
3134 * | Process memory dump |
3135 * : :
3136 * . .
3137 * : :
3138 * | |
3139 * +----------------------+
3140 *
3141 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3142 * NT_PRSINFO -> struct elf_prpsinfo
3143 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3144 *
3145 * Format follows System V format as close as possible. Current
3146 * version limitations are as follows:
3147 * - no floating point registers are dumped
3148 *
3149 * Function returns 0 in case of success, negative errno otherwise.
3150 *
3151 * TODO: make this work also during runtime: it should be
3152 * possible to force coredump from running process and then
3153 * continue processing. For example qemu could set up SIGUSR2
3154 * handler (provided that target process haven't registered
3155 * handler for that) that does the dump when signal is received.
3156 */
9349b4f9 3157static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3158{
0429a971
AF
3159 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3160 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3161 struct vm_area_struct *vma = NULL;
3162 char corefile[PATH_MAX];
3163 struct elf_note_info info;
3164 struct elfhdr elf;
3165 struct elf_phdr phdr;
3166 struct rlimit dumpsize;
3167 struct mm_struct *mm = NULL;
3168 off_t offset = 0, data_offset = 0;
3169 int segs = 0;
3170 int fd = -1;
3171
6afafa86
PM
3172 init_note_info(&info);
3173
edf8e2af
MW
3174 errno = 0;
3175 getrlimit(RLIMIT_CORE, &dumpsize);
3176 if (dumpsize.rlim_cur == 0)
d97ef72e 3177 return 0;
edf8e2af
MW
3178
3179 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3180 return (-errno);
3181
3182 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3183 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3184 return (-errno);
3185
3186 /*
3187 * Walk through target process memory mappings and
3188 * set up structure containing this information. After
3189 * this point vma_xxx functions can be used.
3190 */
3191 if ((mm = vma_init()) == NULL)
3192 goto out;
3193
3194 walk_memory_regions(mm, vma_walker);
3195 segs = vma_get_mapping_count(mm);
3196
3197 /*
3198 * Construct valid coredump ELF header. We also
3199 * add one more segment for notes.
3200 */
3201 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3202 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3203 goto out;
3204
b6af0975 3205 /* fill in the in-memory version of notes */
edf8e2af
MW
3206 if (fill_note_info(&info, signr, env) < 0)
3207 goto out;
3208
3209 offset += sizeof (elf); /* elf header */
3210 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3211
3212 /* write out notes program header */
3213 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3214
3215 offset += info.notes_size;
3216 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3217 goto out;
3218
3219 /*
3220 * ELF specification wants data to start at page boundary so
3221 * we align it here.
3222 */
80f5ce75 3223 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3224
3225 /*
3226 * Write program headers for memory regions mapped in
3227 * the target process.
3228 */
3229 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3230 (void) memset(&phdr, 0, sizeof (phdr));
3231
3232 phdr.p_type = PT_LOAD;
3233 phdr.p_offset = offset;
3234 phdr.p_vaddr = vma->vma_start;
3235 phdr.p_paddr = 0;
3236 phdr.p_filesz = vma_dump_size(vma);
3237 offset += phdr.p_filesz;
3238 phdr.p_memsz = vma->vma_end - vma->vma_start;
3239 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3240 if (vma->vma_flags & PROT_WRITE)
3241 phdr.p_flags |= PF_W;
3242 if (vma->vma_flags & PROT_EXEC)
3243 phdr.p_flags |= PF_X;
3244 phdr.p_align = ELF_EXEC_PAGESIZE;
3245
80f5ce75 3246 bswap_phdr(&phdr, 1);
772034b6
PM
3247 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3248 goto out;
3249 }
edf8e2af
MW
3250 }
3251
3252 /*
3253 * Next we write notes just after program headers. No
3254 * alignment needed here.
3255 */
3256 if (write_note_info(&info, fd) < 0)
3257 goto out;
3258
3259 /* align data to page boundary */
edf8e2af
MW
3260 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3261 goto out;
3262
3263 /*
3264 * Finally we can dump process memory into corefile as well.
3265 */
3266 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3267 abi_ulong addr;
3268 abi_ulong end;
3269
3270 end = vma->vma_start + vma_dump_size(vma);
3271
3272 for (addr = vma->vma_start; addr < end;
d97ef72e 3273 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3274 char page[TARGET_PAGE_SIZE];
3275 int error;
3276
3277 /*
3278 * Read in page from target process memory and
3279 * write it to coredump file.
3280 */
3281 error = copy_from_user(page, addr, sizeof (page));
3282 if (error != 0) {
49995e17 3283 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3284 addr);
edf8e2af
MW
3285 errno = -error;
3286 goto out;
3287 }
3288 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3289 goto out;
3290 }
3291 }
3292
d97ef72e 3293 out:
edf8e2af
MW
3294 free_note_info(&info);
3295 if (mm != NULL)
3296 vma_delete(mm);
3297 (void) close(fd);
3298
3299 if (errno != 0)
3300 return (-errno);
3301 return (0);
3302}
edf8e2af
MW
3303#endif /* USE_ELF_CORE_DUMP */
3304
e5fe0c52
PB
3305void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3306{
3307 init_thread(regs, infop);
3308}