]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
target/ppc/kvm: set vcpu as online/offline
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
31e31b8a 6
3ef693a0 7#include "qemu.h"
76cad711 8#include "disas/disas.h"
f348b6d1 9#include "qemu/path.h"
31e31b8a 10
e58ffeb3 11#ifdef _ARCH_PPC64
a6cc84f4 12#undef ARCH_DLINFO
13#undef ELF_PLATFORM
14#undef ELF_HWCAP
ad6919dc 15#undef ELF_HWCAP2
a6cc84f4 16#undef ELF_CLASS
17#undef ELF_DATA
18#undef ELF_ARCH
19#endif
20
edf8e2af
MW
21#define ELF_OSABI ELFOSABI_SYSV
22
cb33da57
BS
23/* from personality.h */
24
25/*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30enum {
d97ef72e
RH
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
42};
43
44/*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50enum {
d97ef72e
RH
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
cb33da57
BS
74};
75
76/*
77 * Return the base personality without flags.
78 */
d97ef72e 79#define personality(pers) (pers & PER_MASK)
cb33da57 80
3cb10cfa
CL
81int info_is_fdpic(struct image_info *info)
82{
83 return info->personality == PER_LINUX_FDPIC;
84}
85
83fb7adf
FB
86/* this flag is uneffective under linux too, should be deleted */
87#ifndef MAP_DENYWRITE
88#define MAP_DENYWRITE 0
89#endif
90
91/* should probably go in elf.h */
92#ifndef ELIBBAD
93#define ELIBBAD 80
94#endif
95
28490231
RH
96#ifdef TARGET_WORDS_BIGENDIAN
97#define ELF_DATA ELFDATA2MSB
98#else
99#define ELF_DATA ELFDATA2LSB
100#endif
101
a29f998d 102#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
103typedef abi_ullong target_elf_greg_t;
104#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
105#else
106typedef abi_ulong target_elf_greg_t;
107#define tswapreg(ptr) tswapal(ptr)
108#endif
109
21e807fa 110#ifdef USE_UID16
1ddd592f
PB
111typedef abi_ushort target_uid_t;
112typedef abi_ushort target_gid_t;
21e807fa 113#else
f8fd4fc4
PB
114typedef abi_uint target_uid_t;
115typedef abi_uint target_gid_t;
21e807fa 116#endif
f8fd4fc4 117typedef abi_int target_pid_t;
21e807fa 118
30ac07d4
FB
119#ifdef TARGET_I386
120
15338fd7
FB
121#define ELF_PLATFORM get_elf_platform()
122
123static const char *get_elf_platform(void)
124{
125 static char elf_platform[] = "i386";
a2247f8e 126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
127 if (family > 6)
128 family = 6;
129 if (family >= 3)
130 elf_platform[1] = '0' + family;
131 return elf_platform;
132}
133
134#define ELF_HWCAP get_elf_hwcap()
135
136static uint32_t get_elf_hwcap(void)
137{
a2247f8e
AF
138 X86CPU *cpu = X86_CPU(thread_cpu);
139
140 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
141}
142
84409ddb
JM
143#ifdef TARGET_X86_64
144#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
145
146#define ELF_CLASS ELFCLASS64
84409ddb
JM
147#define ELF_ARCH EM_X86_64
148
149static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150{
151 regs->rax = 0;
152 regs->rsp = infop->start_stack;
153 regs->rip = infop->entry;
154}
155
9edc5d79 156#define ELF_NREG 27
c227f099 157typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
158
159/*
160 * Note that ELF_NREG should be 29 as there should be place for
161 * TRAPNO and ERR "registers" as well but linux doesn't dump
162 * those.
163 *
164 * See linux kernel: arch/x86/include/asm/elf.h
165 */
05390248 166static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
167{
168 (*regs)[0] = env->regs[15];
169 (*regs)[1] = env->regs[14];
170 (*regs)[2] = env->regs[13];
171 (*regs)[3] = env->regs[12];
172 (*regs)[4] = env->regs[R_EBP];
173 (*regs)[5] = env->regs[R_EBX];
174 (*regs)[6] = env->regs[11];
175 (*regs)[7] = env->regs[10];
176 (*regs)[8] = env->regs[9];
177 (*regs)[9] = env->regs[8];
178 (*regs)[10] = env->regs[R_EAX];
179 (*regs)[11] = env->regs[R_ECX];
180 (*regs)[12] = env->regs[R_EDX];
181 (*regs)[13] = env->regs[R_ESI];
182 (*regs)[14] = env->regs[R_EDI];
183 (*regs)[15] = env->regs[R_EAX]; /* XXX */
184 (*regs)[16] = env->eip;
185 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186 (*regs)[18] = env->eflags;
187 (*regs)[19] = env->regs[R_ESP];
188 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195}
196
84409ddb
JM
197#else
198
30ac07d4
FB
199#define ELF_START_MMAP 0x80000000
200
30ac07d4
FB
201/*
202 * This is used to ensure we don't load something for the wrong architecture.
203 */
204#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205
206/*
207 * These are used to set parameters in the core dumps.
208 */
d97ef72e 209#define ELF_CLASS ELFCLASS32
d97ef72e 210#define ELF_ARCH EM_386
30ac07d4 211
d97ef72e
RH
212static inline void init_thread(struct target_pt_regs *regs,
213 struct image_info *infop)
b346ff46
FB
214{
215 regs->esp = infop->start_stack;
216 regs->eip = infop->entry;
e5fe0c52
PB
217
218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219 starts %edx contains a pointer to a function which might be
220 registered using `atexit'. This provides a mean for the
221 dynamic linker to call DT_FINI functions for shared libraries
222 that have been loaded before the code runs.
223
224 A value of 0 tells we have no such handler. */
225 regs->edx = 0;
b346ff46 226}
9edc5d79 227
9edc5d79 228#define ELF_NREG 17
c227f099 229typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
230
231/*
232 * Note that ELF_NREG should be 19 as there should be place for
233 * TRAPNO and ERR "registers" as well but linux doesn't dump
234 * those.
235 *
236 * See linux kernel: arch/x86/include/asm/elf.h
237 */
05390248 238static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
239{
240 (*regs)[0] = env->regs[R_EBX];
241 (*regs)[1] = env->regs[R_ECX];
242 (*regs)[2] = env->regs[R_EDX];
243 (*regs)[3] = env->regs[R_ESI];
244 (*regs)[4] = env->regs[R_EDI];
245 (*regs)[5] = env->regs[R_EBP];
246 (*regs)[6] = env->regs[R_EAX];
247 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251 (*regs)[11] = env->regs[R_EAX]; /* XXX */
252 (*regs)[12] = env->eip;
253 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254 (*regs)[14] = env->eflags;
255 (*regs)[15] = env->regs[R_ESP];
256 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257}
84409ddb 258#endif
b346ff46 259
9edc5d79 260#define USE_ELF_CORE_DUMP
d97ef72e 261#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
262
263#endif
264
265#ifdef TARGET_ARM
266
24e76ff0
PM
267#ifndef TARGET_AARCH64
268/* 32 bit ARM definitions */
269
b346ff46
FB
270#define ELF_START_MMAP 0x80000000
271
b597c3f7 272#define ELF_ARCH EM_ARM
d97ef72e 273#define ELF_CLASS ELFCLASS32
b346ff46 274
d97ef72e
RH
275static inline void init_thread(struct target_pt_regs *regs,
276 struct image_info *infop)
b346ff46 277{
992f48a0 278 abi_long stack = infop->start_stack;
b346ff46 279 memset(regs, 0, sizeof(*regs));
99033cae 280
167e4cdc
PM
281 regs->uregs[16] = ARM_CPU_MODE_USR;
282 if (infop->entry & 1) {
283 regs->uregs[16] |= CPSR_T;
284 }
285 regs->uregs[15] = infop->entry & 0xfffffffe;
286 regs->uregs[13] = infop->start_stack;
2f619698 287 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
288 get_user_ual(regs->uregs[2], stack + 8); /* envp */
289 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 290 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 291 regs->uregs[0] = 0;
e5fe0c52 292 /* For uClinux PIC binaries. */
863cf0b7 293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 294 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
295
296 /* Support ARM FDPIC. */
297 if (info_is_fdpic(infop)) {
298 /* As described in the ABI document, r7 points to the loadmap info
299 * prepared by the kernel. If an interpreter is needed, r8 points
300 * to the interpreter loadmap and r9 points to the interpreter
301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302 * r9 points to the main program PT_DYNAMIC info.
303 */
304 regs->uregs[7] = infop->loadmap_addr;
305 if (infop->interpreter_loadmap_addr) {
306 /* Executable is dynamically loaded. */
307 regs->uregs[8] = infop->interpreter_loadmap_addr;
308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309 } else {
310 regs->uregs[8] = 0;
311 regs->uregs[9] = infop->pt_dynamic_addr;
312 }
313 }
b346ff46
FB
314}
315
edf8e2af 316#define ELF_NREG 18
c227f099 317typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 318
05390248 319static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 320{
86cd7b2d
PB
321 (*regs)[0] = tswapreg(env->regs[0]);
322 (*regs)[1] = tswapreg(env->regs[1]);
323 (*regs)[2] = tswapreg(env->regs[2]);
324 (*regs)[3] = tswapreg(env->regs[3]);
325 (*regs)[4] = tswapreg(env->regs[4]);
326 (*regs)[5] = tswapreg(env->regs[5]);
327 (*regs)[6] = tswapreg(env->regs[6]);
328 (*regs)[7] = tswapreg(env->regs[7]);
329 (*regs)[8] = tswapreg(env->regs[8]);
330 (*regs)[9] = tswapreg(env->regs[9]);
331 (*regs)[10] = tswapreg(env->regs[10]);
332 (*regs)[11] = tswapreg(env->regs[11]);
333 (*regs)[12] = tswapreg(env->regs[12]);
334 (*regs)[13] = tswapreg(env->regs[13]);
335 (*regs)[14] = tswapreg(env->regs[14]);
336 (*regs)[15] = tswapreg(env->regs[15]);
337
338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
340}
341
30ac07d4 342#define USE_ELF_CORE_DUMP
d97ef72e 343#define ELF_EXEC_PAGESIZE 4096
30ac07d4 344
afce2927
FB
345enum
346{
d97ef72e
RH
347 ARM_HWCAP_ARM_SWP = 1 << 0,
348 ARM_HWCAP_ARM_HALF = 1 << 1,
349 ARM_HWCAP_ARM_THUMB = 1 << 2,
350 ARM_HWCAP_ARM_26BIT = 1 << 3,
351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352 ARM_HWCAP_ARM_FPA = 1 << 5,
353 ARM_HWCAP_ARM_VFP = 1 << 6,
354 ARM_HWCAP_ARM_EDSP = 1 << 7,
355 ARM_HWCAP_ARM_JAVA = 1 << 8,
356 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
357 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
358 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
359 ARM_HWCAP_ARM_NEON = 1 << 12,
360 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
362 ARM_HWCAP_ARM_TLS = 1 << 15,
363 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
364 ARM_HWCAP_ARM_IDIVA = 1 << 17,
365 ARM_HWCAP_ARM_IDIVT = 1 << 18,
366 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
367 ARM_HWCAP_ARM_LPAE = 1 << 20,
368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
369};
370
ad6919dc
PM
371enum {
372 ARM_HWCAP2_ARM_AES = 1 << 0,
373 ARM_HWCAP2_ARM_PMULL = 1 << 1,
374 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
375 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
376 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
377};
378
6b1275ff
PM
379/* The commpage only exists for 32 bit kernels */
380
806d1021
MI
381/* Return 1 if the proposed guest space is suitable for the guest.
382 * Return 0 if the proposed guest space isn't suitable, but another
383 * address space should be tried.
384 * Return -1 if there is no way the proposed guest space can be
385 * valid regardless of the base.
386 * The guest code may leave a page mapped and populate it if the
387 * address is suitable.
388 */
c3637eaf
LS
389static int init_guest_commpage(unsigned long guest_base,
390 unsigned long guest_size)
97cc7560
DDAG
391{
392 unsigned long real_start, test_page_addr;
393
394 /* We need to check that we can force a fault on access to the
395 * commpage at 0xffff0fxx
396 */
397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
398
399 /* If the commpage lies within the already allocated guest space,
400 * then there is no way we can allocate it.
955e304f
LS
401 *
402 * You may be thinking that that this check is redundant because
403 * we already validated the guest size against MAX_RESERVED_VA;
404 * but if qemu_host_page_mask is unusually large, then
405 * test_page_addr may be lower.
806d1021
MI
406 */
407 if (test_page_addr >= guest_base
e568f9df 408 && test_page_addr < (guest_base + guest_size)) {
806d1021
MI
409 return -1;
410 }
411
97cc7560
DDAG
412 /* Note it needs to be writeable to let us initialise it */
413 real_start = (unsigned long)
414 mmap((void *)test_page_addr, qemu_host_page_size,
415 PROT_READ | PROT_WRITE,
416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417
418 /* If we can't map it then try another address */
419 if (real_start == -1ul) {
420 return 0;
421 }
422
423 if (real_start != test_page_addr) {
424 /* OS didn't put the page where we asked - unmap and reject */
425 munmap((void *)real_start, qemu_host_page_size);
426 return 0;
427 }
428
429 /* Leave the page mapped
430 * Populate it (mmap should have left it all 0'd)
431 */
432
433 /* Kernel helper versions */
434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435
436 /* Now it's populated make it RO */
437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438 perror("Protecting guest commpage");
439 exit(-1);
440 }
441
442 return 1; /* All good */
443}
adf050b1
BC
444
445#define ELF_HWCAP get_elf_hwcap()
ad6919dc 446#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
447
448static uint32_t get_elf_hwcap(void)
449{
a2247f8e 450 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
451 uint32_t hwcaps = 0;
452
453 hwcaps |= ARM_HWCAP_ARM_SWP;
454 hwcaps |= ARM_HWCAP_ARM_HALF;
455 hwcaps |= ARM_HWCAP_ARM_THUMB;
456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
457
458 /* probe for the extra features */
459#define GET_FEATURE(feat, hwcap) \
a2247f8e 460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
24682654
PM
461 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
462 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
463 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
464 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
465 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
466 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
467 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
468 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
469 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
470 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
471 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
472 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
473 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
474 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
475 * to our VFP_FP16 feature bit.
476 */
477 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
478 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
479
480 return hwcaps;
481}
afce2927 482
ad6919dc
PM
483static uint32_t get_elf_hwcap2(void)
484{
485 ARMCPU *cpu = ARM_CPU(thread_cpu);
486 uint32_t hwcaps = 0;
487
488 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
4e624eda 489 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
f1ecb913
AB
490 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
491 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
ad6919dc
PM
492 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
493 return hwcaps;
494}
495
496#undef GET_FEATURE
497
24e76ff0
PM
498#else
499/* 64 bit ARM definitions */
500#define ELF_START_MMAP 0x80000000
501
b597c3f7 502#define ELF_ARCH EM_AARCH64
24e76ff0
PM
503#define ELF_CLASS ELFCLASS64
504#define ELF_PLATFORM "aarch64"
505
506static inline void init_thread(struct target_pt_regs *regs,
507 struct image_info *infop)
508{
509 abi_long stack = infop->start_stack;
510 memset(regs, 0, sizeof(*regs));
511
512 regs->pc = infop->entry & ~0x3ULL;
513 regs->sp = stack;
514}
515
516#define ELF_NREG 34
517typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
518
519static void elf_core_copy_regs(target_elf_gregset_t *regs,
520 const CPUARMState *env)
521{
522 int i;
523
524 for (i = 0; i < 32; i++) {
525 (*regs)[i] = tswapreg(env->xregs[i]);
526 }
527 (*regs)[32] = tswapreg(env->pc);
528 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
529}
530
531#define USE_ELF_CORE_DUMP
532#define ELF_EXEC_PAGESIZE 4096
533
534enum {
535 ARM_HWCAP_A64_FP = 1 << 0,
536 ARM_HWCAP_A64_ASIMD = 1 << 1,
537 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
538 ARM_HWCAP_A64_AES = 1 << 3,
539 ARM_HWCAP_A64_PMULL = 1 << 4,
540 ARM_HWCAP_A64_SHA1 = 1 << 5,
541 ARM_HWCAP_A64_SHA2 = 1 << 6,
542 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
543 ARM_HWCAP_A64_ATOMICS = 1 << 8,
544 ARM_HWCAP_A64_FPHP = 1 << 9,
545 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
546 ARM_HWCAP_A64_CPUID = 1 << 11,
547 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
548 ARM_HWCAP_A64_JSCVT = 1 << 13,
549 ARM_HWCAP_A64_FCMA = 1 << 14,
550 ARM_HWCAP_A64_LRCPC = 1 << 15,
551 ARM_HWCAP_A64_DCPOP = 1 << 16,
552 ARM_HWCAP_A64_SHA3 = 1 << 17,
553 ARM_HWCAP_A64_SM3 = 1 << 18,
554 ARM_HWCAP_A64_SM4 = 1 << 19,
555 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
556 ARM_HWCAP_A64_SHA512 = 1 << 21,
557 ARM_HWCAP_A64_SVE = 1 << 22,
24e76ff0
PM
558};
559
560#define ELF_HWCAP get_elf_hwcap()
561
562static uint32_t get_elf_hwcap(void)
563{
564 ARMCPU *cpu = ARM_CPU(thread_cpu);
565 uint32_t hwcaps = 0;
566
567 hwcaps |= ARM_HWCAP_A64_FP;
568 hwcaps |= ARM_HWCAP_A64_ASIMD;
569
570 /* probe for the extra features */
571#define GET_FEATURE(feat, hwcap) \
572 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
5acc765c 573 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
411bdc78 574 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
f6fe04d5
PM
575 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
576 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
130f2e7d 577 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
955f56d4
AB
578 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
579 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
580 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
581 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
201b19d5
PM
582 GET_FEATURE(ARM_FEATURE_V8_FP16,
583 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
68412d2e 584 GET_FEATURE(ARM_FEATURE_V8_ATOMICS, ARM_HWCAP_A64_ATOMICS);
1dc81c15 585 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
26c470a7 586 GET_FEATURE(ARM_FEATURE_V8_DOTPROD, ARM_HWCAP_A64_ASIMDDP);
0438f037 587 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
802ac0e1 588 GET_FEATURE(ARM_FEATURE_SVE, ARM_HWCAP_A64_SVE);
24e76ff0
PM
589#undef GET_FEATURE
590
591 return hwcaps;
592}
593
594#endif /* not TARGET_AARCH64 */
595#endif /* TARGET_ARM */
30ac07d4 596
853d6f7a 597#ifdef TARGET_SPARC
a315a145 598#ifdef TARGET_SPARC64
853d6f7a
FB
599
600#define ELF_START_MMAP 0x80000000
cf973e46
AT
601#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
602 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 603#ifndef TARGET_ABI32
cb33da57 604#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
605#else
606#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
607#endif
853d6f7a 608
a315a145 609#define ELF_CLASS ELFCLASS64
5ef54116
FB
610#define ELF_ARCH EM_SPARCV9
611
d97ef72e 612#define STACK_BIAS 2047
a315a145 613
d97ef72e
RH
614static inline void init_thread(struct target_pt_regs *regs,
615 struct image_info *infop)
a315a145 616{
992f48a0 617#ifndef TARGET_ABI32
a315a145 618 regs->tstate = 0;
992f48a0 619#endif
a315a145
FB
620 regs->pc = infop->entry;
621 regs->npc = regs->pc + 4;
622 regs->y = 0;
992f48a0
BS
623#ifdef TARGET_ABI32
624 regs->u_regs[14] = infop->start_stack - 16 * 4;
625#else
cb33da57
BS
626 if (personality(infop->personality) == PER_LINUX32)
627 regs->u_regs[14] = infop->start_stack - 16 * 4;
628 else
629 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 630#endif
a315a145
FB
631}
632
633#else
634#define ELF_START_MMAP 0x80000000
cf973e46
AT
635#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
636 | HWCAP_SPARC_MULDIV)
a315a145 637
853d6f7a 638#define ELF_CLASS ELFCLASS32
853d6f7a
FB
639#define ELF_ARCH EM_SPARC
640
d97ef72e
RH
641static inline void init_thread(struct target_pt_regs *regs,
642 struct image_info *infop)
853d6f7a 643{
f5155289
FB
644 regs->psr = 0;
645 regs->pc = infop->entry;
646 regs->npc = regs->pc + 4;
647 regs->y = 0;
648 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
649}
650
a315a145 651#endif
853d6f7a
FB
652#endif
653
67867308
FB
654#ifdef TARGET_PPC
655
4ecd4d16 656#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
657#define ELF_START_MMAP 0x80000000
658
e85e7c6e 659#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
660
661#define elf_check_arch(x) ( (x) == EM_PPC64 )
662
d97ef72e 663#define ELF_CLASS ELFCLASS64
84409ddb
JM
664
665#else
666
d97ef72e 667#define ELF_CLASS ELFCLASS32
84409ddb
JM
668
669#endif
670
d97ef72e 671#define ELF_ARCH EM_PPC
67867308 672
df84e4f3
NF
673/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
674 See arch/powerpc/include/asm/cputable.h. */
675enum {
3efa9a67 676 QEMU_PPC_FEATURE_32 = 0x80000000,
677 QEMU_PPC_FEATURE_64 = 0x40000000,
678 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
679 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
680 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
681 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
682 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
683 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
684 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
685 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
686 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
687 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
688 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
689 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
690 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
691 QEMU_PPC_FEATURE_CELL = 0x00010000,
692 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
693 QEMU_PPC_FEATURE_SMT = 0x00004000,
694 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
695 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
696 QEMU_PPC_FEATURE_PA6T = 0x00000800,
697 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
698 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
699 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
700 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
701 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
702
703 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
704 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
705
706 /* Feature definitions in AT_HWCAP2. */
707 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
708 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
709 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
710 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
711 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
712 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
df84e4f3
NF
713};
714
715#define ELF_HWCAP get_elf_hwcap()
716
717static uint32_t get_elf_hwcap(void)
718{
a2247f8e 719 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
720 uint32_t features = 0;
721
722 /* We don't have to be terribly complete here; the high points are
723 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 724#define GET_FEATURE(flag, feature) \
a2247f8e 725 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
726#define GET_FEATURE2(flags, feature) \
727 do { \
728 if ((cpu->env.insns_flags2 & flags) == flags) { \
729 features |= feature; \
730 } \
731 } while (0)
3efa9a67 732 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
733 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
734 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
735 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
736 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
737 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
738 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
739 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
740 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
741 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
742 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
743 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
744 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 745#undef GET_FEATURE
0e019746 746#undef GET_FEATURE2
df84e4f3
NF
747
748 return features;
749}
750
a60438dd
TM
751#define ELF_HWCAP2 get_elf_hwcap2()
752
753static uint32_t get_elf_hwcap2(void)
754{
755 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
756 uint32_t features = 0;
757
758#define GET_FEATURE(flag, feature) \
759 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
760#define GET_FEATURE2(flag, feature) \
761 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
762
763 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
764 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
765 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
766 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
767
768#undef GET_FEATURE
769#undef GET_FEATURE2
770
771 return features;
772}
773
f5155289
FB
774/*
775 * The requirements here are:
776 * - keep the final alignment of sp (sp & 0xf)
777 * - make sure the 32-bit value at the first 16 byte aligned position of
778 * AUXV is greater than 16 for glibc compatibility.
779 * AT_IGNOREPPC is used for that.
780 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
781 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
782 */
0bccf03d 783#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
784#define ARCH_DLINFO \
785 do { \
623e250a 786 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 787 /* \
82991bed
PM
788 * Handle glibc compatibility: these magic entries must \
789 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
790 */ \
791 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
792 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
793 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
794 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
795 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 796 } while (0)
f5155289 797
67867308
FB
798static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
799{
67867308 800 _regs->gpr[1] = infop->start_stack;
e85e7c6e 801#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 802 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
803 uint64_t val;
804 get_user_u64(val, infop->entry + 8);
805 _regs->gpr[2] = val + infop->load_bias;
806 get_user_u64(val, infop->entry);
807 infop->entry = val + infop->load_bias;
d90b94cd
DK
808 } else {
809 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
810 }
84409ddb 811#endif
67867308
FB
812 _regs->nip = infop->entry;
813}
814
e2f3e741
NF
815/* See linux kernel: arch/powerpc/include/asm/elf.h. */
816#define ELF_NREG 48
817typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
818
05390248 819static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
820{
821 int i;
822 target_ulong ccr = 0;
823
824 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 825 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
826 }
827
86cd7b2d
PB
828 (*regs)[32] = tswapreg(env->nip);
829 (*regs)[33] = tswapreg(env->msr);
830 (*regs)[35] = tswapreg(env->ctr);
831 (*regs)[36] = tswapreg(env->lr);
832 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
833
834 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
835 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
836 }
86cd7b2d 837 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
838}
839
840#define USE_ELF_CORE_DUMP
d97ef72e 841#define ELF_EXEC_PAGESIZE 4096
67867308
FB
842
843#endif
844
048f6b4d
FB
845#ifdef TARGET_MIPS
846
847#define ELF_START_MMAP 0x80000000
848
388bb21a
TS
849#ifdef TARGET_MIPS64
850#define ELF_CLASS ELFCLASS64
851#else
048f6b4d 852#define ELF_CLASS ELFCLASS32
388bb21a 853#endif
048f6b4d
FB
854#define ELF_ARCH EM_MIPS
855
f72541f3
AM
856#define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
857
d97ef72e
RH
858static inline void init_thread(struct target_pt_regs *regs,
859 struct image_info *infop)
048f6b4d 860{
623a930e 861 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
862 regs->cp0_epc = infop->entry;
863 regs->regs[29] = infop->start_stack;
864}
865
51e52606
NF
866/* See linux kernel: arch/mips/include/asm/elf.h. */
867#define ELF_NREG 45
868typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
869
870/* See linux kernel: arch/mips/include/asm/reg.h. */
871enum {
872#ifdef TARGET_MIPS64
873 TARGET_EF_R0 = 0,
874#else
875 TARGET_EF_R0 = 6,
876#endif
877 TARGET_EF_R26 = TARGET_EF_R0 + 26,
878 TARGET_EF_R27 = TARGET_EF_R0 + 27,
879 TARGET_EF_LO = TARGET_EF_R0 + 32,
880 TARGET_EF_HI = TARGET_EF_R0 + 33,
881 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
882 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
883 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
884 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
885};
886
887/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 888static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
889{
890 int i;
891
892 for (i = 0; i < TARGET_EF_R0; i++) {
893 (*regs)[i] = 0;
894 }
895 (*regs)[TARGET_EF_R0] = 0;
896
897 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 898 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
899 }
900
901 (*regs)[TARGET_EF_R26] = 0;
902 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
903 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
904 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
905 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
906 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
907 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
908 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
909}
910
911#define USE_ELF_CORE_DUMP
388bb21a
TS
912#define ELF_EXEC_PAGESIZE 4096
913
46a1ee4f
JC
914/* See arch/mips/include/uapi/asm/hwcap.h. */
915enum {
916 HWCAP_MIPS_R6 = (1 << 0),
917 HWCAP_MIPS_MSA = (1 << 1),
918};
919
920#define ELF_HWCAP get_elf_hwcap()
921
922static uint32_t get_elf_hwcap(void)
923{
924 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
925 uint32_t hwcaps = 0;
926
927#define GET_FEATURE(flag, hwcap) \
928 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
929
930 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
931 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
932
933#undef GET_FEATURE
934
935 return hwcaps;
936}
937
048f6b4d
FB
938#endif /* TARGET_MIPS */
939
b779e29e
EI
940#ifdef TARGET_MICROBLAZE
941
942#define ELF_START_MMAP 0x80000000
943
0d5d4699 944#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
945
946#define ELF_CLASS ELFCLASS32
0d5d4699 947#define ELF_ARCH EM_MICROBLAZE
b779e29e 948
d97ef72e
RH
949static inline void init_thread(struct target_pt_regs *regs,
950 struct image_info *infop)
b779e29e
EI
951{
952 regs->pc = infop->entry;
953 regs->r1 = infop->start_stack;
954
955}
956
b779e29e
EI
957#define ELF_EXEC_PAGESIZE 4096
958
e4cbd44d
EI
959#define USE_ELF_CORE_DUMP
960#define ELF_NREG 38
961typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
962
963/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 964static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
965{
966 int i, pos = 0;
967
968 for (i = 0; i < 32; i++) {
86cd7b2d 969 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
970 }
971
972 for (i = 0; i < 6; i++) {
86cd7b2d 973 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
974 }
975}
976
b779e29e
EI
977#endif /* TARGET_MICROBLAZE */
978
a0a839b6
MV
979#ifdef TARGET_NIOS2
980
981#define ELF_START_MMAP 0x80000000
982
983#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
984
985#define ELF_CLASS ELFCLASS32
986#define ELF_ARCH EM_ALTERA_NIOS2
987
988static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
989{
990 regs->ea = infop->entry;
991 regs->sp = infop->start_stack;
992 regs->estatus = 0x3;
993}
994
995#define ELF_EXEC_PAGESIZE 4096
996
997#define USE_ELF_CORE_DUMP
998#define ELF_NREG 49
999typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1000
1001/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1002static void elf_core_copy_regs(target_elf_gregset_t *regs,
1003 const CPUNios2State *env)
1004{
1005 int i;
1006
1007 (*regs)[0] = -1;
1008 for (i = 1; i < 8; i++) /* r0-r7 */
1009 (*regs)[i] = tswapreg(env->regs[i + 7]);
1010
1011 for (i = 8; i < 16; i++) /* r8-r15 */
1012 (*regs)[i] = tswapreg(env->regs[i - 8]);
1013
1014 for (i = 16; i < 24; i++) /* r16-r23 */
1015 (*regs)[i] = tswapreg(env->regs[i + 7]);
1016 (*regs)[24] = -1; /* R_ET */
1017 (*regs)[25] = -1; /* R_BT */
1018 (*regs)[26] = tswapreg(env->regs[R_GP]);
1019 (*regs)[27] = tswapreg(env->regs[R_SP]);
1020 (*regs)[28] = tswapreg(env->regs[R_FP]);
1021 (*regs)[29] = tswapreg(env->regs[R_EA]);
1022 (*regs)[30] = -1; /* R_SSTATUS */
1023 (*regs)[31] = tswapreg(env->regs[R_RA]);
1024
1025 (*regs)[32] = tswapreg(env->regs[R_PC]);
1026
1027 (*regs)[33] = -1; /* R_STATUS */
1028 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1029
1030 for (i = 35; i < 49; i++) /* ... */
1031 (*regs)[i] = -1;
1032}
1033
1034#endif /* TARGET_NIOS2 */
1035
d962783e
JL
1036#ifdef TARGET_OPENRISC
1037
1038#define ELF_START_MMAP 0x08000000
1039
d962783e
JL
1040#define ELF_ARCH EM_OPENRISC
1041#define ELF_CLASS ELFCLASS32
1042#define ELF_DATA ELFDATA2MSB
1043
1044static inline void init_thread(struct target_pt_regs *regs,
1045 struct image_info *infop)
1046{
1047 regs->pc = infop->entry;
1048 regs->gpr[1] = infop->start_stack;
1049}
1050
1051#define USE_ELF_CORE_DUMP
1052#define ELF_EXEC_PAGESIZE 8192
1053
1054/* See linux kernel arch/openrisc/include/asm/elf.h. */
1055#define ELF_NREG 34 /* gprs and pc, sr */
1056typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1057
1058static void elf_core_copy_regs(target_elf_gregset_t *regs,
1059 const CPUOpenRISCState *env)
1060{
1061 int i;
1062
1063 for (i = 0; i < 32; i++) {
d89e71e8 1064 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1065 }
86cd7b2d 1066 (*regs)[32] = tswapreg(env->pc);
84775c43 1067 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1068}
1069#define ELF_HWCAP 0
1070#define ELF_PLATFORM NULL
1071
1072#endif /* TARGET_OPENRISC */
1073
fdf9b3e8
FB
1074#ifdef TARGET_SH4
1075
1076#define ELF_START_MMAP 0x80000000
1077
fdf9b3e8 1078#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1079#define ELF_ARCH EM_SH
1080
d97ef72e
RH
1081static inline void init_thread(struct target_pt_regs *regs,
1082 struct image_info *infop)
fdf9b3e8 1083{
d97ef72e
RH
1084 /* Check other registers XXXXX */
1085 regs->pc = infop->entry;
1086 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1087}
1088
7631c97e
NF
1089/* See linux kernel: arch/sh/include/asm/elf.h. */
1090#define ELF_NREG 23
1091typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1092
1093/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1094enum {
1095 TARGET_REG_PC = 16,
1096 TARGET_REG_PR = 17,
1097 TARGET_REG_SR = 18,
1098 TARGET_REG_GBR = 19,
1099 TARGET_REG_MACH = 20,
1100 TARGET_REG_MACL = 21,
1101 TARGET_REG_SYSCALL = 22
1102};
1103
d97ef72e 1104static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1105 const CPUSH4State *env)
7631c97e
NF
1106{
1107 int i;
1108
1109 for (i = 0; i < 16; i++) {
72cd500b 1110 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1111 }
1112
86cd7b2d
PB
1113 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1114 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1115 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1116 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1117 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1118 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1119 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1120}
1121
1122#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1123#define ELF_EXEC_PAGESIZE 4096
1124
e42fd944
RH
1125enum {
1126 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1127 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1128 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1129 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1130 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1131 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1132 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1133 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1134 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1135 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1136};
1137
1138#define ELF_HWCAP get_elf_hwcap()
1139
1140static uint32_t get_elf_hwcap(void)
1141{
1142 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1143 uint32_t hwcap = 0;
1144
1145 hwcap |= SH_CPU_HAS_FPU;
1146
1147 if (cpu->env.features & SH_FEATURE_SH4A) {
1148 hwcap |= SH_CPU_HAS_LLSC;
1149 }
1150
1151 return hwcap;
1152}
1153
fdf9b3e8
FB
1154#endif
1155
48733d19
TS
1156#ifdef TARGET_CRIS
1157
1158#define ELF_START_MMAP 0x80000000
1159
48733d19 1160#define ELF_CLASS ELFCLASS32
48733d19
TS
1161#define ELF_ARCH EM_CRIS
1162
d97ef72e
RH
1163static inline void init_thread(struct target_pt_regs *regs,
1164 struct image_info *infop)
48733d19 1165{
d97ef72e 1166 regs->erp = infop->entry;
48733d19
TS
1167}
1168
48733d19
TS
1169#define ELF_EXEC_PAGESIZE 8192
1170
1171#endif
1172
e6e5906b
PB
1173#ifdef TARGET_M68K
1174
1175#define ELF_START_MMAP 0x80000000
1176
d97ef72e 1177#define ELF_CLASS ELFCLASS32
d97ef72e 1178#define ELF_ARCH EM_68K
e6e5906b
PB
1179
1180/* ??? Does this need to do anything?
d97ef72e 1181 #define ELF_PLAT_INIT(_r) */
e6e5906b 1182
d97ef72e
RH
1183static inline void init_thread(struct target_pt_regs *regs,
1184 struct image_info *infop)
e6e5906b
PB
1185{
1186 regs->usp = infop->start_stack;
1187 regs->sr = 0;
1188 regs->pc = infop->entry;
1189}
1190
7a93cc55
NF
1191/* See linux kernel: arch/m68k/include/asm/elf.h. */
1192#define ELF_NREG 20
1193typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1194
05390248 1195static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1196{
86cd7b2d
PB
1197 (*regs)[0] = tswapreg(env->dregs[1]);
1198 (*regs)[1] = tswapreg(env->dregs[2]);
1199 (*regs)[2] = tswapreg(env->dregs[3]);
1200 (*regs)[3] = tswapreg(env->dregs[4]);
1201 (*regs)[4] = tswapreg(env->dregs[5]);
1202 (*regs)[5] = tswapreg(env->dregs[6]);
1203 (*regs)[6] = tswapreg(env->dregs[7]);
1204 (*regs)[7] = tswapreg(env->aregs[0]);
1205 (*regs)[8] = tswapreg(env->aregs[1]);
1206 (*regs)[9] = tswapreg(env->aregs[2]);
1207 (*regs)[10] = tswapreg(env->aregs[3]);
1208 (*regs)[11] = tswapreg(env->aregs[4]);
1209 (*regs)[12] = tswapreg(env->aregs[5]);
1210 (*regs)[13] = tswapreg(env->aregs[6]);
1211 (*regs)[14] = tswapreg(env->dregs[0]);
1212 (*regs)[15] = tswapreg(env->aregs[7]);
1213 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1214 (*regs)[17] = tswapreg(env->sr);
1215 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1216 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1217}
1218
1219#define USE_ELF_CORE_DUMP
d97ef72e 1220#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1221
1222#endif
1223
7a3148a9
JM
1224#ifdef TARGET_ALPHA
1225
1226#define ELF_START_MMAP (0x30000000000ULL)
1227
7a3148a9 1228#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1229#define ELF_ARCH EM_ALPHA
1230
d97ef72e
RH
1231static inline void init_thread(struct target_pt_regs *regs,
1232 struct image_info *infop)
7a3148a9
JM
1233{
1234 regs->pc = infop->entry;
1235 regs->ps = 8;
1236 regs->usp = infop->start_stack;
7a3148a9
JM
1237}
1238
7a3148a9
JM
1239#define ELF_EXEC_PAGESIZE 8192
1240
1241#endif /* TARGET_ALPHA */
1242
a4c075f1
UH
1243#ifdef TARGET_S390X
1244
1245#define ELF_START_MMAP (0x20000000000ULL)
1246
a4c075f1
UH
1247#define ELF_CLASS ELFCLASS64
1248#define ELF_DATA ELFDATA2MSB
1249#define ELF_ARCH EM_S390
1250
1251static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1252{
1253 regs->psw.addr = infop->entry;
1254 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1255 regs->gprs[15] = infop->start_stack;
1256}
1257
1258#endif /* TARGET_S390X */
1259
b16189b2
CG
1260#ifdef TARGET_TILEGX
1261
1262/* 42 bits real used address, a half for user mode */
1263#define ELF_START_MMAP (0x00000020000000000ULL)
1264
1265#define elf_check_arch(x) ((x) == EM_TILEGX)
1266
1267#define ELF_CLASS ELFCLASS64
1268#define ELF_DATA ELFDATA2LSB
1269#define ELF_ARCH EM_TILEGX
1270
1271static inline void init_thread(struct target_pt_regs *regs,
1272 struct image_info *infop)
1273{
1274 regs->pc = infop->entry;
1275 regs->sp = infop->start_stack;
1276
1277}
1278
1279#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1280
1281#endif /* TARGET_TILEGX */
1282
47ae93cd
MC
1283#ifdef TARGET_RISCV
1284
1285#define ELF_START_MMAP 0x80000000
1286#define ELF_ARCH EM_RISCV
1287
1288#ifdef TARGET_RISCV32
1289#define ELF_CLASS ELFCLASS32
1290#else
1291#define ELF_CLASS ELFCLASS64
1292#endif
1293
1294static inline void init_thread(struct target_pt_regs *regs,
1295 struct image_info *infop)
1296{
1297 regs->sepc = infop->entry;
1298 regs->sp = infop->start_stack;
1299}
1300
1301#define ELF_EXEC_PAGESIZE 4096
1302
1303#endif /* TARGET_RISCV */
1304
7c248bcd
RH
1305#ifdef TARGET_HPPA
1306
1307#define ELF_START_MMAP 0x80000000
1308#define ELF_CLASS ELFCLASS32
1309#define ELF_ARCH EM_PARISC
1310#define ELF_PLATFORM "PARISC"
1311#define STACK_GROWS_DOWN 0
1312#define STACK_ALIGNMENT 64
1313
1314static inline void init_thread(struct target_pt_regs *regs,
1315 struct image_info *infop)
1316{
1317 regs->iaoq[0] = infop->entry;
1318 regs->iaoq[1] = infop->entry + 4;
1319 regs->gr[23] = 0;
1320 regs->gr[24] = infop->arg_start;
1321 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1322 /* The top-of-stack contains a linkage buffer. */
1323 regs->gr[30] = infop->start_stack + 64;
1324 regs->gr[31] = infop->entry;
1325}
1326
1327#endif /* TARGET_HPPA */
1328
ba7651fb
MF
1329#ifdef TARGET_XTENSA
1330
1331#define ELF_START_MMAP 0x20000000
1332
1333#define ELF_CLASS ELFCLASS32
1334#define ELF_ARCH EM_XTENSA
1335
1336static inline void init_thread(struct target_pt_regs *regs,
1337 struct image_info *infop)
1338{
1339 regs->windowbase = 0;
1340 regs->windowstart = 1;
1341 regs->areg[1] = infop->start_stack;
1342 regs->pc = infop->entry;
1343}
1344
1345/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1346#define ELF_NREG 128
1347typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1348
1349enum {
1350 TARGET_REG_PC,
1351 TARGET_REG_PS,
1352 TARGET_REG_LBEG,
1353 TARGET_REG_LEND,
1354 TARGET_REG_LCOUNT,
1355 TARGET_REG_SAR,
1356 TARGET_REG_WINDOWSTART,
1357 TARGET_REG_WINDOWBASE,
1358 TARGET_REG_THREADPTR,
1359 TARGET_REG_AR0 = 64,
1360};
1361
1362static void elf_core_copy_regs(target_elf_gregset_t *regs,
1363 const CPUXtensaState *env)
1364{
1365 unsigned i;
1366
1367 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1368 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1369 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1370 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1371 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1372 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1373 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1374 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1375 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1376 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1377 for (i = 0; i < env->config->nareg; ++i) {
1378 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1379 }
1380}
1381
1382#define USE_ELF_CORE_DUMP
1383#define ELF_EXEC_PAGESIZE 4096
1384
1385#endif /* TARGET_XTENSA */
1386
15338fd7
FB
1387#ifndef ELF_PLATFORM
1388#define ELF_PLATFORM (NULL)
1389#endif
1390
75be901c
PC
1391#ifndef ELF_MACHINE
1392#define ELF_MACHINE ELF_ARCH
1393#endif
1394
d276a604
PC
1395#ifndef elf_check_arch
1396#define elf_check_arch(x) ((x) == ELF_ARCH)
1397#endif
1398
15338fd7
FB
1399#ifndef ELF_HWCAP
1400#define ELF_HWCAP 0
1401#endif
1402
7c4ee5bc
RH
1403#ifndef STACK_GROWS_DOWN
1404#define STACK_GROWS_DOWN 1
1405#endif
1406
1407#ifndef STACK_ALIGNMENT
1408#define STACK_ALIGNMENT 16
1409#endif
1410
992f48a0 1411#ifdef TARGET_ABI32
cb33da57 1412#undef ELF_CLASS
992f48a0 1413#define ELF_CLASS ELFCLASS32
cb33da57
BS
1414#undef bswaptls
1415#define bswaptls(ptr) bswap32s(ptr)
1416#endif
1417
31e31b8a 1418#include "elf.h"
09bfb054 1419
09bfb054
FB
1420struct exec
1421{
d97ef72e
RH
1422 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1423 unsigned int a_text; /* length of text, in bytes */
1424 unsigned int a_data; /* length of data, in bytes */
1425 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1426 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1427 unsigned int a_entry; /* start address */
1428 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1429 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1430};
1431
1432
1433#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1434#define OMAGIC 0407
1435#define NMAGIC 0410
1436#define ZMAGIC 0413
1437#define QMAGIC 0314
1438
31e31b8a 1439/* Necessary parameters */
54936004 1440#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
79cb1f1d
YK
1441#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1442 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1443#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1444
444cd5c3 1445#define DLINFO_ITEMS 15
31e31b8a 1446
09bfb054
FB
1447static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1448{
d97ef72e 1449 memcpy(to, from, n);
09bfb054 1450}
d691f669 1451
31e31b8a 1452#ifdef BSWAP_NEEDED
92a31b1f 1453static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1454{
d97ef72e
RH
1455 bswap16s(&ehdr->e_type); /* Object file type */
1456 bswap16s(&ehdr->e_machine); /* Architecture */
1457 bswap32s(&ehdr->e_version); /* Object file version */
1458 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1459 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1460 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1461 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1462 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1463 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1464 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1465 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1466 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1467 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1468}
1469
991f8f0c 1470static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1471{
991f8f0c
RH
1472 int i;
1473 for (i = 0; i < phnum; ++i, ++phdr) {
1474 bswap32s(&phdr->p_type); /* Segment type */
1475 bswap32s(&phdr->p_flags); /* Segment flags */
1476 bswaptls(&phdr->p_offset); /* Segment file offset */
1477 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1478 bswaptls(&phdr->p_paddr); /* Segment physical address */
1479 bswaptls(&phdr->p_filesz); /* Segment size in file */
1480 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1481 bswaptls(&phdr->p_align); /* Segment alignment */
1482 }
31e31b8a 1483}
689f936f 1484
991f8f0c 1485static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1486{
991f8f0c
RH
1487 int i;
1488 for (i = 0; i < shnum; ++i, ++shdr) {
1489 bswap32s(&shdr->sh_name);
1490 bswap32s(&shdr->sh_type);
1491 bswaptls(&shdr->sh_flags);
1492 bswaptls(&shdr->sh_addr);
1493 bswaptls(&shdr->sh_offset);
1494 bswaptls(&shdr->sh_size);
1495 bswap32s(&shdr->sh_link);
1496 bswap32s(&shdr->sh_info);
1497 bswaptls(&shdr->sh_addralign);
1498 bswaptls(&shdr->sh_entsize);
1499 }
689f936f
FB
1500}
1501
7a3148a9 1502static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1503{
1504 bswap32s(&sym->st_name);
7a3148a9
JM
1505 bswaptls(&sym->st_value);
1506 bswaptls(&sym->st_size);
689f936f
FB
1507 bswap16s(&sym->st_shndx);
1508}
991f8f0c
RH
1509#else
1510static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1511static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1512static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1513static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
1514#endif
1515
edf8e2af 1516#ifdef USE_ELF_CORE_DUMP
9349b4f9 1517static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1518#endif /* USE_ELF_CORE_DUMP */
682674b8 1519static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1520
9058abdd
RH
1521/* Verify the portions of EHDR within E_IDENT for the target.
1522 This can be performed before bswapping the entire header. */
1523static bool elf_check_ident(struct elfhdr *ehdr)
1524{
1525 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1526 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1527 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1528 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1529 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1530 && ehdr->e_ident[EI_DATA] == ELF_DATA
1531 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1532}
1533
1534/* Verify the portions of EHDR outside of E_IDENT for the target.
1535 This has to wait until after bswapping the header. */
1536static bool elf_check_ehdr(struct elfhdr *ehdr)
1537{
1538 return (elf_check_arch(ehdr->e_machine)
1539 && ehdr->e_ehsize == sizeof(struct elfhdr)
1540 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1541 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1542}
1543
31e31b8a 1544/*
e5fe0c52 1545 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1546 * memory to free pages in kernel mem. These are in a format ready
1547 * to be put directly into the top of new user memory.
1548 *
1549 */
59baae9a
SB
1550static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1551 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1552{
59baae9a 1553 char *tmp;
7c4ee5bc 1554 int len, i;
59baae9a 1555 abi_ulong top = p;
31e31b8a
FB
1556
1557 if (!p) {
d97ef72e 1558 return 0; /* bullet-proofing */
31e31b8a 1559 }
59baae9a 1560
7c4ee5bc
RH
1561 if (STACK_GROWS_DOWN) {
1562 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1563 for (i = argc - 1; i >= 0; --i) {
1564 tmp = argv[i];
1565 if (!tmp) {
1566 fprintf(stderr, "VFS: argc is wrong");
1567 exit(-1);
1568 }
1569 len = strlen(tmp) + 1;
1570 tmp += len;
59baae9a 1571
7c4ee5bc
RH
1572 if (len > (p - stack_limit)) {
1573 return 0;
1574 }
1575 while (len) {
1576 int bytes_to_copy = (len > offset) ? offset : len;
1577 tmp -= bytes_to_copy;
1578 p -= bytes_to_copy;
1579 offset -= bytes_to_copy;
1580 len -= bytes_to_copy;
1581
1582 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1583
1584 if (offset == 0) {
1585 memcpy_to_target(p, scratch, top - p);
1586 top = p;
1587 offset = TARGET_PAGE_SIZE;
1588 }
1589 }
d97ef72e 1590 }
7c4ee5bc
RH
1591 if (p != top) {
1592 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1593 }
7c4ee5bc
RH
1594 } else {
1595 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1596 for (i = 0; i < argc; ++i) {
1597 tmp = argv[i];
1598 if (!tmp) {
1599 fprintf(stderr, "VFS: argc is wrong");
1600 exit(-1);
1601 }
1602 len = strlen(tmp) + 1;
1603 if (len > (stack_limit - p)) {
1604 return 0;
1605 }
1606 while (len) {
1607 int bytes_to_copy = (len > remaining) ? remaining : len;
1608
1609 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1610
1611 tmp += bytes_to_copy;
1612 remaining -= bytes_to_copy;
1613 p += bytes_to_copy;
1614 len -= bytes_to_copy;
1615
1616 if (remaining == 0) {
1617 memcpy_to_target(top, scratch, p - top);
1618 top = p;
1619 remaining = TARGET_PAGE_SIZE;
1620 }
d97ef72e
RH
1621 }
1622 }
7c4ee5bc
RH
1623 if (p != top) {
1624 memcpy_to_target(top, scratch, p - top);
1625 }
59baae9a
SB
1626 }
1627
31e31b8a
FB
1628 return p;
1629}
1630
59baae9a
SB
1631/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1632 * argument/environment space. Newer kernels (>2.6.33) allow more,
1633 * dependent on stack size, but guarantee at least 32 pages for
1634 * backwards compatibility.
1635 */
1636#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1637
1638static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1639 struct image_info *info)
53a5960a 1640{
59baae9a 1641 abi_ulong size, error, guard;
31e31b8a 1642
703e0e89 1643 size = guest_stack_size;
59baae9a
SB
1644 if (size < STACK_LOWER_LIMIT) {
1645 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1646 }
1647 guard = TARGET_PAGE_SIZE;
1648 if (guard < qemu_real_host_page_size) {
1649 guard = qemu_real_host_page_size;
1650 }
1651
1652 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1653 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1654 if (error == -1) {
60dcbcb5 1655 perror("mmap stack");
09bfb054
FB
1656 exit(-1);
1657 }
31e31b8a 1658
60dcbcb5 1659 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1660 if (STACK_GROWS_DOWN) {
1661 target_mprotect(error, guard, PROT_NONE);
1662 info->stack_limit = error + guard;
1663 return info->stack_limit + size - sizeof(void *);
1664 } else {
1665 target_mprotect(error + size, guard, PROT_NONE);
1666 info->stack_limit = error + size;
1667 return error;
1668 }
31e31b8a
FB
1669}
1670
cf129f3a
RH
1671/* Map and zero the bss. We need to explicitly zero any fractional pages
1672 after the data section (i.e. bss). */
1673static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1674{
cf129f3a
RH
1675 uintptr_t host_start, host_map_start, host_end;
1676
1677 last_bss = TARGET_PAGE_ALIGN(last_bss);
1678
1679 /* ??? There is confusion between qemu_real_host_page_size and
1680 qemu_host_page_size here and elsewhere in target_mmap, which
1681 may lead to the end of the data section mapping from the file
1682 not being mapped. At least there was an explicit test and
1683 comment for that here, suggesting that "the file size must
1684 be known". The comment probably pre-dates the introduction
1685 of the fstat system call in target_mmap which does in fact
1686 find out the size. What isn't clear is if the workaround
1687 here is still actually needed. For now, continue with it,
1688 but merge it with the "normal" mmap that would allocate the bss. */
1689
1690 host_start = (uintptr_t) g2h(elf_bss);
1691 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1692 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1693
1694 if (host_map_start < host_end) {
1695 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1696 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1697 if (p == MAP_FAILED) {
1698 perror("cannot mmap brk");
1699 exit(-1);
853d6f7a 1700 }
f46e9a0b 1701 }
853d6f7a 1702
f46e9a0b
TM
1703 /* Ensure that the bss page(s) are valid */
1704 if ((page_get_flags(last_bss-1) & prot) != prot) {
1705 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1706 }
31e31b8a 1707
cf129f3a
RH
1708 if (host_start < host_map_start) {
1709 memset((void *)host_start, 0, host_map_start - host_start);
1710 }
1711}
53a5960a 1712
cf58affe
CL
1713#ifdef TARGET_ARM
1714static int elf_is_fdpic(struct elfhdr *exec)
1715{
1716 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1717}
1718#else
a99856cd
CL
1719/* Default implementation, always false. */
1720static int elf_is_fdpic(struct elfhdr *exec)
1721{
1722 return 0;
1723}
cf58affe 1724#endif
a99856cd 1725
1af02e83
MF
1726static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1727{
1728 uint16_t n;
1729 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1730
1731 /* elf32_fdpic_loadseg */
1732 n = info->nsegs;
1733 while (n--) {
1734 sp -= 12;
1735 put_user_u32(loadsegs[n].addr, sp+0);
1736 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1737 put_user_u32(loadsegs[n].p_memsz, sp+8);
1738 }
1739
1740 /* elf32_fdpic_loadmap */
1741 sp -= 4;
1742 put_user_u16(0, sp+0); /* version */
1743 put_user_u16(info->nsegs, sp+2); /* nsegs */
1744
1745 info->personality = PER_LINUX_FDPIC;
1746 info->loadmap_addr = sp;
1747
1748 return sp;
1749}
1af02e83 1750
992f48a0 1751static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1752 struct elfhdr *exec,
1753 struct image_info *info,
1754 struct image_info *interp_info)
31e31b8a 1755{
d97ef72e 1756 abi_ulong sp;
7c4ee5bc 1757 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1758 int size;
14322bad
LA
1759 int i;
1760 abi_ulong u_rand_bytes;
1761 uint8_t k_rand_bytes[16];
d97ef72e
RH
1762 abi_ulong u_platform;
1763 const char *k_platform;
1764 const int n = sizeof(elf_addr_t);
1765
1766 sp = p;
1af02e83 1767
1af02e83
MF
1768 /* Needs to be before we load the env/argc/... */
1769 if (elf_is_fdpic(exec)) {
1770 /* Need 4 byte alignment for these structs */
1771 sp &= ~3;
1772 sp = loader_build_fdpic_loadmap(info, sp);
1773 info->other_info = interp_info;
1774 if (interp_info) {
1775 interp_info->other_info = info;
1776 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
1777 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1778 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1779 } else {
1780 info->interpreter_loadmap_addr = 0;
1781 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
1782 }
1783 }
1af02e83 1784
d97ef72e
RH
1785 u_platform = 0;
1786 k_platform = ELF_PLATFORM;
1787 if (k_platform) {
1788 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1789 if (STACK_GROWS_DOWN) {
1790 sp -= (len + n - 1) & ~(n - 1);
1791 u_platform = sp;
1792 /* FIXME - check return value of memcpy_to_target() for failure */
1793 memcpy_to_target(sp, k_platform, len);
1794 } else {
1795 memcpy_to_target(sp, k_platform, len);
1796 u_platform = sp;
1797 sp += len + 1;
1798 }
1799 }
1800
1801 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1802 * the argv and envp pointers.
1803 */
1804 if (STACK_GROWS_DOWN) {
1805 sp = QEMU_ALIGN_DOWN(sp, 16);
1806 } else {
1807 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1808 }
14322bad
LA
1809
1810 /*
1811 * Generate 16 random bytes for userspace PRNG seeding (not
1812 * cryptically secure but it's not the aim of QEMU).
1813 */
14322bad
LA
1814 for (i = 0; i < 16; i++) {
1815 k_rand_bytes[i] = rand();
1816 }
7c4ee5bc
RH
1817 if (STACK_GROWS_DOWN) {
1818 sp -= 16;
1819 u_rand_bytes = sp;
1820 /* FIXME - check return value of memcpy_to_target() for failure */
1821 memcpy_to_target(sp, k_rand_bytes, 16);
1822 } else {
1823 memcpy_to_target(sp, k_rand_bytes, 16);
1824 u_rand_bytes = sp;
1825 sp += 16;
1826 }
14322bad 1827
d97ef72e
RH
1828 size = (DLINFO_ITEMS + 1) * 2;
1829 if (k_platform)
1830 size += 2;
f5155289 1831#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1832 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1833#endif
1834#ifdef ELF_HWCAP2
1835 size += 2;
f5155289 1836#endif
f516511e
PM
1837 info->auxv_len = size * n;
1838
d97ef72e 1839 size += envc + argc + 2;
b9329d4b 1840 size += 1; /* argc itself */
d97ef72e 1841 size *= n;
7c4ee5bc
RH
1842
1843 /* Allocate space and finalize stack alignment for entry now. */
1844 if (STACK_GROWS_DOWN) {
1845 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1846 sp = u_argc;
1847 } else {
1848 u_argc = sp;
1849 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1850 }
1851
1852 u_argv = u_argc + n;
1853 u_envp = u_argv + (argc + 1) * n;
1854 u_auxv = u_envp + (envc + 1) * n;
1855 info->saved_auxv = u_auxv;
1856 info->arg_start = u_argv;
1857 info->arg_end = u_argv + argc * n;
d97ef72e
RH
1858
1859 /* This is correct because Linux defines
1860 * elf_addr_t as Elf32_Off / Elf64_Off
1861 */
1862#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
1863 put_user_ual(id, u_auxv); u_auxv += n; \
1864 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
1865 } while(0)
1866
82991bed
PM
1867#ifdef ARCH_DLINFO
1868 /*
1869 * ARCH_DLINFO must come first so platform specific code can enforce
1870 * special alignment requirements on the AUXV if necessary (eg. PPC).
1871 */
1872 ARCH_DLINFO;
1873#endif
f516511e
PM
1874 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1875 * on info->auxv_len will trigger.
1876 */
8e62a717 1877 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1878 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1879 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
1880 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1881 /* Target doesn't support host page size alignment */
1882 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1883 } else {
1884 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1885 qemu_host_page_size)));
1886 }
8e62a717 1887 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1888 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1889 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1890 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1891 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1892 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1893 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1894 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1895 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 1896 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 1897 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
14322bad 1898
ad6919dc
PM
1899#ifdef ELF_HWCAP2
1900 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1901#endif
1902
7c4ee5bc 1903 if (u_platform) {
d97ef72e 1904 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 1905 }
7c4ee5bc 1906 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
1907#undef NEW_AUX_ENT
1908
f516511e
PM
1909 /* Check that our initial calculation of the auxv length matches how much
1910 * we actually put into it.
1911 */
1912 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
1913
1914 put_user_ual(argc, u_argc);
1915
1916 p = info->arg_strings;
1917 for (i = 0; i < argc; ++i) {
1918 put_user_ual(p, u_argv);
1919 u_argv += n;
1920 p += target_strlen(p) + 1;
1921 }
1922 put_user_ual(0, u_argv);
1923
1924 p = info->env_strings;
1925 for (i = 0; i < envc; ++i) {
1926 put_user_ual(p, u_envp);
1927 u_envp += n;
1928 p += target_strlen(p) + 1;
1929 }
1930 put_user_ual(0, u_envp);
edf8e2af 1931
d97ef72e 1932 return sp;
31e31b8a
FB
1933}
1934
dce10401
MI
1935unsigned long init_guest_space(unsigned long host_start,
1936 unsigned long host_size,
1937 unsigned long guest_start,
1938 bool fixed)
1939{
293f2060 1940 unsigned long current_start, aligned_start;
dce10401
MI
1941 int flags;
1942
1943 assert(host_start || host_size);
1944
1945 /* If just a starting address is given, then just verify that
1946 * address. */
1947 if (host_start && !host_size) {
8756e136 1948#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
c3637eaf 1949 if (init_guest_commpage(host_start, host_size) != 1) {
dce10401
MI
1950 return (unsigned long)-1;
1951 }
8756e136
LS
1952#endif
1953 return host_start;
dce10401
MI
1954 }
1955
1956 /* Setup the initial flags and start address. */
1957 current_start = host_start & qemu_host_page_mask;
1958 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1959 if (fixed) {
1960 flags |= MAP_FIXED;
1961 }
1962
1963 /* Otherwise, a non-zero size region of memory needs to be mapped
1964 * and validated. */
2a53535a
LS
1965
1966#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1967 /* On 32-bit ARM, we need to map not just the usable memory, but
1968 * also the commpage. Try to find a suitable place by allocating
1969 * a big chunk for all of it. If host_start, then the naive
1970 * strategy probably does good enough.
1971 */
1972 if (!host_start) {
1973 unsigned long guest_full_size, host_full_size, real_start;
1974
1975 guest_full_size =
1976 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
1977 host_full_size = guest_full_size - guest_start;
1978 real_start = (unsigned long)
1979 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
1980 if (real_start == (unsigned long)-1) {
1981 if (host_size < host_full_size - qemu_host_page_size) {
1982 /* We failed to map a continous segment, but we're
1983 * allowed to have a gap between the usable memory and
1984 * the commpage where other things can be mapped.
1985 * This sparseness gives us more flexibility to find
1986 * an address range.
1987 */
1988 goto naive;
1989 }
1990 return (unsigned long)-1;
1991 }
1992 munmap((void *)real_start, host_full_size);
1993 if (real_start & ~qemu_host_page_mask) {
1994 /* The same thing again, but with an extra qemu_host_page_size
1995 * so that we can shift around alignment.
1996 */
1997 unsigned long real_size = host_full_size + qemu_host_page_size;
1998 real_start = (unsigned long)
1999 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2000 if (real_start == (unsigned long)-1) {
2001 if (host_size < host_full_size - qemu_host_page_size) {
2002 goto naive;
2003 }
2004 return (unsigned long)-1;
2005 }
2006 munmap((void *)real_start, real_size);
2007 real_start = HOST_PAGE_ALIGN(real_start);
2008 }
2009 current_start = real_start;
2010 }
2011 naive:
2012#endif
2013
dce10401 2014 while (1) {
293f2060
LS
2015 unsigned long real_start, real_size, aligned_size;
2016 aligned_size = real_size = host_size;
806d1021 2017
dce10401
MI
2018 /* Do not use mmap_find_vma here because that is limited to the
2019 * guest address space. We are going to make the
2020 * guest address space fit whatever we're given.
2021 */
2022 real_start = (unsigned long)
2023 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2024 if (real_start == (unsigned long)-1) {
2025 return (unsigned long)-1;
2026 }
2027
aac362e4
LS
2028 /* Check to see if the address is valid. */
2029 if (host_start && real_start != current_start) {
2030 goto try_again;
2031 }
2032
806d1021
MI
2033 /* Ensure the address is properly aligned. */
2034 if (real_start & ~qemu_host_page_mask) {
293f2060
LS
2035 /* Ideally, we adjust like
2036 *
2037 * pages: [ ][ ][ ][ ][ ]
2038 * old: [ real ]
2039 * [ aligned ]
2040 * new: [ real ]
2041 * [ aligned ]
2042 *
2043 * But if there is something else mapped right after it,
2044 * then obviously it won't have room to grow, and the
2045 * kernel will put the new larger real someplace else with
2046 * unknown alignment (if we made it to here, then
2047 * fixed=false). Which is why we grow real by a full page
2048 * size, instead of by part of one; so that even if we get
2049 * moved, we can still guarantee alignment. But this does
2050 * mean that there is a padding of < 1 page both before
2051 * and after the aligned range; the "after" could could
2052 * cause problems for ARM emulation where it could butt in
2053 * to where we need to put the commpage.
2054 */
806d1021 2055 munmap((void *)real_start, host_size);
293f2060 2056 real_size = aligned_size + qemu_host_page_size;
806d1021
MI
2057 real_start = (unsigned long)
2058 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2059 if (real_start == (unsigned long)-1) {
2060 return (unsigned long)-1;
2061 }
293f2060
LS
2062 aligned_start = HOST_PAGE_ALIGN(real_start);
2063 } else {
2064 aligned_start = real_start;
806d1021
MI
2065 }
2066
8756e136 2067#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
7ad75eea
LS
2068 /* On 32-bit ARM, we need to also be able to map the commpage. */
2069 int valid = init_guest_commpage(aligned_start - guest_start,
2070 aligned_size + guest_start);
2071 if (valid == -1) {
2072 munmap((void *)real_start, real_size);
2073 return (unsigned long)-1;
2074 } else if (valid == 0) {
2075 goto try_again;
dce10401 2076 }
7ad75eea
LS
2077#endif
2078
2079 /* If nothing has said `return -1` or `goto try_again` yet,
2080 * then the address we have is good.
2081 */
2082 break;
dce10401 2083
7ad75eea 2084 try_again:
dce10401
MI
2085 /* That address didn't work. Unmap and try a different one.
2086 * The address the host picked because is typically right at
2087 * the top of the host address space and leaves the guest with
2088 * no usable address space. Resort to a linear search. We
2089 * already compensated for mmap_min_addr, so this should not
2090 * happen often. Probably means we got unlucky and host
2091 * address space randomization put a shared library somewhere
2092 * inconvenient.
8c17d862
LS
2093 *
2094 * This is probably a good strategy if host_start, but is
2095 * probably a bad strategy if not, which means we got here
2096 * because of trouble with ARM commpage setup.
dce10401 2097 */
293f2060 2098 munmap((void *)real_start, real_size);
dce10401
MI
2099 current_start += qemu_host_page_size;
2100 if (host_start == current_start) {
2101 /* Theoretically possible if host doesn't have any suitably
2102 * aligned areas. Normally the first mmap will fail.
2103 */
2104 return (unsigned long)-1;
2105 }
2106 }
2107
13829020 2108 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
806d1021 2109
293f2060 2110 return aligned_start;
dce10401
MI
2111}
2112
f3ed1f5d
PM
2113static void probe_guest_base(const char *image_name,
2114 abi_ulong loaddr, abi_ulong hiaddr)
2115{
2116 /* Probe for a suitable guest base address, if the user has not set
2117 * it explicitly, and set guest_base appropriately.
2118 * In case of error we will print a suitable message and exit.
2119 */
f3ed1f5d
PM
2120 const char *errmsg;
2121 if (!have_guest_base && !reserved_va) {
2122 unsigned long host_start, real_start, host_size;
2123
2124 /* Round addresses to page boundaries. */
2125 loaddr &= qemu_host_page_mask;
2126 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2127
2128 if (loaddr < mmap_min_addr) {
2129 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2130 } else {
2131 host_start = loaddr;
2132 if (host_start != loaddr) {
2133 errmsg = "Address overflow loading ELF binary";
2134 goto exit_errmsg;
2135 }
2136 }
2137 host_size = hiaddr - loaddr;
dce10401
MI
2138
2139 /* Setup the initial guest memory space with ranges gleaned from
2140 * the ELF image that is being loaded.
2141 */
2142 real_start = init_guest_space(host_start, host_size, loaddr, false);
2143 if (real_start == (unsigned long)-1) {
2144 errmsg = "Unable to find space for application";
2145 goto exit_errmsg;
f3ed1f5d 2146 }
dce10401
MI
2147 guest_base = real_start - loaddr;
2148
13829020
PB
2149 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2150 TARGET_ABI_FMT_lx " to 0x%lx\n",
2151 loaddr, real_start);
f3ed1f5d
PM
2152 }
2153 return;
2154
f3ed1f5d
PM
2155exit_errmsg:
2156 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2157 exit(-1);
f3ed1f5d
PM
2158}
2159
2160
8e62a717 2161/* Load an ELF image into the address space.
31e31b8a 2162
8e62a717
RH
2163 IMAGE_NAME is the filename of the image, to use in error messages.
2164 IMAGE_FD is the open file descriptor for the image.
2165
2166 BPRM_BUF is a copy of the beginning of the file; this of course
2167 contains the elf file header at offset 0. It is assumed that this
2168 buffer is sufficiently aligned to present no problems to the host
2169 in accessing data at aligned offsets within the buffer.
2170
2171 On return: INFO values will be filled in, as necessary or available. */
2172
2173static void load_elf_image(const char *image_name, int image_fd,
bf858897 2174 struct image_info *info, char **pinterp_name,
8e62a717 2175 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2176{
8e62a717
RH
2177 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2178 struct elf_phdr *phdr;
2179 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2180 int i, retval;
2181 const char *errmsg;
5fafdf24 2182
8e62a717
RH
2183 /* First of all, some simple consistency checks */
2184 errmsg = "Invalid ELF image for this architecture";
2185 if (!elf_check_ident(ehdr)) {
2186 goto exit_errmsg;
2187 }
2188 bswap_ehdr(ehdr);
2189 if (!elf_check_ehdr(ehdr)) {
2190 goto exit_errmsg;
d97ef72e 2191 }
5fafdf24 2192
8e62a717
RH
2193 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2194 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2195 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2196 } else {
8e62a717
RH
2197 phdr = (struct elf_phdr *) alloca(i);
2198 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2199 if (retval != i) {
8e62a717 2200 goto exit_read;
9955ffac 2201 }
d97ef72e 2202 }
8e62a717 2203 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2204
1af02e83
MF
2205 info->nsegs = 0;
2206 info->pt_dynamic_addr = 0;
1af02e83 2207
98c1076c
AB
2208 mmap_lock();
2209
682674b8
RH
2210 /* Find the maximum size of the image and allocate an appropriate
2211 amount of memory to handle that. */
2212 loaddr = -1, hiaddr = 0;
33143c44 2213 info->alignment = 0;
8e62a717
RH
2214 for (i = 0; i < ehdr->e_phnum; ++i) {
2215 if (phdr[i].p_type == PT_LOAD) {
a93934fe 2216 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
2217 if (a < loaddr) {
2218 loaddr = a;
2219 }
ccf661f8 2220 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
2221 if (a > hiaddr) {
2222 hiaddr = a;
2223 }
1af02e83 2224 ++info->nsegs;
33143c44 2225 info->alignment |= phdr[i].p_align;
682674b8
RH
2226 }
2227 }
2228
2229 load_addr = loaddr;
8e62a717 2230 if (ehdr->e_type == ET_DYN) {
682674b8
RH
2231 /* The image indicates that it can be loaded anywhere. Find a
2232 location that can hold the memory space required. If the
2233 image is pre-linked, LOADDR will be non-zero. Since we do
2234 not supply MAP_FIXED here we'll use that address if and
2235 only if it remains available. */
2236 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2237 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2238 -1, 0);
2239 if (load_addr == -1) {
8e62a717 2240 goto exit_perror;
d97ef72e 2241 }
bf858897
RH
2242 } else if (pinterp_name != NULL) {
2243 /* This is the main executable. Make sure that the low
2244 address does not conflict with MMAP_MIN_ADDR or the
2245 QEMU application itself. */
f3ed1f5d 2246 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 2247 }
682674b8 2248 load_bias = load_addr - loaddr;
d97ef72e 2249
a99856cd 2250 if (elf_is_fdpic(ehdr)) {
1af02e83 2251 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2252 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2253
2254 for (i = 0; i < ehdr->e_phnum; ++i) {
2255 switch (phdr[i].p_type) {
2256 case PT_DYNAMIC:
2257 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2258 break;
2259 case PT_LOAD:
2260 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2261 loadsegs->p_vaddr = phdr[i].p_vaddr;
2262 loadsegs->p_memsz = phdr[i].p_memsz;
2263 ++loadsegs;
2264 break;
2265 }
2266 }
2267 }
1af02e83 2268
8e62a717
RH
2269 info->load_bias = load_bias;
2270 info->load_addr = load_addr;
2271 info->entry = ehdr->e_entry + load_bias;
2272 info->start_code = -1;
2273 info->end_code = 0;
2274 info->start_data = -1;
2275 info->end_data = 0;
2276 info->brk = 0;
d8fd2954 2277 info->elf_flags = ehdr->e_flags;
8e62a717
RH
2278
2279 for (i = 0; i < ehdr->e_phnum; i++) {
2280 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2281 if (eppnt->p_type == PT_LOAD) {
682674b8 2282 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
d97ef72e 2283 int elf_prot = 0;
d97ef72e
RH
2284
2285 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2286 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2287 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 2288
682674b8
RH
2289 vaddr = load_bias + eppnt->p_vaddr;
2290 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2291 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2292
2293 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2294 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 2295 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 2296 if (error == -1) {
8e62a717 2297 goto exit_perror;
09bfb054 2298 }
09bfb054 2299
682674b8
RH
2300 vaddr_ef = vaddr + eppnt->p_filesz;
2301 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 2302
cf129f3a 2303 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
2304 if (vaddr_ef < vaddr_em) {
2305 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 2306 }
8e62a717
RH
2307
2308 /* Find the full program boundaries. */
2309 if (elf_prot & PROT_EXEC) {
2310 if (vaddr < info->start_code) {
2311 info->start_code = vaddr;
2312 }
2313 if (vaddr_ef > info->end_code) {
2314 info->end_code = vaddr_ef;
2315 }
2316 }
2317 if (elf_prot & PROT_WRITE) {
2318 if (vaddr < info->start_data) {
2319 info->start_data = vaddr;
2320 }
2321 if (vaddr_ef > info->end_data) {
2322 info->end_data = vaddr_ef;
2323 }
2324 if (vaddr_em > info->brk) {
2325 info->brk = vaddr_em;
2326 }
2327 }
bf858897
RH
2328 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2329 char *interp_name;
2330
2331 if (*pinterp_name) {
2332 errmsg = "Multiple PT_INTERP entries";
2333 goto exit_errmsg;
2334 }
2335 interp_name = malloc(eppnt->p_filesz);
2336 if (!interp_name) {
2337 goto exit_perror;
2338 }
2339
2340 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2341 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2342 eppnt->p_filesz);
2343 } else {
2344 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2345 eppnt->p_offset);
2346 if (retval != eppnt->p_filesz) {
2347 goto exit_perror;
2348 }
2349 }
2350 if (interp_name[eppnt->p_filesz - 1] != 0) {
2351 errmsg = "Invalid PT_INTERP entry";
2352 goto exit_errmsg;
2353 }
2354 *pinterp_name = interp_name;
d97ef72e 2355 }
682674b8 2356 }
5fafdf24 2357
8e62a717
RH
2358 if (info->end_data == 0) {
2359 info->start_data = info->end_code;
2360 info->end_data = info->end_code;
2361 info->brk = info->end_code;
2362 }
2363
682674b8 2364 if (qemu_log_enabled()) {
8e62a717 2365 load_symbols(ehdr, image_fd, load_bias);
682674b8 2366 }
31e31b8a 2367
98c1076c
AB
2368 mmap_unlock();
2369
8e62a717
RH
2370 close(image_fd);
2371 return;
2372
2373 exit_read:
2374 if (retval >= 0) {
2375 errmsg = "Incomplete read of file header";
2376 goto exit_errmsg;
2377 }
2378 exit_perror:
2379 errmsg = strerror(errno);
2380 exit_errmsg:
2381 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2382 exit(-1);
2383}
2384
2385static void load_elf_interp(const char *filename, struct image_info *info,
2386 char bprm_buf[BPRM_BUF_SIZE])
2387{
2388 int fd, retval;
2389
2390 fd = open(path(filename), O_RDONLY);
2391 if (fd < 0) {
2392 goto exit_perror;
2393 }
31e31b8a 2394
8e62a717
RH
2395 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2396 if (retval < 0) {
2397 goto exit_perror;
2398 }
2399 if (retval < BPRM_BUF_SIZE) {
2400 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2401 }
2402
bf858897 2403 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2404 return;
2405
2406 exit_perror:
2407 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2408 exit(-1);
31e31b8a
FB
2409}
2410
49918a75
PB
2411static int symfind(const void *s0, const void *s1)
2412{
c7c530cd 2413 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2414 struct elf_sym *sym = (struct elf_sym *)s1;
2415 int result = 0;
c7c530cd 2416 if (addr < sym->st_value) {
49918a75 2417 result = -1;
c7c530cd 2418 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2419 result = 1;
2420 }
2421 return result;
2422}
2423
2424static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2425{
2426#if ELF_CLASS == ELFCLASS32
2427 struct elf_sym *syms = s->disas_symtab.elf32;
2428#else
2429 struct elf_sym *syms = s->disas_symtab.elf64;
2430#endif
2431
2432 // binary search
49918a75
PB
2433 struct elf_sym *sym;
2434
c7c530cd 2435 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2436 if (sym != NULL) {
49918a75
PB
2437 return s->disas_strtab + sym->st_name;
2438 }
2439
2440 return "";
2441}
2442
2443/* FIXME: This should use elf_ops.h */
2444static int symcmp(const void *s0, const void *s1)
2445{
2446 struct elf_sym *sym0 = (struct elf_sym *)s0;
2447 struct elf_sym *sym1 = (struct elf_sym *)s1;
2448 return (sym0->st_value < sym1->st_value)
2449 ? -1
2450 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2451}
2452
689f936f 2453/* Best attempt to load symbols from this ELF object. */
682674b8 2454static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2455{
682674b8 2456 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 2457 uint64_t segsz;
682674b8 2458 struct elf_shdr *shdr;
b9475279
CV
2459 char *strings = NULL;
2460 struct syminfo *s = NULL;
2461 struct elf_sym *new_syms, *syms = NULL;
689f936f 2462
682674b8
RH
2463 shnum = hdr->e_shnum;
2464 i = shnum * sizeof(struct elf_shdr);
2465 shdr = (struct elf_shdr *)alloca(i);
2466 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2467 return;
2468 }
2469
2470 bswap_shdr(shdr, shnum);
2471 for (i = 0; i < shnum; ++i) {
2472 if (shdr[i].sh_type == SHT_SYMTAB) {
2473 sym_idx = i;
2474 str_idx = shdr[i].sh_link;
49918a75
PB
2475 goto found;
2476 }
689f936f 2477 }
682674b8
RH
2478
2479 /* There will be no symbol table if the file was stripped. */
2480 return;
689f936f
FB
2481
2482 found:
682674b8 2483 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 2484 s = g_try_new(struct syminfo, 1);
682674b8 2485 if (!s) {
b9475279 2486 goto give_up;
682674b8 2487 }
5fafdf24 2488
1e06262d
PM
2489 segsz = shdr[str_idx].sh_size;
2490 s->disas_strtab = strings = g_try_malloc(segsz);
2491 if (!strings ||
2492 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 2493 goto give_up;
682674b8 2494 }
49918a75 2495
1e06262d
PM
2496 segsz = shdr[sym_idx].sh_size;
2497 syms = g_try_malloc(segsz);
2498 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 2499 goto give_up;
682674b8 2500 }
31e31b8a 2501
1e06262d
PM
2502 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2503 /* Implausibly large symbol table: give up rather than ploughing
2504 * on with the number of symbols calculation overflowing
2505 */
2506 goto give_up;
2507 }
2508 nsyms = segsz / sizeof(struct elf_sym);
682674b8 2509 for (i = 0; i < nsyms; ) {
49918a75 2510 bswap_sym(syms + i);
682674b8
RH
2511 /* Throw away entries which we do not need. */
2512 if (syms[i].st_shndx == SHN_UNDEF
2513 || syms[i].st_shndx >= SHN_LORESERVE
2514 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2515 if (i < --nsyms) {
49918a75
PB
2516 syms[i] = syms[nsyms];
2517 }
682674b8 2518 } else {
49918a75 2519#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2520 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2521 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2522#endif
682674b8
RH
2523 syms[i].st_value += load_bias;
2524 i++;
2525 }
0774bed1 2526 }
49918a75 2527
b9475279
CV
2528 /* No "useful" symbol. */
2529 if (nsyms == 0) {
2530 goto give_up;
2531 }
2532
5d5c9930
RH
2533 /* Attempt to free the storage associated with the local symbols
2534 that we threw away. Whether or not this has any effect on the
2535 memory allocation depends on the malloc implementation and how
2536 many symbols we managed to discard. */
0ef9ea29 2537 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 2538 if (new_syms == NULL) {
b9475279 2539 goto give_up;
5d5c9930 2540 }
8d79de6e 2541 syms = new_syms;
5d5c9930 2542
49918a75 2543 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2544
49918a75
PB
2545 s->disas_num_syms = nsyms;
2546#if ELF_CLASS == ELFCLASS32
2547 s->disas_symtab.elf32 = syms;
49918a75
PB
2548#else
2549 s->disas_symtab.elf64 = syms;
49918a75 2550#endif
682674b8 2551 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2552 s->next = syminfos;
2553 syminfos = s;
b9475279
CV
2554
2555 return;
2556
2557give_up:
0ef9ea29
PM
2558 g_free(s);
2559 g_free(strings);
2560 g_free(syms);
689f936f 2561}
31e31b8a 2562
768fe76e
YS
2563uint32_t get_elf_eflags(int fd)
2564{
2565 struct elfhdr ehdr;
2566 off_t offset;
2567 int ret;
2568
2569 /* Read ELF header */
2570 offset = lseek(fd, 0, SEEK_SET);
2571 if (offset == (off_t) -1) {
2572 return 0;
2573 }
2574 ret = read(fd, &ehdr, sizeof(ehdr));
2575 if (ret < sizeof(ehdr)) {
2576 return 0;
2577 }
2578 offset = lseek(fd, offset, SEEK_SET);
2579 if (offset == (off_t) -1) {
2580 return 0;
2581 }
2582
2583 /* Check ELF signature */
2584 if (!elf_check_ident(&ehdr)) {
2585 return 0;
2586 }
2587
2588 /* check header */
2589 bswap_ehdr(&ehdr);
2590 if (!elf_check_ehdr(&ehdr)) {
2591 return 0;
2592 }
2593
2594 /* return architecture id */
2595 return ehdr.e_flags;
2596}
2597
f0116c54 2598int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2599{
8e62a717 2600 struct image_info interp_info;
31e31b8a 2601 struct elfhdr elf_ex;
8e62a717 2602 char *elf_interpreter = NULL;
59baae9a 2603 char *scratch;
31e31b8a 2604
bf858897 2605 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2606
2607 load_elf_image(bprm->filename, bprm->fd, info,
2608 &elf_interpreter, bprm->buf);
31e31b8a 2609
bf858897
RH
2610 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2611 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2612 when we load the interpreter. */
2613 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2614
59baae9a
SB
2615 /* Do this so that we can load the interpreter, if need be. We will
2616 change some of these later */
2617 bprm->p = setup_arg_pages(bprm, info);
2618
2619 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
2620 if (STACK_GROWS_DOWN) {
2621 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2622 bprm->p, info->stack_limit);
2623 info->file_string = bprm->p;
2624 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2625 bprm->p, info->stack_limit);
2626 info->env_strings = bprm->p;
2627 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2628 bprm->p, info->stack_limit);
2629 info->arg_strings = bprm->p;
2630 } else {
2631 info->arg_strings = bprm->p;
2632 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2633 bprm->p, info->stack_limit);
2634 info->env_strings = bprm->p;
2635 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2636 bprm->p, info->stack_limit);
2637 info->file_string = bprm->p;
2638 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2639 bprm->p, info->stack_limit);
2640 }
2641
59baae9a
SB
2642 g_free(scratch);
2643
e5fe0c52 2644 if (!bprm->p) {
bf858897
RH
2645 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2646 exit(-1);
379f6698 2647 }
379f6698 2648
8e62a717
RH
2649 if (elf_interpreter) {
2650 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2651
8e62a717
RH
2652 /* If the program interpreter is one of these two, then assume
2653 an iBCS2 image. Otherwise assume a native linux image. */
2654
2655 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2656 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2657 info->personality = PER_SVR4;
31e31b8a 2658
8e62a717
RH
2659 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2660 and some applications "depend" upon this behavior. Since
2661 we do not have the power to recompile these, we emulate
2662 the SVr4 behavior. Sigh. */
2663 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 2664 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 2665 }
31e31b8a
FB
2666 }
2667
8e62a717
RH
2668 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2669 info, (elf_interpreter ? &interp_info : NULL));
2670 info->start_stack = bprm->p;
2671
2672 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2673 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2674 point as a function descriptor. Do this after creating elf tables
2675 so that we copy the original program entry point into the AUXV. */
2676 if (elf_interpreter) {
8e78064e 2677 info->load_bias = interp_info.load_bias;
8e62a717 2678 info->entry = interp_info.entry;
bf858897 2679 free(elf_interpreter);
8e62a717 2680 }
31e31b8a 2681
edf8e2af
MW
2682#ifdef USE_ELF_CORE_DUMP
2683 bprm->core_dump = &elf_core_dump;
2684#endif
2685
31e31b8a
FB
2686 return 0;
2687}
2688
edf8e2af 2689#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2690/*
2691 * Definitions to generate Intel SVR4-like core files.
a2547a13 2692 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2693 * tacked on the front to prevent clashes with linux definitions,
2694 * and the typedef forms have been avoided. This is mostly like
2695 * the SVR4 structure, but more Linuxy, with things that Linux does
2696 * not support and which gdb doesn't really use excluded.
2697 *
2698 * Fields we don't dump (their contents is zero) in linux-user qemu
2699 * are marked with XXX.
2700 *
2701 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2702 *
2703 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2704 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2705 * the target resides):
2706 *
2707 * #define USE_ELF_CORE_DUMP
2708 *
2709 * Next you define type of register set used for dumping. ELF specification
2710 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2711 *
c227f099 2712 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2713 * #define ELF_NREG <number of registers>
c227f099 2714 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2715 *
edf8e2af
MW
2716 * Last step is to implement target specific function that copies registers
2717 * from given cpu into just specified register set. Prototype is:
2718 *
c227f099 2719 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2720 * const CPUArchState *env);
edf8e2af
MW
2721 *
2722 * Parameters:
2723 * regs - copy register values into here (allocated and zeroed by caller)
2724 * env - copy registers from here
2725 *
2726 * Example for ARM target is provided in this file.
2727 */
2728
2729/* An ELF note in memory */
2730struct memelfnote {
2731 const char *name;
2732 size_t namesz;
2733 size_t namesz_rounded;
2734 int type;
2735 size_t datasz;
80f5ce75 2736 size_t datasz_rounded;
edf8e2af
MW
2737 void *data;
2738 size_t notesz;
2739};
2740
a2547a13 2741struct target_elf_siginfo {
f8fd4fc4
PB
2742 abi_int si_signo; /* signal number */
2743 abi_int si_code; /* extra code */
2744 abi_int si_errno; /* errno */
edf8e2af
MW
2745};
2746
a2547a13
LD
2747struct target_elf_prstatus {
2748 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2749 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2750 abi_ulong pr_sigpend; /* XXX */
2751 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2752 target_pid_t pr_pid;
2753 target_pid_t pr_ppid;
2754 target_pid_t pr_pgrp;
2755 target_pid_t pr_sid;
edf8e2af
MW
2756 struct target_timeval pr_utime; /* XXX User time */
2757 struct target_timeval pr_stime; /* XXX System time */
2758 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2759 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2760 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2761 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2762};
2763
2764#define ELF_PRARGSZ (80) /* Number of chars for args */
2765
a2547a13 2766struct target_elf_prpsinfo {
edf8e2af
MW
2767 char pr_state; /* numeric process state */
2768 char pr_sname; /* char for pr_state */
2769 char pr_zomb; /* zombie */
2770 char pr_nice; /* nice val */
ca98ac83 2771 abi_ulong pr_flag; /* flags */
c227f099
AL
2772 target_uid_t pr_uid;
2773 target_gid_t pr_gid;
2774 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2775 /* Lots missing */
2776 char pr_fname[16]; /* filename of executable */
2777 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2778};
2779
2780/* Here is the structure in which status of each thread is captured. */
2781struct elf_thread_status {
72cf2d4f 2782 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2783 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2784#if 0
2785 elf_fpregset_t fpu; /* NT_PRFPREG */
2786 struct task_struct *thread;
2787 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2788#endif
2789 struct memelfnote notes[1];
2790 int num_notes;
2791};
2792
2793struct elf_note_info {
2794 struct memelfnote *notes;
a2547a13
LD
2795 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2796 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2797
72cf2d4f 2798 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2799#if 0
2800 /*
2801 * Current version of ELF coredump doesn't support
2802 * dumping fp regs etc.
2803 */
2804 elf_fpregset_t *fpu;
2805 elf_fpxregset_t *xfpu;
2806 int thread_status_size;
2807#endif
2808 int notes_size;
2809 int numnote;
2810};
2811
2812struct vm_area_struct {
1a1c4db9
MI
2813 target_ulong vma_start; /* start vaddr of memory region */
2814 target_ulong vma_end; /* end vaddr of memory region */
2815 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2816 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2817};
2818
2819struct mm_struct {
72cf2d4f 2820 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2821 int mm_count; /* number of mappings */
2822};
2823
2824static struct mm_struct *vma_init(void);
2825static void vma_delete(struct mm_struct *);
1a1c4db9
MI
2826static int vma_add_mapping(struct mm_struct *, target_ulong,
2827 target_ulong, abi_ulong);
edf8e2af
MW
2828static int vma_get_mapping_count(const struct mm_struct *);
2829static struct vm_area_struct *vma_first(const struct mm_struct *);
2830static struct vm_area_struct *vma_next(struct vm_area_struct *);
2831static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 2832static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2833 unsigned long flags);
edf8e2af
MW
2834
2835static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2836static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2837 unsigned int, void *);
a2547a13
LD
2838static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2839static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2840static void fill_auxv_note(struct memelfnote *, const TaskState *);
2841static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2842static size_t note_size(const struct memelfnote *);
2843static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2844static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2845static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2846static int core_dump_filename(const TaskState *, char *, size_t);
2847
2848static int dump_write(int, const void *, size_t);
2849static int write_note(struct memelfnote *, int);
2850static int write_note_info(struct elf_note_info *, int);
2851
2852#ifdef BSWAP_NEEDED
a2547a13 2853static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2854{
ca98ac83
PB
2855 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2856 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2857 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2858 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
2859 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2860 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
2861 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2862 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2863 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2864 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2865 /* cpu times are not filled, so we skip them */
2866 /* regs should be in correct format already */
2867 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2868}
2869
a2547a13 2870static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 2871{
ca98ac83 2872 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
2873 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2874 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2875 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2876 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2877 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2878 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2879}
991f8f0c
RH
2880
2881static void bswap_note(struct elf_note *en)
2882{
2883 bswap32s(&en->n_namesz);
2884 bswap32s(&en->n_descsz);
2885 bswap32s(&en->n_type);
2886}
2887#else
2888static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2889static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2890static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2891#endif /* BSWAP_NEEDED */
2892
2893/*
2894 * Minimal support for linux memory regions. These are needed
2895 * when we are finding out what memory exactly belongs to
2896 * emulated process. No locks needed here, as long as
2897 * thread that received the signal is stopped.
2898 */
2899
2900static struct mm_struct *vma_init(void)
2901{
2902 struct mm_struct *mm;
2903
7267c094 2904 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
2905 return (NULL);
2906
2907 mm->mm_count = 0;
72cf2d4f 2908 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2909
2910 return (mm);
2911}
2912
2913static void vma_delete(struct mm_struct *mm)
2914{
2915 struct vm_area_struct *vma;
2916
2917 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2918 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 2919 g_free(vma);
edf8e2af 2920 }
7267c094 2921 g_free(mm);
edf8e2af
MW
2922}
2923
1a1c4db9
MI
2924static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2925 target_ulong end, abi_ulong flags)
edf8e2af
MW
2926{
2927 struct vm_area_struct *vma;
2928
7267c094 2929 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
2930 return (-1);
2931
2932 vma->vma_start = start;
2933 vma->vma_end = end;
2934 vma->vma_flags = flags;
2935
72cf2d4f 2936 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2937 mm->mm_count++;
2938
2939 return (0);
2940}
2941
2942static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2943{
72cf2d4f 2944 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2945}
2946
2947static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2948{
72cf2d4f 2949 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2950}
2951
2952static int vma_get_mapping_count(const struct mm_struct *mm)
2953{
2954 return (mm->mm_count);
2955}
2956
2957/*
2958 * Calculate file (dump) size of given memory region.
2959 */
2960static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2961{
2962 /* if we cannot even read the first page, skip it */
2963 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2964 return (0);
2965
2966 /*
2967 * Usually we don't dump executable pages as they contain
2968 * non-writable code that debugger can read directly from
2969 * target library etc. However, thread stacks are marked
2970 * also executable so we read in first page of given region
2971 * and check whether it contains elf header. If there is
2972 * no elf header, we dump it.
2973 */
2974 if (vma->vma_flags & PROT_EXEC) {
2975 char page[TARGET_PAGE_SIZE];
2976
2977 copy_from_user(page, vma->vma_start, sizeof (page));
2978 if ((page[EI_MAG0] == ELFMAG0) &&
2979 (page[EI_MAG1] == ELFMAG1) &&
2980 (page[EI_MAG2] == ELFMAG2) &&
2981 (page[EI_MAG3] == ELFMAG3)) {
2982 /*
2983 * Mappings are possibly from ELF binary. Don't dump
2984 * them.
2985 */
2986 return (0);
2987 }
2988 }
2989
2990 return (vma->vma_end - vma->vma_start);
2991}
2992
1a1c4db9 2993static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2994 unsigned long flags)
edf8e2af
MW
2995{
2996 struct mm_struct *mm = (struct mm_struct *)priv;
2997
edf8e2af
MW
2998 vma_add_mapping(mm, start, end, flags);
2999 return (0);
3000}
3001
3002static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 3003 unsigned int sz, void *data)
edf8e2af
MW
3004{
3005 unsigned int namesz;
3006
3007 namesz = strlen(name) + 1;
3008 note->name = name;
3009 note->namesz = namesz;
3010 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3011 note->type = type;
80f5ce75
LV
3012 note->datasz = sz;
3013 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3014
edf8e2af
MW
3015 note->data = data;
3016
3017 /*
3018 * We calculate rounded up note size here as specified by
3019 * ELF document.
3020 */
3021 note->notesz = sizeof (struct elf_note) +
80f5ce75 3022 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
3023}
3024
3025static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 3026 uint32_t flags)
edf8e2af
MW
3027{
3028 (void) memset(elf, 0, sizeof(*elf));
3029
3030 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3031 elf->e_ident[EI_CLASS] = ELF_CLASS;
3032 elf->e_ident[EI_DATA] = ELF_DATA;
3033 elf->e_ident[EI_VERSION] = EV_CURRENT;
3034 elf->e_ident[EI_OSABI] = ELF_OSABI;
3035
3036 elf->e_type = ET_CORE;
3037 elf->e_machine = machine;
3038 elf->e_version = EV_CURRENT;
3039 elf->e_phoff = sizeof(struct elfhdr);
3040 elf->e_flags = flags;
3041 elf->e_ehsize = sizeof(struct elfhdr);
3042 elf->e_phentsize = sizeof(struct elf_phdr);
3043 elf->e_phnum = segs;
3044
edf8e2af 3045 bswap_ehdr(elf);
edf8e2af
MW
3046}
3047
3048static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3049{
3050 phdr->p_type = PT_NOTE;
3051 phdr->p_offset = offset;
3052 phdr->p_vaddr = 0;
3053 phdr->p_paddr = 0;
3054 phdr->p_filesz = sz;
3055 phdr->p_memsz = 0;
3056 phdr->p_flags = 0;
3057 phdr->p_align = 0;
3058
991f8f0c 3059 bswap_phdr(phdr, 1);
edf8e2af
MW
3060}
3061
3062static size_t note_size(const struct memelfnote *note)
3063{
3064 return (note->notesz);
3065}
3066
a2547a13 3067static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 3068 const TaskState *ts, int signr)
edf8e2af
MW
3069{
3070 (void) memset(prstatus, 0, sizeof (*prstatus));
3071 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3072 prstatus->pr_pid = ts->ts_tid;
3073 prstatus->pr_ppid = getppid();
3074 prstatus->pr_pgrp = getpgrp();
3075 prstatus->pr_sid = getsid(0);
3076
edf8e2af 3077 bswap_prstatus(prstatus);
edf8e2af
MW
3078}
3079
a2547a13 3080static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 3081{
900cfbca 3082 char *base_filename;
edf8e2af
MW
3083 unsigned int i, len;
3084
3085 (void) memset(psinfo, 0, sizeof (*psinfo));
3086
3087 len = ts->info->arg_end - ts->info->arg_start;
3088 if (len >= ELF_PRARGSZ)
3089 len = ELF_PRARGSZ - 1;
3090 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3091 return -EFAULT;
3092 for (i = 0; i < len; i++)
3093 if (psinfo->pr_psargs[i] == 0)
3094 psinfo->pr_psargs[i] = ' ';
3095 psinfo->pr_psargs[len] = 0;
3096
3097 psinfo->pr_pid = getpid();
3098 psinfo->pr_ppid = getppid();
3099 psinfo->pr_pgrp = getpgrp();
3100 psinfo->pr_sid = getsid(0);
3101 psinfo->pr_uid = getuid();
3102 psinfo->pr_gid = getgid();
3103
900cfbca
JM
3104 base_filename = g_path_get_basename(ts->bprm->filename);
3105 /*
3106 * Using strncpy here is fine: at max-length,
3107 * this field is not NUL-terminated.
3108 */
edf8e2af 3109 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 3110 sizeof(psinfo->pr_fname));
edf8e2af 3111
900cfbca 3112 g_free(base_filename);
edf8e2af 3113 bswap_psinfo(psinfo);
edf8e2af
MW
3114 return (0);
3115}
3116
3117static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3118{
3119 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3120 elf_addr_t orig_auxv = auxv;
edf8e2af 3121 void *ptr;
125b0f55 3122 int len = ts->info->auxv_len;
edf8e2af
MW
3123
3124 /*
3125 * Auxiliary vector is stored in target process stack. It contains
3126 * {type, value} pairs that we need to dump into note. This is not
3127 * strictly necessary but we do it here for sake of completeness.
3128 */
3129
edf8e2af
MW
3130 /* read in whole auxv vector and copy it to memelfnote */
3131 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3132 if (ptr != NULL) {
3133 fill_note(note, "CORE", NT_AUXV, len, ptr);
3134 unlock_user(ptr, auxv, len);
3135 }
3136}
3137
3138/*
3139 * Constructs name of coredump file. We have following convention
3140 * for the name:
3141 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3142 *
3143 * Returns 0 in case of success, -1 otherwise (errno is set).
3144 */
3145static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 3146 size_t bufsize)
edf8e2af
MW
3147{
3148 char timestamp[64];
edf8e2af
MW
3149 char *base_filename = NULL;
3150 struct timeval tv;
3151 struct tm tm;
3152
3153 assert(bufsize >= PATH_MAX);
3154
3155 if (gettimeofday(&tv, NULL) < 0) {
3156 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 3157 strerror(errno));
edf8e2af
MW
3158 return (-1);
3159 }
3160
b8da57fa 3161 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 3162 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 3163 localtime_r(&tv.tv_sec, &tm));
edf8e2af 3164 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 3165 base_filename, timestamp, (int)getpid());
b8da57fa 3166 g_free(base_filename);
edf8e2af
MW
3167
3168 return (0);
3169}
3170
3171static int dump_write(int fd, const void *ptr, size_t size)
3172{
3173 const char *bufp = (const char *)ptr;
3174 ssize_t bytes_written, bytes_left;
3175 struct rlimit dumpsize;
3176 off_t pos;
3177
3178 bytes_written = 0;
3179 getrlimit(RLIMIT_CORE, &dumpsize);
3180 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3181 if (errno == ESPIPE) { /* not a seekable stream */
3182 bytes_left = size;
3183 } else {
3184 return pos;
3185 }
3186 } else {
3187 if (dumpsize.rlim_cur <= pos) {
3188 return -1;
3189 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3190 bytes_left = size;
3191 } else {
3192 size_t limit_left=dumpsize.rlim_cur - pos;
3193 bytes_left = limit_left >= size ? size : limit_left ;
3194 }
3195 }
3196
3197 /*
3198 * In normal conditions, single write(2) should do but
3199 * in case of socket etc. this mechanism is more portable.
3200 */
3201 do {
3202 bytes_written = write(fd, bufp, bytes_left);
3203 if (bytes_written < 0) {
3204 if (errno == EINTR)
3205 continue;
3206 return (-1);
3207 } else if (bytes_written == 0) { /* eof */
3208 return (-1);
3209 }
3210 bufp += bytes_written;
3211 bytes_left -= bytes_written;
3212 } while (bytes_left > 0);
3213
3214 return (0);
3215}
3216
3217static int write_note(struct memelfnote *men, int fd)
3218{
3219 struct elf_note en;
3220
3221 en.n_namesz = men->namesz;
3222 en.n_type = men->type;
3223 en.n_descsz = men->datasz;
3224
edf8e2af 3225 bswap_note(&en);
edf8e2af
MW
3226
3227 if (dump_write(fd, &en, sizeof(en)) != 0)
3228 return (-1);
3229 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3230 return (-1);
80f5ce75 3231 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3232 return (-1);
3233
3234 return (0);
3235}
3236
9349b4f9 3237static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3238{
0429a971
AF
3239 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3240 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3241 struct elf_thread_status *ets;
3242
7267c094 3243 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3244 ets->num_notes = 1; /* only prstatus is dumped */
3245 fill_prstatus(&ets->prstatus, ts, 0);
3246 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3247 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3248 &ets->prstatus);
edf8e2af 3249
72cf2d4f 3250 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3251
3252 info->notes_size += note_size(&ets->notes[0]);
3253}
3254
6afafa86
PM
3255static void init_note_info(struct elf_note_info *info)
3256{
3257 /* Initialize the elf_note_info structure so that it is at
3258 * least safe to call free_note_info() on it. Must be
3259 * called before calling fill_note_info().
3260 */
3261 memset(info, 0, sizeof (*info));
3262 QTAILQ_INIT(&info->thread_list);
3263}
3264
edf8e2af 3265static int fill_note_info(struct elf_note_info *info,
9349b4f9 3266 long signr, const CPUArchState *env)
edf8e2af
MW
3267{
3268#define NUMNOTES 3
0429a971
AF
3269 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3270 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3271 int i;
3272
c78d65e8 3273 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3274 if (info->notes == NULL)
3275 return (-ENOMEM);
7267c094 3276 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3277 if (info->prstatus == NULL)
3278 return (-ENOMEM);
7267c094 3279 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3280 if (info->prstatus == NULL)
3281 return (-ENOMEM);
3282
3283 /*
3284 * First fill in status (and registers) of current thread
3285 * including process info & aux vector.
3286 */
3287 fill_prstatus(info->prstatus, ts, signr);
3288 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3289 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3290 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3291 fill_psinfo(info->psinfo, ts);
3292 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3293 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3294 fill_auxv_note(&info->notes[2], ts);
3295 info->numnote = 3;
3296
3297 info->notes_size = 0;
3298 for (i = 0; i < info->numnote; i++)
3299 info->notes_size += note_size(&info->notes[i]);
3300
3301 /* read and fill status of all threads */
3302 cpu_list_lock();
bdc44640 3303 CPU_FOREACH(cpu) {
a2247f8e 3304 if (cpu == thread_cpu) {
edf8e2af 3305 continue;
182735ef
AF
3306 }
3307 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3308 }
3309 cpu_list_unlock();
3310
3311 return (0);
3312}
3313
3314static void free_note_info(struct elf_note_info *info)
3315{
3316 struct elf_thread_status *ets;
3317
72cf2d4f
BS
3318 while (!QTAILQ_EMPTY(&info->thread_list)) {
3319 ets = QTAILQ_FIRST(&info->thread_list);
3320 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3321 g_free(ets);
edf8e2af
MW
3322 }
3323
7267c094
AL
3324 g_free(info->prstatus);
3325 g_free(info->psinfo);
3326 g_free(info->notes);
edf8e2af
MW
3327}
3328
3329static int write_note_info(struct elf_note_info *info, int fd)
3330{
3331 struct elf_thread_status *ets;
3332 int i, error = 0;
3333
3334 /* write prstatus, psinfo and auxv for current thread */
3335 for (i = 0; i < info->numnote; i++)
3336 if ((error = write_note(&info->notes[i], fd)) != 0)
3337 return (error);
3338
3339 /* write prstatus for each thread */
52a53afe 3340 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3341 if ((error = write_note(&ets->notes[0], fd)) != 0)
3342 return (error);
3343 }
3344
3345 return (0);
3346}
3347
3348/*
3349 * Write out ELF coredump.
3350 *
3351 * See documentation of ELF object file format in:
3352 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3353 *
3354 * Coredump format in linux is following:
3355 *
3356 * 0 +----------------------+ \
3357 * | ELF header | ET_CORE |
3358 * +----------------------+ |
3359 * | ELF program headers | |--- headers
3360 * | - NOTE section | |
3361 * | - PT_LOAD sections | |
3362 * +----------------------+ /
3363 * | NOTEs: |
3364 * | - NT_PRSTATUS |
3365 * | - NT_PRSINFO |
3366 * | - NT_AUXV |
3367 * +----------------------+ <-- aligned to target page
3368 * | Process memory dump |
3369 * : :
3370 * . .
3371 * : :
3372 * | |
3373 * +----------------------+
3374 *
3375 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3376 * NT_PRSINFO -> struct elf_prpsinfo
3377 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3378 *
3379 * Format follows System V format as close as possible. Current
3380 * version limitations are as follows:
3381 * - no floating point registers are dumped
3382 *
3383 * Function returns 0 in case of success, negative errno otherwise.
3384 *
3385 * TODO: make this work also during runtime: it should be
3386 * possible to force coredump from running process and then
3387 * continue processing. For example qemu could set up SIGUSR2
3388 * handler (provided that target process haven't registered
3389 * handler for that) that does the dump when signal is received.
3390 */
9349b4f9 3391static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3392{
0429a971
AF
3393 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3394 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3395 struct vm_area_struct *vma = NULL;
3396 char corefile[PATH_MAX];
3397 struct elf_note_info info;
3398 struct elfhdr elf;
3399 struct elf_phdr phdr;
3400 struct rlimit dumpsize;
3401 struct mm_struct *mm = NULL;
3402 off_t offset = 0, data_offset = 0;
3403 int segs = 0;
3404 int fd = -1;
3405
6afafa86
PM
3406 init_note_info(&info);
3407
edf8e2af
MW
3408 errno = 0;
3409 getrlimit(RLIMIT_CORE, &dumpsize);
3410 if (dumpsize.rlim_cur == 0)
d97ef72e 3411 return 0;
edf8e2af
MW
3412
3413 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3414 return (-errno);
3415
3416 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3417 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3418 return (-errno);
3419
3420 /*
3421 * Walk through target process memory mappings and
3422 * set up structure containing this information. After
3423 * this point vma_xxx functions can be used.
3424 */
3425 if ((mm = vma_init()) == NULL)
3426 goto out;
3427
3428 walk_memory_regions(mm, vma_walker);
3429 segs = vma_get_mapping_count(mm);
3430
3431 /*
3432 * Construct valid coredump ELF header. We also
3433 * add one more segment for notes.
3434 */
3435 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3436 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3437 goto out;
3438
b6af0975 3439 /* fill in the in-memory version of notes */
edf8e2af
MW
3440 if (fill_note_info(&info, signr, env) < 0)
3441 goto out;
3442
3443 offset += sizeof (elf); /* elf header */
3444 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3445
3446 /* write out notes program header */
3447 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3448
3449 offset += info.notes_size;
3450 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3451 goto out;
3452
3453 /*
3454 * ELF specification wants data to start at page boundary so
3455 * we align it here.
3456 */
80f5ce75 3457 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3458
3459 /*
3460 * Write program headers for memory regions mapped in
3461 * the target process.
3462 */
3463 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3464 (void) memset(&phdr, 0, sizeof (phdr));
3465
3466 phdr.p_type = PT_LOAD;
3467 phdr.p_offset = offset;
3468 phdr.p_vaddr = vma->vma_start;
3469 phdr.p_paddr = 0;
3470 phdr.p_filesz = vma_dump_size(vma);
3471 offset += phdr.p_filesz;
3472 phdr.p_memsz = vma->vma_end - vma->vma_start;
3473 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3474 if (vma->vma_flags & PROT_WRITE)
3475 phdr.p_flags |= PF_W;
3476 if (vma->vma_flags & PROT_EXEC)
3477 phdr.p_flags |= PF_X;
3478 phdr.p_align = ELF_EXEC_PAGESIZE;
3479
80f5ce75 3480 bswap_phdr(&phdr, 1);
772034b6
PM
3481 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3482 goto out;
3483 }
edf8e2af
MW
3484 }
3485
3486 /*
3487 * Next we write notes just after program headers. No
3488 * alignment needed here.
3489 */
3490 if (write_note_info(&info, fd) < 0)
3491 goto out;
3492
3493 /* align data to page boundary */
edf8e2af
MW
3494 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3495 goto out;
3496
3497 /*
3498 * Finally we can dump process memory into corefile as well.
3499 */
3500 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3501 abi_ulong addr;
3502 abi_ulong end;
3503
3504 end = vma->vma_start + vma_dump_size(vma);
3505
3506 for (addr = vma->vma_start; addr < end;
d97ef72e 3507 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3508 char page[TARGET_PAGE_SIZE];
3509 int error;
3510
3511 /*
3512 * Read in page from target process memory and
3513 * write it to coredump file.
3514 */
3515 error = copy_from_user(page, addr, sizeof (page));
3516 if (error != 0) {
49995e17 3517 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3518 addr);
edf8e2af
MW
3519 errno = -error;
3520 goto out;
3521 }
3522 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3523 goto out;
3524 }
3525 }
3526
d97ef72e 3527 out:
edf8e2af
MW
3528 free_note_info(&info);
3529 if (mm != NULL)
3530 vma_delete(mm);
3531 (void) close(fd);
3532
3533 if (errno != 0)
3534 return (-errno);
3535 return (0);
3536}
edf8e2af
MW
3537#endif /* USE_ELF_CORE_DUMP */
3538
e5fe0c52
PB
3539void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3540{
3541 init_thread(regs, infop);
3542}