]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
target-ppc: Add DFP to Emulated Instructions Flag
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
edf8e2af
MW
2#include <sys/time.h>
3#include <sys/param.h>
31e31b8a
FB
4
5#include <stdio.h>
6#include <sys/types.h>
7#include <fcntl.h>
31e31b8a
FB
8#include <errno.h>
9#include <unistd.h>
10#include <sys/mman.h>
edf8e2af 11#include <sys/resource.h>
31e31b8a
FB
12#include <stdlib.h>
13#include <string.h>
edf8e2af 14#include <time.h>
31e31b8a 15
3ef693a0 16#include "qemu.h"
76cad711 17#include "disas/disas.h"
31e31b8a 18
e58ffeb3 19#ifdef _ARCH_PPC64
a6cc84f4 20#undef ARCH_DLINFO
21#undef ELF_PLATFORM
22#undef ELF_HWCAP
ad6919dc 23#undef ELF_HWCAP2
a6cc84f4 24#undef ELF_CLASS
25#undef ELF_DATA
26#undef ELF_ARCH
27#endif
28
edf8e2af
MW
29#define ELF_OSABI ELFOSABI_SYSV
30
cb33da57
BS
31/* from personality.h */
32
33/*
34 * Flags for bug emulation.
35 *
36 * These occupy the top three bytes.
37 */
38enum {
d97ef72e
RH
39 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
40 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
41 descriptors (signal handling) */
42 MMAP_PAGE_ZERO = 0x0100000,
43 ADDR_COMPAT_LAYOUT = 0x0200000,
44 READ_IMPLIES_EXEC = 0x0400000,
45 ADDR_LIMIT_32BIT = 0x0800000,
46 SHORT_INODE = 0x1000000,
47 WHOLE_SECONDS = 0x2000000,
48 STICKY_TIMEOUTS = 0x4000000,
49 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
50};
51
52/*
53 * Personality types.
54 *
55 * These go in the low byte. Avoid using the top bit, it will
56 * conflict with error returns.
57 */
58enum {
d97ef72e
RH
59 PER_LINUX = 0x0000,
60 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
61 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
62 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
65 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
66 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
67 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
68 PER_BSD = 0x0006,
69 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
70 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
71 PER_LINUX32 = 0x0008,
72 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
73 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
74 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
75 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
76 PER_RISCOS = 0x000c,
77 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
78 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
79 PER_OSF4 = 0x000f, /* OSF/1 v4 */
80 PER_HPUX = 0x0010,
81 PER_MASK = 0x00ff,
cb33da57
BS
82};
83
84/*
85 * Return the base personality without flags.
86 */
d97ef72e 87#define personality(pers) (pers & PER_MASK)
cb33da57 88
83fb7adf
FB
89/* this flag is uneffective under linux too, should be deleted */
90#ifndef MAP_DENYWRITE
91#define MAP_DENYWRITE 0
92#endif
93
94/* should probably go in elf.h */
95#ifndef ELIBBAD
96#define ELIBBAD 80
97#endif
98
28490231
RH
99#ifdef TARGET_WORDS_BIGENDIAN
100#define ELF_DATA ELFDATA2MSB
101#else
102#define ELF_DATA ELFDATA2LSB
103#endif
104
a29f998d 105#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
106typedef abi_ullong target_elf_greg_t;
107#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
108#else
109typedef abi_ulong target_elf_greg_t;
110#define tswapreg(ptr) tswapal(ptr)
111#endif
112
21e807fa 113#ifdef USE_UID16
1ddd592f
PB
114typedef abi_ushort target_uid_t;
115typedef abi_ushort target_gid_t;
21e807fa 116#else
f8fd4fc4
PB
117typedef abi_uint target_uid_t;
118typedef abi_uint target_gid_t;
21e807fa 119#endif
f8fd4fc4 120typedef abi_int target_pid_t;
21e807fa 121
30ac07d4
FB
122#ifdef TARGET_I386
123
15338fd7
FB
124#define ELF_PLATFORM get_elf_platform()
125
126static const char *get_elf_platform(void)
127{
128 static char elf_platform[] = "i386";
a2247f8e 129 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
130 if (family > 6)
131 family = 6;
132 if (family >= 3)
133 elf_platform[1] = '0' + family;
134 return elf_platform;
135}
136
137#define ELF_HWCAP get_elf_hwcap()
138
139static uint32_t get_elf_hwcap(void)
140{
a2247f8e
AF
141 X86CPU *cpu = X86_CPU(thread_cpu);
142
143 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
144}
145
84409ddb
JM
146#ifdef TARGET_X86_64
147#define ELF_START_MMAP 0x2aaaaab000ULL
148#define elf_check_arch(x) ( ((x) == ELF_ARCH) )
149
150#define ELF_CLASS ELFCLASS64
84409ddb
JM
151#define ELF_ARCH EM_X86_64
152
153static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154{
155 regs->rax = 0;
156 regs->rsp = infop->start_stack;
157 regs->rip = infop->entry;
158}
159
9edc5d79 160#define ELF_NREG 27
c227f099 161typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
162
163/*
164 * Note that ELF_NREG should be 29 as there should be place for
165 * TRAPNO and ERR "registers" as well but linux doesn't dump
166 * those.
167 *
168 * See linux kernel: arch/x86/include/asm/elf.h
169 */
05390248 170static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
171{
172 (*regs)[0] = env->regs[15];
173 (*regs)[1] = env->regs[14];
174 (*regs)[2] = env->regs[13];
175 (*regs)[3] = env->regs[12];
176 (*regs)[4] = env->regs[R_EBP];
177 (*regs)[5] = env->regs[R_EBX];
178 (*regs)[6] = env->regs[11];
179 (*regs)[7] = env->regs[10];
180 (*regs)[8] = env->regs[9];
181 (*regs)[9] = env->regs[8];
182 (*regs)[10] = env->regs[R_EAX];
183 (*regs)[11] = env->regs[R_ECX];
184 (*regs)[12] = env->regs[R_EDX];
185 (*regs)[13] = env->regs[R_ESI];
186 (*regs)[14] = env->regs[R_EDI];
187 (*regs)[15] = env->regs[R_EAX]; /* XXX */
188 (*regs)[16] = env->eip;
189 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
190 (*regs)[18] = env->eflags;
191 (*regs)[19] = env->regs[R_ESP];
192 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
193 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
195 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
196 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
197 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
198 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
199}
200
84409ddb
JM
201#else
202
30ac07d4
FB
203#define ELF_START_MMAP 0x80000000
204
30ac07d4
FB
205/*
206 * This is used to ensure we don't load something for the wrong architecture.
207 */
208#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
209
210/*
211 * These are used to set parameters in the core dumps.
212 */
d97ef72e 213#define ELF_CLASS ELFCLASS32
d97ef72e 214#define ELF_ARCH EM_386
30ac07d4 215
d97ef72e
RH
216static inline void init_thread(struct target_pt_regs *regs,
217 struct image_info *infop)
b346ff46
FB
218{
219 regs->esp = infop->start_stack;
220 regs->eip = infop->entry;
e5fe0c52
PB
221
222 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
223 starts %edx contains a pointer to a function which might be
224 registered using `atexit'. This provides a mean for the
225 dynamic linker to call DT_FINI functions for shared libraries
226 that have been loaded before the code runs.
227
228 A value of 0 tells we have no such handler. */
229 regs->edx = 0;
b346ff46 230}
9edc5d79 231
9edc5d79 232#define ELF_NREG 17
c227f099 233typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
234
235/*
236 * Note that ELF_NREG should be 19 as there should be place for
237 * TRAPNO and ERR "registers" as well but linux doesn't dump
238 * those.
239 *
240 * See linux kernel: arch/x86/include/asm/elf.h
241 */
05390248 242static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
243{
244 (*regs)[0] = env->regs[R_EBX];
245 (*regs)[1] = env->regs[R_ECX];
246 (*regs)[2] = env->regs[R_EDX];
247 (*regs)[3] = env->regs[R_ESI];
248 (*regs)[4] = env->regs[R_EDI];
249 (*regs)[5] = env->regs[R_EBP];
250 (*regs)[6] = env->regs[R_EAX];
251 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
252 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
253 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
254 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
255 (*regs)[11] = env->regs[R_EAX]; /* XXX */
256 (*regs)[12] = env->eip;
257 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
258 (*regs)[14] = env->eflags;
259 (*regs)[15] = env->regs[R_ESP];
260 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
261}
84409ddb 262#endif
b346ff46 263
9edc5d79 264#define USE_ELF_CORE_DUMP
d97ef72e 265#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
266
267#endif
268
269#ifdef TARGET_ARM
270
24e76ff0
PM
271#ifndef TARGET_AARCH64
272/* 32 bit ARM definitions */
273
b346ff46
FB
274#define ELF_START_MMAP 0x80000000
275
99033cae 276#define elf_check_arch(x) ((x) == ELF_MACHINE)
b346ff46 277
99033cae 278#define ELF_ARCH ELF_MACHINE
d97ef72e 279#define ELF_CLASS ELFCLASS32
b346ff46 280
d97ef72e
RH
281static inline void init_thread(struct target_pt_regs *regs,
282 struct image_info *infop)
b346ff46 283{
992f48a0 284 abi_long stack = infop->start_stack;
b346ff46 285 memset(regs, 0, sizeof(*regs));
99033cae 286
b346ff46 287 regs->ARM_cpsr = 0x10;
0240ded8 288 if (infop->entry & 1)
d97ef72e 289 regs->ARM_cpsr |= CPSR_T;
0240ded8 290 regs->ARM_pc = infop->entry & 0xfffffffe;
b346ff46 291 regs->ARM_sp = infop->start_stack;
2f619698
FB
292 /* FIXME - what to for failure of get_user()? */
293 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
294 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
a1516e92 295 /* XXX: it seems that r0 is zeroed after ! */
e5fe0c52
PB
296 regs->ARM_r0 = 0;
297 /* For uClinux PIC binaries. */
863cf0b7 298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
e5fe0c52 299 regs->ARM_r10 = infop->start_data;
b346ff46
FB
300}
301
edf8e2af 302#define ELF_NREG 18
c227f099 303typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 304
05390248 305static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 306{
86cd7b2d
PB
307 (*regs)[0] = tswapreg(env->regs[0]);
308 (*regs)[1] = tswapreg(env->regs[1]);
309 (*regs)[2] = tswapreg(env->regs[2]);
310 (*regs)[3] = tswapreg(env->regs[3]);
311 (*regs)[4] = tswapreg(env->regs[4]);
312 (*regs)[5] = tswapreg(env->regs[5]);
313 (*regs)[6] = tswapreg(env->regs[6]);
314 (*regs)[7] = tswapreg(env->regs[7]);
315 (*regs)[8] = tswapreg(env->regs[8]);
316 (*regs)[9] = tswapreg(env->regs[9]);
317 (*regs)[10] = tswapreg(env->regs[10]);
318 (*regs)[11] = tswapreg(env->regs[11]);
319 (*regs)[12] = tswapreg(env->regs[12]);
320 (*regs)[13] = tswapreg(env->regs[13]);
321 (*regs)[14] = tswapreg(env->regs[14]);
322 (*regs)[15] = tswapreg(env->regs[15]);
323
324 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
325 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
326}
327
30ac07d4 328#define USE_ELF_CORE_DUMP
d97ef72e 329#define ELF_EXEC_PAGESIZE 4096
30ac07d4 330
afce2927
FB
331enum
332{
d97ef72e
RH
333 ARM_HWCAP_ARM_SWP = 1 << 0,
334 ARM_HWCAP_ARM_HALF = 1 << 1,
335 ARM_HWCAP_ARM_THUMB = 1 << 2,
336 ARM_HWCAP_ARM_26BIT = 1 << 3,
337 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
338 ARM_HWCAP_ARM_FPA = 1 << 5,
339 ARM_HWCAP_ARM_VFP = 1 << 6,
340 ARM_HWCAP_ARM_EDSP = 1 << 7,
341 ARM_HWCAP_ARM_JAVA = 1 << 8,
342 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
343 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
344 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
345 ARM_HWCAP_ARM_NEON = 1 << 12,
346 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
347 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
348 ARM_HWCAP_ARM_TLS = 1 << 15,
349 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
350 ARM_HWCAP_ARM_IDIVA = 1 << 17,
351 ARM_HWCAP_ARM_IDIVT = 1 << 18,
352 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
353 ARM_HWCAP_ARM_LPAE = 1 << 20,
354 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
355};
356
ad6919dc
PM
357enum {
358 ARM_HWCAP2_ARM_AES = 1 << 0,
359 ARM_HWCAP2_ARM_PMULL = 1 << 1,
360 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
361 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
362 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
363};
364
6b1275ff
PM
365/* The commpage only exists for 32 bit kernels */
366
806d1021
MI
367#define TARGET_HAS_VALIDATE_GUEST_SPACE
368/* Return 1 if the proposed guest space is suitable for the guest.
369 * Return 0 if the proposed guest space isn't suitable, but another
370 * address space should be tried.
371 * Return -1 if there is no way the proposed guest space can be
372 * valid regardless of the base.
373 * The guest code may leave a page mapped and populate it if the
374 * address is suitable.
375 */
376static int validate_guest_space(unsigned long guest_base,
377 unsigned long guest_size)
97cc7560
DDAG
378{
379 unsigned long real_start, test_page_addr;
380
381 /* We need to check that we can force a fault on access to the
382 * commpage at 0xffff0fxx
383 */
384 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
385
386 /* If the commpage lies within the already allocated guest space,
387 * then there is no way we can allocate it.
388 */
389 if (test_page_addr >= guest_base
390 && test_page_addr <= (guest_base + guest_size)) {
391 return -1;
392 }
393
97cc7560
DDAG
394 /* Note it needs to be writeable to let us initialise it */
395 real_start = (unsigned long)
396 mmap((void *)test_page_addr, qemu_host_page_size,
397 PROT_READ | PROT_WRITE,
398 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
399
400 /* If we can't map it then try another address */
401 if (real_start == -1ul) {
402 return 0;
403 }
404
405 if (real_start != test_page_addr) {
406 /* OS didn't put the page where we asked - unmap and reject */
407 munmap((void *)real_start, qemu_host_page_size);
408 return 0;
409 }
410
411 /* Leave the page mapped
412 * Populate it (mmap should have left it all 0'd)
413 */
414
415 /* Kernel helper versions */
416 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
417
418 /* Now it's populated make it RO */
419 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
420 perror("Protecting guest commpage");
421 exit(-1);
422 }
423
424 return 1; /* All good */
425}
adf050b1
BC
426
427#define ELF_HWCAP get_elf_hwcap()
ad6919dc 428#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
429
430static uint32_t get_elf_hwcap(void)
431{
a2247f8e 432 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
433 uint32_t hwcaps = 0;
434
435 hwcaps |= ARM_HWCAP_ARM_SWP;
436 hwcaps |= ARM_HWCAP_ARM_HALF;
437 hwcaps |= ARM_HWCAP_ARM_THUMB;
438 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
439
440 /* probe for the extra features */
441#define GET_FEATURE(feat, hwcap) \
a2247f8e 442 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
24682654
PM
443 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
444 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
445 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
446 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
447 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
448 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
450 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
451 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
452 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
453 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
454 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
455 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
456 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
457 * to our VFP_FP16 feature bit.
458 */
459 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
460 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
461
462 return hwcaps;
463}
afce2927 464
ad6919dc
PM
465static uint32_t get_elf_hwcap2(void)
466{
467 ARMCPU *cpu = ARM_CPU(thread_cpu);
468 uint32_t hwcaps = 0;
469
470 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
4e624eda 471 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
f1ecb913
AB
472 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
473 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
ad6919dc
PM
474 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
475 return hwcaps;
476}
477
478#undef GET_FEATURE
479
24e76ff0
PM
480#else
481/* 64 bit ARM definitions */
482#define ELF_START_MMAP 0x80000000
483
484#define elf_check_arch(x) ((x) == ELF_MACHINE)
485
486#define ELF_ARCH ELF_MACHINE
487#define ELF_CLASS ELFCLASS64
488#define ELF_PLATFORM "aarch64"
489
490static inline void init_thread(struct target_pt_regs *regs,
491 struct image_info *infop)
492{
493 abi_long stack = infop->start_stack;
494 memset(regs, 0, sizeof(*regs));
495
496 regs->pc = infop->entry & ~0x3ULL;
497 regs->sp = stack;
498}
499
500#define ELF_NREG 34
501typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
502
503static void elf_core_copy_regs(target_elf_gregset_t *regs,
504 const CPUARMState *env)
505{
506 int i;
507
508 for (i = 0; i < 32; i++) {
509 (*regs)[i] = tswapreg(env->xregs[i]);
510 }
511 (*regs)[32] = tswapreg(env->pc);
512 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
513}
514
515#define USE_ELF_CORE_DUMP
516#define ELF_EXEC_PAGESIZE 4096
517
518enum {
519 ARM_HWCAP_A64_FP = 1 << 0,
520 ARM_HWCAP_A64_ASIMD = 1 << 1,
521 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
522 ARM_HWCAP_A64_AES = 1 << 3,
523 ARM_HWCAP_A64_PMULL = 1 << 4,
524 ARM_HWCAP_A64_SHA1 = 1 << 5,
525 ARM_HWCAP_A64_SHA2 = 1 << 6,
526 ARM_HWCAP_A64_CRC32 = 1 << 7,
527};
528
529#define ELF_HWCAP get_elf_hwcap()
530
531static uint32_t get_elf_hwcap(void)
532{
533 ARMCPU *cpu = ARM_CPU(thread_cpu);
534 uint32_t hwcaps = 0;
535
536 hwcaps |= ARM_HWCAP_A64_FP;
537 hwcaps |= ARM_HWCAP_A64_ASIMD;
538
539 /* probe for the extra features */
540#define GET_FEATURE(feat, hwcap) \
541 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
5acc765c 542 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
411bdc78 543 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
f6fe04d5
PM
544 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
545 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
130f2e7d 546 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
24e76ff0
PM
547#undef GET_FEATURE
548
549 return hwcaps;
550}
551
552#endif /* not TARGET_AARCH64 */
553#endif /* TARGET_ARM */
30ac07d4 554
d2fbca94
GX
555#ifdef TARGET_UNICORE32
556
557#define ELF_START_MMAP 0x80000000
558
559#define elf_check_arch(x) ((x) == EM_UNICORE32)
560
561#define ELF_CLASS ELFCLASS32
562#define ELF_DATA ELFDATA2LSB
563#define ELF_ARCH EM_UNICORE32
564
565static inline void init_thread(struct target_pt_regs *regs,
566 struct image_info *infop)
567{
568 abi_long stack = infop->start_stack;
569 memset(regs, 0, sizeof(*regs));
570 regs->UC32_REG_asr = 0x10;
571 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
572 regs->UC32_REG_sp = infop->start_stack;
573 /* FIXME - what to for failure of get_user()? */
574 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
575 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
576 /* XXX: it seems that r0 is zeroed after ! */
577 regs->UC32_REG_00 = 0;
578}
579
580#define ELF_NREG 34
581typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
582
05390248 583static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
d2fbca94
GX
584{
585 (*regs)[0] = env->regs[0];
586 (*regs)[1] = env->regs[1];
587 (*regs)[2] = env->regs[2];
588 (*regs)[3] = env->regs[3];
589 (*regs)[4] = env->regs[4];
590 (*regs)[5] = env->regs[5];
591 (*regs)[6] = env->regs[6];
592 (*regs)[7] = env->regs[7];
593 (*regs)[8] = env->regs[8];
594 (*regs)[9] = env->regs[9];
595 (*regs)[10] = env->regs[10];
596 (*regs)[11] = env->regs[11];
597 (*regs)[12] = env->regs[12];
598 (*regs)[13] = env->regs[13];
599 (*regs)[14] = env->regs[14];
600 (*regs)[15] = env->regs[15];
601 (*regs)[16] = env->regs[16];
602 (*regs)[17] = env->regs[17];
603 (*regs)[18] = env->regs[18];
604 (*regs)[19] = env->regs[19];
605 (*regs)[20] = env->regs[20];
606 (*regs)[21] = env->regs[21];
607 (*regs)[22] = env->regs[22];
608 (*regs)[23] = env->regs[23];
609 (*regs)[24] = env->regs[24];
610 (*regs)[25] = env->regs[25];
611 (*regs)[26] = env->regs[26];
612 (*regs)[27] = env->regs[27];
613 (*regs)[28] = env->regs[28];
614 (*regs)[29] = env->regs[29];
615 (*regs)[30] = env->regs[30];
616 (*regs)[31] = env->regs[31];
617
05390248 618 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
d2fbca94
GX
619 (*regs)[33] = env->regs[0]; /* XXX */
620}
621
622#define USE_ELF_CORE_DUMP
623#define ELF_EXEC_PAGESIZE 4096
624
625#define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
626
627#endif
628
853d6f7a 629#ifdef TARGET_SPARC
a315a145 630#ifdef TARGET_SPARC64
853d6f7a
FB
631
632#define ELF_START_MMAP 0x80000000
cf973e46
AT
633#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
634 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 635#ifndef TARGET_ABI32
cb33da57 636#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
637#else
638#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
639#endif
853d6f7a 640
a315a145 641#define ELF_CLASS ELFCLASS64
5ef54116
FB
642#define ELF_ARCH EM_SPARCV9
643
d97ef72e 644#define STACK_BIAS 2047
a315a145 645
d97ef72e
RH
646static inline void init_thread(struct target_pt_regs *regs,
647 struct image_info *infop)
a315a145 648{
992f48a0 649#ifndef TARGET_ABI32
a315a145 650 regs->tstate = 0;
992f48a0 651#endif
a315a145
FB
652 regs->pc = infop->entry;
653 regs->npc = regs->pc + 4;
654 regs->y = 0;
992f48a0
BS
655#ifdef TARGET_ABI32
656 regs->u_regs[14] = infop->start_stack - 16 * 4;
657#else
cb33da57
BS
658 if (personality(infop->personality) == PER_LINUX32)
659 regs->u_regs[14] = infop->start_stack - 16 * 4;
660 else
661 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 662#endif
a315a145
FB
663}
664
665#else
666#define ELF_START_MMAP 0x80000000
cf973e46
AT
667#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
668 | HWCAP_SPARC_MULDIV)
a315a145
FB
669#define elf_check_arch(x) ( (x) == EM_SPARC )
670
853d6f7a 671#define ELF_CLASS ELFCLASS32
853d6f7a
FB
672#define ELF_ARCH EM_SPARC
673
d97ef72e
RH
674static inline void init_thread(struct target_pt_regs *regs,
675 struct image_info *infop)
853d6f7a 676{
f5155289
FB
677 regs->psr = 0;
678 regs->pc = infop->entry;
679 regs->npc = regs->pc + 4;
680 regs->y = 0;
681 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
682}
683
a315a145 684#endif
853d6f7a
FB
685#endif
686
67867308
FB
687#ifdef TARGET_PPC
688
689#define ELF_START_MMAP 0x80000000
690
e85e7c6e 691#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
692
693#define elf_check_arch(x) ( (x) == EM_PPC64 )
694
d97ef72e 695#define ELF_CLASS ELFCLASS64
84409ddb
JM
696
697#else
698
67867308
FB
699#define elf_check_arch(x) ( (x) == EM_PPC )
700
d97ef72e 701#define ELF_CLASS ELFCLASS32
84409ddb
JM
702
703#endif
704
d97ef72e 705#define ELF_ARCH EM_PPC
67867308 706
df84e4f3
NF
707/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
708 See arch/powerpc/include/asm/cputable.h. */
709enum {
3efa9a67 710 QEMU_PPC_FEATURE_32 = 0x80000000,
711 QEMU_PPC_FEATURE_64 = 0x40000000,
712 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
713 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
714 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
715 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
716 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
717 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
718 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
719 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
720 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
721 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
722 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
723 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
724 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
725 QEMU_PPC_FEATURE_CELL = 0x00010000,
726 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
727 QEMU_PPC_FEATURE_SMT = 0x00004000,
728 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
729 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
730 QEMU_PPC_FEATURE_PA6T = 0x00000800,
731 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
732 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
733 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
734 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
735 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
736
737 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
738 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
df84e4f3
NF
739};
740
741#define ELF_HWCAP get_elf_hwcap()
742
743static uint32_t get_elf_hwcap(void)
744{
a2247f8e 745 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
746 uint32_t features = 0;
747
748 /* We don't have to be terribly complete here; the high points are
749 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 750#define GET_FEATURE(flag, feature) \
a2247f8e 751 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
3efa9a67 752 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
753 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
754 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
755 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
756 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
757 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
758 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
759 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
df84e4f3
NF
760#undef GET_FEATURE
761
762 return features;
763}
764
f5155289
FB
765/*
766 * The requirements here are:
767 * - keep the final alignment of sp (sp & 0xf)
768 * - make sure the 32-bit value at the first 16 byte aligned position of
769 * AUXV is greater than 16 for glibc compatibility.
770 * AT_IGNOREPPC is used for that.
771 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
772 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
773 */
0bccf03d 774#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
775#define ARCH_DLINFO \
776 do { \
623e250a
TM
777 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
778 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
779 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
d97ef72e
RH
780 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
781 /* \
782 * Now handle glibc compatibility. \
783 */ \
784 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
785 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
786 } while (0)
f5155289 787
d90b94cd
DK
788static inline uint32_t get_ppc64_abi(struct image_info *infop);
789
67867308
FB
790static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
791{
67867308 792 _regs->gpr[1] = infop->start_stack;
e85e7c6e 793#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd
DK
794 if (get_ppc64_abi(infop) < 2) {
795 _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_bias;
796 infop->entry = ldq_raw(infop->entry) + infop->load_bias;
797 } else {
798 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
799 }
84409ddb 800#endif
67867308
FB
801 _regs->nip = infop->entry;
802}
803
e2f3e741
NF
804/* See linux kernel: arch/powerpc/include/asm/elf.h. */
805#define ELF_NREG 48
806typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
807
05390248 808static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
809{
810 int i;
811 target_ulong ccr = 0;
812
813 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 814 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
815 }
816
86cd7b2d
PB
817 (*regs)[32] = tswapreg(env->nip);
818 (*regs)[33] = tswapreg(env->msr);
819 (*regs)[35] = tswapreg(env->ctr);
820 (*regs)[36] = tswapreg(env->lr);
821 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
822
823 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
824 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
825 }
86cd7b2d 826 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
827}
828
829#define USE_ELF_CORE_DUMP
d97ef72e 830#define ELF_EXEC_PAGESIZE 4096
67867308
FB
831
832#endif
833
048f6b4d
FB
834#ifdef TARGET_MIPS
835
836#define ELF_START_MMAP 0x80000000
837
838#define elf_check_arch(x) ( (x) == EM_MIPS )
839
388bb21a
TS
840#ifdef TARGET_MIPS64
841#define ELF_CLASS ELFCLASS64
842#else
048f6b4d 843#define ELF_CLASS ELFCLASS32
388bb21a 844#endif
048f6b4d
FB
845#define ELF_ARCH EM_MIPS
846
d97ef72e
RH
847static inline void init_thread(struct target_pt_regs *regs,
848 struct image_info *infop)
048f6b4d 849{
623a930e 850 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
851 regs->cp0_epc = infop->entry;
852 regs->regs[29] = infop->start_stack;
853}
854
51e52606
NF
855/* See linux kernel: arch/mips/include/asm/elf.h. */
856#define ELF_NREG 45
857typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
858
859/* See linux kernel: arch/mips/include/asm/reg.h. */
860enum {
861#ifdef TARGET_MIPS64
862 TARGET_EF_R0 = 0,
863#else
864 TARGET_EF_R0 = 6,
865#endif
866 TARGET_EF_R26 = TARGET_EF_R0 + 26,
867 TARGET_EF_R27 = TARGET_EF_R0 + 27,
868 TARGET_EF_LO = TARGET_EF_R0 + 32,
869 TARGET_EF_HI = TARGET_EF_R0 + 33,
870 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
871 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
872 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
873 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
874};
875
876/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 877static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
878{
879 int i;
880
881 for (i = 0; i < TARGET_EF_R0; i++) {
882 (*regs)[i] = 0;
883 }
884 (*regs)[TARGET_EF_R0] = 0;
885
886 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 887 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
888 }
889
890 (*regs)[TARGET_EF_R26] = 0;
891 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
892 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
893 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
894 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
895 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
896 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
897 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
898}
899
900#define USE_ELF_CORE_DUMP
388bb21a
TS
901#define ELF_EXEC_PAGESIZE 4096
902
048f6b4d
FB
903#endif /* TARGET_MIPS */
904
b779e29e
EI
905#ifdef TARGET_MICROBLAZE
906
907#define ELF_START_MMAP 0x80000000
908
0d5d4699 909#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
910
911#define ELF_CLASS ELFCLASS32
0d5d4699 912#define ELF_ARCH EM_MICROBLAZE
b779e29e 913
d97ef72e
RH
914static inline void init_thread(struct target_pt_regs *regs,
915 struct image_info *infop)
b779e29e
EI
916{
917 regs->pc = infop->entry;
918 regs->r1 = infop->start_stack;
919
920}
921
b779e29e
EI
922#define ELF_EXEC_PAGESIZE 4096
923
e4cbd44d
EI
924#define USE_ELF_CORE_DUMP
925#define ELF_NREG 38
926typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
927
928/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 929static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
930{
931 int i, pos = 0;
932
933 for (i = 0; i < 32; i++) {
86cd7b2d 934 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
935 }
936
937 for (i = 0; i < 6; i++) {
86cd7b2d 938 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
939 }
940}
941
b779e29e
EI
942#endif /* TARGET_MICROBLAZE */
943
d962783e
JL
944#ifdef TARGET_OPENRISC
945
946#define ELF_START_MMAP 0x08000000
947
948#define elf_check_arch(x) ((x) == EM_OPENRISC)
949
950#define ELF_ARCH EM_OPENRISC
951#define ELF_CLASS ELFCLASS32
952#define ELF_DATA ELFDATA2MSB
953
954static inline void init_thread(struct target_pt_regs *regs,
955 struct image_info *infop)
956{
957 regs->pc = infop->entry;
958 regs->gpr[1] = infop->start_stack;
959}
960
961#define USE_ELF_CORE_DUMP
962#define ELF_EXEC_PAGESIZE 8192
963
964/* See linux kernel arch/openrisc/include/asm/elf.h. */
965#define ELF_NREG 34 /* gprs and pc, sr */
966typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
967
968static void elf_core_copy_regs(target_elf_gregset_t *regs,
969 const CPUOpenRISCState *env)
970{
971 int i;
972
973 for (i = 0; i < 32; i++) {
86cd7b2d 974 (*regs)[i] = tswapreg(env->gpr[i]);
d962783e
JL
975 }
976
86cd7b2d
PB
977 (*regs)[32] = tswapreg(env->pc);
978 (*regs)[33] = tswapreg(env->sr);
d962783e
JL
979}
980#define ELF_HWCAP 0
981#define ELF_PLATFORM NULL
982
983#endif /* TARGET_OPENRISC */
984
fdf9b3e8
FB
985#ifdef TARGET_SH4
986
987#define ELF_START_MMAP 0x80000000
988
989#define elf_check_arch(x) ( (x) == EM_SH )
990
991#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
992#define ELF_ARCH EM_SH
993
d97ef72e
RH
994static inline void init_thread(struct target_pt_regs *regs,
995 struct image_info *infop)
fdf9b3e8 996{
d97ef72e
RH
997 /* Check other registers XXXXX */
998 regs->pc = infop->entry;
999 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1000}
1001
7631c97e
NF
1002/* See linux kernel: arch/sh/include/asm/elf.h. */
1003#define ELF_NREG 23
1004typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1005
1006/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1007enum {
1008 TARGET_REG_PC = 16,
1009 TARGET_REG_PR = 17,
1010 TARGET_REG_SR = 18,
1011 TARGET_REG_GBR = 19,
1012 TARGET_REG_MACH = 20,
1013 TARGET_REG_MACL = 21,
1014 TARGET_REG_SYSCALL = 22
1015};
1016
d97ef72e 1017static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1018 const CPUSH4State *env)
7631c97e
NF
1019{
1020 int i;
1021
1022 for (i = 0; i < 16; i++) {
86cd7b2d 1023 (*regs[i]) = tswapreg(env->gregs[i]);
7631c97e
NF
1024 }
1025
86cd7b2d
PB
1026 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1027 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1028 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1029 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1030 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1031 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1032 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1033}
1034
1035#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1036#define ELF_EXEC_PAGESIZE 4096
1037
1038#endif
1039
48733d19
TS
1040#ifdef TARGET_CRIS
1041
1042#define ELF_START_MMAP 0x80000000
1043
1044#define elf_check_arch(x) ( (x) == EM_CRIS )
1045
1046#define ELF_CLASS ELFCLASS32
48733d19
TS
1047#define ELF_ARCH EM_CRIS
1048
d97ef72e
RH
1049static inline void init_thread(struct target_pt_regs *regs,
1050 struct image_info *infop)
48733d19 1051{
d97ef72e 1052 regs->erp = infop->entry;
48733d19
TS
1053}
1054
48733d19
TS
1055#define ELF_EXEC_PAGESIZE 8192
1056
1057#endif
1058
e6e5906b
PB
1059#ifdef TARGET_M68K
1060
1061#define ELF_START_MMAP 0x80000000
1062
1063#define elf_check_arch(x) ( (x) == EM_68K )
1064
d97ef72e 1065#define ELF_CLASS ELFCLASS32
d97ef72e 1066#define ELF_ARCH EM_68K
e6e5906b
PB
1067
1068/* ??? Does this need to do anything?
d97ef72e 1069 #define ELF_PLAT_INIT(_r) */
e6e5906b 1070
d97ef72e
RH
1071static inline void init_thread(struct target_pt_regs *regs,
1072 struct image_info *infop)
e6e5906b
PB
1073{
1074 regs->usp = infop->start_stack;
1075 regs->sr = 0;
1076 regs->pc = infop->entry;
1077}
1078
7a93cc55
NF
1079/* See linux kernel: arch/m68k/include/asm/elf.h. */
1080#define ELF_NREG 20
1081typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1082
05390248 1083static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1084{
86cd7b2d
PB
1085 (*regs)[0] = tswapreg(env->dregs[1]);
1086 (*regs)[1] = tswapreg(env->dregs[2]);
1087 (*regs)[2] = tswapreg(env->dregs[3]);
1088 (*regs)[3] = tswapreg(env->dregs[4]);
1089 (*regs)[4] = tswapreg(env->dregs[5]);
1090 (*regs)[5] = tswapreg(env->dregs[6]);
1091 (*regs)[6] = tswapreg(env->dregs[7]);
1092 (*regs)[7] = tswapreg(env->aregs[0]);
1093 (*regs)[8] = tswapreg(env->aregs[1]);
1094 (*regs)[9] = tswapreg(env->aregs[2]);
1095 (*regs)[10] = tswapreg(env->aregs[3]);
1096 (*regs)[11] = tswapreg(env->aregs[4]);
1097 (*regs)[12] = tswapreg(env->aregs[5]);
1098 (*regs)[13] = tswapreg(env->aregs[6]);
1099 (*regs)[14] = tswapreg(env->dregs[0]);
1100 (*regs)[15] = tswapreg(env->aregs[7]);
1101 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1102 (*regs)[17] = tswapreg(env->sr);
1103 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1104 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1105}
1106
1107#define USE_ELF_CORE_DUMP
d97ef72e 1108#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1109
1110#endif
1111
7a3148a9
JM
1112#ifdef TARGET_ALPHA
1113
1114#define ELF_START_MMAP (0x30000000000ULL)
1115
1116#define elf_check_arch(x) ( (x) == ELF_ARCH )
1117
1118#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1119#define ELF_ARCH EM_ALPHA
1120
d97ef72e
RH
1121static inline void init_thread(struct target_pt_regs *regs,
1122 struct image_info *infop)
7a3148a9
JM
1123{
1124 regs->pc = infop->entry;
1125 regs->ps = 8;
1126 regs->usp = infop->start_stack;
7a3148a9
JM
1127}
1128
7a3148a9
JM
1129#define ELF_EXEC_PAGESIZE 8192
1130
1131#endif /* TARGET_ALPHA */
1132
a4c075f1
UH
1133#ifdef TARGET_S390X
1134
1135#define ELF_START_MMAP (0x20000000000ULL)
1136
1137#define elf_check_arch(x) ( (x) == ELF_ARCH )
1138
1139#define ELF_CLASS ELFCLASS64
1140#define ELF_DATA ELFDATA2MSB
1141#define ELF_ARCH EM_S390
1142
1143static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1144{
1145 regs->psw.addr = infop->entry;
1146 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1147 regs->gprs[15] = infop->start_stack;
1148}
1149
1150#endif /* TARGET_S390X */
1151
15338fd7
FB
1152#ifndef ELF_PLATFORM
1153#define ELF_PLATFORM (NULL)
1154#endif
1155
1156#ifndef ELF_HWCAP
1157#define ELF_HWCAP 0
1158#endif
1159
992f48a0 1160#ifdef TARGET_ABI32
cb33da57 1161#undef ELF_CLASS
992f48a0 1162#define ELF_CLASS ELFCLASS32
cb33da57
BS
1163#undef bswaptls
1164#define bswaptls(ptr) bswap32s(ptr)
1165#endif
1166
31e31b8a 1167#include "elf.h"
09bfb054 1168
d90b94cd
DK
1169#ifdef TARGET_PPC
1170static inline uint32_t get_ppc64_abi(struct image_info *infop)
1171{
1172 return infop->elf_flags & EF_PPC64_ABI;
1173}
1174#endif
1175
09bfb054
FB
1176struct exec
1177{
d97ef72e
RH
1178 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1179 unsigned int a_text; /* length of text, in bytes */
1180 unsigned int a_data; /* length of data, in bytes */
1181 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1182 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1183 unsigned int a_entry; /* start address */
1184 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1185 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1186};
1187
1188
1189#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1190#define OMAGIC 0407
1191#define NMAGIC 0410
1192#define ZMAGIC 0413
1193#define QMAGIC 0314
1194
31e31b8a 1195/* Necessary parameters */
54936004
FB
1196#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1197#define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
1198#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1199
ad1c7e0f 1200#define DLINFO_ITEMS 14
31e31b8a 1201
09bfb054
FB
1202static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1203{
d97ef72e 1204 memcpy(to, from, n);
09bfb054 1205}
d691f669 1206
31e31b8a 1207#ifdef BSWAP_NEEDED
92a31b1f 1208static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1209{
d97ef72e
RH
1210 bswap16s(&ehdr->e_type); /* Object file type */
1211 bswap16s(&ehdr->e_machine); /* Architecture */
1212 bswap32s(&ehdr->e_version); /* Object file version */
1213 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1214 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1215 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1216 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1217 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1218 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1219 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1220 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1221 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1222 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1223}
1224
991f8f0c 1225static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1226{
991f8f0c
RH
1227 int i;
1228 for (i = 0; i < phnum; ++i, ++phdr) {
1229 bswap32s(&phdr->p_type); /* Segment type */
1230 bswap32s(&phdr->p_flags); /* Segment flags */
1231 bswaptls(&phdr->p_offset); /* Segment file offset */
1232 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1233 bswaptls(&phdr->p_paddr); /* Segment physical address */
1234 bswaptls(&phdr->p_filesz); /* Segment size in file */
1235 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1236 bswaptls(&phdr->p_align); /* Segment alignment */
1237 }
31e31b8a 1238}
689f936f 1239
991f8f0c 1240static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1241{
991f8f0c
RH
1242 int i;
1243 for (i = 0; i < shnum; ++i, ++shdr) {
1244 bswap32s(&shdr->sh_name);
1245 bswap32s(&shdr->sh_type);
1246 bswaptls(&shdr->sh_flags);
1247 bswaptls(&shdr->sh_addr);
1248 bswaptls(&shdr->sh_offset);
1249 bswaptls(&shdr->sh_size);
1250 bswap32s(&shdr->sh_link);
1251 bswap32s(&shdr->sh_info);
1252 bswaptls(&shdr->sh_addralign);
1253 bswaptls(&shdr->sh_entsize);
1254 }
689f936f
FB
1255}
1256
7a3148a9 1257static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1258{
1259 bswap32s(&sym->st_name);
7a3148a9
JM
1260 bswaptls(&sym->st_value);
1261 bswaptls(&sym->st_size);
689f936f
FB
1262 bswap16s(&sym->st_shndx);
1263}
991f8f0c
RH
1264#else
1265static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1266static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1267static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1268static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
1269#endif
1270
edf8e2af 1271#ifdef USE_ELF_CORE_DUMP
9349b4f9 1272static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1273#endif /* USE_ELF_CORE_DUMP */
682674b8 1274static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1275
9058abdd
RH
1276/* Verify the portions of EHDR within E_IDENT for the target.
1277 This can be performed before bswapping the entire header. */
1278static bool elf_check_ident(struct elfhdr *ehdr)
1279{
1280 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1281 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1282 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1283 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1284 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1285 && ehdr->e_ident[EI_DATA] == ELF_DATA
1286 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1287}
1288
1289/* Verify the portions of EHDR outside of E_IDENT for the target.
1290 This has to wait until after bswapping the header. */
1291static bool elf_check_ehdr(struct elfhdr *ehdr)
1292{
1293 return (elf_check_arch(ehdr->e_machine)
1294 && ehdr->e_ehsize == sizeof(struct elfhdr)
1295 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1296 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1297}
1298
31e31b8a 1299/*
e5fe0c52 1300 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1301 * memory to free pages in kernel mem. These are in a format ready
1302 * to be put directly into the top of new user memory.
1303 *
1304 */
992f48a0
BS
1305static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1306 abi_ulong p)
31e31b8a
FB
1307{
1308 char *tmp, *tmp1, *pag = NULL;
1309 int len, offset = 0;
1310
1311 if (!p) {
d97ef72e 1312 return 0; /* bullet-proofing */
31e31b8a
FB
1313 }
1314 while (argc-- > 0) {
edf779ff
FB
1315 tmp = argv[argc];
1316 if (!tmp) {
d97ef72e
RH
1317 fprintf(stderr, "VFS: argc is wrong");
1318 exit(-1);
1319 }
edf779ff 1320 tmp1 = tmp;
d97ef72e
RH
1321 while (*tmp++);
1322 len = tmp - tmp1;
1323 if (p < len) { /* this shouldn't happen - 128kB */
1324 return 0;
1325 }
1326 while (len) {
1327 --p; --tmp; --len;
1328 if (--offset < 0) {
1329 offset = p % TARGET_PAGE_SIZE;
53a5960a 1330 pag = (char *)page[p/TARGET_PAGE_SIZE];
44a91cae 1331 if (!pag) {
7dd47667 1332 pag = g_try_malloc0(TARGET_PAGE_SIZE);
53a5960a 1333 page[p/TARGET_PAGE_SIZE] = pag;
44a91cae
FB
1334 if (!pag)
1335 return 0;
d97ef72e
RH
1336 }
1337 }
1338 if (len == 0 || offset == 0) {
1339 *(pag + offset) = *tmp;
1340 }
1341 else {
1342 int bytes_to_copy = (len > offset) ? offset : len;
1343 tmp -= bytes_to_copy;
1344 p -= bytes_to_copy;
1345 offset -= bytes_to_copy;
1346 len -= bytes_to_copy;
1347 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1348 }
1349 }
31e31b8a
FB
1350 }
1351 return p;
1352}
1353
992f48a0
BS
1354static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1355 struct image_info *info)
53a5960a 1356{
60dcbcb5 1357 abi_ulong stack_base, size, error, guard;
31e31b8a 1358 int i;
31e31b8a 1359
09bfb054 1360 /* Create enough stack to hold everything. If we don't use
60dcbcb5 1361 it for args, we'll use it for something else. */
703e0e89 1362 size = guest_stack_size;
60dcbcb5 1363 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
54936004 1364 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
60dcbcb5
RH
1365 }
1366 guard = TARGET_PAGE_SIZE;
1367 if (guard < qemu_real_host_page_size) {
1368 guard = qemu_real_host_page_size;
1369 }
1370
1371 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1372 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1373 if (error == -1) {
60dcbcb5 1374 perror("mmap stack");
09bfb054
FB
1375 exit(-1);
1376 }
31e31b8a 1377
60dcbcb5
RH
1378 /* We reserve one extra page at the top of the stack as guard. */
1379 target_mprotect(error, guard, PROT_NONE);
1380
1381 info->stack_limit = error + guard;
1382 stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
31e31b8a 1383 p += stack_base;
09bfb054 1384
31e31b8a 1385 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
d97ef72e
RH
1386 if (bprm->page[i]) {
1387 info->rss++;
579a97f7 1388 /* FIXME - check return value of memcpy_to_target() for failure */
d97ef72e 1389 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
7dd47667 1390 g_free(bprm->page[i]);
d97ef72e 1391 }
53a5960a 1392 stack_base += TARGET_PAGE_SIZE;
31e31b8a
FB
1393 }
1394 return p;
1395}
1396
cf129f3a
RH
1397/* Map and zero the bss. We need to explicitly zero any fractional pages
1398 after the data section (i.e. bss). */
1399static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1400{
cf129f3a
RH
1401 uintptr_t host_start, host_map_start, host_end;
1402
1403 last_bss = TARGET_PAGE_ALIGN(last_bss);
1404
1405 /* ??? There is confusion between qemu_real_host_page_size and
1406 qemu_host_page_size here and elsewhere in target_mmap, which
1407 may lead to the end of the data section mapping from the file
1408 not being mapped. At least there was an explicit test and
1409 comment for that here, suggesting that "the file size must
1410 be known". The comment probably pre-dates the introduction
1411 of the fstat system call in target_mmap which does in fact
1412 find out the size. What isn't clear is if the workaround
1413 here is still actually needed. For now, continue with it,
1414 but merge it with the "normal" mmap that would allocate the bss. */
1415
1416 host_start = (uintptr_t) g2h(elf_bss);
1417 host_end = (uintptr_t) g2h(last_bss);
1418 host_map_start = (host_start + qemu_real_host_page_size - 1);
1419 host_map_start &= -qemu_real_host_page_size;
1420
1421 if (host_map_start < host_end) {
1422 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1423 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1424 if (p == MAP_FAILED) {
1425 perror("cannot mmap brk");
1426 exit(-1);
853d6f7a 1427 }
f46e9a0b 1428 }
853d6f7a 1429
f46e9a0b
TM
1430 /* Ensure that the bss page(s) are valid */
1431 if ((page_get_flags(last_bss-1) & prot) != prot) {
1432 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1433 }
31e31b8a 1434
cf129f3a
RH
1435 if (host_start < host_map_start) {
1436 memset((void *)host_start, 0, host_map_start - host_start);
1437 }
1438}
53a5960a 1439
1af02e83
MF
1440#ifdef CONFIG_USE_FDPIC
1441static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1442{
1443 uint16_t n;
1444 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1445
1446 /* elf32_fdpic_loadseg */
1447 n = info->nsegs;
1448 while (n--) {
1449 sp -= 12;
1450 put_user_u32(loadsegs[n].addr, sp+0);
1451 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1452 put_user_u32(loadsegs[n].p_memsz, sp+8);
1453 }
1454
1455 /* elf32_fdpic_loadmap */
1456 sp -= 4;
1457 put_user_u16(0, sp+0); /* version */
1458 put_user_u16(info->nsegs, sp+2); /* nsegs */
1459
1460 info->personality = PER_LINUX_FDPIC;
1461 info->loadmap_addr = sp;
1462
1463 return sp;
1464}
1465#endif
1466
992f48a0 1467static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1468 struct elfhdr *exec,
1469 struct image_info *info,
1470 struct image_info *interp_info)
31e31b8a 1471{
d97ef72e 1472 abi_ulong sp;
125b0f55 1473 abi_ulong sp_auxv;
d97ef72e 1474 int size;
14322bad
LA
1475 int i;
1476 abi_ulong u_rand_bytes;
1477 uint8_t k_rand_bytes[16];
d97ef72e
RH
1478 abi_ulong u_platform;
1479 const char *k_platform;
1480 const int n = sizeof(elf_addr_t);
1481
1482 sp = p;
1af02e83
MF
1483
1484#ifdef CONFIG_USE_FDPIC
1485 /* Needs to be before we load the env/argc/... */
1486 if (elf_is_fdpic(exec)) {
1487 /* Need 4 byte alignment for these structs */
1488 sp &= ~3;
1489 sp = loader_build_fdpic_loadmap(info, sp);
1490 info->other_info = interp_info;
1491 if (interp_info) {
1492 interp_info->other_info = info;
1493 sp = loader_build_fdpic_loadmap(interp_info, sp);
1494 }
1495 }
1496#endif
1497
d97ef72e
RH
1498 u_platform = 0;
1499 k_platform = ELF_PLATFORM;
1500 if (k_platform) {
1501 size_t len = strlen(k_platform) + 1;
1502 sp -= (len + n - 1) & ~(n - 1);
1503 u_platform = sp;
1504 /* FIXME - check return value of memcpy_to_target() for failure */
1505 memcpy_to_target(sp, k_platform, len);
1506 }
14322bad
LA
1507
1508 /*
1509 * Generate 16 random bytes for userspace PRNG seeding (not
1510 * cryptically secure but it's not the aim of QEMU).
1511 */
1512 srand((unsigned int) time(NULL));
1513 for (i = 0; i < 16; i++) {
1514 k_rand_bytes[i] = rand();
1515 }
1516 sp -= 16;
1517 u_rand_bytes = sp;
1518 /* FIXME - check return value of memcpy_to_target() for failure */
1519 memcpy_to_target(sp, k_rand_bytes, 16);
1520
d97ef72e
RH
1521 /*
1522 * Force 16 byte _final_ alignment here for generality.
1523 */
1524 sp = sp &~ (abi_ulong)15;
1525 size = (DLINFO_ITEMS + 1) * 2;
1526 if (k_platform)
1527 size += 2;
f5155289 1528#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1529 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1530#endif
1531#ifdef ELF_HWCAP2
1532 size += 2;
f5155289 1533#endif
d97ef72e 1534 size += envc + argc + 2;
b9329d4b 1535 size += 1; /* argc itself */
d97ef72e
RH
1536 size *= n;
1537 if (size & 15)
1538 sp -= 16 - (size & 15);
1539
1540 /* This is correct because Linux defines
1541 * elf_addr_t as Elf32_Off / Elf64_Off
1542 */
1543#define NEW_AUX_ENT(id, val) do { \
1544 sp -= n; put_user_ual(val, sp); \
1545 sp -= n; put_user_ual(id, sp); \
1546 } while(0)
1547
125b0f55 1548 sp_auxv = sp;
d97ef72e
RH
1549 NEW_AUX_ENT (AT_NULL, 0);
1550
1551 /* There must be exactly DLINFO_ITEMS entries here. */
8e62a717 1552 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1553 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1554 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
a70daba3 1555 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
8e62a717 1556 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1557 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1558 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1559 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1560 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1561 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1562 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1563 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1564 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad
LA
1565 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1566
ad6919dc
PM
1567#ifdef ELF_HWCAP2
1568 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1569#endif
1570
d97ef72e
RH
1571 if (k_platform)
1572 NEW_AUX_ENT(AT_PLATFORM, u_platform);
f5155289 1573#ifdef ARCH_DLINFO
d97ef72e
RH
1574 /*
1575 * ARCH_DLINFO must come last so platform specific code can enforce
1576 * special alignment requirements on the AUXV if necessary (eg. PPC).
1577 */
1578 ARCH_DLINFO;
f5155289
FB
1579#endif
1580#undef NEW_AUX_ENT
1581
d97ef72e 1582 info->saved_auxv = sp;
125b0f55 1583 info->auxv_len = sp_auxv - sp;
edf8e2af 1584
b9329d4b 1585 sp = loader_build_argptr(envc, argc, sp, p, 0);
8c0f0a60
JH
1586 /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1587 assert(sp_auxv - sp == size);
d97ef72e 1588 return sp;
31e31b8a
FB
1589}
1590
806d1021 1591#ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
97cc7560 1592/* If the guest doesn't have a validation function just agree */
806d1021
MI
1593static int validate_guest_space(unsigned long guest_base,
1594 unsigned long guest_size)
97cc7560
DDAG
1595{
1596 return 1;
1597}
1598#endif
1599
dce10401
MI
1600unsigned long init_guest_space(unsigned long host_start,
1601 unsigned long host_size,
1602 unsigned long guest_start,
1603 bool fixed)
1604{
1605 unsigned long current_start, real_start;
1606 int flags;
1607
1608 assert(host_start || host_size);
1609
1610 /* If just a starting address is given, then just verify that
1611 * address. */
1612 if (host_start && !host_size) {
806d1021 1613 if (validate_guest_space(host_start, host_size) == 1) {
dce10401
MI
1614 return host_start;
1615 } else {
1616 return (unsigned long)-1;
1617 }
1618 }
1619
1620 /* Setup the initial flags and start address. */
1621 current_start = host_start & qemu_host_page_mask;
1622 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1623 if (fixed) {
1624 flags |= MAP_FIXED;
1625 }
1626
1627 /* Otherwise, a non-zero size region of memory needs to be mapped
1628 * and validated. */
1629 while (1) {
806d1021
MI
1630 unsigned long real_size = host_size;
1631
dce10401
MI
1632 /* Do not use mmap_find_vma here because that is limited to the
1633 * guest address space. We are going to make the
1634 * guest address space fit whatever we're given.
1635 */
1636 real_start = (unsigned long)
1637 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1638 if (real_start == (unsigned long)-1) {
1639 return (unsigned long)-1;
1640 }
1641
806d1021
MI
1642 /* Ensure the address is properly aligned. */
1643 if (real_start & ~qemu_host_page_mask) {
1644 munmap((void *)real_start, host_size);
1645 real_size = host_size + qemu_host_page_size;
1646 real_start = (unsigned long)
1647 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1648 if (real_start == (unsigned long)-1) {
1649 return (unsigned long)-1;
1650 }
1651 real_start = HOST_PAGE_ALIGN(real_start);
1652 }
1653
1654 /* Check to see if the address is valid. */
1655 if (!host_start || real_start == current_start) {
1656 int valid = validate_guest_space(real_start - guest_start,
1657 real_size);
1658 if (valid == 1) {
1659 break;
1660 } else if (valid == -1) {
1661 return (unsigned long)-1;
1662 }
1663 /* valid == 0, so try again. */
dce10401
MI
1664 }
1665
1666 /* That address didn't work. Unmap and try a different one.
1667 * The address the host picked because is typically right at
1668 * the top of the host address space and leaves the guest with
1669 * no usable address space. Resort to a linear search. We
1670 * already compensated for mmap_min_addr, so this should not
1671 * happen often. Probably means we got unlucky and host
1672 * address space randomization put a shared library somewhere
1673 * inconvenient.
1674 */
1675 munmap((void *)real_start, host_size);
1676 current_start += qemu_host_page_size;
1677 if (host_start == current_start) {
1678 /* Theoretically possible if host doesn't have any suitably
1679 * aligned areas. Normally the first mmap will fail.
1680 */
1681 return (unsigned long)-1;
1682 }
1683 }
1684
806d1021
MI
1685 qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
1686
dce10401
MI
1687 return real_start;
1688}
1689
f3ed1f5d
PM
1690static void probe_guest_base(const char *image_name,
1691 abi_ulong loaddr, abi_ulong hiaddr)
1692{
1693 /* Probe for a suitable guest base address, if the user has not set
1694 * it explicitly, and set guest_base appropriately.
1695 * In case of error we will print a suitable message and exit.
1696 */
1697#if defined(CONFIG_USE_GUEST_BASE)
1698 const char *errmsg;
1699 if (!have_guest_base && !reserved_va) {
1700 unsigned long host_start, real_start, host_size;
1701
1702 /* Round addresses to page boundaries. */
1703 loaddr &= qemu_host_page_mask;
1704 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1705
1706 if (loaddr < mmap_min_addr) {
1707 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1708 } else {
1709 host_start = loaddr;
1710 if (host_start != loaddr) {
1711 errmsg = "Address overflow loading ELF binary";
1712 goto exit_errmsg;
1713 }
1714 }
1715 host_size = hiaddr - loaddr;
dce10401
MI
1716
1717 /* Setup the initial guest memory space with ranges gleaned from
1718 * the ELF image that is being loaded.
1719 */
1720 real_start = init_guest_space(host_start, host_size, loaddr, false);
1721 if (real_start == (unsigned long)-1) {
1722 errmsg = "Unable to find space for application";
1723 goto exit_errmsg;
f3ed1f5d 1724 }
dce10401
MI
1725 guest_base = real_start - loaddr;
1726
f3ed1f5d
PM
1727 qemu_log("Relocating guest address space from 0x"
1728 TARGET_ABI_FMT_lx " to 0x%lx\n",
1729 loaddr, real_start);
f3ed1f5d
PM
1730 }
1731 return;
1732
f3ed1f5d
PM
1733exit_errmsg:
1734 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1735 exit(-1);
1736#endif
1737}
1738
1739
8e62a717 1740/* Load an ELF image into the address space.
31e31b8a 1741
8e62a717
RH
1742 IMAGE_NAME is the filename of the image, to use in error messages.
1743 IMAGE_FD is the open file descriptor for the image.
1744
1745 BPRM_BUF is a copy of the beginning of the file; this of course
1746 contains the elf file header at offset 0. It is assumed that this
1747 buffer is sufficiently aligned to present no problems to the host
1748 in accessing data at aligned offsets within the buffer.
1749
1750 On return: INFO values will be filled in, as necessary or available. */
1751
1752static void load_elf_image(const char *image_name, int image_fd,
bf858897 1753 struct image_info *info, char **pinterp_name,
8e62a717 1754 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 1755{
8e62a717
RH
1756 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1757 struct elf_phdr *phdr;
1758 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1759 int i, retval;
1760 const char *errmsg;
5fafdf24 1761
8e62a717
RH
1762 /* First of all, some simple consistency checks */
1763 errmsg = "Invalid ELF image for this architecture";
1764 if (!elf_check_ident(ehdr)) {
1765 goto exit_errmsg;
1766 }
1767 bswap_ehdr(ehdr);
1768 if (!elf_check_ehdr(ehdr)) {
1769 goto exit_errmsg;
d97ef72e 1770 }
5fafdf24 1771
8e62a717
RH
1772 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1773 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1774 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 1775 } else {
8e62a717
RH
1776 phdr = (struct elf_phdr *) alloca(i);
1777 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 1778 if (retval != i) {
8e62a717 1779 goto exit_read;
9955ffac 1780 }
d97ef72e 1781 }
8e62a717 1782 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 1783
1af02e83
MF
1784#ifdef CONFIG_USE_FDPIC
1785 info->nsegs = 0;
1786 info->pt_dynamic_addr = 0;
1787#endif
1788
682674b8
RH
1789 /* Find the maximum size of the image and allocate an appropriate
1790 amount of memory to handle that. */
1791 loaddr = -1, hiaddr = 0;
8e62a717
RH
1792 for (i = 0; i < ehdr->e_phnum; ++i) {
1793 if (phdr[i].p_type == PT_LOAD) {
1794 abi_ulong a = phdr[i].p_vaddr;
682674b8
RH
1795 if (a < loaddr) {
1796 loaddr = a;
1797 }
8e62a717 1798 a += phdr[i].p_memsz;
682674b8
RH
1799 if (a > hiaddr) {
1800 hiaddr = a;
1801 }
1af02e83
MF
1802#ifdef CONFIG_USE_FDPIC
1803 ++info->nsegs;
1804#endif
682674b8
RH
1805 }
1806 }
1807
1808 load_addr = loaddr;
8e62a717 1809 if (ehdr->e_type == ET_DYN) {
682674b8
RH
1810 /* The image indicates that it can be loaded anywhere. Find a
1811 location that can hold the memory space required. If the
1812 image is pre-linked, LOADDR will be non-zero. Since we do
1813 not supply MAP_FIXED here we'll use that address if and
1814 only if it remains available. */
1815 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1816 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1817 -1, 0);
1818 if (load_addr == -1) {
8e62a717 1819 goto exit_perror;
d97ef72e 1820 }
bf858897
RH
1821 } else if (pinterp_name != NULL) {
1822 /* This is the main executable. Make sure that the low
1823 address does not conflict with MMAP_MIN_ADDR or the
1824 QEMU application itself. */
f3ed1f5d 1825 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 1826 }
682674b8 1827 load_bias = load_addr - loaddr;
d97ef72e 1828
1af02e83
MF
1829#ifdef CONFIG_USE_FDPIC
1830 {
1831 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 1832 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
1833
1834 for (i = 0; i < ehdr->e_phnum; ++i) {
1835 switch (phdr[i].p_type) {
1836 case PT_DYNAMIC:
1837 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1838 break;
1839 case PT_LOAD:
1840 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1841 loadsegs->p_vaddr = phdr[i].p_vaddr;
1842 loadsegs->p_memsz = phdr[i].p_memsz;
1843 ++loadsegs;
1844 break;
1845 }
1846 }
1847 }
1848#endif
1849
8e62a717
RH
1850 info->load_bias = load_bias;
1851 info->load_addr = load_addr;
1852 info->entry = ehdr->e_entry + load_bias;
1853 info->start_code = -1;
1854 info->end_code = 0;
1855 info->start_data = -1;
1856 info->end_data = 0;
1857 info->brk = 0;
d8fd2954 1858 info->elf_flags = ehdr->e_flags;
8e62a717
RH
1859
1860 for (i = 0; i < ehdr->e_phnum; i++) {
1861 struct elf_phdr *eppnt = phdr + i;
d97ef72e 1862 if (eppnt->p_type == PT_LOAD) {
682674b8 1863 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
d97ef72e 1864 int elf_prot = 0;
d97ef72e
RH
1865
1866 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1867 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1868 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 1869
682674b8
RH
1870 vaddr = load_bias + eppnt->p_vaddr;
1871 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1872 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1873
1874 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1875 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 1876 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 1877 if (error == -1) {
8e62a717 1878 goto exit_perror;
09bfb054 1879 }
09bfb054 1880
682674b8
RH
1881 vaddr_ef = vaddr + eppnt->p_filesz;
1882 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 1883
cf129f3a 1884 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
1885 if (vaddr_ef < vaddr_em) {
1886 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 1887 }
8e62a717
RH
1888
1889 /* Find the full program boundaries. */
1890 if (elf_prot & PROT_EXEC) {
1891 if (vaddr < info->start_code) {
1892 info->start_code = vaddr;
1893 }
1894 if (vaddr_ef > info->end_code) {
1895 info->end_code = vaddr_ef;
1896 }
1897 }
1898 if (elf_prot & PROT_WRITE) {
1899 if (vaddr < info->start_data) {
1900 info->start_data = vaddr;
1901 }
1902 if (vaddr_ef > info->end_data) {
1903 info->end_data = vaddr_ef;
1904 }
1905 if (vaddr_em > info->brk) {
1906 info->brk = vaddr_em;
1907 }
1908 }
bf858897
RH
1909 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1910 char *interp_name;
1911
1912 if (*pinterp_name) {
1913 errmsg = "Multiple PT_INTERP entries";
1914 goto exit_errmsg;
1915 }
1916 interp_name = malloc(eppnt->p_filesz);
1917 if (!interp_name) {
1918 goto exit_perror;
1919 }
1920
1921 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1922 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1923 eppnt->p_filesz);
1924 } else {
1925 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1926 eppnt->p_offset);
1927 if (retval != eppnt->p_filesz) {
1928 goto exit_perror;
1929 }
1930 }
1931 if (interp_name[eppnt->p_filesz - 1] != 0) {
1932 errmsg = "Invalid PT_INTERP entry";
1933 goto exit_errmsg;
1934 }
1935 *pinterp_name = interp_name;
d97ef72e 1936 }
682674b8 1937 }
5fafdf24 1938
8e62a717
RH
1939 if (info->end_data == 0) {
1940 info->start_data = info->end_code;
1941 info->end_data = info->end_code;
1942 info->brk = info->end_code;
1943 }
1944
682674b8 1945 if (qemu_log_enabled()) {
8e62a717 1946 load_symbols(ehdr, image_fd, load_bias);
682674b8 1947 }
31e31b8a 1948
8e62a717
RH
1949 close(image_fd);
1950 return;
1951
1952 exit_read:
1953 if (retval >= 0) {
1954 errmsg = "Incomplete read of file header";
1955 goto exit_errmsg;
1956 }
1957 exit_perror:
1958 errmsg = strerror(errno);
1959 exit_errmsg:
1960 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1961 exit(-1);
1962}
1963
1964static void load_elf_interp(const char *filename, struct image_info *info,
1965 char bprm_buf[BPRM_BUF_SIZE])
1966{
1967 int fd, retval;
1968
1969 fd = open(path(filename), O_RDONLY);
1970 if (fd < 0) {
1971 goto exit_perror;
1972 }
31e31b8a 1973
8e62a717
RH
1974 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
1975 if (retval < 0) {
1976 goto exit_perror;
1977 }
1978 if (retval < BPRM_BUF_SIZE) {
1979 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
1980 }
1981
bf858897 1982 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
1983 return;
1984
1985 exit_perror:
1986 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
1987 exit(-1);
31e31b8a
FB
1988}
1989
49918a75
PB
1990static int symfind(const void *s0, const void *s1)
1991{
c7c530cd 1992 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
1993 struct elf_sym *sym = (struct elf_sym *)s1;
1994 int result = 0;
c7c530cd 1995 if (addr < sym->st_value) {
49918a75 1996 result = -1;
c7c530cd 1997 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
1998 result = 1;
1999 }
2000 return result;
2001}
2002
2003static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2004{
2005#if ELF_CLASS == ELFCLASS32
2006 struct elf_sym *syms = s->disas_symtab.elf32;
2007#else
2008 struct elf_sym *syms = s->disas_symtab.elf64;
2009#endif
2010
2011 // binary search
49918a75
PB
2012 struct elf_sym *sym;
2013
c7c530cd 2014 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2015 if (sym != NULL) {
49918a75
PB
2016 return s->disas_strtab + sym->st_name;
2017 }
2018
2019 return "";
2020}
2021
2022/* FIXME: This should use elf_ops.h */
2023static int symcmp(const void *s0, const void *s1)
2024{
2025 struct elf_sym *sym0 = (struct elf_sym *)s0;
2026 struct elf_sym *sym1 = (struct elf_sym *)s1;
2027 return (sym0->st_value < sym1->st_value)
2028 ? -1
2029 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2030}
2031
689f936f 2032/* Best attempt to load symbols from this ELF object. */
682674b8 2033static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2034{
682674b8
RH
2035 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2036 struct elf_shdr *shdr;
b9475279
CV
2037 char *strings = NULL;
2038 struct syminfo *s = NULL;
2039 struct elf_sym *new_syms, *syms = NULL;
689f936f 2040
682674b8
RH
2041 shnum = hdr->e_shnum;
2042 i = shnum * sizeof(struct elf_shdr);
2043 shdr = (struct elf_shdr *)alloca(i);
2044 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2045 return;
2046 }
2047
2048 bswap_shdr(shdr, shnum);
2049 for (i = 0; i < shnum; ++i) {
2050 if (shdr[i].sh_type == SHT_SYMTAB) {
2051 sym_idx = i;
2052 str_idx = shdr[i].sh_link;
49918a75
PB
2053 goto found;
2054 }
689f936f 2055 }
682674b8
RH
2056
2057 /* There will be no symbol table if the file was stripped. */
2058 return;
689f936f
FB
2059
2060 found:
682674b8 2061 /* Now know where the strtab and symtab are. Snarf them. */
e80cfcfc 2062 s = malloc(sizeof(*s));
682674b8 2063 if (!s) {
b9475279 2064 goto give_up;
682674b8 2065 }
5fafdf24 2066
682674b8
RH
2067 i = shdr[str_idx].sh_size;
2068 s->disas_strtab = strings = malloc(i);
2069 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
b9475279 2070 goto give_up;
682674b8 2071 }
49918a75 2072
682674b8
RH
2073 i = shdr[sym_idx].sh_size;
2074 syms = malloc(i);
2075 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
b9475279 2076 goto give_up;
682674b8 2077 }
31e31b8a 2078
682674b8
RH
2079 nsyms = i / sizeof(struct elf_sym);
2080 for (i = 0; i < nsyms; ) {
49918a75 2081 bswap_sym(syms + i);
682674b8
RH
2082 /* Throw away entries which we do not need. */
2083 if (syms[i].st_shndx == SHN_UNDEF
2084 || syms[i].st_shndx >= SHN_LORESERVE
2085 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2086 if (i < --nsyms) {
49918a75
PB
2087 syms[i] = syms[nsyms];
2088 }
682674b8 2089 } else {
49918a75 2090#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2091 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2092 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2093#endif
682674b8
RH
2094 syms[i].st_value += load_bias;
2095 i++;
2096 }
0774bed1 2097 }
49918a75 2098
b9475279
CV
2099 /* No "useful" symbol. */
2100 if (nsyms == 0) {
2101 goto give_up;
2102 }
2103
5d5c9930
RH
2104 /* Attempt to free the storage associated with the local symbols
2105 that we threw away. Whether or not this has any effect on the
2106 memory allocation depends on the malloc implementation and how
2107 many symbols we managed to discard. */
8d79de6e
SW
2108 new_syms = realloc(syms, nsyms * sizeof(*syms));
2109 if (new_syms == NULL) {
b9475279 2110 goto give_up;
5d5c9930 2111 }
8d79de6e 2112 syms = new_syms;
5d5c9930 2113
49918a75 2114 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2115
49918a75
PB
2116 s->disas_num_syms = nsyms;
2117#if ELF_CLASS == ELFCLASS32
2118 s->disas_symtab.elf32 = syms;
49918a75
PB
2119#else
2120 s->disas_symtab.elf64 = syms;
49918a75 2121#endif
682674b8 2122 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2123 s->next = syminfos;
2124 syminfos = s;
b9475279
CV
2125
2126 return;
2127
2128give_up:
2129 free(s);
2130 free(strings);
2131 free(syms);
689f936f 2132}
31e31b8a 2133
f0116c54 2134int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2135{
8e62a717 2136 struct image_info interp_info;
31e31b8a 2137 struct elfhdr elf_ex;
8e62a717 2138 char *elf_interpreter = NULL;
31e31b8a 2139
bf858897
RH
2140 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2141 info->mmap = 0;
2142 info->rss = 0;
2143
2144 load_elf_image(bprm->filename, bprm->fd, info,
2145 &elf_interpreter, bprm->buf);
31e31b8a 2146
bf858897
RH
2147 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2148 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2149 when we load the interpreter. */
2150 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2151
e5fe0c52
PB
2152 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
2153 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
2154 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
2155 if (!bprm->p) {
bf858897
RH
2156 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2157 exit(-1);
379f6698 2158 }
379f6698 2159
31e31b8a
FB
2160 /* Do this so that we can load the interpreter, if need be. We will
2161 change some of these later */
31e31b8a 2162 bprm->p = setup_arg_pages(bprm->p, bprm, info);
31e31b8a 2163
8e62a717
RH
2164 if (elf_interpreter) {
2165 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2166
8e62a717
RH
2167 /* If the program interpreter is one of these two, then assume
2168 an iBCS2 image. Otherwise assume a native linux image. */
2169
2170 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2171 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2172 info->personality = PER_SVR4;
31e31b8a 2173
8e62a717
RH
2174 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2175 and some applications "depend" upon this behavior. Since
2176 we do not have the power to recompile these, we emulate
2177 the SVr4 behavior. Sigh. */
2178 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2179 MAP_FIXED | MAP_PRIVATE, -1, 0);
2180 }
31e31b8a
FB
2181 }
2182
8e62a717
RH
2183 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2184 info, (elf_interpreter ? &interp_info : NULL));
2185 info->start_stack = bprm->p;
2186
2187 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2188 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2189 point as a function descriptor. Do this after creating elf tables
2190 so that we copy the original program entry point into the AUXV. */
2191 if (elf_interpreter) {
8e78064e 2192 info->load_bias = interp_info.load_bias;
8e62a717 2193 info->entry = interp_info.entry;
bf858897 2194 free(elf_interpreter);
8e62a717 2195 }
31e31b8a 2196
edf8e2af
MW
2197#ifdef USE_ELF_CORE_DUMP
2198 bprm->core_dump = &elf_core_dump;
2199#endif
2200
31e31b8a
FB
2201 return 0;
2202}
2203
edf8e2af 2204#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2205/*
2206 * Definitions to generate Intel SVR4-like core files.
a2547a13 2207 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2208 * tacked on the front to prevent clashes with linux definitions,
2209 * and the typedef forms have been avoided. This is mostly like
2210 * the SVR4 structure, but more Linuxy, with things that Linux does
2211 * not support and which gdb doesn't really use excluded.
2212 *
2213 * Fields we don't dump (their contents is zero) in linux-user qemu
2214 * are marked with XXX.
2215 *
2216 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2217 *
2218 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2219 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2220 * the target resides):
2221 *
2222 * #define USE_ELF_CORE_DUMP
2223 *
2224 * Next you define type of register set used for dumping. ELF specification
2225 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2226 *
c227f099 2227 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2228 * #define ELF_NREG <number of registers>
c227f099 2229 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2230 *
edf8e2af
MW
2231 * Last step is to implement target specific function that copies registers
2232 * from given cpu into just specified register set. Prototype is:
2233 *
c227f099 2234 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2235 * const CPUArchState *env);
edf8e2af
MW
2236 *
2237 * Parameters:
2238 * regs - copy register values into here (allocated and zeroed by caller)
2239 * env - copy registers from here
2240 *
2241 * Example for ARM target is provided in this file.
2242 */
2243
2244/* An ELF note in memory */
2245struct memelfnote {
2246 const char *name;
2247 size_t namesz;
2248 size_t namesz_rounded;
2249 int type;
2250 size_t datasz;
80f5ce75 2251 size_t datasz_rounded;
edf8e2af
MW
2252 void *data;
2253 size_t notesz;
2254};
2255
a2547a13 2256struct target_elf_siginfo {
f8fd4fc4
PB
2257 abi_int si_signo; /* signal number */
2258 abi_int si_code; /* extra code */
2259 abi_int si_errno; /* errno */
edf8e2af
MW
2260};
2261
a2547a13
LD
2262struct target_elf_prstatus {
2263 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2264 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2265 abi_ulong pr_sigpend; /* XXX */
2266 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2267 target_pid_t pr_pid;
2268 target_pid_t pr_ppid;
2269 target_pid_t pr_pgrp;
2270 target_pid_t pr_sid;
edf8e2af
MW
2271 struct target_timeval pr_utime; /* XXX User time */
2272 struct target_timeval pr_stime; /* XXX System time */
2273 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2274 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2275 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2276 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2277};
2278
2279#define ELF_PRARGSZ (80) /* Number of chars for args */
2280
a2547a13 2281struct target_elf_prpsinfo {
edf8e2af
MW
2282 char pr_state; /* numeric process state */
2283 char pr_sname; /* char for pr_state */
2284 char pr_zomb; /* zombie */
2285 char pr_nice; /* nice val */
ca98ac83 2286 abi_ulong pr_flag; /* flags */
c227f099
AL
2287 target_uid_t pr_uid;
2288 target_gid_t pr_gid;
2289 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2290 /* Lots missing */
2291 char pr_fname[16]; /* filename of executable */
2292 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2293};
2294
2295/* Here is the structure in which status of each thread is captured. */
2296struct elf_thread_status {
72cf2d4f 2297 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2298 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2299#if 0
2300 elf_fpregset_t fpu; /* NT_PRFPREG */
2301 struct task_struct *thread;
2302 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2303#endif
2304 struct memelfnote notes[1];
2305 int num_notes;
2306};
2307
2308struct elf_note_info {
2309 struct memelfnote *notes;
a2547a13
LD
2310 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2311 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2312
72cf2d4f 2313 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2314#if 0
2315 /*
2316 * Current version of ELF coredump doesn't support
2317 * dumping fp regs etc.
2318 */
2319 elf_fpregset_t *fpu;
2320 elf_fpxregset_t *xfpu;
2321 int thread_status_size;
2322#endif
2323 int notes_size;
2324 int numnote;
2325};
2326
2327struct vm_area_struct {
2328 abi_ulong vma_start; /* start vaddr of memory region */
2329 abi_ulong vma_end; /* end vaddr of memory region */
2330 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2331 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2332};
2333
2334struct mm_struct {
72cf2d4f 2335 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2336 int mm_count; /* number of mappings */
2337};
2338
2339static struct mm_struct *vma_init(void);
2340static void vma_delete(struct mm_struct *);
2341static int vma_add_mapping(struct mm_struct *, abi_ulong,
d97ef72e 2342 abi_ulong, abi_ulong);
edf8e2af
MW
2343static int vma_get_mapping_count(const struct mm_struct *);
2344static struct vm_area_struct *vma_first(const struct mm_struct *);
2345static struct vm_area_struct *vma_next(struct vm_area_struct *);
2346static abi_ulong vma_dump_size(const struct vm_area_struct *);
b480d9b7 2347static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
d97ef72e 2348 unsigned long flags);
edf8e2af
MW
2349
2350static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2351static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2352 unsigned int, void *);
a2547a13
LD
2353static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2354static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2355static void fill_auxv_note(struct memelfnote *, const TaskState *);
2356static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2357static size_t note_size(const struct memelfnote *);
2358static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2359static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2360static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2361static int core_dump_filename(const TaskState *, char *, size_t);
2362
2363static int dump_write(int, const void *, size_t);
2364static int write_note(struct memelfnote *, int);
2365static int write_note_info(struct elf_note_info *, int);
2366
2367#ifdef BSWAP_NEEDED
a2547a13 2368static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2369{
ca98ac83
PB
2370 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2371 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2372 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2373 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
2374 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2375 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
2376 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2377 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2378 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2379 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2380 /* cpu times are not filled, so we skip them */
2381 /* regs should be in correct format already */
2382 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2383}
2384
a2547a13 2385static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 2386{
ca98ac83 2387 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
2388 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2389 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2390 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2391 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2392 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2393 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2394}
991f8f0c
RH
2395
2396static void bswap_note(struct elf_note *en)
2397{
2398 bswap32s(&en->n_namesz);
2399 bswap32s(&en->n_descsz);
2400 bswap32s(&en->n_type);
2401}
2402#else
2403static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2404static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2405static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2406#endif /* BSWAP_NEEDED */
2407
2408/*
2409 * Minimal support for linux memory regions. These are needed
2410 * when we are finding out what memory exactly belongs to
2411 * emulated process. No locks needed here, as long as
2412 * thread that received the signal is stopped.
2413 */
2414
2415static struct mm_struct *vma_init(void)
2416{
2417 struct mm_struct *mm;
2418
7267c094 2419 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
2420 return (NULL);
2421
2422 mm->mm_count = 0;
72cf2d4f 2423 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2424
2425 return (mm);
2426}
2427
2428static void vma_delete(struct mm_struct *mm)
2429{
2430 struct vm_area_struct *vma;
2431
2432 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2433 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 2434 g_free(vma);
edf8e2af 2435 }
7267c094 2436 g_free(mm);
edf8e2af
MW
2437}
2438
2439static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
d97ef72e 2440 abi_ulong end, abi_ulong flags)
edf8e2af
MW
2441{
2442 struct vm_area_struct *vma;
2443
7267c094 2444 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
2445 return (-1);
2446
2447 vma->vma_start = start;
2448 vma->vma_end = end;
2449 vma->vma_flags = flags;
2450
72cf2d4f 2451 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2452 mm->mm_count++;
2453
2454 return (0);
2455}
2456
2457static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2458{
72cf2d4f 2459 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2460}
2461
2462static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2463{
72cf2d4f 2464 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2465}
2466
2467static int vma_get_mapping_count(const struct mm_struct *mm)
2468{
2469 return (mm->mm_count);
2470}
2471
2472/*
2473 * Calculate file (dump) size of given memory region.
2474 */
2475static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2476{
2477 /* if we cannot even read the first page, skip it */
2478 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2479 return (0);
2480
2481 /*
2482 * Usually we don't dump executable pages as they contain
2483 * non-writable code that debugger can read directly from
2484 * target library etc. However, thread stacks are marked
2485 * also executable so we read in first page of given region
2486 * and check whether it contains elf header. If there is
2487 * no elf header, we dump it.
2488 */
2489 if (vma->vma_flags & PROT_EXEC) {
2490 char page[TARGET_PAGE_SIZE];
2491
2492 copy_from_user(page, vma->vma_start, sizeof (page));
2493 if ((page[EI_MAG0] == ELFMAG0) &&
2494 (page[EI_MAG1] == ELFMAG1) &&
2495 (page[EI_MAG2] == ELFMAG2) &&
2496 (page[EI_MAG3] == ELFMAG3)) {
2497 /*
2498 * Mappings are possibly from ELF binary. Don't dump
2499 * them.
2500 */
2501 return (0);
2502 }
2503 }
2504
2505 return (vma->vma_end - vma->vma_start);
2506}
2507
b480d9b7 2508static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
d97ef72e 2509 unsigned long flags)
edf8e2af
MW
2510{
2511 struct mm_struct *mm = (struct mm_struct *)priv;
2512
edf8e2af
MW
2513 vma_add_mapping(mm, start, end, flags);
2514 return (0);
2515}
2516
2517static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 2518 unsigned int sz, void *data)
edf8e2af
MW
2519{
2520 unsigned int namesz;
2521
2522 namesz = strlen(name) + 1;
2523 note->name = name;
2524 note->namesz = namesz;
2525 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2526 note->type = type;
80f5ce75
LV
2527 note->datasz = sz;
2528 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2529
edf8e2af
MW
2530 note->data = data;
2531
2532 /*
2533 * We calculate rounded up note size here as specified by
2534 * ELF document.
2535 */
2536 note->notesz = sizeof (struct elf_note) +
80f5ce75 2537 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
2538}
2539
2540static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 2541 uint32_t flags)
edf8e2af
MW
2542{
2543 (void) memset(elf, 0, sizeof(*elf));
2544
2545 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2546 elf->e_ident[EI_CLASS] = ELF_CLASS;
2547 elf->e_ident[EI_DATA] = ELF_DATA;
2548 elf->e_ident[EI_VERSION] = EV_CURRENT;
2549 elf->e_ident[EI_OSABI] = ELF_OSABI;
2550
2551 elf->e_type = ET_CORE;
2552 elf->e_machine = machine;
2553 elf->e_version = EV_CURRENT;
2554 elf->e_phoff = sizeof(struct elfhdr);
2555 elf->e_flags = flags;
2556 elf->e_ehsize = sizeof(struct elfhdr);
2557 elf->e_phentsize = sizeof(struct elf_phdr);
2558 elf->e_phnum = segs;
2559
edf8e2af 2560 bswap_ehdr(elf);
edf8e2af
MW
2561}
2562
2563static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2564{
2565 phdr->p_type = PT_NOTE;
2566 phdr->p_offset = offset;
2567 phdr->p_vaddr = 0;
2568 phdr->p_paddr = 0;
2569 phdr->p_filesz = sz;
2570 phdr->p_memsz = 0;
2571 phdr->p_flags = 0;
2572 phdr->p_align = 0;
2573
991f8f0c 2574 bswap_phdr(phdr, 1);
edf8e2af
MW
2575}
2576
2577static size_t note_size(const struct memelfnote *note)
2578{
2579 return (note->notesz);
2580}
2581
a2547a13 2582static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 2583 const TaskState *ts, int signr)
edf8e2af
MW
2584{
2585 (void) memset(prstatus, 0, sizeof (*prstatus));
2586 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2587 prstatus->pr_pid = ts->ts_tid;
2588 prstatus->pr_ppid = getppid();
2589 prstatus->pr_pgrp = getpgrp();
2590 prstatus->pr_sid = getsid(0);
2591
edf8e2af 2592 bswap_prstatus(prstatus);
edf8e2af
MW
2593}
2594
a2547a13 2595static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 2596{
900cfbca 2597 char *base_filename;
edf8e2af
MW
2598 unsigned int i, len;
2599
2600 (void) memset(psinfo, 0, sizeof (*psinfo));
2601
2602 len = ts->info->arg_end - ts->info->arg_start;
2603 if (len >= ELF_PRARGSZ)
2604 len = ELF_PRARGSZ - 1;
2605 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2606 return -EFAULT;
2607 for (i = 0; i < len; i++)
2608 if (psinfo->pr_psargs[i] == 0)
2609 psinfo->pr_psargs[i] = ' ';
2610 psinfo->pr_psargs[len] = 0;
2611
2612 psinfo->pr_pid = getpid();
2613 psinfo->pr_ppid = getppid();
2614 psinfo->pr_pgrp = getpgrp();
2615 psinfo->pr_sid = getsid(0);
2616 psinfo->pr_uid = getuid();
2617 psinfo->pr_gid = getgid();
2618
900cfbca
JM
2619 base_filename = g_path_get_basename(ts->bprm->filename);
2620 /*
2621 * Using strncpy here is fine: at max-length,
2622 * this field is not NUL-terminated.
2623 */
edf8e2af 2624 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 2625 sizeof(psinfo->pr_fname));
edf8e2af 2626
900cfbca 2627 g_free(base_filename);
edf8e2af 2628 bswap_psinfo(psinfo);
edf8e2af
MW
2629 return (0);
2630}
2631
2632static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2633{
2634 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2635 elf_addr_t orig_auxv = auxv;
edf8e2af 2636 void *ptr;
125b0f55 2637 int len = ts->info->auxv_len;
edf8e2af
MW
2638
2639 /*
2640 * Auxiliary vector is stored in target process stack. It contains
2641 * {type, value} pairs that we need to dump into note. This is not
2642 * strictly necessary but we do it here for sake of completeness.
2643 */
2644
edf8e2af
MW
2645 /* read in whole auxv vector and copy it to memelfnote */
2646 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2647 if (ptr != NULL) {
2648 fill_note(note, "CORE", NT_AUXV, len, ptr);
2649 unlock_user(ptr, auxv, len);
2650 }
2651}
2652
2653/*
2654 * Constructs name of coredump file. We have following convention
2655 * for the name:
2656 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2657 *
2658 * Returns 0 in case of success, -1 otherwise (errno is set).
2659 */
2660static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 2661 size_t bufsize)
edf8e2af
MW
2662{
2663 char timestamp[64];
2664 char *filename = NULL;
2665 char *base_filename = NULL;
2666 struct timeval tv;
2667 struct tm tm;
2668
2669 assert(bufsize >= PATH_MAX);
2670
2671 if (gettimeofday(&tv, NULL) < 0) {
2672 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 2673 strerror(errno));
edf8e2af
MW
2674 return (-1);
2675 }
2676
2677 filename = strdup(ts->bprm->filename);
2678 base_filename = strdup(basename(filename));
2679 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 2680 localtime_r(&tv.tv_sec, &tm));
edf8e2af 2681 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 2682 base_filename, timestamp, (int)getpid());
edf8e2af
MW
2683 free(base_filename);
2684 free(filename);
2685
2686 return (0);
2687}
2688
2689static int dump_write(int fd, const void *ptr, size_t size)
2690{
2691 const char *bufp = (const char *)ptr;
2692 ssize_t bytes_written, bytes_left;
2693 struct rlimit dumpsize;
2694 off_t pos;
2695
2696 bytes_written = 0;
2697 getrlimit(RLIMIT_CORE, &dumpsize);
2698 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2699 if (errno == ESPIPE) { /* not a seekable stream */
2700 bytes_left = size;
2701 } else {
2702 return pos;
2703 }
2704 } else {
2705 if (dumpsize.rlim_cur <= pos) {
2706 return -1;
2707 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2708 bytes_left = size;
2709 } else {
2710 size_t limit_left=dumpsize.rlim_cur - pos;
2711 bytes_left = limit_left >= size ? size : limit_left ;
2712 }
2713 }
2714
2715 /*
2716 * In normal conditions, single write(2) should do but
2717 * in case of socket etc. this mechanism is more portable.
2718 */
2719 do {
2720 bytes_written = write(fd, bufp, bytes_left);
2721 if (bytes_written < 0) {
2722 if (errno == EINTR)
2723 continue;
2724 return (-1);
2725 } else if (bytes_written == 0) { /* eof */
2726 return (-1);
2727 }
2728 bufp += bytes_written;
2729 bytes_left -= bytes_written;
2730 } while (bytes_left > 0);
2731
2732 return (0);
2733}
2734
2735static int write_note(struct memelfnote *men, int fd)
2736{
2737 struct elf_note en;
2738
2739 en.n_namesz = men->namesz;
2740 en.n_type = men->type;
2741 en.n_descsz = men->datasz;
2742
edf8e2af 2743 bswap_note(&en);
edf8e2af
MW
2744
2745 if (dump_write(fd, &en, sizeof(en)) != 0)
2746 return (-1);
2747 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2748 return (-1);
80f5ce75 2749 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
2750 return (-1);
2751
2752 return (0);
2753}
2754
9349b4f9 2755static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 2756{
0429a971
AF
2757 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2758 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
2759 struct elf_thread_status *ets;
2760
7267c094 2761 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
2762 ets->num_notes = 1; /* only prstatus is dumped */
2763 fill_prstatus(&ets->prstatus, ts, 0);
2764 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2765 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 2766 &ets->prstatus);
edf8e2af 2767
72cf2d4f 2768 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
2769
2770 info->notes_size += note_size(&ets->notes[0]);
2771}
2772
6afafa86
PM
2773static void init_note_info(struct elf_note_info *info)
2774{
2775 /* Initialize the elf_note_info structure so that it is at
2776 * least safe to call free_note_info() on it. Must be
2777 * called before calling fill_note_info().
2778 */
2779 memset(info, 0, sizeof (*info));
2780 QTAILQ_INIT(&info->thread_list);
2781}
2782
edf8e2af 2783static int fill_note_info(struct elf_note_info *info,
9349b4f9 2784 long signr, const CPUArchState *env)
edf8e2af
MW
2785{
2786#define NUMNOTES 3
0429a971
AF
2787 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2788 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
2789 int i;
2790
7267c094 2791 info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
edf8e2af
MW
2792 if (info->notes == NULL)
2793 return (-ENOMEM);
7267c094 2794 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
2795 if (info->prstatus == NULL)
2796 return (-ENOMEM);
7267c094 2797 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
2798 if (info->prstatus == NULL)
2799 return (-ENOMEM);
2800
2801 /*
2802 * First fill in status (and registers) of current thread
2803 * including process info & aux vector.
2804 */
2805 fill_prstatus(info->prstatus, ts, signr);
2806 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2807 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 2808 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
2809 fill_psinfo(info->psinfo, ts);
2810 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 2811 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
2812 fill_auxv_note(&info->notes[2], ts);
2813 info->numnote = 3;
2814
2815 info->notes_size = 0;
2816 for (i = 0; i < info->numnote; i++)
2817 info->notes_size += note_size(&info->notes[i]);
2818
2819 /* read and fill status of all threads */
2820 cpu_list_lock();
bdc44640 2821 CPU_FOREACH(cpu) {
a2247f8e 2822 if (cpu == thread_cpu) {
edf8e2af 2823 continue;
182735ef
AF
2824 }
2825 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
2826 }
2827 cpu_list_unlock();
2828
2829 return (0);
2830}
2831
2832static void free_note_info(struct elf_note_info *info)
2833{
2834 struct elf_thread_status *ets;
2835
72cf2d4f
BS
2836 while (!QTAILQ_EMPTY(&info->thread_list)) {
2837 ets = QTAILQ_FIRST(&info->thread_list);
2838 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 2839 g_free(ets);
edf8e2af
MW
2840 }
2841
7267c094
AL
2842 g_free(info->prstatus);
2843 g_free(info->psinfo);
2844 g_free(info->notes);
edf8e2af
MW
2845}
2846
2847static int write_note_info(struct elf_note_info *info, int fd)
2848{
2849 struct elf_thread_status *ets;
2850 int i, error = 0;
2851
2852 /* write prstatus, psinfo and auxv for current thread */
2853 for (i = 0; i < info->numnote; i++)
2854 if ((error = write_note(&info->notes[i], fd)) != 0)
2855 return (error);
2856
2857 /* write prstatus for each thread */
2858 for (ets = info->thread_list.tqh_first; ets != NULL;
d97ef72e 2859 ets = ets->ets_link.tqe_next) {
edf8e2af
MW
2860 if ((error = write_note(&ets->notes[0], fd)) != 0)
2861 return (error);
2862 }
2863
2864 return (0);
2865}
2866
2867/*
2868 * Write out ELF coredump.
2869 *
2870 * See documentation of ELF object file format in:
2871 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2872 *
2873 * Coredump format in linux is following:
2874 *
2875 * 0 +----------------------+ \
2876 * | ELF header | ET_CORE |
2877 * +----------------------+ |
2878 * | ELF program headers | |--- headers
2879 * | - NOTE section | |
2880 * | - PT_LOAD sections | |
2881 * +----------------------+ /
2882 * | NOTEs: |
2883 * | - NT_PRSTATUS |
2884 * | - NT_PRSINFO |
2885 * | - NT_AUXV |
2886 * +----------------------+ <-- aligned to target page
2887 * | Process memory dump |
2888 * : :
2889 * . .
2890 * : :
2891 * | |
2892 * +----------------------+
2893 *
2894 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2895 * NT_PRSINFO -> struct elf_prpsinfo
2896 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2897 *
2898 * Format follows System V format as close as possible. Current
2899 * version limitations are as follows:
2900 * - no floating point registers are dumped
2901 *
2902 * Function returns 0 in case of success, negative errno otherwise.
2903 *
2904 * TODO: make this work also during runtime: it should be
2905 * possible to force coredump from running process and then
2906 * continue processing. For example qemu could set up SIGUSR2
2907 * handler (provided that target process haven't registered
2908 * handler for that) that does the dump when signal is received.
2909 */
9349b4f9 2910static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 2911{
0429a971
AF
2912 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2913 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
2914 struct vm_area_struct *vma = NULL;
2915 char corefile[PATH_MAX];
2916 struct elf_note_info info;
2917 struct elfhdr elf;
2918 struct elf_phdr phdr;
2919 struct rlimit dumpsize;
2920 struct mm_struct *mm = NULL;
2921 off_t offset = 0, data_offset = 0;
2922 int segs = 0;
2923 int fd = -1;
2924
6afafa86
PM
2925 init_note_info(&info);
2926
edf8e2af
MW
2927 errno = 0;
2928 getrlimit(RLIMIT_CORE, &dumpsize);
2929 if (dumpsize.rlim_cur == 0)
d97ef72e 2930 return 0;
edf8e2af
MW
2931
2932 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2933 return (-errno);
2934
2935 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 2936 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
2937 return (-errno);
2938
2939 /*
2940 * Walk through target process memory mappings and
2941 * set up structure containing this information. After
2942 * this point vma_xxx functions can be used.
2943 */
2944 if ((mm = vma_init()) == NULL)
2945 goto out;
2946
2947 walk_memory_regions(mm, vma_walker);
2948 segs = vma_get_mapping_count(mm);
2949
2950 /*
2951 * Construct valid coredump ELF header. We also
2952 * add one more segment for notes.
2953 */
2954 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2955 if (dump_write(fd, &elf, sizeof (elf)) != 0)
2956 goto out;
2957
2958 /* fill in in-memory version of notes */
2959 if (fill_note_info(&info, signr, env) < 0)
2960 goto out;
2961
2962 offset += sizeof (elf); /* elf header */
2963 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
2964
2965 /* write out notes program header */
2966 fill_elf_note_phdr(&phdr, info.notes_size, offset);
2967
2968 offset += info.notes_size;
2969 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2970 goto out;
2971
2972 /*
2973 * ELF specification wants data to start at page boundary so
2974 * we align it here.
2975 */
80f5ce75 2976 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
2977
2978 /*
2979 * Write program headers for memory regions mapped in
2980 * the target process.
2981 */
2982 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2983 (void) memset(&phdr, 0, sizeof (phdr));
2984
2985 phdr.p_type = PT_LOAD;
2986 phdr.p_offset = offset;
2987 phdr.p_vaddr = vma->vma_start;
2988 phdr.p_paddr = 0;
2989 phdr.p_filesz = vma_dump_size(vma);
2990 offset += phdr.p_filesz;
2991 phdr.p_memsz = vma->vma_end - vma->vma_start;
2992 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2993 if (vma->vma_flags & PROT_WRITE)
2994 phdr.p_flags |= PF_W;
2995 if (vma->vma_flags & PROT_EXEC)
2996 phdr.p_flags |= PF_X;
2997 phdr.p_align = ELF_EXEC_PAGESIZE;
2998
80f5ce75 2999 bswap_phdr(&phdr, 1);
edf8e2af
MW
3000 dump_write(fd, &phdr, sizeof (phdr));
3001 }
3002
3003 /*
3004 * Next we write notes just after program headers. No
3005 * alignment needed here.
3006 */
3007 if (write_note_info(&info, fd) < 0)
3008 goto out;
3009
3010 /* align data to page boundary */
edf8e2af
MW
3011 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3012 goto out;
3013
3014 /*
3015 * Finally we can dump process memory into corefile as well.
3016 */
3017 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3018 abi_ulong addr;
3019 abi_ulong end;
3020
3021 end = vma->vma_start + vma_dump_size(vma);
3022
3023 for (addr = vma->vma_start; addr < end;
d97ef72e 3024 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3025 char page[TARGET_PAGE_SIZE];
3026 int error;
3027
3028 /*
3029 * Read in page from target process memory and
3030 * write it to coredump file.
3031 */
3032 error = copy_from_user(page, addr, sizeof (page));
3033 if (error != 0) {
49995e17 3034 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3035 addr);
edf8e2af
MW
3036 errno = -error;
3037 goto out;
3038 }
3039 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3040 goto out;
3041 }
3042 }
3043
d97ef72e 3044 out:
edf8e2af
MW
3045 free_note_info(&info);
3046 if (mm != NULL)
3047 vma_delete(mm);
3048 (void) close(fd);
3049
3050 if (errno != 0)
3051 return (-errno);
3052 return (0);
3053}
edf8e2af
MW
3054#endif /* USE_ELF_CORE_DUMP */
3055
e5fe0c52
PB
3056void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3057{
3058 init_thread(regs, infop);
3059}