]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
qemu-binfmt-conf.sh: add qemu-xtensa
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
31e31b8a 6
3ef693a0 7#include "qemu.h"
76cad711 8#include "disas/disas.h"
f348b6d1 9#include "qemu/path.h"
31e31b8a 10
e58ffeb3 11#ifdef _ARCH_PPC64
a6cc84f4 12#undef ARCH_DLINFO
13#undef ELF_PLATFORM
14#undef ELF_HWCAP
ad6919dc 15#undef ELF_HWCAP2
a6cc84f4 16#undef ELF_CLASS
17#undef ELF_DATA
18#undef ELF_ARCH
19#endif
20
edf8e2af
MW
21#define ELF_OSABI ELFOSABI_SYSV
22
cb33da57
BS
23/* from personality.h */
24
25/*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30enum {
d97ef72e
RH
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
42};
43
44/*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50enum {
d97ef72e
RH
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
cb33da57
BS
74};
75
76/*
77 * Return the base personality without flags.
78 */
d97ef72e 79#define personality(pers) (pers & PER_MASK)
cb33da57 80
83fb7adf
FB
81/* this flag is uneffective under linux too, should be deleted */
82#ifndef MAP_DENYWRITE
83#define MAP_DENYWRITE 0
84#endif
85
86/* should probably go in elf.h */
87#ifndef ELIBBAD
88#define ELIBBAD 80
89#endif
90
28490231
RH
91#ifdef TARGET_WORDS_BIGENDIAN
92#define ELF_DATA ELFDATA2MSB
93#else
94#define ELF_DATA ELFDATA2LSB
95#endif
96
a29f998d 97#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
98typedef abi_ullong target_elf_greg_t;
99#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
100#else
101typedef abi_ulong target_elf_greg_t;
102#define tswapreg(ptr) tswapal(ptr)
103#endif
104
21e807fa 105#ifdef USE_UID16
1ddd592f
PB
106typedef abi_ushort target_uid_t;
107typedef abi_ushort target_gid_t;
21e807fa 108#else
f8fd4fc4
PB
109typedef abi_uint target_uid_t;
110typedef abi_uint target_gid_t;
21e807fa 111#endif
f8fd4fc4 112typedef abi_int target_pid_t;
21e807fa 113
30ac07d4
FB
114#ifdef TARGET_I386
115
15338fd7
FB
116#define ELF_PLATFORM get_elf_platform()
117
118static const char *get_elf_platform(void)
119{
120 static char elf_platform[] = "i386";
a2247f8e 121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
127}
128
129#define ELF_HWCAP get_elf_hwcap()
130
131static uint32_t get_elf_hwcap(void)
132{
a2247f8e
AF
133 X86CPU *cpu = X86_CPU(thread_cpu);
134
135 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
136}
137
84409ddb
JM
138#ifdef TARGET_X86_64
139#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
140
141#define ELF_CLASS ELFCLASS64
84409ddb
JM
142#define ELF_ARCH EM_X86_64
143
144static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
145{
146 regs->rax = 0;
147 regs->rsp = infop->start_stack;
148 regs->rip = infop->entry;
149}
150
9edc5d79 151#define ELF_NREG 27
c227f099 152typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
153
154/*
155 * Note that ELF_NREG should be 29 as there should be place for
156 * TRAPNO and ERR "registers" as well but linux doesn't dump
157 * those.
158 *
159 * See linux kernel: arch/x86/include/asm/elf.h
160 */
05390248 161static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
162{
163 (*regs)[0] = env->regs[15];
164 (*regs)[1] = env->regs[14];
165 (*regs)[2] = env->regs[13];
166 (*regs)[3] = env->regs[12];
167 (*regs)[4] = env->regs[R_EBP];
168 (*regs)[5] = env->regs[R_EBX];
169 (*regs)[6] = env->regs[11];
170 (*regs)[7] = env->regs[10];
171 (*regs)[8] = env->regs[9];
172 (*regs)[9] = env->regs[8];
173 (*regs)[10] = env->regs[R_EAX];
174 (*regs)[11] = env->regs[R_ECX];
175 (*regs)[12] = env->regs[R_EDX];
176 (*regs)[13] = env->regs[R_ESI];
177 (*regs)[14] = env->regs[R_EDI];
178 (*regs)[15] = env->regs[R_EAX]; /* XXX */
179 (*regs)[16] = env->eip;
180 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181 (*regs)[18] = env->eflags;
182 (*regs)[19] = env->regs[R_ESP];
183 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
190}
191
84409ddb
JM
192#else
193
30ac07d4
FB
194#define ELF_START_MMAP 0x80000000
195
30ac07d4
FB
196/*
197 * This is used to ensure we don't load something for the wrong architecture.
198 */
199#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
200
201/*
202 * These are used to set parameters in the core dumps.
203 */
d97ef72e 204#define ELF_CLASS ELFCLASS32
d97ef72e 205#define ELF_ARCH EM_386
30ac07d4 206
d97ef72e
RH
207static inline void init_thread(struct target_pt_regs *regs,
208 struct image_info *infop)
b346ff46
FB
209{
210 regs->esp = infop->start_stack;
211 regs->eip = infop->entry;
e5fe0c52
PB
212
213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214 starts %edx contains a pointer to a function which might be
215 registered using `atexit'. This provides a mean for the
216 dynamic linker to call DT_FINI functions for shared libraries
217 that have been loaded before the code runs.
218
219 A value of 0 tells we have no such handler. */
220 regs->edx = 0;
b346ff46 221}
9edc5d79 222
9edc5d79 223#define ELF_NREG 17
c227f099 224typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
225
226/*
227 * Note that ELF_NREG should be 19 as there should be place for
228 * TRAPNO and ERR "registers" as well but linux doesn't dump
229 * those.
230 *
231 * See linux kernel: arch/x86/include/asm/elf.h
232 */
05390248 233static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
234{
235 (*regs)[0] = env->regs[R_EBX];
236 (*regs)[1] = env->regs[R_ECX];
237 (*regs)[2] = env->regs[R_EDX];
238 (*regs)[3] = env->regs[R_ESI];
239 (*regs)[4] = env->regs[R_EDI];
240 (*regs)[5] = env->regs[R_EBP];
241 (*regs)[6] = env->regs[R_EAX];
242 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246 (*regs)[11] = env->regs[R_EAX]; /* XXX */
247 (*regs)[12] = env->eip;
248 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249 (*regs)[14] = env->eflags;
250 (*regs)[15] = env->regs[R_ESP];
251 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
252}
84409ddb 253#endif
b346ff46 254
9edc5d79 255#define USE_ELF_CORE_DUMP
d97ef72e 256#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
257
258#endif
259
260#ifdef TARGET_ARM
261
24e76ff0
PM
262#ifndef TARGET_AARCH64
263/* 32 bit ARM definitions */
264
b346ff46
FB
265#define ELF_START_MMAP 0x80000000
266
b597c3f7 267#define ELF_ARCH EM_ARM
d97ef72e 268#define ELF_CLASS ELFCLASS32
b346ff46 269
d97ef72e
RH
270static inline void init_thread(struct target_pt_regs *regs,
271 struct image_info *infop)
b346ff46 272{
992f48a0 273 abi_long stack = infop->start_stack;
b346ff46 274 memset(regs, 0, sizeof(*regs));
99033cae 275
167e4cdc
PM
276 regs->uregs[16] = ARM_CPU_MODE_USR;
277 if (infop->entry & 1) {
278 regs->uregs[16] |= CPSR_T;
279 }
280 regs->uregs[15] = infop->entry & 0xfffffffe;
281 regs->uregs[13] = infop->start_stack;
2f619698 282 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
283 get_user_ual(regs->uregs[2], stack + 8); /* envp */
284 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 285 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 286 regs->uregs[0] = 0;
e5fe0c52 287 /* For uClinux PIC binaries. */
863cf0b7 288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 289 regs->uregs[10] = infop->start_data;
b346ff46
FB
290}
291
edf8e2af 292#define ELF_NREG 18
c227f099 293typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 294
05390248 295static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 296{
86cd7b2d
PB
297 (*regs)[0] = tswapreg(env->regs[0]);
298 (*regs)[1] = tswapreg(env->regs[1]);
299 (*regs)[2] = tswapreg(env->regs[2]);
300 (*regs)[3] = tswapreg(env->regs[3]);
301 (*regs)[4] = tswapreg(env->regs[4]);
302 (*regs)[5] = tswapreg(env->regs[5]);
303 (*regs)[6] = tswapreg(env->regs[6]);
304 (*regs)[7] = tswapreg(env->regs[7]);
305 (*regs)[8] = tswapreg(env->regs[8]);
306 (*regs)[9] = tswapreg(env->regs[9]);
307 (*regs)[10] = tswapreg(env->regs[10]);
308 (*regs)[11] = tswapreg(env->regs[11]);
309 (*regs)[12] = tswapreg(env->regs[12]);
310 (*regs)[13] = tswapreg(env->regs[13]);
311 (*regs)[14] = tswapreg(env->regs[14]);
312 (*regs)[15] = tswapreg(env->regs[15]);
313
314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
316}
317
30ac07d4 318#define USE_ELF_CORE_DUMP
d97ef72e 319#define ELF_EXEC_PAGESIZE 4096
30ac07d4 320
afce2927
FB
321enum
322{
d97ef72e
RH
323 ARM_HWCAP_ARM_SWP = 1 << 0,
324 ARM_HWCAP_ARM_HALF = 1 << 1,
325 ARM_HWCAP_ARM_THUMB = 1 << 2,
326 ARM_HWCAP_ARM_26BIT = 1 << 3,
327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328 ARM_HWCAP_ARM_FPA = 1 << 5,
329 ARM_HWCAP_ARM_VFP = 1 << 6,
330 ARM_HWCAP_ARM_EDSP = 1 << 7,
331 ARM_HWCAP_ARM_JAVA = 1 << 8,
332 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
333 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
334 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
335 ARM_HWCAP_ARM_NEON = 1 << 12,
336 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
338 ARM_HWCAP_ARM_TLS = 1 << 15,
339 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
340 ARM_HWCAP_ARM_IDIVA = 1 << 17,
341 ARM_HWCAP_ARM_IDIVT = 1 << 18,
342 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
343 ARM_HWCAP_ARM_LPAE = 1 << 20,
344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
345};
346
ad6919dc
PM
347enum {
348 ARM_HWCAP2_ARM_AES = 1 << 0,
349 ARM_HWCAP2_ARM_PMULL = 1 << 1,
350 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
351 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
352 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
353};
354
6b1275ff
PM
355/* The commpage only exists for 32 bit kernels */
356
806d1021
MI
357#define TARGET_HAS_VALIDATE_GUEST_SPACE
358/* Return 1 if the proposed guest space is suitable for the guest.
359 * Return 0 if the proposed guest space isn't suitable, but another
360 * address space should be tried.
361 * Return -1 if there is no way the proposed guest space can be
362 * valid regardless of the base.
363 * The guest code may leave a page mapped and populate it if the
364 * address is suitable.
365 */
366static int validate_guest_space(unsigned long guest_base,
367 unsigned long guest_size)
97cc7560
DDAG
368{
369 unsigned long real_start, test_page_addr;
370
371 /* We need to check that we can force a fault on access to the
372 * commpage at 0xffff0fxx
373 */
374 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
375
376 /* If the commpage lies within the already allocated guest space,
377 * then there is no way we can allocate it.
378 */
379 if (test_page_addr >= guest_base
e568f9df 380 && test_page_addr < (guest_base + guest_size)) {
806d1021
MI
381 return -1;
382 }
383
97cc7560
DDAG
384 /* Note it needs to be writeable to let us initialise it */
385 real_start = (unsigned long)
386 mmap((void *)test_page_addr, qemu_host_page_size,
387 PROT_READ | PROT_WRITE,
388 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
389
390 /* If we can't map it then try another address */
391 if (real_start == -1ul) {
392 return 0;
393 }
394
395 if (real_start != test_page_addr) {
396 /* OS didn't put the page where we asked - unmap and reject */
397 munmap((void *)real_start, qemu_host_page_size);
398 return 0;
399 }
400
401 /* Leave the page mapped
402 * Populate it (mmap should have left it all 0'd)
403 */
404
405 /* Kernel helper versions */
406 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
407
408 /* Now it's populated make it RO */
409 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
410 perror("Protecting guest commpage");
411 exit(-1);
412 }
413
414 return 1; /* All good */
415}
adf050b1
BC
416
417#define ELF_HWCAP get_elf_hwcap()
ad6919dc 418#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
419
420static uint32_t get_elf_hwcap(void)
421{
a2247f8e 422 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
423 uint32_t hwcaps = 0;
424
425 hwcaps |= ARM_HWCAP_ARM_SWP;
426 hwcaps |= ARM_HWCAP_ARM_HALF;
427 hwcaps |= ARM_HWCAP_ARM_THUMB;
428 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
429
430 /* probe for the extra features */
431#define GET_FEATURE(feat, hwcap) \
a2247f8e 432 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
24682654
PM
433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
434 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
435 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
440 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
441 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
442 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
443 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
444 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
445 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
446 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
447 * to our VFP_FP16 feature bit.
448 */
449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
450 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
451
452 return hwcaps;
453}
afce2927 454
ad6919dc
PM
455static uint32_t get_elf_hwcap2(void)
456{
457 ARMCPU *cpu = ARM_CPU(thread_cpu);
458 uint32_t hwcaps = 0;
459
460 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
4e624eda 461 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
f1ecb913
AB
462 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
463 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
ad6919dc
PM
464 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
465 return hwcaps;
466}
467
468#undef GET_FEATURE
469
24e76ff0
PM
470#else
471/* 64 bit ARM definitions */
472#define ELF_START_MMAP 0x80000000
473
b597c3f7 474#define ELF_ARCH EM_AARCH64
24e76ff0
PM
475#define ELF_CLASS ELFCLASS64
476#define ELF_PLATFORM "aarch64"
477
478static inline void init_thread(struct target_pt_regs *regs,
479 struct image_info *infop)
480{
481 abi_long stack = infop->start_stack;
482 memset(regs, 0, sizeof(*regs));
483
484 regs->pc = infop->entry & ~0x3ULL;
485 regs->sp = stack;
486}
487
488#define ELF_NREG 34
489typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
490
491static void elf_core_copy_regs(target_elf_gregset_t *regs,
492 const CPUARMState *env)
493{
494 int i;
495
496 for (i = 0; i < 32; i++) {
497 (*regs)[i] = tswapreg(env->xregs[i]);
498 }
499 (*regs)[32] = tswapreg(env->pc);
500 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
501}
502
503#define USE_ELF_CORE_DUMP
504#define ELF_EXEC_PAGESIZE 4096
505
506enum {
507 ARM_HWCAP_A64_FP = 1 << 0,
508 ARM_HWCAP_A64_ASIMD = 1 << 1,
509 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
510 ARM_HWCAP_A64_AES = 1 << 3,
511 ARM_HWCAP_A64_PMULL = 1 << 4,
512 ARM_HWCAP_A64_SHA1 = 1 << 5,
513 ARM_HWCAP_A64_SHA2 = 1 << 6,
514 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
515 ARM_HWCAP_A64_ATOMICS = 1 << 8,
516 ARM_HWCAP_A64_FPHP = 1 << 9,
517 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
518 ARM_HWCAP_A64_CPUID = 1 << 11,
519 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
520 ARM_HWCAP_A64_JSCVT = 1 << 13,
521 ARM_HWCAP_A64_FCMA = 1 << 14,
522 ARM_HWCAP_A64_LRCPC = 1 << 15,
523 ARM_HWCAP_A64_DCPOP = 1 << 16,
524 ARM_HWCAP_A64_SHA3 = 1 << 17,
525 ARM_HWCAP_A64_SM3 = 1 << 18,
526 ARM_HWCAP_A64_SM4 = 1 << 19,
527 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
528 ARM_HWCAP_A64_SHA512 = 1 << 21,
529 ARM_HWCAP_A64_SVE = 1 << 22,
24e76ff0
PM
530};
531
532#define ELF_HWCAP get_elf_hwcap()
533
534static uint32_t get_elf_hwcap(void)
535{
536 ARMCPU *cpu = ARM_CPU(thread_cpu);
537 uint32_t hwcaps = 0;
538
539 hwcaps |= ARM_HWCAP_A64_FP;
540 hwcaps |= ARM_HWCAP_A64_ASIMD;
541
542 /* probe for the extra features */
543#define GET_FEATURE(feat, hwcap) \
544 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
5acc765c 545 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
411bdc78 546 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
f6fe04d5
PM
547 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
548 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
130f2e7d 549 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
955f56d4
AB
550 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
551 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
552 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
553 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
201b19d5
PM
554 GET_FEATURE(ARM_FEATURE_V8_FP16,
555 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
1dc81c15 556 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
0438f037 557 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
24e76ff0
PM
558#undef GET_FEATURE
559
560 return hwcaps;
561}
562
563#endif /* not TARGET_AARCH64 */
564#endif /* TARGET_ARM */
30ac07d4 565
853d6f7a 566#ifdef TARGET_SPARC
a315a145 567#ifdef TARGET_SPARC64
853d6f7a
FB
568
569#define ELF_START_MMAP 0x80000000
cf973e46
AT
570#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
571 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 572#ifndef TARGET_ABI32
cb33da57 573#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
574#else
575#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
576#endif
853d6f7a 577
a315a145 578#define ELF_CLASS ELFCLASS64
5ef54116
FB
579#define ELF_ARCH EM_SPARCV9
580
d97ef72e 581#define STACK_BIAS 2047
a315a145 582
d97ef72e
RH
583static inline void init_thread(struct target_pt_regs *regs,
584 struct image_info *infop)
a315a145 585{
992f48a0 586#ifndef TARGET_ABI32
a315a145 587 regs->tstate = 0;
992f48a0 588#endif
a315a145
FB
589 regs->pc = infop->entry;
590 regs->npc = regs->pc + 4;
591 regs->y = 0;
992f48a0
BS
592#ifdef TARGET_ABI32
593 regs->u_regs[14] = infop->start_stack - 16 * 4;
594#else
cb33da57
BS
595 if (personality(infop->personality) == PER_LINUX32)
596 regs->u_regs[14] = infop->start_stack - 16 * 4;
597 else
598 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 599#endif
a315a145
FB
600}
601
602#else
603#define ELF_START_MMAP 0x80000000
cf973e46
AT
604#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
605 | HWCAP_SPARC_MULDIV)
a315a145 606
853d6f7a 607#define ELF_CLASS ELFCLASS32
853d6f7a
FB
608#define ELF_ARCH EM_SPARC
609
d97ef72e
RH
610static inline void init_thread(struct target_pt_regs *regs,
611 struct image_info *infop)
853d6f7a 612{
f5155289
FB
613 regs->psr = 0;
614 regs->pc = infop->entry;
615 regs->npc = regs->pc + 4;
616 regs->y = 0;
617 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
618}
619
a315a145 620#endif
853d6f7a
FB
621#endif
622
67867308
FB
623#ifdef TARGET_PPC
624
4ecd4d16 625#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
626#define ELF_START_MMAP 0x80000000
627
e85e7c6e 628#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
629
630#define elf_check_arch(x) ( (x) == EM_PPC64 )
631
d97ef72e 632#define ELF_CLASS ELFCLASS64
84409ddb
JM
633
634#else
635
d97ef72e 636#define ELF_CLASS ELFCLASS32
84409ddb
JM
637
638#endif
639
d97ef72e 640#define ELF_ARCH EM_PPC
67867308 641
df84e4f3
NF
642/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
643 See arch/powerpc/include/asm/cputable.h. */
644enum {
3efa9a67 645 QEMU_PPC_FEATURE_32 = 0x80000000,
646 QEMU_PPC_FEATURE_64 = 0x40000000,
647 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
648 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
649 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
650 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
651 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
652 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
653 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
654 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
655 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
656 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
657 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
658 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
659 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
660 QEMU_PPC_FEATURE_CELL = 0x00010000,
661 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
662 QEMU_PPC_FEATURE_SMT = 0x00004000,
663 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
664 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
665 QEMU_PPC_FEATURE_PA6T = 0x00000800,
666 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
667 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
668 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
669 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
670 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
671
672 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
673 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
674
675 /* Feature definitions in AT_HWCAP2. */
676 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
677 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
678 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
679 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
680 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
681 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
df84e4f3
NF
682};
683
684#define ELF_HWCAP get_elf_hwcap()
685
686static uint32_t get_elf_hwcap(void)
687{
a2247f8e 688 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
689 uint32_t features = 0;
690
691 /* We don't have to be terribly complete here; the high points are
692 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 693#define GET_FEATURE(flag, feature) \
a2247f8e 694 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
695#define GET_FEATURE2(flags, feature) \
696 do { \
697 if ((cpu->env.insns_flags2 & flags) == flags) { \
698 features |= feature; \
699 } \
700 } while (0)
3efa9a67 701 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
702 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
703 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
704 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
705 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
706 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
707 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
708 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
709 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
710 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
711 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
712 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
713 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 714#undef GET_FEATURE
0e019746 715#undef GET_FEATURE2
df84e4f3
NF
716
717 return features;
718}
719
a60438dd
TM
720#define ELF_HWCAP2 get_elf_hwcap2()
721
722static uint32_t get_elf_hwcap2(void)
723{
724 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
725 uint32_t features = 0;
726
727#define GET_FEATURE(flag, feature) \
728 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
729#define GET_FEATURE2(flag, feature) \
730 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
731
732 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
733 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
734 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
735 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
736
737#undef GET_FEATURE
738#undef GET_FEATURE2
739
740 return features;
741}
742
f5155289
FB
743/*
744 * The requirements here are:
745 * - keep the final alignment of sp (sp & 0xf)
746 * - make sure the 32-bit value at the first 16 byte aligned position of
747 * AUXV is greater than 16 for glibc compatibility.
748 * AT_IGNOREPPC is used for that.
749 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
750 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
751 */
0bccf03d 752#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
753#define ARCH_DLINFO \
754 do { \
623e250a 755 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 756 /* \
82991bed
PM
757 * Handle glibc compatibility: these magic entries must \
758 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
759 */ \
760 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
761 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
762 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
763 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
764 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 765 } while (0)
f5155289 766
67867308
FB
767static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
768{
67867308 769 _regs->gpr[1] = infop->start_stack;
e85e7c6e 770#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 771 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
772 uint64_t val;
773 get_user_u64(val, infop->entry + 8);
774 _regs->gpr[2] = val + infop->load_bias;
775 get_user_u64(val, infop->entry);
776 infop->entry = val + infop->load_bias;
d90b94cd
DK
777 } else {
778 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
779 }
84409ddb 780#endif
67867308
FB
781 _regs->nip = infop->entry;
782}
783
e2f3e741
NF
784/* See linux kernel: arch/powerpc/include/asm/elf.h. */
785#define ELF_NREG 48
786typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
787
05390248 788static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
789{
790 int i;
791 target_ulong ccr = 0;
792
793 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 794 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
795 }
796
86cd7b2d
PB
797 (*regs)[32] = tswapreg(env->nip);
798 (*regs)[33] = tswapreg(env->msr);
799 (*regs)[35] = tswapreg(env->ctr);
800 (*regs)[36] = tswapreg(env->lr);
801 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
802
803 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
804 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
805 }
86cd7b2d 806 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
807}
808
809#define USE_ELF_CORE_DUMP
d97ef72e 810#define ELF_EXEC_PAGESIZE 4096
67867308
FB
811
812#endif
813
048f6b4d
FB
814#ifdef TARGET_MIPS
815
816#define ELF_START_MMAP 0x80000000
817
388bb21a
TS
818#ifdef TARGET_MIPS64
819#define ELF_CLASS ELFCLASS64
820#else
048f6b4d 821#define ELF_CLASS ELFCLASS32
388bb21a 822#endif
048f6b4d
FB
823#define ELF_ARCH EM_MIPS
824
d97ef72e
RH
825static inline void init_thread(struct target_pt_regs *regs,
826 struct image_info *infop)
048f6b4d 827{
623a930e 828 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
829 regs->cp0_epc = infop->entry;
830 regs->regs[29] = infop->start_stack;
831}
832
51e52606
NF
833/* See linux kernel: arch/mips/include/asm/elf.h. */
834#define ELF_NREG 45
835typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
836
837/* See linux kernel: arch/mips/include/asm/reg.h. */
838enum {
839#ifdef TARGET_MIPS64
840 TARGET_EF_R0 = 0,
841#else
842 TARGET_EF_R0 = 6,
843#endif
844 TARGET_EF_R26 = TARGET_EF_R0 + 26,
845 TARGET_EF_R27 = TARGET_EF_R0 + 27,
846 TARGET_EF_LO = TARGET_EF_R0 + 32,
847 TARGET_EF_HI = TARGET_EF_R0 + 33,
848 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
849 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
850 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
851 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
852};
853
854/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 855static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
856{
857 int i;
858
859 for (i = 0; i < TARGET_EF_R0; i++) {
860 (*regs)[i] = 0;
861 }
862 (*regs)[TARGET_EF_R0] = 0;
863
864 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 865 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
866 }
867
868 (*regs)[TARGET_EF_R26] = 0;
869 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
870 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
871 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
872 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
873 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
874 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
875 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
876}
877
878#define USE_ELF_CORE_DUMP
388bb21a
TS
879#define ELF_EXEC_PAGESIZE 4096
880
048f6b4d
FB
881#endif /* TARGET_MIPS */
882
b779e29e
EI
883#ifdef TARGET_MICROBLAZE
884
885#define ELF_START_MMAP 0x80000000
886
0d5d4699 887#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
888
889#define ELF_CLASS ELFCLASS32
0d5d4699 890#define ELF_ARCH EM_MICROBLAZE
b779e29e 891
d97ef72e
RH
892static inline void init_thread(struct target_pt_regs *regs,
893 struct image_info *infop)
b779e29e
EI
894{
895 regs->pc = infop->entry;
896 regs->r1 = infop->start_stack;
897
898}
899
b779e29e
EI
900#define ELF_EXEC_PAGESIZE 4096
901
e4cbd44d
EI
902#define USE_ELF_CORE_DUMP
903#define ELF_NREG 38
904typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
905
906/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 907static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
908{
909 int i, pos = 0;
910
911 for (i = 0; i < 32; i++) {
86cd7b2d 912 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
913 }
914
915 for (i = 0; i < 6; i++) {
86cd7b2d 916 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
917 }
918}
919
b779e29e
EI
920#endif /* TARGET_MICROBLAZE */
921
a0a839b6
MV
922#ifdef TARGET_NIOS2
923
924#define ELF_START_MMAP 0x80000000
925
926#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
927
928#define ELF_CLASS ELFCLASS32
929#define ELF_ARCH EM_ALTERA_NIOS2
930
931static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
932{
933 regs->ea = infop->entry;
934 regs->sp = infop->start_stack;
935 regs->estatus = 0x3;
936}
937
938#define ELF_EXEC_PAGESIZE 4096
939
940#define USE_ELF_CORE_DUMP
941#define ELF_NREG 49
942typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
943
944/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
945static void elf_core_copy_regs(target_elf_gregset_t *regs,
946 const CPUNios2State *env)
947{
948 int i;
949
950 (*regs)[0] = -1;
951 for (i = 1; i < 8; i++) /* r0-r7 */
952 (*regs)[i] = tswapreg(env->regs[i + 7]);
953
954 for (i = 8; i < 16; i++) /* r8-r15 */
955 (*regs)[i] = tswapreg(env->regs[i - 8]);
956
957 for (i = 16; i < 24; i++) /* r16-r23 */
958 (*regs)[i] = tswapreg(env->regs[i + 7]);
959 (*regs)[24] = -1; /* R_ET */
960 (*regs)[25] = -1; /* R_BT */
961 (*regs)[26] = tswapreg(env->regs[R_GP]);
962 (*regs)[27] = tswapreg(env->regs[R_SP]);
963 (*regs)[28] = tswapreg(env->regs[R_FP]);
964 (*regs)[29] = tswapreg(env->regs[R_EA]);
965 (*regs)[30] = -1; /* R_SSTATUS */
966 (*regs)[31] = tswapreg(env->regs[R_RA]);
967
968 (*regs)[32] = tswapreg(env->regs[R_PC]);
969
970 (*regs)[33] = -1; /* R_STATUS */
971 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
972
973 for (i = 35; i < 49; i++) /* ... */
974 (*regs)[i] = -1;
975}
976
977#endif /* TARGET_NIOS2 */
978
d962783e
JL
979#ifdef TARGET_OPENRISC
980
981#define ELF_START_MMAP 0x08000000
982
d962783e
JL
983#define ELF_ARCH EM_OPENRISC
984#define ELF_CLASS ELFCLASS32
985#define ELF_DATA ELFDATA2MSB
986
987static inline void init_thread(struct target_pt_regs *regs,
988 struct image_info *infop)
989{
990 regs->pc = infop->entry;
991 regs->gpr[1] = infop->start_stack;
992}
993
994#define USE_ELF_CORE_DUMP
995#define ELF_EXEC_PAGESIZE 8192
996
997/* See linux kernel arch/openrisc/include/asm/elf.h. */
998#define ELF_NREG 34 /* gprs and pc, sr */
999typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1000
1001static void elf_core_copy_regs(target_elf_gregset_t *regs,
1002 const CPUOpenRISCState *env)
1003{
1004 int i;
1005
1006 for (i = 0; i < 32; i++) {
d89e71e8 1007 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1008 }
86cd7b2d 1009 (*regs)[32] = tswapreg(env->pc);
84775c43 1010 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1011}
1012#define ELF_HWCAP 0
1013#define ELF_PLATFORM NULL
1014
1015#endif /* TARGET_OPENRISC */
1016
fdf9b3e8
FB
1017#ifdef TARGET_SH4
1018
1019#define ELF_START_MMAP 0x80000000
1020
fdf9b3e8 1021#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1022#define ELF_ARCH EM_SH
1023
d97ef72e
RH
1024static inline void init_thread(struct target_pt_regs *regs,
1025 struct image_info *infop)
fdf9b3e8 1026{
d97ef72e
RH
1027 /* Check other registers XXXXX */
1028 regs->pc = infop->entry;
1029 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1030}
1031
7631c97e
NF
1032/* See linux kernel: arch/sh/include/asm/elf.h. */
1033#define ELF_NREG 23
1034typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1035
1036/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1037enum {
1038 TARGET_REG_PC = 16,
1039 TARGET_REG_PR = 17,
1040 TARGET_REG_SR = 18,
1041 TARGET_REG_GBR = 19,
1042 TARGET_REG_MACH = 20,
1043 TARGET_REG_MACL = 21,
1044 TARGET_REG_SYSCALL = 22
1045};
1046
d97ef72e 1047static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1048 const CPUSH4State *env)
7631c97e
NF
1049{
1050 int i;
1051
1052 for (i = 0; i < 16; i++) {
72cd500b 1053 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1054 }
1055
86cd7b2d
PB
1056 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1057 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1058 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1059 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1060 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1061 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1062 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1063}
1064
1065#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1066#define ELF_EXEC_PAGESIZE 4096
1067
e42fd944
RH
1068enum {
1069 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1070 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1071 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1072 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1073 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1074 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1075 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1076 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1077 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1078 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1079};
1080
1081#define ELF_HWCAP get_elf_hwcap()
1082
1083static uint32_t get_elf_hwcap(void)
1084{
1085 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1086 uint32_t hwcap = 0;
1087
1088 hwcap |= SH_CPU_HAS_FPU;
1089
1090 if (cpu->env.features & SH_FEATURE_SH4A) {
1091 hwcap |= SH_CPU_HAS_LLSC;
1092 }
1093
1094 return hwcap;
1095}
1096
fdf9b3e8
FB
1097#endif
1098
48733d19
TS
1099#ifdef TARGET_CRIS
1100
1101#define ELF_START_MMAP 0x80000000
1102
48733d19 1103#define ELF_CLASS ELFCLASS32
48733d19
TS
1104#define ELF_ARCH EM_CRIS
1105
d97ef72e
RH
1106static inline void init_thread(struct target_pt_regs *regs,
1107 struct image_info *infop)
48733d19 1108{
d97ef72e 1109 regs->erp = infop->entry;
48733d19
TS
1110}
1111
48733d19
TS
1112#define ELF_EXEC_PAGESIZE 8192
1113
1114#endif
1115
e6e5906b
PB
1116#ifdef TARGET_M68K
1117
1118#define ELF_START_MMAP 0x80000000
1119
d97ef72e 1120#define ELF_CLASS ELFCLASS32
d97ef72e 1121#define ELF_ARCH EM_68K
e6e5906b
PB
1122
1123/* ??? Does this need to do anything?
d97ef72e 1124 #define ELF_PLAT_INIT(_r) */
e6e5906b 1125
d97ef72e
RH
1126static inline void init_thread(struct target_pt_regs *regs,
1127 struct image_info *infop)
e6e5906b
PB
1128{
1129 regs->usp = infop->start_stack;
1130 regs->sr = 0;
1131 regs->pc = infop->entry;
1132}
1133
7a93cc55
NF
1134/* See linux kernel: arch/m68k/include/asm/elf.h. */
1135#define ELF_NREG 20
1136typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1137
05390248 1138static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1139{
86cd7b2d
PB
1140 (*regs)[0] = tswapreg(env->dregs[1]);
1141 (*regs)[1] = tswapreg(env->dregs[2]);
1142 (*regs)[2] = tswapreg(env->dregs[3]);
1143 (*regs)[3] = tswapreg(env->dregs[4]);
1144 (*regs)[4] = tswapreg(env->dregs[5]);
1145 (*regs)[5] = tswapreg(env->dregs[6]);
1146 (*regs)[6] = tswapreg(env->dregs[7]);
1147 (*regs)[7] = tswapreg(env->aregs[0]);
1148 (*regs)[8] = tswapreg(env->aregs[1]);
1149 (*regs)[9] = tswapreg(env->aregs[2]);
1150 (*regs)[10] = tswapreg(env->aregs[3]);
1151 (*regs)[11] = tswapreg(env->aregs[4]);
1152 (*regs)[12] = tswapreg(env->aregs[5]);
1153 (*regs)[13] = tswapreg(env->aregs[6]);
1154 (*regs)[14] = tswapreg(env->dregs[0]);
1155 (*regs)[15] = tswapreg(env->aregs[7]);
1156 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1157 (*regs)[17] = tswapreg(env->sr);
1158 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1159 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1160}
1161
1162#define USE_ELF_CORE_DUMP
d97ef72e 1163#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1164
1165#endif
1166
7a3148a9
JM
1167#ifdef TARGET_ALPHA
1168
1169#define ELF_START_MMAP (0x30000000000ULL)
1170
7a3148a9 1171#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1172#define ELF_ARCH EM_ALPHA
1173
d97ef72e
RH
1174static inline void init_thread(struct target_pt_regs *regs,
1175 struct image_info *infop)
7a3148a9
JM
1176{
1177 regs->pc = infop->entry;
1178 regs->ps = 8;
1179 regs->usp = infop->start_stack;
7a3148a9
JM
1180}
1181
7a3148a9
JM
1182#define ELF_EXEC_PAGESIZE 8192
1183
1184#endif /* TARGET_ALPHA */
1185
a4c075f1
UH
1186#ifdef TARGET_S390X
1187
1188#define ELF_START_MMAP (0x20000000000ULL)
1189
a4c075f1
UH
1190#define ELF_CLASS ELFCLASS64
1191#define ELF_DATA ELFDATA2MSB
1192#define ELF_ARCH EM_S390
1193
1194static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1195{
1196 regs->psw.addr = infop->entry;
1197 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1198 regs->gprs[15] = infop->start_stack;
1199}
1200
1201#endif /* TARGET_S390X */
1202
b16189b2
CG
1203#ifdef TARGET_TILEGX
1204
1205/* 42 bits real used address, a half for user mode */
1206#define ELF_START_MMAP (0x00000020000000000ULL)
1207
1208#define elf_check_arch(x) ((x) == EM_TILEGX)
1209
1210#define ELF_CLASS ELFCLASS64
1211#define ELF_DATA ELFDATA2LSB
1212#define ELF_ARCH EM_TILEGX
1213
1214static inline void init_thread(struct target_pt_regs *regs,
1215 struct image_info *infop)
1216{
1217 regs->pc = infop->entry;
1218 regs->sp = infop->start_stack;
1219
1220}
1221
1222#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1223
1224#endif /* TARGET_TILEGX */
1225
47ae93cd
MC
1226#ifdef TARGET_RISCV
1227
1228#define ELF_START_MMAP 0x80000000
1229#define ELF_ARCH EM_RISCV
1230
1231#ifdef TARGET_RISCV32
1232#define ELF_CLASS ELFCLASS32
1233#else
1234#define ELF_CLASS ELFCLASS64
1235#endif
1236
1237static inline void init_thread(struct target_pt_regs *regs,
1238 struct image_info *infop)
1239{
1240 regs->sepc = infop->entry;
1241 regs->sp = infop->start_stack;
1242}
1243
1244#define ELF_EXEC_PAGESIZE 4096
1245
1246#endif /* TARGET_RISCV */
1247
7c248bcd
RH
1248#ifdef TARGET_HPPA
1249
1250#define ELF_START_MMAP 0x80000000
1251#define ELF_CLASS ELFCLASS32
1252#define ELF_ARCH EM_PARISC
1253#define ELF_PLATFORM "PARISC"
1254#define STACK_GROWS_DOWN 0
1255#define STACK_ALIGNMENT 64
1256
1257static inline void init_thread(struct target_pt_regs *regs,
1258 struct image_info *infop)
1259{
1260 regs->iaoq[0] = infop->entry;
1261 regs->iaoq[1] = infop->entry + 4;
1262 regs->gr[23] = 0;
1263 regs->gr[24] = infop->arg_start;
1264 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1265 /* The top-of-stack contains a linkage buffer. */
1266 regs->gr[30] = infop->start_stack + 64;
1267 regs->gr[31] = infop->entry;
1268}
1269
1270#endif /* TARGET_HPPA */
1271
15338fd7
FB
1272#ifndef ELF_PLATFORM
1273#define ELF_PLATFORM (NULL)
1274#endif
1275
75be901c
PC
1276#ifndef ELF_MACHINE
1277#define ELF_MACHINE ELF_ARCH
1278#endif
1279
d276a604
PC
1280#ifndef elf_check_arch
1281#define elf_check_arch(x) ((x) == ELF_ARCH)
1282#endif
1283
15338fd7
FB
1284#ifndef ELF_HWCAP
1285#define ELF_HWCAP 0
1286#endif
1287
7c4ee5bc
RH
1288#ifndef STACK_GROWS_DOWN
1289#define STACK_GROWS_DOWN 1
1290#endif
1291
1292#ifndef STACK_ALIGNMENT
1293#define STACK_ALIGNMENT 16
1294#endif
1295
992f48a0 1296#ifdef TARGET_ABI32
cb33da57 1297#undef ELF_CLASS
992f48a0 1298#define ELF_CLASS ELFCLASS32
cb33da57
BS
1299#undef bswaptls
1300#define bswaptls(ptr) bswap32s(ptr)
1301#endif
1302
31e31b8a 1303#include "elf.h"
09bfb054 1304
09bfb054
FB
1305struct exec
1306{
d97ef72e
RH
1307 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1308 unsigned int a_text; /* length of text, in bytes */
1309 unsigned int a_data; /* length of data, in bytes */
1310 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1311 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1312 unsigned int a_entry; /* start address */
1313 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1314 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1315};
1316
1317
1318#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1319#define OMAGIC 0407
1320#define NMAGIC 0410
1321#define ZMAGIC 0413
1322#define QMAGIC 0314
1323
31e31b8a 1324/* Necessary parameters */
54936004 1325#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
79cb1f1d
YK
1326#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1327 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1328#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1329
444cd5c3 1330#define DLINFO_ITEMS 15
31e31b8a 1331
09bfb054
FB
1332static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1333{
d97ef72e 1334 memcpy(to, from, n);
09bfb054 1335}
d691f669 1336
31e31b8a 1337#ifdef BSWAP_NEEDED
92a31b1f 1338static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1339{
d97ef72e
RH
1340 bswap16s(&ehdr->e_type); /* Object file type */
1341 bswap16s(&ehdr->e_machine); /* Architecture */
1342 bswap32s(&ehdr->e_version); /* Object file version */
1343 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1344 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1345 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1346 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1347 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1348 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1349 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1350 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1351 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1352 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1353}
1354
991f8f0c 1355static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1356{
991f8f0c
RH
1357 int i;
1358 for (i = 0; i < phnum; ++i, ++phdr) {
1359 bswap32s(&phdr->p_type); /* Segment type */
1360 bswap32s(&phdr->p_flags); /* Segment flags */
1361 bswaptls(&phdr->p_offset); /* Segment file offset */
1362 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1363 bswaptls(&phdr->p_paddr); /* Segment physical address */
1364 bswaptls(&phdr->p_filesz); /* Segment size in file */
1365 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1366 bswaptls(&phdr->p_align); /* Segment alignment */
1367 }
31e31b8a 1368}
689f936f 1369
991f8f0c 1370static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1371{
991f8f0c
RH
1372 int i;
1373 for (i = 0; i < shnum; ++i, ++shdr) {
1374 bswap32s(&shdr->sh_name);
1375 bswap32s(&shdr->sh_type);
1376 bswaptls(&shdr->sh_flags);
1377 bswaptls(&shdr->sh_addr);
1378 bswaptls(&shdr->sh_offset);
1379 bswaptls(&shdr->sh_size);
1380 bswap32s(&shdr->sh_link);
1381 bswap32s(&shdr->sh_info);
1382 bswaptls(&shdr->sh_addralign);
1383 bswaptls(&shdr->sh_entsize);
1384 }
689f936f
FB
1385}
1386
7a3148a9 1387static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1388{
1389 bswap32s(&sym->st_name);
7a3148a9
JM
1390 bswaptls(&sym->st_value);
1391 bswaptls(&sym->st_size);
689f936f
FB
1392 bswap16s(&sym->st_shndx);
1393}
991f8f0c
RH
1394#else
1395static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1396static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1397static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1398static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
1399#endif
1400
edf8e2af 1401#ifdef USE_ELF_CORE_DUMP
9349b4f9 1402static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1403#endif /* USE_ELF_CORE_DUMP */
682674b8 1404static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1405
9058abdd
RH
1406/* Verify the portions of EHDR within E_IDENT for the target.
1407 This can be performed before bswapping the entire header. */
1408static bool elf_check_ident(struct elfhdr *ehdr)
1409{
1410 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1411 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1412 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1413 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1414 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1415 && ehdr->e_ident[EI_DATA] == ELF_DATA
1416 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1417}
1418
1419/* Verify the portions of EHDR outside of E_IDENT for the target.
1420 This has to wait until after bswapping the header. */
1421static bool elf_check_ehdr(struct elfhdr *ehdr)
1422{
1423 return (elf_check_arch(ehdr->e_machine)
1424 && ehdr->e_ehsize == sizeof(struct elfhdr)
1425 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1426 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1427}
1428
31e31b8a 1429/*
e5fe0c52 1430 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1431 * memory to free pages in kernel mem. These are in a format ready
1432 * to be put directly into the top of new user memory.
1433 *
1434 */
59baae9a
SB
1435static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1436 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1437{
59baae9a 1438 char *tmp;
7c4ee5bc 1439 int len, i;
59baae9a 1440 abi_ulong top = p;
31e31b8a
FB
1441
1442 if (!p) {
d97ef72e 1443 return 0; /* bullet-proofing */
31e31b8a 1444 }
59baae9a 1445
7c4ee5bc
RH
1446 if (STACK_GROWS_DOWN) {
1447 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1448 for (i = argc - 1; i >= 0; --i) {
1449 tmp = argv[i];
1450 if (!tmp) {
1451 fprintf(stderr, "VFS: argc is wrong");
1452 exit(-1);
1453 }
1454 len = strlen(tmp) + 1;
1455 tmp += len;
59baae9a 1456
7c4ee5bc
RH
1457 if (len > (p - stack_limit)) {
1458 return 0;
1459 }
1460 while (len) {
1461 int bytes_to_copy = (len > offset) ? offset : len;
1462 tmp -= bytes_to_copy;
1463 p -= bytes_to_copy;
1464 offset -= bytes_to_copy;
1465 len -= bytes_to_copy;
1466
1467 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1468
1469 if (offset == 0) {
1470 memcpy_to_target(p, scratch, top - p);
1471 top = p;
1472 offset = TARGET_PAGE_SIZE;
1473 }
1474 }
d97ef72e 1475 }
7c4ee5bc
RH
1476 if (p != top) {
1477 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1478 }
7c4ee5bc
RH
1479 } else {
1480 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1481 for (i = 0; i < argc; ++i) {
1482 tmp = argv[i];
1483 if (!tmp) {
1484 fprintf(stderr, "VFS: argc is wrong");
1485 exit(-1);
1486 }
1487 len = strlen(tmp) + 1;
1488 if (len > (stack_limit - p)) {
1489 return 0;
1490 }
1491 while (len) {
1492 int bytes_to_copy = (len > remaining) ? remaining : len;
1493
1494 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1495
1496 tmp += bytes_to_copy;
1497 remaining -= bytes_to_copy;
1498 p += bytes_to_copy;
1499 len -= bytes_to_copy;
1500
1501 if (remaining == 0) {
1502 memcpy_to_target(top, scratch, p - top);
1503 top = p;
1504 remaining = TARGET_PAGE_SIZE;
1505 }
d97ef72e
RH
1506 }
1507 }
7c4ee5bc
RH
1508 if (p != top) {
1509 memcpy_to_target(top, scratch, p - top);
1510 }
59baae9a
SB
1511 }
1512
31e31b8a
FB
1513 return p;
1514}
1515
59baae9a
SB
1516/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1517 * argument/environment space. Newer kernels (>2.6.33) allow more,
1518 * dependent on stack size, but guarantee at least 32 pages for
1519 * backwards compatibility.
1520 */
1521#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1522
1523static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1524 struct image_info *info)
53a5960a 1525{
59baae9a 1526 abi_ulong size, error, guard;
31e31b8a 1527
703e0e89 1528 size = guest_stack_size;
59baae9a
SB
1529 if (size < STACK_LOWER_LIMIT) {
1530 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1531 }
1532 guard = TARGET_PAGE_SIZE;
1533 if (guard < qemu_real_host_page_size) {
1534 guard = qemu_real_host_page_size;
1535 }
1536
1537 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1538 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1539 if (error == -1) {
60dcbcb5 1540 perror("mmap stack");
09bfb054
FB
1541 exit(-1);
1542 }
31e31b8a 1543
60dcbcb5 1544 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1545 if (STACK_GROWS_DOWN) {
1546 target_mprotect(error, guard, PROT_NONE);
1547 info->stack_limit = error + guard;
1548 return info->stack_limit + size - sizeof(void *);
1549 } else {
1550 target_mprotect(error + size, guard, PROT_NONE);
1551 info->stack_limit = error + size;
1552 return error;
1553 }
31e31b8a
FB
1554}
1555
cf129f3a
RH
1556/* Map and zero the bss. We need to explicitly zero any fractional pages
1557 after the data section (i.e. bss). */
1558static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1559{
cf129f3a
RH
1560 uintptr_t host_start, host_map_start, host_end;
1561
1562 last_bss = TARGET_PAGE_ALIGN(last_bss);
1563
1564 /* ??? There is confusion between qemu_real_host_page_size and
1565 qemu_host_page_size here and elsewhere in target_mmap, which
1566 may lead to the end of the data section mapping from the file
1567 not being mapped. At least there was an explicit test and
1568 comment for that here, suggesting that "the file size must
1569 be known". The comment probably pre-dates the introduction
1570 of the fstat system call in target_mmap which does in fact
1571 find out the size. What isn't clear is if the workaround
1572 here is still actually needed. For now, continue with it,
1573 but merge it with the "normal" mmap that would allocate the bss. */
1574
1575 host_start = (uintptr_t) g2h(elf_bss);
1576 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1577 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1578
1579 if (host_map_start < host_end) {
1580 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1581 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1582 if (p == MAP_FAILED) {
1583 perror("cannot mmap brk");
1584 exit(-1);
853d6f7a 1585 }
f46e9a0b 1586 }
853d6f7a 1587
f46e9a0b
TM
1588 /* Ensure that the bss page(s) are valid */
1589 if ((page_get_flags(last_bss-1) & prot) != prot) {
1590 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1591 }
31e31b8a 1592
cf129f3a
RH
1593 if (host_start < host_map_start) {
1594 memset((void *)host_start, 0, host_map_start - host_start);
1595 }
1596}
53a5960a 1597
1af02e83
MF
1598#ifdef CONFIG_USE_FDPIC
1599static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1600{
1601 uint16_t n;
1602 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1603
1604 /* elf32_fdpic_loadseg */
1605 n = info->nsegs;
1606 while (n--) {
1607 sp -= 12;
1608 put_user_u32(loadsegs[n].addr, sp+0);
1609 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1610 put_user_u32(loadsegs[n].p_memsz, sp+8);
1611 }
1612
1613 /* elf32_fdpic_loadmap */
1614 sp -= 4;
1615 put_user_u16(0, sp+0); /* version */
1616 put_user_u16(info->nsegs, sp+2); /* nsegs */
1617
1618 info->personality = PER_LINUX_FDPIC;
1619 info->loadmap_addr = sp;
1620
1621 return sp;
1622}
1623#endif
1624
992f48a0 1625static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1626 struct elfhdr *exec,
1627 struct image_info *info,
1628 struct image_info *interp_info)
31e31b8a 1629{
d97ef72e 1630 abi_ulong sp;
7c4ee5bc 1631 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1632 int size;
14322bad
LA
1633 int i;
1634 abi_ulong u_rand_bytes;
1635 uint8_t k_rand_bytes[16];
d97ef72e
RH
1636 abi_ulong u_platform;
1637 const char *k_platform;
1638 const int n = sizeof(elf_addr_t);
1639
1640 sp = p;
1af02e83
MF
1641
1642#ifdef CONFIG_USE_FDPIC
1643 /* Needs to be before we load the env/argc/... */
1644 if (elf_is_fdpic(exec)) {
1645 /* Need 4 byte alignment for these structs */
1646 sp &= ~3;
1647 sp = loader_build_fdpic_loadmap(info, sp);
1648 info->other_info = interp_info;
1649 if (interp_info) {
1650 interp_info->other_info = info;
1651 sp = loader_build_fdpic_loadmap(interp_info, sp);
1652 }
1653 }
1654#endif
1655
d97ef72e
RH
1656 u_platform = 0;
1657 k_platform = ELF_PLATFORM;
1658 if (k_platform) {
1659 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1660 if (STACK_GROWS_DOWN) {
1661 sp -= (len + n - 1) & ~(n - 1);
1662 u_platform = sp;
1663 /* FIXME - check return value of memcpy_to_target() for failure */
1664 memcpy_to_target(sp, k_platform, len);
1665 } else {
1666 memcpy_to_target(sp, k_platform, len);
1667 u_platform = sp;
1668 sp += len + 1;
1669 }
1670 }
1671
1672 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1673 * the argv and envp pointers.
1674 */
1675 if (STACK_GROWS_DOWN) {
1676 sp = QEMU_ALIGN_DOWN(sp, 16);
1677 } else {
1678 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1679 }
14322bad
LA
1680
1681 /*
1682 * Generate 16 random bytes for userspace PRNG seeding (not
1683 * cryptically secure but it's not the aim of QEMU).
1684 */
14322bad
LA
1685 for (i = 0; i < 16; i++) {
1686 k_rand_bytes[i] = rand();
1687 }
7c4ee5bc
RH
1688 if (STACK_GROWS_DOWN) {
1689 sp -= 16;
1690 u_rand_bytes = sp;
1691 /* FIXME - check return value of memcpy_to_target() for failure */
1692 memcpy_to_target(sp, k_rand_bytes, 16);
1693 } else {
1694 memcpy_to_target(sp, k_rand_bytes, 16);
1695 u_rand_bytes = sp;
1696 sp += 16;
1697 }
14322bad 1698
d97ef72e
RH
1699 size = (DLINFO_ITEMS + 1) * 2;
1700 if (k_platform)
1701 size += 2;
f5155289 1702#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1703 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1704#endif
1705#ifdef ELF_HWCAP2
1706 size += 2;
f5155289 1707#endif
f516511e
PM
1708 info->auxv_len = size * n;
1709
d97ef72e 1710 size += envc + argc + 2;
b9329d4b 1711 size += 1; /* argc itself */
d97ef72e 1712 size *= n;
7c4ee5bc
RH
1713
1714 /* Allocate space and finalize stack alignment for entry now. */
1715 if (STACK_GROWS_DOWN) {
1716 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1717 sp = u_argc;
1718 } else {
1719 u_argc = sp;
1720 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1721 }
1722
1723 u_argv = u_argc + n;
1724 u_envp = u_argv + (argc + 1) * n;
1725 u_auxv = u_envp + (envc + 1) * n;
1726 info->saved_auxv = u_auxv;
1727 info->arg_start = u_argv;
1728 info->arg_end = u_argv + argc * n;
d97ef72e
RH
1729
1730 /* This is correct because Linux defines
1731 * elf_addr_t as Elf32_Off / Elf64_Off
1732 */
1733#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
1734 put_user_ual(id, u_auxv); u_auxv += n; \
1735 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
1736 } while(0)
1737
82991bed
PM
1738#ifdef ARCH_DLINFO
1739 /*
1740 * ARCH_DLINFO must come first so platform specific code can enforce
1741 * special alignment requirements on the AUXV if necessary (eg. PPC).
1742 */
1743 ARCH_DLINFO;
1744#endif
f516511e
PM
1745 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1746 * on info->auxv_len will trigger.
1747 */
8e62a717 1748 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1749 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1750 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
a70daba3 1751 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
8e62a717 1752 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1753 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1754 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1755 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1756 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1757 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1758 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1759 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1760 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 1761 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 1762 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
14322bad 1763
ad6919dc
PM
1764#ifdef ELF_HWCAP2
1765 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1766#endif
1767
7c4ee5bc 1768 if (u_platform) {
d97ef72e 1769 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 1770 }
7c4ee5bc 1771 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
1772#undef NEW_AUX_ENT
1773
f516511e
PM
1774 /* Check that our initial calculation of the auxv length matches how much
1775 * we actually put into it.
1776 */
1777 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
1778
1779 put_user_ual(argc, u_argc);
1780
1781 p = info->arg_strings;
1782 for (i = 0; i < argc; ++i) {
1783 put_user_ual(p, u_argv);
1784 u_argv += n;
1785 p += target_strlen(p) + 1;
1786 }
1787 put_user_ual(0, u_argv);
1788
1789 p = info->env_strings;
1790 for (i = 0; i < envc; ++i) {
1791 put_user_ual(p, u_envp);
1792 u_envp += n;
1793 p += target_strlen(p) + 1;
1794 }
1795 put_user_ual(0, u_envp);
edf8e2af 1796
d97ef72e 1797 return sp;
31e31b8a
FB
1798}
1799
806d1021 1800#ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
97cc7560 1801/* If the guest doesn't have a validation function just agree */
806d1021
MI
1802static int validate_guest_space(unsigned long guest_base,
1803 unsigned long guest_size)
97cc7560
DDAG
1804{
1805 return 1;
1806}
1807#endif
1808
dce10401
MI
1809unsigned long init_guest_space(unsigned long host_start,
1810 unsigned long host_size,
1811 unsigned long guest_start,
1812 bool fixed)
1813{
1814 unsigned long current_start, real_start;
1815 int flags;
1816
1817 assert(host_start || host_size);
1818
1819 /* If just a starting address is given, then just verify that
1820 * address. */
1821 if (host_start && !host_size) {
806d1021 1822 if (validate_guest_space(host_start, host_size) == 1) {
dce10401
MI
1823 return host_start;
1824 } else {
1825 return (unsigned long)-1;
1826 }
1827 }
1828
1829 /* Setup the initial flags and start address. */
1830 current_start = host_start & qemu_host_page_mask;
1831 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1832 if (fixed) {
1833 flags |= MAP_FIXED;
1834 }
1835
1836 /* Otherwise, a non-zero size region of memory needs to be mapped
1837 * and validated. */
1838 while (1) {
806d1021
MI
1839 unsigned long real_size = host_size;
1840
dce10401
MI
1841 /* Do not use mmap_find_vma here because that is limited to the
1842 * guest address space. We are going to make the
1843 * guest address space fit whatever we're given.
1844 */
1845 real_start = (unsigned long)
1846 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1847 if (real_start == (unsigned long)-1) {
1848 return (unsigned long)-1;
1849 }
1850
806d1021
MI
1851 /* Ensure the address is properly aligned. */
1852 if (real_start & ~qemu_host_page_mask) {
1853 munmap((void *)real_start, host_size);
1854 real_size = host_size + qemu_host_page_size;
1855 real_start = (unsigned long)
1856 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1857 if (real_start == (unsigned long)-1) {
1858 return (unsigned long)-1;
1859 }
1860 real_start = HOST_PAGE_ALIGN(real_start);
1861 }
1862
1863 /* Check to see if the address is valid. */
1864 if (!host_start || real_start == current_start) {
1865 int valid = validate_guest_space(real_start - guest_start,
1866 real_size);
1867 if (valid == 1) {
1868 break;
1869 } else if (valid == -1) {
1870 return (unsigned long)-1;
1871 }
1872 /* valid == 0, so try again. */
dce10401
MI
1873 }
1874
1875 /* That address didn't work. Unmap and try a different one.
1876 * The address the host picked because is typically right at
1877 * the top of the host address space and leaves the guest with
1878 * no usable address space. Resort to a linear search. We
1879 * already compensated for mmap_min_addr, so this should not
1880 * happen often. Probably means we got unlucky and host
1881 * address space randomization put a shared library somewhere
1882 * inconvenient.
1883 */
1884 munmap((void *)real_start, host_size);
1885 current_start += qemu_host_page_size;
1886 if (host_start == current_start) {
1887 /* Theoretically possible if host doesn't have any suitably
1888 * aligned areas. Normally the first mmap will fail.
1889 */
1890 return (unsigned long)-1;
1891 }
1892 }
1893
13829020 1894 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
806d1021 1895
dce10401
MI
1896 return real_start;
1897}
1898
f3ed1f5d
PM
1899static void probe_guest_base(const char *image_name,
1900 abi_ulong loaddr, abi_ulong hiaddr)
1901{
1902 /* Probe for a suitable guest base address, if the user has not set
1903 * it explicitly, and set guest_base appropriately.
1904 * In case of error we will print a suitable message and exit.
1905 */
f3ed1f5d
PM
1906 const char *errmsg;
1907 if (!have_guest_base && !reserved_va) {
1908 unsigned long host_start, real_start, host_size;
1909
1910 /* Round addresses to page boundaries. */
1911 loaddr &= qemu_host_page_mask;
1912 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1913
1914 if (loaddr < mmap_min_addr) {
1915 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1916 } else {
1917 host_start = loaddr;
1918 if (host_start != loaddr) {
1919 errmsg = "Address overflow loading ELF binary";
1920 goto exit_errmsg;
1921 }
1922 }
1923 host_size = hiaddr - loaddr;
dce10401
MI
1924
1925 /* Setup the initial guest memory space with ranges gleaned from
1926 * the ELF image that is being loaded.
1927 */
1928 real_start = init_guest_space(host_start, host_size, loaddr, false);
1929 if (real_start == (unsigned long)-1) {
1930 errmsg = "Unable to find space for application";
1931 goto exit_errmsg;
f3ed1f5d 1932 }
dce10401
MI
1933 guest_base = real_start - loaddr;
1934
13829020
PB
1935 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1936 TARGET_ABI_FMT_lx " to 0x%lx\n",
1937 loaddr, real_start);
f3ed1f5d
PM
1938 }
1939 return;
1940
f3ed1f5d
PM
1941exit_errmsg:
1942 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1943 exit(-1);
f3ed1f5d
PM
1944}
1945
1946
8e62a717 1947/* Load an ELF image into the address space.
31e31b8a 1948
8e62a717
RH
1949 IMAGE_NAME is the filename of the image, to use in error messages.
1950 IMAGE_FD is the open file descriptor for the image.
1951
1952 BPRM_BUF is a copy of the beginning of the file; this of course
1953 contains the elf file header at offset 0. It is assumed that this
1954 buffer is sufficiently aligned to present no problems to the host
1955 in accessing data at aligned offsets within the buffer.
1956
1957 On return: INFO values will be filled in, as necessary or available. */
1958
1959static void load_elf_image(const char *image_name, int image_fd,
bf858897 1960 struct image_info *info, char **pinterp_name,
8e62a717 1961 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 1962{
8e62a717
RH
1963 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1964 struct elf_phdr *phdr;
1965 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1966 int i, retval;
1967 const char *errmsg;
5fafdf24 1968
8e62a717
RH
1969 /* First of all, some simple consistency checks */
1970 errmsg = "Invalid ELF image for this architecture";
1971 if (!elf_check_ident(ehdr)) {
1972 goto exit_errmsg;
1973 }
1974 bswap_ehdr(ehdr);
1975 if (!elf_check_ehdr(ehdr)) {
1976 goto exit_errmsg;
d97ef72e 1977 }
5fafdf24 1978
8e62a717
RH
1979 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1980 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1981 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 1982 } else {
8e62a717
RH
1983 phdr = (struct elf_phdr *) alloca(i);
1984 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 1985 if (retval != i) {
8e62a717 1986 goto exit_read;
9955ffac 1987 }
d97ef72e 1988 }
8e62a717 1989 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 1990
1af02e83
MF
1991#ifdef CONFIG_USE_FDPIC
1992 info->nsegs = 0;
1993 info->pt_dynamic_addr = 0;
1994#endif
1995
98c1076c
AB
1996 mmap_lock();
1997
682674b8
RH
1998 /* Find the maximum size of the image and allocate an appropriate
1999 amount of memory to handle that. */
2000 loaddr = -1, hiaddr = 0;
8e62a717
RH
2001 for (i = 0; i < ehdr->e_phnum; ++i) {
2002 if (phdr[i].p_type == PT_LOAD) {
a93934fe 2003 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
2004 if (a < loaddr) {
2005 loaddr = a;
2006 }
ccf661f8 2007 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
2008 if (a > hiaddr) {
2009 hiaddr = a;
2010 }
1af02e83
MF
2011#ifdef CONFIG_USE_FDPIC
2012 ++info->nsegs;
2013#endif
682674b8
RH
2014 }
2015 }
2016
2017 load_addr = loaddr;
8e62a717 2018 if (ehdr->e_type == ET_DYN) {
682674b8
RH
2019 /* The image indicates that it can be loaded anywhere. Find a
2020 location that can hold the memory space required. If the
2021 image is pre-linked, LOADDR will be non-zero. Since we do
2022 not supply MAP_FIXED here we'll use that address if and
2023 only if it remains available. */
2024 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2025 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2026 -1, 0);
2027 if (load_addr == -1) {
8e62a717 2028 goto exit_perror;
d97ef72e 2029 }
bf858897
RH
2030 } else if (pinterp_name != NULL) {
2031 /* This is the main executable. Make sure that the low
2032 address does not conflict with MMAP_MIN_ADDR or the
2033 QEMU application itself. */
f3ed1f5d 2034 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 2035 }
682674b8 2036 load_bias = load_addr - loaddr;
d97ef72e 2037
1af02e83
MF
2038#ifdef CONFIG_USE_FDPIC
2039 {
2040 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2041 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2042
2043 for (i = 0; i < ehdr->e_phnum; ++i) {
2044 switch (phdr[i].p_type) {
2045 case PT_DYNAMIC:
2046 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2047 break;
2048 case PT_LOAD:
2049 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2050 loadsegs->p_vaddr = phdr[i].p_vaddr;
2051 loadsegs->p_memsz = phdr[i].p_memsz;
2052 ++loadsegs;
2053 break;
2054 }
2055 }
2056 }
2057#endif
2058
8e62a717
RH
2059 info->load_bias = load_bias;
2060 info->load_addr = load_addr;
2061 info->entry = ehdr->e_entry + load_bias;
2062 info->start_code = -1;
2063 info->end_code = 0;
2064 info->start_data = -1;
2065 info->end_data = 0;
2066 info->brk = 0;
d8fd2954 2067 info->elf_flags = ehdr->e_flags;
8e62a717
RH
2068
2069 for (i = 0; i < ehdr->e_phnum; i++) {
2070 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2071 if (eppnt->p_type == PT_LOAD) {
682674b8 2072 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
d97ef72e 2073 int elf_prot = 0;
d97ef72e
RH
2074
2075 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2076 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2077 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 2078
682674b8
RH
2079 vaddr = load_bias + eppnt->p_vaddr;
2080 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2081 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2082
2083 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2084 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 2085 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 2086 if (error == -1) {
8e62a717 2087 goto exit_perror;
09bfb054 2088 }
09bfb054 2089
682674b8
RH
2090 vaddr_ef = vaddr + eppnt->p_filesz;
2091 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 2092
cf129f3a 2093 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
2094 if (vaddr_ef < vaddr_em) {
2095 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 2096 }
8e62a717
RH
2097
2098 /* Find the full program boundaries. */
2099 if (elf_prot & PROT_EXEC) {
2100 if (vaddr < info->start_code) {
2101 info->start_code = vaddr;
2102 }
2103 if (vaddr_ef > info->end_code) {
2104 info->end_code = vaddr_ef;
2105 }
2106 }
2107 if (elf_prot & PROT_WRITE) {
2108 if (vaddr < info->start_data) {
2109 info->start_data = vaddr;
2110 }
2111 if (vaddr_ef > info->end_data) {
2112 info->end_data = vaddr_ef;
2113 }
2114 if (vaddr_em > info->brk) {
2115 info->brk = vaddr_em;
2116 }
2117 }
bf858897
RH
2118 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2119 char *interp_name;
2120
2121 if (*pinterp_name) {
2122 errmsg = "Multiple PT_INTERP entries";
2123 goto exit_errmsg;
2124 }
2125 interp_name = malloc(eppnt->p_filesz);
2126 if (!interp_name) {
2127 goto exit_perror;
2128 }
2129
2130 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2131 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2132 eppnt->p_filesz);
2133 } else {
2134 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2135 eppnt->p_offset);
2136 if (retval != eppnt->p_filesz) {
2137 goto exit_perror;
2138 }
2139 }
2140 if (interp_name[eppnt->p_filesz - 1] != 0) {
2141 errmsg = "Invalid PT_INTERP entry";
2142 goto exit_errmsg;
2143 }
2144 *pinterp_name = interp_name;
d97ef72e 2145 }
682674b8 2146 }
5fafdf24 2147
8e62a717
RH
2148 if (info->end_data == 0) {
2149 info->start_data = info->end_code;
2150 info->end_data = info->end_code;
2151 info->brk = info->end_code;
2152 }
2153
682674b8 2154 if (qemu_log_enabled()) {
8e62a717 2155 load_symbols(ehdr, image_fd, load_bias);
682674b8 2156 }
31e31b8a 2157
98c1076c
AB
2158 mmap_unlock();
2159
8e62a717
RH
2160 close(image_fd);
2161 return;
2162
2163 exit_read:
2164 if (retval >= 0) {
2165 errmsg = "Incomplete read of file header";
2166 goto exit_errmsg;
2167 }
2168 exit_perror:
2169 errmsg = strerror(errno);
2170 exit_errmsg:
2171 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2172 exit(-1);
2173}
2174
2175static void load_elf_interp(const char *filename, struct image_info *info,
2176 char bprm_buf[BPRM_BUF_SIZE])
2177{
2178 int fd, retval;
2179
2180 fd = open(path(filename), O_RDONLY);
2181 if (fd < 0) {
2182 goto exit_perror;
2183 }
31e31b8a 2184
8e62a717
RH
2185 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2186 if (retval < 0) {
2187 goto exit_perror;
2188 }
2189 if (retval < BPRM_BUF_SIZE) {
2190 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2191 }
2192
bf858897 2193 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2194 return;
2195
2196 exit_perror:
2197 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2198 exit(-1);
31e31b8a
FB
2199}
2200
49918a75
PB
2201static int symfind(const void *s0, const void *s1)
2202{
c7c530cd 2203 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2204 struct elf_sym *sym = (struct elf_sym *)s1;
2205 int result = 0;
c7c530cd 2206 if (addr < sym->st_value) {
49918a75 2207 result = -1;
c7c530cd 2208 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2209 result = 1;
2210 }
2211 return result;
2212}
2213
2214static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2215{
2216#if ELF_CLASS == ELFCLASS32
2217 struct elf_sym *syms = s->disas_symtab.elf32;
2218#else
2219 struct elf_sym *syms = s->disas_symtab.elf64;
2220#endif
2221
2222 // binary search
49918a75
PB
2223 struct elf_sym *sym;
2224
c7c530cd 2225 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2226 if (sym != NULL) {
49918a75
PB
2227 return s->disas_strtab + sym->st_name;
2228 }
2229
2230 return "";
2231}
2232
2233/* FIXME: This should use elf_ops.h */
2234static int symcmp(const void *s0, const void *s1)
2235{
2236 struct elf_sym *sym0 = (struct elf_sym *)s0;
2237 struct elf_sym *sym1 = (struct elf_sym *)s1;
2238 return (sym0->st_value < sym1->st_value)
2239 ? -1
2240 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2241}
2242
689f936f 2243/* Best attempt to load symbols from this ELF object. */
682674b8 2244static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2245{
682674b8 2246 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 2247 uint64_t segsz;
682674b8 2248 struct elf_shdr *shdr;
b9475279
CV
2249 char *strings = NULL;
2250 struct syminfo *s = NULL;
2251 struct elf_sym *new_syms, *syms = NULL;
689f936f 2252
682674b8
RH
2253 shnum = hdr->e_shnum;
2254 i = shnum * sizeof(struct elf_shdr);
2255 shdr = (struct elf_shdr *)alloca(i);
2256 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2257 return;
2258 }
2259
2260 bswap_shdr(shdr, shnum);
2261 for (i = 0; i < shnum; ++i) {
2262 if (shdr[i].sh_type == SHT_SYMTAB) {
2263 sym_idx = i;
2264 str_idx = shdr[i].sh_link;
49918a75
PB
2265 goto found;
2266 }
689f936f 2267 }
682674b8
RH
2268
2269 /* There will be no symbol table if the file was stripped. */
2270 return;
689f936f
FB
2271
2272 found:
682674b8 2273 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 2274 s = g_try_new(struct syminfo, 1);
682674b8 2275 if (!s) {
b9475279 2276 goto give_up;
682674b8 2277 }
5fafdf24 2278
1e06262d
PM
2279 segsz = shdr[str_idx].sh_size;
2280 s->disas_strtab = strings = g_try_malloc(segsz);
2281 if (!strings ||
2282 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 2283 goto give_up;
682674b8 2284 }
49918a75 2285
1e06262d
PM
2286 segsz = shdr[sym_idx].sh_size;
2287 syms = g_try_malloc(segsz);
2288 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 2289 goto give_up;
682674b8 2290 }
31e31b8a 2291
1e06262d
PM
2292 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2293 /* Implausibly large symbol table: give up rather than ploughing
2294 * on with the number of symbols calculation overflowing
2295 */
2296 goto give_up;
2297 }
2298 nsyms = segsz / sizeof(struct elf_sym);
682674b8 2299 for (i = 0; i < nsyms; ) {
49918a75 2300 bswap_sym(syms + i);
682674b8
RH
2301 /* Throw away entries which we do not need. */
2302 if (syms[i].st_shndx == SHN_UNDEF
2303 || syms[i].st_shndx >= SHN_LORESERVE
2304 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2305 if (i < --nsyms) {
49918a75
PB
2306 syms[i] = syms[nsyms];
2307 }
682674b8 2308 } else {
49918a75 2309#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2310 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2311 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2312#endif
682674b8
RH
2313 syms[i].st_value += load_bias;
2314 i++;
2315 }
0774bed1 2316 }
49918a75 2317
b9475279
CV
2318 /* No "useful" symbol. */
2319 if (nsyms == 0) {
2320 goto give_up;
2321 }
2322
5d5c9930
RH
2323 /* Attempt to free the storage associated with the local symbols
2324 that we threw away. Whether or not this has any effect on the
2325 memory allocation depends on the malloc implementation and how
2326 many symbols we managed to discard. */
0ef9ea29 2327 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 2328 if (new_syms == NULL) {
b9475279 2329 goto give_up;
5d5c9930 2330 }
8d79de6e 2331 syms = new_syms;
5d5c9930 2332
49918a75 2333 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2334
49918a75
PB
2335 s->disas_num_syms = nsyms;
2336#if ELF_CLASS == ELFCLASS32
2337 s->disas_symtab.elf32 = syms;
49918a75
PB
2338#else
2339 s->disas_symtab.elf64 = syms;
49918a75 2340#endif
682674b8 2341 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2342 s->next = syminfos;
2343 syminfos = s;
b9475279
CV
2344
2345 return;
2346
2347give_up:
0ef9ea29
PM
2348 g_free(s);
2349 g_free(strings);
2350 g_free(syms);
689f936f 2351}
31e31b8a 2352
768fe76e
YS
2353uint32_t get_elf_eflags(int fd)
2354{
2355 struct elfhdr ehdr;
2356 off_t offset;
2357 int ret;
2358
2359 /* Read ELF header */
2360 offset = lseek(fd, 0, SEEK_SET);
2361 if (offset == (off_t) -1) {
2362 return 0;
2363 }
2364 ret = read(fd, &ehdr, sizeof(ehdr));
2365 if (ret < sizeof(ehdr)) {
2366 return 0;
2367 }
2368 offset = lseek(fd, offset, SEEK_SET);
2369 if (offset == (off_t) -1) {
2370 return 0;
2371 }
2372
2373 /* Check ELF signature */
2374 if (!elf_check_ident(&ehdr)) {
2375 return 0;
2376 }
2377
2378 /* check header */
2379 bswap_ehdr(&ehdr);
2380 if (!elf_check_ehdr(&ehdr)) {
2381 return 0;
2382 }
2383
2384 /* return architecture id */
2385 return ehdr.e_flags;
2386}
2387
f0116c54 2388int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2389{
8e62a717 2390 struct image_info interp_info;
31e31b8a 2391 struct elfhdr elf_ex;
8e62a717 2392 char *elf_interpreter = NULL;
59baae9a 2393 char *scratch;
31e31b8a 2394
bf858897 2395 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2396
2397 load_elf_image(bprm->filename, bprm->fd, info,
2398 &elf_interpreter, bprm->buf);
31e31b8a 2399
bf858897
RH
2400 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2401 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2402 when we load the interpreter. */
2403 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2404
59baae9a
SB
2405 /* Do this so that we can load the interpreter, if need be. We will
2406 change some of these later */
2407 bprm->p = setup_arg_pages(bprm, info);
2408
2409 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
2410 if (STACK_GROWS_DOWN) {
2411 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2412 bprm->p, info->stack_limit);
2413 info->file_string = bprm->p;
2414 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2415 bprm->p, info->stack_limit);
2416 info->env_strings = bprm->p;
2417 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2418 bprm->p, info->stack_limit);
2419 info->arg_strings = bprm->p;
2420 } else {
2421 info->arg_strings = bprm->p;
2422 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2423 bprm->p, info->stack_limit);
2424 info->env_strings = bprm->p;
2425 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2426 bprm->p, info->stack_limit);
2427 info->file_string = bprm->p;
2428 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2429 bprm->p, info->stack_limit);
2430 }
2431
59baae9a
SB
2432 g_free(scratch);
2433
e5fe0c52 2434 if (!bprm->p) {
bf858897
RH
2435 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2436 exit(-1);
379f6698 2437 }
379f6698 2438
8e62a717
RH
2439 if (elf_interpreter) {
2440 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2441
8e62a717
RH
2442 /* If the program interpreter is one of these two, then assume
2443 an iBCS2 image. Otherwise assume a native linux image. */
2444
2445 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2446 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2447 info->personality = PER_SVR4;
31e31b8a 2448
8e62a717
RH
2449 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2450 and some applications "depend" upon this behavior. Since
2451 we do not have the power to recompile these, we emulate
2452 the SVr4 behavior. Sigh. */
2453 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 2454 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 2455 }
31e31b8a
FB
2456 }
2457
8e62a717
RH
2458 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2459 info, (elf_interpreter ? &interp_info : NULL));
2460 info->start_stack = bprm->p;
2461
2462 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2463 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2464 point as a function descriptor. Do this after creating elf tables
2465 so that we copy the original program entry point into the AUXV. */
2466 if (elf_interpreter) {
8e78064e 2467 info->load_bias = interp_info.load_bias;
8e62a717 2468 info->entry = interp_info.entry;
bf858897 2469 free(elf_interpreter);
8e62a717 2470 }
31e31b8a 2471
edf8e2af
MW
2472#ifdef USE_ELF_CORE_DUMP
2473 bprm->core_dump = &elf_core_dump;
2474#endif
2475
31e31b8a
FB
2476 return 0;
2477}
2478
edf8e2af 2479#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2480/*
2481 * Definitions to generate Intel SVR4-like core files.
a2547a13 2482 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2483 * tacked on the front to prevent clashes with linux definitions,
2484 * and the typedef forms have been avoided. This is mostly like
2485 * the SVR4 structure, but more Linuxy, with things that Linux does
2486 * not support and which gdb doesn't really use excluded.
2487 *
2488 * Fields we don't dump (their contents is zero) in linux-user qemu
2489 * are marked with XXX.
2490 *
2491 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2492 *
2493 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2494 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2495 * the target resides):
2496 *
2497 * #define USE_ELF_CORE_DUMP
2498 *
2499 * Next you define type of register set used for dumping. ELF specification
2500 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2501 *
c227f099 2502 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2503 * #define ELF_NREG <number of registers>
c227f099 2504 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2505 *
edf8e2af
MW
2506 * Last step is to implement target specific function that copies registers
2507 * from given cpu into just specified register set. Prototype is:
2508 *
c227f099 2509 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2510 * const CPUArchState *env);
edf8e2af
MW
2511 *
2512 * Parameters:
2513 * regs - copy register values into here (allocated and zeroed by caller)
2514 * env - copy registers from here
2515 *
2516 * Example for ARM target is provided in this file.
2517 */
2518
2519/* An ELF note in memory */
2520struct memelfnote {
2521 const char *name;
2522 size_t namesz;
2523 size_t namesz_rounded;
2524 int type;
2525 size_t datasz;
80f5ce75 2526 size_t datasz_rounded;
edf8e2af
MW
2527 void *data;
2528 size_t notesz;
2529};
2530
a2547a13 2531struct target_elf_siginfo {
f8fd4fc4
PB
2532 abi_int si_signo; /* signal number */
2533 abi_int si_code; /* extra code */
2534 abi_int si_errno; /* errno */
edf8e2af
MW
2535};
2536
a2547a13
LD
2537struct target_elf_prstatus {
2538 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2539 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2540 abi_ulong pr_sigpend; /* XXX */
2541 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2542 target_pid_t pr_pid;
2543 target_pid_t pr_ppid;
2544 target_pid_t pr_pgrp;
2545 target_pid_t pr_sid;
edf8e2af
MW
2546 struct target_timeval pr_utime; /* XXX User time */
2547 struct target_timeval pr_stime; /* XXX System time */
2548 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2549 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2550 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2551 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2552};
2553
2554#define ELF_PRARGSZ (80) /* Number of chars for args */
2555
a2547a13 2556struct target_elf_prpsinfo {
edf8e2af
MW
2557 char pr_state; /* numeric process state */
2558 char pr_sname; /* char for pr_state */
2559 char pr_zomb; /* zombie */
2560 char pr_nice; /* nice val */
ca98ac83 2561 abi_ulong pr_flag; /* flags */
c227f099
AL
2562 target_uid_t pr_uid;
2563 target_gid_t pr_gid;
2564 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2565 /* Lots missing */
2566 char pr_fname[16]; /* filename of executable */
2567 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2568};
2569
2570/* Here is the structure in which status of each thread is captured. */
2571struct elf_thread_status {
72cf2d4f 2572 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2573 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2574#if 0
2575 elf_fpregset_t fpu; /* NT_PRFPREG */
2576 struct task_struct *thread;
2577 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2578#endif
2579 struct memelfnote notes[1];
2580 int num_notes;
2581};
2582
2583struct elf_note_info {
2584 struct memelfnote *notes;
a2547a13
LD
2585 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2586 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2587
72cf2d4f 2588 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2589#if 0
2590 /*
2591 * Current version of ELF coredump doesn't support
2592 * dumping fp regs etc.
2593 */
2594 elf_fpregset_t *fpu;
2595 elf_fpxregset_t *xfpu;
2596 int thread_status_size;
2597#endif
2598 int notes_size;
2599 int numnote;
2600};
2601
2602struct vm_area_struct {
1a1c4db9
MI
2603 target_ulong vma_start; /* start vaddr of memory region */
2604 target_ulong vma_end; /* end vaddr of memory region */
2605 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2606 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2607};
2608
2609struct mm_struct {
72cf2d4f 2610 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2611 int mm_count; /* number of mappings */
2612};
2613
2614static struct mm_struct *vma_init(void);
2615static void vma_delete(struct mm_struct *);
1a1c4db9
MI
2616static int vma_add_mapping(struct mm_struct *, target_ulong,
2617 target_ulong, abi_ulong);
edf8e2af
MW
2618static int vma_get_mapping_count(const struct mm_struct *);
2619static struct vm_area_struct *vma_first(const struct mm_struct *);
2620static struct vm_area_struct *vma_next(struct vm_area_struct *);
2621static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 2622static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2623 unsigned long flags);
edf8e2af
MW
2624
2625static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2626static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2627 unsigned int, void *);
a2547a13
LD
2628static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2629static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2630static void fill_auxv_note(struct memelfnote *, const TaskState *);
2631static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2632static size_t note_size(const struct memelfnote *);
2633static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2634static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2635static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2636static int core_dump_filename(const TaskState *, char *, size_t);
2637
2638static int dump_write(int, const void *, size_t);
2639static int write_note(struct memelfnote *, int);
2640static int write_note_info(struct elf_note_info *, int);
2641
2642#ifdef BSWAP_NEEDED
a2547a13 2643static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2644{
ca98ac83
PB
2645 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2646 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2647 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2648 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
2649 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2650 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
2651 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2652 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2653 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2654 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2655 /* cpu times are not filled, so we skip them */
2656 /* regs should be in correct format already */
2657 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2658}
2659
a2547a13 2660static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 2661{
ca98ac83 2662 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
2663 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2664 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2665 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2666 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2667 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2668 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2669}
991f8f0c
RH
2670
2671static void bswap_note(struct elf_note *en)
2672{
2673 bswap32s(&en->n_namesz);
2674 bswap32s(&en->n_descsz);
2675 bswap32s(&en->n_type);
2676}
2677#else
2678static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2679static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2680static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2681#endif /* BSWAP_NEEDED */
2682
2683/*
2684 * Minimal support for linux memory regions. These are needed
2685 * when we are finding out what memory exactly belongs to
2686 * emulated process. No locks needed here, as long as
2687 * thread that received the signal is stopped.
2688 */
2689
2690static struct mm_struct *vma_init(void)
2691{
2692 struct mm_struct *mm;
2693
7267c094 2694 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
2695 return (NULL);
2696
2697 mm->mm_count = 0;
72cf2d4f 2698 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2699
2700 return (mm);
2701}
2702
2703static void vma_delete(struct mm_struct *mm)
2704{
2705 struct vm_area_struct *vma;
2706
2707 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2708 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 2709 g_free(vma);
edf8e2af 2710 }
7267c094 2711 g_free(mm);
edf8e2af
MW
2712}
2713
1a1c4db9
MI
2714static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2715 target_ulong end, abi_ulong flags)
edf8e2af
MW
2716{
2717 struct vm_area_struct *vma;
2718
7267c094 2719 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
2720 return (-1);
2721
2722 vma->vma_start = start;
2723 vma->vma_end = end;
2724 vma->vma_flags = flags;
2725
72cf2d4f 2726 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2727 mm->mm_count++;
2728
2729 return (0);
2730}
2731
2732static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2733{
72cf2d4f 2734 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2735}
2736
2737static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2738{
72cf2d4f 2739 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2740}
2741
2742static int vma_get_mapping_count(const struct mm_struct *mm)
2743{
2744 return (mm->mm_count);
2745}
2746
2747/*
2748 * Calculate file (dump) size of given memory region.
2749 */
2750static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2751{
2752 /* if we cannot even read the first page, skip it */
2753 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2754 return (0);
2755
2756 /*
2757 * Usually we don't dump executable pages as they contain
2758 * non-writable code that debugger can read directly from
2759 * target library etc. However, thread stacks are marked
2760 * also executable so we read in first page of given region
2761 * and check whether it contains elf header. If there is
2762 * no elf header, we dump it.
2763 */
2764 if (vma->vma_flags & PROT_EXEC) {
2765 char page[TARGET_PAGE_SIZE];
2766
2767 copy_from_user(page, vma->vma_start, sizeof (page));
2768 if ((page[EI_MAG0] == ELFMAG0) &&
2769 (page[EI_MAG1] == ELFMAG1) &&
2770 (page[EI_MAG2] == ELFMAG2) &&
2771 (page[EI_MAG3] == ELFMAG3)) {
2772 /*
2773 * Mappings are possibly from ELF binary. Don't dump
2774 * them.
2775 */
2776 return (0);
2777 }
2778 }
2779
2780 return (vma->vma_end - vma->vma_start);
2781}
2782
1a1c4db9 2783static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2784 unsigned long flags)
edf8e2af
MW
2785{
2786 struct mm_struct *mm = (struct mm_struct *)priv;
2787
edf8e2af
MW
2788 vma_add_mapping(mm, start, end, flags);
2789 return (0);
2790}
2791
2792static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 2793 unsigned int sz, void *data)
edf8e2af
MW
2794{
2795 unsigned int namesz;
2796
2797 namesz = strlen(name) + 1;
2798 note->name = name;
2799 note->namesz = namesz;
2800 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2801 note->type = type;
80f5ce75
LV
2802 note->datasz = sz;
2803 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2804
edf8e2af
MW
2805 note->data = data;
2806
2807 /*
2808 * We calculate rounded up note size here as specified by
2809 * ELF document.
2810 */
2811 note->notesz = sizeof (struct elf_note) +
80f5ce75 2812 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
2813}
2814
2815static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 2816 uint32_t flags)
edf8e2af
MW
2817{
2818 (void) memset(elf, 0, sizeof(*elf));
2819
2820 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2821 elf->e_ident[EI_CLASS] = ELF_CLASS;
2822 elf->e_ident[EI_DATA] = ELF_DATA;
2823 elf->e_ident[EI_VERSION] = EV_CURRENT;
2824 elf->e_ident[EI_OSABI] = ELF_OSABI;
2825
2826 elf->e_type = ET_CORE;
2827 elf->e_machine = machine;
2828 elf->e_version = EV_CURRENT;
2829 elf->e_phoff = sizeof(struct elfhdr);
2830 elf->e_flags = flags;
2831 elf->e_ehsize = sizeof(struct elfhdr);
2832 elf->e_phentsize = sizeof(struct elf_phdr);
2833 elf->e_phnum = segs;
2834
edf8e2af 2835 bswap_ehdr(elf);
edf8e2af
MW
2836}
2837
2838static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2839{
2840 phdr->p_type = PT_NOTE;
2841 phdr->p_offset = offset;
2842 phdr->p_vaddr = 0;
2843 phdr->p_paddr = 0;
2844 phdr->p_filesz = sz;
2845 phdr->p_memsz = 0;
2846 phdr->p_flags = 0;
2847 phdr->p_align = 0;
2848
991f8f0c 2849 bswap_phdr(phdr, 1);
edf8e2af
MW
2850}
2851
2852static size_t note_size(const struct memelfnote *note)
2853{
2854 return (note->notesz);
2855}
2856
a2547a13 2857static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 2858 const TaskState *ts, int signr)
edf8e2af
MW
2859{
2860 (void) memset(prstatus, 0, sizeof (*prstatus));
2861 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2862 prstatus->pr_pid = ts->ts_tid;
2863 prstatus->pr_ppid = getppid();
2864 prstatus->pr_pgrp = getpgrp();
2865 prstatus->pr_sid = getsid(0);
2866
edf8e2af 2867 bswap_prstatus(prstatus);
edf8e2af
MW
2868}
2869
a2547a13 2870static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 2871{
900cfbca 2872 char *base_filename;
edf8e2af
MW
2873 unsigned int i, len;
2874
2875 (void) memset(psinfo, 0, sizeof (*psinfo));
2876
2877 len = ts->info->arg_end - ts->info->arg_start;
2878 if (len >= ELF_PRARGSZ)
2879 len = ELF_PRARGSZ - 1;
2880 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2881 return -EFAULT;
2882 for (i = 0; i < len; i++)
2883 if (psinfo->pr_psargs[i] == 0)
2884 psinfo->pr_psargs[i] = ' ';
2885 psinfo->pr_psargs[len] = 0;
2886
2887 psinfo->pr_pid = getpid();
2888 psinfo->pr_ppid = getppid();
2889 psinfo->pr_pgrp = getpgrp();
2890 psinfo->pr_sid = getsid(0);
2891 psinfo->pr_uid = getuid();
2892 psinfo->pr_gid = getgid();
2893
900cfbca
JM
2894 base_filename = g_path_get_basename(ts->bprm->filename);
2895 /*
2896 * Using strncpy here is fine: at max-length,
2897 * this field is not NUL-terminated.
2898 */
edf8e2af 2899 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 2900 sizeof(psinfo->pr_fname));
edf8e2af 2901
900cfbca 2902 g_free(base_filename);
edf8e2af 2903 bswap_psinfo(psinfo);
edf8e2af
MW
2904 return (0);
2905}
2906
2907static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2908{
2909 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2910 elf_addr_t orig_auxv = auxv;
edf8e2af 2911 void *ptr;
125b0f55 2912 int len = ts->info->auxv_len;
edf8e2af
MW
2913
2914 /*
2915 * Auxiliary vector is stored in target process stack. It contains
2916 * {type, value} pairs that we need to dump into note. This is not
2917 * strictly necessary but we do it here for sake of completeness.
2918 */
2919
edf8e2af
MW
2920 /* read in whole auxv vector and copy it to memelfnote */
2921 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2922 if (ptr != NULL) {
2923 fill_note(note, "CORE", NT_AUXV, len, ptr);
2924 unlock_user(ptr, auxv, len);
2925 }
2926}
2927
2928/*
2929 * Constructs name of coredump file. We have following convention
2930 * for the name:
2931 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2932 *
2933 * Returns 0 in case of success, -1 otherwise (errno is set).
2934 */
2935static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 2936 size_t bufsize)
edf8e2af
MW
2937{
2938 char timestamp[64];
edf8e2af
MW
2939 char *base_filename = NULL;
2940 struct timeval tv;
2941 struct tm tm;
2942
2943 assert(bufsize >= PATH_MAX);
2944
2945 if (gettimeofday(&tv, NULL) < 0) {
2946 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 2947 strerror(errno));
edf8e2af
MW
2948 return (-1);
2949 }
2950
b8da57fa 2951 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 2952 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 2953 localtime_r(&tv.tv_sec, &tm));
edf8e2af 2954 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 2955 base_filename, timestamp, (int)getpid());
b8da57fa 2956 g_free(base_filename);
edf8e2af
MW
2957
2958 return (0);
2959}
2960
2961static int dump_write(int fd, const void *ptr, size_t size)
2962{
2963 const char *bufp = (const char *)ptr;
2964 ssize_t bytes_written, bytes_left;
2965 struct rlimit dumpsize;
2966 off_t pos;
2967
2968 bytes_written = 0;
2969 getrlimit(RLIMIT_CORE, &dumpsize);
2970 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2971 if (errno == ESPIPE) { /* not a seekable stream */
2972 bytes_left = size;
2973 } else {
2974 return pos;
2975 }
2976 } else {
2977 if (dumpsize.rlim_cur <= pos) {
2978 return -1;
2979 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2980 bytes_left = size;
2981 } else {
2982 size_t limit_left=dumpsize.rlim_cur - pos;
2983 bytes_left = limit_left >= size ? size : limit_left ;
2984 }
2985 }
2986
2987 /*
2988 * In normal conditions, single write(2) should do but
2989 * in case of socket etc. this mechanism is more portable.
2990 */
2991 do {
2992 bytes_written = write(fd, bufp, bytes_left);
2993 if (bytes_written < 0) {
2994 if (errno == EINTR)
2995 continue;
2996 return (-1);
2997 } else if (bytes_written == 0) { /* eof */
2998 return (-1);
2999 }
3000 bufp += bytes_written;
3001 bytes_left -= bytes_written;
3002 } while (bytes_left > 0);
3003
3004 return (0);
3005}
3006
3007static int write_note(struct memelfnote *men, int fd)
3008{
3009 struct elf_note en;
3010
3011 en.n_namesz = men->namesz;
3012 en.n_type = men->type;
3013 en.n_descsz = men->datasz;
3014
edf8e2af 3015 bswap_note(&en);
edf8e2af
MW
3016
3017 if (dump_write(fd, &en, sizeof(en)) != 0)
3018 return (-1);
3019 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3020 return (-1);
80f5ce75 3021 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3022 return (-1);
3023
3024 return (0);
3025}
3026
9349b4f9 3027static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3028{
0429a971
AF
3029 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3030 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3031 struct elf_thread_status *ets;
3032
7267c094 3033 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3034 ets->num_notes = 1; /* only prstatus is dumped */
3035 fill_prstatus(&ets->prstatus, ts, 0);
3036 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3037 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3038 &ets->prstatus);
edf8e2af 3039
72cf2d4f 3040 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3041
3042 info->notes_size += note_size(&ets->notes[0]);
3043}
3044
6afafa86
PM
3045static void init_note_info(struct elf_note_info *info)
3046{
3047 /* Initialize the elf_note_info structure so that it is at
3048 * least safe to call free_note_info() on it. Must be
3049 * called before calling fill_note_info().
3050 */
3051 memset(info, 0, sizeof (*info));
3052 QTAILQ_INIT(&info->thread_list);
3053}
3054
edf8e2af 3055static int fill_note_info(struct elf_note_info *info,
9349b4f9 3056 long signr, const CPUArchState *env)
edf8e2af
MW
3057{
3058#define NUMNOTES 3
0429a971
AF
3059 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3060 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3061 int i;
3062
c78d65e8 3063 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3064 if (info->notes == NULL)
3065 return (-ENOMEM);
7267c094 3066 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3067 if (info->prstatus == NULL)
3068 return (-ENOMEM);
7267c094 3069 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3070 if (info->prstatus == NULL)
3071 return (-ENOMEM);
3072
3073 /*
3074 * First fill in status (and registers) of current thread
3075 * including process info & aux vector.
3076 */
3077 fill_prstatus(info->prstatus, ts, signr);
3078 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3079 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3080 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3081 fill_psinfo(info->psinfo, ts);
3082 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3083 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3084 fill_auxv_note(&info->notes[2], ts);
3085 info->numnote = 3;
3086
3087 info->notes_size = 0;
3088 for (i = 0; i < info->numnote; i++)
3089 info->notes_size += note_size(&info->notes[i]);
3090
3091 /* read and fill status of all threads */
3092 cpu_list_lock();
bdc44640 3093 CPU_FOREACH(cpu) {
a2247f8e 3094 if (cpu == thread_cpu) {
edf8e2af 3095 continue;
182735ef
AF
3096 }
3097 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3098 }
3099 cpu_list_unlock();
3100
3101 return (0);
3102}
3103
3104static void free_note_info(struct elf_note_info *info)
3105{
3106 struct elf_thread_status *ets;
3107
72cf2d4f
BS
3108 while (!QTAILQ_EMPTY(&info->thread_list)) {
3109 ets = QTAILQ_FIRST(&info->thread_list);
3110 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3111 g_free(ets);
edf8e2af
MW
3112 }
3113
7267c094
AL
3114 g_free(info->prstatus);
3115 g_free(info->psinfo);
3116 g_free(info->notes);
edf8e2af
MW
3117}
3118
3119static int write_note_info(struct elf_note_info *info, int fd)
3120{
3121 struct elf_thread_status *ets;
3122 int i, error = 0;
3123
3124 /* write prstatus, psinfo and auxv for current thread */
3125 for (i = 0; i < info->numnote; i++)
3126 if ((error = write_note(&info->notes[i], fd)) != 0)
3127 return (error);
3128
3129 /* write prstatus for each thread */
52a53afe 3130 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3131 if ((error = write_note(&ets->notes[0], fd)) != 0)
3132 return (error);
3133 }
3134
3135 return (0);
3136}
3137
3138/*
3139 * Write out ELF coredump.
3140 *
3141 * See documentation of ELF object file format in:
3142 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3143 *
3144 * Coredump format in linux is following:
3145 *
3146 * 0 +----------------------+ \
3147 * | ELF header | ET_CORE |
3148 * +----------------------+ |
3149 * | ELF program headers | |--- headers
3150 * | - NOTE section | |
3151 * | - PT_LOAD sections | |
3152 * +----------------------+ /
3153 * | NOTEs: |
3154 * | - NT_PRSTATUS |
3155 * | - NT_PRSINFO |
3156 * | - NT_AUXV |
3157 * +----------------------+ <-- aligned to target page
3158 * | Process memory dump |
3159 * : :
3160 * . .
3161 * : :
3162 * | |
3163 * +----------------------+
3164 *
3165 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3166 * NT_PRSINFO -> struct elf_prpsinfo
3167 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3168 *
3169 * Format follows System V format as close as possible. Current
3170 * version limitations are as follows:
3171 * - no floating point registers are dumped
3172 *
3173 * Function returns 0 in case of success, negative errno otherwise.
3174 *
3175 * TODO: make this work also during runtime: it should be
3176 * possible to force coredump from running process and then
3177 * continue processing. For example qemu could set up SIGUSR2
3178 * handler (provided that target process haven't registered
3179 * handler for that) that does the dump when signal is received.
3180 */
9349b4f9 3181static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3182{
0429a971
AF
3183 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3184 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3185 struct vm_area_struct *vma = NULL;
3186 char corefile[PATH_MAX];
3187 struct elf_note_info info;
3188 struct elfhdr elf;
3189 struct elf_phdr phdr;
3190 struct rlimit dumpsize;
3191 struct mm_struct *mm = NULL;
3192 off_t offset = 0, data_offset = 0;
3193 int segs = 0;
3194 int fd = -1;
3195
6afafa86
PM
3196 init_note_info(&info);
3197
edf8e2af
MW
3198 errno = 0;
3199 getrlimit(RLIMIT_CORE, &dumpsize);
3200 if (dumpsize.rlim_cur == 0)
d97ef72e 3201 return 0;
edf8e2af
MW
3202
3203 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3204 return (-errno);
3205
3206 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3207 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3208 return (-errno);
3209
3210 /*
3211 * Walk through target process memory mappings and
3212 * set up structure containing this information. After
3213 * this point vma_xxx functions can be used.
3214 */
3215 if ((mm = vma_init()) == NULL)
3216 goto out;
3217
3218 walk_memory_regions(mm, vma_walker);
3219 segs = vma_get_mapping_count(mm);
3220
3221 /*
3222 * Construct valid coredump ELF header. We also
3223 * add one more segment for notes.
3224 */
3225 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3226 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3227 goto out;
3228
b6af0975 3229 /* fill in the in-memory version of notes */
edf8e2af
MW
3230 if (fill_note_info(&info, signr, env) < 0)
3231 goto out;
3232
3233 offset += sizeof (elf); /* elf header */
3234 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3235
3236 /* write out notes program header */
3237 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3238
3239 offset += info.notes_size;
3240 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3241 goto out;
3242
3243 /*
3244 * ELF specification wants data to start at page boundary so
3245 * we align it here.
3246 */
80f5ce75 3247 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3248
3249 /*
3250 * Write program headers for memory regions mapped in
3251 * the target process.
3252 */
3253 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3254 (void) memset(&phdr, 0, sizeof (phdr));
3255
3256 phdr.p_type = PT_LOAD;
3257 phdr.p_offset = offset;
3258 phdr.p_vaddr = vma->vma_start;
3259 phdr.p_paddr = 0;
3260 phdr.p_filesz = vma_dump_size(vma);
3261 offset += phdr.p_filesz;
3262 phdr.p_memsz = vma->vma_end - vma->vma_start;
3263 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3264 if (vma->vma_flags & PROT_WRITE)
3265 phdr.p_flags |= PF_W;
3266 if (vma->vma_flags & PROT_EXEC)
3267 phdr.p_flags |= PF_X;
3268 phdr.p_align = ELF_EXEC_PAGESIZE;
3269
80f5ce75 3270 bswap_phdr(&phdr, 1);
772034b6
PM
3271 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3272 goto out;
3273 }
edf8e2af
MW
3274 }
3275
3276 /*
3277 * Next we write notes just after program headers. No
3278 * alignment needed here.
3279 */
3280 if (write_note_info(&info, fd) < 0)
3281 goto out;
3282
3283 /* align data to page boundary */
edf8e2af
MW
3284 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3285 goto out;
3286
3287 /*
3288 * Finally we can dump process memory into corefile as well.
3289 */
3290 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3291 abi_ulong addr;
3292 abi_ulong end;
3293
3294 end = vma->vma_start + vma_dump_size(vma);
3295
3296 for (addr = vma->vma_start; addr < end;
d97ef72e 3297 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3298 char page[TARGET_PAGE_SIZE];
3299 int error;
3300
3301 /*
3302 * Read in page from target process memory and
3303 * write it to coredump file.
3304 */
3305 error = copy_from_user(page, addr, sizeof (page));
3306 if (error != 0) {
49995e17 3307 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3308 addr);
edf8e2af
MW
3309 errno = -error;
3310 goto out;
3311 }
3312 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3313 goto out;
3314 }
3315 }
3316
d97ef72e 3317 out:
edf8e2af
MW
3318 free_note_info(&info);
3319 if (mm != NULL)
3320 vma_delete(mm);
3321 (void) close(fd);
3322
3323 if (errno != 0)
3324 return (-errno);
3325 return (0);
3326}
edf8e2af
MW
3327#endif /* USE_ELF_CORE_DUMP */
3328
e5fe0c52
PB
3329void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3330{
3331 init_thread(regs, infop);
3332}