]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
linux-user/elfload: Introduce elf_hwcap_str() on s390x
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
30ab9ef2 6#include <sys/shm.h>
31e31b8a 7
3ef693a0 8#include "qemu.h"
3b249d26 9#include "user-internals.h"
db2af69d 10#include "signal-common.h"
3ad0a769 11#include "loader.h"
5423e6d3 12#include "user-mmap.h"
76cad711 13#include "disas/disas.h"
ce543844 14#include "qemu/bitops.h"
f348b6d1 15#include "qemu/path.h"
dc5e9ac7 16#include "qemu/queue.h"
c6a2377f 17#include "qemu/guest-random.h"
6fd59449 18#include "qemu/units.h"
ee947430 19#include "qemu/selfmap.h"
370ed600 20#include "qemu/lockable.h"
c7f17e7b 21#include "qapi/error.h"
cc37d98b 22#include "qemu/error-report.h"
db2af69d 23#include "target_signal.h"
7c10cb38 24#include "accel/tcg/debuginfo.h"
31e31b8a 25
e58ffeb3 26#ifdef _ARCH_PPC64
a6cc84f4 27#undef ARCH_DLINFO
28#undef ELF_PLATFORM
29#undef ELF_HWCAP
ad6919dc 30#undef ELF_HWCAP2
a6cc84f4 31#undef ELF_CLASS
32#undef ELF_DATA
33#undef ELF_ARCH
34#endif
35
edf8e2af
MW
36#define ELF_OSABI ELFOSABI_SYSV
37
cb33da57
BS
38/* from personality.h */
39
40/*
41 * Flags for bug emulation.
42 *
43 * These occupy the top three bytes.
44 */
45enum {
d97ef72e
RH
46 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
47 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
48 descriptors (signal handling) */
49 MMAP_PAGE_ZERO = 0x0100000,
50 ADDR_COMPAT_LAYOUT = 0x0200000,
51 READ_IMPLIES_EXEC = 0x0400000,
52 ADDR_LIMIT_32BIT = 0x0800000,
53 SHORT_INODE = 0x1000000,
54 WHOLE_SECONDS = 0x2000000,
55 STICKY_TIMEOUTS = 0x4000000,
56 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
57};
58
59/*
60 * Personality types.
61 *
62 * These go in the low byte. Avoid using the top bit, it will
63 * conflict with error returns.
64 */
65enum {
d97ef72e
RH
66 PER_LINUX = 0x0000,
67 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
68 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
69 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
70 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
71 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
72 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
73 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
74 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
75 PER_BSD = 0x0006,
76 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
77 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
78 PER_LINUX32 = 0x0008,
79 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
80 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
81 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
82 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
83 PER_RISCOS = 0x000c,
84 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
85 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
86 PER_OSF4 = 0x000f, /* OSF/1 v4 */
87 PER_HPUX = 0x0010,
88 PER_MASK = 0x00ff,
cb33da57
BS
89};
90
91/*
92 * Return the base personality without flags.
93 */
d97ef72e 94#define personality(pers) (pers & PER_MASK)
cb33da57 95
3cb10cfa
CL
96int info_is_fdpic(struct image_info *info)
97{
98 return info->personality == PER_LINUX_FDPIC;
99}
100
83fb7adf
FB
101/* this flag is uneffective under linux too, should be deleted */
102#ifndef MAP_DENYWRITE
103#define MAP_DENYWRITE 0
104#endif
105
106/* should probably go in elf.h */
107#ifndef ELIBBAD
108#define ELIBBAD 80
109#endif
110
ee3eb3a7 111#if TARGET_BIG_ENDIAN
28490231
RH
112#define ELF_DATA ELFDATA2MSB
113#else
114#define ELF_DATA ELFDATA2LSB
115#endif
116
a29f998d 117#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
118typedef abi_ullong target_elf_greg_t;
119#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
120#else
121typedef abi_ulong target_elf_greg_t;
122#define tswapreg(ptr) tswapal(ptr)
123#endif
124
21e807fa 125#ifdef USE_UID16
1ddd592f
PB
126typedef abi_ushort target_uid_t;
127typedef abi_ushort target_gid_t;
21e807fa 128#else
f8fd4fc4
PB
129typedef abi_uint target_uid_t;
130typedef abi_uint target_gid_t;
21e807fa 131#endif
f8fd4fc4 132typedef abi_int target_pid_t;
21e807fa 133
30ac07d4
FB
134#ifdef TARGET_I386
135
15338fd7
FB
136#define ELF_HWCAP get_elf_hwcap()
137
138static uint32_t get_elf_hwcap(void)
139{
a2247f8e
AF
140 X86CPU *cpu = X86_CPU(thread_cpu);
141
142 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
143}
144
84409ddb
JM
145#ifdef TARGET_X86_64
146#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
147
148#define ELF_CLASS ELFCLASS64
84409ddb
JM
149#define ELF_ARCH EM_X86_64
150
9263ba84
RH
151#define ELF_PLATFORM "x86_64"
152
84409ddb
JM
153static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154{
155 regs->rax = 0;
156 regs->rsp = infop->start_stack;
157 regs->rip = infop->entry;
158}
159
9edc5d79 160#define ELF_NREG 27
c227f099 161typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
162
163/*
164 * Note that ELF_NREG should be 29 as there should be place for
165 * TRAPNO and ERR "registers" as well but linux doesn't dump
166 * those.
167 *
168 * See linux kernel: arch/x86/include/asm/elf.h
169 */
05390248 170static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79 171{
030912e0
IL
172 (*regs)[0] = tswapreg(env->regs[15]);
173 (*regs)[1] = tswapreg(env->regs[14]);
174 (*regs)[2] = tswapreg(env->regs[13]);
175 (*regs)[3] = tswapreg(env->regs[12]);
176 (*regs)[4] = tswapreg(env->regs[R_EBP]);
177 (*regs)[5] = tswapreg(env->regs[R_EBX]);
178 (*regs)[6] = tswapreg(env->regs[11]);
179 (*regs)[7] = tswapreg(env->regs[10]);
180 (*regs)[8] = tswapreg(env->regs[9]);
181 (*regs)[9] = tswapreg(env->regs[8]);
182 (*regs)[10] = tswapreg(env->regs[R_EAX]);
183 (*regs)[11] = tswapreg(env->regs[R_ECX]);
184 (*regs)[12] = tswapreg(env->regs[R_EDX]);
185 (*regs)[13] = tswapreg(env->regs[R_ESI]);
186 (*regs)[14] = tswapreg(env->regs[R_EDI]);
187 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
188 (*regs)[16] = tswapreg(env->eip);
189 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
190 (*regs)[18] = tswapreg(env->eflags);
191 (*regs)[19] = tswapreg(env->regs[R_ESP]);
192 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
193 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
194 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
195 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
196 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
197 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
198 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
9edc5d79
MW
199}
200
d461b73e
RH
201#if ULONG_MAX > UINT32_MAX
202#define INIT_GUEST_COMMPAGE
203static bool init_guest_commpage(void)
204{
205 /*
206 * The vsyscall page is at a high negative address aka kernel space,
207 * which means that we cannot actually allocate it with target_mmap.
208 * We still should be able to use page_set_flags, unless the user
209 * has specified -R reserved_va, which would trigger an assert().
210 */
211 if (reserved_va != 0 &&
95059f9c 212 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
d461b73e
RH
213 error_report("Cannot allocate vsyscall page");
214 exit(EXIT_FAILURE);
215 }
216 page_set_flags(TARGET_VSYSCALL_PAGE,
49840a4a 217 TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
d461b73e
RH
218 PAGE_EXEC | PAGE_VALID);
219 return true;
220}
221#endif
84409ddb
JM
222#else
223
30ac07d4
FB
224#define ELF_START_MMAP 0x80000000
225
30ac07d4
FB
226/*
227 * This is used to ensure we don't load something for the wrong architecture.
228 */
229#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
230
231/*
232 * These are used to set parameters in the core dumps.
233 */
d97ef72e 234#define ELF_CLASS ELFCLASS32
d97ef72e 235#define ELF_ARCH EM_386
30ac07d4 236
9263ba84 237#define ELF_PLATFORM get_elf_platform()
872f3d04 238#define EXSTACK_DEFAULT true
9263ba84
RH
239
240static const char *get_elf_platform(void)
241{
242 static char elf_platform[] = "i386";
243 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
244 if (family > 6) {
245 family = 6;
246 }
247 if (family >= 3) {
248 elf_platform[1] = '0' + family;
249 }
250 return elf_platform;
251}
252
d97ef72e
RH
253static inline void init_thread(struct target_pt_regs *regs,
254 struct image_info *infop)
b346ff46
FB
255{
256 regs->esp = infop->start_stack;
257 regs->eip = infop->entry;
e5fe0c52
PB
258
259 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
260 starts %edx contains a pointer to a function which might be
261 registered using `atexit'. This provides a mean for the
262 dynamic linker to call DT_FINI functions for shared libraries
263 that have been loaded before the code runs.
264
265 A value of 0 tells we have no such handler. */
266 regs->edx = 0;
b346ff46 267}
9edc5d79 268
9edc5d79 269#define ELF_NREG 17
c227f099 270typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
271
272/*
273 * Note that ELF_NREG should be 19 as there should be place for
274 * TRAPNO and ERR "registers" as well but linux doesn't dump
275 * those.
276 *
277 * See linux kernel: arch/x86/include/asm/elf.h
278 */
05390248 279static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79 280{
030912e0
IL
281 (*regs)[0] = tswapreg(env->regs[R_EBX]);
282 (*regs)[1] = tswapreg(env->regs[R_ECX]);
283 (*regs)[2] = tswapreg(env->regs[R_EDX]);
284 (*regs)[3] = tswapreg(env->regs[R_ESI]);
285 (*regs)[4] = tswapreg(env->regs[R_EDI]);
286 (*regs)[5] = tswapreg(env->regs[R_EBP]);
287 (*regs)[6] = tswapreg(env->regs[R_EAX]);
288 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
289 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
290 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
291 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
292 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
293 (*regs)[12] = tswapreg(env->eip);
294 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
295 (*regs)[14] = tswapreg(env->eflags);
296 (*regs)[15] = tswapreg(env->regs[R_ESP]);
297 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
9edc5d79 298}
84409ddb 299#endif
b346ff46 300
9edc5d79 301#define USE_ELF_CORE_DUMP
d97ef72e 302#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
303
304#endif
305
306#ifdef TARGET_ARM
307
24e76ff0
PM
308#ifndef TARGET_AARCH64
309/* 32 bit ARM definitions */
310
b346ff46
FB
311#define ELF_START_MMAP 0x80000000
312
b597c3f7 313#define ELF_ARCH EM_ARM
d97ef72e 314#define ELF_CLASS ELFCLASS32
872f3d04 315#define EXSTACK_DEFAULT true
b346ff46 316
d97ef72e
RH
317static inline void init_thread(struct target_pt_regs *regs,
318 struct image_info *infop)
b346ff46 319{
992f48a0 320 abi_long stack = infop->start_stack;
b346ff46 321 memset(regs, 0, sizeof(*regs));
99033cae 322
167e4cdc
PM
323 regs->uregs[16] = ARM_CPU_MODE_USR;
324 if (infop->entry & 1) {
325 regs->uregs[16] |= CPSR_T;
326 }
327 regs->uregs[15] = infop->entry & 0xfffffffe;
328 regs->uregs[13] = infop->start_stack;
2f619698 329 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
330 get_user_ual(regs->uregs[2], stack + 8); /* envp */
331 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 332 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 333 regs->uregs[0] = 0;
e5fe0c52 334 /* For uClinux PIC binaries. */
863cf0b7 335 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 336 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
337
338 /* Support ARM FDPIC. */
339 if (info_is_fdpic(infop)) {
340 /* As described in the ABI document, r7 points to the loadmap info
341 * prepared by the kernel. If an interpreter is needed, r8 points
342 * to the interpreter loadmap and r9 points to the interpreter
343 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
344 * r9 points to the main program PT_DYNAMIC info.
345 */
346 regs->uregs[7] = infop->loadmap_addr;
347 if (infop->interpreter_loadmap_addr) {
348 /* Executable is dynamically loaded. */
349 regs->uregs[8] = infop->interpreter_loadmap_addr;
350 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
351 } else {
352 regs->uregs[8] = 0;
353 regs->uregs[9] = infop->pt_dynamic_addr;
354 }
355 }
b346ff46
FB
356}
357
edf8e2af 358#define ELF_NREG 18
c227f099 359typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 360
05390248 361static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 362{
86cd7b2d
PB
363 (*regs)[0] = tswapreg(env->regs[0]);
364 (*regs)[1] = tswapreg(env->regs[1]);
365 (*regs)[2] = tswapreg(env->regs[2]);
366 (*regs)[3] = tswapreg(env->regs[3]);
367 (*regs)[4] = tswapreg(env->regs[4]);
368 (*regs)[5] = tswapreg(env->regs[5]);
369 (*regs)[6] = tswapreg(env->regs[6]);
370 (*regs)[7] = tswapreg(env->regs[7]);
371 (*regs)[8] = tswapreg(env->regs[8]);
372 (*regs)[9] = tswapreg(env->regs[9]);
373 (*regs)[10] = tswapreg(env->regs[10]);
374 (*regs)[11] = tswapreg(env->regs[11]);
375 (*regs)[12] = tswapreg(env->regs[12]);
376 (*regs)[13] = tswapreg(env->regs[13]);
377 (*regs)[14] = tswapreg(env->regs[14]);
378 (*regs)[15] = tswapreg(env->regs[15]);
379
380 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
381 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
382}
383
30ac07d4 384#define USE_ELF_CORE_DUMP
d97ef72e 385#define ELF_EXEC_PAGESIZE 4096
30ac07d4 386
afce2927
FB
387enum
388{
d97ef72e
RH
389 ARM_HWCAP_ARM_SWP = 1 << 0,
390 ARM_HWCAP_ARM_HALF = 1 << 1,
391 ARM_HWCAP_ARM_THUMB = 1 << 2,
392 ARM_HWCAP_ARM_26BIT = 1 << 3,
393 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
394 ARM_HWCAP_ARM_FPA = 1 << 5,
395 ARM_HWCAP_ARM_VFP = 1 << 6,
396 ARM_HWCAP_ARM_EDSP = 1 << 7,
397 ARM_HWCAP_ARM_JAVA = 1 << 8,
398 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
399 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
400 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
401 ARM_HWCAP_ARM_NEON = 1 << 12,
402 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
403 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
404 ARM_HWCAP_ARM_TLS = 1 << 15,
405 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
406 ARM_HWCAP_ARM_IDIVA = 1 << 17,
407 ARM_HWCAP_ARM_IDIVT = 1 << 18,
408 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
409 ARM_HWCAP_ARM_LPAE = 1 << 20,
410 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
411};
412
ad6919dc
PM
413enum {
414 ARM_HWCAP2_ARM_AES = 1 << 0,
415 ARM_HWCAP2_ARM_PMULL = 1 << 1,
416 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
417 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
418 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
419};
420
6b1275ff
PM
421/* The commpage only exists for 32 bit kernels */
422
66346faf 423#define HI_COMMPAGE (intptr_t)0xffff0f00u
806d1021 424
ee947430
AB
425static bool init_guest_commpage(void)
426{
6cda41da
RH
427 abi_ptr commpage = HI_COMMPAGE & -qemu_host_page_size;
428 void *want = g2h_untagged(commpage);
429 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
430 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
97cc7560 431
6cda41da 432 if (addr == MAP_FAILED) {
ee947430
AB
433 perror("Allocating guest commpage");
434 exit(EXIT_FAILURE);
97cc7560 435 }
ee947430
AB
436 if (addr != want) {
437 return false;
97cc7560
DDAG
438 }
439
ee947430 440 /* Set kernel helper versions; rest of page is 0. */
6cda41da 441 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
97cc7560 442
6cda41da 443 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
97cc7560 444 perror("Protecting guest commpage");
ee947430 445 exit(EXIT_FAILURE);
97cc7560 446 }
6cda41da
RH
447
448 page_set_flags(commpage, commpage | ~qemu_host_page_mask,
449 PAGE_READ | PAGE_EXEC | PAGE_VALID);
ee947430 450 return true;
97cc7560 451}
adf050b1
BC
452
453#define ELF_HWCAP get_elf_hwcap()
ad6919dc 454#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
455
456static uint32_t get_elf_hwcap(void)
457{
a2247f8e 458 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
459 uint32_t hwcaps = 0;
460
461 hwcaps |= ARM_HWCAP_ARM_SWP;
462 hwcaps |= ARM_HWCAP_ARM_HALF;
463 hwcaps |= ARM_HWCAP_ARM_THUMB;
464 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
465
466 /* probe for the extra features */
467#define GET_FEATURE(feat, hwcap) \
a2247f8e 468 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
962fcbf2
RH
469
470#define GET_FEATURE_ID(feat, hwcap) \
471 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
472
24682654
PM
473 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
474 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
475 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
476 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
477 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
24682654 478 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
bfa8a370 479 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
873b73c0
PM
480 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
481 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
bfa8a370
RH
482 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
483
484 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
485 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
486 hwcaps |= ARM_HWCAP_ARM_VFPv3;
487 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
488 hwcaps |= ARM_HWCAP_ARM_VFPD32;
489 } else {
490 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
491 }
492 }
493 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
adf050b1
BC
494
495 return hwcaps;
496}
afce2927 497
ad6919dc
PM
498static uint32_t get_elf_hwcap2(void)
499{
500 ARMCPU *cpu = ARM_CPU(thread_cpu);
501 uint32_t hwcaps = 0;
502
962fcbf2
RH
503 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
504 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
505 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
506 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
507 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
ad6919dc
PM
508 return hwcaps;
509}
510
511#undef GET_FEATURE
962fcbf2 512#undef GET_FEATURE_ID
ad6919dc 513
13ec4ec3
RH
514#define ELF_PLATFORM get_elf_platform()
515
516static const char *get_elf_platform(void)
517{
518 CPUARMState *env = thread_cpu->env_ptr;
519
ee3eb3a7 520#if TARGET_BIG_ENDIAN
13ec4ec3
RH
521# define END "b"
522#else
523# define END "l"
524#endif
525
526 if (arm_feature(env, ARM_FEATURE_V8)) {
527 return "v8" END;
528 } else if (arm_feature(env, ARM_FEATURE_V7)) {
529 if (arm_feature(env, ARM_FEATURE_M)) {
530 return "v7m" END;
531 } else {
532 return "v7" END;
533 }
534 } else if (arm_feature(env, ARM_FEATURE_V6)) {
535 return "v6" END;
536 } else if (arm_feature(env, ARM_FEATURE_V5)) {
537 return "v5" END;
538 } else {
539 return "v4" END;
540 }
541
542#undef END
543}
544
24e76ff0
PM
545#else
546/* 64 bit ARM definitions */
547#define ELF_START_MMAP 0x80000000
548
b597c3f7 549#define ELF_ARCH EM_AARCH64
24e76ff0 550#define ELF_CLASS ELFCLASS64
ee3eb3a7 551#if TARGET_BIG_ENDIAN
e20e3ec9
RH
552# define ELF_PLATFORM "aarch64_be"
553#else
554# define ELF_PLATFORM "aarch64"
555#endif
24e76ff0
PM
556
557static inline void init_thread(struct target_pt_regs *regs,
558 struct image_info *infop)
559{
560 abi_long stack = infop->start_stack;
561 memset(regs, 0, sizeof(*regs));
562
563 regs->pc = infop->entry & ~0x3ULL;
564 regs->sp = stack;
565}
566
567#define ELF_NREG 34
568typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
569
570static void elf_core_copy_regs(target_elf_gregset_t *regs,
571 const CPUARMState *env)
572{
573 int i;
574
575 for (i = 0; i < 32; i++) {
576 (*regs)[i] = tswapreg(env->xregs[i]);
577 }
578 (*regs)[32] = tswapreg(env->pc);
579 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
580}
581
582#define USE_ELF_CORE_DUMP
583#define ELF_EXEC_PAGESIZE 4096
584
585enum {
586 ARM_HWCAP_A64_FP = 1 << 0,
587 ARM_HWCAP_A64_ASIMD = 1 << 1,
588 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
589 ARM_HWCAP_A64_AES = 1 << 3,
590 ARM_HWCAP_A64_PMULL = 1 << 4,
591 ARM_HWCAP_A64_SHA1 = 1 << 5,
592 ARM_HWCAP_A64_SHA2 = 1 << 6,
593 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
594 ARM_HWCAP_A64_ATOMICS = 1 << 8,
595 ARM_HWCAP_A64_FPHP = 1 << 9,
596 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
597 ARM_HWCAP_A64_CPUID = 1 << 11,
598 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
599 ARM_HWCAP_A64_JSCVT = 1 << 13,
600 ARM_HWCAP_A64_FCMA = 1 << 14,
601 ARM_HWCAP_A64_LRCPC = 1 << 15,
602 ARM_HWCAP_A64_DCPOP = 1 << 16,
603 ARM_HWCAP_A64_SHA3 = 1 << 17,
604 ARM_HWCAP_A64_SM3 = 1 << 18,
605 ARM_HWCAP_A64_SM4 = 1 << 19,
606 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
607 ARM_HWCAP_A64_SHA512 = 1 << 21,
608 ARM_HWCAP_A64_SVE = 1 << 22,
0083a1fa
RH
609 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
610 ARM_HWCAP_A64_DIT = 1 << 24,
611 ARM_HWCAP_A64_USCAT = 1 << 25,
612 ARM_HWCAP_A64_ILRCPC = 1 << 26,
613 ARM_HWCAP_A64_FLAGM = 1 << 27,
614 ARM_HWCAP_A64_SSBS = 1 << 28,
615 ARM_HWCAP_A64_SB = 1 << 29,
616 ARM_HWCAP_A64_PACA = 1 << 30,
617 ARM_HWCAP_A64_PACG = 1UL << 31,
2041df4a
RH
618
619 ARM_HWCAP2_A64_DCPODP = 1 << 0,
620 ARM_HWCAP2_A64_SVE2 = 1 << 1,
621 ARM_HWCAP2_A64_SVEAES = 1 << 2,
622 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
623 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
624 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
625 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
626 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
627 ARM_HWCAP2_A64_FRINT = 1 << 8,
68948d18
RH
628 ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
629 ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
630 ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
631 ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
632 ARM_HWCAP2_A64_I8MM = 1 << 13,
633 ARM_HWCAP2_A64_BF16 = 1 << 14,
634 ARM_HWCAP2_A64_DGH = 1 << 15,
635 ARM_HWCAP2_A64_RNG = 1 << 16,
636 ARM_HWCAP2_A64_BTI = 1 << 17,
637 ARM_HWCAP2_A64_MTE = 1 << 18,
f9982cea
RH
638 ARM_HWCAP2_A64_ECV = 1 << 19,
639 ARM_HWCAP2_A64_AFP = 1 << 20,
640 ARM_HWCAP2_A64_RPRES = 1 << 21,
641 ARM_HWCAP2_A64_MTE3 = 1 << 22,
642 ARM_HWCAP2_A64_SME = 1 << 23,
643 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24,
644 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25,
645 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26,
646 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27,
647 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28,
648 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29,
649 ARM_HWCAP2_A64_SME_FA64 = 1 << 30,
24e76ff0
PM
650};
651
2041df4a
RH
652#define ELF_HWCAP get_elf_hwcap()
653#define ELF_HWCAP2 get_elf_hwcap2()
654
655#define GET_FEATURE_ID(feat, hwcap) \
656 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
24e76ff0
PM
657
658static uint32_t get_elf_hwcap(void)
659{
660 ARMCPU *cpu = ARM_CPU(thread_cpu);
661 uint32_t hwcaps = 0;
662
663 hwcaps |= ARM_HWCAP_A64_FP;
664 hwcaps |= ARM_HWCAP_A64_ASIMD;
37020ff1 665 hwcaps |= ARM_HWCAP_A64_CPUID;
24e76ff0
PM
666
667 /* probe for the extra features */
962fcbf2
RH
668
669 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
670 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
671 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
672 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
673 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
674 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
675 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
676 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
677 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
5763190f 678 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
962fcbf2
RH
679 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
680 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
681 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
682 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
cd208a1c 683 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
29d26ab2 684 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
1c9af3a9
RH
685 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
686 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
9888bd1e 687 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
b89d9c98 688 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
0d57b499 689 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
2677cf9f 690 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
a1229109 691 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
962fcbf2 692
2041df4a
RH
693 return hwcaps;
694}
695
696static uint32_t get_elf_hwcap2(void)
697{
698 ARMCPU *cpu = ARM_CPU(thread_cpu);
699 uint32_t hwcaps = 0;
700
0d57b499 701 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
cdc8d8b2
RH
702 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
703 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
704 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
705 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
706 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
707 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
2041df4a
RH
708 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
709 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
cdc8d8b2
RH
710 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
711 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
712 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
6c47a905 713 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
cdc8d8b2 714 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
6c47a905 715 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
68948d18
RH
716 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
717 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
718 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
f9982cea
RH
719 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
720 ARM_HWCAP2_A64_SME_F32F32 |
721 ARM_HWCAP2_A64_SME_B16F32 |
722 ARM_HWCAP2_A64_SME_F16F32 |
723 ARM_HWCAP2_A64_SME_I8I32));
724 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
725 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
726 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
24e76ff0
PM
727
728 return hwcaps;
729}
730
2041df4a
RH
731#undef GET_FEATURE_ID
732
24e76ff0
PM
733#endif /* not TARGET_AARCH64 */
734#endif /* TARGET_ARM */
30ac07d4 735
853d6f7a 736#ifdef TARGET_SPARC
a315a145 737#ifdef TARGET_SPARC64
853d6f7a
FB
738
739#define ELF_START_MMAP 0x80000000
cf973e46
AT
740#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
741 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 742#ifndef TARGET_ABI32
cb33da57 743#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
744#else
745#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
746#endif
853d6f7a 747
a315a145 748#define ELF_CLASS ELFCLASS64
5ef54116 749#define ELF_ARCH EM_SPARCV9
a315a145
FB
750#else
751#define ELF_START_MMAP 0x80000000
cf973e46
AT
752#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
753 | HWCAP_SPARC_MULDIV)
853d6f7a 754#define ELF_CLASS ELFCLASS32
853d6f7a 755#define ELF_ARCH EM_SPARC
089a2256 756#endif /* TARGET_SPARC64 */
853d6f7a 757
d97ef72e
RH
758static inline void init_thread(struct target_pt_regs *regs,
759 struct image_info *infop)
853d6f7a 760{
089a2256 761 /* Note that target_cpu_copy_regs does not read psr/tstate. */
f5155289
FB
762 regs->pc = infop->entry;
763 regs->npc = regs->pc + 4;
764 regs->y = 0;
089a2256
RH
765 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
766 - TARGET_STACK_BIAS);
853d6f7a 767}
089a2256 768#endif /* TARGET_SPARC */
853d6f7a 769
67867308
FB
770#ifdef TARGET_PPC
771
4ecd4d16 772#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
773#define ELF_START_MMAP 0x80000000
774
74154d7e 775#if defined(TARGET_PPC64)
84409ddb
JM
776
777#define elf_check_arch(x) ( (x) == EM_PPC64 )
778
d97ef72e 779#define ELF_CLASS ELFCLASS64
84409ddb
JM
780
781#else
782
d97ef72e 783#define ELF_CLASS ELFCLASS32
872f3d04 784#define EXSTACK_DEFAULT true
84409ddb
JM
785
786#endif
787
d97ef72e 788#define ELF_ARCH EM_PPC
67867308 789
df84e4f3
NF
790/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
791 See arch/powerpc/include/asm/cputable.h. */
792enum {
3efa9a67 793 QEMU_PPC_FEATURE_32 = 0x80000000,
794 QEMU_PPC_FEATURE_64 = 0x40000000,
795 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
796 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
797 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
798 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
799 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
800 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
801 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
802 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
803 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
804 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
805 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
806 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
807 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
808 QEMU_PPC_FEATURE_CELL = 0x00010000,
809 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
810 QEMU_PPC_FEATURE_SMT = 0x00004000,
811 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
812 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
813 QEMU_PPC_FEATURE_PA6T = 0x00000800,
814 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
815 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
816 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
817 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
818 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
819
820 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
821 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
822
823 /* Feature definitions in AT_HWCAP2. */
824 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
825 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
826 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
827 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
828 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
829 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
24c373ec
LV
830 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
831 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
be0c46d4 832 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
24c373ec
LV
833 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
834 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
835 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
836 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
96c343cc
JS
837 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
838 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
df84e4f3
NF
839};
840
841#define ELF_HWCAP get_elf_hwcap()
842
843static uint32_t get_elf_hwcap(void)
844{
a2247f8e 845 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
846 uint32_t features = 0;
847
848 /* We don't have to be terribly complete here; the high points are
849 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 850#define GET_FEATURE(flag, feature) \
a2247f8e 851 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
852#define GET_FEATURE2(flags, feature) \
853 do { \
854 if ((cpu->env.insns_flags2 & flags) == flags) { \
855 features |= feature; \
856 } \
857 } while (0)
3efa9a67 858 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
859 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
860 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
861 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
862 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
863 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
864 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
865 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
866 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
867 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
868 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
869 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
870 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 871#undef GET_FEATURE
0e019746 872#undef GET_FEATURE2
df84e4f3
NF
873
874 return features;
875}
876
a60438dd
TM
877#define ELF_HWCAP2 get_elf_hwcap2()
878
879static uint32_t get_elf_hwcap2(void)
880{
881 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
882 uint32_t features = 0;
883
884#define GET_FEATURE(flag, feature) \
885 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
886#define GET_FEATURE2(flag, feature) \
887 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
888
889 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
890 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
891 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
24c373ec
LV
892 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
893 QEMU_PPC_FEATURE2_VEC_CRYPTO);
894 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
8a589aeb 895 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
96c343cc
JS
896 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
897 QEMU_PPC_FEATURE2_MMA);
a60438dd
TM
898
899#undef GET_FEATURE
900#undef GET_FEATURE2
901
902 return features;
903}
904
f5155289
FB
905/*
906 * The requirements here are:
907 * - keep the final alignment of sp (sp & 0xf)
908 * - make sure the 32-bit value at the first 16 byte aligned position of
909 * AUXV is greater than 16 for glibc compatibility.
910 * AT_IGNOREPPC is used for that.
911 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
912 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
913 */
0bccf03d 914#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
915#define ARCH_DLINFO \
916 do { \
623e250a 917 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 918 /* \
82991bed
PM
919 * Handle glibc compatibility: these magic entries must \
920 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
921 */ \
922 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
923 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
924 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
925 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
926 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 927 } while (0)
f5155289 928
67867308
FB
929static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
930{
67867308 931 _regs->gpr[1] = infop->start_stack;
74154d7e 932#if defined(TARGET_PPC64)
d90b94cd 933 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
934 uint64_t val;
935 get_user_u64(val, infop->entry + 8);
936 _regs->gpr[2] = val + infop->load_bias;
937 get_user_u64(val, infop->entry);
938 infop->entry = val + infop->load_bias;
d90b94cd
DK
939 } else {
940 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
941 }
84409ddb 942#endif
67867308
FB
943 _regs->nip = infop->entry;
944}
945
e2f3e741
NF
946/* See linux kernel: arch/powerpc/include/asm/elf.h. */
947#define ELF_NREG 48
948typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
949
05390248 950static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
951{
952 int i;
953 target_ulong ccr = 0;
954
955 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 956 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
957 }
958
86cd7b2d
PB
959 (*regs)[32] = tswapreg(env->nip);
960 (*regs)[33] = tswapreg(env->msr);
961 (*regs)[35] = tswapreg(env->ctr);
962 (*regs)[36] = tswapreg(env->lr);
10de0521 963 (*regs)[37] = tswapreg(cpu_read_xer(env));
e2f3e741 964
2060436a 965 ccr = ppc_get_cr(env);
86cd7b2d 966 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
967}
968
969#define USE_ELF_CORE_DUMP
d97ef72e 970#define ELF_EXEC_PAGESIZE 4096
67867308
FB
971
972#endif
973
3418fe25
SG
974#ifdef TARGET_LOONGARCH64
975
976#define ELF_START_MMAP 0x80000000
977
978#define ELF_CLASS ELFCLASS64
979#define ELF_ARCH EM_LOONGARCH
872f3d04 980#define EXSTACK_DEFAULT true
3418fe25
SG
981
982#define elf_check_arch(x) ((x) == EM_LOONGARCH)
983
984static inline void init_thread(struct target_pt_regs *regs,
985 struct image_info *infop)
986{
987 /*Set crmd PG,DA = 1,0 */
988 regs->csr.crmd = 2 << 3;
989 regs->csr.era = infop->entry;
990 regs->regs[3] = infop->start_stack;
991}
992
993/* See linux kernel: arch/loongarch/include/asm/elf.h */
994#define ELF_NREG 45
995typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
996
997enum {
998 TARGET_EF_R0 = 0,
999 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1000 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1001};
1002
1003static void elf_core_copy_regs(target_elf_gregset_t *regs,
1004 const CPULoongArchState *env)
1005{
1006 int i;
1007
1008 (*regs)[TARGET_EF_R0] = 0;
1009
1010 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1011 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1012 }
1013
1014 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1015 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1016}
1017
1018#define USE_ELF_CORE_DUMP
1019#define ELF_EXEC_PAGESIZE 4096
1020
1021#define ELF_HWCAP get_elf_hwcap()
1022
1023/* See arch/loongarch/include/uapi/asm/hwcap.h */
1024enum {
1025 HWCAP_LOONGARCH_CPUCFG = (1 << 0),
1026 HWCAP_LOONGARCH_LAM = (1 << 1),
1027 HWCAP_LOONGARCH_UAL = (1 << 2),
1028 HWCAP_LOONGARCH_FPU = (1 << 3),
1029 HWCAP_LOONGARCH_LSX = (1 << 4),
1030 HWCAP_LOONGARCH_LASX = (1 << 5),
1031 HWCAP_LOONGARCH_CRC32 = (1 << 6),
1032 HWCAP_LOONGARCH_COMPLEX = (1 << 7),
1033 HWCAP_LOONGARCH_CRYPTO = (1 << 8),
1034 HWCAP_LOONGARCH_LVZ = (1 << 9),
1035 HWCAP_LOONGARCH_LBT_X86 = (1 << 10),
1036 HWCAP_LOONGARCH_LBT_ARM = (1 << 11),
1037 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1038};
1039
1040static uint32_t get_elf_hwcap(void)
1041{
1042 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1043 uint32_t hwcaps = 0;
1044
1045 hwcaps |= HWCAP_LOONGARCH_CRC32;
1046
1047 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1048 hwcaps |= HWCAP_LOONGARCH_UAL;
1049 }
1050
1051 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1052 hwcaps |= HWCAP_LOONGARCH_FPU;
1053 }
1054
1055 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1056 hwcaps |= HWCAP_LOONGARCH_LAM;
1057 }
1058
1059 return hwcaps;
1060}
1061
1062#define ELF_PLATFORM "loongarch"
1063
1064#endif /* TARGET_LOONGARCH64 */
1065
048f6b4d
FB
1066#ifdef TARGET_MIPS
1067
1068#define ELF_START_MMAP 0x80000000
1069
388bb21a
TS
1070#ifdef TARGET_MIPS64
1071#define ELF_CLASS ELFCLASS64
1072#else
048f6b4d 1073#define ELF_CLASS ELFCLASS32
388bb21a 1074#endif
048f6b4d 1075#define ELF_ARCH EM_MIPS
872f3d04 1076#define EXSTACK_DEFAULT true
048f6b4d 1077
ace3d654
CMAB
1078#ifdef TARGET_ABI_MIPSN32
1079#define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1080#else
1081#define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1082#endif
1083
fbf47c18
JY
1084#define ELF_BASE_PLATFORM get_elf_base_platform()
1085
1086#define MATCH_PLATFORM_INSN(_flags, _base_platform) \
1087 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1088 { return _base_platform; } } while (0)
1089
1090static const char *get_elf_base_platform(void)
1091{
1092 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1093
1094 /* 64 bit ISAs goes first */
1095 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1096 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1097 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1098 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1099 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1100 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1101 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1102
1103 /* 32 bit ISAs */
1104 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1105 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1106 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1107 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1108 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1109
1110 /* Fallback */
1111 return "mips";
1112}
1113#undef MATCH_PLATFORM_INSN
1114
d97ef72e
RH
1115static inline void init_thread(struct target_pt_regs *regs,
1116 struct image_info *infop)
048f6b4d 1117{
623a930e 1118 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
1119 regs->cp0_epc = infop->entry;
1120 regs->regs[29] = infop->start_stack;
1121}
1122
51e52606
NF
1123/* See linux kernel: arch/mips/include/asm/elf.h. */
1124#define ELF_NREG 45
1125typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1126
1127/* See linux kernel: arch/mips/include/asm/reg.h. */
1128enum {
1129#ifdef TARGET_MIPS64
1130 TARGET_EF_R0 = 0,
1131#else
1132 TARGET_EF_R0 = 6,
1133#endif
1134 TARGET_EF_R26 = TARGET_EF_R0 + 26,
1135 TARGET_EF_R27 = TARGET_EF_R0 + 27,
1136 TARGET_EF_LO = TARGET_EF_R0 + 32,
1137 TARGET_EF_HI = TARGET_EF_R0 + 33,
1138 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1139 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1140 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1141 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1142};
1143
1144/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1145static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
1146{
1147 int i;
1148
1149 for (i = 0; i < TARGET_EF_R0; i++) {
1150 (*regs)[i] = 0;
1151 }
1152 (*regs)[TARGET_EF_R0] = 0;
1153
1154 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 1155 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
1156 }
1157
1158 (*regs)[TARGET_EF_R26] = 0;
1159 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
1160 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1161 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1162 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1163 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1164 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1165 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
1166}
1167
1168#define USE_ELF_CORE_DUMP
388bb21a
TS
1169#define ELF_EXEC_PAGESIZE 4096
1170
46a1ee4f
JC
1171/* See arch/mips/include/uapi/asm/hwcap.h. */
1172enum {
1173 HWCAP_MIPS_R6 = (1 << 0),
1174 HWCAP_MIPS_MSA = (1 << 1),
9ea313ba
PMD
1175 HWCAP_MIPS_CRC32 = (1 << 2),
1176 HWCAP_MIPS_MIPS16 = (1 << 3),
1177 HWCAP_MIPS_MDMX = (1 << 4),
1178 HWCAP_MIPS_MIPS3D = (1 << 5),
1179 HWCAP_MIPS_SMARTMIPS = (1 << 6),
1180 HWCAP_MIPS_DSP = (1 << 7),
1181 HWCAP_MIPS_DSP2 = (1 << 8),
1182 HWCAP_MIPS_DSP3 = (1 << 9),
1183 HWCAP_MIPS_MIPS16E2 = (1 << 10),
1184 HWCAP_LOONGSON_MMI = (1 << 11),
1185 HWCAP_LOONGSON_EXT = (1 << 12),
1186 HWCAP_LOONGSON_EXT2 = (1 << 13),
1187 HWCAP_LOONGSON_CPUCFG = (1 << 14),
46a1ee4f
JC
1188};
1189
1190#define ELF_HWCAP get_elf_hwcap()
1191
7d9a3d96 1192#define GET_FEATURE_INSN(_flag, _hwcap) \
6dd97bfc
PMD
1193 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1194
388765a0
PMD
1195#define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1196 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1197
ce543844
PMD
1198#define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1199 do { \
1200 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1201 hwcaps |= _hwcap; \
1202 } \
1203 } while (0)
1204
46a1ee4f
JC
1205static uint32_t get_elf_hwcap(void)
1206{
1207 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1208 uint32_t hwcaps = 0;
1209
ce543844
PMD
1210 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1211 2, HWCAP_MIPS_R6);
388765a0 1212 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
53673d0f
PMD
1213 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1214 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
46a1ee4f 1215
46a1ee4f
JC
1216 return hwcaps;
1217}
1218
ce543844 1219#undef GET_FEATURE_REG_EQU
388765a0 1220#undef GET_FEATURE_REG_SET
7d9a3d96 1221#undef GET_FEATURE_INSN
6dd97bfc 1222
048f6b4d
FB
1223#endif /* TARGET_MIPS */
1224
b779e29e
EI
1225#ifdef TARGET_MICROBLAZE
1226
1227#define ELF_START_MMAP 0x80000000
1228
0d5d4699 1229#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
1230
1231#define ELF_CLASS ELFCLASS32
0d5d4699 1232#define ELF_ARCH EM_MICROBLAZE
b779e29e 1233
d97ef72e
RH
1234static inline void init_thread(struct target_pt_regs *regs,
1235 struct image_info *infop)
b779e29e
EI
1236{
1237 regs->pc = infop->entry;
1238 regs->r1 = infop->start_stack;
1239
1240}
1241
b779e29e
EI
1242#define ELF_EXEC_PAGESIZE 4096
1243
e4cbd44d
EI
1244#define USE_ELF_CORE_DUMP
1245#define ELF_NREG 38
1246typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1247
1248/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1249static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
1250{
1251 int i, pos = 0;
1252
1253 for (i = 0; i < 32; i++) {
86cd7b2d 1254 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
1255 }
1256
af20a93a 1257 (*regs)[pos++] = tswapreg(env->pc);
1074c0fb 1258 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
af20a93a
RH
1259 (*regs)[pos++] = 0;
1260 (*regs)[pos++] = tswapreg(env->ear);
1261 (*regs)[pos++] = 0;
1262 (*regs)[pos++] = tswapreg(env->esr);
e4cbd44d
EI
1263}
1264
b779e29e
EI
1265#endif /* TARGET_MICROBLAZE */
1266
a0a839b6
MV
1267#ifdef TARGET_NIOS2
1268
1269#define ELF_START_MMAP 0x80000000
1270
1271#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1272
1273#define ELF_CLASS ELFCLASS32
1274#define ELF_ARCH EM_ALTERA_NIOS2
1275
1276static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1277{
1278 regs->ea = infop->entry;
1279 regs->sp = infop->start_stack;
a0a839b6
MV
1280}
1281
f5ef0e51
RH
1282#define LO_COMMPAGE TARGET_PAGE_SIZE
1283
1284static bool init_guest_commpage(void)
1285{
1286 static const uint8_t kuser_page[4 + 2 * 64] = {
1287 /* __kuser_helper_version */
1288 [0x00] = 0x02, 0x00, 0x00, 0x00,
1289
1290 /* __kuser_cmpxchg */
1291 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */
1292 0x3a, 0x28, 0x00, 0xf8, /* ret */
1293
1294 /* __kuser_sigtramp */
1295 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */
1296 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */
1297 };
1298
1299 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1300 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1301 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1302
1303 if (addr == MAP_FAILED) {
1304 perror("Allocating guest commpage");
1305 exit(EXIT_FAILURE);
1306 }
1307 if (addr != want) {
1308 return false;
1309 }
1310
1311 memcpy(addr, kuser_page, sizeof(kuser_page));
1312
1313 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1314 perror("Protecting guest commpage");
1315 exit(EXIT_FAILURE);
1316 }
1317
49840a4a 1318 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
f5ef0e51
RH
1319 PAGE_READ | PAGE_EXEC | PAGE_VALID);
1320 return true;
1321}
1322
a0a839b6
MV
1323#define ELF_EXEC_PAGESIZE 4096
1324
1325#define USE_ELF_CORE_DUMP
1326#define ELF_NREG 49
1327typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1328
1329/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1330static void elf_core_copy_regs(target_elf_gregset_t *regs,
1331 const CPUNios2State *env)
1332{
1333 int i;
1334
1335 (*regs)[0] = -1;
1336 for (i = 1; i < 8; i++) /* r0-r7 */
1337 (*regs)[i] = tswapreg(env->regs[i + 7]);
1338
1339 for (i = 8; i < 16; i++) /* r8-r15 */
1340 (*regs)[i] = tswapreg(env->regs[i - 8]);
1341
1342 for (i = 16; i < 24; i++) /* r16-r23 */
1343 (*regs)[i] = tswapreg(env->regs[i + 7]);
1344 (*regs)[24] = -1; /* R_ET */
1345 (*regs)[25] = -1; /* R_BT */
1346 (*regs)[26] = tswapreg(env->regs[R_GP]);
1347 (*regs)[27] = tswapreg(env->regs[R_SP]);
1348 (*regs)[28] = tswapreg(env->regs[R_FP]);
1349 (*regs)[29] = tswapreg(env->regs[R_EA]);
1350 (*regs)[30] = -1; /* R_SSTATUS */
1351 (*regs)[31] = tswapreg(env->regs[R_RA]);
1352
17a406ee 1353 (*regs)[32] = tswapreg(env->pc);
a0a839b6
MV
1354
1355 (*regs)[33] = -1; /* R_STATUS */
1356 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1357
1358 for (i = 35; i < 49; i++) /* ... */
1359 (*regs)[i] = -1;
1360}
1361
1362#endif /* TARGET_NIOS2 */
1363
d962783e
JL
1364#ifdef TARGET_OPENRISC
1365
1366#define ELF_START_MMAP 0x08000000
1367
d962783e
JL
1368#define ELF_ARCH EM_OPENRISC
1369#define ELF_CLASS ELFCLASS32
1370#define ELF_DATA ELFDATA2MSB
1371
1372static inline void init_thread(struct target_pt_regs *regs,
1373 struct image_info *infop)
1374{
1375 regs->pc = infop->entry;
1376 regs->gpr[1] = infop->start_stack;
1377}
1378
1379#define USE_ELF_CORE_DUMP
1380#define ELF_EXEC_PAGESIZE 8192
1381
1382/* See linux kernel arch/openrisc/include/asm/elf.h. */
1383#define ELF_NREG 34 /* gprs and pc, sr */
1384typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1385
1386static void elf_core_copy_regs(target_elf_gregset_t *regs,
1387 const CPUOpenRISCState *env)
1388{
1389 int i;
1390
1391 for (i = 0; i < 32; i++) {
d89e71e8 1392 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1393 }
86cd7b2d 1394 (*regs)[32] = tswapreg(env->pc);
84775c43 1395 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1396}
1397#define ELF_HWCAP 0
1398#define ELF_PLATFORM NULL
1399
1400#endif /* TARGET_OPENRISC */
1401
fdf9b3e8
FB
1402#ifdef TARGET_SH4
1403
1404#define ELF_START_MMAP 0x80000000
1405
fdf9b3e8 1406#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1407#define ELF_ARCH EM_SH
1408
d97ef72e
RH
1409static inline void init_thread(struct target_pt_regs *regs,
1410 struct image_info *infop)
fdf9b3e8 1411{
d97ef72e
RH
1412 /* Check other registers XXXXX */
1413 regs->pc = infop->entry;
1414 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1415}
1416
7631c97e
NF
1417/* See linux kernel: arch/sh/include/asm/elf.h. */
1418#define ELF_NREG 23
1419typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1420
1421/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1422enum {
1423 TARGET_REG_PC = 16,
1424 TARGET_REG_PR = 17,
1425 TARGET_REG_SR = 18,
1426 TARGET_REG_GBR = 19,
1427 TARGET_REG_MACH = 20,
1428 TARGET_REG_MACL = 21,
1429 TARGET_REG_SYSCALL = 22
1430};
1431
d97ef72e 1432static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1433 const CPUSH4State *env)
7631c97e
NF
1434{
1435 int i;
1436
1437 for (i = 0; i < 16; i++) {
72cd500b 1438 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1439 }
1440
86cd7b2d
PB
1441 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1442 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1443 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1444 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1445 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1446 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1447 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1448}
1449
1450#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1451#define ELF_EXEC_PAGESIZE 4096
1452
e42fd944
RH
1453enum {
1454 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1455 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1456 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1457 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1458 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1459 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1460 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1461 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1462 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1463 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1464};
1465
1466#define ELF_HWCAP get_elf_hwcap()
1467
1468static uint32_t get_elf_hwcap(void)
1469{
1470 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1471 uint32_t hwcap = 0;
1472
1473 hwcap |= SH_CPU_HAS_FPU;
1474
1475 if (cpu->env.features & SH_FEATURE_SH4A) {
1476 hwcap |= SH_CPU_HAS_LLSC;
1477 }
1478
1479 return hwcap;
1480}
1481
fdf9b3e8
FB
1482#endif
1483
48733d19
TS
1484#ifdef TARGET_CRIS
1485
1486#define ELF_START_MMAP 0x80000000
1487
48733d19 1488#define ELF_CLASS ELFCLASS32
48733d19
TS
1489#define ELF_ARCH EM_CRIS
1490
d97ef72e
RH
1491static inline void init_thread(struct target_pt_regs *regs,
1492 struct image_info *infop)
48733d19 1493{
d97ef72e 1494 regs->erp = infop->entry;
48733d19
TS
1495}
1496
48733d19
TS
1497#define ELF_EXEC_PAGESIZE 8192
1498
1499#endif
1500
e6e5906b
PB
1501#ifdef TARGET_M68K
1502
1503#define ELF_START_MMAP 0x80000000
1504
d97ef72e 1505#define ELF_CLASS ELFCLASS32
d97ef72e 1506#define ELF_ARCH EM_68K
e6e5906b
PB
1507
1508/* ??? Does this need to do anything?
d97ef72e 1509 #define ELF_PLAT_INIT(_r) */
e6e5906b 1510
d97ef72e
RH
1511static inline void init_thread(struct target_pt_regs *regs,
1512 struct image_info *infop)
e6e5906b
PB
1513{
1514 regs->usp = infop->start_stack;
1515 regs->sr = 0;
1516 regs->pc = infop->entry;
1517}
1518
7a93cc55
NF
1519/* See linux kernel: arch/m68k/include/asm/elf.h. */
1520#define ELF_NREG 20
1521typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1522
05390248 1523static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1524{
86cd7b2d
PB
1525 (*regs)[0] = tswapreg(env->dregs[1]);
1526 (*regs)[1] = tswapreg(env->dregs[2]);
1527 (*regs)[2] = tswapreg(env->dregs[3]);
1528 (*regs)[3] = tswapreg(env->dregs[4]);
1529 (*regs)[4] = tswapreg(env->dregs[5]);
1530 (*regs)[5] = tswapreg(env->dregs[6]);
1531 (*regs)[6] = tswapreg(env->dregs[7]);
1532 (*regs)[7] = tswapreg(env->aregs[0]);
1533 (*regs)[8] = tswapreg(env->aregs[1]);
1534 (*regs)[9] = tswapreg(env->aregs[2]);
1535 (*regs)[10] = tswapreg(env->aregs[3]);
1536 (*regs)[11] = tswapreg(env->aregs[4]);
1537 (*regs)[12] = tswapreg(env->aregs[5]);
1538 (*regs)[13] = tswapreg(env->aregs[6]);
1539 (*regs)[14] = tswapreg(env->dregs[0]);
1540 (*regs)[15] = tswapreg(env->aregs[7]);
1541 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1542 (*regs)[17] = tswapreg(env->sr);
1543 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1544 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1545}
1546
1547#define USE_ELF_CORE_DUMP
d97ef72e 1548#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1549
1550#endif
1551
7a3148a9
JM
1552#ifdef TARGET_ALPHA
1553
1554#define ELF_START_MMAP (0x30000000000ULL)
1555
7a3148a9 1556#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1557#define ELF_ARCH EM_ALPHA
1558
d97ef72e
RH
1559static inline void init_thread(struct target_pt_regs *regs,
1560 struct image_info *infop)
7a3148a9
JM
1561{
1562 regs->pc = infop->entry;
1563 regs->ps = 8;
1564 regs->usp = infop->start_stack;
7a3148a9
JM
1565}
1566
7a3148a9
JM
1567#define ELF_EXEC_PAGESIZE 8192
1568
1569#endif /* TARGET_ALPHA */
1570
a4c075f1
UH
1571#ifdef TARGET_S390X
1572
1573#define ELF_START_MMAP (0x20000000000ULL)
1574
a4c075f1
UH
1575#define ELF_CLASS ELFCLASS64
1576#define ELF_DATA ELFDATA2MSB
1577#define ELF_ARCH EM_S390
1578
6d88baf1
DH
1579#include "elf.h"
1580
1581#define ELF_HWCAP get_elf_hwcap()
1582
1583#define GET_FEATURE(_feat, _hwcap) \
1584 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1585
e1b819c8 1586uint32_t get_elf_hwcap(void)
6d88baf1
DH
1587{
1588 /*
1589 * Let's assume we always have esan3 and zarch.
1590 * 31-bit processes can use 64-bit registers (high gprs).
1591 */
1592 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1593
1594 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1595 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1596 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1597 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1598 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1599 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1600 hwcap |= HWCAP_S390_ETF3EH;
1601 }
1602 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
da215c23 1603 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
6d88baf1
DH
1604
1605 return hwcap;
1606}
1607
e19807be
IL
1608const char *elf_hwcap_str(uint32_t bit)
1609{
1610 static const char *hwcap_str[] = {
1611 [HWCAP_S390_ESAN3] = "esan3",
1612 [HWCAP_S390_ZARCH] = "zarch",
1613 [HWCAP_S390_STFLE] = "stfle",
1614 [HWCAP_S390_MSA] = "msa",
1615 [HWCAP_S390_LDISP] = "ldisp",
1616 [HWCAP_S390_EIMM] = "eimm",
1617 [HWCAP_S390_DFP] = "dfp",
1618 [HWCAP_S390_HPAGE] = "edat",
1619 [HWCAP_S390_ETF3EH] = "etf3eh",
1620 [HWCAP_S390_HIGH_GPRS] = "highgprs",
1621 [HWCAP_S390_TE] = "te",
1622 [HWCAP_S390_VXRS] = "vx",
1623 [HWCAP_S390_VXRS_BCD] = "vxd",
1624 [HWCAP_S390_VXRS_EXT] = "vxe",
1625 [HWCAP_S390_GS] = "gs",
1626 [HWCAP_S390_VXRS_EXT2] = "vxe2",
1627 [HWCAP_S390_VXRS_PDE] = "vxp",
1628 [HWCAP_S390_SORT] = "sort",
1629 [HWCAP_S390_DFLT] = "dflt",
1630 };
1631
1632 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1633}
1634
a4c075f1
UH
1635static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1636{
1637 regs->psw.addr = infop->entry;
1638 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1639 regs->gprs[15] = infop->start_stack;
1640}
1641
4a1e8931
IL
1642/* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1643#define ELF_NREG 27
1644typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1645
1646enum {
1647 TARGET_REG_PSWM = 0,
1648 TARGET_REG_PSWA = 1,
1649 TARGET_REG_GPRS = 2,
1650 TARGET_REG_ARS = 18,
1651 TARGET_REG_ORIG_R2 = 26,
1652};
1653
1654static void elf_core_copy_regs(target_elf_gregset_t *regs,
1655 const CPUS390XState *env)
1656{
1657 int i;
1658 uint32_t *aregs;
1659
1660 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1661 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1662 for (i = 0; i < 16; i++) {
1663 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1664 }
1665 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1666 for (i = 0; i < 16; i++) {
1667 aregs[i] = tswap32(env->aregs[i]);
1668 }
1669 (*regs)[TARGET_REG_ORIG_R2] = 0;
1670}
1671
1672#define USE_ELF_CORE_DUMP
1673#define ELF_EXEC_PAGESIZE 4096
1674
a4c075f1
UH
1675#endif /* TARGET_S390X */
1676
47ae93cd
MC
1677#ifdef TARGET_RISCV
1678
1679#define ELF_START_MMAP 0x80000000
1680#define ELF_ARCH EM_RISCV
1681
1682#ifdef TARGET_RISCV32
1683#define ELF_CLASS ELFCLASS32
1684#else
1685#define ELF_CLASS ELFCLASS64
1686#endif
1687
cb46938c
KC
1688#define ELF_HWCAP get_elf_hwcap()
1689
1690static uint32_t get_elf_hwcap(void)
1691{
1692#define MISA_BIT(EXT) (1 << (EXT - 'A'))
1693 RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1694 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1695 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1696
e91a7227 1697 return cpu->env.misa_ext & mask;
cb46938c
KC
1698#undef MISA_BIT
1699}
1700
47ae93cd
MC
1701static inline void init_thread(struct target_pt_regs *regs,
1702 struct image_info *infop)
1703{
1704 regs->sepc = infop->entry;
1705 regs->sp = infop->start_stack;
1706}
1707
1708#define ELF_EXEC_PAGESIZE 4096
1709
1710#endif /* TARGET_RISCV */
1711
7c248bcd
RH
1712#ifdef TARGET_HPPA
1713
1714#define ELF_START_MMAP 0x80000000
1715#define ELF_CLASS ELFCLASS32
1716#define ELF_ARCH EM_PARISC
1717#define ELF_PLATFORM "PARISC"
1718#define STACK_GROWS_DOWN 0
1719#define STACK_ALIGNMENT 64
1720
1721static inline void init_thread(struct target_pt_regs *regs,
1722 struct image_info *infop)
1723{
1724 regs->iaoq[0] = infop->entry;
1725 regs->iaoq[1] = infop->entry + 4;
1726 regs->gr[23] = 0;
60f1c801
RH
1727 regs->gr[24] = infop->argv;
1728 regs->gr[25] = infop->argc;
7c248bcd
RH
1729 /* The top-of-stack contains a linkage buffer. */
1730 regs->gr[30] = infop->start_stack + 64;
1731 regs->gr[31] = infop->entry;
1732}
1733
eee816c0
RH
1734#define LO_COMMPAGE 0
1735
1736static bool init_guest_commpage(void)
1737{
1738 void *want = g2h_untagged(LO_COMMPAGE);
1739 void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1740 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1741
1742 if (addr == MAP_FAILED) {
1743 perror("Allocating guest commpage");
1744 exit(EXIT_FAILURE);
1745 }
1746 if (addr != want) {
1747 return false;
1748 }
1749
1750 /*
1751 * On Linux, page zero is normally marked execute only + gateway.
1752 * Normal read or write is supposed to fail (thus PROT_NONE above),
1753 * but specific offsets have kernel code mapped to raise permissions
1754 * and implement syscalls. Here, simply mark the page executable.
1755 * Special case the entry points during translation (see do_page_zero).
1756 */
49840a4a 1757 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
eee816c0
RH
1758 PAGE_EXEC | PAGE_VALID);
1759 return true;
1760}
1761
7c248bcd
RH
1762#endif /* TARGET_HPPA */
1763
ba7651fb
MF
1764#ifdef TARGET_XTENSA
1765
1766#define ELF_START_MMAP 0x20000000
1767
1768#define ELF_CLASS ELFCLASS32
1769#define ELF_ARCH EM_XTENSA
1770
1771static inline void init_thread(struct target_pt_regs *regs,
1772 struct image_info *infop)
1773{
1774 regs->windowbase = 0;
1775 regs->windowstart = 1;
1776 regs->areg[1] = infop->start_stack;
1777 regs->pc = infop->entry;
d2796be6
MF
1778 if (info_is_fdpic(infop)) {
1779 regs->areg[4] = infop->loadmap_addr;
1780 regs->areg[5] = infop->interpreter_loadmap_addr;
1781 if (infop->interpreter_loadmap_addr) {
1782 regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1783 } else {
1784 regs->areg[6] = infop->pt_dynamic_addr;
1785 }
1786 }
ba7651fb
MF
1787}
1788
1789/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1790#define ELF_NREG 128
1791typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1792
1793enum {
1794 TARGET_REG_PC,
1795 TARGET_REG_PS,
1796 TARGET_REG_LBEG,
1797 TARGET_REG_LEND,
1798 TARGET_REG_LCOUNT,
1799 TARGET_REG_SAR,
1800 TARGET_REG_WINDOWSTART,
1801 TARGET_REG_WINDOWBASE,
1802 TARGET_REG_THREADPTR,
1803 TARGET_REG_AR0 = 64,
1804};
1805
1806static void elf_core_copy_regs(target_elf_gregset_t *regs,
1807 const CPUXtensaState *env)
1808{
1809 unsigned i;
1810
1811 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1812 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1813 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1814 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1815 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1816 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1817 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1818 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1819 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1820 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1821 for (i = 0; i < env->config->nareg; ++i) {
1822 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1823 }
1824}
1825
1826#define USE_ELF_CORE_DUMP
1827#define ELF_EXEC_PAGESIZE 4096
1828
1829#endif /* TARGET_XTENSA */
1830
d2a56bd2
TS
1831#ifdef TARGET_HEXAGON
1832
1833#define ELF_START_MMAP 0x20000000
1834
1835#define ELF_CLASS ELFCLASS32
1836#define ELF_ARCH EM_HEXAGON
1837
1838static inline void init_thread(struct target_pt_regs *regs,
1839 struct image_info *infop)
1840{
1841 regs->sepc = infop->entry;
1842 regs->sp = infop->start_stack;
1843}
1844
1845#endif /* TARGET_HEXAGON */
1846
fcdc0ab4
JY
1847#ifndef ELF_BASE_PLATFORM
1848#define ELF_BASE_PLATFORM (NULL)
1849#endif
1850
15338fd7
FB
1851#ifndef ELF_PLATFORM
1852#define ELF_PLATFORM (NULL)
1853#endif
1854
75be901c
PC
1855#ifndef ELF_MACHINE
1856#define ELF_MACHINE ELF_ARCH
1857#endif
1858
d276a604
PC
1859#ifndef elf_check_arch
1860#define elf_check_arch(x) ((x) == ELF_ARCH)
1861#endif
1862
ace3d654
CMAB
1863#ifndef elf_check_abi
1864#define elf_check_abi(x) (1)
1865#endif
1866
15338fd7
FB
1867#ifndef ELF_HWCAP
1868#define ELF_HWCAP 0
1869#endif
1870
7c4ee5bc
RH
1871#ifndef STACK_GROWS_DOWN
1872#define STACK_GROWS_DOWN 1
1873#endif
1874
1875#ifndef STACK_ALIGNMENT
1876#define STACK_ALIGNMENT 16
1877#endif
1878
992f48a0 1879#ifdef TARGET_ABI32
cb33da57 1880#undef ELF_CLASS
992f48a0 1881#define ELF_CLASS ELFCLASS32
cb33da57
BS
1882#undef bswaptls
1883#define bswaptls(ptr) bswap32s(ptr)
1884#endif
1885
872f3d04
RH
1886#ifndef EXSTACK_DEFAULT
1887#define EXSTACK_DEFAULT false
1888#endif
1889
31e31b8a 1890#include "elf.h"
09bfb054 1891
e8384b37
RH
1892/* We must delay the following stanzas until after "elf.h". */
1893#if defined(TARGET_AARCH64)
1894
1895static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1896 const uint32_t *data,
1897 struct image_info *info,
1898 Error **errp)
1899{
1900 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1901 if (pr_datasz != sizeof(uint32_t)) {
1902 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1903 return false;
1904 }
1905 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1906 info->note_flags = *data;
1907 }
1908 return true;
1909}
1910#define ARCH_USE_GNU_PROPERTY 1
1911
1912#else
1913
83f990eb
RH
1914static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1915 const uint32_t *data,
1916 struct image_info *info,
1917 Error **errp)
1918{
1919 g_assert_not_reached();
1920}
1921#define ARCH_USE_GNU_PROPERTY 0
1922
e8384b37
RH
1923#endif
1924
09bfb054
FB
1925struct exec
1926{
d97ef72e
RH
1927 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1928 unsigned int a_text; /* length of text, in bytes */
1929 unsigned int a_data; /* length of data, in bytes */
1930 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1931 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1932 unsigned int a_entry; /* start address */
1933 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1934 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1935};
1936
1937
1938#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1939#define OMAGIC 0407
1940#define NMAGIC 0410
1941#define ZMAGIC 0413
1942#define QMAGIC 0314
1943
31e31b8a 1944/* Necessary parameters */
94894ff2
SB
1945#define TARGET_ELF_EXEC_PAGESIZE \
1946 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1947 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1948#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
79cb1f1d
YK
1949#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1950 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1951#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1952
e0d1673d 1953#define DLINFO_ITEMS 16
31e31b8a 1954
09bfb054
FB
1955static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1956{
d97ef72e 1957 memcpy(to, from, n);
09bfb054 1958}
d691f669 1959
31e31b8a 1960#ifdef BSWAP_NEEDED
92a31b1f 1961static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1962{
d97ef72e
RH
1963 bswap16s(&ehdr->e_type); /* Object file type */
1964 bswap16s(&ehdr->e_machine); /* Architecture */
1965 bswap32s(&ehdr->e_version); /* Object file version */
1966 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1967 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1968 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1969 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1970 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1971 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1972 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1973 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1974 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1975 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1976}
1977
991f8f0c 1978static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1979{
991f8f0c
RH
1980 int i;
1981 for (i = 0; i < phnum; ++i, ++phdr) {
1982 bswap32s(&phdr->p_type); /* Segment type */
1983 bswap32s(&phdr->p_flags); /* Segment flags */
1984 bswaptls(&phdr->p_offset); /* Segment file offset */
1985 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1986 bswaptls(&phdr->p_paddr); /* Segment physical address */
1987 bswaptls(&phdr->p_filesz); /* Segment size in file */
1988 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1989 bswaptls(&phdr->p_align); /* Segment alignment */
1990 }
31e31b8a 1991}
689f936f 1992
991f8f0c 1993static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1994{
991f8f0c
RH
1995 int i;
1996 for (i = 0; i < shnum; ++i, ++shdr) {
1997 bswap32s(&shdr->sh_name);
1998 bswap32s(&shdr->sh_type);
1999 bswaptls(&shdr->sh_flags);
2000 bswaptls(&shdr->sh_addr);
2001 bswaptls(&shdr->sh_offset);
2002 bswaptls(&shdr->sh_size);
2003 bswap32s(&shdr->sh_link);
2004 bswap32s(&shdr->sh_info);
2005 bswaptls(&shdr->sh_addralign);
2006 bswaptls(&shdr->sh_entsize);
2007 }
689f936f
FB
2008}
2009
7a3148a9 2010static void bswap_sym(struct elf_sym *sym)
689f936f
FB
2011{
2012 bswap32s(&sym->st_name);
7a3148a9
JM
2013 bswaptls(&sym->st_value);
2014 bswaptls(&sym->st_size);
689f936f
FB
2015 bswap16s(&sym->st_shndx);
2016}
5dd0db52
SM
2017
2018#ifdef TARGET_MIPS
2019static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2020{
2021 bswap16s(&abiflags->version);
2022 bswap32s(&abiflags->ases);
2023 bswap32s(&abiflags->isa_ext);
2024 bswap32s(&abiflags->flags1);
2025 bswap32s(&abiflags->flags2);
2026}
2027#endif
991f8f0c
RH
2028#else
2029static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2030static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2031static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2032static inline void bswap_sym(struct elf_sym *sym) { }
5dd0db52
SM
2033#ifdef TARGET_MIPS
2034static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2035#endif
31e31b8a
FB
2036#endif
2037
edf8e2af 2038#ifdef USE_ELF_CORE_DUMP
9349b4f9 2039static int elf_core_dump(int, const CPUArchState *);
edf8e2af 2040#endif /* USE_ELF_CORE_DUMP */
682674b8 2041static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 2042
9058abdd
RH
2043/* Verify the portions of EHDR within E_IDENT for the target.
2044 This can be performed before bswapping the entire header. */
2045static bool elf_check_ident(struct elfhdr *ehdr)
2046{
2047 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2048 && ehdr->e_ident[EI_MAG1] == ELFMAG1
2049 && ehdr->e_ident[EI_MAG2] == ELFMAG2
2050 && ehdr->e_ident[EI_MAG3] == ELFMAG3
2051 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2052 && ehdr->e_ident[EI_DATA] == ELF_DATA
2053 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2054}
2055
2056/* Verify the portions of EHDR outside of E_IDENT for the target.
2057 This has to wait until after bswapping the header. */
2058static bool elf_check_ehdr(struct elfhdr *ehdr)
2059{
2060 return (elf_check_arch(ehdr->e_machine)
ace3d654 2061 && elf_check_abi(ehdr->e_flags)
9058abdd
RH
2062 && ehdr->e_ehsize == sizeof(struct elfhdr)
2063 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
2064 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2065}
2066
31e31b8a 2067/*
e5fe0c52 2068 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
2069 * memory to free pages in kernel mem. These are in a format ready
2070 * to be put directly into the top of new user memory.
2071 *
2072 */
59baae9a
SB
2073static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2074 abi_ulong p, abi_ulong stack_limit)
31e31b8a 2075{
59baae9a 2076 char *tmp;
7c4ee5bc 2077 int len, i;
59baae9a 2078 abi_ulong top = p;
31e31b8a
FB
2079
2080 if (!p) {
d97ef72e 2081 return 0; /* bullet-proofing */
31e31b8a 2082 }
59baae9a 2083
7c4ee5bc
RH
2084 if (STACK_GROWS_DOWN) {
2085 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2086 for (i = argc - 1; i >= 0; --i) {
2087 tmp = argv[i];
2088 if (!tmp) {
2089 fprintf(stderr, "VFS: argc is wrong");
2090 exit(-1);
2091 }
2092 len = strlen(tmp) + 1;
2093 tmp += len;
59baae9a 2094
7c4ee5bc
RH
2095 if (len > (p - stack_limit)) {
2096 return 0;
2097 }
2098 while (len) {
2099 int bytes_to_copy = (len > offset) ? offset : len;
2100 tmp -= bytes_to_copy;
2101 p -= bytes_to_copy;
2102 offset -= bytes_to_copy;
2103 len -= bytes_to_copy;
2104
2105 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2106
2107 if (offset == 0) {
2108 memcpy_to_target(p, scratch, top - p);
2109 top = p;
2110 offset = TARGET_PAGE_SIZE;
2111 }
2112 }
d97ef72e 2113 }
7c4ee5bc
RH
2114 if (p != top) {
2115 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 2116 }
7c4ee5bc
RH
2117 } else {
2118 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2119 for (i = 0; i < argc; ++i) {
2120 tmp = argv[i];
2121 if (!tmp) {
2122 fprintf(stderr, "VFS: argc is wrong");
2123 exit(-1);
2124 }
2125 len = strlen(tmp) + 1;
2126 if (len > (stack_limit - p)) {
2127 return 0;
2128 }
2129 while (len) {
2130 int bytes_to_copy = (len > remaining) ? remaining : len;
2131
2132 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2133
2134 tmp += bytes_to_copy;
2135 remaining -= bytes_to_copy;
2136 p += bytes_to_copy;
2137 len -= bytes_to_copy;
2138
2139 if (remaining == 0) {
2140 memcpy_to_target(top, scratch, p - top);
2141 top = p;
2142 remaining = TARGET_PAGE_SIZE;
2143 }
d97ef72e
RH
2144 }
2145 }
7c4ee5bc
RH
2146 if (p != top) {
2147 memcpy_to_target(top, scratch, p - top);
2148 }
59baae9a
SB
2149 }
2150
31e31b8a
FB
2151 return p;
2152}
2153
59baae9a
SB
2154/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2155 * argument/environment space. Newer kernels (>2.6.33) allow more,
2156 * dependent on stack size, but guarantee at least 32 pages for
2157 * backwards compatibility.
2158 */
2159#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2160
2161static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 2162 struct image_info *info)
53a5960a 2163{
59baae9a 2164 abi_ulong size, error, guard;
872f3d04 2165 int prot;
31e31b8a 2166
703e0e89 2167 size = guest_stack_size;
59baae9a
SB
2168 if (size < STACK_LOWER_LIMIT) {
2169 size = STACK_LOWER_LIMIT;
60dcbcb5 2170 }
f4388205
HD
2171
2172 if (STACK_GROWS_DOWN) {
2173 guard = TARGET_PAGE_SIZE;
2174 if (guard < qemu_real_host_page_size()) {
2175 guard = qemu_real_host_page_size();
2176 }
2177 } else {
2178 /* no guard page for hppa target where stack grows upwards. */
2179 guard = 0;
60dcbcb5
RH
2180 }
2181
872f3d04
RH
2182 prot = PROT_READ | PROT_WRITE;
2183 if (info->exec_stack) {
2184 prot |= PROT_EXEC;
2185 }
2186 error = target_mmap(0, size + guard, prot,
60dcbcb5 2187 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 2188 if (error == -1) {
60dcbcb5 2189 perror("mmap stack");
09bfb054
FB
2190 exit(-1);
2191 }
31e31b8a 2192
60dcbcb5 2193 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
2194 if (STACK_GROWS_DOWN) {
2195 target_mprotect(error, guard, PROT_NONE);
2196 info->stack_limit = error + guard;
2197 return info->stack_limit + size - sizeof(void *);
2198 } else {
7c4ee5bc
RH
2199 info->stack_limit = error + size;
2200 return error;
2201 }
31e31b8a
FB
2202}
2203
cf129f3a
RH
2204/* Map and zero the bss. We need to explicitly zero any fractional pages
2205 after the data section (i.e. bss). */
2206static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 2207{
cf129f3a
RH
2208 uintptr_t host_start, host_map_start, host_end;
2209
2210 last_bss = TARGET_PAGE_ALIGN(last_bss);
2211
2212 /* ??? There is confusion between qemu_real_host_page_size and
2213 qemu_host_page_size here and elsewhere in target_mmap, which
2214 may lead to the end of the data section mapping from the file
2215 not being mapped. At least there was an explicit test and
2216 comment for that here, suggesting that "the file size must
2217 be known". The comment probably pre-dates the introduction
2218 of the fstat system call in target_mmap which does in fact
2219 find out the size. What isn't clear is if the workaround
2220 here is still actually needed. For now, continue with it,
2221 but merge it with the "normal" mmap that would allocate the bss. */
2222
3e8f1628
RH
2223 host_start = (uintptr_t) g2h_untagged(elf_bss);
2224 host_end = (uintptr_t) g2h_untagged(last_bss);
0c2d70c4 2225 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
2226
2227 if (host_map_start < host_end) {
2228 void *p = mmap((void *)host_map_start, host_end - host_map_start,
2229 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2230 if (p == MAP_FAILED) {
2231 perror("cannot mmap brk");
2232 exit(-1);
853d6f7a 2233 }
f46e9a0b 2234 }
853d6f7a 2235
f46e9a0b
TM
2236 /* Ensure that the bss page(s) are valid */
2237 if ((page_get_flags(last_bss-1) & prot) != prot) {
49840a4a
RH
2238 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss - 1,
2239 prot | PAGE_VALID);
cf129f3a 2240 }
31e31b8a 2241
cf129f3a
RH
2242 if (host_start < host_map_start) {
2243 memset((void *)host_start, 0, host_map_start - host_start);
2244 }
2245}
53a5960a 2246
d2796be6 2247#if defined(TARGET_ARM)
cf58affe
CL
2248static int elf_is_fdpic(struct elfhdr *exec)
2249{
2250 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2251}
d2796be6
MF
2252#elif defined(TARGET_XTENSA)
2253static int elf_is_fdpic(struct elfhdr *exec)
2254{
2255 return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2256}
cf58affe 2257#else
a99856cd
CL
2258/* Default implementation, always false. */
2259static int elf_is_fdpic(struct elfhdr *exec)
2260{
2261 return 0;
2262}
cf58affe 2263#endif
a99856cd 2264
1af02e83
MF
2265static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2266{
2267 uint16_t n;
2268 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2269
2270 /* elf32_fdpic_loadseg */
2271 n = info->nsegs;
2272 while (n--) {
2273 sp -= 12;
2274 put_user_u32(loadsegs[n].addr, sp+0);
2275 put_user_u32(loadsegs[n].p_vaddr, sp+4);
2276 put_user_u32(loadsegs[n].p_memsz, sp+8);
2277 }
2278
2279 /* elf32_fdpic_loadmap */
2280 sp -= 4;
2281 put_user_u16(0, sp+0); /* version */
2282 put_user_u16(info->nsegs, sp+2); /* nsegs */
2283
2284 info->personality = PER_LINUX_FDPIC;
2285 info->loadmap_addr = sp;
2286
2287 return sp;
2288}
1af02e83 2289
992f48a0 2290static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
2291 struct elfhdr *exec,
2292 struct image_info *info,
2293 struct image_info *interp_info)
31e31b8a 2294{
d97ef72e 2295 abi_ulong sp;
7c4ee5bc 2296 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 2297 int size;
14322bad
LA
2298 int i;
2299 abi_ulong u_rand_bytes;
2300 uint8_t k_rand_bytes[16];
fcdc0ab4
JY
2301 abi_ulong u_platform, u_base_platform;
2302 const char *k_platform, *k_base_platform;
d97ef72e
RH
2303 const int n = sizeof(elf_addr_t);
2304
2305 sp = p;
1af02e83 2306
1af02e83
MF
2307 /* Needs to be before we load the env/argc/... */
2308 if (elf_is_fdpic(exec)) {
2309 /* Need 4 byte alignment for these structs */
2310 sp &= ~3;
2311 sp = loader_build_fdpic_loadmap(info, sp);
2312 info->other_info = interp_info;
2313 if (interp_info) {
2314 interp_info->other_info = info;
2315 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
2316 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2317 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2318 } else {
2319 info->interpreter_loadmap_addr = 0;
2320 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
2321 }
2322 }
1af02e83 2323
fcdc0ab4
JY
2324 u_base_platform = 0;
2325 k_base_platform = ELF_BASE_PLATFORM;
2326 if (k_base_platform) {
2327 size_t len = strlen(k_base_platform) + 1;
2328 if (STACK_GROWS_DOWN) {
2329 sp -= (len + n - 1) & ~(n - 1);
2330 u_base_platform = sp;
2331 /* FIXME - check return value of memcpy_to_target() for failure */
2332 memcpy_to_target(sp, k_base_platform, len);
2333 } else {
2334 memcpy_to_target(sp, k_base_platform, len);
2335 u_base_platform = sp;
2336 sp += len + 1;
2337 }
2338 }
2339
d97ef72e
RH
2340 u_platform = 0;
2341 k_platform = ELF_PLATFORM;
2342 if (k_platform) {
2343 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
2344 if (STACK_GROWS_DOWN) {
2345 sp -= (len + n - 1) & ~(n - 1);
2346 u_platform = sp;
2347 /* FIXME - check return value of memcpy_to_target() for failure */
2348 memcpy_to_target(sp, k_platform, len);
2349 } else {
2350 memcpy_to_target(sp, k_platform, len);
2351 u_platform = sp;
2352 sp += len + 1;
2353 }
2354 }
2355
2356 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2357 * the argv and envp pointers.
2358 */
2359 if (STACK_GROWS_DOWN) {
2360 sp = QEMU_ALIGN_DOWN(sp, 16);
2361 } else {
2362 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 2363 }
14322bad
LA
2364
2365 /*
c6a2377f 2366 * Generate 16 random bytes for userspace PRNG seeding.
14322bad 2367 */
c6a2377f 2368 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
7c4ee5bc
RH
2369 if (STACK_GROWS_DOWN) {
2370 sp -= 16;
2371 u_rand_bytes = sp;
2372 /* FIXME - check return value of memcpy_to_target() for failure */
2373 memcpy_to_target(sp, k_rand_bytes, 16);
2374 } else {
2375 memcpy_to_target(sp, k_rand_bytes, 16);
2376 u_rand_bytes = sp;
2377 sp += 16;
2378 }
14322bad 2379
d97ef72e 2380 size = (DLINFO_ITEMS + 1) * 2;
fcdc0ab4
JY
2381 if (k_base_platform)
2382 size += 2;
d97ef72e
RH
2383 if (k_platform)
2384 size += 2;
f5155289 2385#ifdef DLINFO_ARCH_ITEMS
d97ef72e 2386 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
2387#endif
2388#ifdef ELF_HWCAP2
2389 size += 2;
f5155289 2390#endif
f516511e
PM
2391 info->auxv_len = size * n;
2392
d97ef72e 2393 size += envc + argc + 2;
b9329d4b 2394 size += 1; /* argc itself */
d97ef72e 2395 size *= n;
7c4ee5bc
RH
2396
2397 /* Allocate space and finalize stack alignment for entry now. */
2398 if (STACK_GROWS_DOWN) {
2399 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2400 sp = u_argc;
2401 } else {
2402 u_argc = sp;
2403 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2404 }
2405
2406 u_argv = u_argc + n;
2407 u_envp = u_argv + (argc + 1) * n;
2408 u_auxv = u_envp + (envc + 1) * n;
2409 info->saved_auxv = u_auxv;
60f1c801
RH
2410 info->argc = argc;
2411 info->envc = envc;
2412 info->argv = u_argv;
2413 info->envp = u_envp;
d97ef72e
RH
2414
2415 /* This is correct because Linux defines
2416 * elf_addr_t as Elf32_Off / Elf64_Off
2417 */
2418#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
2419 put_user_ual(id, u_auxv); u_auxv += n; \
2420 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
2421 } while(0)
2422
82991bed
PM
2423#ifdef ARCH_DLINFO
2424 /*
2425 * ARCH_DLINFO must come first so platform specific code can enforce
2426 * special alignment requirements on the AUXV if necessary (eg. PPC).
2427 */
2428 ARCH_DLINFO;
2429#endif
f516511e
PM
2430 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2431 * on info->auxv_len will trigger.
2432 */
8e62a717 2433 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
2434 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2435 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
2436 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2437 /* Target doesn't support host page size alignment */
2438 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2439 } else {
2440 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2441 qemu_host_page_size)));
2442 }
8e62a717 2443 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 2444 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 2445 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
2446 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2447 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2448 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2449 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2450 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2451 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 2452 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 2453 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
e0d1673d 2454 NEW_AUX_ENT(AT_EXECFN, info->file_string);
14322bad 2455
ad6919dc
PM
2456#ifdef ELF_HWCAP2
2457 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2458#endif
2459
fcdc0ab4
JY
2460 if (u_base_platform) {
2461 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2462 }
7c4ee5bc 2463 if (u_platform) {
d97ef72e 2464 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 2465 }
7c4ee5bc 2466 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
2467#undef NEW_AUX_ENT
2468
f516511e
PM
2469 /* Check that our initial calculation of the auxv length matches how much
2470 * we actually put into it.
2471 */
2472 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
2473
2474 put_user_ual(argc, u_argc);
2475
2476 p = info->arg_strings;
2477 for (i = 0; i < argc; ++i) {
2478 put_user_ual(p, u_argv);
2479 u_argv += n;
2480 p += target_strlen(p) + 1;
2481 }
2482 put_user_ual(0, u_argv);
2483
2484 p = info->env_strings;
2485 for (i = 0; i < envc; ++i) {
2486 put_user_ual(p, u_envp);
2487 u_envp += n;
2488 p += target_strlen(p) + 1;
2489 }
2490 put_user_ual(0, u_envp);
edf8e2af 2491
d97ef72e 2492 return sp;
31e31b8a
FB
2493}
2494
f5ef0e51 2495#if defined(HI_COMMPAGE)
eee816c0 2496#define LO_COMMPAGE -1
f5ef0e51
RH
2497#elif defined(LO_COMMPAGE)
2498#define HI_COMMPAGE 0
2499#else
66346faf 2500#define HI_COMMPAGE 0
eee816c0 2501#define LO_COMMPAGE -1
d461b73e 2502#ifndef INIT_GUEST_COMMPAGE
ee947430 2503#define init_guest_commpage() true
8756e136 2504#endif
d461b73e 2505#endif
dce10401 2506
ee947430
AB
2507static void pgb_fail_in_use(const char *image_name)
2508{
2509 error_report("%s: requires virtual address space that is in use "
2510 "(omit the -B option or choose a different value)",
2511 image_name);
2512 exit(EXIT_FAILURE);
2513}
dce10401 2514
ee947430
AB
2515static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2516 abi_ulong guest_hiaddr, long align)
2517{
2518 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2519 void *addr, *test;
2a53535a 2520
ee947430 2521 if (!QEMU_IS_ALIGNED(guest_base, align)) {
5ca870b9 2522 fprintf(stderr, "Requested guest base %p does not satisfy "
ee947430 2523 "host minimum alignment (0x%lx)\n",
5ca870b9 2524 (void *)guest_base, align);
ee947430
AB
2525 exit(EXIT_FAILURE);
2526 }
2527
2528 /* Sanity check the guest binary. */
2529 if (reserved_va) {
2530 if (guest_hiaddr > reserved_va) {
2531 error_report("%s: requires more than reserved virtual "
2532 "address space (0x%" PRIx64 " > 0x%lx)",
95059f9c 2533 image_name, (uint64_t)guest_hiaddr, reserved_va);
ee947430 2534 exit(EXIT_FAILURE);
2a53535a 2535 }
ee947430 2536 } else {
a932eec4 2537#if HOST_LONG_BITS < TARGET_ABI_BITS
ee947430
AB
2538 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2539 error_report("%s: requires more virtual address space "
2540 "than the host can provide (0x%" PRIx64 ")",
a3a67f54 2541 image_name, (uint64_t)guest_hiaddr + 1 - guest_base);
ee947430 2542 exit(EXIT_FAILURE);
2a53535a 2543 }
a932eec4 2544#endif
2a53535a 2545 }
2a53535a 2546
ee947430
AB
2547 /*
2548 * Expand the allocation to the entire reserved_va.
2549 * Exclude the mmap_min_addr hole.
2550 */
2551 if (reserved_va) {
2552 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2553 : mmap_min_addr - guest_base);
95059f9c 2554 guest_hiaddr = reserved_va;
ee947430 2555 }
806d1021 2556
ee947430 2557 /* Reserve the address space for the binary, or reserved_va. */
3e8f1628 2558 test = g2h_untagged(guest_loaddr);
a3a67f54 2559 addr = mmap(test, guest_hiaddr - guest_loaddr + 1, PROT_NONE, flags, -1, 0);
ee947430
AB
2560 if (test != addr) {
2561 pgb_fail_in_use(image_name);
2562 }
e7588237 2563 qemu_log_mask(CPU_LOG_PAGE,
a3a67f54
RH
2564 "%s: base @ %p for %" PRIu64 " bytes\n",
2565 __func__, addr, (uint64_t)guest_hiaddr - guest_loaddr + 1);
ee947430
AB
2566}
2567
ad592e37
AB
2568/**
2569 * pgd_find_hole_fallback: potential mmap address
2570 * @guest_size: size of available space
2571 * @brk: location of break
2572 * @align: memory alignment
2573 *
2574 * This is a fallback method for finding a hole in the host address
2575 * space if we don't have the benefit of being able to access
2576 * /proc/self/map. It can potentially take a very long time as we can
2577 * only dumbly iterate up the host address space seeing if the
2578 * allocation would work.
2579 */
5c3e87f3
AB
2580static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2581 long align, uintptr_t offset)
ad592e37
AB
2582{
2583 uintptr_t base;
2584
2585 /* Start (aligned) at the bottom and work our way up */
2586 base = ROUND_UP(mmap_min_addr, align);
2587
2588 while (true) {
2589 uintptr_t align_start, end;
2590 align_start = ROUND_UP(base, align);
5c3e87f3 2591 end = align_start + guest_size + offset;
ad592e37
AB
2592
2593 /* if brk is anywhere in the range give ourselves some room to grow. */
2594 if (align_start <= brk && brk < end) {
2595 base = brk + (16 * MiB);
2596 continue;
2597 } else if (align_start + guest_size < align_start) {
2598 /* we have run out of space */
2599 return -1;
2600 } else {
2667e069
AB
2601 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2602 MAP_FIXED_NOREPLACE;
ad592e37
AB
2603 void * mmap_start = mmap((void *) align_start, guest_size,
2604 PROT_NONE, flags, -1, 0);
2605 if (mmap_start != MAP_FAILED) {
7e588fbc 2606 munmap(mmap_start, guest_size);
934eed51 2607 if (mmap_start == (void *) align_start) {
e7588237
AB
2608 qemu_log_mask(CPU_LOG_PAGE,
2609 "%s: base @ %p for %" PRIdPTR" bytes\n",
2610 __func__, mmap_start + offset, guest_size);
2667e069
AB
2611 return (uintptr_t) mmap_start + offset;
2612 }
ad592e37
AB
2613 }
2614 base += qemu_host_page_size;
2615 }
2616 }
2617}
2618
ee947430
AB
2619/* Return value for guest_base, or -1 if no hole found. */
2620static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
5c3e87f3 2621 long align, uintptr_t offset)
ee947430
AB
2622{
2623 GSList *maps, *iter;
2624 uintptr_t this_start, this_end, next_start, brk;
2625 intptr_t ret = -1;
2626
2627 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2628
2629 maps = read_self_maps();
dce10401 2630
ee947430
AB
2631 /* Read brk after we've read the maps, which will malloc. */
2632 brk = (uintptr_t)sbrk(0);
2633
ad592e37 2634 if (!maps) {
190674f3 2635 return pgd_find_hole_fallback(guest_size, brk, align, offset);
ad592e37
AB
2636 }
2637
ee947430
AB
2638 /* The first hole is before the first map entry. */
2639 this_start = mmap_min_addr;
2640
2641 for (iter = maps; iter;
2642 this_start = next_start, iter = g_slist_next(iter)) {
2643 uintptr_t align_start, hole_size;
2644
2645 this_end = ((MapInfo *)iter->data)->start;
2646 next_start = ((MapInfo *)iter->data)->end;
5c3e87f3 2647 align_start = ROUND_UP(this_start + offset, align);
ee947430
AB
2648
2649 /* Skip holes that are too small. */
2650 if (align_start >= this_end) {
2651 continue;
2652 }
2653 hole_size = this_end - align_start;
2654 if (hole_size < guest_size) {
2655 continue;
aac362e4
LS
2656 }
2657
ee947430
AB
2658 /* If this hole contains brk, give ourselves some room to grow. */
2659 if (this_start <= brk && brk < this_end) {
2660 hole_size -= guest_size;
2661 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2662 align_start += 1 * GiB;
2663 } else if (hole_size >= 16 * MiB) {
2664 align_start += 16 * MiB;
2665 } else {
2666 align_start = (this_end - guest_size) & -align;
2667 if (align_start < this_start) {
2668 continue;
2669 }
806d1021 2670 }
806d1021
MI
2671 }
2672
ee947430
AB
2673 /* Record the lowest successful match. */
2674 if (ret < 0) {
190674f3 2675 ret = align_start;
dce10401 2676 }
ee947430
AB
2677 /* If this hole contains the identity map, select it. */
2678 if (align_start <= guest_loaddr &&
2679 guest_loaddr + guest_size <= this_end) {
2680 ret = 0;
b859040d 2681 }
ee947430
AB
2682 /* If this hole ends above the identity map, stop looking. */
2683 if (this_end >= guest_loaddr) {
2684 break;
dce10401
MI
2685 }
2686 }
ee947430 2687 free_self_maps(maps);
dce10401 2688
e7588237
AB
2689 if (ret != -1) {
2690 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR
2691 " for %" PRIuPTR " bytes\n",
2692 __func__, ret, guest_size);
2693 }
2694
ee947430 2695 return ret;
dce10401
MI
2696}
2697
ee947430
AB
2698static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2699 abi_ulong orig_hiaddr, long align)
f3ed1f5d 2700{
ee947430
AB
2701 uintptr_t loaddr = orig_loaddr;
2702 uintptr_t hiaddr = orig_hiaddr;
5c3e87f3 2703 uintptr_t offset = 0;
ee947430 2704 uintptr_t addr;
f3ed1f5d 2705
ee947430
AB
2706 if (hiaddr != orig_hiaddr) {
2707 error_report("%s: requires virtual address space that the "
2708 "host cannot provide (0x%" PRIx64 ")",
a3a67f54 2709 image_name, (uint64_t)orig_hiaddr + 1);
ee947430
AB
2710 exit(EXIT_FAILURE);
2711 }
f3ed1f5d 2712
ee947430 2713 loaddr &= -align;
66346faf 2714 if (HI_COMMPAGE) {
ee947430
AB
2715 /*
2716 * Extend the allocation to include the commpage.
5c3e87f3
AB
2717 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2718 * need to ensure there is space bellow the guest_base so we
2719 * can map the commpage in the place needed when the address
2720 * arithmetic wraps around.
ee947430
AB
2721 */
2722 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
a3a67f54 2723 hiaddr = UINT32_MAX;
f3ed1f5d 2724 } else {
66346faf 2725 offset = -(HI_COMMPAGE & -align);
f3ed1f5d 2726 }
eee816c0 2727 } else if (LO_COMMPAGE != -1) {
f5ef0e51 2728 loaddr = MIN(loaddr, LO_COMMPAGE & -align);
ee947430 2729 }
dce10401 2730
a3a67f54 2731 addr = pgb_find_hole(loaddr, hiaddr - loaddr + 1, align, offset);
ee947430
AB
2732 if (addr == -1) {
2733 /*
66346faf 2734 * If HI_COMMPAGE, there *might* be a non-consecutive allocation
ee947430
AB
2735 * that can satisfy both. But as the normal arm32 link base address
2736 * is ~32k, and we extend down to include the commpage, making the
2737 * overhead only ~96k, this is unlikely.
dce10401 2738 */
ee947430
AB
2739 error_report("%s: Unable to allocate %#zx bytes of "
2740 "virtual address space", image_name,
2741 (size_t)(hiaddr - loaddr));
2742 exit(EXIT_FAILURE);
2743 }
2744
2745 guest_base = addr;
e7588237
AB
2746
2747 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n",
2748 __func__, addr, hiaddr - loaddr);
ee947430 2749}
dce10401 2750
ee947430
AB
2751static void pgb_dynamic(const char *image_name, long align)
2752{
2753 /*
2754 * The executable is dynamic and does not require a fixed address.
2755 * All we need is a commpage that satisfies align.
2756 * If we do not need a commpage, leave guest_base == 0.
2757 */
66346faf 2758 if (HI_COMMPAGE) {
ee947430
AB
2759 uintptr_t addr, commpage;
2760
2761 /* 64-bit hosts should have used reserved_va. */
2762 assert(sizeof(uintptr_t) == 4);
2763
2764 /*
2765 * By putting the commpage at the first hole, that puts guest_base
2766 * just above that, and maximises the positive guest addresses.
2767 */
66346faf 2768 commpage = HI_COMMPAGE & -align;
5c3e87f3 2769 addr = pgb_find_hole(commpage, -commpage, align, 0);
ee947430
AB
2770 assert(addr != -1);
2771 guest_base = addr;
2772 }
2773}
2774
2775static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2776 abi_ulong guest_hiaddr, long align)
2777{
c1f6ad79 2778 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
ee947430
AB
2779 void *addr, *test;
2780
2781 if (guest_hiaddr > reserved_va) {
2782 error_report("%s: requires more than reserved virtual "
2783 "address space (0x%" PRIx64 " > 0x%lx)",
95059f9c 2784 image_name, (uint64_t)guest_hiaddr, reserved_va);
ee947430 2785 exit(EXIT_FAILURE);
f3ed1f5d 2786 }
f3ed1f5d 2787
ee947430
AB
2788 /* Widen the "image" to the entire reserved address space. */
2789 pgb_static(image_name, 0, reserved_va, align);
2790
2667e069 2791 /* osdep.h defines this as 0 if it's missing */
c1f6ad79 2792 flags |= MAP_FIXED_NOREPLACE;
c1f6ad79 2793
ee947430
AB
2794 /* Reserve the memory on the host. */
2795 assert(guest_base != 0);
3e8f1628 2796 test = g2h_untagged(0);
95059f9c 2797 addr = mmap(test, reserved_va + 1, PROT_NONE, flags, -1, 0);
fb730c86 2798 if (addr == MAP_FAILED || addr != test) {
ee947430 2799 error_report("Unable to reserve 0x%lx bytes of virtual address "
87966743 2800 "space at %p (%s) for use as guest address space (check your "
fb730c86 2801 "virtual memory ulimit setting, min_mmap_addr or reserve less "
95059f9c 2802 "using -R option)", reserved_va + 1, test, strerror(errno));
ee947430
AB
2803 exit(EXIT_FAILURE);
2804 }
e7588237
AB
2805
2806 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n",
95059f9c 2807 __func__, addr, reserved_va + 1);
f3ed1f5d
PM
2808}
2809
ee947430
AB
2810void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2811 abi_ulong guest_hiaddr)
2812{
2813 /* In order to use host shmat, we must be able to honor SHMLBA. */
2814 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2815
2816 if (have_guest_base) {
2817 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2818 } else if (reserved_va) {
2819 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2820 } else if (guest_loaddr) {
2821 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2822 } else {
2823 pgb_dynamic(image_name, align);
2824 }
2825
2826 /* Reserve and initialize the commpage. */
2827 if (!init_guest_commpage()) {
2828 /*
2829 * With have_guest_base, the user has selected the address and
2830 * we are trying to work with that. Otherwise, we have selected
2831 * free space and init_guest_commpage must succeeded.
2832 */
2833 assert(have_guest_base);
2834 pgb_fail_in_use(image_name);
2835 }
2836
2837 assert(QEMU_IS_ALIGNED(guest_base, align));
2838 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2839 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2840}
f3ed1f5d 2841
83f990eb
RH
2842enum {
2843 /* The string "GNU\0" as a magic number. */
2844 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2845 NOTE_DATA_SZ = 1 * KiB,
2846 NOTE_NAME_SZ = 4,
2847 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2848};
2849
2850/*
2851 * Process a single gnu_property entry.
2852 * Return false for error.
2853 */
2854static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2855 struct image_info *info, bool have_prev_type,
2856 uint32_t *prev_type, Error **errp)
2857{
2858 uint32_t pr_type, pr_datasz, step;
2859
2860 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2861 goto error_data;
2862 }
2863 datasz -= *off;
2864 data += *off / sizeof(uint32_t);
2865
2866 if (datasz < 2 * sizeof(uint32_t)) {
2867 goto error_data;
2868 }
2869 pr_type = data[0];
2870 pr_datasz = data[1];
2871 data += 2;
2872 datasz -= 2 * sizeof(uint32_t);
2873 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2874 if (step > datasz) {
2875 goto error_data;
2876 }
2877
2878 /* Properties are supposed to be unique and sorted on pr_type. */
2879 if (have_prev_type && pr_type <= *prev_type) {
2880 if (pr_type == *prev_type) {
2881 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2882 } else {
2883 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2884 }
2885 return false;
2886 }
2887 *prev_type = pr_type;
2888
2889 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2890 return false;
2891 }
2892
2893 *off += 2 * sizeof(uint32_t) + step;
2894 return true;
2895
2896 error_data:
2897 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2898 return false;
2899}
2900
2901/* Process NT_GNU_PROPERTY_TYPE_0. */
2902static bool parse_elf_properties(int image_fd,
2903 struct image_info *info,
2904 const struct elf_phdr *phdr,
2905 char bprm_buf[BPRM_BUF_SIZE],
2906 Error **errp)
2907{
2908 union {
2909 struct elf_note nhdr;
2910 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2911 } note;
2912
2913 int n, off, datasz;
2914 bool have_prev_type;
2915 uint32_t prev_type;
2916
2917 /* Unless the arch requires properties, ignore them. */
2918 if (!ARCH_USE_GNU_PROPERTY) {
2919 return true;
2920 }
2921
2922 /* If the properties are crazy large, that's too bad. */
2923 n = phdr->p_filesz;
2924 if (n > sizeof(note)) {
2925 error_setg(errp, "PT_GNU_PROPERTY too large");
2926 return false;
2927 }
2928 if (n < sizeof(note.nhdr)) {
2929 error_setg(errp, "PT_GNU_PROPERTY too small");
2930 return false;
2931 }
2932
2933 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2934 memcpy(&note, bprm_buf + phdr->p_offset, n);
2935 } else {
2936 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2937 if (len != n) {
2938 error_setg_errno(errp, errno, "Error reading file header");
2939 return false;
2940 }
2941 }
2942
2943 /*
2944 * The contents of a valid PT_GNU_PROPERTY is a sequence
2945 * of uint32_t -- swap them all now.
2946 */
2947#ifdef BSWAP_NEEDED
2948 for (int i = 0; i < n / 4; i++) {
2949 bswap32s(note.data + i);
2950 }
2951#endif
2952
2953 /*
2954 * Note that nhdr is 3 words, and that the "name" described by namesz
2955 * immediately follows nhdr and is thus at the 4th word. Further, all
2956 * of the inputs to the kernel's round_up are multiples of 4.
2957 */
2958 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2959 note.nhdr.n_namesz != NOTE_NAME_SZ ||
2960 note.data[3] != GNU0_MAGIC) {
2961 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2962 return false;
2963 }
2964 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2965
2966 datasz = note.nhdr.n_descsz + off;
2967 if (datasz > n) {
2968 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2969 return false;
2970 }
2971
2972 have_prev_type = false;
2973 prev_type = 0;
2974 while (1) {
2975 if (off == datasz) {
2976 return true; /* end, exit ok */
2977 }
2978 if (!parse_elf_property(note.data, &off, datasz, info,
2979 have_prev_type, &prev_type, errp)) {
2980 return false;
2981 }
2982 have_prev_type = true;
2983 }
2984}
2985
8e62a717 2986/* Load an ELF image into the address space.
31e31b8a 2987
8e62a717
RH
2988 IMAGE_NAME is the filename of the image, to use in error messages.
2989 IMAGE_FD is the open file descriptor for the image.
2990
2991 BPRM_BUF is a copy of the beginning of the file; this of course
2992 contains the elf file header at offset 0. It is assumed that this
2993 buffer is sufficiently aligned to present no problems to the host
2994 in accessing data at aligned offsets within the buffer.
2995
2996 On return: INFO values will be filled in, as necessary or available. */
2997
2998static void load_elf_image(const char *image_name, int image_fd,
bf858897 2999 struct image_info *info, char **pinterp_name,
8e62a717 3000 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 3001{
8e62a717
RH
3002 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
3003 struct elf_phdr *phdr;
3004 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
e8384b37 3005 int i, retval, prot_exec;
c7f17e7b 3006 Error *err = NULL;
5fafdf24 3007
8e62a717 3008 /* First of all, some simple consistency checks */
8e62a717 3009 if (!elf_check_ident(ehdr)) {
c7f17e7b 3010 error_setg(&err, "Invalid ELF image for this architecture");
8e62a717
RH
3011 goto exit_errmsg;
3012 }
3013 bswap_ehdr(ehdr);
3014 if (!elf_check_ehdr(ehdr)) {
c7f17e7b 3015 error_setg(&err, "Invalid ELF image for this architecture");
8e62a717 3016 goto exit_errmsg;
d97ef72e 3017 }
5fafdf24 3018
8e62a717
RH
3019 i = ehdr->e_phnum * sizeof(struct elf_phdr);
3020 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
3021 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 3022 } else {
8e62a717
RH
3023 phdr = (struct elf_phdr *) alloca(i);
3024 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 3025 if (retval != i) {
8e62a717 3026 goto exit_read;
9955ffac 3027 }
d97ef72e 3028 }
8e62a717 3029 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 3030
1af02e83
MF
3031 info->nsegs = 0;
3032 info->pt_dynamic_addr = 0;
1af02e83 3033
98c1076c
AB
3034 mmap_lock();
3035
8a1a5274
RH
3036 /*
3037 * Find the maximum size of the image and allocate an appropriate
3038 * amount of memory to handle that. Locate the interpreter, if any.
3039 */
682674b8 3040 loaddr = -1, hiaddr = 0;
33143c44 3041 info->alignment = 0;
872f3d04 3042 info->exec_stack = EXSTACK_DEFAULT;
8e62a717 3043 for (i = 0; i < ehdr->e_phnum; ++i) {
4d9d535a
RH
3044 struct elf_phdr *eppnt = phdr + i;
3045 if (eppnt->p_type == PT_LOAD) {
3046 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
682674b8
RH
3047 if (a < loaddr) {
3048 loaddr = a;
3049 }
a3a67f54 3050 a = eppnt->p_vaddr + eppnt->p_memsz - 1;
682674b8
RH
3051 if (a > hiaddr) {
3052 hiaddr = a;
3053 }
1af02e83 3054 ++info->nsegs;
4d9d535a 3055 info->alignment |= eppnt->p_align;
8a1a5274
RH
3056 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3057 g_autofree char *interp_name = NULL;
3058
3059 if (*pinterp_name) {
c7f17e7b 3060 error_setg(&err, "Multiple PT_INTERP entries");
8a1a5274
RH
3061 goto exit_errmsg;
3062 }
c7f17e7b 3063
8a1a5274 3064 interp_name = g_malloc(eppnt->p_filesz);
8a1a5274
RH
3065
3066 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3067 memcpy(interp_name, bprm_buf + eppnt->p_offset,
3068 eppnt->p_filesz);
3069 } else {
3070 retval = pread(image_fd, interp_name, eppnt->p_filesz,
3071 eppnt->p_offset);
3072 if (retval != eppnt->p_filesz) {
c7f17e7b 3073 goto exit_read;
8a1a5274
RH
3074 }
3075 }
3076 if (interp_name[eppnt->p_filesz - 1] != 0) {
c7f17e7b 3077 error_setg(&err, "Invalid PT_INTERP entry");
8a1a5274
RH
3078 goto exit_errmsg;
3079 }
3080 *pinterp_name = g_steal_pointer(&interp_name);
83f990eb
RH
3081 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3082 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3083 goto exit_errmsg;
3084 }
872f3d04
RH
3085 } else if (eppnt->p_type == PT_GNU_STACK) {
3086 info->exec_stack = eppnt->p_flags & PF_X;
682674b8
RH
3087 }
3088 }
3089
6fd59449
RH
3090 if (pinterp_name != NULL) {
3091 /*
3092 * This is the main executable.
3093 *
3094 * Reserve extra space for brk.
3095 * We hold on to this space while placing the interpreter
3096 * and the stack, lest they be placed immediately after
3097 * the data segment and block allocation from the brk.
3098 *
11d36727
AB
3099 * 16MB is chosen as "large enough" without being so large as
3100 * to allow the result to not fit with a 32-bit guest on a
3101 * 32-bit host. However some 64 bit guests (e.g. s390x)
3102 * attempt to place their heap further ahead and currently
3103 * nothing stops them smashing into QEMUs address space.
6fd59449 3104 */
11d36727
AB
3105#if TARGET_LONG_BITS == 64
3106 info->reserve_brk = 32 * MiB;
3107#else
6fd59449 3108 info->reserve_brk = 16 * MiB;
11d36727 3109#endif
6fd59449
RH
3110 hiaddr += info->reserve_brk;
3111
3112 if (ehdr->e_type == ET_EXEC) {
3113 /*
3114 * Make sure that the low address does not conflict with
3115 * MMAP_MIN_ADDR or the QEMU application itself.
3116 */
3117 probe_guest_base(image_name, loaddr, hiaddr);
ee947430
AB
3118 } else {
3119 /*
3120 * The binary is dynamic, but we still need to
3121 * select guest_base. In this case we pass a size.
3122 */
3123 probe_guest_base(image_name, 0, hiaddr - loaddr);
d97ef72e 3124 }
6fd59449
RH
3125 }
3126
3127 /*
3128 * Reserve address space for all of this.
3129 *
3130 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
3131 * exactly the address range that is required.
3132 *
3133 * Otherwise this is ET_DYN, and we are searching for a location
3134 * that can hold the memory space required. If the image is
3135 * pre-linked, LOADDR will be non-zero, and the kernel should
3136 * honor that address if it happens to be free.
3137 *
3138 * In both cases, we will overwrite pages in this range with mappings
3139 * from the executable.
3140 */
a3a67f54 3141 load_addr = target_mmap(loaddr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
6fd59449
RH
3142 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3143 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
3144 -1, 0);
3145 if (load_addr == -1) {
c7f17e7b 3146 goto exit_mmap;
d97ef72e 3147 }
682674b8 3148 load_bias = load_addr - loaddr;
d97ef72e 3149
a99856cd 3150 if (elf_is_fdpic(ehdr)) {
1af02e83 3151 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 3152 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
3153
3154 for (i = 0; i < ehdr->e_phnum; ++i) {
3155 switch (phdr[i].p_type) {
3156 case PT_DYNAMIC:
3157 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3158 break;
3159 case PT_LOAD:
3160 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3161 loadsegs->p_vaddr = phdr[i].p_vaddr;
3162 loadsegs->p_memsz = phdr[i].p_memsz;
3163 ++loadsegs;
3164 break;
3165 }
3166 }
3167 }
1af02e83 3168
8e62a717 3169 info->load_bias = load_bias;
dc12567a
JK
3170 info->code_offset = load_bias;
3171 info->data_offset = load_bias;
8e62a717
RH
3172 info->load_addr = load_addr;
3173 info->entry = ehdr->e_entry + load_bias;
3174 info->start_code = -1;
3175 info->end_code = 0;
3176 info->start_data = -1;
3177 info->end_data = 0;
3178 info->brk = 0;
d8fd2954 3179 info->elf_flags = ehdr->e_flags;
8e62a717 3180
e8384b37
RH
3181 prot_exec = PROT_EXEC;
3182#ifdef TARGET_AARCH64
3183 /*
3184 * If the BTI feature is present, this indicates that the executable
3185 * pages of the startup binary should be mapped with PROT_BTI, so that
3186 * branch targets are enforced.
3187 *
3188 * The startup binary is either the interpreter or the static executable.
3189 * The interpreter is responsible for all pages of a dynamic executable.
3190 *
3191 * Elf notes are backward compatible to older cpus.
3192 * Do not enable BTI unless it is supported.
3193 */
3194 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3195 && (pinterp_name == NULL || *pinterp_name == 0)
3196 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3197 prot_exec |= TARGET_PROT_BTI;
3198 }
3199#endif
3200
8e62a717
RH
3201 for (i = 0; i < ehdr->e_phnum; i++) {
3202 struct elf_phdr *eppnt = phdr + i;
d97ef72e 3203 if (eppnt->p_type == PT_LOAD) {
94894ff2 3204 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
d97ef72e 3205 int elf_prot = 0;
d97ef72e 3206
e5eaf570
RH
3207 if (eppnt->p_flags & PF_R) {
3208 elf_prot |= PROT_READ;
3209 }
3210 if (eppnt->p_flags & PF_W) {
3211 elf_prot |= PROT_WRITE;
3212 }
3213 if (eppnt->p_flags & PF_X) {
e8384b37 3214 elf_prot |= prot_exec;
e5eaf570 3215 }
d97ef72e 3216
682674b8
RH
3217 vaddr = load_bias + eppnt->p_vaddr;
3218 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
3219 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
22d113b5
GM
3220
3221 vaddr_ef = vaddr + eppnt->p_filesz;
3222 vaddr_em = vaddr + eppnt->p_memsz;
682674b8 3223
d87146bc 3224 /*
22d113b5
GM
3225 * Some segments may be completely empty, with a non-zero p_memsz
3226 * but no backing file segment.
d87146bc
GM
3227 */
3228 if (eppnt->p_filesz != 0) {
22d113b5 3229 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
d87146bc
GM
3230 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3231 MAP_PRIVATE | MAP_FIXED,
3232 image_fd, eppnt->p_offset - vaddr_po);
3233
3234 if (error == -1) {
c7f17e7b 3235 goto exit_mmap;
d87146bc 3236 }
09bfb054 3237
22d113b5
GM
3238 /*
3239 * If the load segment requests extra zeros (e.g. bss), map it.
3240 */
3241 if (eppnt->p_filesz < eppnt->p_memsz) {
3242 zero_bss(vaddr_ef, vaddr_em, elf_prot);
3243 }
3244 } else if (eppnt->p_memsz != 0) {
3245 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
3246 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3247 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
3248 -1, 0);
31e31b8a 3249
22d113b5
GM
3250 if (error == -1) {
3251 goto exit_mmap;
3252 }
cf129f3a 3253 }
8e62a717
RH
3254
3255 /* Find the full program boundaries. */
3256 if (elf_prot & PROT_EXEC) {
3257 if (vaddr < info->start_code) {
3258 info->start_code = vaddr;
3259 }
3260 if (vaddr_ef > info->end_code) {
3261 info->end_code = vaddr_ef;
3262 }
3263 }
3264 if (elf_prot & PROT_WRITE) {
3265 if (vaddr < info->start_data) {
3266 info->start_data = vaddr;
3267 }
3268 if (vaddr_ef > info->end_data) {
3269 info->end_data = vaddr_ef;
3270 }
8a045188
TB
3271 }
3272 if (vaddr_em > info->brk) {
3273 info->brk = vaddr_em;
8e62a717 3274 }
5dd0db52
SM
3275#ifdef TARGET_MIPS
3276 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3277 Mips_elf_abiflags_v0 abiflags;
3278 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
c7f17e7b 3279 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
5dd0db52
SM
3280 goto exit_errmsg;
3281 }
3282 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3283 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3284 sizeof(Mips_elf_abiflags_v0));
3285 } else {
3286 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3287 eppnt->p_offset);
3288 if (retval != sizeof(Mips_elf_abiflags_v0)) {
c7f17e7b 3289 goto exit_read;
5dd0db52
SM
3290 }
3291 }
3292 bswap_mips_abiflags(&abiflags);
c94cb6c9 3293 info->fp_abi = abiflags.fp_abi;
5dd0db52 3294#endif
d97ef72e 3295 }
682674b8 3296 }
5fafdf24 3297
8e62a717
RH
3298 if (info->end_data == 0) {
3299 info->start_data = info->end_code;
3300 info->end_data = info->end_code;
8e62a717
RH
3301 }
3302
682674b8 3303 if (qemu_log_enabled()) {
8e62a717 3304 load_symbols(ehdr, image_fd, load_bias);
682674b8 3305 }
31e31b8a 3306
7c10cb38
IL
3307 debuginfo_report_elf(image_name, image_fd, load_bias);
3308
98c1076c
AB
3309 mmap_unlock();
3310
8e62a717
RH
3311 close(image_fd);
3312 return;
3313
3314 exit_read:
3315 if (retval >= 0) {
c7f17e7b
RH
3316 error_setg(&err, "Incomplete read of file header");
3317 } else {
3318 error_setg_errno(&err, errno, "Error reading file header");
8e62a717 3319 }
c7f17e7b
RH
3320 goto exit_errmsg;
3321 exit_mmap:
3322 error_setg_errno(&err, errno, "Error mapping file");
3323 goto exit_errmsg;
8e62a717 3324 exit_errmsg:
c7f17e7b 3325 error_reportf_err(err, "%s: ", image_name);
8e62a717
RH
3326 exit(-1);
3327}
3328
3329static void load_elf_interp(const char *filename, struct image_info *info,
3330 char bprm_buf[BPRM_BUF_SIZE])
3331{
3332 int fd, retval;
808f6563 3333 Error *err = NULL;
8e62a717
RH
3334
3335 fd = open(path(filename), O_RDONLY);
3336 if (fd < 0) {
808f6563
RH
3337 error_setg_file_open(&err, errno, filename);
3338 error_report_err(err);
3339 exit(-1);
8e62a717 3340 }
31e31b8a 3341
8e62a717
RH
3342 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3343 if (retval < 0) {
808f6563
RH
3344 error_setg_errno(&err, errno, "Error reading file header");
3345 error_reportf_err(err, "%s: ", filename);
3346 exit(-1);
8e62a717 3347 }
808f6563 3348
8e62a717
RH
3349 if (retval < BPRM_BUF_SIZE) {
3350 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3351 }
3352
bf858897 3353 load_elf_image(filename, fd, info, NULL, bprm_buf);
31e31b8a
FB
3354}
3355
49918a75
PB
3356static int symfind(const void *s0, const void *s1)
3357{
49918a75 3358 struct elf_sym *sym = (struct elf_sym *)s1;
b6235a75 3359 __typeof(sym->st_value) addr = *(uint64_t *)s0;
49918a75 3360 int result = 0;
b6235a75 3361
c7c530cd 3362 if (addr < sym->st_value) {
49918a75 3363 result = -1;
c7c530cd 3364 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
3365 result = 1;
3366 }
3367 return result;
3368}
3369
b6235a75 3370static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
49918a75
PB
3371{
3372#if ELF_CLASS == ELFCLASS32
3373 struct elf_sym *syms = s->disas_symtab.elf32;
3374#else
3375 struct elf_sym *syms = s->disas_symtab.elf64;
3376#endif
3377
3378 // binary search
49918a75
PB
3379 struct elf_sym *sym;
3380
c7c530cd 3381 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 3382 if (sym != NULL) {
49918a75
PB
3383 return s->disas_strtab + sym->st_name;
3384 }
3385
3386 return "";
3387}
3388
3389/* FIXME: This should use elf_ops.h */
3390static int symcmp(const void *s0, const void *s1)
3391{
3392 struct elf_sym *sym0 = (struct elf_sym *)s0;
3393 struct elf_sym *sym1 = (struct elf_sym *)s1;
3394 return (sym0->st_value < sym1->st_value)
3395 ? -1
3396 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3397}
3398
689f936f 3399/* Best attempt to load symbols from this ELF object. */
682674b8 3400static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 3401{
682674b8 3402 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 3403 uint64_t segsz;
682674b8 3404 struct elf_shdr *shdr;
b9475279
CV
3405 char *strings = NULL;
3406 struct syminfo *s = NULL;
3407 struct elf_sym *new_syms, *syms = NULL;
689f936f 3408
682674b8
RH
3409 shnum = hdr->e_shnum;
3410 i = shnum * sizeof(struct elf_shdr);
3411 shdr = (struct elf_shdr *)alloca(i);
3412 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3413 return;
3414 }
3415
3416 bswap_shdr(shdr, shnum);
3417 for (i = 0; i < shnum; ++i) {
3418 if (shdr[i].sh_type == SHT_SYMTAB) {
3419 sym_idx = i;
3420 str_idx = shdr[i].sh_link;
49918a75
PB
3421 goto found;
3422 }
689f936f 3423 }
682674b8
RH
3424
3425 /* There will be no symbol table if the file was stripped. */
3426 return;
689f936f
FB
3427
3428 found:
682674b8 3429 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 3430 s = g_try_new(struct syminfo, 1);
682674b8 3431 if (!s) {
b9475279 3432 goto give_up;
682674b8 3433 }
5fafdf24 3434
1e06262d
PM
3435 segsz = shdr[str_idx].sh_size;
3436 s->disas_strtab = strings = g_try_malloc(segsz);
3437 if (!strings ||
3438 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 3439 goto give_up;
682674b8 3440 }
49918a75 3441
1e06262d
PM
3442 segsz = shdr[sym_idx].sh_size;
3443 syms = g_try_malloc(segsz);
3444 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 3445 goto give_up;
682674b8 3446 }
31e31b8a 3447
1e06262d
PM
3448 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3449 /* Implausibly large symbol table: give up rather than ploughing
3450 * on with the number of symbols calculation overflowing
3451 */
3452 goto give_up;
3453 }
3454 nsyms = segsz / sizeof(struct elf_sym);
682674b8 3455 for (i = 0; i < nsyms; ) {
49918a75 3456 bswap_sym(syms + i);
682674b8
RH
3457 /* Throw away entries which we do not need. */
3458 if (syms[i].st_shndx == SHN_UNDEF
3459 || syms[i].st_shndx >= SHN_LORESERVE
3460 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3461 if (i < --nsyms) {
49918a75
PB
3462 syms[i] = syms[nsyms];
3463 }
682674b8 3464 } else {
49918a75 3465#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
3466 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3467 syms[i].st_value &= ~(target_ulong)1;
0774bed1 3468#endif
682674b8
RH
3469 syms[i].st_value += load_bias;
3470 i++;
3471 }
0774bed1 3472 }
49918a75 3473
b9475279
CV
3474 /* No "useful" symbol. */
3475 if (nsyms == 0) {
3476 goto give_up;
3477 }
3478
5d5c9930
RH
3479 /* Attempt to free the storage associated with the local symbols
3480 that we threw away. Whether or not this has any effect on the
3481 memory allocation depends on the malloc implementation and how
3482 many symbols we managed to discard. */
0ef9ea29 3483 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 3484 if (new_syms == NULL) {
b9475279 3485 goto give_up;
5d5c9930 3486 }
8d79de6e 3487 syms = new_syms;
5d5c9930 3488
49918a75 3489 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 3490
49918a75
PB
3491 s->disas_num_syms = nsyms;
3492#if ELF_CLASS == ELFCLASS32
3493 s->disas_symtab.elf32 = syms;
49918a75
PB
3494#else
3495 s->disas_symtab.elf64 = syms;
49918a75 3496#endif
682674b8 3497 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
3498 s->next = syminfos;
3499 syminfos = s;
b9475279
CV
3500
3501 return;
3502
3503give_up:
0ef9ea29
PM
3504 g_free(s);
3505 g_free(strings);
3506 g_free(syms);
689f936f 3507}
31e31b8a 3508
768fe76e
YS
3509uint32_t get_elf_eflags(int fd)
3510{
3511 struct elfhdr ehdr;
3512 off_t offset;
3513 int ret;
3514
3515 /* Read ELF header */
3516 offset = lseek(fd, 0, SEEK_SET);
3517 if (offset == (off_t) -1) {
3518 return 0;
3519 }
3520 ret = read(fd, &ehdr, sizeof(ehdr));
3521 if (ret < sizeof(ehdr)) {
3522 return 0;
3523 }
3524 offset = lseek(fd, offset, SEEK_SET);
3525 if (offset == (off_t) -1) {
3526 return 0;
3527 }
3528
3529 /* Check ELF signature */
3530 if (!elf_check_ident(&ehdr)) {
3531 return 0;
3532 }
3533
3534 /* check header */
3535 bswap_ehdr(&ehdr);
3536 if (!elf_check_ehdr(&ehdr)) {
3537 return 0;
3538 }
3539
3540 /* return architecture id */
3541 return ehdr.e_flags;
3542}
3543
f0116c54 3544int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 3545{
8e62a717 3546 struct image_info interp_info;
31e31b8a 3547 struct elfhdr elf_ex;
8e62a717 3548 char *elf_interpreter = NULL;
59baae9a 3549 char *scratch;
31e31b8a 3550
abcac736
DS
3551 memset(&interp_info, 0, sizeof(interp_info));
3552#ifdef TARGET_MIPS
3553 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3554#endif
3555
bf858897 3556 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
3557
3558 load_elf_image(bprm->filename, bprm->fd, info,
3559 &elf_interpreter, bprm->buf);
31e31b8a 3560
bf858897
RH
3561 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3562 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3563 when we load the interpreter. */
3564 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 3565
59baae9a
SB
3566 /* Do this so that we can load the interpreter, if need be. We will
3567 change some of these later */
3568 bprm->p = setup_arg_pages(bprm, info);
3569
3570 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
3571 if (STACK_GROWS_DOWN) {
3572 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3573 bprm->p, info->stack_limit);
3574 info->file_string = bprm->p;
3575 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3576 bprm->p, info->stack_limit);
3577 info->env_strings = bprm->p;
3578 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3579 bprm->p, info->stack_limit);
3580 info->arg_strings = bprm->p;
3581 } else {
3582 info->arg_strings = bprm->p;
3583 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3584 bprm->p, info->stack_limit);
3585 info->env_strings = bprm->p;
3586 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3587 bprm->p, info->stack_limit);
3588 info->file_string = bprm->p;
3589 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3590 bprm->p, info->stack_limit);
3591 }
3592
59baae9a
SB
3593 g_free(scratch);
3594
e5fe0c52 3595 if (!bprm->p) {
bf858897
RH
3596 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3597 exit(-1);
379f6698 3598 }
379f6698 3599
8e62a717
RH
3600 if (elf_interpreter) {
3601 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 3602
8e62a717
RH
3603 /* If the program interpreter is one of these two, then assume
3604 an iBCS2 image. Otherwise assume a native linux image. */
3605
3606 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3607 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3608 info->personality = PER_SVR4;
31e31b8a 3609
8e62a717
RH
3610 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3611 and some applications "depend" upon this behavior. Since
3612 we do not have the power to recompile these, we emulate
3613 the SVr4 behavior. Sigh. */
3614 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 3615 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 3616 }
c94cb6c9
SM
3617#ifdef TARGET_MIPS
3618 info->interp_fp_abi = interp_info.fp_abi;
3619#endif
31e31b8a
FB
3620 }
3621
db2af69d
RH
3622 /*
3623 * TODO: load a vdso, which would also contain the signal trampolines.
3624 * Otherwise, allocate a private page to hold them.
3625 */
3626 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
802ae45e
LV
3627 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3628 PROT_READ | PROT_WRITE,
3629 MAP_PRIVATE | MAP_ANON, -1, 0);
3630 if (tramp_page == -1) {
3631 return -errno;
3632 }
3633
db2af69d
RH
3634 setup_sigtramp(tramp_page);
3635 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3636 }
3637
8e62a717
RH
3638 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3639 info, (elf_interpreter ? &interp_info : NULL));
3640 info->start_stack = bprm->p;
3641
3642 /* If we have an interpreter, set that as the program's entry point.
8e78064e 3643 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
3644 point as a function descriptor. Do this after creating elf tables
3645 so that we copy the original program entry point into the AUXV. */
3646 if (elf_interpreter) {
8e78064e 3647 info->load_bias = interp_info.load_bias;
8e62a717 3648 info->entry = interp_info.entry;
2b323087 3649 g_free(elf_interpreter);
8e62a717 3650 }
31e31b8a 3651
edf8e2af
MW
3652#ifdef USE_ELF_CORE_DUMP
3653 bprm->core_dump = &elf_core_dump;
3654#endif
3655
6fd59449
RH
3656 /*
3657 * If we reserved extra space for brk, release it now.
3658 * The implementation of do_brk in syscalls.c expects to be able
3659 * to mmap pages in this space.
3660 */
3661 if (info->reserve_brk) {
3662 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3663 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3664 target_munmap(start_brk, end_brk - start_brk);
3665 }
3666
31e31b8a
FB
3667 return 0;
3668}
3669
edf8e2af 3670#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
3671/*
3672 * Definitions to generate Intel SVR4-like core files.
a2547a13 3673 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
3674 * tacked on the front to prevent clashes with linux definitions,
3675 * and the typedef forms have been avoided. This is mostly like
3676 * the SVR4 structure, but more Linuxy, with things that Linux does
3677 * not support and which gdb doesn't really use excluded.
3678 *
3679 * Fields we don't dump (their contents is zero) in linux-user qemu
3680 * are marked with XXX.
3681 *
3682 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3683 *
3684 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 3685 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
3686 * the target resides):
3687 *
3688 * #define USE_ELF_CORE_DUMP
3689 *
3690 * Next you define type of register set used for dumping. ELF specification
3691 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3692 *
c227f099 3693 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 3694 * #define ELF_NREG <number of registers>
c227f099 3695 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 3696 *
edf8e2af
MW
3697 * Last step is to implement target specific function that copies registers
3698 * from given cpu into just specified register set. Prototype is:
3699 *
c227f099 3700 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 3701 * const CPUArchState *env);
edf8e2af
MW
3702 *
3703 * Parameters:
3704 * regs - copy register values into here (allocated and zeroed by caller)
3705 * env - copy registers from here
3706 *
3707 * Example for ARM target is provided in this file.
3708 */
3709
3710/* An ELF note in memory */
3711struct memelfnote {
3712 const char *name;
3713 size_t namesz;
3714 size_t namesz_rounded;
3715 int type;
3716 size_t datasz;
80f5ce75 3717 size_t datasz_rounded;
edf8e2af
MW
3718 void *data;
3719 size_t notesz;
3720};
3721
a2547a13 3722struct target_elf_siginfo {
f8fd4fc4
PB
3723 abi_int si_signo; /* signal number */
3724 abi_int si_code; /* extra code */
3725 abi_int si_errno; /* errno */
edf8e2af
MW
3726};
3727
a2547a13
LD
3728struct target_elf_prstatus {
3729 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 3730 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
3731 abi_ulong pr_sigpend; /* XXX */
3732 abi_ulong pr_sighold; /* XXX */
c227f099
AL
3733 target_pid_t pr_pid;
3734 target_pid_t pr_ppid;
3735 target_pid_t pr_pgrp;
3736 target_pid_t pr_sid;
edf8e2af
MW
3737 struct target_timeval pr_utime; /* XXX User time */
3738 struct target_timeval pr_stime; /* XXX System time */
3739 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3740 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 3741 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 3742 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
3743};
3744
3745#define ELF_PRARGSZ (80) /* Number of chars for args */
3746
a2547a13 3747struct target_elf_prpsinfo {
edf8e2af
MW
3748 char pr_state; /* numeric process state */
3749 char pr_sname; /* char for pr_state */
3750 char pr_zomb; /* zombie */
3751 char pr_nice; /* nice val */
ca98ac83 3752 abi_ulong pr_flag; /* flags */
c227f099
AL
3753 target_uid_t pr_uid;
3754 target_gid_t pr_gid;
3755 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af 3756 /* Lots missing */
d7eb2b92 3757 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
edf8e2af
MW
3758 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3759};
3760
3761/* Here is the structure in which status of each thread is captured. */
3762struct elf_thread_status {
72cf2d4f 3763 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 3764 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
3765#if 0
3766 elf_fpregset_t fpu; /* NT_PRFPREG */
3767 struct task_struct *thread;
3768 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3769#endif
3770 struct memelfnote notes[1];
3771 int num_notes;
3772};
3773
3774struct elf_note_info {
3775 struct memelfnote *notes;
a2547a13
LD
3776 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3777 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 3778
b58deb34 3779 QTAILQ_HEAD(, elf_thread_status) thread_list;
edf8e2af
MW
3780#if 0
3781 /*
3782 * Current version of ELF coredump doesn't support
3783 * dumping fp regs etc.
3784 */
3785 elf_fpregset_t *fpu;
3786 elf_fpxregset_t *xfpu;
3787 int thread_status_size;
3788#endif
3789 int notes_size;
3790 int numnote;
3791};
3792
3793struct vm_area_struct {
1a1c4db9
MI
3794 target_ulong vma_start; /* start vaddr of memory region */
3795 target_ulong vma_end; /* end vaddr of memory region */
3796 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 3797 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
3798};
3799
3800struct mm_struct {
72cf2d4f 3801 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
3802 int mm_count; /* number of mappings */
3803};
3804
3805static struct mm_struct *vma_init(void);
3806static void vma_delete(struct mm_struct *);
1a1c4db9
MI
3807static int vma_add_mapping(struct mm_struct *, target_ulong,
3808 target_ulong, abi_ulong);
edf8e2af
MW
3809static int vma_get_mapping_count(const struct mm_struct *);
3810static struct vm_area_struct *vma_first(const struct mm_struct *);
3811static struct vm_area_struct *vma_next(struct vm_area_struct *);
3812static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 3813static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3814 unsigned long flags);
edf8e2af
MW
3815
3816static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3817static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 3818 unsigned int, void *);
a2547a13
LD
3819static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3820static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
3821static void fill_auxv_note(struct memelfnote *, const TaskState *);
3822static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3823static size_t note_size(const struct memelfnote *);
3824static void free_note_info(struct elf_note_info *);
9349b4f9
AF
3825static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3826static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
3827
3828static int dump_write(int, const void *, size_t);
3829static int write_note(struct memelfnote *, int);
3830static int write_note_info(struct elf_note_info *, int);
3831
3832#ifdef BSWAP_NEEDED
a2547a13 3833static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 3834{
ca98ac83
PB
3835 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3836 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3837 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 3838 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
3839 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3840 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
3841 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3842 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3843 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3844 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3845 /* cpu times are not filled, so we skip them */
3846 /* regs should be in correct format already */
3847 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3848}
3849
a2547a13 3850static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 3851{
ca98ac83 3852 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
3853 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3854 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3855 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3856 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3857 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3858 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3859}
991f8f0c
RH
3860
3861static void bswap_note(struct elf_note *en)
3862{
3863 bswap32s(&en->n_namesz);
3864 bswap32s(&en->n_descsz);
3865 bswap32s(&en->n_type);
3866}
3867#else
3868static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3869static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3870static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
3871#endif /* BSWAP_NEEDED */
3872
3873/*
3874 * Minimal support for linux memory regions. These are needed
3875 * when we are finding out what memory exactly belongs to
3876 * emulated process. No locks needed here, as long as
3877 * thread that received the signal is stopped.
3878 */
3879
3880static struct mm_struct *vma_init(void)
3881{
3882 struct mm_struct *mm;
3883
7267c094 3884 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
3885 return (NULL);
3886
3887 mm->mm_count = 0;
72cf2d4f 3888 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
3889
3890 return (mm);
3891}
3892
3893static void vma_delete(struct mm_struct *mm)
3894{
3895 struct vm_area_struct *vma;
3896
3897 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 3898 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 3899 g_free(vma);
edf8e2af 3900 }
7267c094 3901 g_free(mm);
edf8e2af
MW
3902}
3903
1a1c4db9
MI
3904static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3905 target_ulong end, abi_ulong flags)
edf8e2af
MW
3906{
3907 struct vm_area_struct *vma;
3908
7267c094 3909 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
3910 return (-1);
3911
3912 vma->vma_start = start;
3913 vma->vma_end = end;
3914 vma->vma_flags = flags;
3915
72cf2d4f 3916 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
3917 mm->mm_count++;
3918
3919 return (0);
3920}
3921
3922static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3923{
72cf2d4f 3924 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
3925}
3926
3927static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3928{
72cf2d4f 3929 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
3930}
3931
3932static int vma_get_mapping_count(const struct mm_struct *mm)
3933{
3934 return (mm->mm_count);
3935}
3936
3937/*
3938 * Calculate file (dump) size of given memory region.
3939 */
3940static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3941{
3942 /* if we cannot even read the first page, skip it */
c7169b02 3943 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
edf8e2af
MW
3944 return (0);
3945
3946 /*
3947 * Usually we don't dump executable pages as they contain
3948 * non-writable code that debugger can read directly from
3949 * target library etc. However, thread stacks are marked
3950 * also executable so we read in first page of given region
3951 * and check whether it contains elf header. If there is
3952 * no elf header, we dump it.
3953 */
3954 if (vma->vma_flags & PROT_EXEC) {
3955 char page[TARGET_PAGE_SIZE];
3956
022625a8
PM
3957 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3958 return 0;
3959 }
edf8e2af
MW
3960 if ((page[EI_MAG0] == ELFMAG0) &&
3961 (page[EI_MAG1] == ELFMAG1) &&
3962 (page[EI_MAG2] == ELFMAG2) &&
3963 (page[EI_MAG3] == ELFMAG3)) {
3964 /*
3965 * Mappings are possibly from ELF binary. Don't dump
3966 * them.
3967 */
3968 return (0);
3969 }
3970 }
3971
3972 return (vma->vma_end - vma->vma_start);
3973}
3974
1a1c4db9 3975static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3976 unsigned long flags)
edf8e2af
MW
3977{
3978 struct mm_struct *mm = (struct mm_struct *)priv;
3979
edf8e2af
MW
3980 vma_add_mapping(mm, start, end, flags);
3981 return (0);
3982}
3983
3984static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 3985 unsigned int sz, void *data)
edf8e2af
MW
3986{
3987 unsigned int namesz;
3988
3989 namesz = strlen(name) + 1;
3990 note->name = name;
3991 note->namesz = namesz;
3992 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3993 note->type = type;
80f5ce75
LV
3994 note->datasz = sz;
3995 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3996
edf8e2af
MW
3997 note->data = data;
3998
3999 /*
4000 * We calculate rounded up note size here as specified by
4001 * ELF document.
4002 */
4003 note->notesz = sizeof (struct elf_note) +
80f5ce75 4004 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
4005}
4006
4007static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 4008 uint32_t flags)
edf8e2af
MW
4009{
4010 (void) memset(elf, 0, sizeof(*elf));
4011
4012 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
4013 elf->e_ident[EI_CLASS] = ELF_CLASS;
4014 elf->e_ident[EI_DATA] = ELF_DATA;
4015 elf->e_ident[EI_VERSION] = EV_CURRENT;
4016 elf->e_ident[EI_OSABI] = ELF_OSABI;
4017
4018 elf->e_type = ET_CORE;
4019 elf->e_machine = machine;
4020 elf->e_version = EV_CURRENT;
4021 elf->e_phoff = sizeof(struct elfhdr);
4022 elf->e_flags = flags;
4023 elf->e_ehsize = sizeof(struct elfhdr);
4024 elf->e_phentsize = sizeof(struct elf_phdr);
4025 elf->e_phnum = segs;
4026
edf8e2af 4027 bswap_ehdr(elf);
edf8e2af
MW
4028}
4029
4030static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4031{
4032 phdr->p_type = PT_NOTE;
4033 phdr->p_offset = offset;
4034 phdr->p_vaddr = 0;
4035 phdr->p_paddr = 0;
4036 phdr->p_filesz = sz;
4037 phdr->p_memsz = 0;
4038 phdr->p_flags = 0;
4039 phdr->p_align = 0;
4040
991f8f0c 4041 bswap_phdr(phdr, 1);
edf8e2af
MW
4042}
4043
4044static size_t note_size(const struct memelfnote *note)
4045{
4046 return (note->notesz);
4047}
4048
a2547a13 4049static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 4050 const TaskState *ts, int signr)
edf8e2af
MW
4051{
4052 (void) memset(prstatus, 0, sizeof (*prstatus));
4053 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4054 prstatus->pr_pid = ts->ts_tid;
4055 prstatus->pr_ppid = getppid();
4056 prstatus->pr_pgrp = getpgrp();
4057 prstatus->pr_sid = getsid(0);
4058
edf8e2af 4059 bswap_prstatus(prstatus);
edf8e2af
MW
4060}
4061
a2547a13 4062static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 4063{
900cfbca 4064 char *base_filename;
edf8e2af
MW
4065 unsigned int i, len;
4066
4067 (void) memset(psinfo, 0, sizeof (*psinfo));
4068
5f779a3a 4069 len = ts->info->env_strings - ts->info->arg_strings;
edf8e2af
MW
4070 if (len >= ELF_PRARGSZ)
4071 len = ELF_PRARGSZ - 1;
5f779a3a 4072 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
edf8e2af 4073 return -EFAULT;
5f779a3a 4074 }
edf8e2af
MW
4075 for (i = 0; i < len; i++)
4076 if (psinfo->pr_psargs[i] == 0)
4077 psinfo->pr_psargs[i] = ' ';
4078 psinfo->pr_psargs[len] = 0;
4079
4080 psinfo->pr_pid = getpid();
4081 psinfo->pr_ppid = getppid();
4082 psinfo->pr_pgrp = getpgrp();
4083 psinfo->pr_sid = getsid(0);
4084 psinfo->pr_uid = getuid();
4085 psinfo->pr_gid = getgid();
4086
900cfbca
JM
4087 base_filename = g_path_get_basename(ts->bprm->filename);
4088 /*
4089 * Using strncpy here is fine: at max-length,
4090 * this field is not NUL-terminated.
4091 */
edf8e2af 4092 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 4093 sizeof(psinfo->pr_fname));
edf8e2af 4094
900cfbca 4095 g_free(base_filename);
edf8e2af 4096 bswap_psinfo(psinfo);
edf8e2af
MW
4097 return (0);
4098}
4099
4100static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4101{
4102 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4103 elf_addr_t orig_auxv = auxv;
edf8e2af 4104 void *ptr;
125b0f55 4105 int len = ts->info->auxv_len;
edf8e2af
MW
4106
4107 /*
4108 * Auxiliary vector is stored in target process stack. It contains
4109 * {type, value} pairs that we need to dump into note. This is not
4110 * strictly necessary but we do it here for sake of completeness.
4111 */
4112
edf8e2af
MW
4113 /* read in whole auxv vector and copy it to memelfnote */
4114 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4115 if (ptr != NULL) {
4116 fill_note(note, "CORE", NT_AUXV, len, ptr);
4117 unlock_user(ptr, auxv, len);
4118 }
4119}
4120
4121/*
4122 * Constructs name of coredump file. We have following convention
4123 * for the name:
4124 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4125 *
68af19ad 4126 * Returns the filename
edf8e2af 4127 */
68af19ad 4128static char *core_dump_filename(const TaskState *ts)
edf8e2af 4129{
68af19ad
DB
4130 g_autoptr(GDateTime) now = g_date_time_new_now_local();
4131 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4132 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 4133
68af19ad
DB
4134 return g_strdup_printf("qemu_%s_%s_%d.core",
4135 base_filename, nowstr, (int)getpid());
edf8e2af
MW
4136}
4137
4138static int dump_write(int fd, const void *ptr, size_t size)
4139{
4140 const char *bufp = (const char *)ptr;
4141 ssize_t bytes_written, bytes_left;
4142 struct rlimit dumpsize;
4143 off_t pos;
4144
4145 bytes_written = 0;
4146 getrlimit(RLIMIT_CORE, &dumpsize);
4147 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4148 if (errno == ESPIPE) { /* not a seekable stream */
4149 bytes_left = size;
4150 } else {
4151 return pos;
4152 }
4153 } else {
4154 if (dumpsize.rlim_cur <= pos) {
4155 return -1;
4156 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4157 bytes_left = size;
4158 } else {
4159 size_t limit_left=dumpsize.rlim_cur - pos;
4160 bytes_left = limit_left >= size ? size : limit_left ;
4161 }
4162 }
4163
4164 /*
4165 * In normal conditions, single write(2) should do but
4166 * in case of socket etc. this mechanism is more portable.
4167 */
4168 do {
4169 bytes_written = write(fd, bufp, bytes_left);
4170 if (bytes_written < 0) {
4171 if (errno == EINTR)
4172 continue;
4173 return (-1);
4174 } else if (bytes_written == 0) { /* eof */
4175 return (-1);
4176 }
4177 bufp += bytes_written;
4178 bytes_left -= bytes_written;
4179 } while (bytes_left > 0);
4180
4181 return (0);
4182}
4183
4184static int write_note(struct memelfnote *men, int fd)
4185{
4186 struct elf_note en;
4187
4188 en.n_namesz = men->namesz;
4189 en.n_type = men->type;
4190 en.n_descsz = men->datasz;
4191
edf8e2af 4192 bswap_note(&en);
edf8e2af
MW
4193
4194 if (dump_write(fd, &en, sizeof(en)) != 0)
4195 return (-1);
4196 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4197 return (-1);
80f5ce75 4198 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
4199 return (-1);
4200
4201 return (0);
4202}
4203
9349b4f9 4204static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 4205{
29a0af61 4206 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 4207 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
4208 struct elf_thread_status *ets;
4209
7267c094 4210 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
4211 ets->num_notes = 1; /* only prstatus is dumped */
4212 fill_prstatus(&ets->prstatus, ts, 0);
4213 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4214 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 4215 &ets->prstatus);
edf8e2af 4216
72cf2d4f 4217 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
4218
4219 info->notes_size += note_size(&ets->notes[0]);
4220}
4221
6afafa86
PM
4222static void init_note_info(struct elf_note_info *info)
4223{
4224 /* Initialize the elf_note_info structure so that it is at
4225 * least safe to call free_note_info() on it. Must be
4226 * called before calling fill_note_info().
4227 */
4228 memset(info, 0, sizeof (*info));
4229 QTAILQ_INIT(&info->thread_list);
4230}
4231
edf8e2af 4232static int fill_note_info(struct elf_note_info *info,
9349b4f9 4233 long signr, const CPUArchState *env)
edf8e2af
MW
4234{
4235#define NUMNOTES 3
29a0af61 4236 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 4237 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
4238 int i;
4239
c78d65e8 4240 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
4241 if (info->notes == NULL)
4242 return (-ENOMEM);
7267c094 4243 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
4244 if (info->prstatus == NULL)
4245 return (-ENOMEM);
7267c094 4246 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
4247 if (info->prstatus == NULL)
4248 return (-ENOMEM);
4249
4250 /*
4251 * First fill in status (and registers) of current thread
4252 * including process info & aux vector.
4253 */
4254 fill_prstatus(info->prstatus, ts, signr);
4255 elf_core_copy_regs(&info->prstatus->pr_reg, env);
4256 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 4257 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
4258 fill_psinfo(info->psinfo, ts);
4259 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 4260 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
4261 fill_auxv_note(&info->notes[2], ts);
4262 info->numnote = 3;
4263
4264 info->notes_size = 0;
4265 for (i = 0; i < info->numnote; i++)
4266 info->notes_size += note_size(&info->notes[i]);
4267
4268 /* read and fill status of all threads */
370ed600
JI
4269 WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) {
4270 CPU_FOREACH(cpu) {
4271 if (cpu == thread_cpu) {
4272 continue;
4273 }
4274 fill_thread_info(info, cpu->env_ptr);
182735ef 4275 }
edf8e2af 4276 }
edf8e2af
MW
4277
4278 return (0);
4279}
4280
4281static void free_note_info(struct elf_note_info *info)
4282{
4283 struct elf_thread_status *ets;
4284
72cf2d4f
BS
4285 while (!QTAILQ_EMPTY(&info->thread_list)) {
4286 ets = QTAILQ_FIRST(&info->thread_list);
4287 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 4288 g_free(ets);
edf8e2af
MW
4289 }
4290
7267c094
AL
4291 g_free(info->prstatus);
4292 g_free(info->psinfo);
4293 g_free(info->notes);
edf8e2af
MW
4294}
4295
4296static int write_note_info(struct elf_note_info *info, int fd)
4297{
4298 struct elf_thread_status *ets;
4299 int i, error = 0;
4300
4301 /* write prstatus, psinfo and auxv for current thread */
4302 for (i = 0; i < info->numnote; i++)
4303 if ((error = write_note(&info->notes[i], fd)) != 0)
4304 return (error);
4305
4306 /* write prstatus for each thread */
52a53afe 4307 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
4308 if ((error = write_note(&ets->notes[0], fd)) != 0)
4309 return (error);
4310 }
4311
4312 return (0);
4313}
4314
4315/*
4316 * Write out ELF coredump.
4317 *
4318 * See documentation of ELF object file format in:
4319 * http://www.caldera.com/developers/devspecs/gabi41.pdf
4320 *
4321 * Coredump format in linux is following:
4322 *
4323 * 0 +----------------------+ \
4324 * | ELF header | ET_CORE |
4325 * +----------------------+ |
4326 * | ELF program headers | |--- headers
4327 * | - NOTE section | |
4328 * | - PT_LOAD sections | |
4329 * +----------------------+ /
4330 * | NOTEs: |
4331 * | - NT_PRSTATUS |
4332 * | - NT_PRSINFO |
4333 * | - NT_AUXV |
4334 * +----------------------+ <-- aligned to target page
4335 * | Process memory dump |
4336 * : :
4337 * . .
4338 * : :
4339 * | |
4340 * +----------------------+
4341 *
4342 * NT_PRSTATUS -> struct elf_prstatus (per thread)
4343 * NT_PRSINFO -> struct elf_prpsinfo
4344 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4345 *
4346 * Format follows System V format as close as possible. Current
4347 * version limitations are as follows:
4348 * - no floating point registers are dumped
4349 *
4350 * Function returns 0 in case of success, negative errno otherwise.
4351 *
4352 * TODO: make this work also during runtime: it should be
4353 * possible to force coredump from running process and then
4354 * continue processing. For example qemu could set up SIGUSR2
4355 * handler (provided that target process haven't registered
4356 * handler for that) that does the dump when signal is received.
4357 */
9349b4f9 4358static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 4359{
29a0af61 4360 const CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 4361 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af 4362 struct vm_area_struct *vma = NULL;
68af19ad 4363 g_autofree char *corefile = NULL;
edf8e2af
MW
4364 struct elf_note_info info;
4365 struct elfhdr elf;
4366 struct elf_phdr phdr;
4367 struct rlimit dumpsize;
4368 struct mm_struct *mm = NULL;
4369 off_t offset = 0, data_offset = 0;
4370 int segs = 0;
4371 int fd = -1;
4372
6afafa86
PM
4373 init_note_info(&info);
4374
edf8e2af
MW
4375 errno = 0;
4376 getrlimit(RLIMIT_CORE, &dumpsize);
4377 if (dumpsize.rlim_cur == 0)
d97ef72e 4378 return 0;
edf8e2af 4379
68af19ad 4380 corefile = core_dump_filename(ts);
edf8e2af
MW
4381
4382 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 4383 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
4384 return (-errno);
4385
4386 /*
4387 * Walk through target process memory mappings and
4388 * set up structure containing this information. After
4389 * this point vma_xxx functions can be used.
4390 */
4391 if ((mm = vma_init()) == NULL)
4392 goto out;
4393
4394 walk_memory_regions(mm, vma_walker);
4395 segs = vma_get_mapping_count(mm);
4396
4397 /*
4398 * Construct valid coredump ELF header. We also
4399 * add one more segment for notes.
4400 */
4401 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4402 if (dump_write(fd, &elf, sizeof (elf)) != 0)
4403 goto out;
4404
b6af0975 4405 /* fill in the in-memory version of notes */
edf8e2af
MW
4406 if (fill_note_info(&info, signr, env) < 0)
4407 goto out;
4408
4409 offset += sizeof (elf); /* elf header */
4410 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
4411
4412 /* write out notes program header */
4413 fill_elf_note_phdr(&phdr, info.notes_size, offset);
4414
4415 offset += info.notes_size;
4416 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4417 goto out;
4418
4419 /*
4420 * ELF specification wants data to start at page boundary so
4421 * we align it here.
4422 */
80f5ce75 4423 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
4424
4425 /*
4426 * Write program headers for memory regions mapped in
4427 * the target process.
4428 */
4429 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4430 (void) memset(&phdr, 0, sizeof (phdr));
4431
4432 phdr.p_type = PT_LOAD;
4433 phdr.p_offset = offset;
4434 phdr.p_vaddr = vma->vma_start;
4435 phdr.p_paddr = 0;
4436 phdr.p_filesz = vma_dump_size(vma);
4437 offset += phdr.p_filesz;
4438 phdr.p_memsz = vma->vma_end - vma->vma_start;
4439 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4440 if (vma->vma_flags & PROT_WRITE)
4441 phdr.p_flags |= PF_W;
4442 if (vma->vma_flags & PROT_EXEC)
4443 phdr.p_flags |= PF_X;
4444 phdr.p_align = ELF_EXEC_PAGESIZE;
4445
80f5ce75 4446 bswap_phdr(&phdr, 1);
772034b6
PM
4447 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4448 goto out;
4449 }
edf8e2af
MW
4450 }
4451
4452 /*
4453 * Next we write notes just after program headers. No
4454 * alignment needed here.
4455 */
4456 if (write_note_info(&info, fd) < 0)
4457 goto out;
4458
4459 /* align data to page boundary */
edf8e2af
MW
4460 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4461 goto out;
4462
4463 /*
4464 * Finally we can dump process memory into corefile as well.
4465 */
4466 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4467 abi_ulong addr;
4468 abi_ulong end;
4469
4470 end = vma->vma_start + vma_dump_size(vma);
4471
4472 for (addr = vma->vma_start; addr < end;
d97ef72e 4473 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
4474 char page[TARGET_PAGE_SIZE];
4475 int error;
4476
4477 /*
4478 * Read in page from target process memory and
4479 * write it to coredump file.
4480 */
4481 error = copy_from_user(page, addr, sizeof (page));
4482 if (error != 0) {
49995e17 4483 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 4484 addr);
edf8e2af
MW
4485 errno = -error;
4486 goto out;
4487 }
4488 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4489 goto out;
4490 }
4491 }
4492
d97ef72e 4493 out:
edf8e2af
MW
4494 free_note_info(&info);
4495 if (mm != NULL)
4496 vma_delete(mm);
4497 (void) close(fd);
4498
4499 if (errno != 0)
4500 return (-errno);
4501 return (0);
4502}
edf8e2af
MW
4503#endif /* USE_ELF_CORE_DUMP */
4504
e5fe0c52
PB
4505void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4506{
4507 init_thread(regs, infop);
4508}