]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/qemu.h
Merge remote-tracking branch 'remotes/cody/tags/block-pull-request' into staging
[mirror_qemu.git] / linux-user / qemu.h
CommitLineData
e88de099
FB
1#ifndef QEMU_H
2#define QEMU_H
31e31b8a 3
4d330cee 4#include "hostdep.h"
6180a181 5#include "cpu.h"
63c91552 6#include "exec/exec-all.h"
f08b6170 7#include "exec/cpu_ldst.h"
992f48a0 8
06177d36
AZ
9#undef DEBUG_REMAP
10#ifdef DEBUG_REMAP
06177d36
AZ
11#endif /* DEBUG_REMAP */
12
022c62cb 13#include "exec/user/abitypes.h"
992f48a0 14
022c62cb 15#include "exec/user/thunk.h"
992f48a0 16#include "syscall_defs.h"
460c579f 17#include "target_syscall.h"
022c62cb 18#include "exec/gdbstub.h"
1de7afc9 19#include "qemu/queue.h"
66fb9763 20
d5975363 21#define THREAD __thread
d5975363 22
1d48fdd9
PM
23/* This is the size of the host kernel's sigset_t, needed where we make
24 * direct system calls that take a sigset_t pointer and a size.
25 */
26#define SIGSET_T_SIZE (_NSIG / 8)
27
31e31b8a
FB
28/* This struct is used to hold certain information about the image.
29 * Basically, it replicates in user space what would be certain
30 * task_struct fields in the kernel
31 */
32struct image_info {
9955ffac 33 abi_ulong load_bias;
992f48a0
BS
34 abi_ulong load_addr;
35 abi_ulong start_code;
36 abi_ulong end_code;
37 abi_ulong start_data;
38 abi_ulong end_data;
39 abi_ulong start_brk;
40 abi_ulong brk;
41 abi_ulong start_mmap;
992f48a0 42 abi_ulong start_stack;
97374d38 43 abi_ulong stack_limit;
992f48a0
BS
44 abi_ulong entry;
45 abi_ulong code_offset;
46 abi_ulong data_offset;
edf8e2af 47 abi_ulong saved_auxv;
125b0f55 48 abi_ulong auxv_len;
edf8e2af
MW
49 abi_ulong arg_start;
50 abi_ulong arg_end;
7c4ee5bc
RH
51 abi_ulong arg_strings;
52 abi_ulong env_strings;
53 abi_ulong file_string;
d8fd2954 54 uint32_t elf_flags;
31e31b8a 55 int personality;
1af02e83
MF
56#ifdef CONFIG_USE_FDPIC
57 abi_ulong loadmap_addr;
58 uint16_t nsegs;
59 void *loadsegs;
60 abi_ulong pt_dynamic_addr;
61 struct image_info *other_info;
62#endif
31e31b8a
FB
63};
64
b346ff46 65#ifdef TARGET_I386
851e67a1
FB
66/* Information about the current linux thread */
67struct vm86_saved_state {
68 uint32_t eax; /* return code */
69 uint32_t ebx;
70 uint32_t ecx;
71 uint32_t edx;
72 uint32_t esi;
73 uint32_t edi;
74 uint32_t ebp;
75 uint32_t esp;
76 uint32_t eflags;
77 uint32_t eip;
78 uint16_t cs, ss, ds, es, fs, gs;
79};
b346ff46 80#endif
851e67a1 81
848d72cd 82#if defined(TARGET_ARM) && defined(TARGET_ABI32)
28c4f361
FB
83/* FPU emulator */
84#include "nwfpe/fpa11.h"
28c4f361
FB
85#endif
86
624f7979
PB
87#define MAX_SIGQUEUE_SIZE 1024
88
624f7979
PB
89struct emulated_sigtable {
90 int pending; /* true if signal is pending */
907f5fdd 91 target_siginfo_t info;
624f7979
PB
92};
93
851e67a1
FB
94/* NOTE: we force a big alignment so that the stack stored after is
95 aligned too */
96typedef struct TaskState {
edf8e2af 97 pid_t ts_tid; /* tid (or pid) of this task */
28c4f361 98#ifdef TARGET_ARM
848d72cd 99# ifdef TARGET_ABI32
28c4f361
FB
100 /* FPA state */
101 FPA11 fpa;
848d72cd 102# endif
a4f81979 103 int swi_errno;
28c4f361 104#endif
d2fbca94
GX
105#ifdef TARGET_UNICORE32
106 int swi_errno;
107#endif
84409ddb 108#if defined(TARGET_I386) && !defined(TARGET_X86_64)
992f48a0 109 abi_ulong target_v86;
851e67a1 110 struct vm86_saved_state vm86_saved_regs;
b333af06 111 struct target_vm86plus_struct vm86plus;
631271d7
FB
112 uint32_t v86flags;
113 uint32_t v86mask;
e6e5906b 114#endif
c2764719 115 abi_ulong child_tidptr;
e6e5906b
PB
116#ifdef TARGET_M68K
117 int sim_syscalls;
1ccd9374 118 abi_ulong tp_value;
a87295e8 119#endif
d2fbca94 120#if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
a87295e8 121 /* Extra fields for semihosted binaries. */
d317091d
PM
122 abi_ulong heap_base;
123 abi_ulong heap_limit;
b346ff46 124#endif
d317091d 125 abi_ulong stack_base;
851e67a1 126 int used; /* non zero if used */
978efd6a 127 struct image_info *info;
edf8e2af 128 struct linux_binprm *bprm;
624f7979 129
655ed67c 130 struct emulated_sigtable sync_signal;
624f7979 131 struct emulated_sigtable sigtab[TARGET_NSIG];
3d3efba0
PM
132 /* This thread's signal mask, as requested by the guest program.
133 * The actual signal mask of this thread may differ:
134 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code
135 * + sometimes we block all signals to avoid races
136 */
137 sigset_t signal_mask;
138 /* The signal mask imposed by a guest sigsuspend syscall, if we are
139 * currently in the middle of such a syscall
140 */
141 sigset_t sigsuspend_mask;
142 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
143 int in_sigsuspend;
144
145 /* Nonzero if process_pending_signals() needs to do something (either
146 * handle a pending signal or unblock signals).
147 * This flag is written from a signal handler so should be accessed via
148 * the atomic_read() and atomic_write() functions. (It is not accessed
149 * from multiple threads.)
150 */
151 int signal_pending;
152
851e67a1
FB
153} __attribute__((aligned(16))) TaskState;
154
d088d664 155extern char *exec_path;
624f7979 156void init_task_state(TaskState *ts);
edf8e2af
MW
157void task_settid(TaskState *);
158void stop_all_tasks(void);
c5937220 159extern const char *qemu_uname_release;
379f6698 160extern unsigned long mmap_min_addr;
851e67a1 161
e5fe0c52 162/* ??? See if we can avoid exposing so much of the loader internals. */
e5fe0c52 163
9955ffac
RH
164/* Read a good amount of data initially, to hopefully get all the
165 program headers loaded. */
166#define BPRM_BUF_SIZE 1024
167
e5fe0c52 168/*
5fafdf24 169 * This structure is used to hold the arguments that are
e5fe0c52
PB
170 * used when loading binaries.
171 */
172struct linux_binprm {
9955ffac 173 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
992f48a0 174 abi_ulong p;
e5fe0c52
PB
175 int fd;
176 int e_uid, e_gid;
177 int argc, envc;
178 char **argv;
179 char **envp;
180 char * filename; /* Name of binary */
9349b4f9 181 int (*core_dump)(int, const CPUArchState *); /* coredump routine */
e5fe0c52
PB
182};
183
184void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
992f48a0
BS
185abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
186 abi_ulong stringp, int push_ptr);
03cfd8fa 187int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
edf8e2af
MW
188 struct target_pt_regs * regs, struct image_info *infop,
189 struct linux_binprm *);
31e31b8a 190
f0116c54
WN
191int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
192int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
e5fe0c52 193
579a97f7
FB
194abi_long memcpy_to_target(abi_ulong dest, const void *src,
195 unsigned long len);
992f48a0
BS
196void target_set_brk(abi_ulong new_brk);
197abi_long do_brk(abi_ulong new_brk);
31e31b8a 198void syscall_init(void);
992f48a0
BS
199abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
200 abi_long arg2, abi_long arg3, abi_long arg4,
5945cfcb
PM
201 abi_long arg5, abi_long arg6, abi_long arg7,
202 abi_long arg8);
e5924d89 203void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
a2247f8e 204extern THREAD CPUState *thread_cpu;
9349b4f9 205void cpu_loop(CPUArchState *env);
7dcdaeaf 206const char *target_strerror(int err);
a745ec6d 207int get_osversion(void);
4a24a758 208void init_qemu_uname_release(void);
d5975363
PB
209void fork_start(void);
210void fork_end(int child);
6977fbfd 211
dce10401
MI
212/* Creates the initial guest address space in the host memory space using
213 * the given host start address hint and size. The guest_start parameter
214 * specifies the start address of the guest space. guest_base will be the
215 * difference between the host start address computed by this function and
216 * guest_start. If fixed is specified, then the mapped address space must
217 * start at host_start. The real start address of the mapped memory space is
218 * returned or -1 if there was an error.
219 */
220unsigned long init_guest_space(unsigned long host_start,
221 unsigned long host_size,
222 unsigned long guest_start,
223 bool fixed);
224
1de7afc9 225#include "qemu/log.h"
631271d7 226
4d330cee
TB
227/* safe_syscall.S */
228
229/**
230 * safe_syscall:
231 * @int number: number of system call to make
232 * ...: arguments to the system call
233 *
234 * Call a system call if guest signal not pending.
235 * This has the same API as the libc syscall() function, except that it
236 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
237 *
238 * Returns: the system call result, or -1 with an error code in errno
239 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
240 * with any of the host errno values.)
241 */
242
243/* A guide to using safe_syscall() to handle interactions between guest
244 * syscalls and guest signals:
245 *
246 * Guest syscalls come in two flavours:
247 *
248 * (1) Non-interruptible syscalls
249 *
250 * These are guest syscalls that never get interrupted by signals and
251 * so never return EINTR. They can be implemented straightforwardly in
252 * QEMU: just make sure that if the implementation code has to make any
253 * blocking calls that those calls are retried if they return EINTR.
254 * It's also OK to implement these with safe_syscall, though it will be
255 * a little less efficient if a signal is delivered at the 'wrong' moment.
256 *
3d3efba0
PM
257 * Some non-interruptible syscalls need to be handled using block_signals()
258 * to block signals for the duration of the syscall. This mainly applies
259 * to code which needs to modify the data structures used by the
260 * host_signal_handler() function and the functions it calls, including
261 * all syscalls which change the thread's signal mask.
262 *
4d330cee
TB
263 * (2) Interruptible syscalls
264 *
265 * These are guest syscalls that can be interrupted by signals and
266 * for which we need to either return EINTR or arrange for the guest
267 * syscall to be restarted. This category includes both syscalls which
268 * always restart (and in the kernel return -ERESTARTNOINTR), ones
269 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
270 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
271 * if the handler was registered with SA_RESTART (kernel returns
272 * -ERESTARTSYS). System calls which are only interruptible in some
273 * situations (like 'open') also need to be handled this way.
274 *
275 * Here it is important that the host syscall is made
276 * via this safe_syscall() function, and *not* via the host libc.
277 * If the host libc is used then the implementation will appear to work
278 * most of the time, but there will be a race condition where a
279 * signal could arrive just before we make the host syscall inside libc,
280 * and then then guest syscall will not correctly be interrupted.
281 * Instead the implementation of the guest syscall can use the safe_syscall
282 * function but otherwise just return the result or errno in the usual
283 * way; the main loop code will take care of restarting the syscall
284 * if appropriate.
285 *
286 * (If the implementation needs to make multiple host syscalls this is
287 * OK; any which might really block must be via safe_syscall(); for those
288 * which are only technically blocking (ie which we know in practice won't
289 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
290 * You must be able to cope with backing out correctly if some safe_syscall
291 * you make in the implementation returns either -TARGET_ERESTARTSYS or
292 * EINTR though.)
293 *
3d3efba0
PM
294 * block_signals() cannot be used for interruptible syscalls.
295 *
4d330cee
TB
296 *
297 * How and why the safe_syscall implementation works:
298 *
299 * The basic setup is that we make the host syscall via a known
300 * section of host native assembly. If a signal occurs, our signal
301 * handler checks the interrupted host PC against the addresse of that
302 * known section. If the PC is before or at the address of the syscall
303 * instruction then we change the PC to point at a "return
304 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
305 * (causing the safe_syscall() call to immediately return that value).
306 * Then in the main.c loop if we see this magic return value we adjust
307 * the guest PC to wind it back to before the system call, and invoke
308 * the guest signal handler as usual.
309 *
310 * This winding-back will happen in two cases:
311 * (1) signal came in just before we took the host syscall (a race);
312 * in this case we'll take the guest signal and have another go
313 * at the syscall afterwards, and this is indistinguishable for the
314 * guest from the timing having been different such that the guest
315 * signal really did win the race
316 * (2) signal came in while the host syscall was blocking, and the
317 * host kernel decided the syscall should be restarted;
318 * in this case we want to restart the guest syscall also, and so
319 * rewinding is the right thing. (Note that "restart" semantics mean
320 * "first call the signal handler, then reattempt the syscall".)
321 * The other situation to consider is when a signal came in while the
322 * host syscall was blocking, and the host kernel decided that the syscall
323 * should not be restarted; in this case QEMU's host signal handler will
324 * be invoked with the PC pointing just after the syscall instruction,
325 * with registers indicating an EINTR return; the special code in the
326 * handler will not kick in, and we will return EINTR to the guest as
327 * we should.
328 *
329 * Notice that we can leave the host kernel to make the decision for
330 * us about whether to do a restart of the syscall or not; we do not
331 * need to check SA_RESTART flags in QEMU or distinguish the various
332 * kinds of restartability.
333 */
334#ifdef HAVE_SAFE_SYSCALL
335/* The core part of this function is implemented in assembly */
336extern long safe_syscall_base(int *pending, long number, ...);
337
338#define safe_syscall(...) \
339 ({ \
340 long ret_; \
341 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
342 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \
343 if (is_error(ret_)) { \
344 errno = -ret_; \
345 ret_ = -1; \
346 } \
347 ret_; \
348 })
349
350#else
351
352/* Fallback for architectures which don't yet provide a safe-syscall assembly
353 * fragment; note that this is racy!
354 * This should go away when all host architectures have been updated.
355 */
356#define safe_syscall syscall
357
358#endif
359
a05c6409
RH
360/* syscall.c */
361int host_to_target_waitstatus(int status);
362
b92c47c1
TS
363/* strace.c */
364void print_syscall(int num,
c16f9ed3
FB
365 abi_long arg1, abi_long arg2, abi_long arg3,
366 abi_long arg4, abi_long arg5, abi_long arg6);
367void print_syscall_ret(int num, abi_long arg1);
0cb581d6
PM
368/**
369 * print_taken_signal:
370 * @target_signum: target signal being taken
371 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
372 *
373 * Print strace output indicating that this signal is being taken by the guest,
374 * in a format similar to:
375 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
376 */
377void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
b92c47c1
TS
378extern int do_strace;
379
b346ff46 380/* signal.c */
9349b4f9 381void process_pending_signals(CPUArchState *cpu_env);
b346ff46 382void signal_init(void);
9d2803f7
PM
383int queue_signal(CPUArchState *env, int sig, int si_type,
384 target_siginfo_t *info);
c227f099
AL
385void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
386void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
4cb05961 387int target_to_host_signal(int sig);
1d9d8b55 388int host_to_target_signal(int sig);
9349b4f9
AF
389long do_sigreturn(CPUArchState *env);
390long do_rt_sigreturn(CPUArchState *env);
579a97f7 391abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
1c275925 392int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
3d3efba0
PM
393/**
394 * block_signals: block all signals while handling this guest syscall
395 *
396 * Block all signals, and arrange that the signal mask is returned to
397 * its correct value for the guest before we resume execution of guest code.
398 * If this function returns non-zero, then the caller should immediately
399 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
400 * signal and restart execution of the syscall.
401 * If block_signals() returns zero, then the caller can continue with
402 * emulation of the system call knowing that no signals can be taken
403 * (and therefore that no race conditions will result).
404 * This should only be called once, because if it is called a second time
405 * it will always return non-zero. (Think of it like a mutex that can't
406 * be recursively locked.)
407 * Signals will be unblocked again by process_pending_signals().
408 *
409 * Return value: non-zero if there was a pending signal, zero if not.
410 */
411int block_signals(void); /* Returns non zero if signal pending */
b346ff46
FB
412
413#ifdef TARGET_I386
631271d7
FB
414/* vm86.c */
415void save_v86_state(CPUX86State *env);
447db213 416void handle_vm86_trap(CPUX86State *env, int trapno);
631271d7 417void handle_vm86_fault(CPUX86State *env);
992f48a0 418int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
5bfb56b2
BS
419#elif defined(TARGET_SPARC64)
420void sparc64_set_context(CPUSPARCState *env);
421void sparc64_get_context(CPUSPARCState *env);
b346ff46 422#endif
631271d7 423
54936004 424/* mmap.c */
992f48a0
BS
425int target_mprotect(abi_ulong start, abi_ulong len, int prot);
426abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
427 int flags, int fd, abi_ulong offset);
428int target_munmap(abi_ulong start, abi_ulong len);
429abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
430 abi_ulong new_size, unsigned long flags,
431 abi_ulong new_addr);
432int target_msync(abi_ulong start, abi_ulong len, int flags);
0776590d 433extern unsigned long last_brk;
59e9d91c 434extern abi_ulong mmap_next_start;
9ad197d9 435abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
d5975363
PB
436void mmap_fork_start(void);
437void mmap_fork_end(int child);
54936004 438
440c7e85 439/* main.c */
703e0e89 440extern unsigned long guest_stack_size;
440c7e85 441
edf779ff
FB
442/* user access */
443
444#define VERIFY_READ 0
579a97f7 445#define VERIFY_WRITE 1 /* implies read access */
edf779ff 446
dae3270c
FB
447static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
448{
449 return page_check_range((target_ulong)addr, size,
450 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
451}
edf779ff 452
658f2dc9
RH
453/* NOTE __get_user and __put_user use host pointers and don't check access.
454 These are usually used to access struct data members once the struct has
455 been locked - usually with lock_user_struct. */
456
457/* Tricky points:
458 - Use __builtin_choose_expr to avoid type promotion from ?:,
459 - Invalid sizes result in a compile time error stemming from
460 the fact that abort has no parameters.
461 - It's easier to use the endian-specific unaligned load/store
462 functions than host-endian unaligned load/store plus tswapN. */
463
464#define __put_user_e(x, hptr, e) \
465 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
466 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
467 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
468 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
a42267ef 469 ((hptr), (x)), (void)0)
658f2dc9
RH
470
471#define __get_user_e(x, hptr, e) \
0bc8ce94 472 ((x) = (typeof(*hptr))( \
658f2dc9
RH
473 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
474 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
475 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
476 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
a42267ef 477 (hptr)), (void)0)
658f2dc9
RH
478
479#ifdef TARGET_WORDS_BIGENDIAN
480# define __put_user(x, hptr) __put_user_e(x, hptr, be)
481# define __get_user(x, hptr) __get_user_e(x, hptr, be)
482#else
483# define __put_user(x, hptr) __put_user_e(x, hptr, le)
484# define __get_user(x, hptr) __get_user_e(x, hptr, le)
485#endif
edf779ff 486
579a97f7
FB
487/* put_user()/get_user() take a guest address and check access */
488/* These are usually used to access an atomic data type, such as an int,
489 * that has been passed by address. These internally perform locking
490 * and unlocking on the data type.
491 */
492#define put_user(x, gaddr, target_type) \
493({ \
494 abi_ulong __gaddr = (gaddr); \
495 target_type *__hptr; \
a42267ef 496 abi_long __ret = 0; \
579a97f7 497 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
a42267ef 498 __put_user((x), __hptr); \
579a97f7
FB
499 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
500 } else \
501 __ret = -TARGET_EFAULT; \
502 __ret; \
edf779ff
FB
503})
504
579a97f7
FB
505#define get_user(x, gaddr, target_type) \
506({ \
507 abi_ulong __gaddr = (gaddr); \
508 target_type *__hptr; \
a42267ef 509 abi_long __ret = 0; \
579a97f7 510 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
a42267ef 511 __get_user((x), __hptr); \
579a97f7 512 unlock_user(__hptr, __gaddr, 0); \
2f619698
FB
513 } else { \
514 /* avoid warning */ \
515 (x) = 0; \
579a97f7 516 __ret = -TARGET_EFAULT; \
2f619698 517 } \
579a97f7 518 __ret; \
edf779ff
FB
519})
520
2f619698
FB
521#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
522#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
523#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
524#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
525#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
526#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
527#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
528#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
529#define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
530#define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
531
532#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
533#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
534#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
535#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
536#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
537#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
538#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
539#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
540#define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
541#define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
542
579a97f7
FB
543/* copy_from_user() and copy_to_user() are usually used to copy data
544 * buffers between the target and host. These internally perform
545 * locking/unlocking of the memory.
546 */
547abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
548abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
549
53a5960a 550/* Functions for accessing guest memory. The tget and tput functions
6f20f55b 551 read/write single values, byteswapping as necessary. The lock_user function
53a5960a 552 gets a pointer to a contiguous area of guest memory, but does not perform
6f20f55b 553 any byteswapping. lock_user may return either a pointer to the guest
53a5960a
PB
554 memory, or a temporary buffer. */
555
556/* Lock an area of guest memory into the host. If copy is true then the
557 host area will have the same contents as the guest. */
579a97f7 558static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
edf779ff 559{
579a97f7
FB
560 if (!access_ok(type, guest_addr, len))
561 return NULL;
53a5960a 562#ifdef DEBUG_REMAP
579a97f7
FB
563 {
564 void *addr;
38e826de 565 addr = g_malloc(len);
579a97f7
FB
566 if (copy)
567 memcpy(addr, g2h(guest_addr), len);
568 else
569 memset(addr, 0, len);
570 return addr;
571 }
53a5960a
PB
572#else
573 return g2h(guest_addr);
574#endif
edf779ff
FB
575}
576
579a97f7 577/* Unlock an area of guest memory. The first LEN bytes must be
1235fc06 578 flushed back to guest memory. host_ptr = NULL is explicitly
579a97f7
FB
579 allowed and does nothing. */
580static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
992f48a0 581 long len)
edf779ff 582{
579a97f7 583
53a5960a 584#ifdef DEBUG_REMAP
579a97f7
FB
585 if (!host_ptr)
586 return;
587 if (host_ptr == g2h(guest_addr))
53a5960a
PB
588 return;
589 if (len > 0)
06177d36 590 memcpy(g2h(guest_addr), host_ptr, len);
38e826de 591 g_free(host_ptr);
53a5960a 592#endif
edf779ff
FB
593}
594
579a97f7
FB
595/* Return the length of a string in target memory or -TARGET_EFAULT if
596 access error. */
597abi_long target_strlen(abi_ulong gaddr);
53a5960a
PB
598
599/* Like lock_user but for null terminated strings. */
992f48a0 600static inline void *lock_user_string(abi_ulong guest_addr)
53a5960a 601{
579a97f7
FB
602 abi_long len;
603 len = target_strlen(guest_addr);
604 if (len < 0)
605 return NULL;
606 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
edf779ff
FB
607}
608
41d1af4d 609/* Helper macros for locking/unlocking a target struct. */
579a97f7
FB
610#define lock_user_struct(type, host_ptr, guest_addr, copy) \
611 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
612#define unlock_user_struct(host_ptr, guest_addr, copy) \
53a5960a
PB
613 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
614
c8a706fe 615#include <pthread.h>
c8a706fe 616
dfeab06c
PM
617/* Include target-specific struct and function definitions;
618 * they may need access to the target-independent structures
619 * above, so include them last.
620 */
621#include "target_cpu.h"
622#include "target_signal.h"
55a2b163 623#include "target_structs.h"
dfeab06c 624
e88de099 625#endif /* QEMU_H */