]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/qemu.h
Merge remote-tracking branch 'remotes/thibault/tags/samuel-thibault' into staging
[mirror_qemu.git] / linux-user / qemu.h
CommitLineData
e88de099
FB
1#ifndef QEMU_H
2#define QEMU_H
31e31b8a 3
4d330cee 4#include "hostdep.h"
6180a181 5#include "cpu.h"
63c91552 6#include "exec/exec-all.h"
f08b6170 7#include "exec/cpu_ldst.h"
992f48a0 8
06177d36
AZ
9#undef DEBUG_REMAP
10#ifdef DEBUG_REMAP
06177d36
AZ
11#endif /* DEBUG_REMAP */
12
022c62cb 13#include "exec/user/abitypes.h"
992f48a0 14
022c62cb 15#include "exec/user/thunk.h"
992f48a0 16#include "syscall_defs.h"
460c579f 17#include "target_syscall.h"
022c62cb 18#include "exec/gdbstub.h"
1de7afc9 19#include "qemu/queue.h"
66fb9763 20
d5975363 21#define THREAD __thread
d5975363 22
1d48fdd9
PM
23/* This is the size of the host kernel's sigset_t, needed where we make
24 * direct system calls that take a sigset_t pointer and a size.
25 */
26#define SIGSET_T_SIZE (_NSIG / 8)
27
31e31b8a
FB
28/* This struct is used to hold certain information about the image.
29 * Basically, it replicates in user space what would be certain
30 * task_struct fields in the kernel
31 */
32struct image_info {
9955ffac 33 abi_ulong load_bias;
992f48a0
BS
34 abi_ulong load_addr;
35 abi_ulong start_code;
36 abi_ulong end_code;
37 abi_ulong start_data;
38 abi_ulong end_data;
39 abi_ulong start_brk;
40 abi_ulong brk;
41 abi_ulong start_mmap;
992f48a0 42 abi_ulong start_stack;
97374d38 43 abi_ulong stack_limit;
992f48a0
BS
44 abi_ulong entry;
45 abi_ulong code_offset;
46 abi_ulong data_offset;
edf8e2af 47 abi_ulong saved_auxv;
125b0f55 48 abi_ulong auxv_len;
edf8e2af
MW
49 abi_ulong arg_start;
50 abi_ulong arg_end;
d8fd2954 51 uint32_t elf_flags;
31e31b8a 52 int personality;
1af02e83
MF
53#ifdef CONFIG_USE_FDPIC
54 abi_ulong loadmap_addr;
55 uint16_t nsegs;
56 void *loadsegs;
57 abi_ulong pt_dynamic_addr;
58 struct image_info *other_info;
59#endif
31e31b8a
FB
60};
61
b346ff46 62#ifdef TARGET_I386
851e67a1
FB
63/* Information about the current linux thread */
64struct vm86_saved_state {
65 uint32_t eax; /* return code */
66 uint32_t ebx;
67 uint32_t ecx;
68 uint32_t edx;
69 uint32_t esi;
70 uint32_t edi;
71 uint32_t ebp;
72 uint32_t esp;
73 uint32_t eflags;
74 uint32_t eip;
75 uint16_t cs, ss, ds, es, fs, gs;
76};
b346ff46 77#endif
851e67a1 78
848d72cd 79#if defined(TARGET_ARM) && defined(TARGET_ABI32)
28c4f361
FB
80/* FPU emulator */
81#include "nwfpe/fpa11.h"
28c4f361
FB
82#endif
83
624f7979
PB
84#define MAX_SIGQUEUE_SIZE 1024
85
624f7979
PB
86struct emulated_sigtable {
87 int pending; /* true if signal is pending */
907f5fdd 88 target_siginfo_t info;
624f7979
PB
89};
90
851e67a1
FB
91/* NOTE: we force a big alignment so that the stack stored after is
92 aligned too */
93typedef struct TaskState {
edf8e2af 94 pid_t ts_tid; /* tid (or pid) of this task */
28c4f361 95#ifdef TARGET_ARM
848d72cd 96# ifdef TARGET_ABI32
28c4f361
FB
97 /* FPA state */
98 FPA11 fpa;
848d72cd 99# endif
a4f81979 100 int swi_errno;
28c4f361 101#endif
d2fbca94
GX
102#ifdef TARGET_UNICORE32
103 int swi_errno;
104#endif
84409ddb 105#if defined(TARGET_I386) && !defined(TARGET_X86_64)
992f48a0 106 abi_ulong target_v86;
851e67a1 107 struct vm86_saved_state vm86_saved_regs;
b333af06 108 struct target_vm86plus_struct vm86plus;
631271d7
FB
109 uint32_t v86flags;
110 uint32_t v86mask;
e6e5906b 111#endif
c2764719 112 abi_ulong child_tidptr;
e6e5906b
PB
113#ifdef TARGET_M68K
114 int sim_syscalls;
1ccd9374 115 abi_ulong tp_value;
a87295e8 116#endif
d2fbca94 117#if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
a87295e8 118 /* Extra fields for semihosted binaries. */
a87295e8
PB
119 uint32_t heap_base;
120 uint32_t heap_limit;
b346ff46 121#endif
d0fd11ff 122 uint32_t stack_base;
851e67a1 123 int used; /* non zero if used */
978efd6a 124 struct image_info *info;
edf8e2af 125 struct linux_binprm *bprm;
624f7979 126
655ed67c 127 struct emulated_sigtable sync_signal;
624f7979 128 struct emulated_sigtable sigtab[TARGET_NSIG];
3d3efba0
PM
129 /* This thread's signal mask, as requested by the guest program.
130 * The actual signal mask of this thread may differ:
131 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code
132 * + sometimes we block all signals to avoid races
133 */
134 sigset_t signal_mask;
135 /* The signal mask imposed by a guest sigsuspend syscall, if we are
136 * currently in the middle of such a syscall
137 */
138 sigset_t sigsuspend_mask;
139 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
140 int in_sigsuspend;
141
142 /* Nonzero if process_pending_signals() needs to do something (either
143 * handle a pending signal or unblock signals).
144 * This flag is written from a signal handler so should be accessed via
145 * the atomic_read() and atomic_write() functions. (It is not accessed
146 * from multiple threads.)
147 */
148 int signal_pending;
149
851e67a1
FB
150} __attribute__((aligned(16))) TaskState;
151
d088d664 152extern char *exec_path;
624f7979 153void init_task_state(TaskState *ts);
edf8e2af
MW
154void task_settid(TaskState *);
155void stop_all_tasks(void);
c5937220 156extern const char *qemu_uname_release;
379f6698 157extern unsigned long mmap_min_addr;
851e67a1 158
e5fe0c52 159/* ??? See if we can avoid exposing so much of the loader internals. */
e5fe0c52 160
9955ffac
RH
161/* Read a good amount of data initially, to hopefully get all the
162 program headers loaded. */
163#define BPRM_BUF_SIZE 1024
164
e5fe0c52 165/*
5fafdf24 166 * This structure is used to hold the arguments that are
e5fe0c52
PB
167 * used when loading binaries.
168 */
169struct linux_binprm {
9955ffac 170 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
992f48a0 171 abi_ulong p;
e5fe0c52
PB
172 int fd;
173 int e_uid, e_gid;
174 int argc, envc;
175 char **argv;
176 char **envp;
177 char * filename; /* Name of binary */
9349b4f9 178 int (*core_dump)(int, const CPUArchState *); /* coredump routine */
e5fe0c52
PB
179};
180
181void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
992f48a0
BS
182abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
183 abi_ulong stringp, int push_ptr);
03cfd8fa 184int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
edf8e2af
MW
185 struct target_pt_regs * regs, struct image_info *infop,
186 struct linux_binprm *);
31e31b8a 187
f0116c54
WN
188int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
189int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
e5fe0c52 190
579a97f7
FB
191abi_long memcpy_to_target(abi_ulong dest, const void *src,
192 unsigned long len);
992f48a0
BS
193void target_set_brk(abi_ulong new_brk);
194abi_long do_brk(abi_ulong new_brk);
31e31b8a 195void syscall_init(void);
992f48a0
BS
196abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
197 abi_long arg2, abi_long arg3, abi_long arg4,
5945cfcb
PM
198 abi_long arg5, abi_long arg6, abi_long arg7,
199 abi_long arg8);
e5924d89 200void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
a2247f8e 201extern THREAD CPUState *thread_cpu;
9349b4f9 202void cpu_loop(CPUArchState *env);
7dcdaeaf 203const char *target_strerror(int err);
a745ec6d 204int get_osversion(void);
4a24a758 205void init_qemu_uname_release(void);
d5975363
PB
206void fork_start(void);
207void fork_end(int child);
6977fbfd 208
dce10401
MI
209/* Creates the initial guest address space in the host memory space using
210 * the given host start address hint and size. The guest_start parameter
211 * specifies the start address of the guest space. guest_base will be the
212 * difference between the host start address computed by this function and
213 * guest_start. If fixed is specified, then the mapped address space must
214 * start at host_start. The real start address of the mapped memory space is
215 * returned or -1 if there was an error.
216 */
217unsigned long init_guest_space(unsigned long host_start,
218 unsigned long host_size,
219 unsigned long guest_start,
220 bool fixed);
221
1de7afc9 222#include "qemu/log.h"
631271d7 223
4d330cee
TB
224/* safe_syscall.S */
225
226/**
227 * safe_syscall:
228 * @int number: number of system call to make
229 * ...: arguments to the system call
230 *
231 * Call a system call if guest signal not pending.
232 * This has the same API as the libc syscall() function, except that it
233 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
234 *
235 * Returns: the system call result, or -1 with an error code in errno
236 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
237 * with any of the host errno values.)
238 */
239
240/* A guide to using safe_syscall() to handle interactions between guest
241 * syscalls and guest signals:
242 *
243 * Guest syscalls come in two flavours:
244 *
245 * (1) Non-interruptible syscalls
246 *
247 * These are guest syscalls that never get interrupted by signals and
248 * so never return EINTR. They can be implemented straightforwardly in
249 * QEMU: just make sure that if the implementation code has to make any
250 * blocking calls that those calls are retried if they return EINTR.
251 * It's also OK to implement these with safe_syscall, though it will be
252 * a little less efficient if a signal is delivered at the 'wrong' moment.
253 *
3d3efba0
PM
254 * Some non-interruptible syscalls need to be handled using block_signals()
255 * to block signals for the duration of the syscall. This mainly applies
256 * to code which needs to modify the data structures used by the
257 * host_signal_handler() function and the functions it calls, including
258 * all syscalls which change the thread's signal mask.
259 *
4d330cee
TB
260 * (2) Interruptible syscalls
261 *
262 * These are guest syscalls that can be interrupted by signals and
263 * for which we need to either return EINTR or arrange for the guest
264 * syscall to be restarted. This category includes both syscalls which
265 * always restart (and in the kernel return -ERESTARTNOINTR), ones
266 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
267 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
268 * if the handler was registered with SA_RESTART (kernel returns
269 * -ERESTARTSYS). System calls which are only interruptible in some
270 * situations (like 'open') also need to be handled this way.
271 *
272 * Here it is important that the host syscall is made
273 * via this safe_syscall() function, and *not* via the host libc.
274 * If the host libc is used then the implementation will appear to work
275 * most of the time, but there will be a race condition where a
276 * signal could arrive just before we make the host syscall inside libc,
277 * and then then guest syscall will not correctly be interrupted.
278 * Instead the implementation of the guest syscall can use the safe_syscall
279 * function but otherwise just return the result or errno in the usual
280 * way; the main loop code will take care of restarting the syscall
281 * if appropriate.
282 *
283 * (If the implementation needs to make multiple host syscalls this is
284 * OK; any which might really block must be via safe_syscall(); for those
285 * which are only technically blocking (ie which we know in practice won't
286 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
287 * You must be able to cope with backing out correctly if some safe_syscall
288 * you make in the implementation returns either -TARGET_ERESTARTSYS or
289 * EINTR though.)
290 *
3d3efba0
PM
291 * block_signals() cannot be used for interruptible syscalls.
292 *
4d330cee
TB
293 *
294 * How and why the safe_syscall implementation works:
295 *
296 * The basic setup is that we make the host syscall via a known
297 * section of host native assembly. If a signal occurs, our signal
298 * handler checks the interrupted host PC against the addresse of that
299 * known section. If the PC is before or at the address of the syscall
300 * instruction then we change the PC to point at a "return
301 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
302 * (causing the safe_syscall() call to immediately return that value).
303 * Then in the main.c loop if we see this magic return value we adjust
304 * the guest PC to wind it back to before the system call, and invoke
305 * the guest signal handler as usual.
306 *
307 * This winding-back will happen in two cases:
308 * (1) signal came in just before we took the host syscall (a race);
309 * in this case we'll take the guest signal and have another go
310 * at the syscall afterwards, and this is indistinguishable for the
311 * guest from the timing having been different such that the guest
312 * signal really did win the race
313 * (2) signal came in while the host syscall was blocking, and the
314 * host kernel decided the syscall should be restarted;
315 * in this case we want to restart the guest syscall also, and so
316 * rewinding is the right thing. (Note that "restart" semantics mean
317 * "first call the signal handler, then reattempt the syscall".)
318 * The other situation to consider is when a signal came in while the
319 * host syscall was blocking, and the host kernel decided that the syscall
320 * should not be restarted; in this case QEMU's host signal handler will
321 * be invoked with the PC pointing just after the syscall instruction,
322 * with registers indicating an EINTR return; the special code in the
323 * handler will not kick in, and we will return EINTR to the guest as
324 * we should.
325 *
326 * Notice that we can leave the host kernel to make the decision for
327 * us about whether to do a restart of the syscall or not; we do not
328 * need to check SA_RESTART flags in QEMU or distinguish the various
329 * kinds of restartability.
330 */
331#ifdef HAVE_SAFE_SYSCALL
332/* The core part of this function is implemented in assembly */
333extern long safe_syscall_base(int *pending, long number, ...);
334
335#define safe_syscall(...) \
336 ({ \
337 long ret_; \
338 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
339 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \
340 if (is_error(ret_)) { \
341 errno = -ret_; \
342 ret_ = -1; \
343 } \
344 ret_; \
345 })
346
347#else
348
349/* Fallback for architectures which don't yet provide a safe-syscall assembly
350 * fragment; note that this is racy!
351 * This should go away when all host architectures have been updated.
352 */
353#define safe_syscall syscall
354
355#endif
356
a05c6409
RH
357/* syscall.c */
358int host_to_target_waitstatus(int status);
359
b92c47c1
TS
360/* strace.c */
361void print_syscall(int num,
c16f9ed3
FB
362 abi_long arg1, abi_long arg2, abi_long arg3,
363 abi_long arg4, abi_long arg5, abi_long arg6);
364void print_syscall_ret(int num, abi_long arg1);
b92c47c1
TS
365extern int do_strace;
366
b346ff46 367/* signal.c */
9349b4f9 368void process_pending_signals(CPUArchState *cpu_env);
b346ff46 369void signal_init(void);
9349b4f9 370int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
c227f099
AL
371void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
372void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
4cb05961 373int target_to_host_signal(int sig);
1d9d8b55 374int host_to_target_signal(int sig);
9349b4f9
AF
375long do_sigreturn(CPUArchState *env);
376long do_rt_sigreturn(CPUArchState *env);
579a97f7 377abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
1c275925 378int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
3d3efba0
PM
379/**
380 * block_signals: block all signals while handling this guest syscall
381 *
382 * Block all signals, and arrange that the signal mask is returned to
383 * its correct value for the guest before we resume execution of guest code.
384 * If this function returns non-zero, then the caller should immediately
385 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
386 * signal and restart execution of the syscall.
387 * If block_signals() returns zero, then the caller can continue with
388 * emulation of the system call knowing that no signals can be taken
389 * (and therefore that no race conditions will result).
390 * This should only be called once, because if it is called a second time
391 * it will always return non-zero. (Think of it like a mutex that can't
392 * be recursively locked.)
393 * Signals will be unblocked again by process_pending_signals().
394 *
395 * Return value: non-zero if there was a pending signal, zero if not.
396 */
397int block_signals(void); /* Returns non zero if signal pending */
b346ff46
FB
398
399#ifdef TARGET_I386
631271d7
FB
400/* vm86.c */
401void save_v86_state(CPUX86State *env);
447db213 402void handle_vm86_trap(CPUX86State *env, int trapno);
631271d7 403void handle_vm86_fault(CPUX86State *env);
992f48a0 404int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
5bfb56b2
BS
405#elif defined(TARGET_SPARC64)
406void sparc64_set_context(CPUSPARCState *env);
407void sparc64_get_context(CPUSPARCState *env);
b346ff46 408#endif
631271d7 409
54936004 410/* mmap.c */
992f48a0
BS
411int target_mprotect(abi_ulong start, abi_ulong len, int prot);
412abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
413 int flags, int fd, abi_ulong offset);
414int target_munmap(abi_ulong start, abi_ulong len);
415abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
416 abi_ulong new_size, unsigned long flags,
417 abi_ulong new_addr);
418int target_msync(abi_ulong start, abi_ulong len, int flags);
0776590d 419extern unsigned long last_brk;
59e9d91c 420extern abi_ulong mmap_next_start;
9ad197d9 421abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
c2764719
PB
422void cpu_list_lock(void);
423void cpu_list_unlock(void);
d5975363
PB
424void mmap_fork_start(void);
425void mmap_fork_end(int child);
54936004 426
440c7e85 427/* main.c */
703e0e89 428extern unsigned long guest_stack_size;
440c7e85 429
edf779ff
FB
430/* user access */
431
432#define VERIFY_READ 0
579a97f7 433#define VERIFY_WRITE 1 /* implies read access */
edf779ff 434
dae3270c
FB
435static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
436{
437 return page_check_range((target_ulong)addr, size,
438 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
439}
edf779ff 440
658f2dc9
RH
441/* NOTE __get_user and __put_user use host pointers and don't check access.
442 These are usually used to access struct data members once the struct has
443 been locked - usually with lock_user_struct. */
444
445/* Tricky points:
446 - Use __builtin_choose_expr to avoid type promotion from ?:,
447 - Invalid sizes result in a compile time error stemming from
448 the fact that abort has no parameters.
449 - It's easier to use the endian-specific unaligned load/store
450 functions than host-endian unaligned load/store plus tswapN. */
451
452#define __put_user_e(x, hptr, e) \
453 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
454 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
455 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
456 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
a42267ef 457 ((hptr), (x)), (void)0)
658f2dc9
RH
458
459#define __get_user_e(x, hptr, e) \
0bc8ce94 460 ((x) = (typeof(*hptr))( \
658f2dc9
RH
461 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
462 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
463 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
464 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
a42267ef 465 (hptr)), (void)0)
658f2dc9
RH
466
467#ifdef TARGET_WORDS_BIGENDIAN
468# define __put_user(x, hptr) __put_user_e(x, hptr, be)
469# define __get_user(x, hptr) __get_user_e(x, hptr, be)
470#else
471# define __put_user(x, hptr) __put_user_e(x, hptr, le)
472# define __get_user(x, hptr) __get_user_e(x, hptr, le)
473#endif
edf779ff 474
579a97f7
FB
475/* put_user()/get_user() take a guest address and check access */
476/* These are usually used to access an atomic data type, such as an int,
477 * that has been passed by address. These internally perform locking
478 * and unlocking on the data type.
479 */
480#define put_user(x, gaddr, target_type) \
481({ \
482 abi_ulong __gaddr = (gaddr); \
483 target_type *__hptr; \
a42267ef 484 abi_long __ret = 0; \
579a97f7 485 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
a42267ef 486 __put_user((x), __hptr); \
579a97f7
FB
487 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
488 } else \
489 __ret = -TARGET_EFAULT; \
490 __ret; \
edf779ff
FB
491})
492
579a97f7
FB
493#define get_user(x, gaddr, target_type) \
494({ \
495 abi_ulong __gaddr = (gaddr); \
496 target_type *__hptr; \
a42267ef 497 abi_long __ret = 0; \
579a97f7 498 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
a42267ef 499 __get_user((x), __hptr); \
579a97f7 500 unlock_user(__hptr, __gaddr, 0); \
2f619698
FB
501 } else { \
502 /* avoid warning */ \
503 (x) = 0; \
579a97f7 504 __ret = -TARGET_EFAULT; \
2f619698 505 } \
579a97f7 506 __ret; \
edf779ff
FB
507})
508
2f619698
FB
509#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
510#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
511#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
512#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
513#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
514#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
515#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
516#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
517#define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
518#define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
519
520#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
521#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
522#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
523#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
524#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
525#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
526#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
527#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
528#define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
529#define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
530
579a97f7
FB
531/* copy_from_user() and copy_to_user() are usually used to copy data
532 * buffers between the target and host. These internally perform
533 * locking/unlocking of the memory.
534 */
535abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
536abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
537
53a5960a 538/* Functions for accessing guest memory. The tget and tput functions
6f20f55b 539 read/write single values, byteswapping as necessary. The lock_user function
53a5960a 540 gets a pointer to a contiguous area of guest memory, but does not perform
6f20f55b 541 any byteswapping. lock_user may return either a pointer to the guest
53a5960a
PB
542 memory, or a temporary buffer. */
543
544/* Lock an area of guest memory into the host. If copy is true then the
545 host area will have the same contents as the guest. */
579a97f7 546static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
edf779ff 547{
579a97f7
FB
548 if (!access_ok(type, guest_addr, len))
549 return NULL;
53a5960a 550#ifdef DEBUG_REMAP
579a97f7
FB
551 {
552 void *addr;
553 addr = malloc(len);
554 if (copy)
555 memcpy(addr, g2h(guest_addr), len);
556 else
557 memset(addr, 0, len);
558 return addr;
559 }
53a5960a
PB
560#else
561 return g2h(guest_addr);
562#endif
edf779ff
FB
563}
564
579a97f7 565/* Unlock an area of guest memory. The first LEN bytes must be
1235fc06 566 flushed back to guest memory. host_ptr = NULL is explicitly
579a97f7
FB
567 allowed and does nothing. */
568static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
992f48a0 569 long len)
edf779ff 570{
579a97f7 571
53a5960a 572#ifdef DEBUG_REMAP
579a97f7
FB
573 if (!host_ptr)
574 return;
575 if (host_ptr == g2h(guest_addr))
53a5960a
PB
576 return;
577 if (len > 0)
06177d36 578 memcpy(g2h(guest_addr), host_ptr, len);
579a97f7 579 free(host_ptr);
53a5960a 580#endif
edf779ff
FB
581}
582
579a97f7
FB
583/* Return the length of a string in target memory or -TARGET_EFAULT if
584 access error. */
585abi_long target_strlen(abi_ulong gaddr);
53a5960a
PB
586
587/* Like lock_user but for null terminated strings. */
992f48a0 588static inline void *lock_user_string(abi_ulong guest_addr)
53a5960a 589{
579a97f7
FB
590 abi_long len;
591 len = target_strlen(guest_addr);
592 if (len < 0)
593 return NULL;
594 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
edf779ff
FB
595}
596
41d1af4d 597/* Helper macros for locking/unlocking a target struct. */
579a97f7
FB
598#define lock_user_struct(type, host_ptr, guest_addr, copy) \
599 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
600#define unlock_user_struct(host_ptr, guest_addr, copy) \
53a5960a
PB
601 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
602
c8a706fe 603#include <pthread.h>
c8a706fe 604
dfeab06c
PM
605/* Include target-specific struct and function definitions;
606 * they may need access to the target-independent structures
607 * above, so include them last.
608 */
609#include "target_cpu.h"
610#include "target_signal.h"
55a2b163 611#include "target_structs.h"
dfeab06c 612
e88de099 613#endif /* QEMU_H */