]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/qemu.h
build-system: add coverage-report target
[mirror_qemu.git] / linux-user / qemu.h
CommitLineData
e88de099
FB
1#ifndef QEMU_H
2#define QEMU_H
31e31b8a 3
4d330cee 4#include "hostdep.h"
6180a181 5#include "cpu.h"
63c91552 6#include "exec/exec-all.h"
f08b6170 7#include "exec/cpu_ldst.h"
992f48a0 8
06177d36
AZ
9#undef DEBUG_REMAP
10#ifdef DEBUG_REMAP
06177d36
AZ
11#endif /* DEBUG_REMAP */
12
022c62cb 13#include "exec/user/abitypes.h"
992f48a0 14
022c62cb 15#include "exec/user/thunk.h"
992f48a0 16#include "syscall_defs.h"
460c579f 17#include "target_syscall.h"
022c62cb 18#include "exec/gdbstub.h"
1de7afc9 19#include "qemu/queue.h"
66fb9763 20
1d48fdd9
PM
21/* This is the size of the host kernel's sigset_t, needed where we make
22 * direct system calls that take a sigset_t pointer and a size.
23 */
24#define SIGSET_T_SIZE (_NSIG / 8)
25
31e31b8a
FB
26/* This struct is used to hold certain information about the image.
27 * Basically, it replicates in user space what would be certain
28 * task_struct fields in the kernel
29 */
30struct image_info {
9955ffac 31 abi_ulong load_bias;
992f48a0
BS
32 abi_ulong load_addr;
33 abi_ulong start_code;
34 abi_ulong end_code;
35 abi_ulong start_data;
36 abi_ulong end_data;
37 abi_ulong start_brk;
38 abi_ulong brk;
39 abi_ulong start_mmap;
992f48a0 40 abi_ulong start_stack;
97374d38 41 abi_ulong stack_limit;
992f48a0
BS
42 abi_ulong entry;
43 abi_ulong code_offset;
44 abi_ulong data_offset;
edf8e2af 45 abi_ulong saved_auxv;
125b0f55 46 abi_ulong auxv_len;
edf8e2af
MW
47 abi_ulong arg_start;
48 abi_ulong arg_end;
7c4ee5bc
RH
49 abi_ulong arg_strings;
50 abi_ulong env_strings;
51 abi_ulong file_string;
d8fd2954 52 uint32_t elf_flags;
31e31b8a 53 int personality;
a99856cd
CL
54
55 /* The fields below are used in FDPIC mode. */
1af02e83
MF
56 abi_ulong loadmap_addr;
57 uint16_t nsegs;
58 void *loadsegs;
59 abi_ulong pt_dynamic_addr;
3cb10cfa
CL
60 abi_ulong interpreter_loadmap_addr;
61 abi_ulong interpreter_pt_dynamic_addr;
1af02e83 62 struct image_info *other_info;
31e31b8a
FB
63};
64
b346ff46 65#ifdef TARGET_I386
851e67a1
FB
66/* Information about the current linux thread */
67struct vm86_saved_state {
68 uint32_t eax; /* return code */
69 uint32_t ebx;
70 uint32_t ecx;
71 uint32_t edx;
72 uint32_t esi;
73 uint32_t edi;
74 uint32_t ebp;
75 uint32_t esp;
76 uint32_t eflags;
77 uint32_t eip;
78 uint16_t cs, ss, ds, es, fs, gs;
79};
b346ff46 80#endif
851e67a1 81
848d72cd 82#if defined(TARGET_ARM) && defined(TARGET_ABI32)
28c4f361
FB
83/* FPU emulator */
84#include "nwfpe/fpa11.h"
28c4f361
FB
85#endif
86
624f7979
PB
87#define MAX_SIGQUEUE_SIZE 1024
88
624f7979
PB
89struct emulated_sigtable {
90 int pending; /* true if signal is pending */
907f5fdd 91 target_siginfo_t info;
624f7979
PB
92};
93
851e67a1
FB
94/* NOTE: we force a big alignment so that the stack stored after is
95 aligned too */
96typedef struct TaskState {
edf8e2af 97 pid_t ts_tid; /* tid (or pid) of this task */
28c4f361 98#ifdef TARGET_ARM
848d72cd 99# ifdef TARGET_ABI32
28c4f361
FB
100 /* FPA state */
101 FPA11 fpa;
848d72cd 102# endif
a4f81979 103 int swi_errno;
28c4f361 104#endif
84409ddb 105#if defined(TARGET_I386) && !defined(TARGET_X86_64)
992f48a0 106 abi_ulong target_v86;
851e67a1 107 struct vm86_saved_state vm86_saved_regs;
b333af06 108 struct target_vm86plus_struct vm86plus;
631271d7
FB
109 uint32_t v86flags;
110 uint32_t v86mask;
e6e5906b 111#endif
c2764719 112 abi_ulong child_tidptr;
e6e5906b
PB
113#ifdef TARGET_M68K
114 int sim_syscalls;
1ccd9374 115 abi_ulong tp_value;
a87295e8 116#endif
daa4374a 117#if defined(TARGET_ARM) || defined(TARGET_M68K)
a87295e8 118 /* Extra fields for semihosted binaries. */
d317091d
PM
119 abi_ulong heap_base;
120 abi_ulong heap_limit;
b346ff46 121#endif
d317091d 122 abi_ulong stack_base;
851e67a1 123 int used; /* non zero if used */
978efd6a 124 struct image_info *info;
edf8e2af 125 struct linux_binprm *bprm;
624f7979 126
655ed67c 127 struct emulated_sigtable sync_signal;
624f7979 128 struct emulated_sigtable sigtab[TARGET_NSIG];
3d3efba0
PM
129 /* This thread's signal mask, as requested by the guest program.
130 * The actual signal mask of this thread may differ:
131 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code
132 * + sometimes we block all signals to avoid races
133 */
134 sigset_t signal_mask;
135 /* The signal mask imposed by a guest sigsuspend syscall, if we are
136 * currently in the middle of such a syscall
137 */
138 sigset_t sigsuspend_mask;
139 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
140 int in_sigsuspend;
141
142 /* Nonzero if process_pending_signals() needs to do something (either
143 * handle a pending signal or unblock signals).
144 * This flag is written from a signal handler so should be accessed via
145 * the atomic_read() and atomic_write() functions. (It is not accessed
146 * from multiple threads.)
147 */
148 int signal_pending;
149
851e67a1
FB
150} __attribute__((aligned(16))) TaskState;
151
d088d664 152extern char *exec_path;
624f7979 153void init_task_state(TaskState *ts);
edf8e2af
MW
154void task_settid(TaskState *);
155void stop_all_tasks(void);
c5937220 156extern const char *qemu_uname_release;
379f6698 157extern unsigned long mmap_min_addr;
851e67a1 158
e5fe0c52 159/* ??? See if we can avoid exposing so much of the loader internals. */
e5fe0c52 160
9955ffac
RH
161/* Read a good amount of data initially, to hopefully get all the
162 program headers loaded. */
163#define BPRM_BUF_SIZE 1024
164
e5fe0c52 165/*
5fafdf24 166 * This structure is used to hold the arguments that are
e5fe0c52
PB
167 * used when loading binaries.
168 */
169struct linux_binprm {
9955ffac 170 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
992f48a0 171 abi_ulong p;
e5fe0c52
PB
172 int fd;
173 int e_uid, e_gid;
174 int argc, envc;
175 char **argv;
176 char **envp;
177 char * filename; /* Name of binary */
9349b4f9 178 int (*core_dump)(int, const CPUArchState *); /* coredump routine */
e5fe0c52
PB
179};
180
181void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
992f48a0
BS
182abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
183 abi_ulong stringp, int push_ptr);
03cfd8fa 184int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
edf8e2af
MW
185 struct target_pt_regs * regs, struct image_info *infop,
186 struct linux_binprm *);
31e31b8a 187
3cb10cfa
CL
188/* Returns true if the image uses the FDPIC ABI. If this is the case,
189 * we have to provide some information (loadmap, pt_dynamic_info) such
190 * that the program can be relocated adequately. This is also useful
191 * when handling signals.
192 */
193int info_is_fdpic(struct image_info *info);
194
768fe76e 195uint32_t get_elf_eflags(int fd);
f0116c54
WN
196int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
197int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
e5fe0c52 198
579a97f7
FB
199abi_long memcpy_to_target(abi_ulong dest, const void *src,
200 unsigned long len);
992f48a0
BS
201void target_set_brk(abi_ulong new_brk);
202abi_long do_brk(abi_ulong new_brk);
31e31b8a 203void syscall_init(void);
992f48a0
BS
204abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
205 abi_long arg2, abi_long arg3, abi_long arg4,
5945cfcb
PM
206 abi_long arg5, abi_long arg6, abi_long arg7,
207 abi_long arg8);
e5924d89 208void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
b44316fb 209extern __thread CPUState *thread_cpu;
9349b4f9 210void cpu_loop(CPUArchState *env);
7dcdaeaf 211const char *target_strerror(int err);
a745ec6d 212int get_osversion(void);
4a24a758 213void init_qemu_uname_release(void);
d5975363
PB
214void fork_start(void);
215void fork_end(int child);
6977fbfd 216
dce10401
MI
217/* Creates the initial guest address space in the host memory space using
218 * the given host start address hint and size. The guest_start parameter
219 * specifies the start address of the guest space. guest_base will be the
220 * difference between the host start address computed by this function and
221 * guest_start. If fixed is specified, then the mapped address space must
222 * start at host_start. The real start address of the mapped memory space is
223 * returned or -1 if there was an error.
224 */
225unsigned long init_guest_space(unsigned long host_start,
226 unsigned long host_size,
227 unsigned long guest_start,
228 bool fixed);
229
1de7afc9 230#include "qemu/log.h"
631271d7 231
4d330cee
TB
232/* safe_syscall.S */
233
234/**
235 * safe_syscall:
236 * @int number: number of system call to make
237 * ...: arguments to the system call
238 *
239 * Call a system call if guest signal not pending.
240 * This has the same API as the libc syscall() function, except that it
241 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
242 *
243 * Returns: the system call result, or -1 with an error code in errno
244 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
245 * with any of the host errno values.)
246 */
247
248/* A guide to using safe_syscall() to handle interactions between guest
249 * syscalls and guest signals:
250 *
251 * Guest syscalls come in two flavours:
252 *
253 * (1) Non-interruptible syscalls
254 *
255 * These are guest syscalls that never get interrupted by signals and
256 * so never return EINTR. They can be implemented straightforwardly in
257 * QEMU: just make sure that if the implementation code has to make any
258 * blocking calls that those calls are retried if they return EINTR.
259 * It's also OK to implement these with safe_syscall, though it will be
260 * a little less efficient if a signal is delivered at the 'wrong' moment.
261 *
3d3efba0
PM
262 * Some non-interruptible syscalls need to be handled using block_signals()
263 * to block signals for the duration of the syscall. This mainly applies
264 * to code which needs to modify the data structures used by the
265 * host_signal_handler() function and the functions it calls, including
266 * all syscalls which change the thread's signal mask.
267 *
4d330cee
TB
268 * (2) Interruptible syscalls
269 *
270 * These are guest syscalls that can be interrupted by signals and
271 * for which we need to either return EINTR or arrange for the guest
272 * syscall to be restarted. This category includes both syscalls which
273 * always restart (and in the kernel return -ERESTARTNOINTR), ones
274 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
275 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
276 * if the handler was registered with SA_RESTART (kernel returns
277 * -ERESTARTSYS). System calls which are only interruptible in some
278 * situations (like 'open') also need to be handled this way.
279 *
280 * Here it is important that the host syscall is made
281 * via this safe_syscall() function, and *not* via the host libc.
282 * If the host libc is used then the implementation will appear to work
283 * most of the time, but there will be a race condition where a
284 * signal could arrive just before we make the host syscall inside libc,
285 * and then then guest syscall will not correctly be interrupted.
286 * Instead the implementation of the guest syscall can use the safe_syscall
287 * function but otherwise just return the result or errno in the usual
288 * way; the main loop code will take care of restarting the syscall
289 * if appropriate.
290 *
291 * (If the implementation needs to make multiple host syscalls this is
292 * OK; any which might really block must be via safe_syscall(); for those
293 * which are only technically blocking (ie which we know in practice won't
294 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
295 * You must be able to cope with backing out correctly if some safe_syscall
296 * you make in the implementation returns either -TARGET_ERESTARTSYS or
297 * EINTR though.)
298 *
3d3efba0
PM
299 * block_signals() cannot be used for interruptible syscalls.
300 *
4d330cee
TB
301 *
302 * How and why the safe_syscall implementation works:
303 *
304 * The basic setup is that we make the host syscall via a known
305 * section of host native assembly. If a signal occurs, our signal
306 * handler checks the interrupted host PC against the addresse of that
307 * known section. If the PC is before or at the address of the syscall
308 * instruction then we change the PC to point at a "return
309 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
310 * (causing the safe_syscall() call to immediately return that value).
311 * Then in the main.c loop if we see this magic return value we adjust
312 * the guest PC to wind it back to before the system call, and invoke
313 * the guest signal handler as usual.
314 *
315 * This winding-back will happen in two cases:
316 * (1) signal came in just before we took the host syscall (a race);
317 * in this case we'll take the guest signal and have another go
318 * at the syscall afterwards, and this is indistinguishable for the
319 * guest from the timing having been different such that the guest
320 * signal really did win the race
321 * (2) signal came in while the host syscall was blocking, and the
322 * host kernel decided the syscall should be restarted;
323 * in this case we want to restart the guest syscall also, and so
324 * rewinding is the right thing. (Note that "restart" semantics mean
325 * "first call the signal handler, then reattempt the syscall".)
326 * The other situation to consider is when a signal came in while the
327 * host syscall was blocking, and the host kernel decided that the syscall
328 * should not be restarted; in this case QEMU's host signal handler will
329 * be invoked with the PC pointing just after the syscall instruction,
330 * with registers indicating an EINTR return; the special code in the
331 * handler will not kick in, and we will return EINTR to the guest as
332 * we should.
333 *
334 * Notice that we can leave the host kernel to make the decision for
335 * us about whether to do a restart of the syscall or not; we do not
336 * need to check SA_RESTART flags in QEMU or distinguish the various
337 * kinds of restartability.
338 */
339#ifdef HAVE_SAFE_SYSCALL
340/* The core part of this function is implemented in assembly */
341extern long safe_syscall_base(int *pending, long number, ...);
342
343#define safe_syscall(...) \
344 ({ \
345 long ret_; \
346 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
347 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \
348 if (is_error(ret_)) { \
349 errno = -ret_; \
350 ret_ = -1; \
351 } \
352 ret_; \
353 })
354
355#else
356
357/* Fallback for architectures which don't yet provide a safe-syscall assembly
358 * fragment; note that this is racy!
359 * This should go away when all host architectures have been updated.
360 */
361#define safe_syscall syscall
362
363#endif
364
a05c6409
RH
365/* syscall.c */
366int host_to_target_waitstatus(int status);
367
b92c47c1
TS
368/* strace.c */
369void print_syscall(int num,
c16f9ed3
FB
370 abi_long arg1, abi_long arg2, abi_long arg3,
371 abi_long arg4, abi_long arg5, abi_long arg6);
372void print_syscall_ret(int num, abi_long arg1);
0cb581d6
PM
373/**
374 * print_taken_signal:
375 * @target_signum: target signal being taken
376 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
377 *
378 * Print strace output indicating that this signal is being taken by the guest,
379 * in a format similar to:
380 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
381 */
382void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
b92c47c1
TS
383extern int do_strace;
384
b346ff46 385/* signal.c */
9349b4f9 386void process_pending_signals(CPUArchState *cpu_env);
b346ff46 387void signal_init(void);
9d2803f7
PM
388int queue_signal(CPUArchState *env, int sig, int si_type,
389 target_siginfo_t *info);
c227f099
AL
390void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
391void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
4cb05961 392int target_to_host_signal(int sig);
1d9d8b55 393int host_to_target_signal(int sig);
9349b4f9
AF
394long do_sigreturn(CPUArchState *env);
395long do_rt_sigreturn(CPUArchState *env);
579a97f7 396abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
1c275925 397int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
3d3efba0
PM
398/**
399 * block_signals: block all signals while handling this guest syscall
400 *
401 * Block all signals, and arrange that the signal mask is returned to
402 * its correct value for the guest before we resume execution of guest code.
403 * If this function returns non-zero, then the caller should immediately
404 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
405 * signal and restart execution of the syscall.
406 * If block_signals() returns zero, then the caller can continue with
407 * emulation of the system call knowing that no signals can be taken
408 * (and therefore that no race conditions will result).
409 * This should only be called once, because if it is called a second time
410 * it will always return non-zero. (Think of it like a mutex that can't
411 * be recursively locked.)
412 * Signals will be unblocked again by process_pending_signals().
413 *
414 * Return value: non-zero if there was a pending signal, zero if not.
415 */
416int block_signals(void); /* Returns non zero if signal pending */
b346ff46
FB
417
418#ifdef TARGET_I386
631271d7
FB
419/* vm86.c */
420void save_v86_state(CPUX86State *env);
447db213 421void handle_vm86_trap(CPUX86State *env, int trapno);
631271d7 422void handle_vm86_fault(CPUX86State *env);
992f48a0 423int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
5bfb56b2
BS
424#elif defined(TARGET_SPARC64)
425void sparc64_set_context(CPUSPARCState *env);
426void sparc64_get_context(CPUSPARCState *env);
b346ff46 427#endif
631271d7 428
54936004 429/* mmap.c */
992f48a0
BS
430int target_mprotect(abi_ulong start, abi_ulong len, int prot);
431abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
432 int flags, int fd, abi_ulong offset);
433int target_munmap(abi_ulong start, abi_ulong len);
434abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
435 abi_ulong new_size, unsigned long flags,
436 abi_ulong new_addr);
0776590d 437extern unsigned long last_brk;
59e9d91c 438extern abi_ulong mmap_next_start;
9ad197d9 439abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
d5975363
PB
440void mmap_fork_start(void);
441void mmap_fork_end(int child);
54936004 442
440c7e85 443/* main.c */
703e0e89 444extern unsigned long guest_stack_size;
440c7e85 445
edf779ff
FB
446/* user access */
447
448#define VERIFY_READ 0
579a97f7 449#define VERIFY_WRITE 1 /* implies read access */
edf779ff 450
dae3270c
FB
451static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
452{
453 return page_check_range((target_ulong)addr, size,
454 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
455}
edf779ff 456
658f2dc9
RH
457/* NOTE __get_user and __put_user use host pointers and don't check access.
458 These are usually used to access struct data members once the struct has
459 been locked - usually with lock_user_struct. */
460
461/* Tricky points:
462 - Use __builtin_choose_expr to avoid type promotion from ?:,
463 - Invalid sizes result in a compile time error stemming from
464 the fact that abort has no parameters.
465 - It's easier to use the endian-specific unaligned load/store
466 functions than host-endian unaligned load/store plus tswapN. */
467
468#define __put_user_e(x, hptr, e) \
469 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
470 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
471 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
472 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
a42267ef 473 ((hptr), (x)), (void)0)
658f2dc9
RH
474
475#define __get_user_e(x, hptr, e) \
0bc8ce94 476 ((x) = (typeof(*hptr))( \
658f2dc9
RH
477 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
478 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
479 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
480 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
a42267ef 481 (hptr)), (void)0)
658f2dc9
RH
482
483#ifdef TARGET_WORDS_BIGENDIAN
484# define __put_user(x, hptr) __put_user_e(x, hptr, be)
485# define __get_user(x, hptr) __get_user_e(x, hptr, be)
486#else
487# define __put_user(x, hptr) __put_user_e(x, hptr, le)
488# define __get_user(x, hptr) __get_user_e(x, hptr, le)
489#endif
edf779ff 490
579a97f7
FB
491/* put_user()/get_user() take a guest address and check access */
492/* These are usually used to access an atomic data type, such as an int,
493 * that has been passed by address. These internally perform locking
494 * and unlocking on the data type.
495 */
496#define put_user(x, gaddr, target_type) \
497({ \
498 abi_ulong __gaddr = (gaddr); \
499 target_type *__hptr; \
a42267ef 500 abi_long __ret = 0; \
579a97f7 501 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
a42267ef 502 __put_user((x), __hptr); \
579a97f7
FB
503 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
504 } else \
505 __ret = -TARGET_EFAULT; \
506 __ret; \
edf779ff
FB
507})
508
579a97f7
FB
509#define get_user(x, gaddr, target_type) \
510({ \
511 abi_ulong __gaddr = (gaddr); \
512 target_type *__hptr; \
a42267ef 513 abi_long __ret = 0; \
579a97f7 514 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
a42267ef 515 __get_user((x), __hptr); \
579a97f7 516 unlock_user(__hptr, __gaddr, 0); \
2f619698
FB
517 } else { \
518 /* avoid warning */ \
519 (x) = 0; \
579a97f7 520 __ret = -TARGET_EFAULT; \
2f619698 521 } \
579a97f7 522 __ret; \
edf779ff
FB
523})
524
2f619698
FB
525#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
526#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
527#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
528#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
529#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
530#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
531#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
532#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
533#define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
534#define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
535
536#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
537#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
538#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
539#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
540#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
541#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
542#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
543#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
544#define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
545#define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
546
579a97f7
FB
547/* copy_from_user() and copy_to_user() are usually used to copy data
548 * buffers between the target and host. These internally perform
549 * locking/unlocking of the memory.
550 */
551abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
552abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
553
53a5960a 554/* Functions for accessing guest memory. The tget and tput functions
6f20f55b 555 read/write single values, byteswapping as necessary. The lock_user function
53a5960a 556 gets a pointer to a contiguous area of guest memory, but does not perform
6f20f55b 557 any byteswapping. lock_user may return either a pointer to the guest
53a5960a
PB
558 memory, or a temporary buffer. */
559
560/* Lock an area of guest memory into the host. If copy is true then the
561 host area will have the same contents as the guest. */
579a97f7 562static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
edf779ff 563{
579a97f7
FB
564 if (!access_ok(type, guest_addr, len))
565 return NULL;
53a5960a 566#ifdef DEBUG_REMAP
579a97f7
FB
567 {
568 void *addr;
38e826de 569 addr = g_malloc(len);
579a97f7
FB
570 if (copy)
571 memcpy(addr, g2h(guest_addr), len);
572 else
573 memset(addr, 0, len);
574 return addr;
575 }
53a5960a
PB
576#else
577 return g2h(guest_addr);
578#endif
edf779ff
FB
579}
580
579a97f7 581/* Unlock an area of guest memory. The first LEN bytes must be
1235fc06 582 flushed back to guest memory. host_ptr = NULL is explicitly
579a97f7
FB
583 allowed and does nothing. */
584static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
992f48a0 585 long len)
edf779ff 586{
579a97f7 587
53a5960a 588#ifdef DEBUG_REMAP
579a97f7
FB
589 if (!host_ptr)
590 return;
591 if (host_ptr == g2h(guest_addr))
53a5960a
PB
592 return;
593 if (len > 0)
06177d36 594 memcpy(g2h(guest_addr), host_ptr, len);
38e826de 595 g_free(host_ptr);
53a5960a 596#endif
edf779ff
FB
597}
598
579a97f7
FB
599/* Return the length of a string in target memory or -TARGET_EFAULT if
600 access error. */
601abi_long target_strlen(abi_ulong gaddr);
53a5960a
PB
602
603/* Like lock_user but for null terminated strings. */
992f48a0 604static inline void *lock_user_string(abi_ulong guest_addr)
53a5960a 605{
579a97f7
FB
606 abi_long len;
607 len = target_strlen(guest_addr);
608 if (len < 0)
609 return NULL;
610 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
edf779ff
FB
611}
612
41d1af4d 613/* Helper macros for locking/unlocking a target struct. */
579a97f7
FB
614#define lock_user_struct(type, host_ptr, guest_addr, copy) \
615 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
616#define unlock_user_struct(host_ptr, guest_addr, copy) \
53a5960a
PB
617 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
618
c8a706fe 619#include <pthread.h>
c8a706fe 620
1129dd71
PMD
621static inline int is_error(abi_long ret)
622{
623 return (abi_ulong)ret >= (abi_ulong)(-4096);
624}
625
dfeab06c
PM
626/* Include target-specific struct and function definitions;
627 * they may need access to the target-independent structures
628 * above, so include them last.
629 */
630#include "target_cpu.h"
55a2b163 631#include "target_structs.h"
dfeab06c 632
e88de099 633#endif /* QEMU_H */