]> git.proxmox.com Git - mirror_qemu.git/blame - migration/ram.c
Merge remote-tracking branch 'remotes/palmer/tags/riscv-for-master-4.1-rc3' into...
[mirror_qemu.git] / migration / ram.c
CommitLineData
56e93d26
JQ
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
76cc7b58
JQ
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
56e93d26
JQ
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
e688df6b 28
1393a485 29#include "qemu/osdep.h"
33c11879 30#include "cpu.h"
56e93d26 31#include <zlib.h>
f348b6d1 32#include "qemu/cutils.h"
56e93d26
JQ
33#include "qemu/bitops.h"
34#include "qemu/bitmap.h"
7205c9ec 35#include "qemu/main-loop.h"
56eb90af 36#include "qemu/pmem.h"
709e3fe8 37#include "xbzrle.h"
7b1e1a22 38#include "ram.h"
6666c96a 39#include "migration.h"
71bb07db 40#include "socket.h"
f2a8f0a6 41#include "migration/register.h"
7b1e1a22 42#include "migration/misc.h"
08a0aee1 43#include "qemu-file.h"
be07b0ac 44#include "postcopy-ram.h"
53d37d36 45#include "page_cache.h"
56e93d26 46#include "qemu/error-report.h"
e688df6b 47#include "qapi/error.h"
9af23989 48#include "qapi/qapi-events-migration.h"
8acabf69 49#include "qapi/qmp/qerror.h"
56e93d26 50#include "trace.h"
56e93d26 51#include "exec/ram_addr.h"
f9494614 52#include "exec/target_page.h"
56e93d26 53#include "qemu/rcu_queue.h"
a91246c9 54#include "migration/colo.h"
53d37d36 55#include "block.h"
af8b7d2b
JQ
56#include "sysemu/sysemu.h"
57#include "qemu/uuid.h"
edd090c7 58#include "savevm.h"
b9ee2f7d 59#include "qemu/iov.h"
56e93d26 60
56e93d26
JQ
61/***********************************************************/
62/* ram save/restore */
63
bb890ed5
JQ
64/* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
68 */
69
56e93d26 70#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
bb890ed5 71#define RAM_SAVE_FLAG_ZERO 0x02
56e93d26
JQ
72#define RAM_SAVE_FLAG_MEM_SIZE 0x04
73#define RAM_SAVE_FLAG_PAGE 0x08
74#define RAM_SAVE_FLAG_EOS 0x10
75#define RAM_SAVE_FLAG_CONTINUE 0x20
76#define RAM_SAVE_FLAG_XBZRLE 0x40
77/* 0x80 is reserved in migration.h start with 0x100 next */
78#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79
56e93d26
JQ
80static inline bool is_zero_range(uint8_t *p, uint64_t size)
81{
a1febc49 82 return buffer_is_zero(p, size);
56e93d26
JQ
83}
84
9360447d
JQ
85XBZRLECacheStats xbzrle_counters;
86
56e93d26
JQ
87/* struct contains XBZRLE cache and a static page
88 used by the compression */
89static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
c00e0928
JQ
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
f265e0e4
JQ
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
56e93d26
JQ
101} XBZRLE;
102
56e93d26
JQ
103static void XBZRLE_cache_lock(void)
104{
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
107}
108
109static void XBZRLE_cache_unlock(void)
110{
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
113}
114
3d0684b2
JQ
115/**
116 * xbzrle_cache_resize: resize the xbzrle cache
117 *
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
122 *
c9dede2d 123 * Returns 0 for success or -1 for error
3d0684b2
JQ
124 *
125 * @new_size: new cache size
8acabf69 126 * @errp: set *errp if the check failed, with reason
56e93d26 127 */
c9dede2d 128int xbzrle_cache_resize(int64_t new_size, Error **errp)
56e93d26
JQ
129{
130 PageCache *new_cache;
c9dede2d 131 int64_t ret = 0;
56e93d26 132
8acabf69
JQ
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
138 }
139
2a313e5c
JQ
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
c9dede2d 142 return 0;
2a313e5c
JQ
143 }
144
56e93d26
JQ
145 XBZRLE_cache_lock();
146
147 if (XBZRLE.cache != NULL) {
80f8dfde 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
56e93d26 149 if (!new_cache) {
56e93d26
JQ
150 ret = -1;
151 goto out;
152 }
153
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
156 }
56e93d26
JQ
157out:
158 XBZRLE_cache_unlock();
159 return ret;
160}
161
fbd162e6
YK
162static bool ramblock_is_ignored(RAMBlock *block)
163{
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
166}
167
b895de50 168/* Should be holding either ram_list.mutex, or the RCU lock. */
fbd162e6
YK
169#define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
172
b895de50 173#define RAMBLOCK_FOREACH_MIGRATABLE(block) \
343f632c 174 INTERNAL_RAMBLOCK_FOREACH(block) \
b895de50
CLG
175 if (!qemu_ram_is_migratable(block)) {} else
176
343f632c
DDAG
177#undef RAMBLOCK_FOREACH
178
fbd162e6
YK
179int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
180{
181 RAMBlock *block;
182 int ret = 0;
183
184 rcu_read_lock();
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
189 }
190 }
191 rcu_read_unlock();
192 return ret;
193}
194
f9494614
AP
195static void ramblock_recv_map_init(void)
196{
197 RAMBlock *rb;
198
fbd162e6 199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
202 }
203}
204
205int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
206{
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
208 rb->receivedmap);
209}
210
1cba9f6e
DDAG
211bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
212{
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
214}
215
f9494614
AP
216void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
217{
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
219}
220
221void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
222 size_t nr)
223{
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
226 nr);
227}
228
a335debb
PX
229#define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
230
231/*
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
233 *
234 * Returns >0 if success with sent bytes, or <0 if error.
235 */
236int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
238{
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
241 uint64_t size;
242
243 if (!block) {
244 error_report("%s: invalid block name: %s", __func__, block_name);
245 return -1;
246 }
247
248 nbits = block->used_length >> TARGET_PAGE_BITS;
249
250 /*
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
254 */
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
256
257 /*
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
261 */
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
263
264 /* Size of the bitmap, in bytes */
a725ef9f 265 size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
266
267 /*
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
271 * 64bit machines.
272 */
273 size = ROUND_UP(size, 8);
274
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
277 /*
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
280 */
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
282 qemu_fflush(file);
283
bf269906 284 g_free(le_bitmap);
a335debb
PX
285
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
288 }
289
290 return size + sizeof(size);
291}
292
ec481c6c
JQ
293/*
294 * An outstanding page request, on the source, having been received
295 * and queued
296 */
297struct RAMSrcPageRequest {
298 RAMBlock *rb;
299 hwaddr offset;
300 hwaddr len;
301
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
303};
304
6f37bb8b
JQ
305/* State of RAM for migration */
306struct RAMState {
204b88b8
JQ
307 /* QEMUFile used for this migration */
308 QEMUFile *f;
6f37bb8b
JQ
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
269ace29
JQ
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
6f37bb8b
JQ
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
318 bool ram_bulk_stage;
6eeb63f7
WW
319 /* The free page optimization is enabled */
320 bool fpo_enabled;
8d820d6f
JQ
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
f664da80
JQ
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
eac74159 326 /* bytes transferred at start_time */
c4bdf0cf 327 uint64_t bytes_xfer_prev;
a66cd90c 328 /* number of dirty pages since start_time */
68908ed6 329 uint64_t num_dirty_pages_period;
b5833fde
JQ
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
76e03000
XG
332
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
340
be8b02ed
XG
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
9360447d 345 /* number of dirty bits in the bitmap */
2dfaf12e 346 uint64_t migration_dirty_pages;
386a907b 347 /* Protects modification of the bitmap and migration dirty pages */
108cfae0 348 QemuMutex bitmap_mutex;
68a098f3
JQ
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
ec481c6c
JQ
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
b58deb34 353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
6f37bb8b
JQ
354};
355typedef struct RAMState RAMState;
356
53518d94 357static RAMState *ram_state;
6f37bb8b 358
bd227060
WW
359static NotifierWithReturnList precopy_notifier_list;
360
361void precopy_infrastructure_init(void)
362{
363 notifier_with_return_list_init(&precopy_notifier_list);
364}
365
366void precopy_add_notifier(NotifierWithReturn *n)
367{
368 notifier_with_return_list_add(&precopy_notifier_list, n);
369}
370
371void precopy_remove_notifier(NotifierWithReturn *n)
372{
373 notifier_with_return_remove(n);
374}
375
376int precopy_notify(PrecopyNotifyReason reason, Error **errp)
377{
378 PrecopyNotifyData pnd;
379 pnd.reason = reason;
380 pnd.errp = errp;
381
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
383}
384
6eeb63f7
WW
385void precopy_enable_free_page_optimization(void)
386{
387 if (!ram_state) {
388 return;
389 }
390
391 ram_state->fpo_enabled = true;
392}
393
9edabd4d 394uint64_t ram_bytes_remaining(void)
2f4fde93 395{
bae416e5
DDAG
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
397 0;
2f4fde93
JQ
398}
399
9360447d 400MigrationStats ram_counters;
96506894 401
b8fb8cb7
DDAG
402/* used by the search for pages to send */
403struct PageSearchStatus {
404 /* Current block being searched */
405 RAMBlock *block;
a935e30f
JQ
406 /* Current page to search from */
407 unsigned long page;
b8fb8cb7
DDAG
408 /* Set once we wrap around */
409 bool complete_round;
410};
411typedef struct PageSearchStatus PageSearchStatus;
412
76e03000
XG
413CompressionStats compression_counters;
414
56e93d26 415struct CompressParam {
56e93d26 416 bool done;
90e56fb4 417 bool quit;
5e5fdcff 418 bool zero_page;
56e93d26
JQ
419 QEMUFile *file;
420 QemuMutex mutex;
421 QemuCond cond;
422 RAMBlock *block;
423 ram_addr_t offset;
34ab9e97
XG
424
425 /* internally used fields */
dcaf446e 426 z_stream stream;
34ab9e97 427 uint8_t *originbuf;
56e93d26
JQ
428};
429typedef struct CompressParam CompressParam;
430
431struct DecompressParam {
73a8912b 432 bool done;
90e56fb4 433 bool quit;
56e93d26
JQ
434 QemuMutex mutex;
435 QemuCond cond;
436 void *des;
d341d9f3 437 uint8_t *compbuf;
56e93d26 438 int len;
797ca154 439 z_stream stream;
56e93d26
JQ
440};
441typedef struct DecompressParam DecompressParam;
442
443static CompressParam *comp_param;
444static QemuThread *compress_threads;
445/* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
448 */
0d9f9a5c
LL
449static QemuMutex comp_done_lock;
450static QemuCond comp_done_cond;
56e93d26
JQ
451/* The empty QEMUFileOps will be used by file in CompressParam */
452static const QEMUFileOps empty_ops = { };
453
34ab9e97 454static QEMUFile *decomp_file;
56e93d26
JQ
455static DecompressParam *decomp_param;
456static QemuThread *decompress_threads;
73a8912b
LL
457static QemuMutex decomp_done_lock;
458static QemuCond decomp_done_cond;
56e93d26 459
5e5fdcff 460static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 461 ram_addr_t offset, uint8_t *source_buf);
56e93d26
JQ
462
463static void *do_data_compress(void *opaque)
464{
465 CompressParam *param = opaque;
a7a9a88f
LL
466 RAMBlock *block;
467 ram_addr_t offset;
5e5fdcff 468 bool zero_page;
56e93d26 469
a7a9a88f 470 qemu_mutex_lock(&param->mutex);
90e56fb4 471 while (!param->quit) {
a7a9a88f
LL
472 if (param->block) {
473 block = param->block;
474 offset = param->offset;
475 param->block = NULL;
476 qemu_mutex_unlock(&param->mutex);
477
5e5fdcff
XG
478 zero_page = do_compress_ram_page(param->file, &param->stream,
479 block, offset, param->originbuf);
a7a9a88f 480
0d9f9a5c 481 qemu_mutex_lock(&comp_done_lock);
a7a9a88f 482 param->done = true;
5e5fdcff 483 param->zero_page = zero_page;
0d9f9a5c
LL
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
486
487 qemu_mutex_lock(&param->mutex);
488 } else {
56e93d26
JQ
489 qemu_cond_wait(&param->cond, &param->mutex);
490 }
56e93d26 491 }
a7a9a88f 492 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
493
494 return NULL;
495}
496
f0afa331 497static void compress_threads_save_cleanup(void)
56e93d26
JQ
498{
499 int i, thread_count;
500
05306935 501 if (!migrate_use_compression() || !comp_param) {
56e93d26
JQ
502 return;
503 }
05306935 504
56e93d26
JQ
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
dcaf446e
XG
507 /*
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
510 */
511 if (!comp_param[i].file) {
512 break;
513 }
05306935
FL
514
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
519
56e93d26 520 qemu_thread_join(compress_threads + i);
56e93d26
JQ
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
dcaf446e 523 deflateEnd(&comp_param[i].stream);
34ab9e97 524 g_free(comp_param[i].originbuf);
dcaf446e
XG
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
56e93d26 527 }
0d9f9a5c
LL
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
56e93d26
JQ
530 g_free(compress_threads);
531 g_free(comp_param);
56e93d26
JQ
532 compress_threads = NULL;
533 comp_param = NULL;
56e93d26
JQ
534}
535
dcaf446e 536static int compress_threads_save_setup(void)
56e93d26
JQ
537{
538 int i, thread_count;
539
540 if (!migrate_use_compression()) {
dcaf446e 541 return 0;
56e93d26 542 }
56e93d26
JQ
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
0d9f9a5c
LL
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
56e93d26 548 for (i = 0; i < thread_count; i++) {
34ab9e97
XG
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
551 goto exit;
552 }
553
dcaf446e
XG
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
34ab9e97 556 g_free(comp_param[i].originbuf);
dcaf446e
XG
557 goto exit;
558 }
559
e110aa91
C
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
56e93d26
JQ
562 */
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
90e56fb4 565 comp_param[i].quit = false;
56e93d26
JQ
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
571 }
dcaf446e
XG
572 return 0;
573
574exit:
575 compress_threads_save_cleanup();
576 return -1;
56e93d26
JQ
577}
578
f986c3d2
JQ
579/* Multiple fd's */
580
af8b7d2b
JQ
581#define MULTIFD_MAGIC 0x11223344U
582#define MULTIFD_VERSION 1
583
6df264ac
JQ
584#define MULTIFD_FLAG_SYNC (1 << 0)
585
efd1a1d6 586/* This value needs to be a multiple of qemu_target_page_size() */
4b0c7264 587#define MULTIFD_PACKET_SIZE (512 * 1024)
efd1a1d6 588
af8b7d2b
JQ
589typedef struct {
590 uint32_t magic;
591 uint32_t version;
592 unsigned char uuid[16]; /* QemuUUID */
593 uint8_t id;
5fbd8b4b
JQ
594 uint8_t unused1[7]; /* Reserved for future use */
595 uint64_t unused2[4]; /* Reserved for future use */
af8b7d2b
JQ
596} __attribute__((packed)) MultiFDInit_t;
597
2a26c979
JQ
598typedef struct {
599 uint32_t magic;
600 uint32_t version;
601 uint32_t flags;
6f862692
JQ
602 /* maximum number of allocated pages */
603 uint32_t pages_alloc;
604 uint32_t pages_used;
2a34ee59
JQ
605 /* size of the next packet that contains pages */
606 uint32_t next_packet_size;
2a26c979 607 uint64_t packet_num;
5fbd8b4b 608 uint64_t unused[4]; /* Reserved for future use */
2a26c979
JQ
609 char ramblock[256];
610 uint64_t offset[];
611} __attribute__((packed)) MultiFDPacket_t;
612
34c55a94
JQ
613typedef struct {
614 /* number of used pages */
615 uint32_t used;
616 /* number of allocated pages */
617 uint32_t allocated;
618 /* global number of generated multifd packets */
619 uint64_t packet_num;
620 /* offset of each page */
621 ram_addr_t *offset;
622 /* pointer to each page */
623 struct iovec *iov;
624 RAMBlock *block;
625} MultiFDPages_t;
626
8c4598f2
JQ
627typedef struct {
628 /* this fields are not changed once the thread is created */
629 /* channel number */
f986c3d2 630 uint8_t id;
8c4598f2 631 /* channel thread name */
f986c3d2 632 char *name;
8c4598f2 633 /* channel thread id */
f986c3d2 634 QemuThread thread;
8c4598f2 635 /* communication channel */
60df2d4a 636 QIOChannel *c;
8c4598f2 637 /* sem where to wait for more work */
f986c3d2 638 QemuSemaphore sem;
8c4598f2 639 /* this mutex protects the following parameters */
f986c3d2 640 QemuMutex mutex;
8c4598f2 641 /* is this channel thread running */
66770707 642 bool running;
8c4598f2 643 /* should this thread finish */
f986c3d2 644 bool quit;
0beb5ed3
JQ
645 /* thread has work to do */
646 int pending_job;
34c55a94
JQ
647 /* array of pages to sent */
648 MultiFDPages_t *pages;
2a26c979
JQ
649 /* packet allocated len */
650 uint32_t packet_len;
651 /* pointer to the packet */
652 MultiFDPacket_t *packet;
653 /* multifd flags for each packet */
654 uint32_t flags;
2a34ee59
JQ
655 /* size of the next packet that contains pages */
656 uint32_t next_packet_size;
2a26c979
JQ
657 /* global number of generated multifd packets */
658 uint64_t packet_num;
408ea6ae
JQ
659 /* thread local variables */
660 /* packets sent through this channel */
661 uint64_t num_packets;
662 /* pages sent through this channel */
663 uint64_t num_pages;
8c4598f2
JQ
664} MultiFDSendParams;
665
666typedef struct {
667 /* this fields are not changed once the thread is created */
668 /* channel number */
669 uint8_t id;
670 /* channel thread name */
671 char *name;
672 /* channel thread id */
673 QemuThread thread;
674 /* communication channel */
675 QIOChannel *c;
8c4598f2
JQ
676 /* this mutex protects the following parameters */
677 QemuMutex mutex;
678 /* is this channel thread running */
679 bool running;
3c3ca25d
JQ
680 /* should this thread finish */
681 bool quit;
34c55a94
JQ
682 /* array of pages to receive */
683 MultiFDPages_t *pages;
2a26c979
JQ
684 /* packet allocated len */
685 uint32_t packet_len;
686 /* pointer to the packet */
687 MultiFDPacket_t *packet;
688 /* multifd flags for each packet */
689 uint32_t flags;
690 /* global number of generated multifd packets */
691 uint64_t packet_num;
408ea6ae 692 /* thread local variables */
2a34ee59
JQ
693 /* size of the next packet that contains pages */
694 uint32_t next_packet_size;
408ea6ae
JQ
695 /* packets sent through this channel */
696 uint64_t num_packets;
697 /* pages sent through this channel */
698 uint64_t num_pages;
6df264ac
JQ
699 /* syncs main thread and channels */
700 QemuSemaphore sem_sync;
8c4598f2 701} MultiFDRecvParams;
f986c3d2 702
af8b7d2b
JQ
703static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
704{
705 MultiFDInit_t msg;
706 int ret;
707
708 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
709 msg.version = cpu_to_be32(MULTIFD_VERSION);
710 msg.id = p->id;
711 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
712
713 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
714 if (ret != 0) {
715 return -1;
716 }
717 return 0;
718}
719
720static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
721{
722 MultiFDInit_t msg;
723 int ret;
724
725 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
726 if (ret != 0) {
727 return -1;
728 }
729
341ba0df
PM
730 msg.magic = be32_to_cpu(msg.magic);
731 msg.version = be32_to_cpu(msg.version);
af8b7d2b
JQ
732
733 if (msg.magic != MULTIFD_MAGIC) {
734 error_setg(errp, "multifd: received packet magic %x "
735 "expected %x", msg.magic, MULTIFD_MAGIC);
736 return -1;
737 }
738
739 if (msg.version != MULTIFD_VERSION) {
740 error_setg(errp, "multifd: received packet version %d "
741 "expected %d", msg.version, MULTIFD_VERSION);
742 return -1;
743 }
744
745 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
746 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
747 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
748
749 error_setg(errp, "multifd: received uuid '%s' and expected "
750 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
751 g_free(uuid);
752 g_free(msg_uuid);
753 return -1;
754 }
755
756 if (msg.id > migrate_multifd_channels()) {
757 error_setg(errp, "multifd: received channel version %d "
758 "expected %d", msg.version, MULTIFD_VERSION);
759 return -1;
760 }
761
762 return msg.id;
763}
764
34c55a94
JQ
765static MultiFDPages_t *multifd_pages_init(size_t size)
766{
767 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
768
769 pages->allocated = size;
770 pages->iov = g_new0(struct iovec, size);
771 pages->offset = g_new0(ram_addr_t, size);
772
773 return pages;
774}
775
776static void multifd_pages_clear(MultiFDPages_t *pages)
777{
778 pages->used = 0;
779 pages->allocated = 0;
780 pages->packet_num = 0;
781 pages->block = NULL;
782 g_free(pages->iov);
783 pages->iov = NULL;
784 g_free(pages->offset);
785 pages->offset = NULL;
786 g_free(pages);
787}
788
2a26c979
JQ
789static void multifd_send_fill_packet(MultiFDSendParams *p)
790{
791 MultiFDPacket_t *packet = p->packet;
7ed379b2 792 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
2a26c979
JQ
793 int i;
794
795 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
796 packet->version = cpu_to_be32(MULTIFD_VERSION);
797 packet->flags = cpu_to_be32(p->flags);
7ed379b2 798 packet->pages_alloc = cpu_to_be32(page_max);
6f862692 799 packet->pages_used = cpu_to_be32(p->pages->used);
2a34ee59 800 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
2a26c979
JQ
801 packet->packet_num = cpu_to_be64(p->packet_num);
802
803 if (p->pages->block) {
804 strncpy(packet->ramblock, p->pages->block->idstr, 256);
805 }
806
807 for (i = 0; i < p->pages->used; i++) {
808 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
809 }
810}
811
812static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
813{
814 MultiFDPacket_t *packet = p->packet;
7ed379b2 815 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
2a26c979
JQ
816 RAMBlock *block;
817 int i;
818
341ba0df 819 packet->magic = be32_to_cpu(packet->magic);
2a26c979
JQ
820 if (packet->magic != MULTIFD_MAGIC) {
821 error_setg(errp, "multifd: received packet "
822 "magic %x and expected magic %x",
823 packet->magic, MULTIFD_MAGIC);
824 return -1;
825 }
826
341ba0df 827 packet->version = be32_to_cpu(packet->version);
2a26c979
JQ
828 if (packet->version != MULTIFD_VERSION) {
829 error_setg(errp, "multifd: received packet "
830 "version %d and expected version %d",
831 packet->version, MULTIFD_VERSION);
832 return -1;
833 }
834
835 p->flags = be32_to_cpu(packet->flags);
836
6f862692 837 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
7ed379b2
JQ
838 /*
839 * If we recevied a packet that is 100 times bigger than expected
840 * just stop migration. It is a magic number.
841 */
842 if (packet->pages_alloc > pages_max * 100) {
2a26c979 843 error_setg(errp, "multifd: received packet "
7ed379b2
JQ
844 "with size %d and expected a maximum size of %d",
845 packet->pages_alloc, pages_max * 100) ;
2a26c979
JQ
846 return -1;
847 }
7ed379b2
JQ
848 /*
849 * We received a packet that is bigger than expected but inside
850 * reasonable limits (see previous comment). Just reallocate.
851 */
852 if (packet->pages_alloc > p->pages->allocated) {
853 multifd_pages_clear(p->pages);
f151f8ac 854 p->pages = multifd_pages_init(packet->pages_alloc);
7ed379b2 855 }
2a26c979 856
6f862692
JQ
857 p->pages->used = be32_to_cpu(packet->pages_used);
858 if (p->pages->used > packet->pages_alloc) {
2a26c979 859 error_setg(errp, "multifd: received packet "
6f862692
JQ
860 "with %d pages and expected maximum pages are %d",
861 p->pages->used, packet->pages_alloc) ;
2a26c979
JQ
862 return -1;
863 }
864
2a34ee59 865 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
2a26c979
JQ
866 p->packet_num = be64_to_cpu(packet->packet_num);
867
868 if (p->pages->used) {
869 /* make sure that ramblock is 0 terminated */
870 packet->ramblock[255] = 0;
871 block = qemu_ram_block_by_name(packet->ramblock);
872 if (!block) {
873 error_setg(errp, "multifd: unknown ram block %s",
874 packet->ramblock);
875 return -1;
876 }
877 }
878
879 for (i = 0; i < p->pages->used; i++) {
880 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
881
882 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
883 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
884 " (max " RAM_ADDR_FMT ")",
885 offset, block->max_length);
886 return -1;
887 }
888 p->pages->iov[i].iov_base = block->host + offset;
889 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
890 }
891
892 return 0;
893}
894
f986c3d2
JQ
895struct {
896 MultiFDSendParams *params;
34c55a94
JQ
897 /* array of pages to sent */
898 MultiFDPages_t *pages;
6df264ac
JQ
899 /* syncs main thread and channels */
900 QemuSemaphore sem_sync;
901 /* global number of generated multifd packets */
902 uint64_t packet_num;
b9ee2f7d
JQ
903 /* send channels ready */
904 QemuSemaphore channels_ready;
f986c3d2
JQ
905} *multifd_send_state;
906
b9ee2f7d
JQ
907/*
908 * How we use multifd_send_state->pages and channel->pages?
909 *
910 * We create a pages for each channel, and a main one. Each time that
911 * we need to send a batch of pages we interchange the ones between
912 * multifd_send_state and the channel that is sending it. There are
913 * two reasons for that:
914 * - to not have to do so many mallocs during migration
915 * - to make easier to know what to free at the end of migration
916 *
917 * This way we always know who is the owner of each "pages" struct,
a5f7b1a6 918 * and we don't need any locking. It belongs to the migration thread
b9ee2f7d
JQ
919 * or to the channel thread. Switching is safe because the migration
920 * thread is using the channel mutex when changing it, and the channel
921 * have to had finish with its own, otherwise pending_job can't be
922 * false.
923 */
924
713f762a 925static int multifd_send_pages(void)
b9ee2f7d
JQ
926{
927 int i;
928 static int next_channel;
929 MultiFDSendParams *p = NULL; /* make happy gcc */
930 MultiFDPages_t *pages = multifd_send_state->pages;
931 uint64_t transferred;
932
933 qemu_sem_wait(&multifd_send_state->channels_ready);
934 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
935 p = &multifd_send_state->params[i];
936
937 qemu_mutex_lock(&p->mutex);
713f762a
IR
938 if (p->quit) {
939 error_report("%s: channel %d has already quit!", __func__, i);
940 qemu_mutex_unlock(&p->mutex);
941 return -1;
942 }
b9ee2f7d
JQ
943 if (!p->pending_job) {
944 p->pending_job++;
945 next_channel = (i + 1) % migrate_multifd_channels();
946 break;
947 }
948 qemu_mutex_unlock(&p->mutex);
949 }
950 p->pages->used = 0;
951
952 p->packet_num = multifd_send_state->packet_num++;
953 p->pages->block = NULL;
954 multifd_send_state->pages = p->pages;
955 p->pages = pages;
4fcefd44 956 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
b9ee2f7d
JQ
957 ram_counters.multifd_bytes += transferred;
958 ram_counters.transferred += transferred;;
959 qemu_mutex_unlock(&p->mutex);
960 qemu_sem_post(&p->sem);
713f762a
IR
961
962 return 1;
b9ee2f7d
JQ
963}
964
713f762a 965static int multifd_queue_page(RAMBlock *block, ram_addr_t offset)
b9ee2f7d
JQ
966{
967 MultiFDPages_t *pages = multifd_send_state->pages;
968
969 if (!pages->block) {
970 pages->block = block;
971 }
972
973 if (pages->block == block) {
974 pages->offset[pages->used] = offset;
975 pages->iov[pages->used].iov_base = block->host + offset;
976 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
977 pages->used++;
978
979 if (pages->used < pages->allocated) {
713f762a 980 return 1;
b9ee2f7d
JQ
981 }
982 }
983
713f762a
IR
984 if (multifd_send_pages() < 0) {
985 return -1;
986 }
b9ee2f7d
JQ
987
988 if (pages->block != block) {
713f762a 989 return multifd_queue_page(block, offset);
b9ee2f7d 990 }
713f762a
IR
991
992 return 1;
b9ee2f7d
JQ
993}
994
66770707 995static void multifd_send_terminate_threads(Error *err)
f986c3d2
JQ
996{
997 int i;
998
7a169d74
JQ
999 if (err) {
1000 MigrationState *s = migrate_get_current();
1001 migrate_set_error(s, err);
1002 if (s->state == MIGRATION_STATUS_SETUP ||
1003 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
1004 s->state == MIGRATION_STATUS_DEVICE ||
1005 s->state == MIGRATION_STATUS_ACTIVE) {
1006 migrate_set_state(&s->state, s->state,
1007 MIGRATION_STATUS_FAILED);
1008 }
1009 }
1010
66770707 1011 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1012 MultiFDSendParams *p = &multifd_send_state->params[i];
1013
1014 qemu_mutex_lock(&p->mutex);
1015 p->quit = true;
1016 qemu_sem_post(&p->sem);
1017 qemu_mutex_unlock(&p->mutex);
1018 }
1019}
1020
1398b2e3 1021void multifd_save_cleanup(void)
f986c3d2
JQ
1022{
1023 int i;
f986c3d2
JQ
1024
1025 if (!migrate_use_multifd()) {
1398b2e3 1026 return;
f986c3d2 1027 }
66770707
JQ
1028 multifd_send_terminate_threads(NULL);
1029 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1030 MultiFDSendParams *p = &multifd_send_state->params[i];
1031
66770707
JQ
1032 if (p->running) {
1033 qemu_thread_join(&p->thread);
1034 }
60df2d4a
JQ
1035 socket_send_channel_destroy(p->c);
1036 p->c = NULL;
f986c3d2
JQ
1037 qemu_mutex_destroy(&p->mutex);
1038 qemu_sem_destroy(&p->sem);
1039 g_free(p->name);
1040 p->name = NULL;
34c55a94
JQ
1041 multifd_pages_clear(p->pages);
1042 p->pages = NULL;
2a26c979
JQ
1043 p->packet_len = 0;
1044 g_free(p->packet);
1045 p->packet = NULL;
f986c3d2 1046 }
b9ee2f7d 1047 qemu_sem_destroy(&multifd_send_state->channels_ready);
6df264ac 1048 qemu_sem_destroy(&multifd_send_state->sem_sync);
f986c3d2
JQ
1049 g_free(multifd_send_state->params);
1050 multifd_send_state->params = NULL;
34c55a94
JQ
1051 multifd_pages_clear(multifd_send_state->pages);
1052 multifd_send_state->pages = NULL;
f986c3d2
JQ
1053 g_free(multifd_send_state);
1054 multifd_send_state = NULL;
f986c3d2
JQ
1055}
1056
6df264ac
JQ
1057static void multifd_send_sync_main(void)
1058{
1059 int i;
1060
1061 if (!migrate_use_multifd()) {
1062 return;
1063 }
b9ee2f7d 1064 if (multifd_send_state->pages->used) {
713f762a
IR
1065 if (multifd_send_pages() < 0) {
1066 error_report("%s: multifd_send_pages fail", __func__);
1067 return;
1068 }
b9ee2f7d 1069 }
6df264ac
JQ
1070 for (i = 0; i < migrate_multifd_channels(); i++) {
1071 MultiFDSendParams *p = &multifd_send_state->params[i];
1072
1073 trace_multifd_send_sync_main_signal(p->id);
1074
1075 qemu_mutex_lock(&p->mutex);
b9ee2f7d 1076
713f762a
IR
1077 if (p->quit) {
1078 error_report("%s: channel %d has already quit", __func__, i);
1079 qemu_mutex_unlock(&p->mutex);
1080 return;
1081 }
1082
b9ee2f7d 1083 p->packet_num = multifd_send_state->packet_num++;
6df264ac
JQ
1084 p->flags |= MULTIFD_FLAG_SYNC;
1085 p->pending_job++;
1086 qemu_mutex_unlock(&p->mutex);
1087 qemu_sem_post(&p->sem);
1088 }
1089 for (i = 0; i < migrate_multifd_channels(); i++) {
1090 MultiFDSendParams *p = &multifd_send_state->params[i];
1091
1092 trace_multifd_send_sync_main_wait(p->id);
1093 qemu_sem_wait(&multifd_send_state->sem_sync);
1094 }
1095 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1096}
1097
f986c3d2
JQ
1098static void *multifd_send_thread(void *opaque)
1099{
1100 MultiFDSendParams *p = opaque;
af8b7d2b 1101 Error *local_err = NULL;
a3ec6b7d
IR
1102 int ret = 0;
1103 uint32_t flags = 0;
af8b7d2b 1104
408ea6ae 1105 trace_multifd_send_thread_start(p->id);
74637e6f 1106 rcu_register_thread();
408ea6ae 1107
af8b7d2b
JQ
1108 if (multifd_send_initial_packet(p, &local_err) < 0) {
1109 goto out;
1110 }
408ea6ae
JQ
1111 /* initial packet */
1112 p->num_packets = 1;
f986c3d2
JQ
1113
1114 while (true) {
d82628e4 1115 qemu_sem_wait(&p->sem);
f986c3d2 1116 qemu_mutex_lock(&p->mutex);
0beb5ed3
JQ
1117
1118 if (p->pending_job) {
1119 uint32_t used = p->pages->used;
1120 uint64_t packet_num = p->packet_num;
a3ec6b7d 1121 flags = p->flags;
0beb5ed3 1122
2a34ee59 1123 p->next_packet_size = used * qemu_target_page_size();
0beb5ed3
JQ
1124 multifd_send_fill_packet(p);
1125 p->flags = 0;
1126 p->num_packets++;
1127 p->num_pages += used;
1128 p->pages->used = 0;
1129 qemu_mutex_unlock(&p->mutex);
1130
2a34ee59
JQ
1131 trace_multifd_send(p->id, packet_num, used, flags,
1132 p->next_packet_size);
0beb5ed3 1133
8b2db7f5
JQ
1134 ret = qio_channel_write_all(p->c, (void *)p->packet,
1135 p->packet_len, &local_err);
1136 if (ret != 0) {
1137 break;
1138 }
1139
ad24c7cb
JQ
1140 if (used) {
1141 ret = qio_channel_writev_all(p->c, p->pages->iov,
1142 used, &local_err);
1143 if (ret != 0) {
1144 break;
1145 }
8b2db7f5 1146 }
0beb5ed3
JQ
1147
1148 qemu_mutex_lock(&p->mutex);
1149 p->pending_job--;
1150 qemu_mutex_unlock(&p->mutex);
6df264ac
JQ
1151
1152 if (flags & MULTIFD_FLAG_SYNC) {
1153 qemu_sem_post(&multifd_send_state->sem_sync);
1154 }
b9ee2f7d 1155 qemu_sem_post(&multifd_send_state->channels_ready);
0beb5ed3 1156 } else if (p->quit) {
f986c3d2
JQ
1157 qemu_mutex_unlock(&p->mutex);
1158 break;
6df264ac
JQ
1159 } else {
1160 qemu_mutex_unlock(&p->mutex);
1161 /* sometimes there are spurious wakeups */
f986c3d2 1162 }
f986c3d2
JQ
1163 }
1164
af8b7d2b
JQ
1165out:
1166 if (local_err) {
1167 multifd_send_terminate_threads(local_err);
1168 }
1169
a3ec6b7d
IR
1170 /*
1171 * Error happen, I will exit, but I can't just leave, tell
1172 * who pay attention to me.
1173 */
1174 if (ret != 0) {
1175 if (flags & MULTIFD_FLAG_SYNC) {
1176 qemu_sem_post(&multifd_send_state->sem_sync);
1177 }
1178 qemu_sem_post(&multifd_send_state->channels_ready);
1179 }
1180
66770707
JQ
1181 qemu_mutex_lock(&p->mutex);
1182 p->running = false;
1183 qemu_mutex_unlock(&p->mutex);
1184
74637e6f 1185 rcu_unregister_thread();
408ea6ae
JQ
1186 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1187
f986c3d2
JQ
1188 return NULL;
1189}
1190
60df2d4a
JQ
1191static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1192{
1193 MultiFDSendParams *p = opaque;
1194 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1195 Error *local_err = NULL;
1196
1197 if (qio_task_propagate_error(task, &local_err)) {
1398b2e3
FL
1198 migrate_set_error(migrate_get_current(), local_err);
1199 multifd_save_cleanup();
60df2d4a
JQ
1200 } else {
1201 p->c = QIO_CHANNEL(sioc);
1202 qio_channel_set_delay(p->c, false);
1203 p->running = true;
1204 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1205 QEMU_THREAD_JOINABLE);
60df2d4a
JQ
1206 }
1207}
1208
f986c3d2
JQ
1209int multifd_save_setup(void)
1210{
1211 int thread_count;
efd1a1d6 1212 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
f986c3d2
JQ
1213 uint8_t i;
1214
1215 if (!migrate_use_multifd()) {
1216 return 0;
1217 }
1218 thread_count = migrate_multifd_channels();
1219 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1220 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
34c55a94 1221 multifd_send_state->pages = multifd_pages_init(page_count);
6df264ac 1222 qemu_sem_init(&multifd_send_state->sem_sync, 0);
b9ee2f7d 1223 qemu_sem_init(&multifd_send_state->channels_ready, 0);
34c55a94 1224
f986c3d2
JQ
1225 for (i = 0; i < thread_count; i++) {
1226 MultiFDSendParams *p = &multifd_send_state->params[i];
1227
1228 qemu_mutex_init(&p->mutex);
1229 qemu_sem_init(&p->sem, 0);
1230 p->quit = false;
0beb5ed3 1231 p->pending_job = 0;
f986c3d2 1232 p->id = i;
34c55a94 1233 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1234 p->packet_len = sizeof(MultiFDPacket_t)
1235 + sizeof(ram_addr_t) * page_count;
1236 p->packet = g_malloc0(p->packet_len);
f986c3d2 1237 p->name = g_strdup_printf("multifdsend_%d", i);
60df2d4a 1238 socket_send_channel_create(multifd_new_send_channel_async, p);
f986c3d2
JQ
1239 }
1240 return 0;
1241}
1242
f986c3d2
JQ
1243struct {
1244 MultiFDRecvParams *params;
1245 /* number of created threads */
1246 int count;
6df264ac
JQ
1247 /* syncs main thread and channels */
1248 QemuSemaphore sem_sync;
1249 /* global number of generated multifd packets */
1250 uint64_t packet_num;
f986c3d2
JQ
1251} *multifd_recv_state;
1252
66770707 1253static void multifd_recv_terminate_threads(Error *err)
f986c3d2
JQ
1254{
1255 int i;
1256
7a169d74
JQ
1257 if (err) {
1258 MigrationState *s = migrate_get_current();
1259 migrate_set_error(s, err);
1260 if (s->state == MIGRATION_STATUS_SETUP ||
1261 s->state == MIGRATION_STATUS_ACTIVE) {
1262 migrate_set_state(&s->state, s->state,
1263 MIGRATION_STATUS_FAILED);
1264 }
1265 }
1266
66770707 1267 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1268 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1269
1270 qemu_mutex_lock(&p->mutex);
3c3ca25d 1271 p->quit = true;
7a5cc33c
JQ
1272 /* We could arrive here for two reasons:
1273 - normal quit, i.e. everything went fine, just finished
1274 - error quit: We close the channels so the channel threads
1275 finish the qio_channel_read_all_eof() */
1276 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
f986c3d2
JQ
1277 qemu_mutex_unlock(&p->mutex);
1278 }
1279}
1280
1281int multifd_load_cleanup(Error **errp)
1282{
1283 int i;
1284 int ret = 0;
1285
1286 if (!migrate_use_multifd()) {
1287 return 0;
1288 }
66770707
JQ
1289 multifd_recv_terminate_threads(NULL);
1290 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1291 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1292
66770707 1293 if (p->running) {
3c3ca25d 1294 p->quit = true;
f193bc0c
IR
1295 /*
1296 * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code,
1297 * however try to wakeup it without harm in cleanup phase.
1298 */
1299 qemu_sem_post(&p->sem_sync);
66770707
JQ
1300 qemu_thread_join(&p->thread);
1301 }
60df2d4a
JQ
1302 object_unref(OBJECT(p->c));
1303 p->c = NULL;
f986c3d2 1304 qemu_mutex_destroy(&p->mutex);
6df264ac 1305 qemu_sem_destroy(&p->sem_sync);
f986c3d2
JQ
1306 g_free(p->name);
1307 p->name = NULL;
34c55a94
JQ
1308 multifd_pages_clear(p->pages);
1309 p->pages = NULL;
2a26c979
JQ
1310 p->packet_len = 0;
1311 g_free(p->packet);
1312 p->packet = NULL;
f986c3d2 1313 }
6df264ac 1314 qemu_sem_destroy(&multifd_recv_state->sem_sync);
f986c3d2
JQ
1315 g_free(multifd_recv_state->params);
1316 multifd_recv_state->params = NULL;
1317 g_free(multifd_recv_state);
1318 multifd_recv_state = NULL;
1319
1320 return ret;
1321}
1322
6df264ac
JQ
1323static void multifd_recv_sync_main(void)
1324{
1325 int i;
1326
1327 if (!migrate_use_multifd()) {
1328 return;
1329 }
1330 for (i = 0; i < migrate_multifd_channels(); i++) {
1331 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1332
6df264ac
JQ
1333 trace_multifd_recv_sync_main_wait(p->id);
1334 qemu_sem_wait(&multifd_recv_state->sem_sync);
77568ea7
WY
1335 }
1336 for (i = 0; i < migrate_multifd_channels(); i++) {
1337 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1338
6df264ac
JQ
1339 qemu_mutex_lock(&p->mutex);
1340 if (multifd_recv_state->packet_num < p->packet_num) {
1341 multifd_recv_state->packet_num = p->packet_num;
1342 }
1343 qemu_mutex_unlock(&p->mutex);
6df264ac 1344 trace_multifd_recv_sync_main_signal(p->id);
6df264ac
JQ
1345 qemu_sem_post(&p->sem_sync);
1346 }
1347 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1348}
1349
f986c3d2
JQ
1350static void *multifd_recv_thread(void *opaque)
1351{
1352 MultiFDRecvParams *p = opaque;
2a26c979
JQ
1353 Error *local_err = NULL;
1354 int ret;
f986c3d2 1355
408ea6ae 1356 trace_multifd_recv_thread_start(p->id);
74637e6f 1357 rcu_register_thread();
408ea6ae 1358
f986c3d2 1359 while (true) {
6df264ac
JQ
1360 uint32_t used;
1361 uint32_t flags;
0beb5ed3 1362
3c3ca25d
JQ
1363 if (p->quit) {
1364 break;
1365 }
1366
8b2db7f5
JQ
1367 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1368 p->packet_len, &local_err);
1369 if (ret == 0) { /* EOF */
1370 break;
1371 }
1372 if (ret == -1) { /* Error */
1373 break;
1374 }
2a26c979 1375
6df264ac
JQ
1376 qemu_mutex_lock(&p->mutex);
1377 ret = multifd_recv_unfill_packet(p, &local_err);
1378 if (ret) {
f986c3d2
JQ
1379 qemu_mutex_unlock(&p->mutex);
1380 break;
1381 }
6df264ac
JQ
1382
1383 used = p->pages->used;
1384 flags = p->flags;
2a34ee59
JQ
1385 trace_multifd_recv(p->id, p->packet_num, used, flags,
1386 p->next_packet_size);
6df264ac
JQ
1387 p->num_packets++;
1388 p->num_pages += used;
f986c3d2 1389 qemu_mutex_unlock(&p->mutex);
6df264ac 1390
ad24c7cb
JQ
1391 if (used) {
1392 ret = qio_channel_readv_all(p->c, p->pages->iov,
1393 used, &local_err);
1394 if (ret != 0) {
1395 break;
1396 }
8b2db7f5
JQ
1397 }
1398
6df264ac
JQ
1399 if (flags & MULTIFD_FLAG_SYNC) {
1400 qemu_sem_post(&multifd_recv_state->sem_sync);
1401 qemu_sem_wait(&p->sem_sync);
1402 }
f986c3d2
JQ
1403 }
1404
d82628e4
JQ
1405 if (local_err) {
1406 multifd_recv_terminate_threads(local_err);
1407 }
66770707
JQ
1408 qemu_mutex_lock(&p->mutex);
1409 p->running = false;
1410 qemu_mutex_unlock(&p->mutex);
1411
74637e6f 1412 rcu_unregister_thread();
408ea6ae
JQ
1413 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1414
f986c3d2
JQ
1415 return NULL;
1416}
1417
1418int multifd_load_setup(void)
1419{
1420 int thread_count;
efd1a1d6 1421 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
f986c3d2
JQ
1422 uint8_t i;
1423
1424 if (!migrate_use_multifd()) {
1425 return 0;
1426 }
1427 thread_count = migrate_multifd_channels();
1428 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1429 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
66770707 1430 atomic_set(&multifd_recv_state->count, 0);
6df264ac 1431 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
34c55a94 1432
f986c3d2
JQ
1433 for (i = 0; i < thread_count; i++) {
1434 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1435
1436 qemu_mutex_init(&p->mutex);
6df264ac 1437 qemu_sem_init(&p->sem_sync, 0);
3c3ca25d 1438 p->quit = false;
f986c3d2 1439 p->id = i;
34c55a94 1440 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1441 p->packet_len = sizeof(MultiFDPacket_t)
1442 + sizeof(ram_addr_t) * page_count;
1443 p->packet = g_malloc0(p->packet_len);
f986c3d2 1444 p->name = g_strdup_printf("multifdrecv_%d", i);
f986c3d2
JQ
1445 }
1446 return 0;
1447}
1448
62c1e0ca
JQ
1449bool multifd_recv_all_channels_created(void)
1450{
1451 int thread_count = migrate_multifd_channels();
1452
1453 if (!migrate_use_multifd()) {
1454 return true;
1455 }
1456
1457 return thread_count == atomic_read(&multifd_recv_state->count);
1458}
1459
49ed0d24
FL
1460/*
1461 * Try to receive all multifd channels to get ready for the migration.
1462 * - Return true and do not set @errp when correctly receving all channels;
1463 * - Return false and do not set @errp when correctly receiving the current one;
1464 * - Return false and set @errp when failing to receive the current channel.
1465 */
1466bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
71bb07db 1467{
60df2d4a 1468 MultiFDRecvParams *p;
af8b7d2b
JQ
1469 Error *local_err = NULL;
1470 int id;
60df2d4a 1471
af8b7d2b
JQ
1472 id = multifd_recv_initial_packet(ioc, &local_err);
1473 if (id < 0) {
1474 multifd_recv_terminate_threads(local_err);
49ed0d24
FL
1475 error_propagate_prepend(errp, local_err,
1476 "failed to receive packet"
1477 " via multifd channel %d: ",
1478 atomic_read(&multifd_recv_state->count));
81e62053 1479 return false;
af8b7d2b
JQ
1480 }
1481
1482 p = &multifd_recv_state->params[id];
1483 if (p->c != NULL) {
1484 error_setg(&local_err, "multifd: received id '%d' already setup'",
1485 id);
1486 multifd_recv_terminate_threads(local_err);
49ed0d24 1487 error_propagate(errp, local_err);
81e62053 1488 return false;
af8b7d2b 1489 }
60df2d4a
JQ
1490 p->c = ioc;
1491 object_ref(OBJECT(ioc));
408ea6ae
JQ
1492 /* initial packet */
1493 p->num_packets = 1;
60df2d4a
JQ
1494
1495 p->running = true;
1496 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1497 QEMU_THREAD_JOINABLE);
1498 atomic_inc(&multifd_recv_state->count);
49ed0d24
FL
1499 return atomic_read(&multifd_recv_state->count) ==
1500 migrate_multifd_channels();
71bb07db
JQ
1501}
1502
56e93d26 1503/**
3d0684b2 1504 * save_page_header: write page header to wire
56e93d26
JQ
1505 *
1506 * If this is the 1st block, it also writes the block identification
1507 *
3d0684b2 1508 * Returns the number of bytes written
56e93d26
JQ
1509 *
1510 * @f: QEMUFile where to send the data
1511 * @block: block that contains the page we want to send
1512 * @offset: offset inside the block for the page
1513 * in the lower bits, it contains flags
1514 */
2bf3aa85
JQ
1515static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1516 ram_addr_t offset)
56e93d26 1517{
9f5f380b 1518 size_t size, len;
56e93d26 1519
24795694
JQ
1520 if (block == rs->last_sent_block) {
1521 offset |= RAM_SAVE_FLAG_CONTINUE;
1522 }
2bf3aa85 1523 qemu_put_be64(f, offset);
56e93d26
JQ
1524 size = 8;
1525
1526 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
9f5f380b 1527 len = strlen(block->idstr);
2bf3aa85
JQ
1528 qemu_put_byte(f, len);
1529 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
9f5f380b 1530 size += 1 + len;
24795694 1531 rs->last_sent_block = block;
56e93d26
JQ
1532 }
1533 return size;
1534}
1535
3d0684b2
JQ
1536/**
1537 * mig_throttle_guest_down: throotle down the guest
1538 *
1539 * Reduce amount of guest cpu execution to hopefully slow down memory
1540 * writes. If guest dirty memory rate is reduced below the rate at
1541 * which we can transfer pages to the destination then we should be
1542 * able to complete migration. Some workloads dirty memory way too
1543 * fast and will not effectively converge, even with auto-converge.
070afca2
JH
1544 */
1545static void mig_throttle_guest_down(void)
1546{
1547 MigrationState *s = migrate_get_current();
2594f56d
DB
1548 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1549 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
4cbc9c7f 1550 int pct_max = s->parameters.max_cpu_throttle;
070afca2
JH
1551
1552 /* We have not started throttling yet. Let's start it. */
1553 if (!cpu_throttle_active()) {
1554 cpu_throttle_set(pct_initial);
1555 } else {
1556 /* Throttling already on, just increase the rate */
4cbc9c7f
LQ
1557 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1558 pct_max));
070afca2
JH
1559 }
1560}
1561
3d0684b2
JQ
1562/**
1563 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1564 *
6f37bb8b 1565 * @rs: current RAM state
3d0684b2
JQ
1566 * @current_addr: address for the zero page
1567 *
1568 * Update the xbzrle cache to reflect a page that's been sent as all 0.
56e93d26
JQ
1569 * The important thing is that a stale (not-yet-0'd) page be replaced
1570 * by the new data.
1571 * As a bonus, if the page wasn't in the cache it gets added so that
3d0684b2 1572 * when a small write is made into the 0'd page it gets XBZRLE sent.
56e93d26 1573 */
6f37bb8b 1574static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
56e93d26 1575{
6f37bb8b 1576 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
56e93d26
JQ
1577 return;
1578 }
1579
1580 /* We don't care if this fails to allocate a new cache page
1581 * as long as it updated an old one */
c00e0928 1582 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
9360447d 1583 ram_counters.dirty_sync_count);
56e93d26
JQ
1584}
1585
1586#define ENCODING_FLAG_XBZRLE 0x1
1587
1588/**
1589 * save_xbzrle_page: compress and send current page
1590 *
1591 * Returns: 1 means that we wrote the page
1592 * 0 means that page is identical to the one already sent
1593 * -1 means that xbzrle would be longer than normal
1594 *
5a987738 1595 * @rs: current RAM state
3d0684b2
JQ
1596 * @current_data: pointer to the address of the page contents
1597 * @current_addr: addr of the page
56e93d26
JQ
1598 * @block: block that contains the page we want to send
1599 * @offset: offset inside the block for the page
1600 * @last_stage: if we are at the completion stage
56e93d26 1601 */
204b88b8 1602static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
56e93d26 1603 ram_addr_t current_addr, RAMBlock *block,
072c2511 1604 ram_addr_t offset, bool last_stage)
56e93d26
JQ
1605{
1606 int encoded_len = 0, bytes_xbzrle;
1607 uint8_t *prev_cached_page;
1608
9360447d
JQ
1609 if (!cache_is_cached(XBZRLE.cache, current_addr,
1610 ram_counters.dirty_sync_count)) {
1611 xbzrle_counters.cache_miss++;
56e93d26
JQ
1612 if (!last_stage) {
1613 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
9360447d 1614 ram_counters.dirty_sync_count) == -1) {
56e93d26
JQ
1615 return -1;
1616 } else {
1617 /* update *current_data when the page has been
1618 inserted into cache */
1619 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1620 }
1621 }
1622 return -1;
1623 }
1624
1625 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1626
1627 /* save current buffer into memory */
1628 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1629
1630 /* XBZRLE encoding (if there is no overflow) */
1631 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1632 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1633 TARGET_PAGE_SIZE);
ca353803
WY
1634
1635 /*
1636 * Update the cache contents, so that it corresponds to the data
1637 * sent, in all cases except where we skip the page.
1638 */
1639 if (!last_stage && encoded_len != 0) {
1640 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1641 /*
1642 * In the case where we couldn't compress, ensure that the caller
1643 * sends the data from the cache, since the guest might have
1644 * changed the RAM since we copied it.
1645 */
1646 *current_data = prev_cached_page;
1647 }
1648
56e93d26 1649 if (encoded_len == 0) {
55c4446b 1650 trace_save_xbzrle_page_skipping();
56e93d26
JQ
1651 return 0;
1652 } else if (encoded_len == -1) {
55c4446b 1653 trace_save_xbzrle_page_overflow();
9360447d 1654 xbzrle_counters.overflow++;
56e93d26
JQ
1655 return -1;
1656 }
1657
56e93d26 1658 /* Send XBZRLE based compressed page */
2bf3aa85 1659 bytes_xbzrle = save_page_header(rs, rs->f, block,
204b88b8
JQ
1660 offset | RAM_SAVE_FLAG_XBZRLE);
1661 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1662 qemu_put_be16(rs->f, encoded_len);
1663 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
56e93d26 1664 bytes_xbzrle += encoded_len + 1 + 2;
9360447d
JQ
1665 xbzrle_counters.pages++;
1666 xbzrle_counters.bytes += bytes_xbzrle;
1667 ram_counters.transferred += bytes_xbzrle;
56e93d26
JQ
1668
1669 return 1;
1670}
1671
3d0684b2
JQ
1672/**
1673 * migration_bitmap_find_dirty: find the next dirty page from start
f3f491fc 1674 *
a5f7b1a6 1675 * Returns the page offset within memory region of the start of a dirty page
3d0684b2 1676 *
6f37bb8b 1677 * @rs: current RAM state
3d0684b2 1678 * @rb: RAMBlock where to search for dirty pages
a935e30f 1679 * @start: page where we start the search
f3f491fc 1680 */
56e93d26 1681static inline
a935e30f 1682unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
f20e2865 1683 unsigned long start)
56e93d26 1684{
6b6712ef
JQ
1685 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1686 unsigned long *bitmap = rb->bmap;
56e93d26
JQ
1687 unsigned long next;
1688
fbd162e6 1689 if (ramblock_is_ignored(rb)) {
b895de50
CLG
1690 return size;
1691 }
1692
6eeb63f7
WW
1693 /*
1694 * When the free page optimization is enabled, we need to check the bitmap
1695 * to send the non-free pages rather than all the pages in the bulk stage.
1696 */
1697 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
6b6712ef 1698 next = start + 1;
56e93d26 1699 } else {
6b6712ef 1700 next = find_next_bit(bitmap, size, start);
56e93d26
JQ
1701 }
1702
6b6712ef 1703 return next;
56e93d26
JQ
1704}
1705
06b10688 1706static inline bool migration_bitmap_clear_dirty(RAMState *rs,
f20e2865
JQ
1707 RAMBlock *rb,
1708 unsigned long page)
a82d593b
DDAG
1709{
1710 bool ret;
a82d593b 1711
386a907b 1712 qemu_mutex_lock(&rs->bitmap_mutex);
002cad6b
PX
1713
1714 /*
1715 * Clear dirty bitmap if needed. This _must_ be called before we
1716 * send any of the page in the chunk because we need to make sure
1717 * we can capture further page content changes when we sync dirty
1718 * log the next time. So as long as we are going to send any of
1719 * the page in the chunk we clear the remote dirty bitmap for all.
1720 * Clearing it earlier won't be a problem, but too late will.
1721 */
1722 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
1723 uint8_t shift = rb->clear_bmap_shift;
1724 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
1725 hwaddr start = (page << TARGET_PAGE_BITS) & (-size);
1726
1727 /*
1728 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
1729 * can make things easier sometimes since then start address
1730 * of the small chunk will always be 64 pages aligned so the
1731 * bitmap will always be aligned to unsigned long. We should
1732 * even be able to remove this restriction but I'm simply
1733 * keeping it.
1734 */
1735 assert(shift >= 6);
1736 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
1737 memory_region_clear_dirty_bitmap(rb->mr, start, size);
1738 }
1739
6b6712ef 1740 ret = test_and_clear_bit(page, rb->bmap);
a82d593b
DDAG
1741
1742 if (ret) {
0d8ec885 1743 rs->migration_dirty_pages--;
a82d593b 1744 }
386a907b
WW
1745 qemu_mutex_unlock(&rs->bitmap_mutex);
1746
a82d593b
DDAG
1747 return ret;
1748}
1749
267691b6 1750/* Called with RCU critical section */
15440dd5 1751static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
bf212979 1752 ram_addr_t length)
56e93d26 1753{
0d8ec885 1754 rs->migration_dirty_pages +=
bf212979 1755 cpu_physical_memory_sync_dirty_bitmap(rb, 0, length,
0d8ec885 1756 &rs->num_dirty_pages_period);
56e93d26
JQ
1757}
1758
3d0684b2
JQ
1759/**
1760 * ram_pagesize_summary: calculate all the pagesizes of a VM
1761 *
1762 * Returns a summary bitmap of the page sizes of all RAMBlocks
1763 *
1764 * For VMs with just normal pages this is equivalent to the host page
1765 * size. If it's got some huge pages then it's the OR of all the
1766 * different page sizes.
e8ca1db2
DDAG
1767 */
1768uint64_t ram_pagesize_summary(void)
1769{
1770 RAMBlock *block;
1771 uint64_t summary = 0;
1772
fbd162e6 1773 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
e8ca1db2
DDAG
1774 summary |= block->page_size;
1775 }
1776
1777 return summary;
1778}
1779
aecbfe9c
XG
1780uint64_t ram_get_total_transferred_pages(void)
1781{
1782 return ram_counters.normal + ram_counters.duplicate +
1783 compression_counters.pages + xbzrle_counters.pages;
1784}
1785
b734035b
XG
1786static void migration_update_rates(RAMState *rs, int64_t end_time)
1787{
be8b02ed 1788 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
76e03000 1789 double compressed_size;
b734035b
XG
1790
1791 /* calculate period counters */
1792 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1793 / (end_time - rs->time_last_bitmap_sync);
1794
be8b02ed 1795 if (!page_count) {
b734035b
XG
1796 return;
1797 }
1798
1799 if (migrate_use_xbzrle()) {
1800 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
be8b02ed 1801 rs->xbzrle_cache_miss_prev) / page_count;
b734035b
XG
1802 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1803 }
76e03000
XG
1804
1805 if (migrate_use_compression()) {
1806 compression_counters.busy_rate = (double)(compression_counters.busy -
1807 rs->compress_thread_busy_prev) / page_count;
1808 rs->compress_thread_busy_prev = compression_counters.busy;
1809
1810 compressed_size = compression_counters.compressed_size -
1811 rs->compressed_size_prev;
1812 if (compressed_size) {
1813 double uncompressed_size = (compression_counters.pages -
1814 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1815
1816 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1817 compression_counters.compression_rate =
1818 uncompressed_size / compressed_size;
1819
1820 rs->compress_pages_prev = compression_counters.pages;
1821 rs->compressed_size_prev = compression_counters.compressed_size;
1822 }
1823 }
b734035b
XG
1824}
1825
8d820d6f 1826static void migration_bitmap_sync(RAMState *rs)
56e93d26
JQ
1827{
1828 RAMBlock *block;
56e93d26 1829 int64_t end_time;
c4bdf0cf 1830 uint64_t bytes_xfer_now;
56e93d26 1831
9360447d 1832 ram_counters.dirty_sync_count++;
56e93d26 1833
f664da80
JQ
1834 if (!rs->time_last_bitmap_sync) {
1835 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
56e93d26
JQ
1836 }
1837
1838 trace_migration_bitmap_sync_start();
9c1f8f44 1839 memory_global_dirty_log_sync();
56e93d26 1840
108cfae0 1841 qemu_mutex_lock(&rs->bitmap_mutex);
56e93d26 1842 rcu_read_lock();
fbd162e6 1843 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
bf212979 1844 migration_bitmap_sync_range(rs, block, block->used_length);
56e93d26 1845 }
650af890 1846 ram_counters.remaining = ram_bytes_remaining();
56e93d26 1847 rcu_read_unlock();
108cfae0 1848 qemu_mutex_unlock(&rs->bitmap_mutex);
56e93d26 1849
a66cd90c 1850 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1ffb5dfd 1851
56e93d26
JQ
1852 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1853
1854 /* more than 1 second = 1000 millisecons */
f664da80 1855 if (end_time > rs->time_last_bitmap_sync + 1000) {
9360447d 1856 bytes_xfer_now = ram_counters.transferred;
d693c6f1 1857
9ac78b61
PL
1858 /* During block migration the auto-converge logic incorrectly detects
1859 * that ram migration makes no progress. Avoid this by disabling the
1860 * throttling logic during the bulk phase of block migration. */
1861 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
56e93d26
JQ
1862 /* The following detection logic can be refined later. For now:
1863 Check to see if the dirtied bytes is 50% more than the approx.
1864 amount of bytes that just got transferred since the last time we
070afca2
JH
1865 were in this routine. If that happens twice, start or increase
1866 throttling */
070afca2 1867
d693c6f1 1868 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
eac74159 1869 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
b4a3c64b 1870 (++rs->dirty_rate_high_cnt >= 2)) {
56e93d26 1871 trace_migration_throttle();
8d820d6f 1872 rs->dirty_rate_high_cnt = 0;
070afca2 1873 mig_throttle_guest_down();
d693c6f1 1874 }
56e93d26 1875 }
070afca2 1876
b734035b
XG
1877 migration_update_rates(rs, end_time);
1878
be8b02ed 1879 rs->target_page_count_prev = rs->target_page_count;
d693c6f1
FF
1880
1881 /* reset period counters */
f664da80 1882 rs->time_last_bitmap_sync = end_time;
a66cd90c 1883 rs->num_dirty_pages_period = 0;
d2a4d85a 1884 rs->bytes_xfer_prev = bytes_xfer_now;
56e93d26 1885 }
4addcd4f 1886 if (migrate_use_events()) {
3ab72385 1887 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
4addcd4f 1888 }
56e93d26
JQ
1889}
1890
bd227060
WW
1891static void migration_bitmap_sync_precopy(RAMState *rs)
1892{
1893 Error *local_err = NULL;
1894
1895 /*
1896 * The current notifier usage is just an optimization to migration, so we
1897 * don't stop the normal migration process in the error case.
1898 */
1899 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1900 error_report_err(local_err);
1901 }
1902
1903 migration_bitmap_sync(rs);
1904
1905 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1906 error_report_err(local_err);
1907 }
1908}
1909
6c97ec5f
XG
1910/**
1911 * save_zero_page_to_file: send the zero page to the file
1912 *
1913 * Returns the size of data written to the file, 0 means the page is not
1914 * a zero page
1915 *
1916 * @rs: current RAM state
1917 * @file: the file where the data is saved
1918 * @block: block that contains the page we want to send
1919 * @offset: offset inside the block for the page
1920 */
1921static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1922 RAMBlock *block, ram_addr_t offset)
1923{
1924 uint8_t *p = block->host + offset;
1925 int len = 0;
1926
1927 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1928 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1929 qemu_put_byte(file, 0);
1930 len += 1;
1931 }
1932 return len;
1933}
1934
56e93d26 1935/**
3d0684b2 1936 * save_zero_page: send the zero page to the stream
56e93d26 1937 *
3d0684b2 1938 * Returns the number of pages written.
56e93d26 1939 *
f7ccd61b 1940 * @rs: current RAM state
56e93d26
JQ
1941 * @block: block that contains the page we want to send
1942 * @offset: offset inside the block for the page
56e93d26 1943 */
7faccdc3 1944static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
56e93d26 1945{
6c97ec5f 1946 int len = save_zero_page_to_file(rs, rs->f, block, offset);
56e93d26 1947
6c97ec5f 1948 if (len) {
9360447d 1949 ram_counters.duplicate++;
6c97ec5f
XG
1950 ram_counters.transferred += len;
1951 return 1;
56e93d26 1952 }
6c97ec5f 1953 return -1;
56e93d26
JQ
1954}
1955
5727309d 1956static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
53f09a10 1957{
5727309d 1958 if (!migrate_release_ram() || !migration_in_postcopy()) {
53f09a10
PB
1959 return;
1960 }
1961
aaa2064c 1962 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
53f09a10
PB
1963}
1964
059ff0fb
XG
1965/*
1966 * @pages: the number of pages written by the control path,
1967 * < 0 - error
1968 * > 0 - number of pages written
1969 *
1970 * Return true if the pages has been saved, otherwise false is returned.
1971 */
1972static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1973 int *pages)
1974{
1975 uint64_t bytes_xmit = 0;
1976 int ret;
1977
1978 *pages = -1;
1979 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1980 &bytes_xmit);
1981 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1982 return false;
1983 }
1984
1985 if (bytes_xmit) {
1986 ram_counters.transferred += bytes_xmit;
1987 *pages = 1;
1988 }
1989
1990 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1991 return true;
1992 }
1993
1994 if (bytes_xmit > 0) {
1995 ram_counters.normal++;
1996 } else if (bytes_xmit == 0) {
1997 ram_counters.duplicate++;
1998 }
1999
2000 return true;
2001}
2002
65dacaa0
XG
2003/*
2004 * directly send the page to the stream
2005 *
2006 * Returns the number of pages written.
2007 *
2008 * @rs: current RAM state
2009 * @block: block that contains the page we want to send
2010 * @offset: offset inside the block for the page
2011 * @buf: the page to be sent
2012 * @async: send to page asyncly
2013 */
2014static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2015 uint8_t *buf, bool async)
2016{
2017 ram_counters.transferred += save_page_header(rs, rs->f, block,
2018 offset | RAM_SAVE_FLAG_PAGE);
2019 if (async) {
2020 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
2021 migrate_release_ram() &
2022 migration_in_postcopy());
2023 } else {
2024 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
2025 }
2026 ram_counters.transferred += TARGET_PAGE_SIZE;
2027 ram_counters.normal++;
2028 return 1;
2029}
2030
56e93d26 2031/**
3d0684b2 2032 * ram_save_page: send the given page to the stream
56e93d26 2033 *
3d0684b2 2034 * Returns the number of pages written.
3fd3c4b3
DDAG
2035 * < 0 - error
2036 * >=0 - Number of pages written - this might legally be 0
2037 * if xbzrle noticed the page was the same.
56e93d26 2038 *
6f37bb8b 2039 * @rs: current RAM state
56e93d26
JQ
2040 * @block: block that contains the page we want to send
2041 * @offset: offset inside the block for the page
2042 * @last_stage: if we are at the completion stage
56e93d26 2043 */
a0a8aa14 2044static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
56e93d26
JQ
2045{
2046 int pages = -1;
56e93d26 2047 uint8_t *p;
56e93d26 2048 bool send_async = true;
a08f6890 2049 RAMBlock *block = pss->block;
a935e30f 2050 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
059ff0fb 2051 ram_addr_t current_addr = block->offset + offset;
56e93d26 2052
2f68e399 2053 p = block->host + offset;
1db9d8e5 2054 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
56e93d26 2055
56e93d26 2056 XBZRLE_cache_lock();
d7400a34
XG
2057 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
2058 migrate_use_xbzrle()) {
059ff0fb
XG
2059 pages = save_xbzrle_page(rs, &p, current_addr, block,
2060 offset, last_stage);
2061 if (!last_stage) {
2062 /* Can't send this cached data async, since the cache page
2063 * might get updated before it gets to the wire
56e93d26 2064 */
059ff0fb 2065 send_async = false;
56e93d26
JQ
2066 }
2067 }
2068
2069 /* XBZRLE overflow or normal page */
2070 if (pages == -1) {
65dacaa0 2071 pages = save_normal_page(rs, block, offset, p, send_async);
56e93d26
JQ
2072 }
2073
2074 XBZRLE_cache_unlock();
2075
2076 return pages;
2077}
2078
b9ee2f7d
JQ
2079static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2080 ram_addr_t offset)
2081{
713f762a
IR
2082 if (multifd_queue_page(block, offset) < 0) {
2083 return -1;
2084 }
b9ee2f7d
JQ
2085 ram_counters.normal++;
2086
2087 return 1;
2088}
2089
5e5fdcff 2090static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 2091 ram_addr_t offset, uint8_t *source_buf)
56e93d26 2092{
53518d94 2093 RAMState *rs = ram_state;
a7a9a88f 2094 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
5e5fdcff 2095 bool zero_page = false;
6ef3771c 2096 int ret;
56e93d26 2097
5e5fdcff
XG
2098 if (save_zero_page_to_file(rs, f, block, offset)) {
2099 zero_page = true;
2100 goto exit;
2101 }
2102
6ef3771c 2103 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
34ab9e97
XG
2104
2105 /*
2106 * copy it to a internal buffer to avoid it being modified by VM
2107 * so that we can catch up the error during compression and
2108 * decompression
2109 */
2110 memcpy(source_buf, p, TARGET_PAGE_SIZE);
6ef3771c
XG
2111 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2112 if (ret < 0) {
2113 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
b3be2896 2114 error_report("compressed data failed!");
5e5fdcff 2115 return false;
b3be2896 2116 }
56e93d26 2117
5e5fdcff 2118exit:
6ef3771c 2119 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
5e5fdcff
XG
2120 return zero_page;
2121}
2122
2123static void
2124update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2125{
76e03000
XG
2126 ram_counters.transferred += bytes_xmit;
2127
5e5fdcff
XG
2128 if (param->zero_page) {
2129 ram_counters.duplicate++;
76e03000 2130 return;
5e5fdcff 2131 }
76e03000
XG
2132
2133 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2134 compression_counters.compressed_size += bytes_xmit - 8;
2135 compression_counters.pages++;
56e93d26
JQ
2136}
2137
32b05495
XG
2138static bool save_page_use_compression(RAMState *rs);
2139
ce25d337 2140static void flush_compressed_data(RAMState *rs)
56e93d26
JQ
2141{
2142 int idx, len, thread_count;
2143
32b05495 2144 if (!save_page_use_compression(rs)) {
56e93d26
JQ
2145 return;
2146 }
2147 thread_count = migrate_compress_threads();
a7a9a88f 2148
0d9f9a5c 2149 qemu_mutex_lock(&comp_done_lock);
56e93d26 2150 for (idx = 0; idx < thread_count; idx++) {
a7a9a88f 2151 while (!comp_param[idx].done) {
0d9f9a5c 2152 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26 2153 }
a7a9a88f 2154 }
0d9f9a5c 2155 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
2156
2157 for (idx = 0; idx < thread_count; idx++) {
2158 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 2159 if (!comp_param[idx].quit) {
ce25d337 2160 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
5e5fdcff
XG
2161 /*
2162 * it's safe to fetch zero_page without holding comp_done_lock
2163 * as there is no further request submitted to the thread,
2164 * i.e, the thread should be waiting for a request at this point.
2165 */
2166 update_compress_thread_counts(&comp_param[idx], len);
56e93d26 2167 }
a7a9a88f 2168 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26
JQ
2169 }
2170}
2171
2172static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2173 ram_addr_t offset)
2174{
2175 param->block = block;
2176 param->offset = offset;
2177}
2178
ce25d337
JQ
2179static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2180 ram_addr_t offset)
56e93d26
JQ
2181{
2182 int idx, thread_count, bytes_xmit = -1, pages = -1;
1d58872a 2183 bool wait = migrate_compress_wait_thread();
56e93d26
JQ
2184
2185 thread_count = migrate_compress_threads();
0d9f9a5c 2186 qemu_mutex_lock(&comp_done_lock);
1d58872a
XG
2187retry:
2188 for (idx = 0; idx < thread_count; idx++) {
2189 if (comp_param[idx].done) {
2190 comp_param[idx].done = false;
2191 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2192 qemu_mutex_lock(&comp_param[idx].mutex);
2193 set_compress_params(&comp_param[idx], block, offset);
2194 qemu_cond_signal(&comp_param[idx].cond);
2195 qemu_mutex_unlock(&comp_param[idx].mutex);
2196 pages = 1;
5e5fdcff 2197 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
56e93d26 2198 break;
56e93d26
JQ
2199 }
2200 }
1d58872a
XG
2201
2202 /*
2203 * wait for the free thread if the user specifies 'compress-wait-thread',
2204 * otherwise we will post the page out in the main thread as normal page.
2205 */
2206 if (pages < 0 && wait) {
2207 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2208 goto retry;
2209 }
0d9f9a5c 2210 qemu_mutex_unlock(&comp_done_lock);
56e93d26
JQ
2211
2212 return pages;
2213}
2214
3d0684b2
JQ
2215/**
2216 * find_dirty_block: find the next dirty page and update any state
2217 * associated with the search process.
b9e60928 2218 *
a5f7b1a6 2219 * Returns true if a page is found
b9e60928 2220 *
6f37bb8b 2221 * @rs: current RAM state
3d0684b2
JQ
2222 * @pss: data about the state of the current dirty page scan
2223 * @again: set to false if the search has scanned the whole of RAM
b9e60928 2224 */
f20e2865 2225static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
b9e60928 2226{
f20e2865 2227 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
6f37bb8b 2228 if (pss->complete_round && pss->block == rs->last_seen_block &&
a935e30f 2229 pss->page >= rs->last_page) {
b9e60928
DDAG
2230 /*
2231 * We've been once around the RAM and haven't found anything.
2232 * Give up.
2233 */
2234 *again = false;
2235 return false;
2236 }
a935e30f 2237 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
b9e60928 2238 /* Didn't find anything in this RAM Block */
a935e30f 2239 pss->page = 0;
b9e60928
DDAG
2240 pss->block = QLIST_NEXT_RCU(pss->block, next);
2241 if (!pss->block) {
48df9d80
XG
2242 /*
2243 * If memory migration starts over, we will meet a dirtied page
2244 * which may still exists in compression threads's ring, so we
2245 * should flush the compressed data to make sure the new page
2246 * is not overwritten by the old one in the destination.
2247 *
2248 * Also If xbzrle is on, stop using the data compression at this
2249 * point. In theory, xbzrle can do better than compression.
2250 */
2251 flush_compressed_data(rs);
2252
b9e60928
DDAG
2253 /* Hit the end of the list */
2254 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2255 /* Flag that we've looped */
2256 pss->complete_round = true;
6f37bb8b 2257 rs->ram_bulk_stage = false;
b9e60928
DDAG
2258 }
2259 /* Didn't find anything this time, but try again on the new block */
2260 *again = true;
2261 return false;
2262 } else {
2263 /* Can go around again, but... */
2264 *again = true;
2265 /* We've found something so probably don't need to */
2266 return true;
2267 }
2268}
2269
3d0684b2
JQ
2270/**
2271 * unqueue_page: gets a page of the queue
2272 *
a82d593b 2273 * Helper for 'get_queued_page' - gets a page off the queue
a82d593b 2274 *
3d0684b2
JQ
2275 * Returns the block of the page (or NULL if none available)
2276 *
ec481c6c 2277 * @rs: current RAM state
3d0684b2 2278 * @offset: used to return the offset within the RAMBlock
a82d593b 2279 */
f20e2865 2280static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
a82d593b
DDAG
2281{
2282 RAMBlock *block = NULL;
2283
ae526e32
XG
2284 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2285 return NULL;
2286 }
2287
ec481c6c
JQ
2288 qemu_mutex_lock(&rs->src_page_req_mutex);
2289 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2290 struct RAMSrcPageRequest *entry =
2291 QSIMPLEQ_FIRST(&rs->src_page_requests);
a82d593b
DDAG
2292 block = entry->rb;
2293 *offset = entry->offset;
a82d593b
DDAG
2294
2295 if (entry->len > TARGET_PAGE_SIZE) {
2296 entry->len -= TARGET_PAGE_SIZE;
2297 entry->offset += TARGET_PAGE_SIZE;
2298 } else {
2299 memory_region_unref(block->mr);
ec481c6c 2300 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
a82d593b 2301 g_free(entry);
e03a34f8 2302 migration_consume_urgent_request();
a82d593b
DDAG
2303 }
2304 }
ec481c6c 2305 qemu_mutex_unlock(&rs->src_page_req_mutex);
a82d593b
DDAG
2306
2307 return block;
2308}
2309
3d0684b2 2310/**
ff1543af 2311 * get_queued_page: unqueue a page from the postcopy requests
3d0684b2
JQ
2312 *
2313 * Skips pages that are already sent (!dirty)
a82d593b 2314 *
a5f7b1a6 2315 * Returns true if a queued page is found
a82d593b 2316 *
6f37bb8b 2317 * @rs: current RAM state
3d0684b2 2318 * @pss: data about the state of the current dirty page scan
a82d593b 2319 */
f20e2865 2320static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
a82d593b
DDAG
2321{
2322 RAMBlock *block;
2323 ram_addr_t offset;
2324 bool dirty;
2325
2326 do {
f20e2865 2327 block = unqueue_page(rs, &offset);
a82d593b
DDAG
2328 /*
2329 * We're sending this page, and since it's postcopy nothing else
2330 * will dirty it, and we must make sure it doesn't get sent again
2331 * even if this queue request was received after the background
2332 * search already sent it.
2333 */
2334 if (block) {
f20e2865
JQ
2335 unsigned long page;
2336
6b6712ef
JQ
2337 page = offset >> TARGET_PAGE_BITS;
2338 dirty = test_bit(page, block->bmap);
a82d593b 2339 if (!dirty) {
06b10688 2340 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
6b6712ef 2341 page, test_bit(page, block->unsentmap));
a82d593b 2342 } else {
f20e2865 2343 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
a82d593b
DDAG
2344 }
2345 }
2346
2347 } while (block && !dirty);
2348
2349 if (block) {
2350 /*
2351 * As soon as we start servicing pages out of order, then we have
2352 * to kill the bulk stage, since the bulk stage assumes
2353 * in (migration_bitmap_find_and_reset_dirty) that every page is
2354 * dirty, that's no longer true.
2355 */
6f37bb8b 2356 rs->ram_bulk_stage = false;
a82d593b
DDAG
2357
2358 /*
2359 * We want the background search to continue from the queued page
2360 * since the guest is likely to want other pages near to the page
2361 * it just requested.
2362 */
2363 pss->block = block;
a935e30f 2364 pss->page = offset >> TARGET_PAGE_BITS;
422314e7
WY
2365
2366 /*
2367 * This unqueued page would break the "one round" check, even is
2368 * really rare.
2369 */
2370 pss->complete_round = false;
a82d593b
DDAG
2371 }
2372
2373 return !!block;
2374}
2375
6c595cde 2376/**
5e58f968
JQ
2377 * migration_page_queue_free: drop any remaining pages in the ram
2378 * request queue
6c595cde 2379 *
3d0684b2
JQ
2380 * It should be empty at the end anyway, but in error cases there may
2381 * be some left. in case that there is any page left, we drop it.
2382 *
6c595cde 2383 */
83c13382 2384static void migration_page_queue_free(RAMState *rs)
6c595cde 2385{
ec481c6c 2386 struct RAMSrcPageRequest *mspr, *next_mspr;
6c595cde
DDAG
2387 /* This queue generally should be empty - but in the case of a failed
2388 * migration might have some droppings in.
2389 */
2390 rcu_read_lock();
ec481c6c 2391 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
6c595cde 2392 memory_region_unref(mspr->rb->mr);
ec481c6c 2393 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
6c595cde
DDAG
2394 g_free(mspr);
2395 }
2396 rcu_read_unlock();
2397}
2398
2399/**
3d0684b2
JQ
2400 * ram_save_queue_pages: queue the page for transmission
2401 *
2402 * A request from postcopy destination for example.
2403 *
2404 * Returns zero on success or negative on error
2405 *
3d0684b2
JQ
2406 * @rbname: Name of the RAMBLock of the request. NULL means the
2407 * same that last one.
2408 * @start: starting address from the start of the RAMBlock
2409 * @len: length (in bytes) to send
6c595cde 2410 */
96506894 2411int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
6c595cde
DDAG
2412{
2413 RAMBlock *ramblock;
53518d94 2414 RAMState *rs = ram_state;
6c595cde 2415
9360447d 2416 ram_counters.postcopy_requests++;
6c595cde
DDAG
2417 rcu_read_lock();
2418 if (!rbname) {
2419 /* Reuse last RAMBlock */
68a098f3 2420 ramblock = rs->last_req_rb;
6c595cde
DDAG
2421
2422 if (!ramblock) {
2423 /*
2424 * Shouldn't happen, we can't reuse the last RAMBlock if
2425 * it's the 1st request.
2426 */
2427 error_report("ram_save_queue_pages no previous block");
2428 goto err;
2429 }
2430 } else {
2431 ramblock = qemu_ram_block_by_name(rbname);
2432
2433 if (!ramblock) {
2434 /* We shouldn't be asked for a non-existent RAMBlock */
2435 error_report("ram_save_queue_pages no block '%s'", rbname);
2436 goto err;
2437 }
68a098f3 2438 rs->last_req_rb = ramblock;
6c595cde
DDAG
2439 }
2440 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2441 if (start+len > ramblock->used_length) {
9458ad6b
JQ
2442 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2443 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
6c595cde
DDAG
2444 __func__, start, len, ramblock->used_length);
2445 goto err;
2446 }
2447
ec481c6c
JQ
2448 struct RAMSrcPageRequest *new_entry =
2449 g_malloc0(sizeof(struct RAMSrcPageRequest));
6c595cde
DDAG
2450 new_entry->rb = ramblock;
2451 new_entry->offset = start;
2452 new_entry->len = len;
2453
2454 memory_region_ref(ramblock->mr);
ec481c6c
JQ
2455 qemu_mutex_lock(&rs->src_page_req_mutex);
2456 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
e03a34f8 2457 migration_make_urgent_request();
ec481c6c 2458 qemu_mutex_unlock(&rs->src_page_req_mutex);
6c595cde
DDAG
2459 rcu_read_unlock();
2460
2461 return 0;
2462
2463err:
2464 rcu_read_unlock();
2465 return -1;
2466}
2467
d7400a34
XG
2468static bool save_page_use_compression(RAMState *rs)
2469{
2470 if (!migrate_use_compression()) {
2471 return false;
2472 }
2473
2474 /*
2475 * If xbzrle is on, stop using the data compression after first
2476 * round of migration even if compression is enabled. In theory,
2477 * xbzrle can do better than compression.
2478 */
2479 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2480 return true;
2481 }
2482
2483 return false;
2484}
2485
5e5fdcff
XG
2486/*
2487 * try to compress the page before posting it out, return true if the page
2488 * has been properly handled by compression, otherwise needs other
2489 * paths to handle it
2490 */
2491static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2492{
2493 if (!save_page_use_compression(rs)) {
2494 return false;
2495 }
2496
2497 /*
2498 * When starting the process of a new block, the first page of
2499 * the block should be sent out before other pages in the same
2500 * block, and all the pages in last block should have been sent
2501 * out, keeping this order is important, because the 'cont' flag
2502 * is used to avoid resending the block name.
2503 *
2504 * We post the fist page as normal page as compression will take
2505 * much CPU resource.
2506 */
2507 if (block != rs->last_sent_block) {
2508 flush_compressed_data(rs);
2509 return false;
2510 }
2511
2512 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2513 return true;
2514 }
2515
76e03000 2516 compression_counters.busy++;
5e5fdcff
XG
2517 return false;
2518}
2519
a82d593b 2520/**
3d0684b2 2521 * ram_save_target_page: save one target page
a82d593b 2522 *
3d0684b2 2523 * Returns the number of pages written
a82d593b 2524 *
6f37bb8b 2525 * @rs: current RAM state
3d0684b2 2526 * @pss: data about the page we want to send
a82d593b 2527 * @last_stage: if we are at the completion stage
a82d593b 2528 */
a0a8aa14 2529static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2530 bool last_stage)
a82d593b 2531{
a8ec91f9
XG
2532 RAMBlock *block = pss->block;
2533 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2534 int res;
2535
2536 if (control_save_page(rs, block, offset, &res)) {
2537 return res;
2538 }
2539
5e5fdcff
XG
2540 if (save_compress_page(rs, block, offset)) {
2541 return 1;
d7400a34
XG
2542 }
2543
2544 res = save_zero_page(rs, block, offset);
2545 if (res > 0) {
2546 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2547 * page would be stale
2548 */
2549 if (!save_page_use_compression(rs)) {
2550 XBZRLE_cache_lock();
2551 xbzrle_cache_zero_page(rs, block->offset + offset);
2552 XBZRLE_cache_unlock();
2553 }
2554 ram_release_pages(block->idstr, offset, res);
2555 return res;
2556 }
2557
da3f56cb 2558 /*
5e5fdcff
XG
2559 * do not use multifd for compression as the first page in the new
2560 * block should be posted out before sending the compressed page
da3f56cb 2561 */
5e5fdcff 2562 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
b9ee2f7d 2563 return ram_save_multifd_page(rs, block, offset);
a82d593b
DDAG
2564 }
2565
1faa5665 2566 return ram_save_page(rs, pss, last_stage);
a82d593b
DDAG
2567}
2568
2569/**
3d0684b2 2570 * ram_save_host_page: save a whole host page
a82d593b 2571 *
3d0684b2
JQ
2572 * Starting at *offset send pages up to the end of the current host
2573 * page. It's valid for the initial offset to point into the middle of
2574 * a host page in which case the remainder of the hostpage is sent.
2575 * Only dirty target pages are sent. Note that the host page size may
2576 * be a huge page for this block.
1eb3fc0a
DDAG
2577 * The saving stops at the boundary of the used_length of the block
2578 * if the RAMBlock isn't a multiple of the host page size.
a82d593b 2579 *
3d0684b2
JQ
2580 * Returns the number of pages written or negative on error
2581 *
6f37bb8b 2582 * @rs: current RAM state
3d0684b2 2583 * @ms: current migration state
3d0684b2 2584 * @pss: data about the page we want to send
a82d593b 2585 * @last_stage: if we are at the completion stage
a82d593b 2586 */
a0a8aa14 2587static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2588 bool last_stage)
a82d593b
DDAG
2589{
2590 int tmppages, pages = 0;
a935e30f
JQ
2591 size_t pagesize_bits =
2592 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
4c011c37 2593
fbd162e6 2594 if (ramblock_is_ignored(pss->block)) {
b895de50
CLG
2595 error_report("block %s should not be migrated !", pss->block->idstr);
2596 return 0;
2597 }
2598
a82d593b 2599 do {
1faa5665
XG
2600 /* Check the pages is dirty and if it is send it */
2601 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2602 pss->page++;
2603 continue;
2604 }
2605
f20e2865 2606 tmppages = ram_save_target_page(rs, pss, last_stage);
a82d593b
DDAG
2607 if (tmppages < 0) {
2608 return tmppages;
2609 }
2610
2611 pages += tmppages;
1faa5665
XG
2612 if (pss->block->unsentmap) {
2613 clear_bit(pss->page, pss->block->unsentmap);
2614 }
2615
a935e30f 2616 pss->page++;
1eb3fc0a
DDAG
2617 } while ((pss->page & (pagesize_bits - 1)) &&
2618 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
a82d593b
DDAG
2619
2620 /* The offset we leave with is the last one we looked at */
a935e30f 2621 pss->page--;
a82d593b
DDAG
2622 return pages;
2623}
6c595cde 2624
56e93d26 2625/**
3d0684b2 2626 * ram_find_and_save_block: finds a dirty page and sends it to f
56e93d26
JQ
2627 *
2628 * Called within an RCU critical section.
2629 *
e8f3735f
XG
2630 * Returns the number of pages written where zero means no dirty pages,
2631 * or negative on error
56e93d26 2632 *
6f37bb8b 2633 * @rs: current RAM state
56e93d26 2634 * @last_stage: if we are at the completion stage
a82d593b
DDAG
2635 *
2636 * On systems where host-page-size > target-page-size it will send all the
2637 * pages in a host page that are dirty.
56e93d26
JQ
2638 */
2639
ce25d337 2640static int ram_find_and_save_block(RAMState *rs, bool last_stage)
56e93d26 2641{
b8fb8cb7 2642 PageSearchStatus pss;
56e93d26 2643 int pages = 0;
b9e60928 2644 bool again, found;
56e93d26 2645
0827b9e9
AA
2646 /* No dirty page as there is zero RAM */
2647 if (!ram_bytes_total()) {
2648 return pages;
2649 }
2650
6f37bb8b 2651 pss.block = rs->last_seen_block;
a935e30f 2652 pss.page = rs->last_page;
b8fb8cb7
DDAG
2653 pss.complete_round = false;
2654
2655 if (!pss.block) {
2656 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2657 }
56e93d26 2658
b9e60928 2659 do {
a82d593b 2660 again = true;
f20e2865 2661 found = get_queued_page(rs, &pss);
b9e60928 2662
a82d593b
DDAG
2663 if (!found) {
2664 /* priority queue empty, so just search for something dirty */
f20e2865 2665 found = find_dirty_block(rs, &pss, &again);
a82d593b 2666 }
f3f491fc 2667
a82d593b 2668 if (found) {
f20e2865 2669 pages = ram_save_host_page(rs, &pss, last_stage);
56e93d26 2670 }
b9e60928 2671 } while (!pages && again);
56e93d26 2672
6f37bb8b 2673 rs->last_seen_block = pss.block;
a935e30f 2674 rs->last_page = pss.page;
56e93d26
JQ
2675
2676 return pages;
2677}
2678
2679void acct_update_position(QEMUFile *f, size_t size, bool zero)
2680{
2681 uint64_t pages = size / TARGET_PAGE_SIZE;
f7ccd61b 2682
56e93d26 2683 if (zero) {
9360447d 2684 ram_counters.duplicate += pages;
56e93d26 2685 } else {
9360447d
JQ
2686 ram_counters.normal += pages;
2687 ram_counters.transferred += size;
56e93d26
JQ
2688 qemu_update_position(f, size);
2689 }
2690}
2691
fbd162e6 2692static uint64_t ram_bytes_total_common(bool count_ignored)
56e93d26
JQ
2693{
2694 RAMBlock *block;
2695 uint64_t total = 0;
2696
2697 rcu_read_lock();
fbd162e6
YK
2698 if (count_ignored) {
2699 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2700 total += block->used_length;
2701 }
2702 } else {
2703 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2704 total += block->used_length;
2705 }
99e15582 2706 }
56e93d26
JQ
2707 rcu_read_unlock();
2708 return total;
2709}
2710
fbd162e6
YK
2711uint64_t ram_bytes_total(void)
2712{
2713 return ram_bytes_total_common(false);
2714}
2715
f265e0e4 2716static void xbzrle_load_setup(void)
56e93d26 2717{
f265e0e4 2718 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
56e93d26
JQ
2719}
2720
f265e0e4
JQ
2721static void xbzrle_load_cleanup(void)
2722{
2723 g_free(XBZRLE.decoded_buf);
2724 XBZRLE.decoded_buf = NULL;
2725}
2726
7d7c96be
PX
2727static void ram_state_cleanup(RAMState **rsp)
2728{
b9ccaf6d
DDAG
2729 if (*rsp) {
2730 migration_page_queue_free(*rsp);
2731 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2732 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2733 g_free(*rsp);
2734 *rsp = NULL;
2735 }
7d7c96be
PX
2736}
2737
84593a08
PX
2738static void xbzrle_cleanup(void)
2739{
2740 XBZRLE_cache_lock();
2741 if (XBZRLE.cache) {
2742 cache_fini(XBZRLE.cache);
2743 g_free(XBZRLE.encoded_buf);
2744 g_free(XBZRLE.current_buf);
2745 g_free(XBZRLE.zero_target_page);
2746 XBZRLE.cache = NULL;
2747 XBZRLE.encoded_buf = NULL;
2748 XBZRLE.current_buf = NULL;
2749 XBZRLE.zero_target_page = NULL;
2750 }
2751 XBZRLE_cache_unlock();
2752}
2753
f265e0e4 2754static void ram_save_cleanup(void *opaque)
56e93d26 2755{
53518d94 2756 RAMState **rsp = opaque;
6b6712ef 2757 RAMBlock *block;
eb859c53 2758
2ff64038 2759 /* caller have hold iothread lock or is in a bh, so there is
4633456c 2760 * no writing race against the migration bitmap
2ff64038 2761 */
6b6712ef
JQ
2762 memory_global_dirty_log_stop();
2763
fbd162e6 2764 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
002cad6b
PX
2765 g_free(block->clear_bmap);
2766 block->clear_bmap = NULL;
6b6712ef
JQ
2767 g_free(block->bmap);
2768 block->bmap = NULL;
2769 g_free(block->unsentmap);
2770 block->unsentmap = NULL;
56e93d26
JQ
2771 }
2772
84593a08 2773 xbzrle_cleanup();
f0afa331 2774 compress_threads_save_cleanup();
7d7c96be 2775 ram_state_cleanup(rsp);
56e93d26
JQ
2776}
2777
6f37bb8b 2778static void ram_state_reset(RAMState *rs)
56e93d26 2779{
6f37bb8b
JQ
2780 rs->last_seen_block = NULL;
2781 rs->last_sent_block = NULL;
269ace29 2782 rs->last_page = 0;
6f37bb8b
JQ
2783 rs->last_version = ram_list.version;
2784 rs->ram_bulk_stage = true;
6eeb63f7 2785 rs->fpo_enabled = false;
56e93d26
JQ
2786}
2787
2788#define MAX_WAIT 50 /* ms, half buffered_file limit */
2789
4f2e4252
DDAG
2790/*
2791 * 'expected' is the value you expect the bitmap mostly to be full
2792 * of; it won't bother printing lines that are all this value.
2793 * If 'todump' is null the migration bitmap is dumped.
2794 */
6b6712ef
JQ
2795void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2796 unsigned long pages)
4f2e4252 2797{
4f2e4252
DDAG
2798 int64_t cur;
2799 int64_t linelen = 128;
2800 char linebuf[129];
2801
6b6712ef 2802 for (cur = 0; cur < pages; cur += linelen) {
4f2e4252
DDAG
2803 int64_t curb;
2804 bool found = false;
2805 /*
2806 * Last line; catch the case where the line length
2807 * is longer than remaining ram
2808 */
6b6712ef
JQ
2809 if (cur + linelen > pages) {
2810 linelen = pages - cur;
4f2e4252
DDAG
2811 }
2812 for (curb = 0; curb < linelen; curb++) {
2813 bool thisbit = test_bit(cur + curb, todump);
2814 linebuf[curb] = thisbit ? '1' : '.';
2815 found = found || (thisbit != expected);
2816 }
2817 if (found) {
2818 linebuf[curb] = '\0';
2819 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2820 }
2821 }
2822}
2823
e0b266f0
DDAG
2824/* **** functions for postcopy ***** */
2825
ced1c616
PB
2826void ram_postcopy_migrated_memory_release(MigrationState *ms)
2827{
2828 struct RAMBlock *block;
ced1c616 2829
fbd162e6 2830 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2831 unsigned long *bitmap = block->bmap;
2832 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2833 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
ced1c616
PB
2834
2835 while (run_start < range) {
2836 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
aaa2064c 2837 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
ced1c616
PB
2838 (run_end - run_start) << TARGET_PAGE_BITS);
2839 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2840 }
2841 }
2842}
2843
3d0684b2
JQ
2844/**
2845 * postcopy_send_discard_bm_ram: discard a RAMBlock
2846 *
2847 * Returns zero on success
2848 *
e0b266f0
DDAG
2849 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2850 * Note: At this point the 'unsentmap' is the processed bitmap combined
2851 * with the dirtymap; so a '1' means it's either dirty or unsent.
3d0684b2
JQ
2852 *
2853 * @ms: current migration state
2854 * @pds: state for postcopy
89dab31b 2855 * @block: RAMBlock to discard
e0b266f0
DDAG
2856 */
2857static int postcopy_send_discard_bm_ram(MigrationState *ms,
2858 PostcopyDiscardState *pds,
6b6712ef 2859 RAMBlock *block)
e0b266f0 2860{
6b6712ef 2861 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
e0b266f0 2862 unsigned long current;
6b6712ef 2863 unsigned long *unsentmap = block->unsentmap;
e0b266f0 2864
6b6712ef 2865 for (current = 0; current < end; ) {
e0b266f0
DDAG
2866 unsigned long one = find_next_bit(unsentmap, end, current);
2867
2868 if (one <= end) {
2869 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2870 unsigned long discard_length;
2871
2872 if (zero >= end) {
2873 discard_length = end - one;
2874 } else {
2875 discard_length = zero - one;
2876 }
d688c62d
DDAG
2877 if (discard_length) {
2878 postcopy_discard_send_range(ms, pds, one, discard_length);
2879 }
e0b266f0
DDAG
2880 current = one + discard_length;
2881 } else {
2882 current = one;
2883 }
2884 }
2885
2886 return 0;
2887}
2888
3d0684b2
JQ
2889/**
2890 * postcopy_each_ram_send_discard: discard all RAMBlocks
2891 *
2892 * Returns 0 for success or negative for error
2893 *
e0b266f0
DDAG
2894 * Utility for the outgoing postcopy code.
2895 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2896 * passing it bitmap indexes and name.
e0b266f0
DDAG
2897 * (qemu_ram_foreach_block ends up passing unscaled lengths
2898 * which would mean postcopy code would have to deal with target page)
3d0684b2
JQ
2899 *
2900 * @ms: current migration state
e0b266f0
DDAG
2901 */
2902static int postcopy_each_ram_send_discard(MigrationState *ms)
2903{
2904 struct RAMBlock *block;
2905 int ret;
2906
fbd162e6 2907 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2908 PostcopyDiscardState *pds =
2909 postcopy_discard_send_init(ms, block->idstr);
e0b266f0
DDAG
2910
2911 /*
2912 * Postcopy sends chunks of bitmap over the wire, but it
2913 * just needs indexes at this point, avoids it having
2914 * target page specific code.
2915 */
6b6712ef 2916 ret = postcopy_send_discard_bm_ram(ms, pds, block);
e0b266f0
DDAG
2917 postcopy_discard_send_finish(ms, pds);
2918 if (ret) {
2919 return ret;
2920 }
2921 }
2922
2923 return 0;
2924}
2925
3d0684b2
JQ
2926/**
2927 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2928 *
2929 * Helper for postcopy_chunk_hostpages; it's called twice to
2930 * canonicalize the two bitmaps, that are similar, but one is
2931 * inverted.
99e314eb 2932 *
3d0684b2
JQ
2933 * Postcopy requires that all target pages in a hostpage are dirty or
2934 * clean, not a mix. This function canonicalizes the bitmaps.
99e314eb 2935 *
3d0684b2
JQ
2936 * @ms: current migration state
2937 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2938 * otherwise we need to canonicalize partially dirty host pages
2939 * @block: block that contains the page we want to canonicalize
2940 * @pds: state for postcopy
99e314eb
DDAG
2941 */
2942static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2943 RAMBlock *block,
2944 PostcopyDiscardState *pds)
2945{
53518d94 2946 RAMState *rs = ram_state;
6b6712ef
JQ
2947 unsigned long *bitmap = block->bmap;
2948 unsigned long *unsentmap = block->unsentmap;
29c59172 2949 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
6b6712ef 2950 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
99e314eb
DDAG
2951 unsigned long run_start;
2952
29c59172
DDAG
2953 if (block->page_size == TARGET_PAGE_SIZE) {
2954 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2955 return;
2956 }
2957
99e314eb
DDAG
2958 if (unsent_pass) {
2959 /* Find a sent page */
6b6712ef 2960 run_start = find_next_zero_bit(unsentmap, pages, 0);
99e314eb
DDAG
2961 } else {
2962 /* Find a dirty page */
6b6712ef 2963 run_start = find_next_bit(bitmap, pages, 0);
99e314eb
DDAG
2964 }
2965
6b6712ef 2966 while (run_start < pages) {
99e314eb
DDAG
2967 bool do_fixup = false;
2968 unsigned long fixup_start_addr;
2969 unsigned long host_offset;
2970
2971 /*
2972 * If the start of this run of pages is in the middle of a host
2973 * page, then we need to fixup this host page.
2974 */
2975 host_offset = run_start % host_ratio;
2976 if (host_offset) {
2977 do_fixup = true;
2978 run_start -= host_offset;
2979 fixup_start_addr = run_start;
2980 /* For the next pass */
2981 run_start = run_start + host_ratio;
2982 } else {
2983 /* Find the end of this run */
2984 unsigned long run_end;
2985 if (unsent_pass) {
6b6712ef 2986 run_end = find_next_bit(unsentmap, pages, run_start + 1);
99e314eb 2987 } else {
6b6712ef 2988 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
99e314eb
DDAG
2989 }
2990 /*
2991 * If the end isn't at the start of a host page, then the
2992 * run doesn't finish at the end of a host page
2993 * and we need to discard.
2994 */
2995 host_offset = run_end % host_ratio;
2996 if (host_offset) {
2997 do_fixup = true;
2998 fixup_start_addr = run_end - host_offset;
2999 /*
3000 * This host page has gone, the next loop iteration starts
3001 * from after the fixup
3002 */
3003 run_start = fixup_start_addr + host_ratio;
3004 } else {
3005 /*
3006 * No discards on this iteration, next loop starts from
3007 * next sent/dirty page
3008 */
3009 run_start = run_end + 1;
3010 }
3011 }
3012
3013 if (do_fixup) {
3014 unsigned long page;
3015
3016 /* Tell the destination to discard this page */
3017 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
3018 /* For the unsent_pass we:
3019 * discard partially sent pages
3020 * For the !unsent_pass (dirty) we:
3021 * discard partially dirty pages that were sent
3022 * (any partially sent pages were already discarded
3023 * by the previous unsent_pass)
3024 */
3025 postcopy_discard_send_range(ms, pds, fixup_start_addr,
3026 host_ratio);
3027 }
3028
3029 /* Clean up the bitmap */
3030 for (page = fixup_start_addr;
3031 page < fixup_start_addr + host_ratio; page++) {
3032 /* All pages in this host page are now not sent */
3033 set_bit(page, unsentmap);
3034
3035 /*
3036 * Remark them as dirty, updating the count for any pages
3037 * that weren't previously dirty.
3038 */
0d8ec885 3039 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
99e314eb
DDAG
3040 }
3041 }
3042
3043 if (unsent_pass) {
3044 /* Find the next sent page for the next iteration */
6b6712ef 3045 run_start = find_next_zero_bit(unsentmap, pages, run_start);
99e314eb
DDAG
3046 } else {
3047 /* Find the next dirty page for the next iteration */
6b6712ef 3048 run_start = find_next_bit(bitmap, pages, run_start);
99e314eb
DDAG
3049 }
3050 }
3051}
3052
3d0684b2 3053/**
89dab31b 3054 * postcopy_chunk_hostpages: discard any partially sent host page
3d0684b2 3055 *
99e314eb
DDAG
3056 * Utility for the outgoing postcopy code.
3057 *
3058 * Discard any partially sent host-page size chunks, mark any partially
29c59172
DDAG
3059 * dirty host-page size chunks as all dirty. In this case the host-page
3060 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
99e314eb 3061 *
3d0684b2
JQ
3062 * Returns zero on success
3063 *
3064 * @ms: current migration state
6b6712ef 3065 * @block: block we want to work with
99e314eb 3066 */
6b6712ef 3067static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
99e314eb 3068{
6b6712ef
JQ
3069 PostcopyDiscardState *pds =
3070 postcopy_discard_send_init(ms, block->idstr);
99e314eb 3071
6b6712ef
JQ
3072 /* First pass: Discard all partially sent host pages */
3073 postcopy_chunk_hostpages_pass(ms, true, block, pds);
3074 /*
3075 * Second pass: Ensure that all partially dirty host pages are made
3076 * fully dirty.
3077 */
3078 postcopy_chunk_hostpages_pass(ms, false, block, pds);
99e314eb 3079
6b6712ef 3080 postcopy_discard_send_finish(ms, pds);
99e314eb
DDAG
3081 return 0;
3082}
3083
3d0684b2
JQ
3084/**
3085 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3086 *
3087 * Returns zero on success
3088 *
e0b266f0
DDAG
3089 * Transmit the set of pages to be discarded after precopy to the target
3090 * these are pages that:
3091 * a) Have been previously transmitted but are now dirty again
3092 * b) Pages that have never been transmitted, this ensures that
3093 * any pages on the destination that have been mapped by background
3094 * tasks get discarded (transparent huge pages is the specific concern)
3095 * Hopefully this is pretty sparse
3d0684b2
JQ
3096 *
3097 * @ms: current migration state
e0b266f0
DDAG
3098 */
3099int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3100{
53518d94 3101 RAMState *rs = ram_state;
6b6712ef 3102 RAMBlock *block;
e0b266f0 3103 int ret;
e0b266f0
DDAG
3104
3105 rcu_read_lock();
3106
3107 /* This should be our last sync, the src is now paused */
eb859c53 3108 migration_bitmap_sync(rs);
e0b266f0 3109
6b6712ef
JQ
3110 /* Easiest way to make sure we don't resume in the middle of a host-page */
3111 rs->last_seen_block = NULL;
3112 rs->last_sent_block = NULL;
3113 rs->last_page = 0;
e0b266f0 3114
fbd162e6 3115 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
3116 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3117 unsigned long *bitmap = block->bmap;
3118 unsigned long *unsentmap = block->unsentmap;
3119
3120 if (!unsentmap) {
3121 /* We don't have a safe way to resize the sentmap, so
3122 * if the bitmap was resized it will be NULL at this
3123 * point.
3124 */
3125 error_report("migration ram resized during precopy phase");
3126 rcu_read_unlock();
3127 return -EINVAL;
3128 }
3129 /* Deal with TPS != HPS and huge pages */
3130 ret = postcopy_chunk_hostpages(ms, block);
3131 if (ret) {
3132 rcu_read_unlock();
3133 return ret;
3134 }
e0b266f0 3135
6b6712ef
JQ
3136 /*
3137 * Update the unsentmap to be unsentmap = unsentmap | dirty
3138 */
3139 bitmap_or(unsentmap, unsentmap, bitmap, pages);
e0b266f0 3140#ifdef DEBUG_POSTCOPY
6b6712ef 3141 ram_debug_dump_bitmap(unsentmap, true, pages);
e0b266f0 3142#endif
6b6712ef
JQ
3143 }
3144 trace_ram_postcopy_send_discard_bitmap();
e0b266f0
DDAG
3145
3146 ret = postcopy_each_ram_send_discard(ms);
3147 rcu_read_unlock();
3148
3149 return ret;
3150}
3151
3d0684b2
JQ
3152/**
3153 * ram_discard_range: discard dirtied pages at the beginning of postcopy
e0b266f0 3154 *
3d0684b2 3155 * Returns zero on success
e0b266f0 3156 *
36449157
JQ
3157 * @rbname: name of the RAMBlock of the request. NULL means the
3158 * same that last one.
3d0684b2
JQ
3159 * @start: RAMBlock starting page
3160 * @length: RAMBlock size
e0b266f0 3161 */
aaa2064c 3162int ram_discard_range(const char *rbname, uint64_t start, size_t length)
e0b266f0
DDAG
3163{
3164 int ret = -1;
3165
36449157 3166 trace_ram_discard_range(rbname, start, length);
d3a5038c 3167
e0b266f0 3168 rcu_read_lock();
36449157 3169 RAMBlock *rb = qemu_ram_block_by_name(rbname);
e0b266f0
DDAG
3170
3171 if (!rb) {
36449157 3172 error_report("ram_discard_range: Failed to find block '%s'", rbname);
e0b266f0
DDAG
3173 goto err;
3174 }
3175
814bb08f
PX
3176 /*
3177 * On source VM, we don't need to update the received bitmap since
3178 * we don't even have one.
3179 */
3180 if (rb->receivedmap) {
3181 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3182 length >> qemu_target_page_bits());
3183 }
3184
d3a5038c 3185 ret = ram_block_discard_range(rb, start, length);
e0b266f0
DDAG
3186
3187err:
3188 rcu_read_unlock();
3189
3190 return ret;
3191}
3192
84593a08
PX
3193/*
3194 * For every allocation, we will try not to crash the VM if the
3195 * allocation failed.
3196 */
3197static int xbzrle_init(void)
3198{
3199 Error *local_err = NULL;
3200
3201 if (!migrate_use_xbzrle()) {
3202 return 0;
3203 }
3204
3205 XBZRLE_cache_lock();
3206
3207 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3208 if (!XBZRLE.zero_target_page) {
3209 error_report("%s: Error allocating zero page", __func__);
3210 goto err_out;
3211 }
3212
3213 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3214 TARGET_PAGE_SIZE, &local_err);
3215 if (!XBZRLE.cache) {
3216 error_report_err(local_err);
3217 goto free_zero_page;
3218 }
3219
3220 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3221 if (!XBZRLE.encoded_buf) {
3222 error_report("%s: Error allocating encoded_buf", __func__);
3223 goto free_cache;
3224 }
3225
3226 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3227 if (!XBZRLE.current_buf) {
3228 error_report("%s: Error allocating current_buf", __func__);
3229 goto free_encoded_buf;
3230 }
3231
3232 /* We are all good */
3233 XBZRLE_cache_unlock();
3234 return 0;
3235
3236free_encoded_buf:
3237 g_free(XBZRLE.encoded_buf);
3238 XBZRLE.encoded_buf = NULL;
3239free_cache:
3240 cache_fini(XBZRLE.cache);
3241 XBZRLE.cache = NULL;
3242free_zero_page:
3243 g_free(XBZRLE.zero_target_page);
3244 XBZRLE.zero_target_page = NULL;
3245err_out:
3246 XBZRLE_cache_unlock();
3247 return -ENOMEM;
3248}
3249
53518d94 3250static int ram_state_init(RAMState **rsp)
56e93d26 3251{
7d00ee6a
PX
3252 *rsp = g_try_new0(RAMState, 1);
3253
3254 if (!*rsp) {
3255 error_report("%s: Init ramstate fail", __func__);
3256 return -1;
3257 }
53518d94
JQ
3258
3259 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3260 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3261 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
56e93d26 3262
7d00ee6a 3263 /*
40c4d4a8
IR
3264 * Count the total number of pages used by ram blocks not including any
3265 * gaps due to alignment or unplugs.
03158519 3266 * This must match with the initial values of dirty bitmap.
7d00ee6a 3267 */
40c4d4a8 3268 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
7d00ee6a
PX
3269 ram_state_reset(*rsp);
3270
3271 return 0;
3272}
3273
d6eff5d7 3274static void ram_list_init_bitmaps(void)
7d00ee6a 3275{
002cad6b 3276 MigrationState *ms = migrate_get_current();
d6eff5d7
PX
3277 RAMBlock *block;
3278 unsigned long pages;
002cad6b 3279 uint8_t shift;
56e93d26 3280
0827b9e9
AA
3281 /* Skip setting bitmap if there is no RAM */
3282 if (ram_bytes_total()) {
002cad6b
PX
3283 shift = ms->clear_bitmap_shift;
3284 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
3285 error_report("clear_bitmap_shift (%u) too big, using "
3286 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
3287 shift = CLEAR_BITMAP_SHIFT_MAX;
3288 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
3289 error_report("clear_bitmap_shift (%u) too small, using "
3290 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
3291 shift = CLEAR_BITMAP_SHIFT_MIN;
3292 }
3293
fbd162e6 3294 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
d6eff5d7 3295 pages = block->max_length >> TARGET_PAGE_BITS;
03158519
WY
3296 /*
3297 * The initial dirty bitmap for migration must be set with all
3298 * ones to make sure we'll migrate every guest RAM page to
3299 * destination.
40c4d4a8
IR
3300 * Here we set RAMBlock.bmap all to 1 because when rebegin a
3301 * new migration after a failed migration, ram_list.
3302 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
3303 * guest memory.
03158519 3304 */
6b6712ef 3305 block->bmap = bitmap_new(pages);
40c4d4a8 3306 bitmap_set(block->bmap, 0, pages);
002cad6b
PX
3307 block->clear_bmap_shift = shift;
3308 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
6b6712ef
JQ
3309 if (migrate_postcopy_ram()) {
3310 block->unsentmap = bitmap_new(pages);
3311 bitmap_set(block->unsentmap, 0, pages);
3312 }
0827b9e9 3313 }
f3f491fc 3314 }
d6eff5d7
PX
3315}
3316
3317static void ram_init_bitmaps(RAMState *rs)
3318{
3319 /* For memory_global_dirty_log_start below. */
3320 qemu_mutex_lock_iothread();
3321 qemu_mutex_lock_ramlist();
3322 rcu_read_lock();
f3f491fc 3323
d6eff5d7 3324 ram_list_init_bitmaps();
56e93d26 3325 memory_global_dirty_log_start();
bd227060 3326 migration_bitmap_sync_precopy(rs);
d6eff5d7
PX
3327
3328 rcu_read_unlock();
56e93d26 3329 qemu_mutex_unlock_ramlist();
49877834 3330 qemu_mutex_unlock_iothread();
d6eff5d7
PX
3331}
3332
3333static int ram_init_all(RAMState **rsp)
3334{
3335 if (ram_state_init(rsp)) {
3336 return -1;
3337 }
3338
3339 if (xbzrle_init()) {
3340 ram_state_cleanup(rsp);
3341 return -1;
3342 }
3343
3344 ram_init_bitmaps(*rsp);
a91246c9
HZ
3345
3346 return 0;
3347}
3348
08614f34
PX
3349static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3350{
3351 RAMBlock *block;
3352 uint64_t pages = 0;
3353
3354 /*
3355 * Postcopy is not using xbzrle/compression, so no need for that.
3356 * Also, since source are already halted, we don't need to care
3357 * about dirty page logging as well.
3358 */
3359
fbd162e6 3360 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
08614f34
PX
3361 pages += bitmap_count_one(block->bmap,
3362 block->used_length >> TARGET_PAGE_BITS);
3363 }
3364
3365 /* This may not be aligned with current bitmaps. Recalculate. */
3366 rs->migration_dirty_pages = pages;
3367
3368 rs->last_seen_block = NULL;
3369 rs->last_sent_block = NULL;
3370 rs->last_page = 0;
3371 rs->last_version = ram_list.version;
3372 /*
3373 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3374 * matter what we have sent.
3375 */
3376 rs->ram_bulk_stage = false;
3377
3378 /* Update RAMState cache of output QEMUFile */
3379 rs->f = out;
3380
3381 trace_ram_state_resume_prepare(pages);
3382}
3383
6bcb05fc
WW
3384/*
3385 * This function clears bits of the free pages reported by the caller from the
3386 * migration dirty bitmap. @addr is the host address corresponding to the
3387 * start of the continuous guest free pages, and @len is the total bytes of
3388 * those pages.
3389 */
3390void qemu_guest_free_page_hint(void *addr, size_t len)
3391{
3392 RAMBlock *block;
3393 ram_addr_t offset;
3394 size_t used_len, start, npages;
3395 MigrationState *s = migrate_get_current();
3396
3397 /* This function is currently expected to be used during live migration */
3398 if (!migration_is_setup_or_active(s->state)) {
3399 return;
3400 }
3401
3402 for (; len > 0; len -= used_len, addr += used_len) {
3403 block = qemu_ram_block_from_host(addr, false, &offset);
3404 if (unlikely(!block || offset >= block->used_length)) {
3405 /*
3406 * The implementation might not support RAMBlock resize during
3407 * live migration, but it could happen in theory with future
3408 * updates. So we add a check here to capture that case.
3409 */
3410 error_report_once("%s unexpected error", __func__);
3411 return;
3412 }
3413
3414 if (len <= block->used_length - offset) {
3415 used_len = len;
3416 } else {
3417 used_len = block->used_length - offset;
3418 }
3419
3420 start = offset >> TARGET_PAGE_BITS;
3421 npages = used_len >> TARGET_PAGE_BITS;
3422
3423 qemu_mutex_lock(&ram_state->bitmap_mutex);
3424 ram_state->migration_dirty_pages -=
3425 bitmap_count_one_with_offset(block->bmap, start, npages);
3426 bitmap_clear(block->bmap, start, npages);
3427 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3428 }
3429}
3430
3d0684b2
JQ
3431/*
3432 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
a91246c9
HZ
3433 * long-running RCU critical section. When rcu-reclaims in the code
3434 * start to become numerous it will be necessary to reduce the
3435 * granularity of these critical sections.
3436 */
3437
3d0684b2
JQ
3438/**
3439 * ram_save_setup: Setup RAM for migration
3440 *
3441 * Returns zero to indicate success and negative for error
3442 *
3443 * @f: QEMUFile where to send the data
3444 * @opaque: RAMState pointer
3445 */
a91246c9
HZ
3446static int ram_save_setup(QEMUFile *f, void *opaque)
3447{
53518d94 3448 RAMState **rsp = opaque;
a91246c9
HZ
3449 RAMBlock *block;
3450
dcaf446e
XG
3451 if (compress_threads_save_setup()) {
3452 return -1;
3453 }
3454
a91246c9
HZ
3455 /* migration has already setup the bitmap, reuse it. */
3456 if (!migration_in_colo_state()) {
7d00ee6a 3457 if (ram_init_all(rsp) != 0) {
dcaf446e 3458 compress_threads_save_cleanup();
a91246c9 3459 return -1;
53518d94 3460 }
a91246c9 3461 }
53518d94 3462 (*rsp)->f = f;
a91246c9
HZ
3463
3464 rcu_read_lock();
56e93d26 3465
fbd162e6 3466 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
56e93d26 3467
b895de50 3468 RAMBLOCK_FOREACH_MIGRATABLE(block) {
56e93d26
JQ
3469 qemu_put_byte(f, strlen(block->idstr));
3470 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3471 qemu_put_be64(f, block->used_length);
ef08fb38
DDAG
3472 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3473 qemu_put_be64(f, block->page_size);
3474 }
fbd162e6
YK
3475 if (migrate_ignore_shared()) {
3476 qemu_put_be64(f, block->mr->addr);
fbd162e6 3477 }
56e93d26
JQ
3478 }
3479
3480 rcu_read_unlock();
3481
3482 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3483 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3484
6df264ac 3485 multifd_send_sync_main();
56e93d26 3486 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3487 qemu_fflush(f);
56e93d26
JQ
3488
3489 return 0;
3490}
3491
3d0684b2
JQ
3492/**
3493 * ram_save_iterate: iterative stage for migration
3494 *
3495 * Returns zero to indicate success and negative for error
3496 *
3497 * @f: QEMUFile where to send the data
3498 * @opaque: RAMState pointer
3499 */
56e93d26
JQ
3500static int ram_save_iterate(QEMUFile *f, void *opaque)
3501{
53518d94
JQ
3502 RAMState **temp = opaque;
3503 RAMState *rs = *temp;
56e93d26
JQ
3504 int ret;
3505 int i;
3506 int64_t t0;
5c90308f 3507 int done = 0;
56e93d26 3508
b2557345
PL
3509 if (blk_mig_bulk_active()) {
3510 /* Avoid transferring ram during bulk phase of block migration as
3511 * the bulk phase will usually take a long time and transferring
3512 * ram updates during that time is pointless. */
3513 goto out;
3514 }
3515
56e93d26 3516 rcu_read_lock();
6f37bb8b
JQ
3517 if (ram_list.version != rs->last_version) {
3518 ram_state_reset(rs);
56e93d26
JQ
3519 }
3520
3521 /* Read version before ram_list.blocks */
3522 smp_rmb();
3523
3524 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3525
3526 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3527 i = 0;
e03a34f8
DDAG
3528 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3529 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
56e93d26
JQ
3530 int pages;
3531
e03a34f8
DDAG
3532 if (qemu_file_get_error(f)) {
3533 break;
3534 }
3535
ce25d337 3536 pages = ram_find_and_save_block(rs, false);
56e93d26
JQ
3537 /* no more pages to sent */
3538 if (pages == 0) {
5c90308f 3539 done = 1;
56e93d26
JQ
3540 break;
3541 }
e8f3735f
XG
3542
3543 if (pages < 0) {
3544 qemu_file_set_error(f, pages);
3545 break;
3546 }
3547
be8b02ed 3548 rs->target_page_count += pages;
070afca2 3549
56e93d26
JQ
3550 /* we want to check in the 1st loop, just in case it was the 1st time
3551 and we had to sync the dirty bitmap.
a5f7b1a6 3552 qemu_clock_get_ns() is a bit expensive, so we only check each some
56e93d26
JQ
3553 iterations
3554 */
3555 if ((i & 63) == 0) {
3556 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3557 if (t1 > MAX_WAIT) {
55c4446b 3558 trace_ram_save_iterate_big_wait(t1, i);
56e93d26
JQ
3559 break;
3560 }
3561 }
3562 i++;
3563 }
56e93d26
JQ
3564 rcu_read_unlock();
3565
3566 /*
3567 * Must occur before EOS (or any QEMUFile operation)
3568 * because of RDMA protocol.
3569 */
3570 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3571
b2557345 3572out:
b6526c4b 3573 multifd_send_sync_main();
56e93d26 3574 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3575 qemu_fflush(f);
9360447d 3576 ram_counters.transferred += 8;
56e93d26
JQ
3577
3578 ret = qemu_file_get_error(f);
3579 if (ret < 0) {
3580 return ret;
3581 }
3582
5c90308f 3583 return done;
56e93d26
JQ
3584}
3585
3d0684b2
JQ
3586/**
3587 * ram_save_complete: function called to send the remaining amount of ram
3588 *
e8f3735f 3589 * Returns zero to indicate success or negative on error
3d0684b2
JQ
3590 *
3591 * Called with iothread lock
3592 *
3593 * @f: QEMUFile where to send the data
3594 * @opaque: RAMState pointer
3595 */
56e93d26
JQ
3596static int ram_save_complete(QEMUFile *f, void *opaque)
3597{
53518d94
JQ
3598 RAMState **temp = opaque;
3599 RAMState *rs = *temp;
e8f3735f 3600 int ret = 0;
6f37bb8b 3601
56e93d26
JQ
3602 rcu_read_lock();
3603
5727309d 3604 if (!migration_in_postcopy()) {
bd227060 3605 migration_bitmap_sync_precopy(rs);
663e6c1d 3606 }
56e93d26
JQ
3607
3608 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3609
3610 /* try transferring iterative blocks of memory */
3611
3612 /* flush all remaining blocks regardless of rate limiting */
3613 while (true) {
3614 int pages;
3615
ce25d337 3616 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
56e93d26
JQ
3617 /* no more blocks to sent */
3618 if (pages == 0) {
3619 break;
3620 }
e8f3735f
XG
3621 if (pages < 0) {
3622 ret = pages;
3623 break;
3624 }
56e93d26
JQ
3625 }
3626
ce25d337 3627 flush_compressed_data(rs);
56e93d26 3628 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
56e93d26
JQ
3629
3630 rcu_read_unlock();
d09a6fde 3631
6df264ac 3632 multifd_send_sync_main();
56e93d26 3633 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3634 qemu_fflush(f);
56e93d26 3635
e8f3735f 3636 return ret;
56e93d26
JQ
3637}
3638
c31b098f 3639static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
47995026
VSO
3640 uint64_t *res_precopy_only,
3641 uint64_t *res_compatible,
3642 uint64_t *res_postcopy_only)
56e93d26 3643{
53518d94
JQ
3644 RAMState **temp = opaque;
3645 RAMState *rs = *temp;
56e93d26
JQ
3646 uint64_t remaining_size;
3647
9edabd4d 3648 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3649
5727309d 3650 if (!migration_in_postcopy() &&
663e6c1d 3651 remaining_size < max_size) {
56e93d26
JQ
3652 qemu_mutex_lock_iothread();
3653 rcu_read_lock();
bd227060 3654 migration_bitmap_sync_precopy(rs);
56e93d26
JQ
3655 rcu_read_unlock();
3656 qemu_mutex_unlock_iothread();
9edabd4d 3657 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3658 }
c31b098f 3659
86e1167e
VSO
3660 if (migrate_postcopy_ram()) {
3661 /* We can do postcopy, and all the data is postcopiable */
47995026 3662 *res_compatible += remaining_size;
86e1167e 3663 } else {
47995026 3664 *res_precopy_only += remaining_size;
86e1167e 3665 }
56e93d26
JQ
3666}
3667
3668static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3669{
3670 unsigned int xh_len;
3671 int xh_flags;
063e760a 3672 uint8_t *loaded_data;
56e93d26 3673
56e93d26
JQ
3674 /* extract RLE header */
3675 xh_flags = qemu_get_byte(f);
3676 xh_len = qemu_get_be16(f);
3677
3678 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3679 error_report("Failed to load XBZRLE page - wrong compression!");
3680 return -1;
3681 }
3682
3683 if (xh_len > TARGET_PAGE_SIZE) {
3684 error_report("Failed to load XBZRLE page - len overflow!");
3685 return -1;
3686 }
f265e0e4 3687 loaded_data = XBZRLE.decoded_buf;
56e93d26 3688 /* load data and decode */
f265e0e4 3689 /* it can change loaded_data to point to an internal buffer */
063e760a 3690 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
56e93d26
JQ
3691
3692 /* decode RLE */
063e760a 3693 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
56e93d26
JQ
3694 TARGET_PAGE_SIZE) == -1) {
3695 error_report("Failed to load XBZRLE page - decode error!");
3696 return -1;
3697 }
3698
3699 return 0;
3700}
3701
3d0684b2
JQ
3702/**
3703 * ram_block_from_stream: read a RAMBlock id from the migration stream
3704 *
3705 * Must be called from within a rcu critical section.
3706 *
56e93d26 3707 * Returns a pointer from within the RCU-protected ram_list.
a7180877 3708 *
3d0684b2
JQ
3709 * @f: QEMUFile where to read the data from
3710 * @flags: Page flags (mostly to see if it's a continuation of previous block)
a7180877 3711 */
3d0684b2 3712static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
56e93d26
JQ
3713{
3714 static RAMBlock *block = NULL;
3715 char id[256];
3716 uint8_t len;
3717
3718 if (flags & RAM_SAVE_FLAG_CONTINUE) {
4c4bad48 3719 if (!block) {
56e93d26
JQ
3720 error_report("Ack, bad migration stream!");
3721 return NULL;
3722 }
4c4bad48 3723 return block;
56e93d26
JQ
3724 }
3725
3726 len = qemu_get_byte(f);
3727 qemu_get_buffer(f, (uint8_t *)id, len);
3728 id[len] = 0;
3729
e3dd7493 3730 block = qemu_ram_block_by_name(id);
4c4bad48
HZ
3731 if (!block) {
3732 error_report("Can't find block %s", id);
3733 return NULL;
56e93d26
JQ
3734 }
3735
fbd162e6 3736 if (ramblock_is_ignored(block)) {
b895de50
CLG
3737 error_report("block %s should not be migrated !", id);
3738 return NULL;
3739 }
3740
4c4bad48
HZ
3741 return block;
3742}
3743
3744static inline void *host_from_ram_block_offset(RAMBlock *block,
3745 ram_addr_t offset)
3746{
3747 if (!offset_in_ramblock(block, offset)) {
3748 return NULL;
3749 }
3750
3751 return block->host + offset;
56e93d26
JQ
3752}
3753
13af18f2
ZC
3754static inline void *colo_cache_from_block_offset(RAMBlock *block,
3755 ram_addr_t offset)
3756{
3757 if (!offset_in_ramblock(block, offset)) {
3758 return NULL;
3759 }
3760 if (!block->colo_cache) {
3761 error_report("%s: colo_cache is NULL in block :%s",
3762 __func__, block->idstr);
3763 return NULL;
3764 }
7d9acafa
ZC
3765
3766 /*
3767 * During colo checkpoint, we need bitmap of these migrated pages.
3768 * It help us to decide which pages in ram cache should be flushed
3769 * into VM's RAM later.
3770 */
3771 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3772 ram_state->migration_dirty_pages++;
3773 }
13af18f2
ZC
3774 return block->colo_cache + offset;
3775}
3776
3d0684b2
JQ
3777/**
3778 * ram_handle_compressed: handle the zero page case
3779 *
56e93d26
JQ
3780 * If a page (or a whole RDMA chunk) has been
3781 * determined to be zero, then zap it.
3d0684b2
JQ
3782 *
3783 * @host: host address for the zero page
3784 * @ch: what the page is filled from. We only support zero
3785 * @size: size of the zero page
56e93d26
JQ
3786 */
3787void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3788{
3789 if (ch != 0 || !is_zero_range(host, size)) {
3790 memset(host, ch, size);
3791 }
3792}
3793
797ca154
XG
3794/* return the size after decompression, or negative value on error */
3795static int
3796qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3797 const uint8_t *source, size_t source_len)
3798{
3799 int err;
3800
3801 err = inflateReset(stream);
3802 if (err != Z_OK) {
3803 return -1;
3804 }
3805
3806 stream->avail_in = source_len;
3807 stream->next_in = (uint8_t *)source;
3808 stream->avail_out = dest_len;
3809 stream->next_out = dest;
3810
3811 err = inflate(stream, Z_NO_FLUSH);
3812 if (err != Z_STREAM_END) {
3813 return -1;
3814 }
3815
3816 return stream->total_out;
3817}
3818
56e93d26
JQ
3819static void *do_data_decompress(void *opaque)
3820{
3821 DecompressParam *param = opaque;
3822 unsigned long pagesize;
33d151f4 3823 uint8_t *des;
34ab9e97 3824 int len, ret;
56e93d26 3825
33d151f4 3826 qemu_mutex_lock(&param->mutex);
90e56fb4 3827 while (!param->quit) {
33d151f4
LL
3828 if (param->des) {
3829 des = param->des;
3830 len = param->len;
3831 param->des = 0;
3832 qemu_mutex_unlock(&param->mutex);
3833
56e93d26 3834 pagesize = TARGET_PAGE_SIZE;
34ab9e97
XG
3835
3836 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3837 param->compbuf, len);
f548222c 3838 if (ret < 0 && migrate_get_current()->decompress_error_check) {
34ab9e97
XG
3839 error_report("decompress data failed");
3840 qemu_file_set_error(decomp_file, ret);
3841 }
73a8912b 3842
33d151f4
LL
3843 qemu_mutex_lock(&decomp_done_lock);
3844 param->done = true;
3845 qemu_cond_signal(&decomp_done_cond);
3846 qemu_mutex_unlock(&decomp_done_lock);
3847
3848 qemu_mutex_lock(&param->mutex);
3849 } else {
3850 qemu_cond_wait(&param->cond, &param->mutex);
3851 }
56e93d26 3852 }
33d151f4 3853 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
3854
3855 return NULL;
3856}
3857
34ab9e97 3858static int wait_for_decompress_done(void)
5533b2e9
LL
3859{
3860 int idx, thread_count;
3861
3862 if (!migrate_use_compression()) {
34ab9e97 3863 return 0;
5533b2e9
LL
3864 }
3865
3866 thread_count = migrate_decompress_threads();
3867 qemu_mutex_lock(&decomp_done_lock);
3868 for (idx = 0; idx < thread_count; idx++) {
3869 while (!decomp_param[idx].done) {
3870 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3871 }
3872 }
3873 qemu_mutex_unlock(&decomp_done_lock);
34ab9e97 3874 return qemu_file_get_error(decomp_file);
5533b2e9
LL
3875}
3876
f0afa331 3877static void compress_threads_load_cleanup(void)
56e93d26
JQ
3878{
3879 int i, thread_count;
3880
3416ab5b
JQ
3881 if (!migrate_use_compression()) {
3882 return;
3883 }
56e93d26
JQ
3884 thread_count = migrate_decompress_threads();
3885 for (i = 0; i < thread_count; i++) {
797ca154
XG
3886 /*
3887 * we use it as a indicator which shows if the thread is
3888 * properly init'd or not
3889 */
3890 if (!decomp_param[i].compbuf) {
3891 break;
3892 }
3893
56e93d26 3894 qemu_mutex_lock(&decomp_param[i].mutex);
90e56fb4 3895 decomp_param[i].quit = true;
56e93d26
JQ
3896 qemu_cond_signal(&decomp_param[i].cond);
3897 qemu_mutex_unlock(&decomp_param[i].mutex);
3898 }
3899 for (i = 0; i < thread_count; i++) {
797ca154
XG
3900 if (!decomp_param[i].compbuf) {
3901 break;
3902 }
3903
56e93d26
JQ
3904 qemu_thread_join(decompress_threads + i);
3905 qemu_mutex_destroy(&decomp_param[i].mutex);
3906 qemu_cond_destroy(&decomp_param[i].cond);
797ca154 3907 inflateEnd(&decomp_param[i].stream);
56e93d26 3908 g_free(decomp_param[i].compbuf);
797ca154 3909 decomp_param[i].compbuf = NULL;
56e93d26
JQ
3910 }
3911 g_free(decompress_threads);
3912 g_free(decomp_param);
56e93d26
JQ
3913 decompress_threads = NULL;
3914 decomp_param = NULL;
34ab9e97 3915 decomp_file = NULL;
56e93d26
JQ
3916}
3917
34ab9e97 3918static int compress_threads_load_setup(QEMUFile *f)
797ca154
XG
3919{
3920 int i, thread_count;
3921
3922 if (!migrate_use_compression()) {
3923 return 0;
3924 }
3925
3926 thread_count = migrate_decompress_threads();
3927 decompress_threads = g_new0(QemuThread, thread_count);
3928 decomp_param = g_new0(DecompressParam, thread_count);
3929 qemu_mutex_init(&decomp_done_lock);
3930 qemu_cond_init(&decomp_done_cond);
34ab9e97 3931 decomp_file = f;
797ca154
XG
3932 for (i = 0; i < thread_count; i++) {
3933 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3934 goto exit;
3935 }
3936
3937 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3938 qemu_mutex_init(&decomp_param[i].mutex);
3939 qemu_cond_init(&decomp_param[i].cond);
3940 decomp_param[i].done = true;
3941 decomp_param[i].quit = false;
3942 qemu_thread_create(decompress_threads + i, "decompress",
3943 do_data_decompress, decomp_param + i,
3944 QEMU_THREAD_JOINABLE);
3945 }
3946 return 0;
3947exit:
3948 compress_threads_load_cleanup();
3949 return -1;
3950}
3951
c1bc6626 3952static void decompress_data_with_multi_threads(QEMUFile *f,
56e93d26
JQ
3953 void *host, int len)
3954{
3955 int idx, thread_count;
3956
3957 thread_count = migrate_decompress_threads();
73a8912b 3958 qemu_mutex_lock(&decomp_done_lock);
56e93d26
JQ
3959 while (true) {
3960 for (idx = 0; idx < thread_count; idx++) {
73a8912b 3961 if (decomp_param[idx].done) {
33d151f4
LL
3962 decomp_param[idx].done = false;
3963 qemu_mutex_lock(&decomp_param[idx].mutex);
c1bc6626 3964 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
56e93d26
JQ
3965 decomp_param[idx].des = host;
3966 decomp_param[idx].len = len;
33d151f4
LL
3967 qemu_cond_signal(&decomp_param[idx].cond);
3968 qemu_mutex_unlock(&decomp_param[idx].mutex);
56e93d26
JQ
3969 break;
3970 }
3971 }
3972 if (idx < thread_count) {
3973 break;
73a8912b
LL
3974 } else {
3975 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
56e93d26
JQ
3976 }
3977 }
73a8912b 3978 qemu_mutex_unlock(&decomp_done_lock);
56e93d26
JQ
3979}
3980
13af18f2
ZC
3981/*
3982 * colo cache: this is for secondary VM, we cache the whole
3983 * memory of the secondary VM, it is need to hold the global lock
3984 * to call this helper.
3985 */
3986int colo_init_ram_cache(void)
3987{
3988 RAMBlock *block;
3989
3990 rcu_read_lock();
fbd162e6 3991 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
3992 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3993 NULL,
3994 false);
3995 if (!block->colo_cache) {
3996 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3997 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3998 block->used_length);
3999 goto out_locked;
4000 }
4001 memcpy(block->colo_cache, block->host, block->used_length);
4002 }
4003 rcu_read_unlock();
7d9acafa
ZC
4004 /*
4005 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
4006 * with to decide which page in cache should be flushed into SVM's RAM. Here
4007 * we use the same name 'ram_bitmap' as for migration.
4008 */
4009 if (ram_bytes_total()) {
4010 RAMBlock *block;
4011
fbd162e6 4012 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
4013 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
4014
4015 block->bmap = bitmap_new(pages);
4016 bitmap_set(block->bmap, 0, pages);
4017 }
4018 }
4019 ram_state = g_new0(RAMState, 1);
4020 ram_state->migration_dirty_pages = 0;
c6e5bafb 4021 qemu_mutex_init(&ram_state->bitmap_mutex);
d1955d22 4022 memory_global_dirty_log_start();
7d9acafa 4023
13af18f2
ZC
4024 return 0;
4025
4026out_locked:
7d9acafa 4027
fbd162e6 4028 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
4029 if (block->colo_cache) {
4030 qemu_anon_ram_free(block->colo_cache, block->used_length);
4031 block->colo_cache = NULL;
4032 }
4033 }
4034
4035 rcu_read_unlock();
4036 return -errno;
4037}
4038
4039/* It is need to hold the global lock to call this helper */
4040void colo_release_ram_cache(void)
4041{
4042 RAMBlock *block;
4043
d1955d22 4044 memory_global_dirty_log_stop();
fbd162e6 4045 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
4046 g_free(block->bmap);
4047 block->bmap = NULL;
4048 }
4049
13af18f2 4050 rcu_read_lock();
7d9acafa 4051
fbd162e6 4052 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
4053 if (block->colo_cache) {
4054 qemu_anon_ram_free(block->colo_cache, block->used_length);
4055 block->colo_cache = NULL;
4056 }
4057 }
7d9acafa 4058
13af18f2 4059 rcu_read_unlock();
c6e5bafb 4060 qemu_mutex_destroy(&ram_state->bitmap_mutex);
7d9acafa
ZC
4061 g_free(ram_state);
4062 ram_state = NULL;
13af18f2
ZC
4063}
4064
f265e0e4
JQ
4065/**
4066 * ram_load_setup: Setup RAM for migration incoming side
4067 *
4068 * Returns zero to indicate success and negative for error
4069 *
4070 * @f: QEMUFile where to receive the data
4071 * @opaque: RAMState pointer
4072 */
4073static int ram_load_setup(QEMUFile *f, void *opaque)
4074{
34ab9e97 4075 if (compress_threads_load_setup(f)) {
797ca154
XG
4076 return -1;
4077 }
4078
f265e0e4 4079 xbzrle_load_setup();
f9494614 4080 ramblock_recv_map_init();
13af18f2 4081
f265e0e4
JQ
4082 return 0;
4083}
4084
4085static int ram_load_cleanup(void *opaque)
4086{
f9494614 4087 RAMBlock *rb;
56eb90af 4088
fbd162e6 4089 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
56eb90af
JH
4090 if (ramblock_is_pmem(rb)) {
4091 pmem_persist(rb->host, rb->used_length);
4092 }
4093 }
4094
f265e0e4 4095 xbzrle_load_cleanup();
f0afa331 4096 compress_threads_load_cleanup();
f9494614 4097
fbd162e6 4098 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
4099 g_free(rb->receivedmap);
4100 rb->receivedmap = NULL;
4101 }
13af18f2 4102
f265e0e4
JQ
4103 return 0;
4104}
4105
3d0684b2
JQ
4106/**
4107 * ram_postcopy_incoming_init: allocate postcopy data structures
4108 *
4109 * Returns 0 for success and negative if there was one error
4110 *
4111 * @mis: current migration incoming state
4112 *
4113 * Allocate data structures etc needed by incoming migration with
4114 * postcopy-ram. postcopy-ram's similarly names
4115 * postcopy_ram_incoming_init does the work.
1caddf8a
DDAG
4116 */
4117int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4118{
c136180c 4119 return postcopy_ram_incoming_init(mis);
1caddf8a
DDAG
4120}
4121
3d0684b2
JQ
4122/**
4123 * ram_load_postcopy: load a page in postcopy case
4124 *
4125 * Returns 0 for success or -errno in case of error
4126 *
a7180877
DDAG
4127 * Called in postcopy mode by ram_load().
4128 * rcu_read_lock is taken prior to this being called.
3d0684b2
JQ
4129 *
4130 * @f: QEMUFile where to send the data
a7180877
DDAG
4131 */
4132static int ram_load_postcopy(QEMUFile *f)
4133{
4134 int flags = 0, ret = 0;
4135 bool place_needed = false;
1aa83678 4136 bool matches_target_page_size = false;
a7180877
DDAG
4137 MigrationIncomingState *mis = migration_incoming_get_current();
4138 /* Temporary page that is later 'placed' */
4139 void *postcopy_host_page = postcopy_get_tmp_page(mis);
c53b7ddc 4140 void *last_host = NULL;
a3b6ff6d 4141 bool all_zero = false;
a7180877
DDAG
4142
4143 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4144 ram_addr_t addr;
4145 void *host = NULL;
4146 void *page_buffer = NULL;
4147 void *place_source = NULL;
df9ff5e1 4148 RAMBlock *block = NULL;
a7180877 4149 uint8_t ch;
a7180877
DDAG
4150
4151 addr = qemu_get_be64(f);
7a9ddfbf
PX
4152
4153 /*
4154 * If qemu file error, we should stop here, and then "addr"
4155 * may be invalid
4156 */
4157 ret = qemu_file_get_error(f);
4158 if (ret) {
4159 break;
4160 }
4161
a7180877
DDAG
4162 flags = addr & ~TARGET_PAGE_MASK;
4163 addr &= TARGET_PAGE_MASK;
4164
4165 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4166 place_needed = false;
bb890ed5 4167 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
df9ff5e1 4168 block = ram_block_from_stream(f, flags);
4c4bad48
HZ
4169
4170 host = host_from_ram_block_offset(block, addr);
a7180877
DDAG
4171 if (!host) {
4172 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4173 ret = -EINVAL;
4174 break;
4175 }
1aa83678 4176 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
a7180877 4177 /*
28abd200
DDAG
4178 * Postcopy requires that we place whole host pages atomically;
4179 * these may be huge pages for RAMBlocks that are backed by
4180 * hugetlbfs.
a7180877
DDAG
4181 * To make it atomic, the data is read into a temporary page
4182 * that's moved into place later.
4183 * The migration protocol uses, possibly smaller, target-pages
4184 * however the source ensures it always sends all the components
4185 * of a host page in order.
4186 */
4187 page_buffer = postcopy_host_page +
28abd200 4188 ((uintptr_t)host & (block->page_size - 1));
a7180877 4189 /* If all TP are zero then we can optimise the place */
28abd200 4190 if (!((uintptr_t)host & (block->page_size - 1))) {
a7180877 4191 all_zero = true;
c53b7ddc
DDAG
4192 } else {
4193 /* not the 1st TP within the HP */
4194 if (host != (last_host + TARGET_PAGE_SIZE)) {
9af9e0fe 4195 error_report("Non-sequential target page %p/%p",
c53b7ddc
DDAG
4196 host, last_host);
4197 ret = -EINVAL;
4198 break;
4199 }
a7180877
DDAG
4200 }
4201
c53b7ddc 4202
a7180877
DDAG
4203 /*
4204 * If it's the last part of a host page then we place the host
4205 * page
4206 */
4207 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
28abd200 4208 (block->page_size - 1)) == 0;
a7180877
DDAG
4209 place_source = postcopy_host_page;
4210 }
c53b7ddc 4211 last_host = host;
a7180877
DDAG
4212
4213 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
bb890ed5 4214 case RAM_SAVE_FLAG_ZERO:
a7180877
DDAG
4215 ch = qemu_get_byte(f);
4216 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4217 if (ch) {
4218 all_zero = false;
4219 }
4220 break;
4221
4222 case RAM_SAVE_FLAG_PAGE:
4223 all_zero = false;
1aa83678
PX
4224 if (!matches_target_page_size) {
4225 /* For huge pages, we always use temporary buffer */
a7180877
DDAG
4226 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4227 } else {
1aa83678
PX
4228 /*
4229 * For small pages that matches target page size, we
4230 * avoid the qemu_file copy. Instead we directly use
4231 * the buffer of QEMUFile to place the page. Note: we
4232 * cannot do any QEMUFile operation before using that
4233 * buffer to make sure the buffer is valid when
4234 * placing the page.
a7180877
DDAG
4235 */
4236 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4237 TARGET_PAGE_SIZE);
4238 }
4239 break;
4240 case RAM_SAVE_FLAG_EOS:
4241 /* normal exit */
6df264ac 4242 multifd_recv_sync_main();
a7180877
DDAG
4243 break;
4244 default:
4245 error_report("Unknown combination of migration flags: %#x"
4246 " (postcopy mode)", flags);
4247 ret = -EINVAL;
7a9ddfbf
PX
4248 break;
4249 }
4250
4251 /* Detect for any possible file errors */
4252 if (!ret && qemu_file_get_error(f)) {
4253 ret = qemu_file_get_error(f);
a7180877
DDAG
4254 }
4255
7a9ddfbf 4256 if (!ret && place_needed) {
a7180877 4257 /* This gets called at the last target page in the host page */
df9ff5e1
DDAG
4258 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4259
a7180877 4260 if (all_zero) {
df9ff5e1 4261 ret = postcopy_place_page_zero(mis, place_dest,
8be4620b 4262 block);
a7180877 4263 } else {
df9ff5e1 4264 ret = postcopy_place_page(mis, place_dest,
8be4620b 4265 place_source, block);
a7180877
DDAG
4266 }
4267 }
a7180877
DDAG
4268 }
4269
4270 return ret;
4271}
4272
acab30b8
DHB
4273static bool postcopy_is_advised(void)
4274{
4275 PostcopyState ps = postcopy_state_get();
4276 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4277}
4278
4279static bool postcopy_is_running(void)
4280{
4281 PostcopyState ps = postcopy_state_get();
4282 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4283}
4284
e6f4aa18
ZC
4285/*
4286 * Flush content of RAM cache into SVM's memory.
4287 * Only flush the pages that be dirtied by PVM or SVM or both.
4288 */
4289static void colo_flush_ram_cache(void)
4290{
4291 RAMBlock *block = NULL;
4292 void *dst_host;
4293 void *src_host;
4294 unsigned long offset = 0;
4295
d1955d22
HZ
4296 memory_global_dirty_log_sync();
4297 rcu_read_lock();
fbd162e6 4298 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
bf212979 4299 migration_bitmap_sync_range(ram_state, block, block->used_length);
d1955d22
HZ
4300 }
4301 rcu_read_unlock();
4302
e6f4aa18
ZC
4303 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4304 rcu_read_lock();
4305 block = QLIST_FIRST_RCU(&ram_list.blocks);
4306
4307 while (block) {
4308 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4309
4310 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4311 offset = 0;
4312 block = QLIST_NEXT_RCU(block, next);
4313 } else {
4314 migration_bitmap_clear_dirty(ram_state, block, offset);
4315 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4316 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4317 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4318 }
4319 }
4320
4321 rcu_read_unlock();
4322 trace_colo_flush_ram_cache_end();
4323}
4324
56e93d26
JQ
4325static int ram_load(QEMUFile *f, void *opaque, int version_id)
4326{
edc60127 4327 int flags = 0, ret = 0, invalid_flags = 0;
56e93d26
JQ
4328 static uint64_t seq_iter;
4329 int len = 0;
a7180877
DDAG
4330 /*
4331 * If system is running in postcopy mode, page inserts to host memory must
4332 * be atomic
4333 */
acab30b8 4334 bool postcopy_running = postcopy_is_running();
ef08fb38 4335 /* ADVISE is earlier, it shows the source has the postcopy capability on */
acab30b8 4336 bool postcopy_advised = postcopy_is_advised();
56e93d26
JQ
4337
4338 seq_iter++;
4339
4340 if (version_id != 4) {
4341 ret = -EINVAL;
4342 }
4343
edc60127
JQ
4344 if (!migrate_use_compression()) {
4345 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4346 }
56e93d26
JQ
4347 /* This RCU critical section can be very long running.
4348 * When RCU reclaims in the code start to become numerous,
4349 * it will be necessary to reduce the granularity of this
4350 * critical section.
4351 */
4352 rcu_read_lock();
a7180877
DDAG
4353
4354 if (postcopy_running) {
4355 ret = ram_load_postcopy(f);
4356 }
4357
4358 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
56e93d26 4359 ram_addr_t addr, total_ram_bytes;
a776aa15 4360 void *host = NULL;
56e93d26
JQ
4361 uint8_t ch;
4362
4363 addr = qemu_get_be64(f);
4364 flags = addr & ~TARGET_PAGE_MASK;
4365 addr &= TARGET_PAGE_MASK;
4366
edc60127
JQ
4367 if (flags & invalid_flags) {
4368 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4369 error_report("Received an unexpected compressed page");
4370 }
4371
4372 ret = -EINVAL;
4373 break;
4374 }
4375
bb890ed5 4376 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
a776aa15 4377 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4c4bad48
HZ
4378 RAMBlock *block = ram_block_from_stream(f, flags);
4379
13af18f2
ZC
4380 /*
4381 * After going into COLO, we should load the Page into colo_cache.
4382 */
4383 if (migration_incoming_in_colo_state()) {
4384 host = colo_cache_from_block_offset(block, addr);
4385 } else {
4386 host = host_from_ram_block_offset(block, addr);
4387 }
a776aa15
DDAG
4388 if (!host) {
4389 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4390 ret = -EINVAL;
4391 break;
4392 }
13af18f2
ZC
4393
4394 if (!migration_incoming_in_colo_state()) {
4395 ramblock_recv_bitmap_set(block, host);
4396 }
4397
1db9d8e5 4398 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
a776aa15
DDAG
4399 }
4400
56e93d26
JQ
4401 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4402 case RAM_SAVE_FLAG_MEM_SIZE:
4403 /* Synchronize RAM block list */
4404 total_ram_bytes = addr;
4405 while (!ret && total_ram_bytes) {
4406 RAMBlock *block;
56e93d26
JQ
4407 char id[256];
4408 ram_addr_t length;
4409
4410 len = qemu_get_byte(f);
4411 qemu_get_buffer(f, (uint8_t *)id, len);
4412 id[len] = 0;
4413 length = qemu_get_be64(f);
4414
e3dd7493 4415 block = qemu_ram_block_by_name(id);
b895de50
CLG
4416 if (block && !qemu_ram_is_migratable(block)) {
4417 error_report("block %s should not be migrated !", id);
4418 ret = -EINVAL;
4419 } else if (block) {
e3dd7493
DDAG
4420 if (length != block->used_length) {
4421 Error *local_err = NULL;
56e93d26 4422
fa53a0e5 4423 ret = qemu_ram_resize(block, length,
e3dd7493
DDAG
4424 &local_err);
4425 if (local_err) {
4426 error_report_err(local_err);
56e93d26 4427 }
56e93d26 4428 }
ef08fb38
DDAG
4429 /* For postcopy we need to check hugepage sizes match */
4430 if (postcopy_advised &&
4431 block->page_size != qemu_host_page_size) {
4432 uint64_t remote_page_size = qemu_get_be64(f);
4433 if (remote_page_size != block->page_size) {
4434 error_report("Mismatched RAM page size %s "
4435 "(local) %zd != %" PRId64,
4436 id, block->page_size,
4437 remote_page_size);
4438 ret = -EINVAL;
4439 }
4440 }
fbd162e6
YK
4441 if (migrate_ignore_shared()) {
4442 hwaddr addr = qemu_get_be64(f);
fbd162e6
YK
4443 if (ramblock_is_ignored(block) &&
4444 block->mr->addr != addr) {
4445 error_report("Mismatched GPAs for block %s "
4446 "%" PRId64 "!= %" PRId64,
4447 id, (uint64_t)addr,
4448 (uint64_t)block->mr->addr);
4449 ret = -EINVAL;
4450 }
4451 }
e3dd7493
DDAG
4452 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4453 block->idstr);
4454 } else {
56e93d26
JQ
4455 error_report("Unknown ramblock \"%s\", cannot "
4456 "accept migration", id);
4457 ret = -EINVAL;
4458 }
4459
4460 total_ram_bytes -= length;
4461 }
4462 break;
a776aa15 4463
bb890ed5 4464 case RAM_SAVE_FLAG_ZERO:
56e93d26
JQ
4465 ch = qemu_get_byte(f);
4466 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4467 break;
a776aa15 4468
56e93d26 4469 case RAM_SAVE_FLAG_PAGE:
56e93d26
JQ
4470 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4471 break;
56e93d26 4472
a776aa15 4473 case RAM_SAVE_FLAG_COMPRESS_PAGE:
56e93d26
JQ
4474 len = qemu_get_be32(f);
4475 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4476 error_report("Invalid compressed data length: %d", len);
4477 ret = -EINVAL;
4478 break;
4479 }
c1bc6626 4480 decompress_data_with_multi_threads(f, host, len);
56e93d26 4481 break;
a776aa15 4482
56e93d26 4483 case RAM_SAVE_FLAG_XBZRLE:
56e93d26
JQ
4484 if (load_xbzrle(f, addr, host) < 0) {
4485 error_report("Failed to decompress XBZRLE page at "
4486 RAM_ADDR_FMT, addr);
4487 ret = -EINVAL;
4488 break;
4489 }
4490 break;
4491 case RAM_SAVE_FLAG_EOS:
4492 /* normal exit */
6df264ac 4493 multifd_recv_sync_main();
56e93d26
JQ
4494 break;
4495 default:
4496 if (flags & RAM_SAVE_FLAG_HOOK) {
632e3a5c 4497 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
56e93d26
JQ
4498 } else {
4499 error_report("Unknown combination of migration flags: %#x",
4500 flags);
4501 ret = -EINVAL;
4502 }
4503 }
4504 if (!ret) {
4505 ret = qemu_file_get_error(f);
4506 }
4507 }
4508
34ab9e97 4509 ret |= wait_for_decompress_done();
56e93d26 4510 rcu_read_unlock();
55c4446b 4511 trace_ram_load_complete(ret, seq_iter);
e6f4aa18
ZC
4512
4513 if (!ret && migration_incoming_in_colo_state()) {
4514 colo_flush_ram_cache();
4515 }
56e93d26
JQ
4516 return ret;
4517}
4518
c6467627
VSO
4519static bool ram_has_postcopy(void *opaque)
4520{
469dd51b 4521 RAMBlock *rb;
fbd162e6 4522 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
469dd51b
JH
4523 if (ramblock_is_pmem(rb)) {
4524 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4525 "is not supported now!", rb->idstr, rb->host);
4526 return false;
4527 }
4528 }
4529
c6467627
VSO
4530 return migrate_postcopy_ram();
4531}
4532
edd090c7
PX
4533/* Sync all the dirty bitmap with destination VM. */
4534static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4535{
4536 RAMBlock *block;
4537 QEMUFile *file = s->to_dst_file;
4538 int ramblock_count = 0;
4539
4540 trace_ram_dirty_bitmap_sync_start();
4541
fbd162e6 4542 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
edd090c7
PX
4543 qemu_savevm_send_recv_bitmap(file, block->idstr);
4544 trace_ram_dirty_bitmap_request(block->idstr);
4545 ramblock_count++;
4546 }
4547
4548 trace_ram_dirty_bitmap_sync_wait();
4549
4550 /* Wait until all the ramblocks' dirty bitmap synced */
4551 while (ramblock_count--) {
4552 qemu_sem_wait(&s->rp_state.rp_sem);
4553 }
4554
4555 trace_ram_dirty_bitmap_sync_complete();
4556
4557 return 0;
4558}
4559
4560static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4561{
4562 qemu_sem_post(&s->rp_state.rp_sem);
4563}
4564
a335debb
PX
4565/*
4566 * Read the received bitmap, revert it as the initial dirty bitmap.
4567 * This is only used when the postcopy migration is paused but wants
4568 * to resume from a middle point.
4569 */
4570int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4571{
4572 int ret = -EINVAL;
4573 QEMUFile *file = s->rp_state.from_dst_file;
4574 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
a725ef9f 4575 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
4576 uint64_t size, end_mark;
4577
4578 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4579
4580 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4581 error_report("%s: incorrect state %s", __func__,
4582 MigrationStatus_str(s->state));
4583 return -EINVAL;
4584 }
4585
4586 /*
4587 * Note: see comments in ramblock_recv_bitmap_send() on why we
4588 * need the endianess convertion, and the paddings.
4589 */
4590 local_size = ROUND_UP(local_size, 8);
4591
4592 /* Add paddings */
4593 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4594
4595 size = qemu_get_be64(file);
4596
4597 /* The size of the bitmap should match with our ramblock */
4598 if (size != local_size) {
4599 error_report("%s: ramblock '%s' bitmap size mismatch "
4600 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4601 block->idstr, size, local_size);
4602 ret = -EINVAL;
4603 goto out;
4604 }
4605
4606 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4607 end_mark = qemu_get_be64(file);
4608
4609 ret = qemu_file_get_error(file);
4610 if (ret || size != local_size) {
4611 error_report("%s: read bitmap failed for ramblock '%s': %d"
4612 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4613 __func__, block->idstr, ret, local_size, size);
4614 ret = -EIO;
4615 goto out;
4616 }
4617
4618 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4619 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4620 __func__, block->idstr, end_mark);
4621 ret = -EINVAL;
4622 goto out;
4623 }
4624
4625 /*
4626 * Endianess convertion. We are during postcopy (though paused).
4627 * The dirty bitmap won't change. We can directly modify it.
4628 */
4629 bitmap_from_le(block->bmap, le_bitmap, nbits);
4630
4631 /*
4632 * What we received is "received bitmap". Revert it as the initial
4633 * dirty bitmap for this ramblock.
4634 */
4635 bitmap_complement(block->bmap, block->bmap, nbits);
4636
4637 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4638
edd090c7
PX
4639 /*
4640 * We succeeded to sync bitmap for current ramblock. If this is
4641 * the last one to sync, we need to notify the main send thread.
4642 */
4643 ram_dirty_bitmap_reload_notify(s);
4644
a335debb
PX
4645 ret = 0;
4646out:
bf269906 4647 g_free(le_bitmap);
a335debb
PX
4648 return ret;
4649}
4650
edd090c7
PX
4651static int ram_resume_prepare(MigrationState *s, void *opaque)
4652{
4653 RAMState *rs = *(RAMState **)opaque;
08614f34 4654 int ret;
edd090c7 4655
08614f34
PX
4656 ret = ram_dirty_bitmap_sync_all(s, rs);
4657 if (ret) {
4658 return ret;
4659 }
4660
4661 ram_state_resume_prepare(rs, s->to_dst_file);
4662
4663 return 0;
edd090c7
PX
4664}
4665
56e93d26 4666static SaveVMHandlers savevm_ram_handlers = {
9907e842 4667 .save_setup = ram_save_setup,
56e93d26 4668 .save_live_iterate = ram_save_iterate,
763c906b 4669 .save_live_complete_postcopy = ram_save_complete,
a3e06c3d 4670 .save_live_complete_precopy = ram_save_complete,
c6467627 4671 .has_postcopy = ram_has_postcopy,
56e93d26
JQ
4672 .save_live_pending = ram_save_pending,
4673 .load_state = ram_load,
f265e0e4
JQ
4674 .save_cleanup = ram_save_cleanup,
4675 .load_setup = ram_load_setup,
4676 .load_cleanup = ram_load_cleanup,
edd090c7 4677 .resume_prepare = ram_resume_prepare,
56e93d26
JQ
4678};
4679
4680void ram_mig_init(void)
4681{
4682 qemu_mutex_init(&XBZRLE.lock);
6f37bb8b 4683 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
56e93d26 4684}