]> git.proxmox.com Git - mirror_qemu.git/blame - migration/ram.c
Replace all occurances of __FUNCTION__ with __func__
[mirror_qemu.git] / migration / ram.c
CommitLineData
56e93d26
JQ
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
76cc7b58
JQ
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
56e93d26
JQ
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
1393a485 28#include "qemu/osdep.h"
33c11879 29#include "cpu.h"
56e93d26 30#include <zlib.h>
4addcd4f 31#include "qapi-event.h"
f348b6d1 32#include "qemu/cutils.h"
56e93d26
JQ
33#include "qemu/bitops.h"
34#include "qemu/bitmap.h"
7205c9ec 35#include "qemu/main-loop.h"
709e3fe8 36#include "xbzrle.h"
7b1e1a22 37#include "ram.h"
6666c96a 38#include "migration.h"
f2a8f0a6 39#include "migration/register.h"
7b1e1a22 40#include "migration/misc.h"
08a0aee1 41#include "qemu-file.h"
be07b0ac 42#include "postcopy-ram.h"
56e93d26 43#include "migration/page_cache.h"
56e93d26 44#include "qemu/error-report.h"
8acabf69 45#include "qapi/qmp/qerror.h"
56e93d26 46#include "trace.h"
56e93d26 47#include "exec/ram_addr.h"
f9494614 48#include "exec/target_page.h"
56e93d26 49#include "qemu/rcu_queue.h"
a91246c9 50#include "migration/colo.h"
9ac78b61 51#include "migration/block.h"
56e93d26 52
56e93d26
JQ
53/***********************************************************/
54/* ram save/restore */
55
bb890ed5
JQ
56/* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
57 * worked for pages that where filled with the same char. We switched
58 * it to only search for the zero value. And to avoid confusion with
59 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
60 */
61
56e93d26 62#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
bb890ed5 63#define RAM_SAVE_FLAG_ZERO 0x02
56e93d26
JQ
64#define RAM_SAVE_FLAG_MEM_SIZE 0x04
65#define RAM_SAVE_FLAG_PAGE 0x08
66#define RAM_SAVE_FLAG_EOS 0x10
67#define RAM_SAVE_FLAG_CONTINUE 0x20
68#define RAM_SAVE_FLAG_XBZRLE 0x40
69/* 0x80 is reserved in migration.h start with 0x100 next */
70#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
71
56e93d26
JQ
72static inline bool is_zero_range(uint8_t *p, uint64_t size)
73{
a1febc49 74 return buffer_is_zero(p, size);
56e93d26
JQ
75}
76
9360447d
JQ
77XBZRLECacheStats xbzrle_counters;
78
56e93d26
JQ
79/* struct contains XBZRLE cache and a static page
80 used by the compression */
81static struct {
82 /* buffer used for XBZRLE encoding */
83 uint8_t *encoded_buf;
84 /* buffer for storing page content */
85 uint8_t *current_buf;
86 /* Cache for XBZRLE, Protected by lock. */
87 PageCache *cache;
88 QemuMutex lock;
c00e0928
JQ
89 /* it will store a page full of zeros */
90 uint8_t *zero_target_page;
f265e0e4
JQ
91 /* buffer used for XBZRLE decoding */
92 uint8_t *decoded_buf;
56e93d26
JQ
93} XBZRLE;
94
56e93d26
JQ
95static void XBZRLE_cache_lock(void)
96{
97 if (migrate_use_xbzrle())
98 qemu_mutex_lock(&XBZRLE.lock);
99}
100
101static void XBZRLE_cache_unlock(void)
102{
103 if (migrate_use_xbzrle())
104 qemu_mutex_unlock(&XBZRLE.lock);
105}
106
3d0684b2
JQ
107/**
108 * xbzrle_cache_resize: resize the xbzrle cache
109 *
110 * This function is called from qmp_migrate_set_cache_size in main
111 * thread, possibly while a migration is in progress. A running
112 * migration may be using the cache and might finish during this call,
113 * hence changes to the cache are protected by XBZRLE.lock().
114 *
c9dede2d 115 * Returns 0 for success or -1 for error
3d0684b2
JQ
116 *
117 * @new_size: new cache size
8acabf69 118 * @errp: set *errp if the check failed, with reason
56e93d26 119 */
c9dede2d 120int xbzrle_cache_resize(int64_t new_size, Error **errp)
56e93d26
JQ
121{
122 PageCache *new_cache;
c9dede2d 123 int64_t ret = 0;
56e93d26 124
8acabf69
JQ
125 /* Check for truncation */
126 if (new_size != (size_t)new_size) {
127 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
128 "exceeding address space");
129 return -1;
130 }
131
2a313e5c
JQ
132 if (new_size == migrate_xbzrle_cache_size()) {
133 /* nothing to do */
c9dede2d 134 return 0;
2a313e5c
JQ
135 }
136
56e93d26
JQ
137 XBZRLE_cache_lock();
138
139 if (XBZRLE.cache != NULL) {
80f8dfde 140 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
56e93d26 141 if (!new_cache) {
56e93d26
JQ
142 ret = -1;
143 goto out;
144 }
145
146 cache_fini(XBZRLE.cache);
147 XBZRLE.cache = new_cache;
148 }
56e93d26
JQ
149out:
150 XBZRLE_cache_unlock();
151 return ret;
152}
153
f9494614
AP
154static void ramblock_recv_map_init(void)
155{
156 RAMBlock *rb;
157
158 RAMBLOCK_FOREACH(rb) {
159 assert(!rb->receivedmap);
160 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
161 }
162}
163
164int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
165{
166 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
167 rb->receivedmap);
168}
169
170void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
171{
172 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
173}
174
175void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
176 size_t nr)
177{
178 bitmap_set_atomic(rb->receivedmap,
179 ramblock_recv_bitmap_offset(host_addr, rb),
180 nr);
181}
182
ec481c6c
JQ
183/*
184 * An outstanding page request, on the source, having been received
185 * and queued
186 */
187struct RAMSrcPageRequest {
188 RAMBlock *rb;
189 hwaddr offset;
190 hwaddr len;
191
192 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
193};
194
6f37bb8b
JQ
195/* State of RAM for migration */
196struct RAMState {
204b88b8
JQ
197 /* QEMUFile used for this migration */
198 QEMUFile *f;
6f37bb8b
JQ
199 /* Last block that we have visited searching for dirty pages */
200 RAMBlock *last_seen_block;
201 /* Last block from where we have sent data */
202 RAMBlock *last_sent_block;
269ace29
JQ
203 /* Last dirty target page we have sent */
204 ram_addr_t last_page;
6f37bb8b
JQ
205 /* last ram version we have seen */
206 uint32_t last_version;
207 /* We are in the first round */
208 bool ram_bulk_stage;
8d820d6f
JQ
209 /* How many times we have dirty too many pages */
210 int dirty_rate_high_cnt;
f664da80
JQ
211 /* these variables are used for bitmap sync */
212 /* last time we did a full bitmap_sync */
213 int64_t time_last_bitmap_sync;
eac74159 214 /* bytes transferred at start_time */
c4bdf0cf 215 uint64_t bytes_xfer_prev;
a66cd90c 216 /* number of dirty pages since start_time */
68908ed6 217 uint64_t num_dirty_pages_period;
b5833fde
JQ
218 /* xbzrle misses since the beginning of the period */
219 uint64_t xbzrle_cache_miss_prev;
36040d9c
JQ
220 /* number of iterations at the beginning of period */
221 uint64_t iterations_prev;
23b28c3c
JQ
222 /* Iterations since start */
223 uint64_t iterations;
9360447d 224 /* number of dirty bits in the bitmap */
2dfaf12e
PX
225 uint64_t migration_dirty_pages;
226 /* protects modification of the bitmap */
108cfae0 227 QemuMutex bitmap_mutex;
68a098f3
JQ
228 /* The RAMBlock used in the last src_page_requests */
229 RAMBlock *last_req_rb;
ec481c6c
JQ
230 /* Queue of outstanding page requests from the destination */
231 QemuMutex src_page_req_mutex;
232 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests;
6f37bb8b
JQ
233};
234typedef struct RAMState RAMState;
235
53518d94 236static RAMState *ram_state;
6f37bb8b 237
9edabd4d 238uint64_t ram_bytes_remaining(void)
2f4fde93 239{
bae416e5
DDAG
240 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
241 0;
2f4fde93
JQ
242}
243
9360447d 244MigrationStats ram_counters;
96506894 245
b8fb8cb7
DDAG
246/* used by the search for pages to send */
247struct PageSearchStatus {
248 /* Current block being searched */
249 RAMBlock *block;
a935e30f
JQ
250 /* Current page to search from */
251 unsigned long page;
b8fb8cb7
DDAG
252 /* Set once we wrap around */
253 bool complete_round;
254};
255typedef struct PageSearchStatus PageSearchStatus;
256
56e93d26 257struct CompressParam {
56e93d26 258 bool done;
90e56fb4 259 bool quit;
56e93d26
JQ
260 QEMUFile *file;
261 QemuMutex mutex;
262 QemuCond cond;
263 RAMBlock *block;
264 ram_addr_t offset;
265};
266typedef struct CompressParam CompressParam;
267
268struct DecompressParam {
73a8912b 269 bool done;
90e56fb4 270 bool quit;
56e93d26
JQ
271 QemuMutex mutex;
272 QemuCond cond;
273 void *des;
d341d9f3 274 uint8_t *compbuf;
56e93d26
JQ
275 int len;
276};
277typedef struct DecompressParam DecompressParam;
278
279static CompressParam *comp_param;
280static QemuThread *compress_threads;
281/* comp_done_cond is used to wake up the migration thread when
282 * one of the compression threads has finished the compression.
283 * comp_done_lock is used to co-work with comp_done_cond.
284 */
0d9f9a5c
LL
285static QemuMutex comp_done_lock;
286static QemuCond comp_done_cond;
56e93d26
JQ
287/* The empty QEMUFileOps will be used by file in CompressParam */
288static const QEMUFileOps empty_ops = { };
289
56e93d26
JQ
290static DecompressParam *decomp_param;
291static QemuThread *decompress_threads;
73a8912b
LL
292static QemuMutex decomp_done_lock;
293static QemuCond decomp_done_cond;
56e93d26 294
a7a9a88f
LL
295static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
296 ram_addr_t offset);
56e93d26
JQ
297
298static void *do_data_compress(void *opaque)
299{
300 CompressParam *param = opaque;
a7a9a88f
LL
301 RAMBlock *block;
302 ram_addr_t offset;
56e93d26 303
a7a9a88f 304 qemu_mutex_lock(&param->mutex);
90e56fb4 305 while (!param->quit) {
a7a9a88f
LL
306 if (param->block) {
307 block = param->block;
308 offset = param->offset;
309 param->block = NULL;
310 qemu_mutex_unlock(&param->mutex);
311
312 do_compress_ram_page(param->file, block, offset);
313
0d9f9a5c 314 qemu_mutex_lock(&comp_done_lock);
a7a9a88f 315 param->done = true;
0d9f9a5c
LL
316 qemu_cond_signal(&comp_done_cond);
317 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
318
319 qemu_mutex_lock(&param->mutex);
320 } else {
56e93d26
JQ
321 qemu_cond_wait(&param->cond, &param->mutex);
322 }
56e93d26 323 }
a7a9a88f 324 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
325
326 return NULL;
327}
328
329static inline void terminate_compression_threads(void)
330{
331 int idx, thread_count;
332
333 thread_count = migrate_compress_threads();
3d0684b2 334
56e93d26
JQ
335 for (idx = 0; idx < thread_count; idx++) {
336 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 337 comp_param[idx].quit = true;
56e93d26
JQ
338 qemu_cond_signal(&comp_param[idx].cond);
339 qemu_mutex_unlock(&comp_param[idx].mutex);
340 }
341}
342
f0afa331 343static void compress_threads_save_cleanup(void)
56e93d26
JQ
344{
345 int i, thread_count;
346
347 if (!migrate_use_compression()) {
348 return;
349 }
350 terminate_compression_threads();
351 thread_count = migrate_compress_threads();
352 for (i = 0; i < thread_count; i++) {
353 qemu_thread_join(compress_threads + i);
354 qemu_fclose(comp_param[i].file);
355 qemu_mutex_destroy(&comp_param[i].mutex);
356 qemu_cond_destroy(&comp_param[i].cond);
357 }
0d9f9a5c
LL
358 qemu_mutex_destroy(&comp_done_lock);
359 qemu_cond_destroy(&comp_done_cond);
56e93d26
JQ
360 g_free(compress_threads);
361 g_free(comp_param);
56e93d26
JQ
362 compress_threads = NULL;
363 comp_param = NULL;
56e93d26
JQ
364}
365
f0afa331 366static void compress_threads_save_setup(void)
56e93d26
JQ
367{
368 int i, thread_count;
369
370 if (!migrate_use_compression()) {
371 return;
372 }
56e93d26
JQ
373 thread_count = migrate_compress_threads();
374 compress_threads = g_new0(QemuThread, thread_count);
375 comp_param = g_new0(CompressParam, thread_count);
0d9f9a5c
LL
376 qemu_cond_init(&comp_done_cond);
377 qemu_mutex_init(&comp_done_lock);
56e93d26 378 for (i = 0; i < thread_count; i++) {
e110aa91
C
379 /* comp_param[i].file is just used as a dummy buffer to save data,
380 * set its ops to empty.
56e93d26
JQ
381 */
382 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
383 comp_param[i].done = true;
90e56fb4 384 comp_param[i].quit = false;
56e93d26
JQ
385 qemu_mutex_init(&comp_param[i].mutex);
386 qemu_cond_init(&comp_param[i].cond);
387 qemu_thread_create(compress_threads + i, "compress",
388 do_data_compress, comp_param + i,
389 QEMU_THREAD_JOINABLE);
390 }
391}
392
f986c3d2
JQ
393/* Multiple fd's */
394
395struct MultiFDSendParams {
396 uint8_t id;
397 char *name;
398 QemuThread thread;
399 QemuSemaphore sem;
400 QemuMutex mutex;
401 bool quit;
402};
403typedef struct MultiFDSendParams MultiFDSendParams;
404
405struct {
406 MultiFDSendParams *params;
407 /* number of created threads */
408 int count;
409} *multifd_send_state;
410
411static void terminate_multifd_send_threads(Error *errp)
412{
413 int i;
414
415 for (i = 0; i < multifd_send_state->count; i++) {
416 MultiFDSendParams *p = &multifd_send_state->params[i];
417
418 qemu_mutex_lock(&p->mutex);
419 p->quit = true;
420 qemu_sem_post(&p->sem);
421 qemu_mutex_unlock(&p->mutex);
422 }
423}
424
425int multifd_save_cleanup(Error **errp)
426{
427 int i;
428 int ret = 0;
429
430 if (!migrate_use_multifd()) {
431 return 0;
432 }
433 terminate_multifd_send_threads(NULL);
434 for (i = 0; i < multifd_send_state->count; i++) {
435 MultiFDSendParams *p = &multifd_send_state->params[i];
436
437 qemu_thread_join(&p->thread);
438 qemu_mutex_destroy(&p->mutex);
439 qemu_sem_destroy(&p->sem);
440 g_free(p->name);
441 p->name = NULL;
442 }
443 g_free(multifd_send_state->params);
444 multifd_send_state->params = NULL;
445 g_free(multifd_send_state);
446 multifd_send_state = NULL;
447 return ret;
448}
449
450static void *multifd_send_thread(void *opaque)
451{
452 MultiFDSendParams *p = opaque;
453
454 while (true) {
455 qemu_mutex_lock(&p->mutex);
456 if (p->quit) {
457 qemu_mutex_unlock(&p->mutex);
458 break;
459 }
460 qemu_mutex_unlock(&p->mutex);
461 qemu_sem_wait(&p->sem);
462 }
463
464 return NULL;
465}
466
467int multifd_save_setup(void)
468{
469 int thread_count;
470 uint8_t i;
471
472 if (!migrate_use_multifd()) {
473 return 0;
474 }
475 thread_count = migrate_multifd_channels();
476 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
477 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
478 multifd_send_state->count = 0;
479 for (i = 0; i < thread_count; i++) {
480 MultiFDSendParams *p = &multifd_send_state->params[i];
481
482 qemu_mutex_init(&p->mutex);
483 qemu_sem_init(&p->sem, 0);
484 p->quit = false;
485 p->id = i;
486 p->name = g_strdup_printf("multifdsend_%d", i);
487 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
488 QEMU_THREAD_JOINABLE);
489
490 multifd_send_state->count++;
491 }
492 return 0;
493}
494
495struct MultiFDRecvParams {
496 uint8_t id;
497 char *name;
498 QemuThread thread;
499 QemuSemaphore sem;
500 QemuMutex mutex;
501 bool quit;
502};
503typedef struct MultiFDRecvParams MultiFDRecvParams;
504
505struct {
506 MultiFDRecvParams *params;
507 /* number of created threads */
508 int count;
509} *multifd_recv_state;
510
511static void terminate_multifd_recv_threads(Error *errp)
512{
513 int i;
514
515 for (i = 0; i < multifd_recv_state->count; i++) {
516 MultiFDRecvParams *p = &multifd_recv_state->params[i];
517
518 qemu_mutex_lock(&p->mutex);
519 p->quit = true;
520 qemu_sem_post(&p->sem);
521 qemu_mutex_unlock(&p->mutex);
522 }
523}
524
525int multifd_load_cleanup(Error **errp)
526{
527 int i;
528 int ret = 0;
529
530 if (!migrate_use_multifd()) {
531 return 0;
532 }
533 terminate_multifd_recv_threads(NULL);
534 for (i = 0; i < multifd_recv_state->count; i++) {
535 MultiFDRecvParams *p = &multifd_recv_state->params[i];
536
537 qemu_thread_join(&p->thread);
538 qemu_mutex_destroy(&p->mutex);
539 qemu_sem_destroy(&p->sem);
540 g_free(p->name);
541 p->name = NULL;
542 }
543 g_free(multifd_recv_state->params);
544 multifd_recv_state->params = NULL;
545 g_free(multifd_recv_state);
546 multifd_recv_state = NULL;
547
548 return ret;
549}
550
551static void *multifd_recv_thread(void *opaque)
552{
553 MultiFDRecvParams *p = opaque;
554
555 while (true) {
556 qemu_mutex_lock(&p->mutex);
557 if (p->quit) {
558 qemu_mutex_unlock(&p->mutex);
559 break;
560 }
561 qemu_mutex_unlock(&p->mutex);
562 qemu_sem_wait(&p->sem);
563 }
564
565 return NULL;
566}
567
568int multifd_load_setup(void)
569{
570 int thread_count;
571 uint8_t i;
572
573 if (!migrate_use_multifd()) {
574 return 0;
575 }
576 thread_count = migrate_multifd_channels();
577 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
578 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
579 multifd_recv_state->count = 0;
580 for (i = 0; i < thread_count; i++) {
581 MultiFDRecvParams *p = &multifd_recv_state->params[i];
582
583 qemu_mutex_init(&p->mutex);
584 qemu_sem_init(&p->sem, 0);
585 p->quit = false;
586 p->id = i;
587 p->name = g_strdup_printf("multifdrecv_%d", i);
588 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
589 QEMU_THREAD_JOINABLE);
590 multifd_recv_state->count++;
591 }
592 return 0;
593}
594
56e93d26 595/**
3d0684b2 596 * save_page_header: write page header to wire
56e93d26
JQ
597 *
598 * If this is the 1st block, it also writes the block identification
599 *
3d0684b2 600 * Returns the number of bytes written
56e93d26
JQ
601 *
602 * @f: QEMUFile where to send the data
603 * @block: block that contains the page we want to send
604 * @offset: offset inside the block for the page
605 * in the lower bits, it contains flags
606 */
2bf3aa85
JQ
607static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
608 ram_addr_t offset)
56e93d26 609{
9f5f380b 610 size_t size, len;
56e93d26 611
24795694
JQ
612 if (block == rs->last_sent_block) {
613 offset |= RAM_SAVE_FLAG_CONTINUE;
614 }
2bf3aa85 615 qemu_put_be64(f, offset);
56e93d26
JQ
616 size = 8;
617
618 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
9f5f380b 619 len = strlen(block->idstr);
2bf3aa85
JQ
620 qemu_put_byte(f, len);
621 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
9f5f380b 622 size += 1 + len;
24795694 623 rs->last_sent_block = block;
56e93d26
JQ
624 }
625 return size;
626}
627
3d0684b2
JQ
628/**
629 * mig_throttle_guest_down: throotle down the guest
630 *
631 * Reduce amount of guest cpu execution to hopefully slow down memory
632 * writes. If guest dirty memory rate is reduced below the rate at
633 * which we can transfer pages to the destination then we should be
634 * able to complete migration. Some workloads dirty memory way too
635 * fast and will not effectively converge, even with auto-converge.
070afca2
JH
636 */
637static void mig_throttle_guest_down(void)
638{
639 MigrationState *s = migrate_get_current();
2594f56d
DB
640 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
641 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
070afca2
JH
642
643 /* We have not started throttling yet. Let's start it. */
644 if (!cpu_throttle_active()) {
645 cpu_throttle_set(pct_initial);
646 } else {
647 /* Throttling already on, just increase the rate */
648 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
649 }
650}
651
3d0684b2
JQ
652/**
653 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
654 *
6f37bb8b 655 * @rs: current RAM state
3d0684b2
JQ
656 * @current_addr: address for the zero page
657 *
658 * Update the xbzrle cache to reflect a page that's been sent as all 0.
56e93d26
JQ
659 * The important thing is that a stale (not-yet-0'd) page be replaced
660 * by the new data.
661 * As a bonus, if the page wasn't in the cache it gets added so that
3d0684b2 662 * when a small write is made into the 0'd page it gets XBZRLE sent.
56e93d26 663 */
6f37bb8b 664static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
56e93d26 665{
6f37bb8b 666 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
56e93d26
JQ
667 return;
668 }
669
670 /* We don't care if this fails to allocate a new cache page
671 * as long as it updated an old one */
c00e0928 672 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
9360447d 673 ram_counters.dirty_sync_count);
56e93d26
JQ
674}
675
676#define ENCODING_FLAG_XBZRLE 0x1
677
678/**
679 * save_xbzrle_page: compress and send current page
680 *
681 * Returns: 1 means that we wrote the page
682 * 0 means that page is identical to the one already sent
683 * -1 means that xbzrle would be longer than normal
684 *
5a987738 685 * @rs: current RAM state
3d0684b2
JQ
686 * @current_data: pointer to the address of the page contents
687 * @current_addr: addr of the page
56e93d26
JQ
688 * @block: block that contains the page we want to send
689 * @offset: offset inside the block for the page
690 * @last_stage: if we are at the completion stage
56e93d26 691 */
204b88b8 692static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
56e93d26 693 ram_addr_t current_addr, RAMBlock *block,
072c2511 694 ram_addr_t offset, bool last_stage)
56e93d26
JQ
695{
696 int encoded_len = 0, bytes_xbzrle;
697 uint8_t *prev_cached_page;
698
9360447d
JQ
699 if (!cache_is_cached(XBZRLE.cache, current_addr,
700 ram_counters.dirty_sync_count)) {
701 xbzrle_counters.cache_miss++;
56e93d26
JQ
702 if (!last_stage) {
703 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
9360447d 704 ram_counters.dirty_sync_count) == -1) {
56e93d26
JQ
705 return -1;
706 } else {
707 /* update *current_data when the page has been
708 inserted into cache */
709 *current_data = get_cached_data(XBZRLE.cache, current_addr);
710 }
711 }
712 return -1;
713 }
714
715 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
716
717 /* save current buffer into memory */
718 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
719
720 /* XBZRLE encoding (if there is no overflow) */
721 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
722 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
723 TARGET_PAGE_SIZE);
724 if (encoded_len == 0) {
55c4446b 725 trace_save_xbzrle_page_skipping();
56e93d26
JQ
726 return 0;
727 } else if (encoded_len == -1) {
55c4446b 728 trace_save_xbzrle_page_overflow();
9360447d 729 xbzrle_counters.overflow++;
56e93d26
JQ
730 /* update data in the cache */
731 if (!last_stage) {
732 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
733 *current_data = prev_cached_page;
734 }
735 return -1;
736 }
737
738 /* we need to update the data in the cache, in order to get the same data */
739 if (!last_stage) {
740 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
741 }
742
743 /* Send XBZRLE based compressed page */
2bf3aa85 744 bytes_xbzrle = save_page_header(rs, rs->f, block,
204b88b8
JQ
745 offset | RAM_SAVE_FLAG_XBZRLE);
746 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
747 qemu_put_be16(rs->f, encoded_len);
748 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
56e93d26 749 bytes_xbzrle += encoded_len + 1 + 2;
9360447d
JQ
750 xbzrle_counters.pages++;
751 xbzrle_counters.bytes += bytes_xbzrle;
752 ram_counters.transferred += bytes_xbzrle;
56e93d26
JQ
753
754 return 1;
755}
756
3d0684b2
JQ
757/**
758 * migration_bitmap_find_dirty: find the next dirty page from start
f3f491fc 759 *
3d0684b2
JQ
760 * Called with rcu_read_lock() to protect migration_bitmap
761 *
762 * Returns the byte offset within memory region of the start of a dirty page
763 *
6f37bb8b 764 * @rs: current RAM state
3d0684b2 765 * @rb: RAMBlock where to search for dirty pages
a935e30f 766 * @start: page where we start the search
f3f491fc 767 */
56e93d26 768static inline
a935e30f 769unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
f20e2865 770 unsigned long start)
56e93d26 771{
6b6712ef
JQ
772 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
773 unsigned long *bitmap = rb->bmap;
56e93d26
JQ
774 unsigned long next;
775
6b6712ef
JQ
776 if (rs->ram_bulk_stage && start > 0) {
777 next = start + 1;
56e93d26 778 } else {
6b6712ef 779 next = find_next_bit(bitmap, size, start);
56e93d26
JQ
780 }
781
6b6712ef 782 return next;
56e93d26
JQ
783}
784
06b10688 785static inline bool migration_bitmap_clear_dirty(RAMState *rs,
f20e2865
JQ
786 RAMBlock *rb,
787 unsigned long page)
a82d593b
DDAG
788{
789 bool ret;
a82d593b 790
6b6712ef 791 ret = test_and_clear_bit(page, rb->bmap);
a82d593b
DDAG
792
793 if (ret) {
0d8ec885 794 rs->migration_dirty_pages--;
a82d593b
DDAG
795 }
796 return ret;
797}
798
15440dd5
JQ
799static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
800 ram_addr_t start, ram_addr_t length)
56e93d26 801{
0d8ec885 802 rs->migration_dirty_pages +=
6b6712ef 803 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
0d8ec885 804 &rs->num_dirty_pages_period);
56e93d26
JQ
805}
806
3d0684b2
JQ
807/**
808 * ram_pagesize_summary: calculate all the pagesizes of a VM
809 *
810 * Returns a summary bitmap of the page sizes of all RAMBlocks
811 *
812 * For VMs with just normal pages this is equivalent to the host page
813 * size. If it's got some huge pages then it's the OR of all the
814 * different page sizes.
e8ca1db2
DDAG
815 */
816uint64_t ram_pagesize_summary(void)
817{
818 RAMBlock *block;
819 uint64_t summary = 0;
820
99e15582 821 RAMBLOCK_FOREACH(block) {
e8ca1db2
DDAG
822 summary |= block->page_size;
823 }
824
825 return summary;
826}
827
8d820d6f 828static void migration_bitmap_sync(RAMState *rs)
56e93d26
JQ
829{
830 RAMBlock *block;
56e93d26 831 int64_t end_time;
c4bdf0cf 832 uint64_t bytes_xfer_now;
56e93d26 833
9360447d 834 ram_counters.dirty_sync_count++;
56e93d26 835
f664da80
JQ
836 if (!rs->time_last_bitmap_sync) {
837 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
56e93d26
JQ
838 }
839
840 trace_migration_bitmap_sync_start();
9c1f8f44 841 memory_global_dirty_log_sync();
56e93d26 842
108cfae0 843 qemu_mutex_lock(&rs->bitmap_mutex);
56e93d26 844 rcu_read_lock();
99e15582 845 RAMBLOCK_FOREACH(block) {
15440dd5 846 migration_bitmap_sync_range(rs, block, 0, block->used_length);
56e93d26
JQ
847 }
848 rcu_read_unlock();
108cfae0 849 qemu_mutex_unlock(&rs->bitmap_mutex);
56e93d26 850
a66cd90c 851 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1ffb5dfd 852
56e93d26
JQ
853 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
854
855 /* more than 1 second = 1000 millisecons */
f664da80 856 if (end_time > rs->time_last_bitmap_sync + 1000) {
d693c6f1 857 /* calculate period counters */
9360447d 858 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
d693c6f1 859 / (end_time - rs->time_last_bitmap_sync);
9360447d 860 bytes_xfer_now = ram_counters.transferred;
d693c6f1 861
9ac78b61
PL
862 /* During block migration the auto-converge logic incorrectly detects
863 * that ram migration makes no progress. Avoid this by disabling the
864 * throttling logic during the bulk phase of block migration. */
865 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
56e93d26
JQ
866 /* The following detection logic can be refined later. For now:
867 Check to see if the dirtied bytes is 50% more than the approx.
868 amount of bytes that just got transferred since the last time we
070afca2
JH
869 were in this routine. If that happens twice, start or increase
870 throttling */
070afca2 871
d693c6f1 872 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
eac74159 873 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
b4a3c64b 874 (++rs->dirty_rate_high_cnt >= 2)) {
56e93d26 875 trace_migration_throttle();
8d820d6f 876 rs->dirty_rate_high_cnt = 0;
070afca2 877 mig_throttle_guest_down();
d693c6f1 878 }
56e93d26 879 }
070afca2 880
56e93d26 881 if (migrate_use_xbzrle()) {
23b28c3c 882 if (rs->iterations_prev != rs->iterations) {
9360447d
JQ
883 xbzrle_counters.cache_miss_rate =
884 (double)(xbzrle_counters.cache_miss -
b5833fde 885 rs->xbzrle_cache_miss_prev) /
23b28c3c 886 (rs->iterations - rs->iterations_prev);
56e93d26 887 }
23b28c3c 888 rs->iterations_prev = rs->iterations;
9360447d 889 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
56e93d26 890 }
d693c6f1
FF
891
892 /* reset period counters */
f664da80 893 rs->time_last_bitmap_sync = end_time;
a66cd90c 894 rs->num_dirty_pages_period = 0;
d2a4d85a 895 rs->bytes_xfer_prev = bytes_xfer_now;
56e93d26 896 }
4addcd4f 897 if (migrate_use_events()) {
9360447d 898 qapi_event_send_migration_pass(ram_counters.dirty_sync_count, NULL);
4addcd4f 899 }
56e93d26
JQ
900}
901
902/**
3d0684b2 903 * save_zero_page: send the zero page to the stream
56e93d26 904 *
3d0684b2 905 * Returns the number of pages written.
56e93d26 906 *
f7ccd61b 907 * @rs: current RAM state
56e93d26
JQ
908 * @block: block that contains the page we want to send
909 * @offset: offset inside the block for the page
910 * @p: pointer to the page
56e93d26 911 */
ce25d337
JQ
912static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
913 uint8_t *p)
56e93d26
JQ
914{
915 int pages = -1;
916
917 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
9360447d
JQ
918 ram_counters.duplicate++;
919 ram_counters.transferred +=
bb890ed5 920 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_ZERO);
ce25d337 921 qemu_put_byte(rs->f, 0);
9360447d 922 ram_counters.transferred += 1;
56e93d26
JQ
923 pages = 1;
924 }
925
926 return pages;
927}
928
5727309d 929static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
53f09a10 930{
5727309d 931 if (!migrate_release_ram() || !migration_in_postcopy()) {
53f09a10
PB
932 return;
933 }
934
aaa2064c 935 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
53f09a10
PB
936}
937
56e93d26 938/**
3d0684b2 939 * ram_save_page: send the given page to the stream
56e93d26 940 *
3d0684b2 941 * Returns the number of pages written.
3fd3c4b3
DDAG
942 * < 0 - error
943 * >=0 - Number of pages written - this might legally be 0
944 * if xbzrle noticed the page was the same.
56e93d26 945 *
6f37bb8b 946 * @rs: current RAM state
56e93d26
JQ
947 * @block: block that contains the page we want to send
948 * @offset: offset inside the block for the page
949 * @last_stage: if we are at the completion stage
56e93d26 950 */
a0a8aa14 951static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
56e93d26
JQ
952{
953 int pages = -1;
954 uint64_t bytes_xmit;
955 ram_addr_t current_addr;
56e93d26
JQ
956 uint8_t *p;
957 int ret;
958 bool send_async = true;
a08f6890 959 RAMBlock *block = pss->block;
a935e30f 960 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
56e93d26 961
2f68e399 962 p = block->host + offset;
1db9d8e5 963 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
56e93d26
JQ
964
965 /* In doubt sent page as normal */
966 bytes_xmit = 0;
ce25d337 967 ret = ram_control_save_page(rs->f, block->offset,
56e93d26
JQ
968 offset, TARGET_PAGE_SIZE, &bytes_xmit);
969 if (bytes_xmit) {
9360447d 970 ram_counters.transferred += bytes_xmit;
56e93d26
JQ
971 pages = 1;
972 }
973
974 XBZRLE_cache_lock();
975
976 current_addr = block->offset + offset;
977
56e93d26
JQ
978 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
979 if (ret != RAM_SAVE_CONTROL_DELAYED) {
980 if (bytes_xmit > 0) {
9360447d 981 ram_counters.normal++;
56e93d26 982 } else if (bytes_xmit == 0) {
9360447d 983 ram_counters.duplicate++;
56e93d26
JQ
984 }
985 }
986 } else {
ce25d337 987 pages = save_zero_page(rs, block, offset, p);
56e93d26
JQ
988 if (pages > 0) {
989 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
990 * page would be stale
991 */
6f37bb8b 992 xbzrle_cache_zero_page(rs, current_addr);
a935e30f 993 ram_release_pages(block->idstr, offset, pages);
6f37bb8b 994 } else if (!rs->ram_bulk_stage &&
5727309d 995 !migration_in_postcopy() && migrate_use_xbzrle()) {
204b88b8 996 pages = save_xbzrle_page(rs, &p, current_addr, block,
072c2511 997 offset, last_stage);
56e93d26
JQ
998 if (!last_stage) {
999 /* Can't send this cached data async, since the cache page
1000 * might get updated before it gets to the wire
1001 */
1002 send_async = false;
1003 }
1004 }
1005 }
1006
1007 /* XBZRLE overflow or normal page */
1008 if (pages == -1) {
9360447d
JQ
1009 ram_counters.transferred +=
1010 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_PAGE);
56e93d26 1011 if (send_async) {
ce25d337 1012 qemu_put_buffer_async(rs->f, p, TARGET_PAGE_SIZE,
53f09a10 1013 migrate_release_ram() &
5727309d 1014 migration_in_postcopy());
56e93d26 1015 } else {
ce25d337 1016 qemu_put_buffer(rs->f, p, TARGET_PAGE_SIZE);
56e93d26 1017 }
9360447d 1018 ram_counters.transferred += TARGET_PAGE_SIZE;
56e93d26 1019 pages = 1;
9360447d 1020 ram_counters.normal++;
56e93d26
JQ
1021 }
1022
1023 XBZRLE_cache_unlock();
1024
1025 return pages;
1026}
1027
a7a9a88f
LL
1028static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
1029 ram_addr_t offset)
56e93d26 1030{
53518d94 1031 RAMState *rs = ram_state;
56e93d26 1032 int bytes_sent, blen;
a7a9a88f 1033 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
56e93d26 1034
2bf3aa85 1035 bytes_sent = save_page_header(rs, f, block, offset |
56e93d26 1036 RAM_SAVE_FLAG_COMPRESS_PAGE);
a7a9a88f 1037 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE,
56e93d26 1038 migrate_compress_level());
b3be2896
LL
1039 if (blen < 0) {
1040 bytes_sent = 0;
1041 qemu_file_set_error(migrate_get_current()->to_dst_file, blen);
1042 error_report("compressed data failed!");
1043 } else {
1044 bytes_sent += blen;
5727309d 1045 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
b3be2896 1046 }
56e93d26
JQ
1047
1048 return bytes_sent;
1049}
1050
ce25d337 1051static void flush_compressed_data(RAMState *rs)
56e93d26
JQ
1052{
1053 int idx, len, thread_count;
1054
1055 if (!migrate_use_compression()) {
1056 return;
1057 }
1058 thread_count = migrate_compress_threads();
a7a9a88f 1059
0d9f9a5c 1060 qemu_mutex_lock(&comp_done_lock);
56e93d26 1061 for (idx = 0; idx < thread_count; idx++) {
a7a9a88f 1062 while (!comp_param[idx].done) {
0d9f9a5c 1063 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26 1064 }
a7a9a88f 1065 }
0d9f9a5c 1066 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
1067
1068 for (idx = 0; idx < thread_count; idx++) {
1069 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 1070 if (!comp_param[idx].quit) {
ce25d337 1071 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
9360447d 1072 ram_counters.transferred += len;
56e93d26 1073 }
a7a9a88f 1074 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26
JQ
1075 }
1076}
1077
1078static inline void set_compress_params(CompressParam *param, RAMBlock *block,
1079 ram_addr_t offset)
1080{
1081 param->block = block;
1082 param->offset = offset;
1083}
1084
ce25d337
JQ
1085static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
1086 ram_addr_t offset)
56e93d26
JQ
1087{
1088 int idx, thread_count, bytes_xmit = -1, pages = -1;
1089
1090 thread_count = migrate_compress_threads();
0d9f9a5c 1091 qemu_mutex_lock(&comp_done_lock);
56e93d26
JQ
1092 while (true) {
1093 for (idx = 0; idx < thread_count; idx++) {
1094 if (comp_param[idx].done) {
a7a9a88f 1095 comp_param[idx].done = false;
ce25d337 1096 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
a7a9a88f 1097 qemu_mutex_lock(&comp_param[idx].mutex);
56e93d26 1098 set_compress_params(&comp_param[idx], block, offset);
a7a9a88f
LL
1099 qemu_cond_signal(&comp_param[idx].cond);
1100 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26 1101 pages = 1;
9360447d
JQ
1102 ram_counters.normal++;
1103 ram_counters.transferred += bytes_xmit;
56e93d26
JQ
1104 break;
1105 }
1106 }
1107 if (pages > 0) {
1108 break;
1109 } else {
0d9f9a5c 1110 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26
JQ
1111 }
1112 }
0d9f9a5c 1113 qemu_mutex_unlock(&comp_done_lock);
56e93d26
JQ
1114
1115 return pages;
1116}
1117
1118/**
1119 * ram_save_compressed_page: compress the given page and send it to the stream
1120 *
3d0684b2 1121 * Returns the number of pages written.
56e93d26 1122 *
6f37bb8b 1123 * @rs: current RAM state
56e93d26
JQ
1124 * @block: block that contains the page we want to send
1125 * @offset: offset inside the block for the page
1126 * @last_stage: if we are at the completion stage
56e93d26 1127 */
a0a8aa14
JQ
1128static int ram_save_compressed_page(RAMState *rs, PageSearchStatus *pss,
1129 bool last_stage)
56e93d26
JQ
1130{
1131 int pages = -1;
fc50438e 1132 uint64_t bytes_xmit = 0;
56e93d26 1133 uint8_t *p;
fc50438e 1134 int ret, blen;
a08f6890 1135 RAMBlock *block = pss->block;
a935e30f 1136 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
56e93d26 1137
2f68e399 1138 p = block->host + offset;
56e93d26 1139
ce25d337 1140 ret = ram_control_save_page(rs->f, block->offset,
56e93d26
JQ
1141 offset, TARGET_PAGE_SIZE, &bytes_xmit);
1142 if (bytes_xmit) {
9360447d 1143 ram_counters.transferred += bytes_xmit;
56e93d26
JQ
1144 pages = 1;
1145 }
56e93d26
JQ
1146 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
1147 if (ret != RAM_SAVE_CONTROL_DELAYED) {
1148 if (bytes_xmit > 0) {
9360447d 1149 ram_counters.normal++;
56e93d26 1150 } else if (bytes_xmit == 0) {
9360447d 1151 ram_counters.duplicate++;
56e93d26
JQ
1152 }
1153 }
1154 } else {
1155 /* When starting the process of a new block, the first page of
1156 * the block should be sent out before other pages in the same
1157 * block, and all the pages in last block should have been sent
1158 * out, keeping this order is important, because the 'cont' flag
1159 * is used to avoid resending the block name.
1160 */
6f37bb8b 1161 if (block != rs->last_sent_block) {
ce25d337
JQ
1162 flush_compressed_data(rs);
1163 pages = save_zero_page(rs, block, offset, p);
56e93d26 1164 if (pages == -1) {
fc50438e 1165 /* Make sure the first page is sent out before other pages */
2bf3aa85 1166 bytes_xmit = save_page_header(rs, rs->f, block, offset |
fc50438e 1167 RAM_SAVE_FLAG_COMPRESS_PAGE);
ce25d337 1168 blen = qemu_put_compression_data(rs->f, p, TARGET_PAGE_SIZE,
fc50438e
LL
1169 migrate_compress_level());
1170 if (blen > 0) {
9360447d
JQ
1171 ram_counters.transferred += bytes_xmit + blen;
1172 ram_counters.normal++;
b3be2896 1173 pages = 1;
fc50438e 1174 } else {
ce25d337 1175 qemu_file_set_error(rs->f, blen);
fc50438e 1176 error_report("compressed data failed!");
b3be2896 1177 }
56e93d26 1178 }
53f09a10 1179 if (pages > 0) {
a935e30f 1180 ram_release_pages(block->idstr, offset, pages);
53f09a10 1181 }
56e93d26 1182 } else {
ce25d337 1183 pages = save_zero_page(rs, block, offset, p);
56e93d26 1184 if (pages == -1) {
ce25d337 1185 pages = compress_page_with_multi_thread(rs, block, offset);
53f09a10 1186 } else {
a935e30f 1187 ram_release_pages(block->idstr, offset, pages);
56e93d26
JQ
1188 }
1189 }
1190 }
1191
1192 return pages;
1193}
1194
3d0684b2
JQ
1195/**
1196 * find_dirty_block: find the next dirty page and update any state
1197 * associated with the search process.
b9e60928 1198 *
3d0684b2 1199 * Returns if a page is found
b9e60928 1200 *
6f37bb8b 1201 * @rs: current RAM state
3d0684b2
JQ
1202 * @pss: data about the state of the current dirty page scan
1203 * @again: set to false if the search has scanned the whole of RAM
b9e60928 1204 */
f20e2865 1205static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
b9e60928 1206{
f20e2865 1207 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
6f37bb8b 1208 if (pss->complete_round && pss->block == rs->last_seen_block &&
a935e30f 1209 pss->page >= rs->last_page) {
b9e60928
DDAG
1210 /*
1211 * We've been once around the RAM and haven't found anything.
1212 * Give up.
1213 */
1214 *again = false;
1215 return false;
1216 }
a935e30f 1217 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
b9e60928 1218 /* Didn't find anything in this RAM Block */
a935e30f 1219 pss->page = 0;
b9e60928
DDAG
1220 pss->block = QLIST_NEXT_RCU(pss->block, next);
1221 if (!pss->block) {
1222 /* Hit the end of the list */
1223 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1224 /* Flag that we've looped */
1225 pss->complete_round = true;
6f37bb8b 1226 rs->ram_bulk_stage = false;
b9e60928
DDAG
1227 if (migrate_use_xbzrle()) {
1228 /* If xbzrle is on, stop using the data compression at this
1229 * point. In theory, xbzrle can do better than compression.
1230 */
ce25d337 1231 flush_compressed_data(rs);
b9e60928
DDAG
1232 }
1233 }
1234 /* Didn't find anything this time, but try again on the new block */
1235 *again = true;
1236 return false;
1237 } else {
1238 /* Can go around again, but... */
1239 *again = true;
1240 /* We've found something so probably don't need to */
1241 return true;
1242 }
1243}
1244
3d0684b2
JQ
1245/**
1246 * unqueue_page: gets a page of the queue
1247 *
a82d593b 1248 * Helper for 'get_queued_page' - gets a page off the queue
a82d593b 1249 *
3d0684b2
JQ
1250 * Returns the block of the page (or NULL if none available)
1251 *
ec481c6c 1252 * @rs: current RAM state
3d0684b2 1253 * @offset: used to return the offset within the RAMBlock
a82d593b 1254 */
f20e2865 1255static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
a82d593b
DDAG
1256{
1257 RAMBlock *block = NULL;
1258
ec481c6c
JQ
1259 qemu_mutex_lock(&rs->src_page_req_mutex);
1260 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
1261 struct RAMSrcPageRequest *entry =
1262 QSIMPLEQ_FIRST(&rs->src_page_requests);
a82d593b
DDAG
1263 block = entry->rb;
1264 *offset = entry->offset;
a82d593b
DDAG
1265
1266 if (entry->len > TARGET_PAGE_SIZE) {
1267 entry->len -= TARGET_PAGE_SIZE;
1268 entry->offset += TARGET_PAGE_SIZE;
1269 } else {
1270 memory_region_unref(block->mr);
ec481c6c 1271 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
a82d593b
DDAG
1272 g_free(entry);
1273 }
1274 }
ec481c6c 1275 qemu_mutex_unlock(&rs->src_page_req_mutex);
a82d593b
DDAG
1276
1277 return block;
1278}
1279
3d0684b2
JQ
1280/**
1281 * get_queued_page: unqueue a page from the postocpy requests
1282 *
1283 * Skips pages that are already sent (!dirty)
a82d593b 1284 *
3d0684b2 1285 * Returns if a queued page is found
a82d593b 1286 *
6f37bb8b 1287 * @rs: current RAM state
3d0684b2 1288 * @pss: data about the state of the current dirty page scan
a82d593b 1289 */
f20e2865 1290static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
a82d593b
DDAG
1291{
1292 RAMBlock *block;
1293 ram_addr_t offset;
1294 bool dirty;
1295
1296 do {
f20e2865 1297 block = unqueue_page(rs, &offset);
a82d593b
DDAG
1298 /*
1299 * We're sending this page, and since it's postcopy nothing else
1300 * will dirty it, and we must make sure it doesn't get sent again
1301 * even if this queue request was received after the background
1302 * search already sent it.
1303 */
1304 if (block) {
f20e2865
JQ
1305 unsigned long page;
1306
6b6712ef
JQ
1307 page = offset >> TARGET_PAGE_BITS;
1308 dirty = test_bit(page, block->bmap);
a82d593b 1309 if (!dirty) {
06b10688 1310 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
6b6712ef 1311 page, test_bit(page, block->unsentmap));
a82d593b 1312 } else {
f20e2865 1313 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
a82d593b
DDAG
1314 }
1315 }
1316
1317 } while (block && !dirty);
1318
1319 if (block) {
1320 /*
1321 * As soon as we start servicing pages out of order, then we have
1322 * to kill the bulk stage, since the bulk stage assumes
1323 * in (migration_bitmap_find_and_reset_dirty) that every page is
1324 * dirty, that's no longer true.
1325 */
6f37bb8b 1326 rs->ram_bulk_stage = false;
a82d593b
DDAG
1327
1328 /*
1329 * We want the background search to continue from the queued page
1330 * since the guest is likely to want other pages near to the page
1331 * it just requested.
1332 */
1333 pss->block = block;
a935e30f 1334 pss->page = offset >> TARGET_PAGE_BITS;
a82d593b
DDAG
1335 }
1336
1337 return !!block;
1338}
1339
6c595cde 1340/**
5e58f968
JQ
1341 * migration_page_queue_free: drop any remaining pages in the ram
1342 * request queue
6c595cde 1343 *
3d0684b2
JQ
1344 * It should be empty at the end anyway, but in error cases there may
1345 * be some left. in case that there is any page left, we drop it.
1346 *
6c595cde 1347 */
83c13382 1348static void migration_page_queue_free(RAMState *rs)
6c595cde 1349{
ec481c6c 1350 struct RAMSrcPageRequest *mspr, *next_mspr;
6c595cde
DDAG
1351 /* This queue generally should be empty - but in the case of a failed
1352 * migration might have some droppings in.
1353 */
1354 rcu_read_lock();
ec481c6c 1355 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
6c595cde 1356 memory_region_unref(mspr->rb->mr);
ec481c6c 1357 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
6c595cde
DDAG
1358 g_free(mspr);
1359 }
1360 rcu_read_unlock();
1361}
1362
1363/**
3d0684b2
JQ
1364 * ram_save_queue_pages: queue the page for transmission
1365 *
1366 * A request from postcopy destination for example.
1367 *
1368 * Returns zero on success or negative on error
1369 *
3d0684b2
JQ
1370 * @rbname: Name of the RAMBLock of the request. NULL means the
1371 * same that last one.
1372 * @start: starting address from the start of the RAMBlock
1373 * @len: length (in bytes) to send
6c595cde 1374 */
96506894 1375int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
6c595cde
DDAG
1376{
1377 RAMBlock *ramblock;
53518d94 1378 RAMState *rs = ram_state;
6c595cde 1379
9360447d 1380 ram_counters.postcopy_requests++;
6c595cde
DDAG
1381 rcu_read_lock();
1382 if (!rbname) {
1383 /* Reuse last RAMBlock */
68a098f3 1384 ramblock = rs->last_req_rb;
6c595cde
DDAG
1385
1386 if (!ramblock) {
1387 /*
1388 * Shouldn't happen, we can't reuse the last RAMBlock if
1389 * it's the 1st request.
1390 */
1391 error_report("ram_save_queue_pages no previous block");
1392 goto err;
1393 }
1394 } else {
1395 ramblock = qemu_ram_block_by_name(rbname);
1396
1397 if (!ramblock) {
1398 /* We shouldn't be asked for a non-existent RAMBlock */
1399 error_report("ram_save_queue_pages no block '%s'", rbname);
1400 goto err;
1401 }
68a098f3 1402 rs->last_req_rb = ramblock;
6c595cde
DDAG
1403 }
1404 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1405 if (start+len > ramblock->used_length) {
9458ad6b
JQ
1406 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1407 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
6c595cde
DDAG
1408 __func__, start, len, ramblock->used_length);
1409 goto err;
1410 }
1411
ec481c6c
JQ
1412 struct RAMSrcPageRequest *new_entry =
1413 g_malloc0(sizeof(struct RAMSrcPageRequest));
6c595cde
DDAG
1414 new_entry->rb = ramblock;
1415 new_entry->offset = start;
1416 new_entry->len = len;
1417
1418 memory_region_ref(ramblock->mr);
ec481c6c
JQ
1419 qemu_mutex_lock(&rs->src_page_req_mutex);
1420 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
1421 qemu_mutex_unlock(&rs->src_page_req_mutex);
6c595cde
DDAG
1422 rcu_read_unlock();
1423
1424 return 0;
1425
1426err:
1427 rcu_read_unlock();
1428 return -1;
1429}
1430
a82d593b 1431/**
3d0684b2 1432 * ram_save_target_page: save one target page
a82d593b 1433 *
3d0684b2 1434 * Returns the number of pages written
a82d593b 1435 *
6f37bb8b 1436 * @rs: current RAM state
3d0684b2 1437 * @ms: current migration state
3d0684b2 1438 * @pss: data about the page we want to send
a82d593b 1439 * @last_stage: if we are at the completion stage
a82d593b 1440 */
a0a8aa14 1441static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 1442 bool last_stage)
a82d593b
DDAG
1443{
1444 int res = 0;
1445
1446 /* Check the pages is dirty and if it is send it */
f20e2865 1447 if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
6d358d94
JQ
1448 /*
1449 * If xbzrle is on, stop using the data compression after first
1450 * round of migration even if compression is enabled. In theory,
1451 * xbzrle can do better than compression.
1452 */
6b6712ef
JQ
1453 if (migrate_use_compression() &&
1454 (rs->ram_bulk_stage || !migrate_use_xbzrle())) {
a0a8aa14 1455 res = ram_save_compressed_page(rs, pss, last_stage);
a82d593b 1456 } else {
a0a8aa14 1457 res = ram_save_page(rs, pss, last_stage);
a82d593b
DDAG
1458 }
1459
1460 if (res < 0) {
1461 return res;
1462 }
6b6712ef
JQ
1463 if (pss->block->unsentmap) {
1464 clear_bit(pss->page, pss->block->unsentmap);
a82d593b
DDAG
1465 }
1466 }
1467
1468 return res;
1469}
1470
1471/**
3d0684b2 1472 * ram_save_host_page: save a whole host page
a82d593b 1473 *
3d0684b2
JQ
1474 * Starting at *offset send pages up to the end of the current host
1475 * page. It's valid for the initial offset to point into the middle of
1476 * a host page in which case the remainder of the hostpage is sent.
1477 * Only dirty target pages are sent. Note that the host page size may
1478 * be a huge page for this block.
1eb3fc0a
DDAG
1479 * The saving stops at the boundary of the used_length of the block
1480 * if the RAMBlock isn't a multiple of the host page size.
a82d593b 1481 *
3d0684b2
JQ
1482 * Returns the number of pages written or negative on error
1483 *
6f37bb8b 1484 * @rs: current RAM state
3d0684b2 1485 * @ms: current migration state
3d0684b2 1486 * @pss: data about the page we want to send
a82d593b 1487 * @last_stage: if we are at the completion stage
a82d593b 1488 */
a0a8aa14 1489static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 1490 bool last_stage)
a82d593b
DDAG
1491{
1492 int tmppages, pages = 0;
a935e30f
JQ
1493 size_t pagesize_bits =
1494 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
4c011c37 1495
a82d593b 1496 do {
f20e2865 1497 tmppages = ram_save_target_page(rs, pss, last_stage);
a82d593b
DDAG
1498 if (tmppages < 0) {
1499 return tmppages;
1500 }
1501
1502 pages += tmppages;
a935e30f 1503 pss->page++;
1eb3fc0a
DDAG
1504 } while ((pss->page & (pagesize_bits - 1)) &&
1505 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
a82d593b
DDAG
1506
1507 /* The offset we leave with is the last one we looked at */
a935e30f 1508 pss->page--;
a82d593b
DDAG
1509 return pages;
1510}
6c595cde 1511
56e93d26 1512/**
3d0684b2 1513 * ram_find_and_save_block: finds a dirty page and sends it to f
56e93d26
JQ
1514 *
1515 * Called within an RCU critical section.
1516 *
3d0684b2 1517 * Returns the number of pages written where zero means no dirty pages
56e93d26 1518 *
6f37bb8b 1519 * @rs: current RAM state
56e93d26 1520 * @last_stage: if we are at the completion stage
a82d593b
DDAG
1521 *
1522 * On systems where host-page-size > target-page-size it will send all the
1523 * pages in a host page that are dirty.
56e93d26
JQ
1524 */
1525
ce25d337 1526static int ram_find_and_save_block(RAMState *rs, bool last_stage)
56e93d26 1527{
b8fb8cb7 1528 PageSearchStatus pss;
56e93d26 1529 int pages = 0;
b9e60928 1530 bool again, found;
56e93d26 1531
0827b9e9
AA
1532 /* No dirty page as there is zero RAM */
1533 if (!ram_bytes_total()) {
1534 return pages;
1535 }
1536
6f37bb8b 1537 pss.block = rs->last_seen_block;
a935e30f 1538 pss.page = rs->last_page;
b8fb8cb7
DDAG
1539 pss.complete_round = false;
1540
1541 if (!pss.block) {
1542 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
1543 }
56e93d26 1544
b9e60928 1545 do {
a82d593b 1546 again = true;
f20e2865 1547 found = get_queued_page(rs, &pss);
b9e60928 1548
a82d593b
DDAG
1549 if (!found) {
1550 /* priority queue empty, so just search for something dirty */
f20e2865 1551 found = find_dirty_block(rs, &pss, &again);
a82d593b 1552 }
f3f491fc 1553
a82d593b 1554 if (found) {
f20e2865 1555 pages = ram_save_host_page(rs, &pss, last_stage);
56e93d26 1556 }
b9e60928 1557 } while (!pages && again);
56e93d26 1558
6f37bb8b 1559 rs->last_seen_block = pss.block;
a935e30f 1560 rs->last_page = pss.page;
56e93d26
JQ
1561
1562 return pages;
1563}
1564
1565void acct_update_position(QEMUFile *f, size_t size, bool zero)
1566{
1567 uint64_t pages = size / TARGET_PAGE_SIZE;
f7ccd61b 1568
56e93d26 1569 if (zero) {
9360447d 1570 ram_counters.duplicate += pages;
56e93d26 1571 } else {
9360447d
JQ
1572 ram_counters.normal += pages;
1573 ram_counters.transferred += size;
56e93d26
JQ
1574 qemu_update_position(f, size);
1575 }
1576}
1577
56e93d26
JQ
1578uint64_t ram_bytes_total(void)
1579{
1580 RAMBlock *block;
1581 uint64_t total = 0;
1582
1583 rcu_read_lock();
99e15582 1584 RAMBLOCK_FOREACH(block) {
56e93d26 1585 total += block->used_length;
99e15582 1586 }
56e93d26
JQ
1587 rcu_read_unlock();
1588 return total;
1589}
1590
f265e0e4 1591static void xbzrle_load_setup(void)
56e93d26 1592{
f265e0e4 1593 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
56e93d26
JQ
1594}
1595
f265e0e4
JQ
1596static void xbzrle_load_cleanup(void)
1597{
1598 g_free(XBZRLE.decoded_buf);
1599 XBZRLE.decoded_buf = NULL;
1600}
1601
7d7c96be
PX
1602static void ram_state_cleanup(RAMState **rsp)
1603{
1604 migration_page_queue_free(*rsp);
1605 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
1606 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
1607 g_free(*rsp);
1608 *rsp = NULL;
1609}
1610
84593a08
PX
1611static void xbzrle_cleanup(void)
1612{
1613 XBZRLE_cache_lock();
1614 if (XBZRLE.cache) {
1615 cache_fini(XBZRLE.cache);
1616 g_free(XBZRLE.encoded_buf);
1617 g_free(XBZRLE.current_buf);
1618 g_free(XBZRLE.zero_target_page);
1619 XBZRLE.cache = NULL;
1620 XBZRLE.encoded_buf = NULL;
1621 XBZRLE.current_buf = NULL;
1622 XBZRLE.zero_target_page = NULL;
1623 }
1624 XBZRLE_cache_unlock();
1625}
1626
f265e0e4 1627static void ram_save_cleanup(void *opaque)
56e93d26 1628{
53518d94 1629 RAMState **rsp = opaque;
6b6712ef 1630 RAMBlock *block;
eb859c53 1631
2ff64038
LZ
1632 /* caller have hold iothread lock or is in a bh, so there is
1633 * no writing race against this migration_bitmap
1634 */
6b6712ef
JQ
1635 memory_global_dirty_log_stop();
1636
1637 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1638 g_free(block->bmap);
1639 block->bmap = NULL;
1640 g_free(block->unsentmap);
1641 block->unsentmap = NULL;
56e93d26
JQ
1642 }
1643
84593a08 1644 xbzrle_cleanup();
f0afa331 1645 compress_threads_save_cleanup();
7d7c96be 1646 ram_state_cleanup(rsp);
56e93d26
JQ
1647}
1648
6f37bb8b 1649static void ram_state_reset(RAMState *rs)
56e93d26 1650{
6f37bb8b
JQ
1651 rs->last_seen_block = NULL;
1652 rs->last_sent_block = NULL;
269ace29 1653 rs->last_page = 0;
6f37bb8b
JQ
1654 rs->last_version = ram_list.version;
1655 rs->ram_bulk_stage = true;
56e93d26
JQ
1656}
1657
1658#define MAX_WAIT 50 /* ms, half buffered_file limit */
1659
4f2e4252
DDAG
1660/*
1661 * 'expected' is the value you expect the bitmap mostly to be full
1662 * of; it won't bother printing lines that are all this value.
1663 * If 'todump' is null the migration bitmap is dumped.
1664 */
6b6712ef
JQ
1665void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
1666 unsigned long pages)
4f2e4252 1667{
4f2e4252
DDAG
1668 int64_t cur;
1669 int64_t linelen = 128;
1670 char linebuf[129];
1671
6b6712ef 1672 for (cur = 0; cur < pages; cur += linelen) {
4f2e4252
DDAG
1673 int64_t curb;
1674 bool found = false;
1675 /*
1676 * Last line; catch the case where the line length
1677 * is longer than remaining ram
1678 */
6b6712ef
JQ
1679 if (cur + linelen > pages) {
1680 linelen = pages - cur;
4f2e4252
DDAG
1681 }
1682 for (curb = 0; curb < linelen; curb++) {
1683 bool thisbit = test_bit(cur + curb, todump);
1684 linebuf[curb] = thisbit ? '1' : '.';
1685 found = found || (thisbit != expected);
1686 }
1687 if (found) {
1688 linebuf[curb] = '\0';
1689 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
1690 }
1691 }
1692}
1693
e0b266f0
DDAG
1694/* **** functions for postcopy ***** */
1695
ced1c616
PB
1696void ram_postcopy_migrated_memory_release(MigrationState *ms)
1697{
1698 struct RAMBlock *block;
ced1c616 1699
99e15582 1700 RAMBLOCK_FOREACH(block) {
6b6712ef
JQ
1701 unsigned long *bitmap = block->bmap;
1702 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
1703 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
ced1c616
PB
1704
1705 while (run_start < range) {
1706 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
aaa2064c 1707 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
ced1c616
PB
1708 (run_end - run_start) << TARGET_PAGE_BITS);
1709 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
1710 }
1711 }
1712}
1713
3d0684b2
JQ
1714/**
1715 * postcopy_send_discard_bm_ram: discard a RAMBlock
1716 *
1717 * Returns zero on success
1718 *
e0b266f0
DDAG
1719 * Callback from postcopy_each_ram_send_discard for each RAMBlock
1720 * Note: At this point the 'unsentmap' is the processed bitmap combined
1721 * with the dirtymap; so a '1' means it's either dirty or unsent.
3d0684b2
JQ
1722 *
1723 * @ms: current migration state
1724 * @pds: state for postcopy
1725 * @start: RAMBlock starting page
1726 * @length: RAMBlock size
e0b266f0
DDAG
1727 */
1728static int postcopy_send_discard_bm_ram(MigrationState *ms,
1729 PostcopyDiscardState *pds,
6b6712ef 1730 RAMBlock *block)
e0b266f0 1731{
6b6712ef 1732 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
e0b266f0 1733 unsigned long current;
6b6712ef 1734 unsigned long *unsentmap = block->unsentmap;
e0b266f0 1735
6b6712ef 1736 for (current = 0; current < end; ) {
e0b266f0
DDAG
1737 unsigned long one = find_next_bit(unsentmap, end, current);
1738
1739 if (one <= end) {
1740 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
1741 unsigned long discard_length;
1742
1743 if (zero >= end) {
1744 discard_length = end - one;
1745 } else {
1746 discard_length = zero - one;
1747 }
d688c62d
DDAG
1748 if (discard_length) {
1749 postcopy_discard_send_range(ms, pds, one, discard_length);
1750 }
e0b266f0
DDAG
1751 current = one + discard_length;
1752 } else {
1753 current = one;
1754 }
1755 }
1756
1757 return 0;
1758}
1759
3d0684b2
JQ
1760/**
1761 * postcopy_each_ram_send_discard: discard all RAMBlocks
1762 *
1763 * Returns 0 for success or negative for error
1764 *
e0b266f0
DDAG
1765 * Utility for the outgoing postcopy code.
1766 * Calls postcopy_send_discard_bm_ram for each RAMBlock
1767 * passing it bitmap indexes and name.
e0b266f0
DDAG
1768 * (qemu_ram_foreach_block ends up passing unscaled lengths
1769 * which would mean postcopy code would have to deal with target page)
3d0684b2
JQ
1770 *
1771 * @ms: current migration state
e0b266f0
DDAG
1772 */
1773static int postcopy_each_ram_send_discard(MigrationState *ms)
1774{
1775 struct RAMBlock *block;
1776 int ret;
1777
99e15582 1778 RAMBLOCK_FOREACH(block) {
6b6712ef
JQ
1779 PostcopyDiscardState *pds =
1780 postcopy_discard_send_init(ms, block->idstr);
e0b266f0
DDAG
1781
1782 /*
1783 * Postcopy sends chunks of bitmap over the wire, but it
1784 * just needs indexes at this point, avoids it having
1785 * target page specific code.
1786 */
6b6712ef 1787 ret = postcopy_send_discard_bm_ram(ms, pds, block);
e0b266f0
DDAG
1788 postcopy_discard_send_finish(ms, pds);
1789 if (ret) {
1790 return ret;
1791 }
1792 }
1793
1794 return 0;
1795}
1796
3d0684b2
JQ
1797/**
1798 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
1799 *
1800 * Helper for postcopy_chunk_hostpages; it's called twice to
1801 * canonicalize the two bitmaps, that are similar, but one is
1802 * inverted.
99e314eb 1803 *
3d0684b2
JQ
1804 * Postcopy requires that all target pages in a hostpage are dirty or
1805 * clean, not a mix. This function canonicalizes the bitmaps.
99e314eb 1806 *
3d0684b2
JQ
1807 * @ms: current migration state
1808 * @unsent_pass: if true we need to canonicalize partially unsent host pages
1809 * otherwise we need to canonicalize partially dirty host pages
1810 * @block: block that contains the page we want to canonicalize
1811 * @pds: state for postcopy
99e314eb
DDAG
1812 */
1813static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
1814 RAMBlock *block,
1815 PostcopyDiscardState *pds)
1816{
53518d94 1817 RAMState *rs = ram_state;
6b6712ef
JQ
1818 unsigned long *bitmap = block->bmap;
1819 unsigned long *unsentmap = block->unsentmap;
29c59172 1820 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
6b6712ef 1821 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
99e314eb
DDAG
1822 unsigned long run_start;
1823
29c59172
DDAG
1824 if (block->page_size == TARGET_PAGE_SIZE) {
1825 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
1826 return;
1827 }
1828
99e314eb
DDAG
1829 if (unsent_pass) {
1830 /* Find a sent page */
6b6712ef 1831 run_start = find_next_zero_bit(unsentmap, pages, 0);
99e314eb
DDAG
1832 } else {
1833 /* Find a dirty page */
6b6712ef 1834 run_start = find_next_bit(bitmap, pages, 0);
99e314eb
DDAG
1835 }
1836
6b6712ef 1837 while (run_start < pages) {
99e314eb
DDAG
1838 bool do_fixup = false;
1839 unsigned long fixup_start_addr;
1840 unsigned long host_offset;
1841
1842 /*
1843 * If the start of this run of pages is in the middle of a host
1844 * page, then we need to fixup this host page.
1845 */
1846 host_offset = run_start % host_ratio;
1847 if (host_offset) {
1848 do_fixup = true;
1849 run_start -= host_offset;
1850 fixup_start_addr = run_start;
1851 /* For the next pass */
1852 run_start = run_start + host_ratio;
1853 } else {
1854 /* Find the end of this run */
1855 unsigned long run_end;
1856 if (unsent_pass) {
6b6712ef 1857 run_end = find_next_bit(unsentmap, pages, run_start + 1);
99e314eb 1858 } else {
6b6712ef 1859 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
99e314eb
DDAG
1860 }
1861 /*
1862 * If the end isn't at the start of a host page, then the
1863 * run doesn't finish at the end of a host page
1864 * and we need to discard.
1865 */
1866 host_offset = run_end % host_ratio;
1867 if (host_offset) {
1868 do_fixup = true;
1869 fixup_start_addr = run_end - host_offset;
1870 /*
1871 * This host page has gone, the next loop iteration starts
1872 * from after the fixup
1873 */
1874 run_start = fixup_start_addr + host_ratio;
1875 } else {
1876 /*
1877 * No discards on this iteration, next loop starts from
1878 * next sent/dirty page
1879 */
1880 run_start = run_end + 1;
1881 }
1882 }
1883
1884 if (do_fixup) {
1885 unsigned long page;
1886
1887 /* Tell the destination to discard this page */
1888 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
1889 /* For the unsent_pass we:
1890 * discard partially sent pages
1891 * For the !unsent_pass (dirty) we:
1892 * discard partially dirty pages that were sent
1893 * (any partially sent pages were already discarded
1894 * by the previous unsent_pass)
1895 */
1896 postcopy_discard_send_range(ms, pds, fixup_start_addr,
1897 host_ratio);
1898 }
1899
1900 /* Clean up the bitmap */
1901 for (page = fixup_start_addr;
1902 page < fixup_start_addr + host_ratio; page++) {
1903 /* All pages in this host page are now not sent */
1904 set_bit(page, unsentmap);
1905
1906 /*
1907 * Remark them as dirty, updating the count for any pages
1908 * that weren't previously dirty.
1909 */
0d8ec885 1910 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
99e314eb
DDAG
1911 }
1912 }
1913
1914 if (unsent_pass) {
1915 /* Find the next sent page for the next iteration */
6b6712ef 1916 run_start = find_next_zero_bit(unsentmap, pages, run_start);
99e314eb
DDAG
1917 } else {
1918 /* Find the next dirty page for the next iteration */
6b6712ef 1919 run_start = find_next_bit(bitmap, pages, run_start);
99e314eb
DDAG
1920 }
1921 }
1922}
1923
3d0684b2
JQ
1924/**
1925 * postcopy_chuck_hostpages: discrad any partially sent host page
1926 *
99e314eb
DDAG
1927 * Utility for the outgoing postcopy code.
1928 *
1929 * Discard any partially sent host-page size chunks, mark any partially
29c59172
DDAG
1930 * dirty host-page size chunks as all dirty. In this case the host-page
1931 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
99e314eb 1932 *
3d0684b2
JQ
1933 * Returns zero on success
1934 *
1935 * @ms: current migration state
6b6712ef 1936 * @block: block we want to work with
99e314eb 1937 */
6b6712ef 1938static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
99e314eb 1939{
6b6712ef
JQ
1940 PostcopyDiscardState *pds =
1941 postcopy_discard_send_init(ms, block->idstr);
99e314eb 1942
6b6712ef
JQ
1943 /* First pass: Discard all partially sent host pages */
1944 postcopy_chunk_hostpages_pass(ms, true, block, pds);
1945 /*
1946 * Second pass: Ensure that all partially dirty host pages are made
1947 * fully dirty.
1948 */
1949 postcopy_chunk_hostpages_pass(ms, false, block, pds);
99e314eb 1950
6b6712ef 1951 postcopy_discard_send_finish(ms, pds);
99e314eb
DDAG
1952 return 0;
1953}
1954
3d0684b2
JQ
1955/**
1956 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
1957 *
1958 * Returns zero on success
1959 *
e0b266f0
DDAG
1960 * Transmit the set of pages to be discarded after precopy to the target
1961 * these are pages that:
1962 * a) Have been previously transmitted but are now dirty again
1963 * b) Pages that have never been transmitted, this ensures that
1964 * any pages on the destination that have been mapped by background
1965 * tasks get discarded (transparent huge pages is the specific concern)
1966 * Hopefully this is pretty sparse
3d0684b2
JQ
1967 *
1968 * @ms: current migration state
e0b266f0
DDAG
1969 */
1970int ram_postcopy_send_discard_bitmap(MigrationState *ms)
1971{
53518d94 1972 RAMState *rs = ram_state;
6b6712ef 1973 RAMBlock *block;
e0b266f0 1974 int ret;
e0b266f0
DDAG
1975
1976 rcu_read_lock();
1977
1978 /* This should be our last sync, the src is now paused */
eb859c53 1979 migration_bitmap_sync(rs);
e0b266f0 1980
6b6712ef
JQ
1981 /* Easiest way to make sure we don't resume in the middle of a host-page */
1982 rs->last_seen_block = NULL;
1983 rs->last_sent_block = NULL;
1984 rs->last_page = 0;
e0b266f0 1985
6b6712ef
JQ
1986 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1987 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
1988 unsigned long *bitmap = block->bmap;
1989 unsigned long *unsentmap = block->unsentmap;
1990
1991 if (!unsentmap) {
1992 /* We don't have a safe way to resize the sentmap, so
1993 * if the bitmap was resized it will be NULL at this
1994 * point.
1995 */
1996 error_report("migration ram resized during precopy phase");
1997 rcu_read_unlock();
1998 return -EINVAL;
1999 }
2000 /* Deal with TPS != HPS and huge pages */
2001 ret = postcopy_chunk_hostpages(ms, block);
2002 if (ret) {
2003 rcu_read_unlock();
2004 return ret;
2005 }
e0b266f0 2006
6b6712ef
JQ
2007 /*
2008 * Update the unsentmap to be unsentmap = unsentmap | dirty
2009 */
2010 bitmap_or(unsentmap, unsentmap, bitmap, pages);
e0b266f0 2011#ifdef DEBUG_POSTCOPY
6b6712ef 2012 ram_debug_dump_bitmap(unsentmap, true, pages);
e0b266f0 2013#endif
6b6712ef
JQ
2014 }
2015 trace_ram_postcopy_send_discard_bitmap();
e0b266f0
DDAG
2016
2017 ret = postcopy_each_ram_send_discard(ms);
2018 rcu_read_unlock();
2019
2020 return ret;
2021}
2022
3d0684b2
JQ
2023/**
2024 * ram_discard_range: discard dirtied pages at the beginning of postcopy
e0b266f0 2025 *
3d0684b2 2026 * Returns zero on success
e0b266f0 2027 *
36449157
JQ
2028 * @rbname: name of the RAMBlock of the request. NULL means the
2029 * same that last one.
3d0684b2
JQ
2030 * @start: RAMBlock starting page
2031 * @length: RAMBlock size
e0b266f0 2032 */
aaa2064c 2033int ram_discard_range(const char *rbname, uint64_t start, size_t length)
e0b266f0
DDAG
2034{
2035 int ret = -1;
2036
36449157 2037 trace_ram_discard_range(rbname, start, length);
d3a5038c 2038
e0b266f0 2039 rcu_read_lock();
36449157 2040 RAMBlock *rb = qemu_ram_block_by_name(rbname);
e0b266f0
DDAG
2041
2042 if (!rb) {
36449157 2043 error_report("ram_discard_range: Failed to find block '%s'", rbname);
e0b266f0
DDAG
2044 goto err;
2045 }
2046
f9494614
AP
2047 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2048 length >> qemu_target_page_bits());
d3a5038c 2049 ret = ram_block_discard_range(rb, start, length);
e0b266f0
DDAG
2050
2051err:
2052 rcu_read_unlock();
2053
2054 return ret;
2055}
2056
84593a08
PX
2057/*
2058 * For every allocation, we will try not to crash the VM if the
2059 * allocation failed.
2060 */
2061static int xbzrle_init(void)
2062{
2063 Error *local_err = NULL;
2064
2065 if (!migrate_use_xbzrle()) {
2066 return 0;
2067 }
2068
2069 XBZRLE_cache_lock();
2070
2071 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2072 if (!XBZRLE.zero_target_page) {
2073 error_report("%s: Error allocating zero page", __func__);
2074 goto err_out;
2075 }
2076
2077 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2078 TARGET_PAGE_SIZE, &local_err);
2079 if (!XBZRLE.cache) {
2080 error_report_err(local_err);
2081 goto free_zero_page;
2082 }
2083
2084 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2085 if (!XBZRLE.encoded_buf) {
2086 error_report("%s: Error allocating encoded_buf", __func__);
2087 goto free_cache;
2088 }
2089
2090 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2091 if (!XBZRLE.current_buf) {
2092 error_report("%s: Error allocating current_buf", __func__);
2093 goto free_encoded_buf;
2094 }
2095
2096 /* We are all good */
2097 XBZRLE_cache_unlock();
2098 return 0;
2099
2100free_encoded_buf:
2101 g_free(XBZRLE.encoded_buf);
2102 XBZRLE.encoded_buf = NULL;
2103free_cache:
2104 cache_fini(XBZRLE.cache);
2105 XBZRLE.cache = NULL;
2106free_zero_page:
2107 g_free(XBZRLE.zero_target_page);
2108 XBZRLE.zero_target_page = NULL;
2109err_out:
2110 XBZRLE_cache_unlock();
2111 return -ENOMEM;
2112}
2113
53518d94 2114static int ram_state_init(RAMState **rsp)
56e93d26 2115{
7d00ee6a
PX
2116 *rsp = g_try_new0(RAMState, 1);
2117
2118 if (!*rsp) {
2119 error_report("%s: Init ramstate fail", __func__);
2120 return -1;
2121 }
53518d94
JQ
2122
2123 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2124 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2125 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
56e93d26 2126
7d00ee6a
PX
2127 /*
2128 * Count the total number of pages used by ram blocks not including any
2129 * gaps due to alignment or unplugs.
2130 */
2131 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
2132
2133 ram_state_reset(*rsp);
2134
2135 return 0;
2136}
2137
d6eff5d7 2138static void ram_list_init_bitmaps(void)
7d00ee6a 2139{
d6eff5d7
PX
2140 RAMBlock *block;
2141 unsigned long pages;
56e93d26 2142
0827b9e9
AA
2143 /* Skip setting bitmap if there is no RAM */
2144 if (ram_bytes_total()) {
6b6712ef 2145 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
d6eff5d7 2146 pages = block->max_length >> TARGET_PAGE_BITS;
6b6712ef
JQ
2147 block->bmap = bitmap_new(pages);
2148 bitmap_set(block->bmap, 0, pages);
2149 if (migrate_postcopy_ram()) {
2150 block->unsentmap = bitmap_new(pages);
2151 bitmap_set(block->unsentmap, 0, pages);
2152 }
0827b9e9 2153 }
f3f491fc 2154 }
d6eff5d7
PX
2155}
2156
2157static void ram_init_bitmaps(RAMState *rs)
2158{
2159 /* For memory_global_dirty_log_start below. */
2160 qemu_mutex_lock_iothread();
2161 qemu_mutex_lock_ramlist();
2162 rcu_read_lock();
f3f491fc 2163
d6eff5d7 2164 ram_list_init_bitmaps();
56e93d26 2165 memory_global_dirty_log_start();
d6eff5d7
PX
2166 migration_bitmap_sync(rs);
2167
2168 rcu_read_unlock();
56e93d26 2169 qemu_mutex_unlock_ramlist();
49877834 2170 qemu_mutex_unlock_iothread();
d6eff5d7
PX
2171}
2172
2173static int ram_init_all(RAMState **rsp)
2174{
2175 if (ram_state_init(rsp)) {
2176 return -1;
2177 }
2178
2179 if (xbzrle_init()) {
2180 ram_state_cleanup(rsp);
2181 return -1;
2182 }
2183
2184 ram_init_bitmaps(*rsp);
a91246c9
HZ
2185
2186 return 0;
2187}
2188
3d0684b2
JQ
2189/*
2190 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
a91246c9
HZ
2191 * long-running RCU critical section. When rcu-reclaims in the code
2192 * start to become numerous it will be necessary to reduce the
2193 * granularity of these critical sections.
2194 */
2195
3d0684b2
JQ
2196/**
2197 * ram_save_setup: Setup RAM for migration
2198 *
2199 * Returns zero to indicate success and negative for error
2200 *
2201 * @f: QEMUFile where to send the data
2202 * @opaque: RAMState pointer
2203 */
a91246c9
HZ
2204static int ram_save_setup(QEMUFile *f, void *opaque)
2205{
53518d94 2206 RAMState **rsp = opaque;
a91246c9
HZ
2207 RAMBlock *block;
2208
2209 /* migration has already setup the bitmap, reuse it. */
2210 if (!migration_in_colo_state()) {
7d00ee6a 2211 if (ram_init_all(rsp) != 0) {
a91246c9 2212 return -1;
53518d94 2213 }
a91246c9 2214 }
53518d94 2215 (*rsp)->f = f;
a91246c9
HZ
2216
2217 rcu_read_lock();
56e93d26
JQ
2218
2219 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
2220
99e15582 2221 RAMBLOCK_FOREACH(block) {
56e93d26
JQ
2222 qemu_put_byte(f, strlen(block->idstr));
2223 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
2224 qemu_put_be64(f, block->used_length);
ef08fb38
DDAG
2225 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
2226 qemu_put_be64(f, block->page_size);
2227 }
56e93d26
JQ
2228 }
2229
2230 rcu_read_unlock();
f0afa331 2231 compress_threads_save_setup();
56e93d26
JQ
2232
2233 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
2234 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
2235
2236 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2237
2238 return 0;
2239}
2240
3d0684b2
JQ
2241/**
2242 * ram_save_iterate: iterative stage for migration
2243 *
2244 * Returns zero to indicate success and negative for error
2245 *
2246 * @f: QEMUFile where to send the data
2247 * @opaque: RAMState pointer
2248 */
56e93d26
JQ
2249static int ram_save_iterate(QEMUFile *f, void *opaque)
2250{
53518d94
JQ
2251 RAMState **temp = opaque;
2252 RAMState *rs = *temp;
56e93d26
JQ
2253 int ret;
2254 int i;
2255 int64_t t0;
5c90308f 2256 int done = 0;
56e93d26
JQ
2257
2258 rcu_read_lock();
6f37bb8b
JQ
2259 if (ram_list.version != rs->last_version) {
2260 ram_state_reset(rs);
56e93d26
JQ
2261 }
2262
2263 /* Read version before ram_list.blocks */
2264 smp_rmb();
2265
2266 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
2267
2268 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2269 i = 0;
2270 while ((ret = qemu_file_rate_limit(f)) == 0) {
2271 int pages;
2272
ce25d337 2273 pages = ram_find_and_save_block(rs, false);
56e93d26
JQ
2274 /* no more pages to sent */
2275 if (pages == 0) {
5c90308f 2276 done = 1;
56e93d26
JQ
2277 break;
2278 }
23b28c3c 2279 rs->iterations++;
070afca2 2280
56e93d26
JQ
2281 /* we want to check in the 1st loop, just in case it was the 1st time
2282 and we had to sync the dirty bitmap.
2283 qemu_get_clock_ns() is a bit expensive, so we only check each some
2284 iterations
2285 */
2286 if ((i & 63) == 0) {
2287 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
2288 if (t1 > MAX_WAIT) {
55c4446b 2289 trace_ram_save_iterate_big_wait(t1, i);
56e93d26
JQ
2290 break;
2291 }
2292 }
2293 i++;
2294 }
ce25d337 2295 flush_compressed_data(rs);
56e93d26
JQ
2296 rcu_read_unlock();
2297
2298 /*
2299 * Must occur before EOS (or any QEMUFile operation)
2300 * because of RDMA protocol.
2301 */
2302 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
2303
2304 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
9360447d 2305 ram_counters.transferred += 8;
56e93d26
JQ
2306
2307 ret = qemu_file_get_error(f);
2308 if (ret < 0) {
2309 return ret;
2310 }
2311
5c90308f 2312 return done;
56e93d26
JQ
2313}
2314
3d0684b2
JQ
2315/**
2316 * ram_save_complete: function called to send the remaining amount of ram
2317 *
2318 * Returns zero to indicate success
2319 *
2320 * Called with iothread lock
2321 *
2322 * @f: QEMUFile where to send the data
2323 * @opaque: RAMState pointer
2324 */
56e93d26
JQ
2325static int ram_save_complete(QEMUFile *f, void *opaque)
2326{
53518d94
JQ
2327 RAMState **temp = opaque;
2328 RAMState *rs = *temp;
6f37bb8b 2329
56e93d26
JQ
2330 rcu_read_lock();
2331
5727309d 2332 if (!migration_in_postcopy()) {
8d820d6f 2333 migration_bitmap_sync(rs);
663e6c1d 2334 }
56e93d26
JQ
2335
2336 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
2337
2338 /* try transferring iterative blocks of memory */
2339
2340 /* flush all remaining blocks regardless of rate limiting */
2341 while (true) {
2342 int pages;
2343
ce25d337 2344 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
56e93d26
JQ
2345 /* no more blocks to sent */
2346 if (pages == 0) {
2347 break;
2348 }
2349 }
2350
ce25d337 2351 flush_compressed_data(rs);
56e93d26 2352 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
56e93d26
JQ
2353
2354 rcu_read_unlock();
d09a6fde 2355
56e93d26
JQ
2356 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2357
2358 return 0;
2359}
2360
c31b098f
DDAG
2361static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
2362 uint64_t *non_postcopiable_pending,
2363 uint64_t *postcopiable_pending)
56e93d26 2364{
53518d94
JQ
2365 RAMState **temp = opaque;
2366 RAMState *rs = *temp;
56e93d26
JQ
2367 uint64_t remaining_size;
2368
9edabd4d 2369 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 2370
5727309d 2371 if (!migration_in_postcopy() &&
663e6c1d 2372 remaining_size < max_size) {
56e93d26
JQ
2373 qemu_mutex_lock_iothread();
2374 rcu_read_lock();
8d820d6f 2375 migration_bitmap_sync(rs);
56e93d26
JQ
2376 rcu_read_unlock();
2377 qemu_mutex_unlock_iothread();
9edabd4d 2378 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 2379 }
c31b098f 2380
86e1167e
VSO
2381 if (migrate_postcopy_ram()) {
2382 /* We can do postcopy, and all the data is postcopiable */
2383 *postcopiable_pending += remaining_size;
2384 } else {
2385 *non_postcopiable_pending += remaining_size;
2386 }
56e93d26
JQ
2387}
2388
2389static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
2390{
2391 unsigned int xh_len;
2392 int xh_flags;
063e760a 2393 uint8_t *loaded_data;
56e93d26 2394
56e93d26
JQ
2395 /* extract RLE header */
2396 xh_flags = qemu_get_byte(f);
2397 xh_len = qemu_get_be16(f);
2398
2399 if (xh_flags != ENCODING_FLAG_XBZRLE) {
2400 error_report("Failed to load XBZRLE page - wrong compression!");
2401 return -1;
2402 }
2403
2404 if (xh_len > TARGET_PAGE_SIZE) {
2405 error_report("Failed to load XBZRLE page - len overflow!");
2406 return -1;
2407 }
f265e0e4 2408 loaded_data = XBZRLE.decoded_buf;
56e93d26 2409 /* load data and decode */
f265e0e4 2410 /* it can change loaded_data to point to an internal buffer */
063e760a 2411 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
56e93d26
JQ
2412
2413 /* decode RLE */
063e760a 2414 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
56e93d26
JQ
2415 TARGET_PAGE_SIZE) == -1) {
2416 error_report("Failed to load XBZRLE page - decode error!");
2417 return -1;
2418 }
2419
2420 return 0;
2421}
2422
3d0684b2
JQ
2423/**
2424 * ram_block_from_stream: read a RAMBlock id from the migration stream
2425 *
2426 * Must be called from within a rcu critical section.
2427 *
56e93d26 2428 * Returns a pointer from within the RCU-protected ram_list.
a7180877 2429 *
3d0684b2
JQ
2430 * @f: QEMUFile where to read the data from
2431 * @flags: Page flags (mostly to see if it's a continuation of previous block)
a7180877 2432 */
3d0684b2 2433static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
56e93d26
JQ
2434{
2435 static RAMBlock *block = NULL;
2436 char id[256];
2437 uint8_t len;
2438
2439 if (flags & RAM_SAVE_FLAG_CONTINUE) {
4c4bad48 2440 if (!block) {
56e93d26
JQ
2441 error_report("Ack, bad migration stream!");
2442 return NULL;
2443 }
4c4bad48 2444 return block;
56e93d26
JQ
2445 }
2446
2447 len = qemu_get_byte(f);
2448 qemu_get_buffer(f, (uint8_t *)id, len);
2449 id[len] = 0;
2450
e3dd7493 2451 block = qemu_ram_block_by_name(id);
4c4bad48
HZ
2452 if (!block) {
2453 error_report("Can't find block %s", id);
2454 return NULL;
56e93d26
JQ
2455 }
2456
4c4bad48
HZ
2457 return block;
2458}
2459
2460static inline void *host_from_ram_block_offset(RAMBlock *block,
2461 ram_addr_t offset)
2462{
2463 if (!offset_in_ramblock(block, offset)) {
2464 return NULL;
2465 }
2466
2467 return block->host + offset;
56e93d26
JQ
2468}
2469
3d0684b2
JQ
2470/**
2471 * ram_handle_compressed: handle the zero page case
2472 *
56e93d26
JQ
2473 * If a page (or a whole RDMA chunk) has been
2474 * determined to be zero, then zap it.
3d0684b2
JQ
2475 *
2476 * @host: host address for the zero page
2477 * @ch: what the page is filled from. We only support zero
2478 * @size: size of the zero page
56e93d26
JQ
2479 */
2480void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
2481{
2482 if (ch != 0 || !is_zero_range(host, size)) {
2483 memset(host, ch, size);
2484 }
2485}
2486
2487static void *do_data_decompress(void *opaque)
2488{
2489 DecompressParam *param = opaque;
2490 unsigned long pagesize;
33d151f4
LL
2491 uint8_t *des;
2492 int len;
56e93d26 2493
33d151f4 2494 qemu_mutex_lock(&param->mutex);
90e56fb4 2495 while (!param->quit) {
33d151f4
LL
2496 if (param->des) {
2497 des = param->des;
2498 len = param->len;
2499 param->des = 0;
2500 qemu_mutex_unlock(&param->mutex);
2501
56e93d26 2502 pagesize = TARGET_PAGE_SIZE;
73a8912b
LL
2503 /* uncompress() will return failed in some case, especially
2504 * when the page is dirted when doing the compression, it's
2505 * not a problem because the dirty page will be retransferred
2506 * and uncompress() won't break the data in other pages.
2507 */
33d151f4
LL
2508 uncompress((Bytef *)des, &pagesize,
2509 (const Bytef *)param->compbuf, len);
73a8912b 2510
33d151f4
LL
2511 qemu_mutex_lock(&decomp_done_lock);
2512 param->done = true;
2513 qemu_cond_signal(&decomp_done_cond);
2514 qemu_mutex_unlock(&decomp_done_lock);
2515
2516 qemu_mutex_lock(&param->mutex);
2517 } else {
2518 qemu_cond_wait(&param->cond, &param->mutex);
2519 }
56e93d26 2520 }
33d151f4 2521 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
2522
2523 return NULL;
2524}
2525
5533b2e9
LL
2526static void wait_for_decompress_done(void)
2527{
2528 int idx, thread_count;
2529
2530 if (!migrate_use_compression()) {
2531 return;
2532 }
2533
2534 thread_count = migrate_decompress_threads();
2535 qemu_mutex_lock(&decomp_done_lock);
2536 for (idx = 0; idx < thread_count; idx++) {
2537 while (!decomp_param[idx].done) {
2538 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2539 }
2540 }
2541 qemu_mutex_unlock(&decomp_done_lock);
2542}
2543
f0afa331 2544static void compress_threads_load_setup(void)
56e93d26
JQ
2545{
2546 int i, thread_count;
2547
3416ab5b
JQ
2548 if (!migrate_use_compression()) {
2549 return;
2550 }
56e93d26
JQ
2551 thread_count = migrate_decompress_threads();
2552 decompress_threads = g_new0(QemuThread, thread_count);
2553 decomp_param = g_new0(DecompressParam, thread_count);
73a8912b
LL
2554 qemu_mutex_init(&decomp_done_lock);
2555 qemu_cond_init(&decomp_done_cond);
56e93d26
JQ
2556 for (i = 0; i < thread_count; i++) {
2557 qemu_mutex_init(&decomp_param[i].mutex);
2558 qemu_cond_init(&decomp_param[i].cond);
2559 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
73a8912b 2560 decomp_param[i].done = true;
90e56fb4 2561 decomp_param[i].quit = false;
56e93d26
JQ
2562 qemu_thread_create(decompress_threads + i, "decompress",
2563 do_data_decompress, decomp_param + i,
2564 QEMU_THREAD_JOINABLE);
2565 }
2566}
2567
f0afa331 2568static void compress_threads_load_cleanup(void)
56e93d26
JQ
2569{
2570 int i, thread_count;
2571
3416ab5b
JQ
2572 if (!migrate_use_compression()) {
2573 return;
2574 }
56e93d26
JQ
2575 thread_count = migrate_decompress_threads();
2576 for (i = 0; i < thread_count; i++) {
2577 qemu_mutex_lock(&decomp_param[i].mutex);
90e56fb4 2578 decomp_param[i].quit = true;
56e93d26
JQ
2579 qemu_cond_signal(&decomp_param[i].cond);
2580 qemu_mutex_unlock(&decomp_param[i].mutex);
2581 }
2582 for (i = 0; i < thread_count; i++) {
2583 qemu_thread_join(decompress_threads + i);
2584 qemu_mutex_destroy(&decomp_param[i].mutex);
2585 qemu_cond_destroy(&decomp_param[i].cond);
2586 g_free(decomp_param[i].compbuf);
2587 }
2588 g_free(decompress_threads);
2589 g_free(decomp_param);
56e93d26
JQ
2590 decompress_threads = NULL;
2591 decomp_param = NULL;
56e93d26
JQ
2592}
2593
c1bc6626 2594static void decompress_data_with_multi_threads(QEMUFile *f,
56e93d26
JQ
2595 void *host, int len)
2596{
2597 int idx, thread_count;
2598
2599 thread_count = migrate_decompress_threads();
73a8912b 2600 qemu_mutex_lock(&decomp_done_lock);
56e93d26
JQ
2601 while (true) {
2602 for (idx = 0; idx < thread_count; idx++) {
73a8912b 2603 if (decomp_param[idx].done) {
33d151f4
LL
2604 decomp_param[idx].done = false;
2605 qemu_mutex_lock(&decomp_param[idx].mutex);
c1bc6626 2606 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
56e93d26
JQ
2607 decomp_param[idx].des = host;
2608 decomp_param[idx].len = len;
33d151f4
LL
2609 qemu_cond_signal(&decomp_param[idx].cond);
2610 qemu_mutex_unlock(&decomp_param[idx].mutex);
56e93d26
JQ
2611 break;
2612 }
2613 }
2614 if (idx < thread_count) {
2615 break;
73a8912b
LL
2616 } else {
2617 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
56e93d26
JQ
2618 }
2619 }
73a8912b 2620 qemu_mutex_unlock(&decomp_done_lock);
56e93d26
JQ
2621}
2622
f265e0e4
JQ
2623/**
2624 * ram_load_setup: Setup RAM for migration incoming side
2625 *
2626 * Returns zero to indicate success and negative for error
2627 *
2628 * @f: QEMUFile where to receive the data
2629 * @opaque: RAMState pointer
2630 */
2631static int ram_load_setup(QEMUFile *f, void *opaque)
2632{
2633 xbzrle_load_setup();
f0afa331 2634 compress_threads_load_setup();
f9494614 2635 ramblock_recv_map_init();
f265e0e4
JQ
2636 return 0;
2637}
2638
2639static int ram_load_cleanup(void *opaque)
2640{
f9494614 2641 RAMBlock *rb;
f265e0e4 2642 xbzrle_load_cleanup();
f0afa331 2643 compress_threads_load_cleanup();
f9494614
AP
2644
2645 RAMBLOCK_FOREACH(rb) {
2646 g_free(rb->receivedmap);
2647 rb->receivedmap = NULL;
2648 }
f265e0e4
JQ
2649 return 0;
2650}
2651
3d0684b2
JQ
2652/**
2653 * ram_postcopy_incoming_init: allocate postcopy data structures
2654 *
2655 * Returns 0 for success and negative if there was one error
2656 *
2657 * @mis: current migration incoming state
2658 *
2659 * Allocate data structures etc needed by incoming migration with
2660 * postcopy-ram. postcopy-ram's similarly names
2661 * postcopy_ram_incoming_init does the work.
1caddf8a
DDAG
2662 */
2663int ram_postcopy_incoming_init(MigrationIncomingState *mis)
2664{
b8c48993 2665 unsigned long ram_pages = last_ram_page();
1caddf8a
DDAG
2666
2667 return postcopy_ram_incoming_init(mis, ram_pages);
2668}
2669
3d0684b2
JQ
2670/**
2671 * ram_load_postcopy: load a page in postcopy case
2672 *
2673 * Returns 0 for success or -errno in case of error
2674 *
a7180877
DDAG
2675 * Called in postcopy mode by ram_load().
2676 * rcu_read_lock is taken prior to this being called.
3d0684b2
JQ
2677 *
2678 * @f: QEMUFile where to send the data
a7180877
DDAG
2679 */
2680static int ram_load_postcopy(QEMUFile *f)
2681{
2682 int flags = 0, ret = 0;
2683 bool place_needed = false;
28abd200 2684 bool matching_page_sizes = false;
a7180877
DDAG
2685 MigrationIncomingState *mis = migration_incoming_get_current();
2686 /* Temporary page that is later 'placed' */
2687 void *postcopy_host_page = postcopy_get_tmp_page(mis);
c53b7ddc 2688 void *last_host = NULL;
a3b6ff6d 2689 bool all_zero = false;
a7180877
DDAG
2690
2691 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2692 ram_addr_t addr;
2693 void *host = NULL;
2694 void *page_buffer = NULL;
2695 void *place_source = NULL;
df9ff5e1 2696 RAMBlock *block = NULL;
a7180877 2697 uint8_t ch;
a7180877
DDAG
2698
2699 addr = qemu_get_be64(f);
2700 flags = addr & ~TARGET_PAGE_MASK;
2701 addr &= TARGET_PAGE_MASK;
2702
2703 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
2704 place_needed = false;
bb890ed5 2705 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
df9ff5e1 2706 block = ram_block_from_stream(f, flags);
4c4bad48
HZ
2707
2708 host = host_from_ram_block_offset(block, addr);
a7180877
DDAG
2709 if (!host) {
2710 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2711 ret = -EINVAL;
2712 break;
2713 }
28abd200 2714 matching_page_sizes = block->page_size == TARGET_PAGE_SIZE;
a7180877 2715 /*
28abd200
DDAG
2716 * Postcopy requires that we place whole host pages atomically;
2717 * these may be huge pages for RAMBlocks that are backed by
2718 * hugetlbfs.
a7180877
DDAG
2719 * To make it atomic, the data is read into a temporary page
2720 * that's moved into place later.
2721 * The migration protocol uses, possibly smaller, target-pages
2722 * however the source ensures it always sends all the components
2723 * of a host page in order.
2724 */
2725 page_buffer = postcopy_host_page +
28abd200 2726 ((uintptr_t)host & (block->page_size - 1));
a7180877 2727 /* If all TP are zero then we can optimise the place */
28abd200 2728 if (!((uintptr_t)host & (block->page_size - 1))) {
a7180877 2729 all_zero = true;
c53b7ddc
DDAG
2730 } else {
2731 /* not the 1st TP within the HP */
2732 if (host != (last_host + TARGET_PAGE_SIZE)) {
9af9e0fe 2733 error_report("Non-sequential target page %p/%p",
c53b7ddc
DDAG
2734 host, last_host);
2735 ret = -EINVAL;
2736 break;
2737 }
a7180877
DDAG
2738 }
2739
c53b7ddc 2740
a7180877
DDAG
2741 /*
2742 * If it's the last part of a host page then we place the host
2743 * page
2744 */
2745 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
28abd200 2746 (block->page_size - 1)) == 0;
a7180877
DDAG
2747 place_source = postcopy_host_page;
2748 }
c53b7ddc 2749 last_host = host;
a7180877
DDAG
2750
2751 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
bb890ed5 2752 case RAM_SAVE_FLAG_ZERO:
a7180877
DDAG
2753 ch = qemu_get_byte(f);
2754 memset(page_buffer, ch, TARGET_PAGE_SIZE);
2755 if (ch) {
2756 all_zero = false;
2757 }
2758 break;
2759
2760 case RAM_SAVE_FLAG_PAGE:
2761 all_zero = false;
2762 if (!place_needed || !matching_page_sizes) {
2763 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
2764 } else {
2765 /* Avoids the qemu_file copy during postcopy, which is
2766 * going to do a copy later; can only do it when we
2767 * do this read in one go (matching page sizes)
2768 */
2769 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
2770 TARGET_PAGE_SIZE);
2771 }
2772 break;
2773 case RAM_SAVE_FLAG_EOS:
2774 /* normal exit */
2775 break;
2776 default:
2777 error_report("Unknown combination of migration flags: %#x"
2778 " (postcopy mode)", flags);
2779 ret = -EINVAL;
2780 }
2781
2782 if (place_needed) {
2783 /* This gets called at the last target page in the host page */
df9ff5e1
DDAG
2784 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
2785
a7180877 2786 if (all_zero) {
df9ff5e1 2787 ret = postcopy_place_page_zero(mis, place_dest,
8be4620b 2788 block);
a7180877 2789 } else {
df9ff5e1 2790 ret = postcopy_place_page(mis, place_dest,
8be4620b 2791 place_source, block);
a7180877
DDAG
2792 }
2793 }
2794 if (!ret) {
2795 ret = qemu_file_get_error(f);
2796 }
2797 }
2798
2799 return ret;
2800}
2801
acab30b8
DHB
2802static bool postcopy_is_advised(void)
2803{
2804 PostcopyState ps = postcopy_state_get();
2805 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
2806}
2807
2808static bool postcopy_is_running(void)
2809{
2810 PostcopyState ps = postcopy_state_get();
2811 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
2812}
2813
56e93d26
JQ
2814static int ram_load(QEMUFile *f, void *opaque, int version_id)
2815{
edc60127 2816 int flags = 0, ret = 0, invalid_flags = 0;
56e93d26
JQ
2817 static uint64_t seq_iter;
2818 int len = 0;
a7180877
DDAG
2819 /*
2820 * If system is running in postcopy mode, page inserts to host memory must
2821 * be atomic
2822 */
acab30b8 2823 bool postcopy_running = postcopy_is_running();
ef08fb38 2824 /* ADVISE is earlier, it shows the source has the postcopy capability on */
acab30b8 2825 bool postcopy_advised = postcopy_is_advised();
56e93d26
JQ
2826
2827 seq_iter++;
2828
2829 if (version_id != 4) {
2830 ret = -EINVAL;
2831 }
2832
edc60127
JQ
2833 if (!migrate_use_compression()) {
2834 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
2835 }
56e93d26
JQ
2836 /* This RCU critical section can be very long running.
2837 * When RCU reclaims in the code start to become numerous,
2838 * it will be necessary to reduce the granularity of this
2839 * critical section.
2840 */
2841 rcu_read_lock();
a7180877
DDAG
2842
2843 if (postcopy_running) {
2844 ret = ram_load_postcopy(f);
2845 }
2846
2847 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
56e93d26 2848 ram_addr_t addr, total_ram_bytes;
a776aa15 2849 void *host = NULL;
56e93d26
JQ
2850 uint8_t ch;
2851
2852 addr = qemu_get_be64(f);
2853 flags = addr & ~TARGET_PAGE_MASK;
2854 addr &= TARGET_PAGE_MASK;
2855
edc60127
JQ
2856 if (flags & invalid_flags) {
2857 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
2858 error_report("Received an unexpected compressed page");
2859 }
2860
2861 ret = -EINVAL;
2862 break;
2863 }
2864
bb890ed5 2865 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
a776aa15 2866 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4c4bad48
HZ
2867 RAMBlock *block = ram_block_from_stream(f, flags);
2868
2869 host = host_from_ram_block_offset(block, addr);
a776aa15
DDAG
2870 if (!host) {
2871 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2872 ret = -EINVAL;
2873 break;
2874 }
f9494614 2875 ramblock_recv_bitmap_set(block, host);
1db9d8e5 2876 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
a776aa15
DDAG
2877 }
2878
56e93d26
JQ
2879 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2880 case RAM_SAVE_FLAG_MEM_SIZE:
2881 /* Synchronize RAM block list */
2882 total_ram_bytes = addr;
2883 while (!ret && total_ram_bytes) {
2884 RAMBlock *block;
56e93d26
JQ
2885 char id[256];
2886 ram_addr_t length;
2887
2888 len = qemu_get_byte(f);
2889 qemu_get_buffer(f, (uint8_t *)id, len);
2890 id[len] = 0;
2891 length = qemu_get_be64(f);
2892
e3dd7493
DDAG
2893 block = qemu_ram_block_by_name(id);
2894 if (block) {
2895 if (length != block->used_length) {
2896 Error *local_err = NULL;
56e93d26 2897
fa53a0e5 2898 ret = qemu_ram_resize(block, length,
e3dd7493
DDAG
2899 &local_err);
2900 if (local_err) {
2901 error_report_err(local_err);
56e93d26 2902 }
56e93d26 2903 }
ef08fb38
DDAG
2904 /* For postcopy we need to check hugepage sizes match */
2905 if (postcopy_advised &&
2906 block->page_size != qemu_host_page_size) {
2907 uint64_t remote_page_size = qemu_get_be64(f);
2908 if (remote_page_size != block->page_size) {
2909 error_report("Mismatched RAM page size %s "
2910 "(local) %zd != %" PRId64,
2911 id, block->page_size,
2912 remote_page_size);
2913 ret = -EINVAL;
2914 }
2915 }
e3dd7493
DDAG
2916 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
2917 block->idstr);
2918 } else {
56e93d26
JQ
2919 error_report("Unknown ramblock \"%s\", cannot "
2920 "accept migration", id);
2921 ret = -EINVAL;
2922 }
2923
2924 total_ram_bytes -= length;
2925 }
2926 break;
a776aa15 2927
bb890ed5 2928 case RAM_SAVE_FLAG_ZERO:
56e93d26
JQ
2929 ch = qemu_get_byte(f);
2930 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
2931 break;
a776aa15 2932
56e93d26 2933 case RAM_SAVE_FLAG_PAGE:
56e93d26
JQ
2934 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
2935 break;
56e93d26 2936
a776aa15 2937 case RAM_SAVE_FLAG_COMPRESS_PAGE:
56e93d26
JQ
2938 len = qemu_get_be32(f);
2939 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
2940 error_report("Invalid compressed data length: %d", len);
2941 ret = -EINVAL;
2942 break;
2943 }
c1bc6626 2944 decompress_data_with_multi_threads(f, host, len);
56e93d26 2945 break;
a776aa15 2946
56e93d26 2947 case RAM_SAVE_FLAG_XBZRLE:
56e93d26
JQ
2948 if (load_xbzrle(f, addr, host) < 0) {
2949 error_report("Failed to decompress XBZRLE page at "
2950 RAM_ADDR_FMT, addr);
2951 ret = -EINVAL;
2952 break;
2953 }
2954 break;
2955 case RAM_SAVE_FLAG_EOS:
2956 /* normal exit */
2957 break;
2958 default:
2959 if (flags & RAM_SAVE_FLAG_HOOK) {
632e3a5c 2960 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
56e93d26
JQ
2961 } else {
2962 error_report("Unknown combination of migration flags: %#x",
2963 flags);
2964 ret = -EINVAL;
2965 }
2966 }
2967 if (!ret) {
2968 ret = qemu_file_get_error(f);
2969 }
2970 }
2971
5533b2e9 2972 wait_for_decompress_done();
56e93d26 2973 rcu_read_unlock();
55c4446b 2974 trace_ram_load_complete(ret, seq_iter);
56e93d26
JQ
2975 return ret;
2976}
2977
c6467627
VSO
2978static bool ram_has_postcopy(void *opaque)
2979{
2980 return migrate_postcopy_ram();
2981}
2982
56e93d26 2983static SaveVMHandlers savevm_ram_handlers = {
9907e842 2984 .save_setup = ram_save_setup,
56e93d26 2985 .save_live_iterate = ram_save_iterate,
763c906b 2986 .save_live_complete_postcopy = ram_save_complete,
a3e06c3d 2987 .save_live_complete_precopy = ram_save_complete,
c6467627 2988 .has_postcopy = ram_has_postcopy,
56e93d26
JQ
2989 .save_live_pending = ram_save_pending,
2990 .load_state = ram_load,
f265e0e4
JQ
2991 .save_cleanup = ram_save_cleanup,
2992 .load_setup = ram_load_setup,
2993 .load_cleanup = ram_load_cleanup,
56e93d26
JQ
2994};
2995
2996void ram_mig_init(void)
2997{
2998 qemu_mutex_init(&XBZRLE.lock);
6f37bb8b 2999 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
56e93d26 3000}