]> git.proxmox.com Git - mirror_qemu.git/blame - migration/ram.c
migration: extract ram_load_precopy
[mirror_qemu.git] / migration / ram.c
CommitLineData
56e93d26
JQ
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
76cc7b58
JQ
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
56e93d26
JQ
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
e688df6b 28
1393a485 29#include "qemu/osdep.h"
33c11879 30#include "cpu.h"
56e93d26 31#include <zlib.h>
f348b6d1 32#include "qemu/cutils.h"
56e93d26
JQ
33#include "qemu/bitops.h"
34#include "qemu/bitmap.h"
7205c9ec 35#include "qemu/main-loop.h"
56eb90af 36#include "qemu/pmem.h"
709e3fe8 37#include "xbzrle.h"
7b1e1a22 38#include "ram.h"
6666c96a 39#include "migration.h"
71bb07db 40#include "socket.h"
f2a8f0a6 41#include "migration/register.h"
7b1e1a22 42#include "migration/misc.h"
08a0aee1 43#include "qemu-file.h"
be07b0ac 44#include "postcopy-ram.h"
53d37d36 45#include "page_cache.h"
56e93d26 46#include "qemu/error-report.h"
e688df6b 47#include "qapi/error.h"
9af23989 48#include "qapi/qapi-events-migration.h"
8acabf69 49#include "qapi/qmp/qerror.h"
56e93d26 50#include "trace.h"
56e93d26 51#include "exec/ram_addr.h"
f9494614 52#include "exec/target_page.h"
56e93d26 53#include "qemu/rcu_queue.h"
a91246c9 54#include "migration/colo.h"
53d37d36 55#include "block.h"
af8b7d2b
JQ
56#include "sysemu/sysemu.h"
57#include "qemu/uuid.h"
edd090c7 58#include "savevm.h"
b9ee2f7d 59#include "qemu/iov.h"
56e93d26 60
56e93d26
JQ
61/***********************************************************/
62/* ram save/restore */
63
bb890ed5
JQ
64/* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
68 */
69
56e93d26 70#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
bb890ed5 71#define RAM_SAVE_FLAG_ZERO 0x02
56e93d26
JQ
72#define RAM_SAVE_FLAG_MEM_SIZE 0x04
73#define RAM_SAVE_FLAG_PAGE 0x08
74#define RAM_SAVE_FLAG_EOS 0x10
75#define RAM_SAVE_FLAG_CONTINUE 0x20
76#define RAM_SAVE_FLAG_XBZRLE 0x40
77/* 0x80 is reserved in migration.h start with 0x100 next */
78#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79
56e93d26
JQ
80static inline bool is_zero_range(uint8_t *p, uint64_t size)
81{
a1febc49 82 return buffer_is_zero(p, size);
56e93d26
JQ
83}
84
9360447d
JQ
85XBZRLECacheStats xbzrle_counters;
86
56e93d26
JQ
87/* struct contains XBZRLE cache and a static page
88 used by the compression */
89static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
c00e0928
JQ
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
f265e0e4
JQ
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
56e93d26
JQ
101} XBZRLE;
102
56e93d26
JQ
103static void XBZRLE_cache_lock(void)
104{
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
107}
108
109static void XBZRLE_cache_unlock(void)
110{
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
113}
114
3d0684b2
JQ
115/**
116 * xbzrle_cache_resize: resize the xbzrle cache
117 *
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
122 *
c9dede2d 123 * Returns 0 for success or -1 for error
3d0684b2
JQ
124 *
125 * @new_size: new cache size
8acabf69 126 * @errp: set *errp if the check failed, with reason
56e93d26 127 */
c9dede2d 128int xbzrle_cache_resize(int64_t new_size, Error **errp)
56e93d26
JQ
129{
130 PageCache *new_cache;
c9dede2d 131 int64_t ret = 0;
56e93d26 132
8acabf69
JQ
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
138 }
139
2a313e5c
JQ
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
c9dede2d 142 return 0;
2a313e5c
JQ
143 }
144
56e93d26
JQ
145 XBZRLE_cache_lock();
146
147 if (XBZRLE.cache != NULL) {
80f8dfde 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
56e93d26 149 if (!new_cache) {
56e93d26
JQ
150 ret = -1;
151 goto out;
152 }
153
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
156 }
56e93d26
JQ
157out:
158 XBZRLE_cache_unlock();
159 return ret;
160}
161
fbd162e6
YK
162static bool ramblock_is_ignored(RAMBlock *block)
163{
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
166}
167
b895de50 168/* Should be holding either ram_list.mutex, or the RCU lock. */
fbd162e6
YK
169#define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
172
b895de50 173#define RAMBLOCK_FOREACH_MIGRATABLE(block) \
343f632c 174 INTERNAL_RAMBLOCK_FOREACH(block) \
b895de50
CLG
175 if (!qemu_ram_is_migratable(block)) {} else
176
343f632c
DDAG
177#undef RAMBLOCK_FOREACH
178
fbd162e6
YK
179int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
180{
181 RAMBlock *block;
182 int ret = 0;
183
184 rcu_read_lock();
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
189 }
190 }
191 rcu_read_unlock();
192 return ret;
193}
194
f9494614
AP
195static void ramblock_recv_map_init(void)
196{
197 RAMBlock *rb;
198
fbd162e6 199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
202 }
203}
204
205int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
206{
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
208 rb->receivedmap);
209}
210
1cba9f6e
DDAG
211bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
212{
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
214}
215
f9494614
AP
216void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
217{
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
219}
220
221void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
222 size_t nr)
223{
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
226 nr);
227}
228
a335debb
PX
229#define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
230
231/*
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
233 *
234 * Returns >0 if success with sent bytes, or <0 if error.
235 */
236int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
238{
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
241 uint64_t size;
242
243 if (!block) {
244 error_report("%s: invalid block name: %s", __func__, block_name);
245 return -1;
246 }
247
248 nbits = block->used_length >> TARGET_PAGE_BITS;
249
250 /*
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
254 */
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
256
257 /*
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
261 */
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
263
264 /* Size of the bitmap, in bytes */
a725ef9f 265 size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
266
267 /*
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
271 * 64bit machines.
272 */
273 size = ROUND_UP(size, 8);
274
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
277 /*
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
280 */
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
282 qemu_fflush(file);
283
bf269906 284 g_free(le_bitmap);
a335debb
PX
285
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
288 }
289
290 return size + sizeof(size);
291}
292
ec481c6c
JQ
293/*
294 * An outstanding page request, on the source, having been received
295 * and queued
296 */
297struct RAMSrcPageRequest {
298 RAMBlock *rb;
299 hwaddr offset;
300 hwaddr len;
301
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
303};
304
6f37bb8b
JQ
305/* State of RAM for migration */
306struct RAMState {
204b88b8
JQ
307 /* QEMUFile used for this migration */
308 QEMUFile *f;
6f37bb8b
JQ
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
269ace29
JQ
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
6f37bb8b
JQ
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
318 bool ram_bulk_stage;
6eeb63f7
WW
319 /* The free page optimization is enabled */
320 bool fpo_enabled;
8d820d6f
JQ
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
f664da80
JQ
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
eac74159 326 /* bytes transferred at start_time */
c4bdf0cf 327 uint64_t bytes_xfer_prev;
a66cd90c 328 /* number of dirty pages since start_time */
68908ed6 329 uint64_t num_dirty_pages_period;
b5833fde
JQ
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
76e03000
XG
332
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
340
be8b02ed
XG
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
9360447d 345 /* number of dirty bits in the bitmap */
2dfaf12e 346 uint64_t migration_dirty_pages;
386a907b 347 /* Protects modification of the bitmap and migration dirty pages */
108cfae0 348 QemuMutex bitmap_mutex;
68a098f3
JQ
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
ec481c6c
JQ
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
b58deb34 353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
6f37bb8b
JQ
354};
355typedef struct RAMState RAMState;
356
53518d94 357static RAMState *ram_state;
6f37bb8b 358
bd227060
WW
359static NotifierWithReturnList precopy_notifier_list;
360
361void precopy_infrastructure_init(void)
362{
363 notifier_with_return_list_init(&precopy_notifier_list);
364}
365
366void precopy_add_notifier(NotifierWithReturn *n)
367{
368 notifier_with_return_list_add(&precopy_notifier_list, n);
369}
370
371void precopy_remove_notifier(NotifierWithReturn *n)
372{
373 notifier_with_return_remove(n);
374}
375
376int precopy_notify(PrecopyNotifyReason reason, Error **errp)
377{
378 PrecopyNotifyData pnd;
379 pnd.reason = reason;
380 pnd.errp = errp;
381
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
383}
384
6eeb63f7
WW
385void precopy_enable_free_page_optimization(void)
386{
387 if (!ram_state) {
388 return;
389 }
390
391 ram_state->fpo_enabled = true;
392}
393
9edabd4d 394uint64_t ram_bytes_remaining(void)
2f4fde93 395{
bae416e5
DDAG
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
397 0;
2f4fde93
JQ
398}
399
9360447d 400MigrationStats ram_counters;
96506894 401
b8fb8cb7
DDAG
402/* used by the search for pages to send */
403struct PageSearchStatus {
404 /* Current block being searched */
405 RAMBlock *block;
a935e30f
JQ
406 /* Current page to search from */
407 unsigned long page;
b8fb8cb7
DDAG
408 /* Set once we wrap around */
409 bool complete_round;
410};
411typedef struct PageSearchStatus PageSearchStatus;
412
76e03000
XG
413CompressionStats compression_counters;
414
56e93d26 415struct CompressParam {
56e93d26 416 bool done;
90e56fb4 417 bool quit;
5e5fdcff 418 bool zero_page;
56e93d26
JQ
419 QEMUFile *file;
420 QemuMutex mutex;
421 QemuCond cond;
422 RAMBlock *block;
423 ram_addr_t offset;
34ab9e97
XG
424
425 /* internally used fields */
dcaf446e 426 z_stream stream;
34ab9e97 427 uint8_t *originbuf;
56e93d26
JQ
428};
429typedef struct CompressParam CompressParam;
430
431struct DecompressParam {
73a8912b 432 bool done;
90e56fb4 433 bool quit;
56e93d26
JQ
434 QemuMutex mutex;
435 QemuCond cond;
436 void *des;
d341d9f3 437 uint8_t *compbuf;
56e93d26 438 int len;
797ca154 439 z_stream stream;
56e93d26
JQ
440};
441typedef struct DecompressParam DecompressParam;
442
443static CompressParam *comp_param;
444static QemuThread *compress_threads;
445/* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
448 */
0d9f9a5c
LL
449static QemuMutex comp_done_lock;
450static QemuCond comp_done_cond;
56e93d26
JQ
451/* The empty QEMUFileOps will be used by file in CompressParam */
452static const QEMUFileOps empty_ops = { };
453
34ab9e97 454static QEMUFile *decomp_file;
56e93d26
JQ
455static DecompressParam *decomp_param;
456static QemuThread *decompress_threads;
73a8912b
LL
457static QemuMutex decomp_done_lock;
458static QemuCond decomp_done_cond;
56e93d26 459
5e5fdcff 460static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 461 ram_addr_t offset, uint8_t *source_buf);
56e93d26
JQ
462
463static void *do_data_compress(void *opaque)
464{
465 CompressParam *param = opaque;
a7a9a88f
LL
466 RAMBlock *block;
467 ram_addr_t offset;
5e5fdcff 468 bool zero_page;
56e93d26 469
a7a9a88f 470 qemu_mutex_lock(&param->mutex);
90e56fb4 471 while (!param->quit) {
a7a9a88f
LL
472 if (param->block) {
473 block = param->block;
474 offset = param->offset;
475 param->block = NULL;
476 qemu_mutex_unlock(&param->mutex);
477
5e5fdcff
XG
478 zero_page = do_compress_ram_page(param->file, &param->stream,
479 block, offset, param->originbuf);
a7a9a88f 480
0d9f9a5c 481 qemu_mutex_lock(&comp_done_lock);
a7a9a88f 482 param->done = true;
5e5fdcff 483 param->zero_page = zero_page;
0d9f9a5c
LL
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
486
487 qemu_mutex_lock(&param->mutex);
488 } else {
56e93d26
JQ
489 qemu_cond_wait(&param->cond, &param->mutex);
490 }
56e93d26 491 }
a7a9a88f 492 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
493
494 return NULL;
495}
496
f0afa331 497static void compress_threads_save_cleanup(void)
56e93d26
JQ
498{
499 int i, thread_count;
500
05306935 501 if (!migrate_use_compression() || !comp_param) {
56e93d26
JQ
502 return;
503 }
05306935 504
56e93d26
JQ
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
dcaf446e
XG
507 /*
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
510 */
511 if (!comp_param[i].file) {
512 break;
513 }
05306935
FL
514
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
519
56e93d26 520 qemu_thread_join(compress_threads + i);
56e93d26
JQ
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
dcaf446e 523 deflateEnd(&comp_param[i].stream);
34ab9e97 524 g_free(comp_param[i].originbuf);
dcaf446e
XG
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
56e93d26 527 }
0d9f9a5c
LL
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
56e93d26
JQ
530 g_free(compress_threads);
531 g_free(comp_param);
56e93d26
JQ
532 compress_threads = NULL;
533 comp_param = NULL;
56e93d26
JQ
534}
535
dcaf446e 536static int compress_threads_save_setup(void)
56e93d26
JQ
537{
538 int i, thread_count;
539
540 if (!migrate_use_compression()) {
dcaf446e 541 return 0;
56e93d26 542 }
56e93d26
JQ
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
0d9f9a5c
LL
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
56e93d26 548 for (i = 0; i < thread_count; i++) {
34ab9e97
XG
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
551 goto exit;
552 }
553
dcaf446e
XG
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
34ab9e97 556 g_free(comp_param[i].originbuf);
dcaf446e
XG
557 goto exit;
558 }
559
e110aa91
C
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
56e93d26
JQ
562 */
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
90e56fb4 565 comp_param[i].quit = false;
56e93d26
JQ
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
571 }
dcaf446e
XG
572 return 0;
573
574exit:
575 compress_threads_save_cleanup();
576 return -1;
56e93d26
JQ
577}
578
f986c3d2
JQ
579/* Multiple fd's */
580
af8b7d2b
JQ
581#define MULTIFD_MAGIC 0x11223344U
582#define MULTIFD_VERSION 1
583
6df264ac
JQ
584#define MULTIFD_FLAG_SYNC (1 << 0)
585
efd1a1d6 586/* This value needs to be a multiple of qemu_target_page_size() */
4b0c7264 587#define MULTIFD_PACKET_SIZE (512 * 1024)
efd1a1d6 588
af8b7d2b
JQ
589typedef struct {
590 uint32_t magic;
591 uint32_t version;
592 unsigned char uuid[16]; /* QemuUUID */
593 uint8_t id;
5fbd8b4b
JQ
594 uint8_t unused1[7]; /* Reserved for future use */
595 uint64_t unused2[4]; /* Reserved for future use */
af8b7d2b
JQ
596} __attribute__((packed)) MultiFDInit_t;
597
2a26c979
JQ
598typedef struct {
599 uint32_t magic;
600 uint32_t version;
601 uint32_t flags;
6f862692
JQ
602 /* maximum number of allocated pages */
603 uint32_t pages_alloc;
604 uint32_t pages_used;
2a34ee59
JQ
605 /* size of the next packet that contains pages */
606 uint32_t next_packet_size;
2a26c979 607 uint64_t packet_num;
5fbd8b4b 608 uint64_t unused[4]; /* Reserved for future use */
2a26c979
JQ
609 char ramblock[256];
610 uint64_t offset[];
611} __attribute__((packed)) MultiFDPacket_t;
612
34c55a94
JQ
613typedef struct {
614 /* number of used pages */
615 uint32_t used;
616 /* number of allocated pages */
617 uint32_t allocated;
618 /* global number of generated multifd packets */
619 uint64_t packet_num;
620 /* offset of each page */
621 ram_addr_t *offset;
622 /* pointer to each page */
623 struct iovec *iov;
624 RAMBlock *block;
625} MultiFDPages_t;
626
8c4598f2
JQ
627typedef struct {
628 /* this fields are not changed once the thread is created */
629 /* channel number */
f986c3d2 630 uint8_t id;
8c4598f2 631 /* channel thread name */
f986c3d2 632 char *name;
8c4598f2 633 /* channel thread id */
f986c3d2 634 QemuThread thread;
8c4598f2 635 /* communication channel */
60df2d4a 636 QIOChannel *c;
8c4598f2 637 /* sem where to wait for more work */
f986c3d2 638 QemuSemaphore sem;
8c4598f2 639 /* this mutex protects the following parameters */
f986c3d2 640 QemuMutex mutex;
8c4598f2 641 /* is this channel thread running */
66770707 642 bool running;
8c4598f2 643 /* should this thread finish */
f986c3d2 644 bool quit;
0beb5ed3
JQ
645 /* thread has work to do */
646 int pending_job;
34c55a94
JQ
647 /* array of pages to sent */
648 MultiFDPages_t *pages;
2a26c979
JQ
649 /* packet allocated len */
650 uint32_t packet_len;
651 /* pointer to the packet */
652 MultiFDPacket_t *packet;
653 /* multifd flags for each packet */
654 uint32_t flags;
2a34ee59
JQ
655 /* size of the next packet that contains pages */
656 uint32_t next_packet_size;
2a26c979
JQ
657 /* global number of generated multifd packets */
658 uint64_t packet_num;
408ea6ae
JQ
659 /* thread local variables */
660 /* packets sent through this channel */
661 uint64_t num_packets;
662 /* pages sent through this channel */
663 uint64_t num_pages;
8c4598f2
JQ
664} MultiFDSendParams;
665
666typedef struct {
667 /* this fields are not changed once the thread is created */
668 /* channel number */
669 uint8_t id;
670 /* channel thread name */
671 char *name;
672 /* channel thread id */
673 QemuThread thread;
674 /* communication channel */
675 QIOChannel *c;
8c4598f2
JQ
676 /* this mutex protects the following parameters */
677 QemuMutex mutex;
678 /* is this channel thread running */
679 bool running;
3c3ca25d
JQ
680 /* should this thread finish */
681 bool quit;
34c55a94
JQ
682 /* array of pages to receive */
683 MultiFDPages_t *pages;
2a26c979
JQ
684 /* packet allocated len */
685 uint32_t packet_len;
686 /* pointer to the packet */
687 MultiFDPacket_t *packet;
688 /* multifd flags for each packet */
689 uint32_t flags;
690 /* global number of generated multifd packets */
691 uint64_t packet_num;
408ea6ae 692 /* thread local variables */
2a34ee59
JQ
693 /* size of the next packet that contains pages */
694 uint32_t next_packet_size;
408ea6ae
JQ
695 /* packets sent through this channel */
696 uint64_t num_packets;
697 /* pages sent through this channel */
698 uint64_t num_pages;
6df264ac
JQ
699 /* syncs main thread and channels */
700 QemuSemaphore sem_sync;
8c4598f2 701} MultiFDRecvParams;
f986c3d2 702
af8b7d2b
JQ
703static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
704{
705 MultiFDInit_t msg;
706 int ret;
707
708 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
709 msg.version = cpu_to_be32(MULTIFD_VERSION);
710 msg.id = p->id;
711 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
712
713 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
714 if (ret != 0) {
715 return -1;
716 }
717 return 0;
718}
719
720static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
721{
722 MultiFDInit_t msg;
723 int ret;
724
725 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
726 if (ret != 0) {
727 return -1;
728 }
729
341ba0df
PM
730 msg.magic = be32_to_cpu(msg.magic);
731 msg.version = be32_to_cpu(msg.version);
af8b7d2b
JQ
732
733 if (msg.magic != MULTIFD_MAGIC) {
734 error_setg(errp, "multifd: received packet magic %x "
735 "expected %x", msg.magic, MULTIFD_MAGIC);
736 return -1;
737 }
738
739 if (msg.version != MULTIFD_VERSION) {
740 error_setg(errp, "multifd: received packet version %d "
741 "expected %d", msg.version, MULTIFD_VERSION);
742 return -1;
743 }
744
745 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
746 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
747 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
748
749 error_setg(errp, "multifd: received uuid '%s' and expected "
750 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
751 g_free(uuid);
752 g_free(msg_uuid);
753 return -1;
754 }
755
756 if (msg.id > migrate_multifd_channels()) {
757 error_setg(errp, "multifd: received channel version %d "
758 "expected %d", msg.version, MULTIFD_VERSION);
759 return -1;
760 }
761
762 return msg.id;
763}
764
34c55a94
JQ
765static MultiFDPages_t *multifd_pages_init(size_t size)
766{
767 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
768
769 pages->allocated = size;
770 pages->iov = g_new0(struct iovec, size);
771 pages->offset = g_new0(ram_addr_t, size);
772
773 return pages;
774}
775
776static void multifd_pages_clear(MultiFDPages_t *pages)
777{
778 pages->used = 0;
779 pages->allocated = 0;
780 pages->packet_num = 0;
781 pages->block = NULL;
782 g_free(pages->iov);
783 pages->iov = NULL;
784 g_free(pages->offset);
785 pages->offset = NULL;
786 g_free(pages);
787}
788
2a26c979
JQ
789static void multifd_send_fill_packet(MultiFDSendParams *p)
790{
791 MultiFDPacket_t *packet = p->packet;
7ed379b2 792 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
2a26c979
JQ
793 int i;
794
795 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
796 packet->version = cpu_to_be32(MULTIFD_VERSION);
797 packet->flags = cpu_to_be32(p->flags);
7ed379b2 798 packet->pages_alloc = cpu_to_be32(page_max);
6f862692 799 packet->pages_used = cpu_to_be32(p->pages->used);
2a34ee59 800 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
2a26c979
JQ
801 packet->packet_num = cpu_to_be64(p->packet_num);
802
803 if (p->pages->block) {
804 strncpy(packet->ramblock, p->pages->block->idstr, 256);
805 }
806
807 for (i = 0; i < p->pages->used; i++) {
808 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
809 }
810}
811
812static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
813{
814 MultiFDPacket_t *packet = p->packet;
7ed379b2 815 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
2a26c979
JQ
816 RAMBlock *block;
817 int i;
818
341ba0df 819 packet->magic = be32_to_cpu(packet->magic);
2a26c979
JQ
820 if (packet->magic != MULTIFD_MAGIC) {
821 error_setg(errp, "multifd: received packet "
822 "magic %x and expected magic %x",
823 packet->magic, MULTIFD_MAGIC);
824 return -1;
825 }
826
341ba0df 827 packet->version = be32_to_cpu(packet->version);
2a26c979
JQ
828 if (packet->version != MULTIFD_VERSION) {
829 error_setg(errp, "multifd: received packet "
830 "version %d and expected version %d",
831 packet->version, MULTIFD_VERSION);
832 return -1;
833 }
834
835 p->flags = be32_to_cpu(packet->flags);
836
6f862692 837 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
7ed379b2
JQ
838 /*
839 * If we recevied a packet that is 100 times bigger than expected
840 * just stop migration. It is a magic number.
841 */
842 if (packet->pages_alloc > pages_max * 100) {
2a26c979 843 error_setg(errp, "multifd: received packet "
7ed379b2
JQ
844 "with size %d and expected a maximum size of %d",
845 packet->pages_alloc, pages_max * 100) ;
2a26c979
JQ
846 return -1;
847 }
7ed379b2
JQ
848 /*
849 * We received a packet that is bigger than expected but inside
850 * reasonable limits (see previous comment). Just reallocate.
851 */
852 if (packet->pages_alloc > p->pages->allocated) {
853 multifd_pages_clear(p->pages);
f151f8ac 854 p->pages = multifd_pages_init(packet->pages_alloc);
7ed379b2 855 }
2a26c979 856
6f862692
JQ
857 p->pages->used = be32_to_cpu(packet->pages_used);
858 if (p->pages->used > packet->pages_alloc) {
2a26c979 859 error_setg(errp, "multifd: received packet "
6f862692
JQ
860 "with %d pages and expected maximum pages are %d",
861 p->pages->used, packet->pages_alloc) ;
2a26c979
JQ
862 return -1;
863 }
864
2a34ee59 865 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
2a26c979
JQ
866 p->packet_num = be64_to_cpu(packet->packet_num);
867
868 if (p->pages->used) {
869 /* make sure that ramblock is 0 terminated */
870 packet->ramblock[255] = 0;
871 block = qemu_ram_block_by_name(packet->ramblock);
872 if (!block) {
873 error_setg(errp, "multifd: unknown ram block %s",
874 packet->ramblock);
875 return -1;
876 }
877 }
878
879 for (i = 0; i < p->pages->used; i++) {
880 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
881
882 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
883 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
884 " (max " RAM_ADDR_FMT ")",
885 offset, block->max_length);
886 return -1;
887 }
888 p->pages->iov[i].iov_base = block->host + offset;
889 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
890 }
891
892 return 0;
893}
894
f986c3d2
JQ
895struct {
896 MultiFDSendParams *params;
34c55a94
JQ
897 /* array of pages to sent */
898 MultiFDPages_t *pages;
6df264ac
JQ
899 /* syncs main thread and channels */
900 QemuSemaphore sem_sync;
901 /* global number of generated multifd packets */
902 uint64_t packet_num;
b9ee2f7d
JQ
903 /* send channels ready */
904 QemuSemaphore channels_ready;
f986c3d2
JQ
905} *multifd_send_state;
906
b9ee2f7d
JQ
907/*
908 * How we use multifd_send_state->pages and channel->pages?
909 *
910 * We create a pages for each channel, and a main one. Each time that
911 * we need to send a batch of pages we interchange the ones between
912 * multifd_send_state and the channel that is sending it. There are
913 * two reasons for that:
914 * - to not have to do so many mallocs during migration
915 * - to make easier to know what to free at the end of migration
916 *
917 * This way we always know who is the owner of each "pages" struct,
a5f7b1a6 918 * and we don't need any locking. It belongs to the migration thread
b9ee2f7d
JQ
919 * or to the channel thread. Switching is safe because the migration
920 * thread is using the channel mutex when changing it, and the channel
921 * have to had finish with its own, otherwise pending_job can't be
922 * false.
923 */
924
713f762a 925static int multifd_send_pages(void)
b9ee2f7d
JQ
926{
927 int i;
928 static int next_channel;
929 MultiFDSendParams *p = NULL; /* make happy gcc */
930 MultiFDPages_t *pages = multifd_send_state->pages;
931 uint64_t transferred;
932
933 qemu_sem_wait(&multifd_send_state->channels_ready);
934 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
935 p = &multifd_send_state->params[i];
936
937 qemu_mutex_lock(&p->mutex);
713f762a
IR
938 if (p->quit) {
939 error_report("%s: channel %d has already quit!", __func__, i);
940 qemu_mutex_unlock(&p->mutex);
941 return -1;
942 }
b9ee2f7d
JQ
943 if (!p->pending_job) {
944 p->pending_job++;
945 next_channel = (i + 1) % migrate_multifd_channels();
946 break;
947 }
948 qemu_mutex_unlock(&p->mutex);
949 }
950 p->pages->used = 0;
951
952 p->packet_num = multifd_send_state->packet_num++;
953 p->pages->block = NULL;
954 multifd_send_state->pages = p->pages;
955 p->pages = pages;
4fcefd44 956 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
b9ee2f7d
JQ
957 ram_counters.multifd_bytes += transferred;
958 ram_counters.transferred += transferred;;
959 qemu_mutex_unlock(&p->mutex);
960 qemu_sem_post(&p->sem);
713f762a
IR
961
962 return 1;
b9ee2f7d
JQ
963}
964
713f762a 965static int multifd_queue_page(RAMBlock *block, ram_addr_t offset)
b9ee2f7d
JQ
966{
967 MultiFDPages_t *pages = multifd_send_state->pages;
968
969 if (!pages->block) {
970 pages->block = block;
971 }
972
973 if (pages->block == block) {
974 pages->offset[pages->used] = offset;
975 pages->iov[pages->used].iov_base = block->host + offset;
976 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
977 pages->used++;
978
979 if (pages->used < pages->allocated) {
713f762a 980 return 1;
b9ee2f7d
JQ
981 }
982 }
983
713f762a
IR
984 if (multifd_send_pages() < 0) {
985 return -1;
986 }
b9ee2f7d
JQ
987
988 if (pages->block != block) {
713f762a 989 return multifd_queue_page(block, offset);
b9ee2f7d 990 }
713f762a
IR
991
992 return 1;
b9ee2f7d
JQ
993}
994
66770707 995static void multifd_send_terminate_threads(Error *err)
f986c3d2
JQ
996{
997 int i;
998
7a169d74
JQ
999 if (err) {
1000 MigrationState *s = migrate_get_current();
1001 migrate_set_error(s, err);
1002 if (s->state == MIGRATION_STATUS_SETUP ||
1003 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
1004 s->state == MIGRATION_STATUS_DEVICE ||
1005 s->state == MIGRATION_STATUS_ACTIVE) {
1006 migrate_set_state(&s->state, s->state,
1007 MIGRATION_STATUS_FAILED);
1008 }
1009 }
1010
66770707 1011 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1012 MultiFDSendParams *p = &multifd_send_state->params[i];
1013
1014 qemu_mutex_lock(&p->mutex);
1015 p->quit = true;
1016 qemu_sem_post(&p->sem);
1017 qemu_mutex_unlock(&p->mutex);
1018 }
1019}
1020
1398b2e3 1021void multifd_save_cleanup(void)
f986c3d2
JQ
1022{
1023 int i;
f986c3d2
JQ
1024
1025 if (!migrate_use_multifd()) {
1398b2e3 1026 return;
f986c3d2 1027 }
66770707
JQ
1028 multifd_send_terminate_threads(NULL);
1029 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1030 MultiFDSendParams *p = &multifd_send_state->params[i];
1031
66770707
JQ
1032 if (p->running) {
1033 qemu_thread_join(&p->thread);
1034 }
60df2d4a
JQ
1035 socket_send_channel_destroy(p->c);
1036 p->c = NULL;
f986c3d2
JQ
1037 qemu_mutex_destroy(&p->mutex);
1038 qemu_sem_destroy(&p->sem);
1039 g_free(p->name);
1040 p->name = NULL;
34c55a94
JQ
1041 multifd_pages_clear(p->pages);
1042 p->pages = NULL;
2a26c979
JQ
1043 p->packet_len = 0;
1044 g_free(p->packet);
1045 p->packet = NULL;
f986c3d2 1046 }
b9ee2f7d 1047 qemu_sem_destroy(&multifd_send_state->channels_ready);
6df264ac 1048 qemu_sem_destroy(&multifd_send_state->sem_sync);
f986c3d2
JQ
1049 g_free(multifd_send_state->params);
1050 multifd_send_state->params = NULL;
34c55a94
JQ
1051 multifd_pages_clear(multifd_send_state->pages);
1052 multifd_send_state->pages = NULL;
f986c3d2
JQ
1053 g_free(multifd_send_state);
1054 multifd_send_state = NULL;
f986c3d2
JQ
1055}
1056
6df264ac
JQ
1057static void multifd_send_sync_main(void)
1058{
1059 int i;
1060
1061 if (!migrate_use_multifd()) {
1062 return;
1063 }
b9ee2f7d 1064 if (multifd_send_state->pages->used) {
713f762a
IR
1065 if (multifd_send_pages() < 0) {
1066 error_report("%s: multifd_send_pages fail", __func__);
1067 return;
1068 }
b9ee2f7d 1069 }
6df264ac
JQ
1070 for (i = 0; i < migrate_multifd_channels(); i++) {
1071 MultiFDSendParams *p = &multifd_send_state->params[i];
1072
1073 trace_multifd_send_sync_main_signal(p->id);
1074
1075 qemu_mutex_lock(&p->mutex);
b9ee2f7d 1076
713f762a
IR
1077 if (p->quit) {
1078 error_report("%s: channel %d has already quit", __func__, i);
1079 qemu_mutex_unlock(&p->mutex);
1080 return;
1081 }
1082
b9ee2f7d 1083 p->packet_num = multifd_send_state->packet_num++;
6df264ac
JQ
1084 p->flags |= MULTIFD_FLAG_SYNC;
1085 p->pending_job++;
1086 qemu_mutex_unlock(&p->mutex);
1087 qemu_sem_post(&p->sem);
1088 }
1089 for (i = 0; i < migrate_multifd_channels(); i++) {
1090 MultiFDSendParams *p = &multifd_send_state->params[i];
1091
1092 trace_multifd_send_sync_main_wait(p->id);
1093 qemu_sem_wait(&multifd_send_state->sem_sync);
1094 }
1095 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1096}
1097
f986c3d2
JQ
1098static void *multifd_send_thread(void *opaque)
1099{
1100 MultiFDSendParams *p = opaque;
af8b7d2b 1101 Error *local_err = NULL;
a3ec6b7d
IR
1102 int ret = 0;
1103 uint32_t flags = 0;
af8b7d2b 1104
408ea6ae 1105 trace_multifd_send_thread_start(p->id);
74637e6f 1106 rcu_register_thread();
408ea6ae 1107
af8b7d2b
JQ
1108 if (multifd_send_initial_packet(p, &local_err) < 0) {
1109 goto out;
1110 }
408ea6ae
JQ
1111 /* initial packet */
1112 p->num_packets = 1;
f986c3d2
JQ
1113
1114 while (true) {
d82628e4 1115 qemu_sem_wait(&p->sem);
f986c3d2 1116 qemu_mutex_lock(&p->mutex);
0beb5ed3
JQ
1117
1118 if (p->pending_job) {
1119 uint32_t used = p->pages->used;
1120 uint64_t packet_num = p->packet_num;
a3ec6b7d 1121 flags = p->flags;
0beb5ed3 1122
2a34ee59 1123 p->next_packet_size = used * qemu_target_page_size();
0beb5ed3
JQ
1124 multifd_send_fill_packet(p);
1125 p->flags = 0;
1126 p->num_packets++;
1127 p->num_pages += used;
1128 p->pages->used = 0;
1129 qemu_mutex_unlock(&p->mutex);
1130
2a34ee59
JQ
1131 trace_multifd_send(p->id, packet_num, used, flags,
1132 p->next_packet_size);
0beb5ed3 1133
8b2db7f5
JQ
1134 ret = qio_channel_write_all(p->c, (void *)p->packet,
1135 p->packet_len, &local_err);
1136 if (ret != 0) {
1137 break;
1138 }
1139
ad24c7cb
JQ
1140 if (used) {
1141 ret = qio_channel_writev_all(p->c, p->pages->iov,
1142 used, &local_err);
1143 if (ret != 0) {
1144 break;
1145 }
8b2db7f5 1146 }
0beb5ed3
JQ
1147
1148 qemu_mutex_lock(&p->mutex);
1149 p->pending_job--;
1150 qemu_mutex_unlock(&p->mutex);
6df264ac
JQ
1151
1152 if (flags & MULTIFD_FLAG_SYNC) {
1153 qemu_sem_post(&multifd_send_state->sem_sync);
1154 }
b9ee2f7d 1155 qemu_sem_post(&multifd_send_state->channels_ready);
0beb5ed3 1156 } else if (p->quit) {
f986c3d2
JQ
1157 qemu_mutex_unlock(&p->mutex);
1158 break;
6df264ac
JQ
1159 } else {
1160 qemu_mutex_unlock(&p->mutex);
1161 /* sometimes there are spurious wakeups */
f986c3d2 1162 }
f986c3d2
JQ
1163 }
1164
af8b7d2b
JQ
1165out:
1166 if (local_err) {
1167 multifd_send_terminate_threads(local_err);
1168 }
1169
a3ec6b7d
IR
1170 /*
1171 * Error happen, I will exit, but I can't just leave, tell
1172 * who pay attention to me.
1173 */
1174 if (ret != 0) {
1175 if (flags & MULTIFD_FLAG_SYNC) {
1176 qemu_sem_post(&multifd_send_state->sem_sync);
1177 }
1178 qemu_sem_post(&multifd_send_state->channels_ready);
1179 }
1180
66770707
JQ
1181 qemu_mutex_lock(&p->mutex);
1182 p->running = false;
1183 qemu_mutex_unlock(&p->mutex);
1184
74637e6f 1185 rcu_unregister_thread();
408ea6ae
JQ
1186 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1187
f986c3d2
JQ
1188 return NULL;
1189}
1190
60df2d4a
JQ
1191static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1192{
1193 MultiFDSendParams *p = opaque;
1194 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1195 Error *local_err = NULL;
1196
1197 if (qio_task_propagate_error(task, &local_err)) {
1398b2e3
FL
1198 migrate_set_error(migrate_get_current(), local_err);
1199 multifd_save_cleanup();
60df2d4a
JQ
1200 } else {
1201 p->c = QIO_CHANNEL(sioc);
1202 qio_channel_set_delay(p->c, false);
1203 p->running = true;
1204 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1205 QEMU_THREAD_JOINABLE);
60df2d4a
JQ
1206 }
1207}
1208
f986c3d2
JQ
1209int multifd_save_setup(void)
1210{
1211 int thread_count;
efd1a1d6 1212 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
f986c3d2
JQ
1213 uint8_t i;
1214
1215 if (!migrate_use_multifd()) {
1216 return 0;
1217 }
1218 thread_count = migrate_multifd_channels();
1219 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1220 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
34c55a94 1221 multifd_send_state->pages = multifd_pages_init(page_count);
6df264ac 1222 qemu_sem_init(&multifd_send_state->sem_sync, 0);
b9ee2f7d 1223 qemu_sem_init(&multifd_send_state->channels_ready, 0);
34c55a94 1224
f986c3d2
JQ
1225 for (i = 0; i < thread_count; i++) {
1226 MultiFDSendParams *p = &multifd_send_state->params[i];
1227
1228 qemu_mutex_init(&p->mutex);
1229 qemu_sem_init(&p->sem, 0);
1230 p->quit = false;
0beb5ed3 1231 p->pending_job = 0;
f986c3d2 1232 p->id = i;
34c55a94 1233 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1234 p->packet_len = sizeof(MultiFDPacket_t)
1235 + sizeof(ram_addr_t) * page_count;
1236 p->packet = g_malloc0(p->packet_len);
f986c3d2 1237 p->name = g_strdup_printf("multifdsend_%d", i);
60df2d4a 1238 socket_send_channel_create(multifd_new_send_channel_async, p);
f986c3d2
JQ
1239 }
1240 return 0;
1241}
1242
f986c3d2
JQ
1243struct {
1244 MultiFDRecvParams *params;
1245 /* number of created threads */
1246 int count;
6df264ac
JQ
1247 /* syncs main thread and channels */
1248 QemuSemaphore sem_sync;
1249 /* global number of generated multifd packets */
1250 uint64_t packet_num;
f986c3d2
JQ
1251} *multifd_recv_state;
1252
66770707 1253static void multifd_recv_terminate_threads(Error *err)
f986c3d2
JQ
1254{
1255 int i;
1256
7a169d74
JQ
1257 if (err) {
1258 MigrationState *s = migrate_get_current();
1259 migrate_set_error(s, err);
1260 if (s->state == MIGRATION_STATUS_SETUP ||
1261 s->state == MIGRATION_STATUS_ACTIVE) {
1262 migrate_set_state(&s->state, s->state,
1263 MIGRATION_STATUS_FAILED);
1264 }
1265 }
1266
66770707 1267 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1268 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1269
1270 qemu_mutex_lock(&p->mutex);
3c3ca25d 1271 p->quit = true;
7a5cc33c
JQ
1272 /* We could arrive here for two reasons:
1273 - normal quit, i.e. everything went fine, just finished
1274 - error quit: We close the channels so the channel threads
1275 finish the qio_channel_read_all_eof() */
1276 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
f986c3d2
JQ
1277 qemu_mutex_unlock(&p->mutex);
1278 }
1279}
1280
1281int multifd_load_cleanup(Error **errp)
1282{
1283 int i;
1284 int ret = 0;
1285
1286 if (!migrate_use_multifd()) {
1287 return 0;
1288 }
66770707
JQ
1289 multifd_recv_terminate_threads(NULL);
1290 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1291 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1292
66770707 1293 if (p->running) {
3c3ca25d 1294 p->quit = true;
f193bc0c
IR
1295 /*
1296 * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code,
1297 * however try to wakeup it without harm in cleanup phase.
1298 */
1299 qemu_sem_post(&p->sem_sync);
66770707
JQ
1300 qemu_thread_join(&p->thread);
1301 }
60df2d4a
JQ
1302 object_unref(OBJECT(p->c));
1303 p->c = NULL;
f986c3d2 1304 qemu_mutex_destroy(&p->mutex);
6df264ac 1305 qemu_sem_destroy(&p->sem_sync);
f986c3d2
JQ
1306 g_free(p->name);
1307 p->name = NULL;
34c55a94
JQ
1308 multifd_pages_clear(p->pages);
1309 p->pages = NULL;
2a26c979
JQ
1310 p->packet_len = 0;
1311 g_free(p->packet);
1312 p->packet = NULL;
f986c3d2 1313 }
6df264ac 1314 qemu_sem_destroy(&multifd_recv_state->sem_sync);
f986c3d2
JQ
1315 g_free(multifd_recv_state->params);
1316 multifd_recv_state->params = NULL;
1317 g_free(multifd_recv_state);
1318 multifd_recv_state = NULL;
1319
1320 return ret;
1321}
1322
6df264ac
JQ
1323static void multifd_recv_sync_main(void)
1324{
1325 int i;
1326
1327 if (!migrate_use_multifd()) {
1328 return;
1329 }
1330 for (i = 0; i < migrate_multifd_channels(); i++) {
1331 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1332
6df264ac
JQ
1333 trace_multifd_recv_sync_main_wait(p->id);
1334 qemu_sem_wait(&multifd_recv_state->sem_sync);
77568ea7
WY
1335 }
1336 for (i = 0; i < migrate_multifd_channels(); i++) {
1337 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1338
6df264ac
JQ
1339 qemu_mutex_lock(&p->mutex);
1340 if (multifd_recv_state->packet_num < p->packet_num) {
1341 multifd_recv_state->packet_num = p->packet_num;
1342 }
1343 qemu_mutex_unlock(&p->mutex);
6df264ac 1344 trace_multifd_recv_sync_main_signal(p->id);
6df264ac
JQ
1345 qemu_sem_post(&p->sem_sync);
1346 }
1347 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1348}
1349
f986c3d2
JQ
1350static void *multifd_recv_thread(void *opaque)
1351{
1352 MultiFDRecvParams *p = opaque;
2a26c979
JQ
1353 Error *local_err = NULL;
1354 int ret;
f986c3d2 1355
408ea6ae 1356 trace_multifd_recv_thread_start(p->id);
74637e6f 1357 rcu_register_thread();
408ea6ae 1358
f986c3d2 1359 while (true) {
6df264ac
JQ
1360 uint32_t used;
1361 uint32_t flags;
0beb5ed3 1362
3c3ca25d
JQ
1363 if (p->quit) {
1364 break;
1365 }
1366
8b2db7f5
JQ
1367 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1368 p->packet_len, &local_err);
1369 if (ret == 0) { /* EOF */
1370 break;
1371 }
1372 if (ret == -1) { /* Error */
1373 break;
1374 }
2a26c979 1375
6df264ac
JQ
1376 qemu_mutex_lock(&p->mutex);
1377 ret = multifd_recv_unfill_packet(p, &local_err);
1378 if (ret) {
f986c3d2
JQ
1379 qemu_mutex_unlock(&p->mutex);
1380 break;
1381 }
6df264ac
JQ
1382
1383 used = p->pages->used;
1384 flags = p->flags;
2a34ee59
JQ
1385 trace_multifd_recv(p->id, p->packet_num, used, flags,
1386 p->next_packet_size);
6df264ac
JQ
1387 p->num_packets++;
1388 p->num_pages += used;
f986c3d2 1389 qemu_mutex_unlock(&p->mutex);
6df264ac 1390
ad24c7cb
JQ
1391 if (used) {
1392 ret = qio_channel_readv_all(p->c, p->pages->iov,
1393 used, &local_err);
1394 if (ret != 0) {
1395 break;
1396 }
8b2db7f5
JQ
1397 }
1398
6df264ac
JQ
1399 if (flags & MULTIFD_FLAG_SYNC) {
1400 qemu_sem_post(&multifd_recv_state->sem_sync);
1401 qemu_sem_wait(&p->sem_sync);
1402 }
f986c3d2
JQ
1403 }
1404
d82628e4
JQ
1405 if (local_err) {
1406 multifd_recv_terminate_threads(local_err);
1407 }
66770707
JQ
1408 qemu_mutex_lock(&p->mutex);
1409 p->running = false;
1410 qemu_mutex_unlock(&p->mutex);
1411
74637e6f 1412 rcu_unregister_thread();
408ea6ae
JQ
1413 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1414
f986c3d2
JQ
1415 return NULL;
1416}
1417
1418int multifd_load_setup(void)
1419{
1420 int thread_count;
efd1a1d6 1421 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
f986c3d2
JQ
1422 uint8_t i;
1423
1424 if (!migrate_use_multifd()) {
1425 return 0;
1426 }
1427 thread_count = migrate_multifd_channels();
1428 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1429 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
66770707 1430 atomic_set(&multifd_recv_state->count, 0);
6df264ac 1431 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
34c55a94 1432
f986c3d2
JQ
1433 for (i = 0; i < thread_count; i++) {
1434 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1435
1436 qemu_mutex_init(&p->mutex);
6df264ac 1437 qemu_sem_init(&p->sem_sync, 0);
3c3ca25d 1438 p->quit = false;
f986c3d2 1439 p->id = i;
34c55a94 1440 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1441 p->packet_len = sizeof(MultiFDPacket_t)
1442 + sizeof(ram_addr_t) * page_count;
1443 p->packet = g_malloc0(p->packet_len);
f986c3d2 1444 p->name = g_strdup_printf("multifdrecv_%d", i);
f986c3d2
JQ
1445 }
1446 return 0;
1447}
1448
62c1e0ca
JQ
1449bool multifd_recv_all_channels_created(void)
1450{
1451 int thread_count = migrate_multifd_channels();
1452
1453 if (!migrate_use_multifd()) {
1454 return true;
1455 }
1456
1457 return thread_count == atomic_read(&multifd_recv_state->count);
1458}
1459
49ed0d24
FL
1460/*
1461 * Try to receive all multifd channels to get ready for the migration.
1462 * - Return true and do not set @errp when correctly receving all channels;
1463 * - Return false and do not set @errp when correctly receiving the current one;
1464 * - Return false and set @errp when failing to receive the current channel.
1465 */
1466bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
71bb07db 1467{
60df2d4a 1468 MultiFDRecvParams *p;
af8b7d2b
JQ
1469 Error *local_err = NULL;
1470 int id;
60df2d4a 1471
af8b7d2b
JQ
1472 id = multifd_recv_initial_packet(ioc, &local_err);
1473 if (id < 0) {
1474 multifd_recv_terminate_threads(local_err);
49ed0d24
FL
1475 error_propagate_prepend(errp, local_err,
1476 "failed to receive packet"
1477 " via multifd channel %d: ",
1478 atomic_read(&multifd_recv_state->count));
81e62053 1479 return false;
af8b7d2b
JQ
1480 }
1481
1482 p = &multifd_recv_state->params[id];
1483 if (p->c != NULL) {
1484 error_setg(&local_err, "multifd: received id '%d' already setup'",
1485 id);
1486 multifd_recv_terminate_threads(local_err);
49ed0d24 1487 error_propagate(errp, local_err);
81e62053 1488 return false;
af8b7d2b 1489 }
60df2d4a
JQ
1490 p->c = ioc;
1491 object_ref(OBJECT(ioc));
408ea6ae
JQ
1492 /* initial packet */
1493 p->num_packets = 1;
60df2d4a
JQ
1494
1495 p->running = true;
1496 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1497 QEMU_THREAD_JOINABLE);
1498 atomic_inc(&multifd_recv_state->count);
49ed0d24
FL
1499 return atomic_read(&multifd_recv_state->count) ==
1500 migrate_multifd_channels();
71bb07db
JQ
1501}
1502
56e93d26 1503/**
3d0684b2 1504 * save_page_header: write page header to wire
56e93d26
JQ
1505 *
1506 * If this is the 1st block, it also writes the block identification
1507 *
3d0684b2 1508 * Returns the number of bytes written
56e93d26
JQ
1509 *
1510 * @f: QEMUFile where to send the data
1511 * @block: block that contains the page we want to send
1512 * @offset: offset inside the block for the page
1513 * in the lower bits, it contains flags
1514 */
2bf3aa85
JQ
1515static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1516 ram_addr_t offset)
56e93d26 1517{
9f5f380b 1518 size_t size, len;
56e93d26 1519
24795694
JQ
1520 if (block == rs->last_sent_block) {
1521 offset |= RAM_SAVE_FLAG_CONTINUE;
1522 }
2bf3aa85 1523 qemu_put_be64(f, offset);
56e93d26
JQ
1524 size = 8;
1525
1526 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
9f5f380b 1527 len = strlen(block->idstr);
2bf3aa85
JQ
1528 qemu_put_byte(f, len);
1529 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
9f5f380b 1530 size += 1 + len;
24795694 1531 rs->last_sent_block = block;
56e93d26
JQ
1532 }
1533 return size;
1534}
1535
3d0684b2
JQ
1536/**
1537 * mig_throttle_guest_down: throotle down the guest
1538 *
1539 * Reduce amount of guest cpu execution to hopefully slow down memory
1540 * writes. If guest dirty memory rate is reduced below the rate at
1541 * which we can transfer pages to the destination then we should be
1542 * able to complete migration. Some workloads dirty memory way too
1543 * fast and will not effectively converge, even with auto-converge.
070afca2
JH
1544 */
1545static void mig_throttle_guest_down(void)
1546{
1547 MigrationState *s = migrate_get_current();
2594f56d
DB
1548 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1549 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
4cbc9c7f 1550 int pct_max = s->parameters.max_cpu_throttle;
070afca2
JH
1551
1552 /* We have not started throttling yet. Let's start it. */
1553 if (!cpu_throttle_active()) {
1554 cpu_throttle_set(pct_initial);
1555 } else {
1556 /* Throttling already on, just increase the rate */
4cbc9c7f
LQ
1557 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1558 pct_max));
070afca2
JH
1559 }
1560}
1561
3d0684b2
JQ
1562/**
1563 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1564 *
6f37bb8b 1565 * @rs: current RAM state
3d0684b2
JQ
1566 * @current_addr: address for the zero page
1567 *
1568 * Update the xbzrle cache to reflect a page that's been sent as all 0.
56e93d26
JQ
1569 * The important thing is that a stale (not-yet-0'd) page be replaced
1570 * by the new data.
1571 * As a bonus, if the page wasn't in the cache it gets added so that
3d0684b2 1572 * when a small write is made into the 0'd page it gets XBZRLE sent.
56e93d26 1573 */
6f37bb8b 1574static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
56e93d26 1575{
6f37bb8b 1576 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
56e93d26
JQ
1577 return;
1578 }
1579
1580 /* We don't care if this fails to allocate a new cache page
1581 * as long as it updated an old one */
c00e0928 1582 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
9360447d 1583 ram_counters.dirty_sync_count);
56e93d26
JQ
1584}
1585
1586#define ENCODING_FLAG_XBZRLE 0x1
1587
1588/**
1589 * save_xbzrle_page: compress and send current page
1590 *
1591 * Returns: 1 means that we wrote the page
1592 * 0 means that page is identical to the one already sent
1593 * -1 means that xbzrle would be longer than normal
1594 *
5a987738 1595 * @rs: current RAM state
3d0684b2
JQ
1596 * @current_data: pointer to the address of the page contents
1597 * @current_addr: addr of the page
56e93d26
JQ
1598 * @block: block that contains the page we want to send
1599 * @offset: offset inside the block for the page
1600 * @last_stage: if we are at the completion stage
56e93d26 1601 */
204b88b8 1602static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
56e93d26 1603 ram_addr_t current_addr, RAMBlock *block,
072c2511 1604 ram_addr_t offset, bool last_stage)
56e93d26
JQ
1605{
1606 int encoded_len = 0, bytes_xbzrle;
1607 uint8_t *prev_cached_page;
1608
9360447d
JQ
1609 if (!cache_is_cached(XBZRLE.cache, current_addr,
1610 ram_counters.dirty_sync_count)) {
1611 xbzrle_counters.cache_miss++;
56e93d26
JQ
1612 if (!last_stage) {
1613 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
9360447d 1614 ram_counters.dirty_sync_count) == -1) {
56e93d26
JQ
1615 return -1;
1616 } else {
1617 /* update *current_data when the page has been
1618 inserted into cache */
1619 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1620 }
1621 }
1622 return -1;
1623 }
1624
1625 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1626
1627 /* save current buffer into memory */
1628 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1629
1630 /* XBZRLE encoding (if there is no overflow) */
1631 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1632 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1633 TARGET_PAGE_SIZE);
ca353803
WY
1634
1635 /*
1636 * Update the cache contents, so that it corresponds to the data
1637 * sent, in all cases except where we skip the page.
1638 */
1639 if (!last_stage && encoded_len != 0) {
1640 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1641 /*
1642 * In the case where we couldn't compress, ensure that the caller
1643 * sends the data from the cache, since the guest might have
1644 * changed the RAM since we copied it.
1645 */
1646 *current_data = prev_cached_page;
1647 }
1648
56e93d26 1649 if (encoded_len == 0) {
55c4446b 1650 trace_save_xbzrle_page_skipping();
56e93d26
JQ
1651 return 0;
1652 } else if (encoded_len == -1) {
55c4446b 1653 trace_save_xbzrle_page_overflow();
9360447d 1654 xbzrle_counters.overflow++;
56e93d26
JQ
1655 return -1;
1656 }
1657
56e93d26 1658 /* Send XBZRLE based compressed page */
2bf3aa85 1659 bytes_xbzrle = save_page_header(rs, rs->f, block,
204b88b8
JQ
1660 offset | RAM_SAVE_FLAG_XBZRLE);
1661 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1662 qemu_put_be16(rs->f, encoded_len);
1663 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
56e93d26 1664 bytes_xbzrle += encoded_len + 1 + 2;
9360447d
JQ
1665 xbzrle_counters.pages++;
1666 xbzrle_counters.bytes += bytes_xbzrle;
1667 ram_counters.transferred += bytes_xbzrle;
56e93d26
JQ
1668
1669 return 1;
1670}
1671
3d0684b2
JQ
1672/**
1673 * migration_bitmap_find_dirty: find the next dirty page from start
f3f491fc 1674 *
a5f7b1a6 1675 * Returns the page offset within memory region of the start of a dirty page
3d0684b2 1676 *
6f37bb8b 1677 * @rs: current RAM state
3d0684b2 1678 * @rb: RAMBlock where to search for dirty pages
a935e30f 1679 * @start: page where we start the search
f3f491fc 1680 */
56e93d26 1681static inline
a935e30f 1682unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
f20e2865 1683 unsigned long start)
56e93d26 1684{
6b6712ef
JQ
1685 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1686 unsigned long *bitmap = rb->bmap;
56e93d26
JQ
1687 unsigned long next;
1688
fbd162e6 1689 if (ramblock_is_ignored(rb)) {
b895de50
CLG
1690 return size;
1691 }
1692
6eeb63f7
WW
1693 /*
1694 * When the free page optimization is enabled, we need to check the bitmap
1695 * to send the non-free pages rather than all the pages in the bulk stage.
1696 */
1697 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
6b6712ef 1698 next = start + 1;
56e93d26 1699 } else {
6b6712ef 1700 next = find_next_bit(bitmap, size, start);
56e93d26
JQ
1701 }
1702
6b6712ef 1703 return next;
56e93d26
JQ
1704}
1705
06b10688 1706static inline bool migration_bitmap_clear_dirty(RAMState *rs,
f20e2865
JQ
1707 RAMBlock *rb,
1708 unsigned long page)
a82d593b
DDAG
1709{
1710 bool ret;
a82d593b 1711
386a907b 1712 qemu_mutex_lock(&rs->bitmap_mutex);
002cad6b
PX
1713
1714 /*
1715 * Clear dirty bitmap if needed. This _must_ be called before we
1716 * send any of the page in the chunk because we need to make sure
1717 * we can capture further page content changes when we sync dirty
1718 * log the next time. So as long as we are going to send any of
1719 * the page in the chunk we clear the remote dirty bitmap for all.
1720 * Clearing it earlier won't be a problem, but too late will.
1721 */
1722 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
1723 uint8_t shift = rb->clear_bmap_shift;
1724 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
1725 hwaddr start = (page << TARGET_PAGE_BITS) & (-size);
1726
1727 /*
1728 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
1729 * can make things easier sometimes since then start address
1730 * of the small chunk will always be 64 pages aligned so the
1731 * bitmap will always be aligned to unsigned long. We should
1732 * even be able to remove this restriction but I'm simply
1733 * keeping it.
1734 */
1735 assert(shift >= 6);
1736 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
1737 memory_region_clear_dirty_bitmap(rb->mr, start, size);
1738 }
1739
6b6712ef 1740 ret = test_and_clear_bit(page, rb->bmap);
a82d593b
DDAG
1741
1742 if (ret) {
0d8ec885 1743 rs->migration_dirty_pages--;
a82d593b 1744 }
386a907b
WW
1745 qemu_mutex_unlock(&rs->bitmap_mutex);
1746
a82d593b
DDAG
1747 return ret;
1748}
1749
267691b6 1750/* Called with RCU critical section */
5d0980a4 1751static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb)
56e93d26 1752{
0d8ec885 1753 rs->migration_dirty_pages +=
5d0980a4 1754 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length,
0d8ec885 1755 &rs->num_dirty_pages_period);
56e93d26
JQ
1756}
1757
3d0684b2
JQ
1758/**
1759 * ram_pagesize_summary: calculate all the pagesizes of a VM
1760 *
1761 * Returns a summary bitmap of the page sizes of all RAMBlocks
1762 *
1763 * For VMs with just normal pages this is equivalent to the host page
1764 * size. If it's got some huge pages then it's the OR of all the
1765 * different page sizes.
e8ca1db2
DDAG
1766 */
1767uint64_t ram_pagesize_summary(void)
1768{
1769 RAMBlock *block;
1770 uint64_t summary = 0;
1771
fbd162e6 1772 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
e8ca1db2
DDAG
1773 summary |= block->page_size;
1774 }
1775
1776 return summary;
1777}
1778
aecbfe9c
XG
1779uint64_t ram_get_total_transferred_pages(void)
1780{
1781 return ram_counters.normal + ram_counters.duplicate +
1782 compression_counters.pages + xbzrle_counters.pages;
1783}
1784
b734035b
XG
1785static void migration_update_rates(RAMState *rs, int64_t end_time)
1786{
be8b02ed 1787 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
76e03000 1788 double compressed_size;
b734035b
XG
1789
1790 /* calculate period counters */
1791 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1792 / (end_time - rs->time_last_bitmap_sync);
1793
be8b02ed 1794 if (!page_count) {
b734035b
XG
1795 return;
1796 }
1797
1798 if (migrate_use_xbzrle()) {
1799 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
be8b02ed 1800 rs->xbzrle_cache_miss_prev) / page_count;
b734035b
XG
1801 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1802 }
76e03000
XG
1803
1804 if (migrate_use_compression()) {
1805 compression_counters.busy_rate = (double)(compression_counters.busy -
1806 rs->compress_thread_busy_prev) / page_count;
1807 rs->compress_thread_busy_prev = compression_counters.busy;
1808
1809 compressed_size = compression_counters.compressed_size -
1810 rs->compressed_size_prev;
1811 if (compressed_size) {
1812 double uncompressed_size = (compression_counters.pages -
1813 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1814
1815 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1816 compression_counters.compression_rate =
1817 uncompressed_size / compressed_size;
1818
1819 rs->compress_pages_prev = compression_counters.pages;
1820 rs->compressed_size_prev = compression_counters.compressed_size;
1821 }
1822 }
b734035b
XG
1823}
1824
8d820d6f 1825static void migration_bitmap_sync(RAMState *rs)
56e93d26
JQ
1826{
1827 RAMBlock *block;
56e93d26 1828 int64_t end_time;
c4bdf0cf 1829 uint64_t bytes_xfer_now;
56e93d26 1830
9360447d 1831 ram_counters.dirty_sync_count++;
56e93d26 1832
f664da80
JQ
1833 if (!rs->time_last_bitmap_sync) {
1834 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
56e93d26
JQ
1835 }
1836
1837 trace_migration_bitmap_sync_start();
9c1f8f44 1838 memory_global_dirty_log_sync();
56e93d26 1839
108cfae0 1840 qemu_mutex_lock(&rs->bitmap_mutex);
56e93d26 1841 rcu_read_lock();
fbd162e6 1842 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
5d0980a4 1843 migration_bitmap_sync_range(rs, block);
56e93d26 1844 }
650af890 1845 ram_counters.remaining = ram_bytes_remaining();
56e93d26 1846 rcu_read_unlock();
108cfae0 1847 qemu_mutex_unlock(&rs->bitmap_mutex);
56e93d26 1848
a66cd90c 1849 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1ffb5dfd 1850
56e93d26
JQ
1851 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1852
1853 /* more than 1 second = 1000 millisecons */
f664da80 1854 if (end_time > rs->time_last_bitmap_sync + 1000) {
9360447d 1855 bytes_xfer_now = ram_counters.transferred;
d693c6f1 1856
9ac78b61
PL
1857 /* During block migration the auto-converge logic incorrectly detects
1858 * that ram migration makes no progress. Avoid this by disabling the
1859 * throttling logic during the bulk phase of block migration. */
1860 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
56e93d26
JQ
1861 /* The following detection logic can be refined later. For now:
1862 Check to see if the dirtied bytes is 50% more than the approx.
1863 amount of bytes that just got transferred since the last time we
070afca2
JH
1864 were in this routine. If that happens twice, start or increase
1865 throttling */
070afca2 1866
d693c6f1 1867 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
eac74159 1868 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
b4a3c64b 1869 (++rs->dirty_rate_high_cnt >= 2)) {
56e93d26 1870 trace_migration_throttle();
8d820d6f 1871 rs->dirty_rate_high_cnt = 0;
070afca2 1872 mig_throttle_guest_down();
d693c6f1 1873 }
56e93d26 1874 }
070afca2 1875
b734035b
XG
1876 migration_update_rates(rs, end_time);
1877
be8b02ed 1878 rs->target_page_count_prev = rs->target_page_count;
d693c6f1
FF
1879
1880 /* reset period counters */
f664da80 1881 rs->time_last_bitmap_sync = end_time;
a66cd90c 1882 rs->num_dirty_pages_period = 0;
d2a4d85a 1883 rs->bytes_xfer_prev = bytes_xfer_now;
56e93d26 1884 }
4addcd4f 1885 if (migrate_use_events()) {
3ab72385 1886 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
4addcd4f 1887 }
56e93d26
JQ
1888}
1889
bd227060
WW
1890static void migration_bitmap_sync_precopy(RAMState *rs)
1891{
1892 Error *local_err = NULL;
1893
1894 /*
1895 * The current notifier usage is just an optimization to migration, so we
1896 * don't stop the normal migration process in the error case.
1897 */
1898 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1899 error_report_err(local_err);
1900 }
1901
1902 migration_bitmap_sync(rs);
1903
1904 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1905 error_report_err(local_err);
1906 }
1907}
1908
6c97ec5f
XG
1909/**
1910 * save_zero_page_to_file: send the zero page to the file
1911 *
1912 * Returns the size of data written to the file, 0 means the page is not
1913 * a zero page
1914 *
1915 * @rs: current RAM state
1916 * @file: the file where the data is saved
1917 * @block: block that contains the page we want to send
1918 * @offset: offset inside the block for the page
1919 */
1920static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1921 RAMBlock *block, ram_addr_t offset)
1922{
1923 uint8_t *p = block->host + offset;
1924 int len = 0;
1925
1926 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1927 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1928 qemu_put_byte(file, 0);
1929 len += 1;
1930 }
1931 return len;
1932}
1933
56e93d26 1934/**
3d0684b2 1935 * save_zero_page: send the zero page to the stream
56e93d26 1936 *
3d0684b2 1937 * Returns the number of pages written.
56e93d26 1938 *
f7ccd61b 1939 * @rs: current RAM state
56e93d26
JQ
1940 * @block: block that contains the page we want to send
1941 * @offset: offset inside the block for the page
56e93d26 1942 */
7faccdc3 1943static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
56e93d26 1944{
6c97ec5f 1945 int len = save_zero_page_to_file(rs, rs->f, block, offset);
56e93d26 1946
6c97ec5f 1947 if (len) {
9360447d 1948 ram_counters.duplicate++;
6c97ec5f
XG
1949 ram_counters.transferred += len;
1950 return 1;
56e93d26 1951 }
6c97ec5f 1952 return -1;
56e93d26
JQ
1953}
1954
5727309d 1955static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
53f09a10 1956{
5727309d 1957 if (!migrate_release_ram() || !migration_in_postcopy()) {
53f09a10
PB
1958 return;
1959 }
1960
aaa2064c 1961 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
53f09a10
PB
1962}
1963
059ff0fb
XG
1964/*
1965 * @pages: the number of pages written by the control path,
1966 * < 0 - error
1967 * > 0 - number of pages written
1968 *
1969 * Return true if the pages has been saved, otherwise false is returned.
1970 */
1971static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1972 int *pages)
1973{
1974 uint64_t bytes_xmit = 0;
1975 int ret;
1976
1977 *pages = -1;
1978 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1979 &bytes_xmit);
1980 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1981 return false;
1982 }
1983
1984 if (bytes_xmit) {
1985 ram_counters.transferred += bytes_xmit;
1986 *pages = 1;
1987 }
1988
1989 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1990 return true;
1991 }
1992
1993 if (bytes_xmit > 0) {
1994 ram_counters.normal++;
1995 } else if (bytes_xmit == 0) {
1996 ram_counters.duplicate++;
1997 }
1998
1999 return true;
2000}
2001
65dacaa0
XG
2002/*
2003 * directly send the page to the stream
2004 *
2005 * Returns the number of pages written.
2006 *
2007 * @rs: current RAM state
2008 * @block: block that contains the page we want to send
2009 * @offset: offset inside the block for the page
2010 * @buf: the page to be sent
2011 * @async: send to page asyncly
2012 */
2013static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2014 uint8_t *buf, bool async)
2015{
2016 ram_counters.transferred += save_page_header(rs, rs->f, block,
2017 offset | RAM_SAVE_FLAG_PAGE);
2018 if (async) {
2019 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
2020 migrate_release_ram() &
2021 migration_in_postcopy());
2022 } else {
2023 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
2024 }
2025 ram_counters.transferred += TARGET_PAGE_SIZE;
2026 ram_counters.normal++;
2027 return 1;
2028}
2029
56e93d26 2030/**
3d0684b2 2031 * ram_save_page: send the given page to the stream
56e93d26 2032 *
3d0684b2 2033 * Returns the number of pages written.
3fd3c4b3
DDAG
2034 * < 0 - error
2035 * >=0 - Number of pages written - this might legally be 0
2036 * if xbzrle noticed the page was the same.
56e93d26 2037 *
6f37bb8b 2038 * @rs: current RAM state
56e93d26
JQ
2039 * @block: block that contains the page we want to send
2040 * @offset: offset inside the block for the page
2041 * @last_stage: if we are at the completion stage
56e93d26 2042 */
a0a8aa14 2043static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
56e93d26
JQ
2044{
2045 int pages = -1;
56e93d26 2046 uint8_t *p;
56e93d26 2047 bool send_async = true;
a08f6890 2048 RAMBlock *block = pss->block;
a935e30f 2049 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
059ff0fb 2050 ram_addr_t current_addr = block->offset + offset;
56e93d26 2051
2f68e399 2052 p = block->host + offset;
1db9d8e5 2053 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
56e93d26 2054
56e93d26 2055 XBZRLE_cache_lock();
d7400a34
XG
2056 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
2057 migrate_use_xbzrle()) {
059ff0fb
XG
2058 pages = save_xbzrle_page(rs, &p, current_addr, block,
2059 offset, last_stage);
2060 if (!last_stage) {
2061 /* Can't send this cached data async, since the cache page
2062 * might get updated before it gets to the wire
56e93d26 2063 */
059ff0fb 2064 send_async = false;
56e93d26
JQ
2065 }
2066 }
2067
2068 /* XBZRLE overflow or normal page */
2069 if (pages == -1) {
65dacaa0 2070 pages = save_normal_page(rs, block, offset, p, send_async);
56e93d26
JQ
2071 }
2072
2073 XBZRLE_cache_unlock();
2074
2075 return pages;
2076}
2077
b9ee2f7d
JQ
2078static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2079 ram_addr_t offset)
2080{
713f762a
IR
2081 if (multifd_queue_page(block, offset) < 0) {
2082 return -1;
2083 }
b9ee2f7d
JQ
2084 ram_counters.normal++;
2085
2086 return 1;
2087}
2088
5e5fdcff 2089static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 2090 ram_addr_t offset, uint8_t *source_buf)
56e93d26 2091{
53518d94 2092 RAMState *rs = ram_state;
a7a9a88f 2093 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
5e5fdcff 2094 bool zero_page = false;
6ef3771c 2095 int ret;
56e93d26 2096
5e5fdcff
XG
2097 if (save_zero_page_to_file(rs, f, block, offset)) {
2098 zero_page = true;
2099 goto exit;
2100 }
2101
6ef3771c 2102 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
34ab9e97
XG
2103
2104 /*
2105 * copy it to a internal buffer to avoid it being modified by VM
2106 * so that we can catch up the error during compression and
2107 * decompression
2108 */
2109 memcpy(source_buf, p, TARGET_PAGE_SIZE);
6ef3771c
XG
2110 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2111 if (ret < 0) {
2112 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
b3be2896 2113 error_report("compressed data failed!");
5e5fdcff 2114 return false;
b3be2896 2115 }
56e93d26 2116
5e5fdcff 2117exit:
6ef3771c 2118 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
5e5fdcff
XG
2119 return zero_page;
2120}
2121
2122static void
2123update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2124{
76e03000
XG
2125 ram_counters.transferred += bytes_xmit;
2126
5e5fdcff
XG
2127 if (param->zero_page) {
2128 ram_counters.duplicate++;
76e03000 2129 return;
5e5fdcff 2130 }
76e03000
XG
2131
2132 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2133 compression_counters.compressed_size += bytes_xmit - 8;
2134 compression_counters.pages++;
56e93d26
JQ
2135}
2136
32b05495
XG
2137static bool save_page_use_compression(RAMState *rs);
2138
ce25d337 2139static void flush_compressed_data(RAMState *rs)
56e93d26
JQ
2140{
2141 int idx, len, thread_count;
2142
32b05495 2143 if (!save_page_use_compression(rs)) {
56e93d26
JQ
2144 return;
2145 }
2146 thread_count = migrate_compress_threads();
a7a9a88f 2147
0d9f9a5c 2148 qemu_mutex_lock(&comp_done_lock);
56e93d26 2149 for (idx = 0; idx < thread_count; idx++) {
a7a9a88f 2150 while (!comp_param[idx].done) {
0d9f9a5c 2151 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26 2152 }
a7a9a88f 2153 }
0d9f9a5c 2154 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
2155
2156 for (idx = 0; idx < thread_count; idx++) {
2157 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 2158 if (!comp_param[idx].quit) {
ce25d337 2159 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
5e5fdcff
XG
2160 /*
2161 * it's safe to fetch zero_page without holding comp_done_lock
2162 * as there is no further request submitted to the thread,
2163 * i.e, the thread should be waiting for a request at this point.
2164 */
2165 update_compress_thread_counts(&comp_param[idx], len);
56e93d26 2166 }
a7a9a88f 2167 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26
JQ
2168 }
2169}
2170
2171static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2172 ram_addr_t offset)
2173{
2174 param->block = block;
2175 param->offset = offset;
2176}
2177
ce25d337
JQ
2178static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2179 ram_addr_t offset)
56e93d26
JQ
2180{
2181 int idx, thread_count, bytes_xmit = -1, pages = -1;
1d58872a 2182 bool wait = migrate_compress_wait_thread();
56e93d26
JQ
2183
2184 thread_count = migrate_compress_threads();
0d9f9a5c 2185 qemu_mutex_lock(&comp_done_lock);
1d58872a
XG
2186retry:
2187 for (idx = 0; idx < thread_count; idx++) {
2188 if (comp_param[idx].done) {
2189 comp_param[idx].done = false;
2190 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2191 qemu_mutex_lock(&comp_param[idx].mutex);
2192 set_compress_params(&comp_param[idx], block, offset);
2193 qemu_cond_signal(&comp_param[idx].cond);
2194 qemu_mutex_unlock(&comp_param[idx].mutex);
2195 pages = 1;
5e5fdcff 2196 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
56e93d26 2197 break;
56e93d26
JQ
2198 }
2199 }
1d58872a
XG
2200
2201 /*
2202 * wait for the free thread if the user specifies 'compress-wait-thread',
2203 * otherwise we will post the page out in the main thread as normal page.
2204 */
2205 if (pages < 0 && wait) {
2206 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2207 goto retry;
2208 }
0d9f9a5c 2209 qemu_mutex_unlock(&comp_done_lock);
56e93d26
JQ
2210
2211 return pages;
2212}
2213
3d0684b2
JQ
2214/**
2215 * find_dirty_block: find the next dirty page and update any state
2216 * associated with the search process.
b9e60928 2217 *
a5f7b1a6 2218 * Returns true if a page is found
b9e60928 2219 *
6f37bb8b 2220 * @rs: current RAM state
3d0684b2
JQ
2221 * @pss: data about the state of the current dirty page scan
2222 * @again: set to false if the search has scanned the whole of RAM
b9e60928 2223 */
f20e2865 2224static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
b9e60928 2225{
f20e2865 2226 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
6f37bb8b 2227 if (pss->complete_round && pss->block == rs->last_seen_block &&
a935e30f 2228 pss->page >= rs->last_page) {
b9e60928
DDAG
2229 /*
2230 * We've been once around the RAM and haven't found anything.
2231 * Give up.
2232 */
2233 *again = false;
2234 return false;
2235 }
a935e30f 2236 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
b9e60928 2237 /* Didn't find anything in this RAM Block */
a935e30f 2238 pss->page = 0;
b9e60928
DDAG
2239 pss->block = QLIST_NEXT_RCU(pss->block, next);
2240 if (!pss->block) {
48df9d80
XG
2241 /*
2242 * If memory migration starts over, we will meet a dirtied page
2243 * which may still exists in compression threads's ring, so we
2244 * should flush the compressed data to make sure the new page
2245 * is not overwritten by the old one in the destination.
2246 *
2247 * Also If xbzrle is on, stop using the data compression at this
2248 * point. In theory, xbzrle can do better than compression.
2249 */
2250 flush_compressed_data(rs);
2251
b9e60928
DDAG
2252 /* Hit the end of the list */
2253 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2254 /* Flag that we've looped */
2255 pss->complete_round = true;
6f37bb8b 2256 rs->ram_bulk_stage = false;
b9e60928
DDAG
2257 }
2258 /* Didn't find anything this time, but try again on the new block */
2259 *again = true;
2260 return false;
2261 } else {
2262 /* Can go around again, but... */
2263 *again = true;
2264 /* We've found something so probably don't need to */
2265 return true;
2266 }
2267}
2268
3d0684b2
JQ
2269/**
2270 * unqueue_page: gets a page of the queue
2271 *
a82d593b 2272 * Helper for 'get_queued_page' - gets a page off the queue
a82d593b 2273 *
3d0684b2
JQ
2274 * Returns the block of the page (or NULL if none available)
2275 *
ec481c6c 2276 * @rs: current RAM state
3d0684b2 2277 * @offset: used to return the offset within the RAMBlock
a82d593b 2278 */
f20e2865 2279static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
a82d593b
DDAG
2280{
2281 RAMBlock *block = NULL;
2282
ae526e32
XG
2283 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2284 return NULL;
2285 }
2286
ec481c6c
JQ
2287 qemu_mutex_lock(&rs->src_page_req_mutex);
2288 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2289 struct RAMSrcPageRequest *entry =
2290 QSIMPLEQ_FIRST(&rs->src_page_requests);
a82d593b
DDAG
2291 block = entry->rb;
2292 *offset = entry->offset;
a82d593b
DDAG
2293
2294 if (entry->len > TARGET_PAGE_SIZE) {
2295 entry->len -= TARGET_PAGE_SIZE;
2296 entry->offset += TARGET_PAGE_SIZE;
2297 } else {
2298 memory_region_unref(block->mr);
ec481c6c 2299 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
a82d593b 2300 g_free(entry);
e03a34f8 2301 migration_consume_urgent_request();
a82d593b
DDAG
2302 }
2303 }
ec481c6c 2304 qemu_mutex_unlock(&rs->src_page_req_mutex);
a82d593b
DDAG
2305
2306 return block;
2307}
2308
3d0684b2 2309/**
ff1543af 2310 * get_queued_page: unqueue a page from the postcopy requests
3d0684b2
JQ
2311 *
2312 * Skips pages that are already sent (!dirty)
a82d593b 2313 *
a5f7b1a6 2314 * Returns true if a queued page is found
a82d593b 2315 *
6f37bb8b 2316 * @rs: current RAM state
3d0684b2 2317 * @pss: data about the state of the current dirty page scan
a82d593b 2318 */
f20e2865 2319static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
a82d593b
DDAG
2320{
2321 RAMBlock *block;
2322 ram_addr_t offset;
2323 bool dirty;
2324
2325 do {
f20e2865 2326 block = unqueue_page(rs, &offset);
a82d593b
DDAG
2327 /*
2328 * We're sending this page, and since it's postcopy nothing else
2329 * will dirty it, and we must make sure it doesn't get sent again
2330 * even if this queue request was received after the background
2331 * search already sent it.
2332 */
2333 if (block) {
f20e2865
JQ
2334 unsigned long page;
2335
6b6712ef
JQ
2336 page = offset >> TARGET_PAGE_BITS;
2337 dirty = test_bit(page, block->bmap);
a82d593b 2338 if (!dirty) {
06b10688 2339 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
6b6712ef 2340 page, test_bit(page, block->unsentmap));
a82d593b 2341 } else {
f20e2865 2342 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
a82d593b
DDAG
2343 }
2344 }
2345
2346 } while (block && !dirty);
2347
2348 if (block) {
2349 /*
2350 * As soon as we start servicing pages out of order, then we have
2351 * to kill the bulk stage, since the bulk stage assumes
2352 * in (migration_bitmap_find_and_reset_dirty) that every page is
2353 * dirty, that's no longer true.
2354 */
6f37bb8b 2355 rs->ram_bulk_stage = false;
a82d593b
DDAG
2356
2357 /*
2358 * We want the background search to continue from the queued page
2359 * since the guest is likely to want other pages near to the page
2360 * it just requested.
2361 */
2362 pss->block = block;
a935e30f 2363 pss->page = offset >> TARGET_PAGE_BITS;
422314e7
WY
2364
2365 /*
2366 * This unqueued page would break the "one round" check, even is
2367 * really rare.
2368 */
2369 pss->complete_round = false;
a82d593b
DDAG
2370 }
2371
2372 return !!block;
2373}
2374
6c595cde 2375/**
5e58f968
JQ
2376 * migration_page_queue_free: drop any remaining pages in the ram
2377 * request queue
6c595cde 2378 *
3d0684b2
JQ
2379 * It should be empty at the end anyway, but in error cases there may
2380 * be some left. in case that there is any page left, we drop it.
2381 *
6c595cde 2382 */
83c13382 2383static void migration_page_queue_free(RAMState *rs)
6c595cde 2384{
ec481c6c 2385 struct RAMSrcPageRequest *mspr, *next_mspr;
6c595cde
DDAG
2386 /* This queue generally should be empty - but in the case of a failed
2387 * migration might have some droppings in.
2388 */
2389 rcu_read_lock();
ec481c6c 2390 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
6c595cde 2391 memory_region_unref(mspr->rb->mr);
ec481c6c 2392 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
6c595cde
DDAG
2393 g_free(mspr);
2394 }
2395 rcu_read_unlock();
2396}
2397
2398/**
3d0684b2
JQ
2399 * ram_save_queue_pages: queue the page for transmission
2400 *
2401 * A request from postcopy destination for example.
2402 *
2403 * Returns zero on success or negative on error
2404 *
3d0684b2
JQ
2405 * @rbname: Name of the RAMBLock of the request. NULL means the
2406 * same that last one.
2407 * @start: starting address from the start of the RAMBlock
2408 * @len: length (in bytes) to send
6c595cde 2409 */
96506894 2410int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
6c595cde
DDAG
2411{
2412 RAMBlock *ramblock;
53518d94 2413 RAMState *rs = ram_state;
6c595cde 2414
9360447d 2415 ram_counters.postcopy_requests++;
6c595cde
DDAG
2416 rcu_read_lock();
2417 if (!rbname) {
2418 /* Reuse last RAMBlock */
68a098f3 2419 ramblock = rs->last_req_rb;
6c595cde
DDAG
2420
2421 if (!ramblock) {
2422 /*
2423 * Shouldn't happen, we can't reuse the last RAMBlock if
2424 * it's the 1st request.
2425 */
2426 error_report("ram_save_queue_pages no previous block");
2427 goto err;
2428 }
2429 } else {
2430 ramblock = qemu_ram_block_by_name(rbname);
2431
2432 if (!ramblock) {
2433 /* We shouldn't be asked for a non-existent RAMBlock */
2434 error_report("ram_save_queue_pages no block '%s'", rbname);
2435 goto err;
2436 }
68a098f3 2437 rs->last_req_rb = ramblock;
6c595cde
DDAG
2438 }
2439 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2440 if (start+len > ramblock->used_length) {
9458ad6b
JQ
2441 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2442 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
6c595cde
DDAG
2443 __func__, start, len, ramblock->used_length);
2444 goto err;
2445 }
2446
ec481c6c
JQ
2447 struct RAMSrcPageRequest *new_entry =
2448 g_malloc0(sizeof(struct RAMSrcPageRequest));
6c595cde
DDAG
2449 new_entry->rb = ramblock;
2450 new_entry->offset = start;
2451 new_entry->len = len;
2452
2453 memory_region_ref(ramblock->mr);
ec481c6c
JQ
2454 qemu_mutex_lock(&rs->src_page_req_mutex);
2455 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
e03a34f8 2456 migration_make_urgent_request();
ec481c6c 2457 qemu_mutex_unlock(&rs->src_page_req_mutex);
6c595cde
DDAG
2458 rcu_read_unlock();
2459
2460 return 0;
2461
2462err:
2463 rcu_read_unlock();
2464 return -1;
2465}
2466
d7400a34
XG
2467static bool save_page_use_compression(RAMState *rs)
2468{
2469 if (!migrate_use_compression()) {
2470 return false;
2471 }
2472
2473 /*
2474 * If xbzrle is on, stop using the data compression after first
2475 * round of migration even if compression is enabled. In theory,
2476 * xbzrle can do better than compression.
2477 */
2478 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2479 return true;
2480 }
2481
2482 return false;
2483}
2484
5e5fdcff
XG
2485/*
2486 * try to compress the page before posting it out, return true if the page
2487 * has been properly handled by compression, otherwise needs other
2488 * paths to handle it
2489 */
2490static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2491{
2492 if (!save_page_use_compression(rs)) {
2493 return false;
2494 }
2495
2496 /*
2497 * When starting the process of a new block, the first page of
2498 * the block should be sent out before other pages in the same
2499 * block, and all the pages in last block should have been sent
2500 * out, keeping this order is important, because the 'cont' flag
2501 * is used to avoid resending the block name.
2502 *
2503 * We post the fist page as normal page as compression will take
2504 * much CPU resource.
2505 */
2506 if (block != rs->last_sent_block) {
2507 flush_compressed_data(rs);
2508 return false;
2509 }
2510
2511 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2512 return true;
2513 }
2514
76e03000 2515 compression_counters.busy++;
5e5fdcff
XG
2516 return false;
2517}
2518
a82d593b 2519/**
3d0684b2 2520 * ram_save_target_page: save one target page
a82d593b 2521 *
3d0684b2 2522 * Returns the number of pages written
a82d593b 2523 *
6f37bb8b 2524 * @rs: current RAM state
3d0684b2 2525 * @pss: data about the page we want to send
a82d593b 2526 * @last_stage: if we are at the completion stage
a82d593b 2527 */
a0a8aa14 2528static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2529 bool last_stage)
a82d593b 2530{
a8ec91f9
XG
2531 RAMBlock *block = pss->block;
2532 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2533 int res;
2534
2535 if (control_save_page(rs, block, offset, &res)) {
2536 return res;
2537 }
2538
5e5fdcff
XG
2539 if (save_compress_page(rs, block, offset)) {
2540 return 1;
d7400a34
XG
2541 }
2542
2543 res = save_zero_page(rs, block, offset);
2544 if (res > 0) {
2545 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2546 * page would be stale
2547 */
2548 if (!save_page_use_compression(rs)) {
2549 XBZRLE_cache_lock();
2550 xbzrle_cache_zero_page(rs, block->offset + offset);
2551 XBZRLE_cache_unlock();
2552 }
2553 ram_release_pages(block->idstr, offset, res);
2554 return res;
2555 }
2556
da3f56cb 2557 /*
5e5fdcff
XG
2558 * do not use multifd for compression as the first page in the new
2559 * block should be posted out before sending the compressed page
da3f56cb 2560 */
5e5fdcff 2561 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
b9ee2f7d 2562 return ram_save_multifd_page(rs, block, offset);
a82d593b
DDAG
2563 }
2564
1faa5665 2565 return ram_save_page(rs, pss, last_stage);
a82d593b
DDAG
2566}
2567
2568/**
3d0684b2 2569 * ram_save_host_page: save a whole host page
a82d593b 2570 *
3d0684b2
JQ
2571 * Starting at *offset send pages up to the end of the current host
2572 * page. It's valid for the initial offset to point into the middle of
2573 * a host page in which case the remainder of the hostpage is sent.
2574 * Only dirty target pages are sent. Note that the host page size may
2575 * be a huge page for this block.
1eb3fc0a
DDAG
2576 * The saving stops at the boundary of the used_length of the block
2577 * if the RAMBlock isn't a multiple of the host page size.
a82d593b 2578 *
3d0684b2
JQ
2579 * Returns the number of pages written or negative on error
2580 *
6f37bb8b 2581 * @rs: current RAM state
3d0684b2 2582 * @ms: current migration state
3d0684b2 2583 * @pss: data about the page we want to send
a82d593b 2584 * @last_stage: if we are at the completion stage
a82d593b 2585 */
a0a8aa14 2586static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2587 bool last_stage)
a82d593b
DDAG
2588{
2589 int tmppages, pages = 0;
a935e30f
JQ
2590 size_t pagesize_bits =
2591 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
4c011c37 2592
fbd162e6 2593 if (ramblock_is_ignored(pss->block)) {
b895de50
CLG
2594 error_report("block %s should not be migrated !", pss->block->idstr);
2595 return 0;
2596 }
2597
a82d593b 2598 do {
1faa5665
XG
2599 /* Check the pages is dirty and if it is send it */
2600 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2601 pss->page++;
2602 continue;
2603 }
2604
f20e2865 2605 tmppages = ram_save_target_page(rs, pss, last_stage);
a82d593b
DDAG
2606 if (tmppages < 0) {
2607 return tmppages;
2608 }
2609
2610 pages += tmppages;
1faa5665
XG
2611 if (pss->block->unsentmap) {
2612 clear_bit(pss->page, pss->block->unsentmap);
2613 }
2614
a935e30f 2615 pss->page++;
1eb3fc0a
DDAG
2616 } while ((pss->page & (pagesize_bits - 1)) &&
2617 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
a82d593b
DDAG
2618
2619 /* The offset we leave with is the last one we looked at */
a935e30f 2620 pss->page--;
a82d593b
DDAG
2621 return pages;
2622}
6c595cde 2623
56e93d26 2624/**
3d0684b2 2625 * ram_find_and_save_block: finds a dirty page and sends it to f
56e93d26
JQ
2626 *
2627 * Called within an RCU critical section.
2628 *
e8f3735f
XG
2629 * Returns the number of pages written where zero means no dirty pages,
2630 * or negative on error
56e93d26 2631 *
6f37bb8b 2632 * @rs: current RAM state
56e93d26 2633 * @last_stage: if we are at the completion stage
a82d593b
DDAG
2634 *
2635 * On systems where host-page-size > target-page-size it will send all the
2636 * pages in a host page that are dirty.
56e93d26
JQ
2637 */
2638
ce25d337 2639static int ram_find_and_save_block(RAMState *rs, bool last_stage)
56e93d26 2640{
b8fb8cb7 2641 PageSearchStatus pss;
56e93d26 2642 int pages = 0;
b9e60928 2643 bool again, found;
56e93d26 2644
0827b9e9
AA
2645 /* No dirty page as there is zero RAM */
2646 if (!ram_bytes_total()) {
2647 return pages;
2648 }
2649
6f37bb8b 2650 pss.block = rs->last_seen_block;
a935e30f 2651 pss.page = rs->last_page;
b8fb8cb7
DDAG
2652 pss.complete_round = false;
2653
2654 if (!pss.block) {
2655 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2656 }
56e93d26 2657
b9e60928 2658 do {
a82d593b 2659 again = true;
f20e2865 2660 found = get_queued_page(rs, &pss);
b9e60928 2661
a82d593b
DDAG
2662 if (!found) {
2663 /* priority queue empty, so just search for something dirty */
f20e2865 2664 found = find_dirty_block(rs, &pss, &again);
a82d593b 2665 }
f3f491fc 2666
a82d593b 2667 if (found) {
f20e2865 2668 pages = ram_save_host_page(rs, &pss, last_stage);
56e93d26 2669 }
b9e60928 2670 } while (!pages && again);
56e93d26 2671
6f37bb8b 2672 rs->last_seen_block = pss.block;
a935e30f 2673 rs->last_page = pss.page;
56e93d26
JQ
2674
2675 return pages;
2676}
2677
2678void acct_update_position(QEMUFile *f, size_t size, bool zero)
2679{
2680 uint64_t pages = size / TARGET_PAGE_SIZE;
f7ccd61b 2681
56e93d26 2682 if (zero) {
9360447d 2683 ram_counters.duplicate += pages;
56e93d26 2684 } else {
9360447d
JQ
2685 ram_counters.normal += pages;
2686 ram_counters.transferred += size;
56e93d26
JQ
2687 qemu_update_position(f, size);
2688 }
2689}
2690
fbd162e6 2691static uint64_t ram_bytes_total_common(bool count_ignored)
56e93d26
JQ
2692{
2693 RAMBlock *block;
2694 uint64_t total = 0;
2695
2696 rcu_read_lock();
fbd162e6
YK
2697 if (count_ignored) {
2698 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2699 total += block->used_length;
2700 }
2701 } else {
2702 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2703 total += block->used_length;
2704 }
99e15582 2705 }
56e93d26
JQ
2706 rcu_read_unlock();
2707 return total;
2708}
2709
fbd162e6
YK
2710uint64_t ram_bytes_total(void)
2711{
2712 return ram_bytes_total_common(false);
2713}
2714
f265e0e4 2715static void xbzrle_load_setup(void)
56e93d26 2716{
f265e0e4 2717 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
56e93d26
JQ
2718}
2719
f265e0e4
JQ
2720static void xbzrle_load_cleanup(void)
2721{
2722 g_free(XBZRLE.decoded_buf);
2723 XBZRLE.decoded_buf = NULL;
2724}
2725
7d7c96be
PX
2726static void ram_state_cleanup(RAMState **rsp)
2727{
b9ccaf6d
DDAG
2728 if (*rsp) {
2729 migration_page_queue_free(*rsp);
2730 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2731 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2732 g_free(*rsp);
2733 *rsp = NULL;
2734 }
7d7c96be
PX
2735}
2736
84593a08
PX
2737static void xbzrle_cleanup(void)
2738{
2739 XBZRLE_cache_lock();
2740 if (XBZRLE.cache) {
2741 cache_fini(XBZRLE.cache);
2742 g_free(XBZRLE.encoded_buf);
2743 g_free(XBZRLE.current_buf);
2744 g_free(XBZRLE.zero_target_page);
2745 XBZRLE.cache = NULL;
2746 XBZRLE.encoded_buf = NULL;
2747 XBZRLE.current_buf = NULL;
2748 XBZRLE.zero_target_page = NULL;
2749 }
2750 XBZRLE_cache_unlock();
2751}
2752
f265e0e4 2753static void ram_save_cleanup(void *opaque)
56e93d26 2754{
53518d94 2755 RAMState **rsp = opaque;
6b6712ef 2756 RAMBlock *block;
eb859c53 2757
2ff64038 2758 /* caller have hold iothread lock or is in a bh, so there is
4633456c 2759 * no writing race against the migration bitmap
2ff64038 2760 */
6b6712ef
JQ
2761 memory_global_dirty_log_stop();
2762
fbd162e6 2763 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
002cad6b
PX
2764 g_free(block->clear_bmap);
2765 block->clear_bmap = NULL;
6b6712ef
JQ
2766 g_free(block->bmap);
2767 block->bmap = NULL;
2768 g_free(block->unsentmap);
2769 block->unsentmap = NULL;
56e93d26
JQ
2770 }
2771
84593a08 2772 xbzrle_cleanup();
f0afa331 2773 compress_threads_save_cleanup();
7d7c96be 2774 ram_state_cleanup(rsp);
56e93d26
JQ
2775}
2776
6f37bb8b 2777static void ram_state_reset(RAMState *rs)
56e93d26 2778{
6f37bb8b
JQ
2779 rs->last_seen_block = NULL;
2780 rs->last_sent_block = NULL;
269ace29 2781 rs->last_page = 0;
6f37bb8b
JQ
2782 rs->last_version = ram_list.version;
2783 rs->ram_bulk_stage = true;
6eeb63f7 2784 rs->fpo_enabled = false;
56e93d26
JQ
2785}
2786
2787#define MAX_WAIT 50 /* ms, half buffered_file limit */
2788
4f2e4252
DDAG
2789/*
2790 * 'expected' is the value you expect the bitmap mostly to be full
2791 * of; it won't bother printing lines that are all this value.
2792 * If 'todump' is null the migration bitmap is dumped.
2793 */
6b6712ef
JQ
2794void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2795 unsigned long pages)
4f2e4252 2796{
4f2e4252
DDAG
2797 int64_t cur;
2798 int64_t linelen = 128;
2799 char linebuf[129];
2800
6b6712ef 2801 for (cur = 0; cur < pages; cur += linelen) {
4f2e4252
DDAG
2802 int64_t curb;
2803 bool found = false;
2804 /*
2805 * Last line; catch the case where the line length
2806 * is longer than remaining ram
2807 */
6b6712ef
JQ
2808 if (cur + linelen > pages) {
2809 linelen = pages - cur;
4f2e4252
DDAG
2810 }
2811 for (curb = 0; curb < linelen; curb++) {
2812 bool thisbit = test_bit(cur + curb, todump);
2813 linebuf[curb] = thisbit ? '1' : '.';
2814 found = found || (thisbit != expected);
2815 }
2816 if (found) {
2817 linebuf[curb] = '\0';
2818 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2819 }
2820 }
2821}
2822
e0b266f0
DDAG
2823/* **** functions for postcopy ***** */
2824
ced1c616
PB
2825void ram_postcopy_migrated_memory_release(MigrationState *ms)
2826{
2827 struct RAMBlock *block;
ced1c616 2828
fbd162e6 2829 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2830 unsigned long *bitmap = block->bmap;
2831 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2832 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
ced1c616
PB
2833
2834 while (run_start < range) {
2835 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
aaa2064c 2836 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
ced1c616
PB
2837 (run_end - run_start) << TARGET_PAGE_BITS);
2838 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2839 }
2840 }
2841}
2842
3d0684b2
JQ
2843/**
2844 * postcopy_send_discard_bm_ram: discard a RAMBlock
2845 *
2846 * Returns zero on success
2847 *
e0b266f0
DDAG
2848 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2849 * Note: At this point the 'unsentmap' is the processed bitmap combined
2850 * with the dirtymap; so a '1' means it's either dirty or unsent.
3d0684b2
JQ
2851 *
2852 * @ms: current migration state
2853 * @pds: state for postcopy
89dab31b 2854 * @block: RAMBlock to discard
e0b266f0
DDAG
2855 */
2856static int postcopy_send_discard_bm_ram(MigrationState *ms,
2857 PostcopyDiscardState *pds,
6b6712ef 2858 RAMBlock *block)
e0b266f0 2859{
6b6712ef 2860 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
e0b266f0 2861 unsigned long current;
6b6712ef 2862 unsigned long *unsentmap = block->unsentmap;
e0b266f0 2863
6b6712ef 2864 for (current = 0; current < end; ) {
e0b266f0 2865 unsigned long one = find_next_bit(unsentmap, end, current);
33a5cb62 2866 unsigned long zero, discard_length;
e0b266f0 2867
33a5cb62
WY
2868 if (one >= end) {
2869 break;
2870 }
e0b266f0 2871
33a5cb62
WY
2872 zero = find_next_zero_bit(unsentmap, end, one + 1);
2873
2874 if (zero >= end) {
2875 discard_length = end - one;
e0b266f0 2876 } else {
33a5cb62
WY
2877 discard_length = zero - one;
2878 }
a162b572 2879 postcopy_discard_send_range(ms, pds, one, discard_length);
33a5cb62 2880 current = one + discard_length;
e0b266f0
DDAG
2881 }
2882
2883 return 0;
2884}
2885
3d0684b2
JQ
2886/**
2887 * postcopy_each_ram_send_discard: discard all RAMBlocks
2888 *
2889 * Returns 0 for success or negative for error
2890 *
e0b266f0
DDAG
2891 * Utility for the outgoing postcopy code.
2892 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2893 * passing it bitmap indexes and name.
e0b266f0
DDAG
2894 * (qemu_ram_foreach_block ends up passing unscaled lengths
2895 * which would mean postcopy code would have to deal with target page)
3d0684b2
JQ
2896 *
2897 * @ms: current migration state
e0b266f0
DDAG
2898 */
2899static int postcopy_each_ram_send_discard(MigrationState *ms)
2900{
2901 struct RAMBlock *block;
2902 int ret;
2903
fbd162e6 2904 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2905 PostcopyDiscardState *pds =
2906 postcopy_discard_send_init(ms, block->idstr);
e0b266f0
DDAG
2907
2908 /*
2909 * Postcopy sends chunks of bitmap over the wire, but it
2910 * just needs indexes at this point, avoids it having
2911 * target page specific code.
2912 */
6b6712ef 2913 ret = postcopy_send_discard_bm_ram(ms, pds, block);
e0b266f0
DDAG
2914 postcopy_discard_send_finish(ms, pds);
2915 if (ret) {
2916 return ret;
2917 }
2918 }
2919
2920 return 0;
2921}
2922
3d0684b2
JQ
2923/**
2924 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2925 *
2926 * Helper for postcopy_chunk_hostpages; it's called twice to
2927 * canonicalize the two bitmaps, that are similar, but one is
2928 * inverted.
99e314eb 2929 *
3d0684b2
JQ
2930 * Postcopy requires that all target pages in a hostpage are dirty or
2931 * clean, not a mix. This function canonicalizes the bitmaps.
99e314eb 2932 *
3d0684b2
JQ
2933 * @ms: current migration state
2934 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2935 * otherwise we need to canonicalize partially dirty host pages
2936 * @block: block that contains the page we want to canonicalize
2937 * @pds: state for postcopy
99e314eb
DDAG
2938 */
2939static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2940 RAMBlock *block,
2941 PostcopyDiscardState *pds)
2942{
53518d94 2943 RAMState *rs = ram_state;
6b6712ef
JQ
2944 unsigned long *bitmap = block->bmap;
2945 unsigned long *unsentmap = block->unsentmap;
29c59172 2946 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
6b6712ef 2947 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
99e314eb
DDAG
2948 unsigned long run_start;
2949
29c59172
DDAG
2950 if (block->page_size == TARGET_PAGE_SIZE) {
2951 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2952 return;
2953 }
2954
99e314eb
DDAG
2955 if (unsent_pass) {
2956 /* Find a sent page */
6b6712ef 2957 run_start = find_next_zero_bit(unsentmap, pages, 0);
99e314eb
DDAG
2958 } else {
2959 /* Find a dirty page */
6b6712ef 2960 run_start = find_next_bit(bitmap, pages, 0);
99e314eb
DDAG
2961 }
2962
6b6712ef 2963 while (run_start < pages) {
99e314eb
DDAG
2964 unsigned long fixup_start_addr;
2965 unsigned long host_offset;
2966
2967 /*
2968 * If the start of this run of pages is in the middle of a host
2969 * page, then we need to fixup this host page.
2970 */
2971 host_offset = run_start % host_ratio;
2972 if (host_offset) {
e927a033
WY
2973 fixup_start_addr = run_start - host_offset;
2974 /*
2975 * This host page has gone, the next loop iteration starts
2976 * from after the fixup
2977 */
2978 run_start = fixup_start_addr + host_ratio;
99e314eb
DDAG
2979 } else {
2980 /* Find the end of this run */
2981 unsigned long run_end;
2982 if (unsent_pass) {
6b6712ef 2983 run_end = find_next_bit(unsentmap, pages, run_start + 1);
99e314eb 2984 } else {
6b6712ef 2985 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
99e314eb
DDAG
2986 }
2987 /*
2988 * If the end isn't at the start of a host page, then the
2989 * run doesn't finish at the end of a host page
2990 * and we need to discard.
2991 */
2992 host_offset = run_end % host_ratio;
2993 if (host_offset) {
99e314eb
DDAG
2994 fixup_start_addr = run_end - host_offset;
2995 /*
2996 * This host page has gone, the next loop iteration starts
2997 * from after the fixup
2998 */
2999 run_start = fixup_start_addr + host_ratio;
3000 } else {
3001 /*
3002 * No discards on this iteration, next loop starts from
3003 * next sent/dirty page
3004 */
3005 run_start = run_end + 1;
3006 }
3007 }
3008
8996604f 3009 if (host_offset) {
99e314eb
DDAG
3010 unsigned long page;
3011
3012 /* Tell the destination to discard this page */
3013 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
3014 /* For the unsent_pass we:
3015 * discard partially sent pages
3016 * For the !unsent_pass (dirty) we:
3017 * discard partially dirty pages that were sent
3018 * (any partially sent pages were already discarded
3019 * by the previous unsent_pass)
3020 */
3021 postcopy_discard_send_range(ms, pds, fixup_start_addr,
3022 host_ratio);
3023 }
3024
3025 /* Clean up the bitmap */
3026 for (page = fixup_start_addr;
3027 page < fixup_start_addr + host_ratio; page++) {
3028 /* All pages in this host page are now not sent */
3029 set_bit(page, unsentmap);
3030
3031 /*
3032 * Remark them as dirty, updating the count for any pages
3033 * that weren't previously dirty.
3034 */
0d8ec885 3035 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
99e314eb
DDAG
3036 }
3037 }
3038
3039 if (unsent_pass) {
3040 /* Find the next sent page for the next iteration */
6b6712ef 3041 run_start = find_next_zero_bit(unsentmap, pages, run_start);
99e314eb
DDAG
3042 } else {
3043 /* Find the next dirty page for the next iteration */
6b6712ef 3044 run_start = find_next_bit(bitmap, pages, run_start);
99e314eb
DDAG
3045 }
3046 }
3047}
3048
3d0684b2 3049/**
89dab31b 3050 * postcopy_chunk_hostpages: discard any partially sent host page
3d0684b2 3051 *
99e314eb
DDAG
3052 * Utility for the outgoing postcopy code.
3053 *
3054 * Discard any partially sent host-page size chunks, mark any partially
29c59172
DDAG
3055 * dirty host-page size chunks as all dirty. In this case the host-page
3056 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
99e314eb 3057 *
3d0684b2
JQ
3058 * Returns zero on success
3059 *
3060 * @ms: current migration state
6b6712ef 3061 * @block: block we want to work with
99e314eb 3062 */
6b6712ef 3063static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
99e314eb 3064{
6b6712ef
JQ
3065 PostcopyDiscardState *pds =
3066 postcopy_discard_send_init(ms, block->idstr);
99e314eb 3067
6b6712ef
JQ
3068 /* First pass: Discard all partially sent host pages */
3069 postcopy_chunk_hostpages_pass(ms, true, block, pds);
3070 /*
3071 * Second pass: Ensure that all partially dirty host pages are made
3072 * fully dirty.
3073 */
3074 postcopy_chunk_hostpages_pass(ms, false, block, pds);
99e314eb 3075
6b6712ef 3076 postcopy_discard_send_finish(ms, pds);
99e314eb
DDAG
3077 return 0;
3078}
3079
3d0684b2
JQ
3080/**
3081 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3082 *
3083 * Returns zero on success
3084 *
e0b266f0
DDAG
3085 * Transmit the set of pages to be discarded after precopy to the target
3086 * these are pages that:
3087 * a) Have been previously transmitted but are now dirty again
3088 * b) Pages that have never been transmitted, this ensures that
3089 * any pages on the destination that have been mapped by background
3090 * tasks get discarded (transparent huge pages is the specific concern)
3091 * Hopefully this is pretty sparse
3d0684b2
JQ
3092 *
3093 * @ms: current migration state
e0b266f0
DDAG
3094 */
3095int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3096{
53518d94 3097 RAMState *rs = ram_state;
6b6712ef 3098 RAMBlock *block;
e0b266f0 3099 int ret;
e0b266f0
DDAG
3100
3101 rcu_read_lock();
3102
3103 /* This should be our last sync, the src is now paused */
eb859c53 3104 migration_bitmap_sync(rs);
e0b266f0 3105
6b6712ef
JQ
3106 /* Easiest way to make sure we don't resume in the middle of a host-page */
3107 rs->last_seen_block = NULL;
3108 rs->last_sent_block = NULL;
3109 rs->last_page = 0;
e0b266f0 3110
fbd162e6 3111 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
3112 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3113 unsigned long *bitmap = block->bmap;
3114 unsigned long *unsentmap = block->unsentmap;
3115
3116 if (!unsentmap) {
3117 /* We don't have a safe way to resize the sentmap, so
3118 * if the bitmap was resized it will be NULL at this
3119 * point.
3120 */
3121 error_report("migration ram resized during precopy phase");
3122 rcu_read_unlock();
3123 return -EINVAL;
3124 }
3125 /* Deal with TPS != HPS and huge pages */
3126 ret = postcopy_chunk_hostpages(ms, block);
3127 if (ret) {
3128 rcu_read_unlock();
3129 return ret;
3130 }
e0b266f0 3131
6b6712ef
JQ
3132 /*
3133 * Update the unsentmap to be unsentmap = unsentmap | dirty
3134 */
3135 bitmap_or(unsentmap, unsentmap, bitmap, pages);
e0b266f0 3136#ifdef DEBUG_POSTCOPY
6b6712ef 3137 ram_debug_dump_bitmap(unsentmap, true, pages);
e0b266f0 3138#endif
6b6712ef
JQ
3139 }
3140 trace_ram_postcopy_send_discard_bitmap();
e0b266f0
DDAG
3141
3142 ret = postcopy_each_ram_send_discard(ms);
3143 rcu_read_unlock();
3144
3145 return ret;
3146}
3147
3d0684b2
JQ
3148/**
3149 * ram_discard_range: discard dirtied pages at the beginning of postcopy
e0b266f0 3150 *
3d0684b2 3151 * Returns zero on success
e0b266f0 3152 *
36449157
JQ
3153 * @rbname: name of the RAMBlock of the request. NULL means the
3154 * same that last one.
3d0684b2
JQ
3155 * @start: RAMBlock starting page
3156 * @length: RAMBlock size
e0b266f0 3157 */
aaa2064c 3158int ram_discard_range(const char *rbname, uint64_t start, size_t length)
e0b266f0
DDAG
3159{
3160 int ret = -1;
3161
36449157 3162 trace_ram_discard_range(rbname, start, length);
d3a5038c 3163
e0b266f0 3164 rcu_read_lock();
36449157 3165 RAMBlock *rb = qemu_ram_block_by_name(rbname);
e0b266f0
DDAG
3166
3167 if (!rb) {
36449157 3168 error_report("ram_discard_range: Failed to find block '%s'", rbname);
e0b266f0
DDAG
3169 goto err;
3170 }
3171
814bb08f
PX
3172 /*
3173 * On source VM, we don't need to update the received bitmap since
3174 * we don't even have one.
3175 */
3176 if (rb->receivedmap) {
3177 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3178 length >> qemu_target_page_bits());
3179 }
3180
d3a5038c 3181 ret = ram_block_discard_range(rb, start, length);
e0b266f0
DDAG
3182
3183err:
3184 rcu_read_unlock();
3185
3186 return ret;
3187}
3188
84593a08
PX
3189/*
3190 * For every allocation, we will try not to crash the VM if the
3191 * allocation failed.
3192 */
3193static int xbzrle_init(void)
3194{
3195 Error *local_err = NULL;
3196
3197 if (!migrate_use_xbzrle()) {
3198 return 0;
3199 }
3200
3201 XBZRLE_cache_lock();
3202
3203 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3204 if (!XBZRLE.zero_target_page) {
3205 error_report("%s: Error allocating zero page", __func__);
3206 goto err_out;
3207 }
3208
3209 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3210 TARGET_PAGE_SIZE, &local_err);
3211 if (!XBZRLE.cache) {
3212 error_report_err(local_err);
3213 goto free_zero_page;
3214 }
3215
3216 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3217 if (!XBZRLE.encoded_buf) {
3218 error_report("%s: Error allocating encoded_buf", __func__);
3219 goto free_cache;
3220 }
3221
3222 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3223 if (!XBZRLE.current_buf) {
3224 error_report("%s: Error allocating current_buf", __func__);
3225 goto free_encoded_buf;
3226 }
3227
3228 /* We are all good */
3229 XBZRLE_cache_unlock();
3230 return 0;
3231
3232free_encoded_buf:
3233 g_free(XBZRLE.encoded_buf);
3234 XBZRLE.encoded_buf = NULL;
3235free_cache:
3236 cache_fini(XBZRLE.cache);
3237 XBZRLE.cache = NULL;
3238free_zero_page:
3239 g_free(XBZRLE.zero_target_page);
3240 XBZRLE.zero_target_page = NULL;
3241err_out:
3242 XBZRLE_cache_unlock();
3243 return -ENOMEM;
3244}
3245
53518d94 3246static int ram_state_init(RAMState **rsp)
56e93d26 3247{
7d00ee6a
PX
3248 *rsp = g_try_new0(RAMState, 1);
3249
3250 if (!*rsp) {
3251 error_report("%s: Init ramstate fail", __func__);
3252 return -1;
3253 }
53518d94
JQ
3254
3255 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3256 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3257 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
56e93d26 3258
7d00ee6a 3259 /*
40c4d4a8
IR
3260 * Count the total number of pages used by ram blocks not including any
3261 * gaps due to alignment or unplugs.
03158519 3262 * This must match with the initial values of dirty bitmap.
7d00ee6a 3263 */
40c4d4a8 3264 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
7d00ee6a
PX
3265 ram_state_reset(*rsp);
3266
3267 return 0;
3268}
3269
d6eff5d7 3270static void ram_list_init_bitmaps(void)
7d00ee6a 3271{
002cad6b 3272 MigrationState *ms = migrate_get_current();
d6eff5d7
PX
3273 RAMBlock *block;
3274 unsigned long pages;
002cad6b 3275 uint8_t shift;
56e93d26 3276
0827b9e9
AA
3277 /* Skip setting bitmap if there is no RAM */
3278 if (ram_bytes_total()) {
002cad6b
PX
3279 shift = ms->clear_bitmap_shift;
3280 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
3281 error_report("clear_bitmap_shift (%u) too big, using "
3282 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
3283 shift = CLEAR_BITMAP_SHIFT_MAX;
3284 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
3285 error_report("clear_bitmap_shift (%u) too small, using "
3286 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
3287 shift = CLEAR_BITMAP_SHIFT_MIN;
3288 }
3289
fbd162e6 3290 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
d6eff5d7 3291 pages = block->max_length >> TARGET_PAGE_BITS;
03158519
WY
3292 /*
3293 * The initial dirty bitmap for migration must be set with all
3294 * ones to make sure we'll migrate every guest RAM page to
3295 * destination.
40c4d4a8
IR
3296 * Here we set RAMBlock.bmap all to 1 because when rebegin a
3297 * new migration after a failed migration, ram_list.
3298 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
3299 * guest memory.
03158519 3300 */
6b6712ef 3301 block->bmap = bitmap_new(pages);
40c4d4a8 3302 bitmap_set(block->bmap, 0, pages);
002cad6b
PX
3303 block->clear_bmap_shift = shift;
3304 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
6b6712ef
JQ
3305 if (migrate_postcopy_ram()) {
3306 block->unsentmap = bitmap_new(pages);
3307 bitmap_set(block->unsentmap, 0, pages);
3308 }
0827b9e9 3309 }
f3f491fc 3310 }
d6eff5d7
PX
3311}
3312
3313static void ram_init_bitmaps(RAMState *rs)
3314{
3315 /* For memory_global_dirty_log_start below. */
3316 qemu_mutex_lock_iothread();
3317 qemu_mutex_lock_ramlist();
3318 rcu_read_lock();
f3f491fc 3319
d6eff5d7 3320 ram_list_init_bitmaps();
56e93d26 3321 memory_global_dirty_log_start();
bd227060 3322 migration_bitmap_sync_precopy(rs);
d6eff5d7
PX
3323
3324 rcu_read_unlock();
56e93d26 3325 qemu_mutex_unlock_ramlist();
49877834 3326 qemu_mutex_unlock_iothread();
d6eff5d7
PX
3327}
3328
3329static int ram_init_all(RAMState **rsp)
3330{
3331 if (ram_state_init(rsp)) {
3332 return -1;
3333 }
3334
3335 if (xbzrle_init()) {
3336 ram_state_cleanup(rsp);
3337 return -1;
3338 }
3339
3340 ram_init_bitmaps(*rsp);
a91246c9
HZ
3341
3342 return 0;
3343}
3344
08614f34
PX
3345static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3346{
3347 RAMBlock *block;
3348 uint64_t pages = 0;
3349
3350 /*
3351 * Postcopy is not using xbzrle/compression, so no need for that.
3352 * Also, since source are already halted, we don't need to care
3353 * about dirty page logging as well.
3354 */
3355
fbd162e6 3356 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
08614f34
PX
3357 pages += bitmap_count_one(block->bmap,
3358 block->used_length >> TARGET_PAGE_BITS);
3359 }
3360
3361 /* This may not be aligned with current bitmaps. Recalculate. */
3362 rs->migration_dirty_pages = pages;
3363
3364 rs->last_seen_block = NULL;
3365 rs->last_sent_block = NULL;
3366 rs->last_page = 0;
3367 rs->last_version = ram_list.version;
3368 /*
3369 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3370 * matter what we have sent.
3371 */
3372 rs->ram_bulk_stage = false;
3373
3374 /* Update RAMState cache of output QEMUFile */
3375 rs->f = out;
3376
3377 trace_ram_state_resume_prepare(pages);
3378}
3379
6bcb05fc
WW
3380/*
3381 * This function clears bits of the free pages reported by the caller from the
3382 * migration dirty bitmap. @addr is the host address corresponding to the
3383 * start of the continuous guest free pages, and @len is the total bytes of
3384 * those pages.
3385 */
3386void qemu_guest_free_page_hint(void *addr, size_t len)
3387{
3388 RAMBlock *block;
3389 ram_addr_t offset;
3390 size_t used_len, start, npages;
3391 MigrationState *s = migrate_get_current();
3392
3393 /* This function is currently expected to be used during live migration */
3394 if (!migration_is_setup_or_active(s->state)) {
3395 return;
3396 }
3397
3398 for (; len > 0; len -= used_len, addr += used_len) {
3399 block = qemu_ram_block_from_host(addr, false, &offset);
3400 if (unlikely(!block || offset >= block->used_length)) {
3401 /*
3402 * The implementation might not support RAMBlock resize during
3403 * live migration, but it could happen in theory with future
3404 * updates. So we add a check here to capture that case.
3405 */
3406 error_report_once("%s unexpected error", __func__);
3407 return;
3408 }
3409
3410 if (len <= block->used_length - offset) {
3411 used_len = len;
3412 } else {
3413 used_len = block->used_length - offset;
3414 }
3415
3416 start = offset >> TARGET_PAGE_BITS;
3417 npages = used_len >> TARGET_PAGE_BITS;
3418
3419 qemu_mutex_lock(&ram_state->bitmap_mutex);
3420 ram_state->migration_dirty_pages -=
3421 bitmap_count_one_with_offset(block->bmap, start, npages);
3422 bitmap_clear(block->bmap, start, npages);
3423 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3424 }
3425}
3426
3d0684b2
JQ
3427/*
3428 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
a91246c9
HZ
3429 * long-running RCU critical section. When rcu-reclaims in the code
3430 * start to become numerous it will be necessary to reduce the
3431 * granularity of these critical sections.
3432 */
3433
3d0684b2
JQ
3434/**
3435 * ram_save_setup: Setup RAM for migration
3436 *
3437 * Returns zero to indicate success and negative for error
3438 *
3439 * @f: QEMUFile where to send the data
3440 * @opaque: RAMState pointer
3441 */
a91246c9
HZ
3442static int ram_save_setup(QEMUFile *f, void *opaque)
3443{
53518d94 3444 RAMState **rsp = opaque;
a91246c9
HZ
3445 RAMBlock *block;
3446
dcaf446e
XG
3447 if (compress_threads_save_setup()) {
3448 return -1;
3449 }
3450
a91246c9
HZ
3451 /* migration has already setup the bitmap, reuse it. */
3452 if (!migration_in_colo_state()) {
7d00ee6a 3453 if (ram_init_all(rsp) != 0) {
dcaf446e 3454 compress_threads_save_cleanup();
a91246c9 3455 return -1;
53518d94 3456 }
a91246c9 3457 }
53518d94 3458 (*rsp)->f = f;
a91246c9
HZ
3459
3460 rcu_read_lock();
56e93d26 3461
fbd162e6 3462 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
56e93d26 3463
b895de50 3464 RAMBLOCK_FOREACH_MIGRATABLE(block) {
56e93d26
JQ
3465 qemu_put_byte(f, strlen(block->idstr));
3466 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3467 qemu_put_be64(f, block->used_length);
ef08fb38
DDAG
3468 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3469 qemu_put_be64(f, block->page_size);
3470 }
fbd162e6
YK
3471 if (migrate_ignore_shared()) {
3472 qemu_put_be64(f, block->mr->addr);
fbd162e6 3473 }
56e93d26
JQ
3474 }
3475
3476 rcu_read_unlock();
3477
3478 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3479 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3480
6df264ac 3481 multifd_send_sync_main();
56e93d26 3482 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3483 qemu_fflush(f);
56e93d26
JQ
3484
3485 return 0;
3486}
3487
3d0684b2
JQ
3488/**
3489 * ram_save_iterate: iterative stage for migration
3490 *
3491 * Returns zero to indicate success and negative for error
3492 *
3493 * @f: QEMUFile where to send the data
3494 * @opaque: RAMState pointer
3495 */
56e93d26
JQ
3496static int ram_save_iterate(QEMUFile *f, void *opaque)
3497{
53518d94
JQ
3498 RAMState **temp = opaque;
3499 RAMState *rs = *temp;
56e93d26
JQ
3500 int ret;
3501 int i;
3502 int64_t t0;
5c90308f 3503 int done = 0;
56e93d26 3504
b2557345
PL
3505 if (blk_mig_bulk_active()) {
3506 /* Avoid transferring ram during bulk phase of block migration as
3507 * the bulk phase will usually take a long time and transferring
3508 * ram updates during that time is pointless. */
3509 goto out;
3510 }
3511
56e93d26 3512 rcu_read_lock();
6f37bb8b
JQ
3513 if (ram_list.version != rs->last_version) {
3514 ram_state_reset(rs);
56e93d26
JQ
3515 }
3516
3517 /* Read version before ram_list.blocks */
3518 smp_rmb();
3519
3520 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3521
3522 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3523 i = 0;
e03a34f8
DDAG
3524 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3525 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
56e93d26
JQ
3526 int pages;
3527
e03a34f8
DDAG
3528 if (qemu_file_get_error(f)) {
3529 break;
3530 }
3531
ce25d337 3532 pages = ram_find_and_save_block(rs, false);
56e93d26
JQ
3533 /* no more pages to sent */
3534 if (pages == 0) {
5c90308f 3535 done = 1;
56e93d26
JQ
3536 break;
3537 }
e8f3735f
XG
3538
3539 if (pages < 0) {
3540 qemu_file_set_error(f, pages);
3541 break;
3542 }
3543
be8b02ed 3544 rs->target_page_count += pages;
070afca2 3545
56e93d26
JQ
3546 /* we want to check in the 1st loop, just in case it was the 1st time
3547 and we had to sync the dirty bitmap.
a5f7b1a6 3548 qemu_clock_get_ns() is a bit expensive, so we only check each some
56e93d26
JQ
3549 iterations
3550 */
3551 if ((i & 63) == 0) {
3552 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3553 if (t1 > MAX_WAIT) {
55c4446b 3554 trace_ram_save_iterate_big_wait(t1, i);
56e93d26
JQ
3555 break;
3556 }
3557 }
3558 i++;
3559 }
56e93d26
JQ
3560 rcu_read_unlock();
3561
3562 /*
3563 * Must occur before EOS (or any QEMUFile operation)
3564 * because of RDMA protocol.
3565 */
3566 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3567
b2557345 3568out:
b6526c4b 3569 multifd_send_sync_main();
56e93d26 3570 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3571 qemu_fflush(f);
9360447d 3572 ram_counters.transferred += 8;
56e93d26
JQ
3573
3574 ret = qemu_file_get_error(f);
3575 if (ret < 0) {
3576 return ret;
3577 }
3578
5c90308f 3579 return done;
56e93d26
JQ
3580}
3581
3d0684b2
JQ
3582/**
3583 * ram_save_complete: function called to send the remaining amount of ram
3584 *
e8f3735f 3585 * Returns zero to indicate success or negative on error
3d0684b2
JQ
3586 *
3587 * Called with iothread lock
3588 *
3589 * @f: QEMUFile where to send the data
3590 * @opaque: RAMState pointer
3591 */
56e93d26
JQ
3592static int ram_save_complete(QEMUFile *f, void *opaque)
3593{
53518d94
JQ
3594 RAMState **temp = opaque;
3595 RAMState *rs = *temp;
e8f3735f 3596 int ret = 0;
6f37bb8b 3597
56e93d26
JQ
3598 rcu_read_lock();
3599
5727309d 3600 if (!migration_in_postcopy()) {
bd227060 3601 migration_bitmap_sync_precopy(rs);
663e6c1d 3602 }
56e93d26
JQ
3603
3604 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3605
3606 /* try transferring iterative blocks of memory */
3607
3608 /* flush all remaining blocks regardless of rate limiting */
3609 while (true) {
3610 int pages;
3611
ce25d337 3612 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
56e93d26
JQ
3613 /* no more blocks to sent */
3614 if (pages == 0) {
3615 break;
3616 }
e8f3735f
XG
3617 if (pages < 0) {
3618 ret = pages;
3619 break;
3620 }
56e93d26
JQ
3621 }
3622
ce25d337 3623 flush_compressed_data(rs);
56e93d26 3624 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
56e93d26
JQ
3625
3626 rcu_read_unlock();
d09a6fde 3627
6df264ac 3628 multifd_send_sync_main();
56e93d26 3629 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3630 qemu_fflush(f);
56e93d26 3631
e8f3735f 3632 return ret;
56e93d26
JQ
3633}
3634
c31b098f 3635static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
47995026
VSO
3636 uint64_t *res_precopy_only,
3637 uint64_t *res_compatible,
3638 uint64_t *res_postcopy_only)
56e93d26 3639{
53518d94
JQ
3640 RAMState **temp = opaque;
3641 RAMState *rs = *temp;
56e93d26
JQ
3642 uint64_t remaining_size;
3643
9edabd4d 3644 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3645
5727309d 3646 if (!migration_in_postcopy() &&
663e6c1d 3647 remaining_size < max_size) {
56e93d26
JQ
3648 qemu_mutex_lock_iothread();
3649 rcu_read_lock();
bd227060 3650 migration_bitmap_sync_precopy(rs);
56e93d26
JQ
3651 rcu_read_unlock();
3652 qemu_mutex_unlock_iothread();
9edabd4d 3653 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3654 }
c31b098f 3655
86e1167e
VSO
3656 if (migrate_postcopy_ram()) {
3657 /* We can do postcopy, and all the data is postcopiable */
47995026 3658 *res_compatible += remaining_size;
86e1167e 3659 } else {
47995026 3660 *res_precopy_only += remaining_size;
86e1167e 3661 }
56e93d26
JQ
3662}
3663
3664static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3665{
3666 unsigned int xh_len;
3667 int xh_flags;
063e760a 3668 uint8_t *loaded_data;
56e93d26 3669
56e93d26
JQ
3670 /* extract RLE header */
3671 xh_flags = qemu_get_byte(f);
3672 xh_len = qemu_get_be16(f);
3673
3674 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3675 error_report("Failed to load XBZRLE page - wrong compression!");
3676 return -1;
3677 }
3678
3679 if (xh_len > TARGET_PAGE_SIZE) {
3680 error_report("Failed to load XBZRLE page - len overflow!");
3681 return -1;
3682 }
f265e0e4 3683 loaded_data = XBZRLE.decoded_buf;
56e93d26 3684 /* load data and decode */
f265e0e4 3685 /* it can change loaded_data to point to an internal buffer */
063e760a 3686 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
56e93d26
JQ
3687
3688 /* decode RLE */
063e760a 3689 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
56e93d26
JQ
3690 TARGET_PAGE_SIZE) == -1) {
3691 error_report("Failed to load XBZRLE page - decode error!");
3692 return -1;
3693 }
3694
3695 return 0;
3696}
3697
3d0684b2
JQ
3698/**
3699 * ram_block_from_stream: read a RAMBlock id from the migration stream
3700 *
3701 * Must be called from within a rcu critical section.
3702 *
56e93d26 3703 * Returns a pointer from within the RCU-protected ram_list.
a7180877 3704 *
3d0684b2
JQ
3705 * @f: QEMUFile where to read the data from
3706 * @flags: Page flags (mostly to see if it's a continuation of previous block)
a7180877 3707 */
3d0684b2 3708static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
56e93d26
JQ
3709{
3710 static RAMBlock *block = NULL;
3711 char id[256];
3712 uint8_t len;
3713
3714 if (flags & RAM_SAVE_FLAG_CONTINUE) {
4c4bad48 3715 if (!block) {
56e93d26
JQ
3716 error_report("Ack, bad migration stream!");
3717 return NULL;
3718 }
4c4bad48 3719 return block;
56e93d26
JQ
3720 }
3721
3722 len = qemu_get_byte(f);
3723 qemu_get_buffer(f, (uint8_t *)id, len);
3724 id[len] = 0;
3725
e3dd7493 3726 block = qemu_ram_block_by_name(id);
4c4bad48
HZ
3727 if (!block) {
3728 error_report("Can't find block %s", id);
3729 return NULL;
56e93d26
JQ
3730 }
3731
fbd162e6 3732 if (ramblock_is_ignored(block)) {
b895de50
CLG
3733 error_report("block %s should not be migrated !", id);
3734 return NULL;
3735 }
3736
4c4bad48
HZ
3737 return block;
3738}
3739
3740static inline void *host_from_ram_block_offset(RAMBlock *block,
3741 ram_addr_t offset)
3742{
3743 if (!offset_in_ramblock(block, offset)) {
3744 return NULL;
3745 }
3746
3747 return block->host + offset;
56e93d26
JQ
3748}
3749
13af18f2
ZC
3750static inline void *colo_cache_from_block_offset(RAMBlock *block,
3751 ram_addr_t offset)
3752{
3753 if (!offset_in_ramblock(block, offset)) {
3754 return NULL;
3755 }
3756 if (!block->colo_cache) {
3757 error_report("%s: colo_cache is NULL in block :%s",
3758 __func__, block->idstr);
3759 return NULL;
3760 }
7d9acafa
ZC
3761
3762 /*
3763 * During colo checkpoint, we need bitmap of these migrated pages.
3764 * It help us to decide which pages in ram cache should be flushed
3765 * into VM's RAM later.
3766 */
3767 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3768 ram_state->migration_dirty_pages++;
3769 }
13af18f2
ZC
3770 return block->colo_cache + offset;
3771}
3772
3d0684b2
JQ
3773/**
3774 * ram_handle_compressed: handle the zero page case
3775 *
56e93d26
JQ
3776 * If a page (or a whole RDMA chunk) has been
3777 * determined to be zero, then zap it.
3d0684b2
JQ
3778 *
3779 * @host: host address for the zero page
3780 * @ch: what the page is filled from. We only support zero
3781 * @size: size of the zero page
56e93d26
JQ
3782 */
3783void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3784{
3785 if (ch != 0 || !is_zero_range(host, size)) {
3786 memset(host, ch, size);
3787 }
3788}
3789
797ca154
XG
3790/* return the size after decompression, or negative value on error */
3791static int
3792qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3793 const uint8_t *source, size_t source_len)
3794{
3795 int err;
3796
3797 err = inflateReset(stream);
3798 if (err != Z_OK) {
3799 return -1;
3800 }
3801
3802 stream->avail_in = source_len;
3803 stream->next_in = (uint8_t *)source;
3804 stream->avail_out = dest_len;
3805 stream->next_out = dest;
3806
3807 err = inflate(stream, Z_NO_FLUSH);
3808 if (err != Z_STREAM_END) {
3809 return -1;
3810 }
3811
3812 return stream->total_out;
3813}
3814
56e93d26
JQ
3815static void *do_data_decompress(void *opaque)
3816{
3817 DecompressParam *param = opaque;
3818 unsigned long pagesize;
33d151f4 3819 uint8_t *des;
34ab9e97 3820 int len, ret;
56e93d26 3821
33d151f4 3822 qemu_mutex_lock(&param->mutex);
90e56fb4 3823 while (!param->quit) {
33d151f4
LL
3824 if (param->des) {
3825 des = param->des;
3826 len = param->len;
3827 param->des = 0;
3828 qemu_mutex_unlock(&param->mutex);
3829
56e93d26 3830 pagesize = TARGET_PAGE_SIZE;
34ab9e97
XG
3831
3832 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3833 param->compbuf, len);
f548222c 3834 if (ret < 0 && migrate_get_current()->decompress_error_check) {
34ab9e97
XG
3835 error_report("decompress data failed");
3836 qemu_file_set_error(decomp_file, ret);
3837 }
73a8912b 3838
33d151f4
LL
3839 qemu_mutex_lock(&decomp_done_lock);
3840 param->done = true;
3841 qemu_cond_signal(&decomp_done_cond);
3842 qemu_mutex_unlock(&decomp_done_lock);
3843
3844 qemu_mutex_lock(&param->mutex);
3845 } else {
3846 qemu_cond_wait(&param->cond, &param->mutex);
3847 }
56e93d26 3848 }
33d151f4 3849 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
3850
3851 return NULL;
3852}
3853
34ab9e97 3854static int wait_for_decompress_done(void)
5533b2e9
LL
3855{
3856 int idx, thread_count;
3857
3858 if (!migrate_use_compression()) {
34ab9e97 3859 return 0;
5533b2e9
LL
3860 }
3861
3862 thread_count = migrate_decompress_threads();
3863 qemu_mutex_lock(&decomp_done_lock);
3864 for (idx = 0; idx < thread_count; idx++) {
3865 while (!decomp_param[idx].done) {
3866 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3867 }
3868 }
3869 qemu_mutex_unlock(&decomp_done_lock);
34ab9e97 3870 return qemu_file_get_error(decomp_file);
5533b2e9
LL
3871}
3872
f0afa331 3873static void compress_threads_load_cleanup(void)
56e93d26
JQ
3874{
3875 int i, thread_count;
3876
3416ab5b
JQ
3877 if (!migrate_use_compression()) {
3878 return;
3879 }
56e93d26
JQ
3880 thread_count = migrate_decompress_threads();
3881 for (i = 0; i < thread_count; i++) {
797ca154
XG
3882 /*
3883 * we use it as a indicator which shows if the thread is
3884 * properly init'd or not
3885 */
3886 if (!decomp_param[i].compbuf) {
3887 break;
3888 }
3889
56e93d26 3890 qemu_mutex_lock(&decomp_param[i].mutex);
90e56fb4 3891 decomp_param[i].quit = true;
56e93d26
JQ
3892 qemu_cond_signal(&decomp_param[i].cond);
3893 qemu_mutex_unlock(&decomp_param[i].mutex);
3894 }
3895 for (i = 0; i < thread_count; i++) {
797ca154
XG
3896 if (!decomp_param[i].compbuf) {
3897 break;
3898 }
3899
56e93d26
JQ
3900 qemu_thread_join(decompress_threads + i);
3901 qemu_mutex_destroy(&decomp_param[i].mutex);
3902 qemu_cond_destroy(&decomp_param[i].cond);
797ca154 3903 inflateEnd(&decomp_param[i].stream);
56e93d26 3904 g_free(decomp_param[i].compbuf);
797ca154 3905 decomp_param[i].compbuf = NULL;
56e93d26
JQ
3906 }
3907 g_free(decompress_threads);
3908 g_free(decomp_param);
56e93d26
JQ
3909 decompress_threads = NULL;
3910 decomp_param = NULL;
34ab9e97 3911 decomp_file = NULL;
56e93d26
JQ
3912}
3913
34ab9e97 3914static int compress_threads_load_setup(QEMUFile *f)
797ca154
XG
3915{
3916 int i, thread_count;
3917
3918 if (!migrate_use_compression()) {
3919 return 0;
3920 }
3921
3922 thread_count = migrate_decompress_threads();
3923 decompress_threads = g_new0(QemuThread, thread_count);
3924 decomp_param = g_new0(DecompressParam, thread_count);
3925 qemu_mutex_init(&decomp_done_lock);
3926 qemu_cond_init(&decomp_done_cond);
34ab9e97 3927 decomp_file = f;
797ca154
XG
3928 for (i = 0; i < thread_count; i++) {
3929 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3930 goto exit;
3931 }
3932
3933 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3934 qemu_mutex_init(&decomp_param[i].mutex);
3935 qemu_cond_init(&decomp_param[i].cond);
3936 decomp_param[i].done = true;
3937 decomp_param[i].quit = false;
3938 qemu_thread_create(decompress_threads + i, "decompress",
3939 do_data_decompress, decomp_param + i,
3940 QEMU_THREAD_JOINABLE);
3941 }
3942 return 0;
3943exit:
3944 compress_threads_load_cleanup();
3945 return -1;
3946}
3947
c1bc6626 3948static void decompress_data_with_multi_threads(QEMUFile *f,
56e93d26
JQ
3949 void *host, int len)
3950{
3951 int idx, thread_count;
3952
3953 thread_count = migrate_decompress_threads();
73a8912b 3954 qemu_mutex_lock(&decomp_done_lock);
56e93d26
JQ
3955 while (true) {
3956 for (idx = 0; idx < thread_count; idx++) {
73a8912b 3957 if (decomp_param[idx].done) {
33d151f4
LL
3958 decomp_param[idx].done = false;
3959 qemu_mutex_lock(&decomp_param[idx].mutex);
c1bc6626 3960 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
56e93d26
JQ
3961 decomp_param[idx].des = host;
3962 decomp_param[idx].len = len;
33d151f4
LL
3963 qemu_cond_signal(&decomp_param[idx].cond);
3964 qemu_mutex_unlock(&decomp_param[idx].mutex);
56e93d26
JQ
3965 break;
3966 }
3967 }
3968 if (idx < thread_count) {
3969 break;
73a8912b
LL
3970 } else {
3971 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
56e93d26
JQ
3972 }
3973 }
73a8912b 3974 qemu_mutex_unlock(&decomp_done_lock);
56e93d26
JQ
3975}
3976
13af18f2
ZC
3977/*
3978 * colo cache: this is for secondary VM, we cache the whole
3979 * memory of the secondary VM, it is need to hold the global lock
3980 * to call this helper.
3981 */
3982int colo_init_ram_cache(void)
3983{
3984 RAMBlock *block;
3985
3986 rcu_read_lock();
fbd162e6 3987 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
3988 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3989 NULL,
3990 false);
3991 if (!block->colo_cache) {
3992 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3993 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3994 block->used_length);
3995 goto out_locked;
3996 }
3997 memcpy(block->colo_cache, block->host, block->used_length);
3998 }
3999 rcu_read_unlock();
7d9acafa
ZC
4000 /*
4001 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
4002 * with to decide which page in cache should be flushed into SVM's RAM. Here
4003 * we use the same name 'ram_bitmap' as for migration.
4004 */
4005 if (ram_bytes_total()) {
4006 RAMBlock *block;
4007
fbd162e6 4008 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
4009 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
4010
4011 block->bmap = bitmap_new(pages);
4012 bitmap_set(block->bmap, 0, pages);
4013 }
4014 }
4015 ram_state = g_new0(RAMState, 1);
4016 ram_state->migration_dirty_pages = 0;
c6e5bafb 4017 qemu_mutex_init(&ram_state->bitmap_mutex);
d1955d22 4018 memory_global_dirty_log_start();
7d9acafa 4019
13af18f2
ZC
4020 return 0;
4021
4022out_locked:
7d9acafa 4023
fbd162e6 4024 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
4025 if (block->colo_cache) {
4026 qemu_anon_ram_free(block->colo_cache, block->used_length);
4027 block->colo_cache = NULL;
4028 }
4029 }
4030
4031 rcu_read_unlock();
4032 return -errno;
4033}
4034
4035/* It is need to hold the global lock to call this helper */
4036void colo_release_ram_cache(void)
4037{
4038 RAMBlock *block;
4039
d1955d22 4040 memory_global_dirty_log_stop();
fbd162e6 4041 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
4042 g_free(block->bmap);
4043 block->bmap = NULL;
4044 }
4045
13af18f2 4046 rcu_read_lock();
7d9acafa 4047
fbd162e6 4048 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
4049 if (block->colo_cache) {
4050 qemu_anon_ram_free(block->colo_cache, block->used_length);
4051 block->colo_cache = NULL;
4052 }
4053 }
7d9acafa 4054
13af18f2 4055 rcu_read_unlock();
c6e5bafb 4056 qemu_mutex_destroy(&ram_state->bitmap_mutex);
7d9acafa
ZC
4057 g_free(ram_state);
4058 ram_state = NULL;
13af18f2
ZC
4059}
4060
f265e0e4
JQ
4061/**
4062 * ram_load_setup: Setup RAM for migration incoming side
4063 *
4064 * Returns zero to indicate success and negative for error
4065 *
4066 * @f: QEMUFile where to receive the data
4067 * @opaque: RAMState pointer
4068 */
4069static int ram_load_setup(QEMUFile *f, void *opaque)
4070{
34ab9e97 4071 if (compress_threads_load_setup(f)) {
797ca154
XG
4072 return -1;
4073 }
4074
f265e0e4 4075 xbzrle_load_setup();
f9494614 4076 ramblock_recv_map_init();
13af18f2 4077
f265e0e4
JQ
4078 return 0;
4079}
4080
4081static int ram_load_cleanup(void *opaque)
4082{
f9494614 4083 RAMBlock *rb;
56eb90af 4084
fbd162e6 4085 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
56eb90af
JH
4086 if (ramblock_is_pmem(rb)) {
4087 pmem_persist(rb->host, rb->used_length);
4088 }
4089 }
4090
f265e0e4 4091 xbzrle_load_cleanup();
f0afa331 4092 compress_threads_load_cleanup();
f9494614 4093
fbd162e6 4094 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
4095 g_free(rb->receivedmap);
4096 rb->receivedmap = NULL;
4097 }
13af18f2 4098
f265e0e4
JQ
4099 return 0;
4100}
4101
3d0684b2
JQ
4102/**
4103 * ram_postcopy_incoming_init: allocate postcopy data structures
4104 *
4105 * Returns 0 for success and negative if there was one error
4106 *
4107 * @mis: current migration incoming state
4108 *
4109 * Allocate data structures etc needed by incoming migration with
4110 * postcopy-ram. postcopy-ram's similarly names
4111 * postcopy_ram_incoming_init does the work.
1caddf8a
DDAG
4112 */
4113int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4114{
c136180c 4115 return postcopy_ram_incoming_init(mis);
1caddf8a
DDAG
4116}
4117
3d0684b2
JQ
4118/**
4119 * ram_load_postcopy: load a page in postcopy case
4120 *
4121 * Returns 0 for success or -errno in case of error
4122 *
a7180877
DDAG
4123 * Called in postcopy mode by ram_load().
4124 * rcu_read_lock is taken prior to this being called.
3d0684b2
JQ
4125 *
4126 * @f: QEMUFile where to send the data
a7180877
DDAG
4127 */
4128static int ram_load_postcopy(QEMUFile *f)
4129{
4130 int flags = 0, ret = 0;
4131 bool place_needed = false;
1aa83678 4132 bool matches_target_page_size = false;
a7180877
DDAG
4133 MigrationIncomingState *mis = migration_incoming_get_current();
4134 /* Temporary page that is later 'placed' */
4135 void *postcopy_host_page = postcopy_get_tmp_page(mis);
c53b7ddc 4136 void *last_host = NULL;
a3b6ff6d 4137 bool all_zero = false;
a7180877
DDAG
4138
4139 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4140 ram_addr_t addr;
4141 void *host = NULL;
4142 void *page_buffer = NULL;
4143 void *place_source = NULL;
df9ff5e1 4144 RAMBlock *block = NULL;
a7180877 4145 uint8_t ch;
a7180877
DDAG
4146
4147 addr = qemu_get_be64(f);
7a9ddfbf
PX
4148
4149 /*
4150 * If qemu file error, we should stop here, and then "addr"
4151 * may be invalid
4152 */
4153 ret = qemu_file_get_error(f);
4154 if (ret) {
4155 break;
4156 }
4157
a7180877
DDAG
4158 flags = addr & ~TARGET_PAGE_MASK;
4159 addr &= TARGET_PAGE_MASK;
4160
4161 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4162 place_needed = false;
bb890ed5 4163 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
df9ff5e1 4164 block = ram_block_from_stream(f, flags);
4c4bad48
HZ
4165
4166 host = host_from_ram_block_offset(block, addr);
a7180877
DDAG
4167 if (!host) {
4168 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4169 ret = -EINVAL;
4170 break;
4171 }
1aa83678 4172 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
a7180877 4173 /*
28abd200
DDAG
4174 * Postcopy requires that we place whole host pages atomically;
4175 * these may be huge pages for RAMBlocks that are backed by
4176 * hugetlbfs.
a7180877
DDAG
4177 * To make it atomic, the data is read into a temporary page
4178 * that's moved into place later.
4179 * The migration protocol uses, possibly smaller, target-pages
4180 * however the source ensures it always sends all the components
4181 * of a host page in order.
4182 */
4183 page_buffer = postcopy_host_page +
28abd200 4184 ((uintptr_t)host & (block->page_size - 1));
a7180877 4185 /* If all TP are zero then we can optimise the place */
28abd200 4186 if (!((uintptr_t)host & (block->page_size - 1))) {
a7180877 4187 all_zero = true;
c53b7ddc
DDAG
4188 } else {
4189 /* not the 1st TP within the HP */
4190 if (host != (last_host + TARGET_PAGE_SIZE)) {
9af9e0fe 4191 error_report("Non-sequential target page %p/%p",
c53b7ddc
DDAG
4192 host, last_host);
4193 ret = -EINVAL;
4194 break;
4195 }
a7180877
DDAG
4196 }
4197
c53b7ddc 4198
a7180877
DDAG
4199 /*
4200 * If it's the last part of a host page then we place the host
4201 * page
4202 */
4203 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
28abd200 4204 (block->page_size - 1)) == 0;
a7180877
DDAG
4205 place_source = postcopy_host_page;
4206 }
c53b7ddc 4207 last_host = host;
a7180877
DDAG
4208
4209 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
bb890ed5 4210 case RAM_SAVE_FLAG_ZERO:
a7180877
DDAG
4211 ch = qemu_get_byte(f);
4212 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4213 if (ch) {
4214 all_zero = false;
4215 }
4216 break;
4217
4218 case RAM_SAVE_FLAG_PAGE:
4219 all_zero = false;
1aa83678
PX
4220 if (!matches_target_page_size) {
4221 /* For huge pages, we always use temporary buffer */
a7180877
DDAG
4222 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4223 } else {
1aa83678
PX
4224 /*
4225 * For small pages that matches target page size, we
4226 * avoid the qemu_file copy. Instead we directly use
4227 * the buffer of QEMUFile to place the page. Note: we
4228 * cannot do any QEMUFile operation before using that
4229 * buffer to make sure the buffer is valid when
4230 * placing the page.
a7180877
DDAG
4231 */
4232 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4233 TARGET_PAGE_SIZE);
4234 }
4235 break;
4236 case RAM_SAVE_FLAG_EOS:
4237 /* normal exit */
6df264ac 4238 multifd_recv_sync_main();
a7180877
DDAG
4239 break;
4240 default:
4241 error_report("Unknown combination of migration flags: %#x"
4242 " (postcopy mode)", flags);
4243 ret = -EINVAL;
7a9ddfbf
PX
4244 break;
4245 }
4246
4247 /* Detect for any possible file errors */
4248 if (!ret && qemu_file_get_error(f)) {
4249 ret = qemu_file_get_error(f);
a7180877
DDAG
4250 }
4251
7a9ddfbf 4252 if (!ret && place_needed) {
a7180877 4253 /* This gets called at the last target page in the host page */
df9ff5e1
DDAG
4254 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4255
a7180877 4256 if (all_zero) {
df9ff5e1 4257 ret = postcopy_place_page_zero(mis, place_dest,
8be4620b 4258 block);
a7180877 4259 } else {
df9ff5e1 4260 ret = postcopy_place_page(mis, place_dest,
8be4620b 4261 place_source, block);
a7180877
DDAG
4262 }
4263 }
a7180877
DDAG
4264 }
4265
4266 return ret;
4267}
4268
acab30b8
DHB
4269static bool postcopy_is_advised(void)
4270{
4271 PostcopyState ps = postcopy_state_get();
4272 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4273}
4274
4275static bool postcopy_is_running(void)
4276{
4277 PostcopyState ps = postcopy_state_get();
4278 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4279}
4280
e6f4aa18
ZC
4281/*
4282 * Flush content of RAM cache into SVM's memory.
4283 * Only flush the pages that be dirtied by PVM or SVM or both.
4284 */
4285static void colo_flush_ram_cache(void)
4286{
4287 RAMBlock *block = NULL;
4288 void *dst_host;
4289 void *src_host;
4290 unsigned long offset = 0;
4291
d1955d22
HZ
4292 memory_global_dirty_log_sync();
4293 rcu_read_lock();
fbd162e6 4294 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
5d0980a4 4295 migration_bitmap_sync_range(ram_state, block);
d1955d22
HZ
4296 }
4297 rcu_read_unlock();
4298
e6f4aa18
ZC
4299 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4300 rcu_read_lock();
4301 block = QLIST_FIRST_RCU(&ram_list.blocks);
4302
4303 while (block) {
4304 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4305
4306 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4307 offset = 0;
4308 block = QLIST_NEXT_RCU(block, next);
4309 } else {
4310 migration_bitmap_clear_dirty(ram_state, block, offset);
4311 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4312 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4313 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4314 }
4315 }
4316
4317 rcu_read_unlock();
4318 trace_colo_flush_ram_cache_end();
4319}
4320
10da4a36
WY
4321/**
4322 * ram_load_precopy: load pages in precopy case
4323 *
4324 * Returns 0 for success or -errno in case of error
4325 *
4326 * Called in precopy mode by ram_load().
4327 * rcu_read_lock is taken prior to this being called.
4328 *
4329 * @f: QEMUFile where to send the data
4330 */
4331static int ram_load_precopy(QEMUFile *f)
56e93d26 4332{
10da4a36 4333 int flags = 0, ret = 0, invalid_flags = 0, len = 0;
ef08fb38 4334 /* ADVISE is earlier, it shows the source has the postcopy capability on */
acab30b8 4335 bool postcopy_advised = postcopy_is_advised();
edc60127
JQ
4336 if (!migrate_use_compression()) {
4337 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4338 }
a7180877 4339
10da4a36 4340 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
56e93d26 4341 ram_addr_t addr, total_ram_bytes;
a776aa15 4342 void *host = NULL;
56e93d26
JQ
4343 uint8_t ch;
4344
4345 addr = qemu_get_be64(f);
4346 flags = addr & ~TARGET_PAGE_MASK;
4347 addr &= TARGET_PAGE_MASK;
4348
edc60127
JQ
4349 if (flags & invalid_flags) {
4350 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4351 error_report("Received an unexpected compressed page");
4352 }
4353
4354 ret = -EINVAL;
4355 break;
4356 }
4357
bb890ed5 4358 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
a776aa15 4359 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4c4bad48
HZ
4360 RAMBlock *block = ram_block_from_stream(f, flags);
4361
13af18f2
ZC
4362 /*
4363 * After going into COLO, we should load the Page into colo_cache.
4364 */
4365 if (migration_incoming_in_colo_state()) {
4366 host = colo_cache_from_block_offset(block, addr);
4367 } else {
4368 host = host_from_ram_block_offset(block, addr);
4369 }
a776aa15
DDAG
4370 if (!host) {
4371 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4372 ret = -EINVAL;
4373 break;
4374 }
13af18f2
ZC
4375
4376 if (!migration_incoming_in_colo_state()) {
4377 ramblock_recv_bitmap_set(block, host);
4378 }
4379
1db9d8e5 4380 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
a776aa15
DDAG
4381 }
4382
56e93d26
JQ
4383 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4384 case RAM_SAVE_FLAG_MEM_SIZE:
4385 /* Synchronize RAM block list */
4386 total_ram_bytes = addr;
4387 while (!ret && total_ram_bytes) {
4388 RAMBlock *block;
56e93d26
JQ
4389 char id[256];
4390 ram_addr_t length;
4391
4392 len = qemu_get_byte(f);
4393 qemu_get_buffer(f, (uint8_t *)id, len);
4394 id[len] = 0;
4395 length = qemu_get_be64(f);
4396
e3dd7493 4397 block = qemu_ram_block_by_name(id);
b895de50
CLG
4398 if (block && !qemu_ram_is_migratable(block)) {
4399 error_report("block %s should not be migrated !", id);
4400 ret = -EINVAL;
4401 } else if (block) {
e3dd7493
DDAG
4402 if (length != block->used_length) {
4403 Error *local_err = NULL;
56e93d26 4404
fa53a0e5 4405 ret = qemu_ram_resize(block, length,
e3dd7493
DDAG
4406 &local_err);
4407 if (local_err) {
4408 error_report_err(local_err);
56e93d26 4409 }
56e93d26 4410 }
ef08fb38
DDAG
4411 /* For postcopy we need to check hugepage sizes match */
4412 if (postcopy_advised &&
4413 block->page_size != qemu_host_page_size) {
4414 uint64_t remote_page_size = qemu_get_be64(f);
4415 if (remote_page_size != block->page_size) {
4416 error_report("Mismatched RAM page size %s "
4417 "(local) %zd != %" PRId64,
4418 id, block->page_size,
4419 remote_page_size);
4420 ret = -EINVAL;
4421 }
4422 }
fbd162e6
YK
4423 if (migrate_ignore_shared()) {
4424 hwaddr addr = qemu_get_be64(f);
fbd162e6
YK
4425 if (ramblock_is_ignored(block) &&
4426 block->mr->addr != addr) {
4427 error_report("Mismatched GPAs for block %s "
4428 "%" PRId64 "!= %" PRId64,
4429 id, (uint64_t)addr,
4430 (uint64_t)block->mr->addr);
4431 ret = -EINVAL;
4432 }
4433 }
e3dd7493
DDAG
4434 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4435 block->idstr);
4436 } else {
56e93d26
JQ
4437 error_report("Unknown ramblock \"%s\", cannot "
4438 "accept migration", id);
4439 ret = -EINVAL;
4440 }
4441
4442 total_ram_bytes -= length;
4443 }
4444 break;
a776aa15 4445
bb890ed5 4446 case RAM_SAVE_FLAG_ZERO:
56e93d26
JQ
4447 ch = qemu_get_byte(f);
4448 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4449 break;
a776aa15 4450
56e93d26 4451 case RAM_SAVE_FLAG_PAGE:
56e93d26
JQ
4452 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4453 break;
56e93d26 4454
a776aa15 4455 case RAM_SAVE_FLAG_COMPRESS_PAGE:
56e93d26
JQ
4456 len = qemu_get_be32(f);
4457 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4458 error_report("Invalid compressed data length: %d", len);
4459 ret = -EINVAL;
4460 break;
4461 }
c1bc6626 4462 decompress_data_with_multi_threads(f, host, len);
56e93d26 4463 break;
a776aa15 4464
56e93d26 4465 case RAM_SAVE_FLAG_XBZRLE:
56e93d26
JQ
4466 if (load_xbzrle(f, addr, host) < 0) {
4467 error_report("Failed to decompress XBZRLE page at "
4468 RAM_ADDR_FMT, addr);
4469 ret = -EINVAL;
4470 break;
4471 }
4472 break;
4473 case RAM_SAVE_FLAG_EOS:
4474 /* normal exit */
6df264ac 4475 multifd_recv_sync_main();
56e93d26
JQ
4476 break;
4477 default:
4478 if (flags & RAM_SAVE_FLAG_HOOK) {
632e3a5c 4479 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
56e93d26
JQ
4480 } else {
4481 error_report("Unknown combination of migration flags: %#x",
4482 flags);
4483 ret = -EINVAL;
4484 }
4485 }
4486 if (!ret) {
4487 ret = qemu_file_get_error(f);
4488 }
4489 }
4490
10da4a36
WY
4491 return ret;
4492}
4493
4494static int ram_load(QEMUFile *f, void *opaque, int version_id)
4495{
4496 int ret = 0;
4497 static uint64_t seq_iter;
4498 /*
4499 * If system is running in postcopy mode, page inserts to host memory must
4500 * be atomic
4501 */
4502 bool postcopy_running = postcopy_is_running();
4503
4504 seq_iter++;
4505
4506 if (version_id != 4) {
4507 return -EINVAL;
4508 }
4509
4510 /*
4511 * This RCU critical section can be very long running.
4512 * When RCU reclaims in the code start to become numerous,
4513 * it will be necessary to reduce the granularity of this
4514 * critical section.
4515 */
4516 rcu_read_lock();
4517
4518 if (postcopy_running) {
4519 ret = ram_load_postcopy(f);
4520 } else {
4521 ret = ram_load_precopy(f);
4522 }
4523
34ab9e97 4524 ret |= wait_for_decompress_done();
56e93d26 4525 rcu_read_unlock();
55c4446b 4526 trace_ram_load_complete(ret, seq_iter);
e6f4aa18
ZC
4527
4528 if (!ret && migration_incoming_in_colo_state()) {
4529 colo_flush_ram_cache();
4530 }
56e93d26
JQ
4531 return ret;
4532}
4533
c6467627
VSO
4534static bool ram_has_postcopy(void *opaque)
4535{
469dd51b 4536 RAMBlock *rb;
fbd162e6 4537 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
469dd51b
JH
4538 if (ramblock_is_pmem(rb)) {
4539 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4540 "is not supported now!", rb->idstr, rb->host);
4541 return false;
4542 }
4543 }
4544
c6467627
VSO
4545 return migrate_postcopy_ram();
4546}
4547
edd090c7
PX
4548/* Sync all the dirty bitmap with destination VM. */
4549static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4550{
4551 RAMBlock *block;
4552 QEMUFile *file = s->to_dst_file;
4553 int ramblock_count = 0;
4554
4555 trace_ram_dirty_bitmap_sync_start();
4556
fbd162e6 4557 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
edd090c7
PX
4558 qemu_savevm_send_recv_bitmap(file, block->idstr);
4559 trace_ram_dirty_bitmap_request(block->idstr);
4560 ramblock_count++;
4561 }
4562
4563 trace_ram_dirty_bitmap_sync_wait();
4564
4565 /* Wait until all the ramblocks' dirty bitmap synced */
4566 while (ramblock_count--) {
4567 qemu_sem_wait(&s->rp_state.rp_sem);
4568 }
4569
4570 trace_ram_dirty_bitmap_sync_complete();
4571
4572 return 0;
4573}
4574
4575static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4576{
4577 qemu_sem_post(&s->rp_state.rp_sem);
4578}
4579
a335debb
PX
4580/*
4581 * Read the received bitmap, revert it as the initial dirty bitmap.
4582 * This is only used when the postcopy migration is paused but wants
4583 * to resume from a middle point.
4584 */
4585int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4586{
4587 int ret = -EINVAL;
4588 QEMUFile *file = s->rp_state.from_dst_file;
4589 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
a725ef9f 4590 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
4591 uint64_t size, end_mark;
4592
4593 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4594
4595 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4596 error_report("%s: incorrect state %s", __func__,
4597 MigrationStatus_str(s->state));
4598 return -EINVAL;
4599 }
4600
4601 /*
4602 * Note: see comments in ramblock_recv_bitmap_send() on why we
4603 * need the endianess convertion, and the paddings.
4604 */
4605 local_size = ROUND_UP(local_size, 8);
4606
4607 /* Add paddings */
4608 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4609
4610 size = qemu_get_be64(file);
4611
4612 /* The size of the bitmap should match with our ramblock */
4613 if (size != local_size) {
4614 error_report("%s: ramblock '%s' bitmap size mismatch "
4615 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4616 block->idstr, size, local_size);
4617 ret = -EINVAL;
4618 goto out;
4619 }
4620
4621 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4622 end_mark = qemu_get_be64(file);
4623
4624 ret = qemu_file_get_error(file);
4625 if (ret || size != local_size) {
4626 error_report("%s: read bitmap failed for ramblock '%s': %d"
4627 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4628 __func__, block->idstr, ret, local_size, size);
4629 ret = -EIO;
4630 goto out;
4631 }
4632
4633 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4634 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4635 __func__, block->idstr, end_mark);
4636 ret = -EINVAL;
4637 goto out;
4638 }
4639
4640 /*
4641 * Endianess convertion. We are during postcopy (though paused).
4642 * The dirty bitmap won't change. We can directly modify it.
4643 */
4644 bitmap_from_le(block->bmap, le_bitmap, nbits);
4645
4646 /*
4647 * What we received is "received bitmap". Revert it as the initial
4648 * dirty bitmap for this ramblock.
4649 */
4650 bitmap_complement(block->bmap, block->bmap, nbits);
4651
4652 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4653
edd090c7
PX
4654 /*
4655 * We succeeded to sync bitmap for current ramblock. If this is
4656 * the last one to sync, we need to notify the main send thread.
4657 */
4658 ram_dirty_bitmap_reload_notify(s);
4659
a335debb
PX
4660 ret = 0;
4661out:
bf269906 4662 g_free(le_bitmap);
a335debb
PX
4663 return ret;
4664}
4665
edd090c7
PX
4666static int ram_resume_prepare(MigrationState *s, void *opaque)
4667{
4668 RAMState *rs = *(RAMState **)opaque;
08614f34 4669 int ret;
edd090c7 4670
08614f34
PX
4671 ret = ram_dirty_bitmap_sync_all(s, rs);
4672 if (ret) {
4673 return ret;
4674 }
4675
4676 ram_state_resume_prepare(rs, s->to_dst_file);
4677
4678 return 0;
edd090c7
PX
4679}
4680
56e93d26 4681static SaveVMHandlers savevm_ram_handlers = {
9907e842 4682 .save_setup = ram_save_setup,
56e93d26 4683 .save_live_iterate = ram_save_iterate,
763c906b 4684 .save_live_complete_postcopy = ram_save_complete,
a3e06c3d 4685 .save_live_complete_precopy = ram_save_complete,
c6467627 4686 .has_postcopy = ram_has_postcopy,
56e93d26
JQ
4687 .save_live_pending = ram_save_pending,
4688 .load_state = ram_load,
f265e0e4
JQ
4689 .save_cleanup = ram_save_cleanup,
4690 .load_setup = ram_load_setup,
4691 .load_cleanup = ram_load_cleanup,
edd090c7 4692 .resume_prepare = ram_resume_prepare,
56e93d26
JQ
4693};
4694
4695void ram_mig_init(void)
4696{
4697 qemu_mutex_init(&XBZRLE.lock);
6f37bb8b 4698 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
56e93d26 4699}