]> git.proxmox.com Git - mirror_qemu.git/blame - migration/ram.c
COLO: Add a new RunState RUN_STATE_COLO
[mirror_qemu.git] / migration / ram.c
CommitLineData
56e93d26
JQ
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
76cc7b58
JQ
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
56e93d26
JQ
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
1393a485 28#include "qemu/osdep.h"
33c11879
PB
29#include "qemu-common.h"
30#include "cpu.h"
56e93d26 31#include <zlib.h>
4addcd4f 32#include "qapi-event.h"
f348b6d1 33#include "qemu/cutils.h"
56e93d26
JQ
34#include "qemu/bitops.h"
35#include "qemu/bitmap.h"
7205c9ec
JQ
36#include "qemu/timer.h"
37#include "qemu/main-loop.h"
56e93d26 38#include "migration/migration.h"
e0b266f0 39#include "migration/postcopy-ram.h"
56e93d26
JQ
40#include "exec/address-spaces.h"
41#include "migration/page_cache.h"
56e93d26 42#include "qemu/error-report.h"
56e93d26 43#include "trace.h"
56e93d26 44#include "exec/ram_addr.h"
56e93d26
JQ
45#include "qemu/rcu_queue.h"
46
47#ifdef DEBUG_MIGRATION_RAM
48#define DPRINTF(fmt, ...) \
49 do { fprintf(stdout, "migration_ram: " fmt, ## __VA_ARGS__); } while (0)
50#else
51#define DPRINTF(fmt, ...) \
52 do { } while (0)
53#endif
54
56e93d26 55static int dirty_rate_high_cnt;
56e93d26
JQ
56
57static uint64_t bitmap_sync_count;
58
59/***********************************************************/
60/* ram save/restore */
61
62#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
63#define RAM_SAVE_FLAG_COMPRESS 0x02
64#define RAM_SAVE_FLAG_MEM_SIZE 0x04
65#define RAM_SAVE_FLAG_PAGE 0x08
66#define RAM_SAVE_FLAG_EOS 0x10
67#define RAM_SAVE_FLAG_CONTINUE 0x20
68#define RAM_SAVE_FLAG_XBZRLE 0x40
69/* 0x80 is reserved in migration.h start with 0x100 next */
70#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
71
adb65dec 72static uint8_t *ZERO_TARGET_PAGE;
56e93d26
JQ
73
74static inline bool is_zero_range(uint8_t *p, uint64_t size)
75{
a1febc49 76 return buffer_is_zero(p, size);
56e93d26
JQ
77}
78
79/* struct contains XBZRLE cache and a static page
80 used by the compression */
81static struct {
82 /* buffer used for XBZRLE encoding */
83 uint8_t *encoded_buf;
84 /* buffer for storing page content */
85 uint8_t *current_buf;
86 /* Cache for XBZRLE, Protected by lock. */
87 PageCache *cache;
88 QemuMutex lock;
89} XBZRLE;
90
91/* buffer used for XBZRLE decoding */
92static uint8_t *xbzrle_decoded_buf;
93
94static void XBZRLE_cache_lock(void)
95{
96 if (migrate_use_xbzrle())
97 qemu_mutex_lock(&XBZRLE.lock);
98}
99
100static void XBZRLE_cache_unlock(void)
101{
102 if (migrate_use_xbzrle())
103 qemu_mutex_unlock(&XBZRLE.lock);
104}
105
106/*
107 * called from qmp_migrate_set_cache_size in main thread, possibly while
108 * a migration is in progress.
109 * A running migration maybe using the cache and might finish during this
110 * call, hence changes to the cache are protected by XBZRLE.lock().
111 */
112int64_t xbzrle_cache_resize(int64_t new_size)
113{
114 PageCache *new_cache;
115 int64_t ret;
116
117 if (new_size < TARGET_PAGE_SIZE) {
118 return -1;
119 }
120
121 XBZRLE_cache_lock();
122
123 if (XBZRLE.cache != NULL) {
124 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
125 goto out_new_size;
126 }
127 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
128 TARGET_PAGE_SIZE);
129 if (!new_cache) {
130 error_report("Error creating cache");
131 ret = -1;
132 goto out;
133 }
134
135 cache_fini(XBZRLE.cache);
136 XBZRLE.cache = new_cache;
137 }
138
139out_new_size:
140 ret = pow2floor(new_size);
141out:
142 XBZRLE_cache_unlock();
143 return ret;
144}
145
146/* accounting for migration statistics */
147typedef struct AccountingInfo {
148 uint64_t dup_pages;
149 uint64_t skipped_pages;
150 uint64_t norm_pages;
151 uint64_t iterations;
152 uint64_t xbzrle_bytes;
153 uint64_t xbzrle_pages;
154 uint64_t xbzrle_cache_miss;
155 double xbzrle_cache_miss_rate;
156 uint64_t xbzrle_overflows;
157} AccountingInfo;
158
159static AccountingInfo acct_info;
160
161static void acct_clear(void)
162{
163 memset(&acct_info, 0, sizeof(acct_info));
164}
165
166uint64_t dup_mig_bytes_transferred(void)
167{
168 return acct_info.dup_pages * TARGET_PAGE_SIZE;
169}
170
171uint64_t dup_mig_pages_transferred(void)
172{
173 return acct_info.dup_pages;
174}
175
176uint64_t skipped_mig_bytes_transferred(void)
177{
178 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
179}
180
181uint64_t skipped_mig_pages_transferred(void)
182{
183 return acct_info.skipped_pages;
184}
185
186uint64_t norm_mig_bytes_transferred(void)
187{
188 return acct_info.norm_pages * TARGET_PAGE_SIZE;
189}
190
191uint64_t norm_mig_pages_transferred(void)
192{
193 return acct_info.norm_pages;
194}
195
196uint64_t xbzrle_mig_bytes_transferred(void)
197{
198 return acct_info.xbzrle_bytes;
199}
200
201uint64_t xbzrle_mig_pages_transferred(void)
202{
203 return acct_info.xbzrle_pages;
204}
205
206uint64_t xbzrle_mig_pages_cache_miss(void)
207{
208 return acct_info.xbzrle_cache_miss;
209}
210
211double xbzrle_mig_cache_miss_rate(void)
212{
213 return acct_info.xbzrle_cache_miss_rate;
214}
215
216uint64_t xbzrle_mig_pages_overflow(void)
217{
218 return acct_info.xbzrle_overflows;
219}
220
221/* This is the last block that we have visited serching for dirty pages
222 */
223static RAMBlock *last_seen_block;
224/* This is the last block from where we have sent data */
225static RAMBlock *last_sent_block;
226static ram_addr_t last_offset;
dd631697 227static QemuMutex migration_bitmap_mutex;
56e93d26
JQ
228static uint64_t migration_dirty_pages;
229static uint32_t last_version;
230static bool ram_bulk_stage;
231
b8fb8cb7
DDAG
232/* used by the search for pages to send */
233struct PageSearchStatus {
234 /* Current block being searched */
235 RAMBlock *block;
236 /* Current offset to search from */
237 ram_addr_t offset;
238 /* Set once we wrap around */
239 bool complete_round;
240};
241typedef struct PageSearchStatus PageSearchStatus;
242
60be6340
DL
243static struct BitmapRcu {
244 struct rcu_head rcu;
f3f491fc 245 /* Main migration bitmap */
60be6340 246 unsigned long *bmap;
f3f491fc
DDAG
247 /* bitmap of pages that haven't been sent even once
248 * only maintained and used in postcopy at the moment
249 * where it's used to send the dirtymap at the start
250 * of the postcopy phase
251 */
252 unsigned long *unsentmap;
60be6340
DL
253} *migration_bitmap_rcu;
254
56e93d26 255struct CompressParam {
56e93d26 256 bool done;
90e56fb4 257 bool quit;
56e93d26
JQ
258 QEMUFile *file;
259 QemuMutex mutex;
260 QemuCond cond;
261 RAMBlock *block;
262 ram_addr_t offset;
263};
264typedef struct CompressParam CompressParam;
265
266struct DecompressParam {
73a8912b 267 bool done;
90e56fb4 268 bool quit;
56e93d26
JQ
269 QemuMutex mutex;
270 QemuCond cond;
271 void *des;
d341d9f3 272 uint8_t *compbuf;
56e93d26
JQ
273 int len;
274};
275typedef struct DecompressParam DecompressParam;
276
277static CompressParam *comp_param;
278static QemuThread *compress_threads;
279/* comp_done_cond is used to wake up the migration thread when
280 * one of the compression threads has finished the compression.
281 * comp_done_lock is used to co-work with comp_done_cond.
282 */
0d9f9a5c
LL
283static QemuMutex comp_done_lock;
284static QemuCond comp_done_cond;
56e93d26
JQ
285/* The empty QEMUFileOps will be used by file in CompressParam */
286static const QEMUFileOps empty_ops = { };
287
288static bool compression_switch;
56e93d26
JQ
289static DecompressParam *decomp_param;
290static QemuThread *decompress_threads;
73a8912b
LL
291static QemuMutex decomp_done_lock;
292static QemuCond decomp_done_cond;
56e93d26 293
a7a9a88f
LL
294static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
295 ram_addr_t offset);
56e93d26
JQ
296
297static void *do_data_compress(void *opaque)
298{
299 CompressParam *param = opaque;
a7a9a88f
LL
300 RAMBlock *block;
301 ram_addr_t offset;
56e93d26 302
a7a9a88f 303 qemu_mutex_lock(&param->mutex);
90e56fb4 304 while (!param->quit) {
a7a9a88f
LL
305 if (param->block) {
306 block = param->block;
307 offset = param->offset;
308 param->block = NULL;
309 qemu_mutex_unlock(&param->mutex);
310
311 do_compress_ram_page(param->file, block, offset);
312
0d9f9a5c 313 qemu_mutex_lock(&comp_done_lock);
a7a9a88f 314 param->done = true;
0d9f9a5c
LL
315 qemu_cond_signal(&comp_done_cond);
316 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
317
318 qemu_mutex_lock(&param->mutex);
319 } else {
56e93d26
JQ
320 qemu_cond_wait(&param->cond, &param->mutex);
321 }
56e93d26 322 }
a7a9a88f 323 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
324
325 return NULL;
326}
327
328static inline void terminate_compression_threads(void)
329{
330 int idx, thread_count;
331
332 thread_count = migrate_compress_threads();
56e93d26
JQ
333 for (idx = 0; idx < thread_count; idx++) {
334 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 335 comp_param[idx].quit = true;
56e93d26
JQ
336 qemu_cond_signal(&comp_param[idx].cond);
337 qemu_mutex_unlock(&comp_param[idx].mutex);
338 }
339}
340
341void migrate_compress_threads_join(void)
342{
343 int i, thread_count;
344
345 if (!migrate_use_compression()) {
346 return;
347 }
348 terminate_compression_threads();
349 thread_count = migrate_compress_threads();
350 for (i = 0; i < thread_count; i++) {
351 qemu_thread_join(compress_threads + i);
352 qemu_fclose(comp_param[i].file);
353 qemu_mutex_destroy(&comp_param[i].mutex);
354 qemu_cond_destroy(&comp_param[i].cond);
355 }
0d9f9a5c
LL
356 qemu_mutex_destroy(&comp_done_lock);
357 qemu_cond_destroy(&comp_done_cond);
56e93d26
JQ
358 g_free(compress_threads);
359 g_free(comp_param);
56e93d26
JQ
360 compress_threads = NULL;
361 comp_param = NULL;
56e93d26
JQ
362}
363
364void migrate_compress_threads_create(void)
365{
366 int i, thread_count;
367
368 if (!migrate_use_compression()) {
369 return;
370 }
56e93d26
JQ
371 compression_switch = true;
372 thread_count = migrate_compress_threads();
373 compress_threads = g_new0(QemuThread, thread_count);
374 comp_param = g_new0(CompressParam, thread_count);
0d9f9a5c
LL
375 qemu_cond_init(&comp_done_cond);
376 qemu_mutex_init(&comp_done_lock);
56e93d26 377 for (i = 0; i < thread_count; i++) {
e110aa91
C
378 /* comp_param[i].file is just used as a dummy buffer to save data,
379 * set its ops to empty.
56e93d26
JQ
380 */
381 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
382 comp_param[i].done = true;
90e56fb4 383 comp_param[i].quit = false;
56e93d26
JQ
384 qemu_mutex_init(&comp_param[i].mutex);
385 qemu_cond_init(&comp_param[i].cond);
386 qemu_thread_create(compress_threads + i, "compress",
387 do_data_compress, comp_param + i,
388 QEMU_THREAD_JOINABLE);
389 }
390}
391
392/**
393 * save_page_header: Write page header to wire
394 *
395 * If this is the 1st block, it also writes the block identification
396 *
397 * Returns: Number of bytes written
398 *
399 * @f: QEMUFile where to send the data
400 * @block: block that contains the page we want to send
401 * @offset: offset inside the block for the page
402 * in the lower bits, it contains flags
403 */
404static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset)
405{
9f5f380b 406 size_t size, len;
56e93d26
JQ
407
408 qemu_put_be64(f, offset);
409 size = 8;
410
411 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
9f5f380b
LL
412 len = strlen(block->idstr);
413 qemu_put_byte(f, len);
414 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
415 size += 1 + len;
56e93d26
JQ
416 }
417 return size;
418}
419
070afca2
JH
420/* Reduce amount of guest cpu execution to hopefully slow down memory writes.
421 * If guest dirty memory rate is reduced below the rate at which we can
422 * transfer pages to the destination then we should be able to complete
423 * migration. Some workloads dirty memory way too fast and will not effectively
424 * converge, even with auto-converge.
425 */
426static void mig_throttle_guest_down(void)
427{
428 MigrationState *s = migrate_get_current();
2594f56d
DB
429 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
430 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
070afca2
JH
431
432 /* We have not started throttling yet. Let's start it. */
433 if (!cpu_throttle_active()) {
434 cpu_throttle_set(pct_initial);
435 } else {
436 /* Throttling already on, just increase the rate */
437 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
438 }
439}
440
56e93d26
JQ
441/* Update the xbzrle cache to reflect a page that's been sent as all 0.
442 * The important thing is that a stale (not-yet-0'd) page be replaced
443 * by the new data.
444 * As a bonus, if the page wasn't in the cache it gets added so that
445 * when a small write is made into the 0'd page it gets XBZRLE sent
446 */
447static void xbzrle_cache_zero_page(ram_addr_t current_addr)
448{
449 if (ram_bulk_stage || !migrate_use_xbzrle()) {
450 return;
451 }
452
453 /* We don't care if this fails to allocate a new cache page
454 * as long as it updated an old one */
455 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
456 bitmap_sync_count);
457}
458
459#define ENCODING_FLAG_XBZRLE 0x1
460
461/**
462 * save_xbzrle_page: compress and send current page
463 *
464 * Returns: 1 means that we wrote the page
465 * 0 means that page is identical to the one already sent
466 * -1 means that xbzrle would be longer than normal
467 *
468 * @f: QEMUFile where to send the data
469 * @current_data:
470 * @current_addr:
471 * @block: block that contains the page we want to send
472 * @offset: offset inside the block for the page
473 * @last_stage: if we are at the completion stage
474 * @bytes_transferred: increase it with the number of transferred bytes
475 */
476static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
477 ram_addr_t current_addr, RAMBlock *block,
478 ram_addr_t offset, bool last_stage,
479 uint64_t *bytes_transferred)
480{
481 int encoded_len = 0, bytes_xbzrle;
482 uint8_t *prev_cached_page;
483
484 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
485 acct_info.xbzrle_cache_miss++;
486 if (!last_stage) {
487 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
488 bitmap_sync_count) == -1) {
489 return -1;
490 } else {
491 /* update *current_data when the page has been
492 inserted into cache */
493 *current_data = get_cached_data(XBZRLE.cache, current_addr);
494 }
495 }
496 return -1;
497 }
498
499 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
500
501 /* save current buffer into memory */
502 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
503
504 /* XBZRLE encoding (if there is no overflow) */
505 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
506 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
507 TARGET_PAGE_SIZE);
508 if (encoded_len == 0) {
509 DPRINTF("Skipping unmodified page\n");
510 return 0;
511 } else if (encoded_len == -1) {
512 DPRINTF("Overflow\n");
513 acct_info.xbzrle_overflows++;
514 /* update data in the cache */
515 if (!last_stage) {
516 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
517 *current_data = prev_cached_page;
518 }
519 return -1;
520 }
521
522 /* we need to update the data in the cache, in order to get the same data */
523 if (!last_stage) {
524 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
525 }
526
527 /* Send XBZRLE based compressed page */
528 bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE);
529 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
530 qemu_put_be16(f, encoded_len);
531 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
532 bytes_xbzrle += encoded_len + 1 + 2;
533 acct_info.xbzrle_pages++;
534 acct_info.xbzrle_bytes += bytes_xbzrle;
535 *bytes_transferred += bytes_xbzrle;
536
537 return 1;
538}
539
f3f491fc
DDAG
540/* Called with rcu_read_lock() to protect migration_bitmap
541 * rb: The RAMBlock to search for dirty pages in
542 * start: Start address (typically so we can continue from previous page)
543 * ram_addr_abs: Pointer into which to store the address of the dirty page
544 * within the global ram_addr space
545 *
546 * Returns: byte offset within memory region of the start of a dirty page
547 */
56e93d26 548static inline
a82d593b
DDAG
549ram_addr_t migration_bitmap_find_dirty(RAMBlock *rb,
550 ram_addr_t start,
551 ram_addr_t *ram_addr_abs)
56e93d26 552{
2f68e399 553 unsigned long base = rb->offset >> TARGET_PAGE_BITS;
56e93d26 554 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
2f68e399
DDAG
555 uint64_t rb_size = rb->used_length;
556 unsigned long size = base + (rb_size >> TARGET_PAGE_BITS);
2ff64038 557 unsigned long *bitmap;
56e93d26
JQ
558
559 unsigned long next;
560
60be6340 561 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
56e93d26
JQ
562 if (ram_bulk_stage && nr > base) {
563 next = nr + 1;
564 } else {
2ff64038 565 next = find_next_bit(bitmap, size, nr);
56e93d26
JQ
566 }
567
f3f491fc 568 *ram_addr_abs = next << TARGET_PAGE_BITS;
56e93d26
JQ
569 return (next - base) << TARGET_PAGE_BITS;
570}
571
a82d593b
DDAG
572static inline bool migration_bitmap_clear_dirty(ram_addr_t addr)
573{
574 bool ret;
575 int nr = addr >> TARGET_PAGE_BITS;
576 unsigned long *bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
577
578 ret = test_and_clear_bit(nr, bitmap);
579
580 if (ret) {
581 migration_dirty_pages--;
582 }
583 return ret;
584}
585
56e93d26
JQ
586static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
587{
2ff64038 588 unsigned long *bitmap;
60be6340 589 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
56e93d26 590 migration_dirty_pages +=
2ff64038 591 cpu_physical_memory_sync_dirty_bitmap(bitmap, start, length);
56e93d26
JQ
592}
593
56e93d26
JQ
594/* Fix me: there are too many global variables used in migration process. */
595static int64_t start_time;
596static int64_t bytes_xfer_prev;
597static int64_t num_dirty_pages_period;
598static uint64_t xbzrle_cache_miss_prev;
599static uint64_t iterations_prev;
600
601static void migration_bitmap_sync_init(void)
602{
603 start_time = 0;
604 bytes_xfer_prev = 0;
605 num_dirty_pages_period = 0;
606 xbzrle_cache_miss_prev = 0;
607 iterations_prev = 0;
608}
609
56e93d26
JQ
610static void migration_bitmap_sync(void)
611{
612 RAMBlock *block;
613 uint64_t num_dirty_pages_init = migration_dirty_pages;
614 MigrationState *s = migrate_get_current();
615 int64_t end_time;
616 int64_t bytes_xfer_now;
617
618 bitmap_sync_count++;
619
620 if (!bytes_xfer_prev) {
621 bytes_xfer_prev = ram_bytes_transferred();
622 }
623
624 if (!start_time) {
625 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
626 }
627
628 trace_migration_bitmap_sync_start();
9c1f8f44 629 memory_global_dirty_log_sync();
56e93d26 630
dd631697 631 qemu_mutex_lock(&migration_bitmap_mutex);
56e93d26
JQ
632 rcu_read_lock();
633 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2f68e399 634 migration_bitmap_sync_range(block->offset, block->used_length);
56e93d26
JQ
635 }
636 rcu_read_unlock();
dd631697 637 qemu_mutex_unlock(&migration_bitmap_mutex);
56e93d26
JQ
638
639 trace_migration_bitmap_sync_end(migration_dirty_pages
640 - num_dirty_pages_init);
641 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
642 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
643
644 /* more than 1 second = 1000 millisecons */
645 if (end_time > start_time + 1000) {
646 if (migrate_auto_converge()) {
647 /* The following detection logic can be refined later. For now:
648 Check to see if the dirtied bytes is 50% more than the approx.
649 amount of bytes that just got transferred since the last time we
070afca2
JH
650 were in this routine. If that happens twice, start or increase
651 throttling */
56e93d26 652 bytes_xfer_now = ram_bytes_transferred();
070afca2 653
56e93d26
JQ
654 if (s->dirty_pages_rate &&
655 (num_dirty_pages_period * TARGET_PAGE_SIZE >
656 (bytes_xfer_now - bytes_xfer_prev)/2) &&
070afca2 657 (dirty_rate_high_cnt++ >= 2)) {
56e93d26 658 trace_migration_throttle();
56e93d26 659 dirty_rate_high_cnt = 0;
070afca2 660 mig_throttle_guest_down();
56e93d26
JQ
661 }
662 bytes_xfer_prev = bytes_xfer_now;
56e93d26 663 }
070afca2 664
56e93d26
JQ
665 if (migrate_use_xbzrle()) {
666 if (iterations_prev != acct_info.iterations) {
667 acct_info.xbzrle_cache_miss_rate =
668 (double)(acct_info.xbzrle_cache_miss -
669 xbzrle_cache_miss_prev) /
670 (acct_info.iterations - iterations_prev);
671 }
672 iterations_prev = acct_info.iterations;
673 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
674 }
675 s->dirty_pages_rate = num_dirty_pages_period * 1000
676 / (end_time - start_time);
677 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
678 start_time = end_time;
679 num_dirty_pages_period = 0;
680 }
681 s->dirty_sync_count = bitmap_sync_count;
4addcd4f
DDAG
682 if (migrate_use_events()) {
683 qapi_event_send_migration_pass(bitmap_sync_count, NULL);
684 }
56e93d26
JQ
685}
686
687/**
688 * save_zero_page: Send the zero page to the stream
689 *
690 * Returns: Number of pages written.
691 *
692 * @f: QEMUFile where to send the data
693 * @block: block that contains the page we want to send
694 * @offset: offset inside the block for the page
695 * @p: pointer to the page
696 * @bytes_transferred: increase it with the number of transferred bytes
697 */
698static int save_zero_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
699 uint8_t *p, uint64_t *bytes_transferred)
700{
701 int pages = -1;
702
703 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
704 acct_info.dup_pages++;
705 *bytes_transferred += save_page_header(f, block,
706 offset | RAM_SAVE_FLAG_COMPRESS);
707 qemu_put_byte(f, 0);
708 *bytes_transferred += 1;
709 pages = 1;
710 }
711
712 return pages;
713}
714
715/**
716 * ram_save_page: Send the given page to the stream
717 *
718 * Returns: Number of pages written.
3fd3c4b3
DDAG
719 * < 0 - error
720 * >=0 - Number of pages written - this might legally be 0
721 * if xbzrle noticed the page was the same.
56e93d26
JQ
722 *
723 * @f: QEMUFile where to send the data
724 * @block: block that contains the page we want to send
725 * @offset: offset inside the block for the page
726 * @last_stage: if we are at the completion stage
727 * @bytes_transferred: increase it with the number of transferred bytes
728 */
a08f6890 729static int ram_save_page(QEMUFile *f, PageSearchStatus *pss,
56e93d26
JQ
730 bool last_stage, uint64_t *bytes_transferred)
731{
732 int pages = -1;
733 uint64_t bytes_xmit;
734 ram_addr_t current_addr;
56e93d26
JQ
735 uint8_t *p;
736 int ret;
737 bool send_async = true;
a08f6890
HZ
738 RAMBlock *block = pss->block;
739 ram_addr_t offset = pss->offset;
56e93d26 740
2f68e399 741 p = block->host + offset;
56e93d26
JQ
742
743 /* In doubt sent page as normal */
744 bytes_xmit = 0;
745 ret = ram_control_save_page(f, block->offset,
746 offset, TARGET_PAGE_SIZE, &bytes_xmit);
747 if (bytes_xmit) {
748 *bytes_transferred += bytes_xmit;
749 pages = 1;
750 }
751
752 XBZRLE_cache_lock();
753
754 current_addr = block->offset + offset;
755
756 if (block == last_sent_block) {
757 offset |= RAM_SAVE_FLAG_CONTINUE;
758 }
759 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
760 if (ret != RAM_SAVE_CONTROL_DELAYED) {
761 if (bytes_xmit > 0) {
762 acct_info.norm_pages++;
763 } else if (bytes_xmit == 0) {
764 acct_info.dup_pages++;
765 }
766 }
767 } else {
768 pages = save_zero_page(f, block, offset, p, bytes_transferred);
769 if (pages > 0) {
770 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
771 * page would be stale
772 */
773 xbzrle_cache_zero_page(current_addr);
2ebeaec0
DDAG
774 } else if (!ram_bulk_stage &&
775 !migration_in_postcopy(migrate_get_current()) &&
776 migrate_use_xbzrle()) {
56e93d26
JQ
777 pages = save_xbzrle_page(f, &p, current_addr, block,
778 offset, last_stage, bytes_transferred);
779 if (!last_stage) {
780 /* Can't send this cached data async, since the cache page
781 * might get updated before it gets to the wire
782 */
783 send_async = false;
784 }
785 }
786 }
787
788 /* XBZRLE overflow or normal page */
789 if (pages == -1) {
790 *bytes_transferred += save_page_header(f, block,
791 offset | RAM_SAVE_FLAG_PAGE);
792 if (send_async) {
793 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
794 } else {
795 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
796 }
797 *bytes_transferred += TARGET_PAGE_SIZE;
798 pages = 1;
799 acct_info.norm_pages++;
800 }
801
802 XBZRLE_cache_unlock();
803
804 return pages;
805}
806
a7a9a88f
LL
807static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
808 ram_addr_t offset)
56e93d26
JQ
809{
810 int bytes_sent, blen;
a7a9a88f 811 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
56e93d26 812
a7a9a88f 813 bytes_sent = save_page_header(f, block, offset |
56e93d26 814 RAM_SAVE_FLAG_COMPRESS_PAGE);
a7a9a88f 815 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE,
56e93d26 816 migrate_compress_level());
b3be2896
LL
817 if (blen < 0) {
818 bytes_sent = 0;
819 qemu_file_set_error(migrate_get_current()->to_dst_file, blen);
820 error_report("compressed data failed!");
821 } else {
822 bytes_sent += blen;
823 }
56e93d26
JQ
824
825 return bytes_sent;
826}
827
56e93d26
JQ
828static uint64_t bytes_transferred;
829
830static void flush_compressed_data(QEMUFile *f)
831{
832 int idx, len, thread_count;
833
834 if (!migrate_use_compression()) {
835 return;
836 }
837 thread_count = migrate_compress_threads();
a7a9a88f 838
0d9f9a5c 839 qemu_mutex_lock(&comp_done_lock);
56e93d26 840 for (idx = 0; idx < thread_count; idx++) {
a7a9a88f 841 while (!comp_param[idx].done) {
0d9f9a5c 842 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26 843 }
a7a9a88f 844 }
0d9f9a5c 845 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
846
847 for (idx = 0; idx < thread_count; idx++) {
848 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 849 if (!comp_param[idx].quit) {
56e93d26
JQ
850 len = qemu_put_qemu_file(f, comp_param[idx].file);
851 bytes_transferred += len;
852 }
a7a9a88f 853 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26
JQ
854 }
855}
856
857static inline void set_compress_params(CompressParam *param, RAMBlock *block,
858 ram_addr_t offset)
859{
860 param->block = block;
861 param->offset = offset;
862}
863
864static int compress_page_with_multi_thread(QEMUFile *f, RAMBlock *block,
865 ram_addr_t offset,
866 uint64_t *bytes_transferred)
867{
868 int idx, thread_count, bytes_xmit = -1, pages = -1;
869
870 thread_count = migrate_compress_threads();
0d9f9a5c 871 qemu_mutex_lock(&comp_done_lock);
56e93d26
JQ
872 while (true) {
873 for (idx = 0; idx < thread_count; idx++) {
874 if (comp_param[idx].done) {
a7a9a88f 875 comp_param[idx].done = false;
56e93d26 876 bytes_xmit = qemu_put_qemu_file(f, comp_param[idx].file);
a7a9a88f 877 qemu_mutex_lock(&comp_param[idx].mutex);
56e93d26 878 set_compress_params(&comp_param[idx], block, offset);
a7a9a88f
LL
879 qemu_cond_signal(&comp_param[idx].cond);
880 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26
JQ
881 pages = 1;
882 acct_info.norm_pages++;
883 *bytes_transferred += bytes_xmit;
884 break;
885 }
886 }
887 if (pages > 0) {
888 break;
889 } else {
0d9f9a5c 890 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26
JQ
891 }
892 }
0d9f9a5c 893 qemu_mutex_unlock(&comp_done_lock);
56e93d26
JQ
894
895 return pages;
896}
897
898/**
899 * ram_save_compressed_page: compress the given page and send it to the stream
900 *
901 * Returns: Number of pages written.
902 *
903 * @f: QEMUFile where to send the data
904 * @block: block that contains the page we want to send
905 * @offset: offset inside the block for the page
906 * @last_stage: if we are at the completion stage
907 * @bytes_transferred: increase it with the number of transferred bytes
908 */
a08f6890
HZ
909static int ram_save_compressed_page(QEMUFile *f, PageSearchStatus *pss,
910 bool last_stage,
56e93d26
JQ
911 uint64_t *bytes_transferred)
912{
913 int pages = -1;
fc50438e 914 uint64_t bytes_xmit = 0;
56e93d26 915 uint8_t *p;
fc50438e 916 int ret, blen;
a08f6890
HZ
917 RAMBlock *block = pss->block;
918 ram_addr_t offset = pss->offset;
56e93d26 919
2f68e399 920 p = block->host + offset;
56e93d26 921
56e93d26
JQ
922 ret = ram_control_save_page(f, block->offset,
923 offset, TARGET_PAGE_SIZE, &bytes_xmit);
924 if (bytes_xmit) {
925 *bytes_transferred += bytes_xmit;
926 pages = 1;
927 }
56e93d26
JQ
928 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
929 if (ret != RAM_SAVE_CONTROL_DELAYED) {
930 if (bytes_xmit > 0) {
931 acct_info.norm_pages++;
932 } else if (bytes_xmit == 0) {
933 acct_info.dup_pages++;
934 }
935 }
936 } else {
937 /* When starting the process of a new block, the first page of
938 * the block should be sent out before other pages in the same
939 * block, and all the pages in last block should have been sent
940 * out, keeping this order is important, because the 'cont' flag
941 * is used to avoid resending the block name.
942 */
943 if (block != last_sent_block) {
944 flush_compressed_data(f);
945 pages = save_zero_page(f, block, offset, p, bytes_transferred);
946 if (pages == -1) {
fc50438e
LL
947 /* Make sure the first page is sent out before other pages */
948 bytes_xmit = save_page_header(f, block, offset |
949 RAM_SAVE_FLAG_COMPRESS_PAGE);
950 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE,
951 migrate_compress_level());
952 if (blen > 0) {
953 *bytes_transferred += bytes_xmit + blen;
b3be2896 954 acct_info.norm_pages++;
b3be2896 955 pages = 1;
fc50438e
LL
956 } else {
957 qemu_file_set_error(f, blen);
958 error_report("compressed data failed!");
b3be2896 959 }
56e93d26
JQ
960 }
961 } else {
fc50438e 962 offset |= RAM_SAVE_FLAG_CONTINUE;
56e93d26
JQ
963 pages = save_zero_page(f, block, offset, p, bytes_transferred);
964 if (pages == -1) {
965 pages = compress_page_with_multi_thread(f, block, offset,
966 bytes_transferred);
967 }
968 }
969 }
970
971 return pages;
972}
973
b9e60928
DDAG
974/*
975 * Find the next dirty page and update any state associated with
976 * the search process.
977 *
978 * Returns: True if a page is found
979 *
980 * @f: Current migration stream.
981 * @pss: Data about the state of the current dirty page scan.
982 * @*again: Set to false if the search has scanned the whole of RAM
e0b266f0
DDAG
983 * *ram_addr_abs: Pointer into which to store the address of the dirty page
984 * within the global ram_addr space
b9e60928
DDAG
985 */
986static bool find_dirty_block(QEMUFile *f, PageSearchStatus *pss,
f3f491fc 987 bool *again, ram_addr_t *ram_addr_abs)
b9e60928 988{
a82d593b
DDAG
989 pss->offset = migration_bitmap_find_dirty(pss->block, pss->offset,
990 ram_addr_abs);
b9e60928
DDAG
991 if (pss->complete_round && pss->block == last_seen_block &&
992 pss->offset >= last_offset) {
993 /*
994 * We've been once around the RAM and haven't found anything.
995 * Give up.
996 */
997 *again = false;
998 return false;
999 }
1000 if (pss->offset >= pss->block->used_length) {
1001 /* Didn't find anything in this RAM Block */
1002 pss->offset = 0;
1003 pss->block = QLIST_NEXT_RCU(pss->block, next);
1004 if (!pss->block) {
1005 /* Hit the end of the list */
1006 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1007 /* Flag that we've looped */
1008 pss->complete_round = true;
1009 ram_bulk_stage = false;
1010 if (migrate_use_xbzrle()) {
1011 /* If xbzrle is on, stop using the data compression at this
1012 * point. In theory, xbzrle can do better than compression.
1013 */
1014 flush_compressed_data(f);
1015 compression_switch = false;
1016 }
1017 }
1018 /* Didn't find anything this time, but try again on the new block */
1019 *again = true;
1020 return false;
1021 } else {
1022 /* Can go around again, but... */
1023 *again = true;
1024 /* We've found something so probably don't need to */
1025 return true;
1026 }
1027}
1028
a82d593b
DDAG
1029/*
1030 * Helper for 'get_queued_page' - gets a page off the queue
1031 * ms: MigrationState in
1032 * *offset: Used to return the offset within the RAMBlock
1033 * ram_addr_abs: global offset in the dirty/sent bitmaps
1034 *
1035 * Returns: block (or NULL if none available)
1036 */
1037static RAMBlock *unqueue_page(MigrationState *ms, ram_addr_t *offset,
1038 ram_addr_t *ram_addr_abs)
1039{
1040 RAMBlock *block = NULL;
1041
1042 qemu_mutex_lock(&ms->src_page_req_mutex);
1043 if (!QSIMPLEQ_EMPTY(&ms->src_page_requests)) {
1044 struct MigrationSrcPageRequest *entry =
1045 QSIMPLEQ_FIRST(&ms->src_page_requests);
1046 block = entry->rb;
1047 *offset = entry->offset;
1048 *ram_addr_abs = (entry->offset + entry->rb->offset) &
1049 TARGET_PAGE_MASK;
1050
1051 if (entry->len > TARGET_PAGE_SIZE) {
1052 entry->len -= TARGET_PAGE_SIZE;
1053 entry->offset += TARGET_PAGE_SIZE;
1054 } else {
1055 memory_region_unref(block->mr);
1056 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req);
1057 g_free(entry);
1058 }
1059 }
1060 qemu_mutex_unlock(&ms->src_page_req_mutex);
1061
1062 return block;
1063}
1064
1065/*
1066 * Unqueue a page from the queue fed by postcopy page requests; skips pages
1067 * that are already sent (!dirty)
1068 *
1069 * ms: MigrationState in
1070 * pss: PageSearchStatus structure updated with found block/offset
1071 * ram_addr_abs: global offset in the dirty/sent bitmaps
1072 *
1073 * Returns: true if a queued page is found
1074 */
1075static bool get_queued_page(MigrationState *ms, PageSearchStatus *pss,
1076 ram_addr_t *ram_addr_abs)
1077{
1078 RAMBlock *block;
1079 ram_addr_t offset;
1080 bool dirty;
1081
1082 do {
1083 block = unqueue_page(ms, &offset, ram_addr_abs);
1084 /*
1085 * We're sending this page, and since it's postcopy nothing else
1086 * will dirty it, and we must make sure it doesn't get sent again
1087 * even if this queue request was received after the background
1088 * search already sent it.
1089 */
1090 if (block) {
1091 unsigned long *bitmap;
1092 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1093 dirty = test_bit(*ram_addr_abs >> TARGET_PAGE_BITS, bitmap);
1094 if (!dirty) {
1095 trace_get_queued_page_not_dirty(
1096 block->idstr, (uint64_t)offset,
1097 (uint64_t)*ram_addr_abs,
1098 test_bit(*ram_addr_abs >> TARGET_PAGE_BITS,
1099 atomic_rcu_read(&migration_bitmap_rcu)->unsentmap));
1100 } else {
1101 trace_get_queued_page(block->idstr,
1102 (uint64_t)offset,
1103 (uint64_t)*ram_addr_abs);
1104 }
1105 }
1106
1107 } while (block && !dirty);
1108
1109 if (block) {
1110 /*
1111 * As soon as we start servicing pages out of order, then we have
1112 * to kill the bulk stage, since the bulk stage assumes
1113 * in (migration_bitmap_find_and_reset_dirty) that every page is
1114 * dirty, that's no longer true.
1115 */
1116 ram_bulk_stage = false;
1117
1118 /*
1119 * We want the background search to continue from the queued page
1120 * since the guest is likely to want other pages near to the page
1121 * it just requested.
1122 */
1123 pss->block = block;
1124 pss->offset = offset;
1125 }
1126
1127 return !!block;
1128}
1129
6c595cde
DDAG
1130/**
1131 * flush_page_queue: Flush any remaining pages in the ram request queue
1132 * it should be empty at the end anyway, but in error cases there may be
1133 * some left.
1134 *
1135 * ms: MigrationState
1136 */
1137void flush_page_queue(MigrationState *ms)
1138{
1139 struct MigrationSrcPageRequest *mspr, *next_mspr;
1140 /* This queue generally should be empty - but in the case of a failed
1141 * migration might have some droppings in.
1142 */
1143 rcu_read_lock();
1144 QSIMPLEQ_FOREACH_SAFE(mspr, &ms->src_page_requests, next_req, next_mspr) {
1145 memory_region_unref(mspr->rb->mr);
1146 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req);
1147 g_free(mspr);
1148 }
1149 rcu_read_unlock();
1150}
1151
1152/**
1153 * Queue the pages for transmission, e.g. a request from postcopy destination
1154 * ms: MigrationStatus in which the queue is held
1155 * rbname: The RAMBlock the request is for - may be NULL (to mean reuse last)
1156 * start: Offset from the start of the RAMBlock
1157 * len: Length (in bytes) to send
1158 * Return: 0 on success
1159 */
1160int ram_save_queue_pages(MigrationState *ms, const char *rbname,
1161 ram_addr_t start, ram_addr_t len)
1162{
1163 RAMBlock *ramblock;
1164
d3bf5418 1165 ms->postcopy_requests++;
6c595cde
DDAG
1166 rcu_read_lock();
1167 if (!rbname) {
1168 /* Reuse last RAMBlock */
1169 ramblock = ms->last_req_rb;
1170
1171 if (!ramblock) {
1172 /*
1173 * Shouldn't happen, we can't reuse the last RAMBlock if
1174 * it's the 1st request.
1175 */
1176 error_report("ram_save_queue_pages no previous block");
1177 goto err;
1178 }
1179 } else {
1180 ramblock = qemu_ram_block_by_name(rbname);
1181
1182 if (!ramblock) {
1183 /* We shouldn't be asked for a non-existent RAMBlock */
1184 error_report("ram_save_queue_pages no block '%s'", rbname);
1185 goto err;
1186 }
1187 ms->last_req_rb = ramblock;
1188 }
1189 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1190 if (start+len > ramblock->used_length) {
9458ad6b
JQ
1191 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1192 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
6c595cde
DDAG
1193 __func__, start, len, ramblock->used_length);
1194 goto err;
1195 }
1196
1197 struct MigrationSrcPageRequest *new_entry =
1198 g_malloc0(sizeof(struct MigrationSrcPageRequest));
1199 new_entry->rb = ramblock;
1200 new_entry->offset = start;
1201 new_entry->len = len;
1202
1203 memory_region_ref(ramblock->mr);
1204 qemu_mutex_lock(&ms->src_page_req_mutex);
1205 QSIMPLEQ_INSERT_TAIL(&ms->src_page_requests, new_entry, next_req);
1206 qemu_mutex_unlock(&ms->src_page_req_mutex);
1207 rcu_read_unlock();
1208
1209 return 0;
1210
1211err:
1212 rcu_read_unlock();
1213 return -1;
1214}
1215
a82d593b
DDAG
1216/**
1217 * ram_save_target_page: Save one target page
1218 *
1219 *
1220 * @f: QEMUFile where to send the data
1221 * @block: pointer to block that contains the page we want to send
1222 * @offset: offset inside the block for the page;
1223 * @last_stage: if we are at the completion stage
1224 * @bytes_transferred: increase it with the number of transferred bytes
1225 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space
1226 *
1227 * Returns: Number of pages written.
1228 */
1229static int ram_save_target_page(MigrationState *ms, QEMUFile *f,
a08f6890 1230 PageSearchStatus *pss,
a82d593b
DDAG
1231 bool last_stage,
1232 uint64_t *bytes_transferred,
1233 ram_addr_t dirty_ram_abs)
1234{
1235 int res = 0;
1236
1237 /* Check the pages is dirty and if it is send it */
1238 if (migration_bitmap_clear_dirty(dirty_ram_abs)) {
1239 unsigned long *unsentmap;
1240 if (compression_switch && migrate_use_compression()) {
a08f6890 1241 res = ram_save_compressed_page(f, pss,
a82d593b
DDAG
1242 last_stage,
1243 bytes_transferred);
1244 } else {
a08f6890 1245 res = ram_save_page(f, pss, last_stage,
a82d593b
DDAG
1246 bytes_transferred);
1247 }
1248
1249 if (res < 0) {
1250 return res;
1251 }
1252 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1253 if (unsentmap) {
1254 clear_bit(dirty_ram_abs >> TARGET_PAGE_BITS, unsentmap);
1255 }
3fd3c4b3
DDAG
1256 /* Only update last_sent_block if a block was actually sent; xbzrle
1257 * might have decided the page was identical so didn't bother writing
1258 * to the stream.
1259 */
1260 if (res > 0) {
a08f6890 1261 last_sent_block = pss->block;
3fd3c4b3 1262 }
a82d593b
DDAG
1263 }
1264
1265 return res;
1266}
1267
1268/**
cb8d4c8f 1269 * ram_save_host_page: Starting at *offset send pages up to the end
a82d593b
DDAG
1270 * of the current host page. It's valid for the initial
1271 * offset to point into the middle of a host page
1272 * in which case the remainder of the hostpage is sent.
1273 * Only dirty target pages are sent.
1274 *
1275 * Returns: Number of pages written.
1276 *
1277 * @f: QEMUFile where to send the data
1278 * @block: pointer to block that contains the page we want to send
1279 * @offset: offset inside the block for the page; updated to last target page
1280 * sent
1281 * @last_stage: if we are at the completion stage
1282 * @bytes_transferred: increase it with the number of transferred bytes
1283 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space
1284 */
a08f6890
HZ
1285static int ram_save_host_page(MigrationState *ms, QEMUFile *f,
1286 PageSearchStatus *pss,
1287 bool last_stage,
a82d593b
DDAG
1288 uint64_t *bytes_transferred,
1289 ram_addr_t dirty_ram_abs)
1290{
1291 int tmppages, pages = 0;
1292 do {
a08f6890 1293 tmppages = ram_save_target_page(ms, f, pss, last_stage,
a82d593b
DDAG
1294 bytes_transferred, dirty_ram_abs);
1295 if (tmppages < 0) {
1296 return tmppages;
1297 }
1298
1299 pages += tmppages;
a08f6890 1300 pss->offset += TARGET_PAGE_SIZE;
a82d593b 1301 dirty_ram_abs += TARGET_PAGE_SIZE;
a08f6890 1302 } while (pss->offset & (qemu_host_page_size - 1));
a82d593b
DDAG
1303
1304 /* The offset we leave with is the last one we looked at */
a08f6890 1305 pss->offset -= TARGET_PAGE_SIZE;
a82d593b
DDAG
1306 return pages;
1307}
6c595cde 1308
56e93d26
JQ
1309/**
1310 * ram_find_and_save_block: Finds a dirty page and sends it to f
1311 *
1312 * Called within an RCU critical section.
1313 *
1314 * Returns: The number of pages written
1315 * 0 means no dirty pages
1316 *
1317 * @f: QEMUFile where to send the data
1318 * @last_stage: if we are at the completion stage
1319 * @bytes_transferred: increase it with the number of transferred bytes
a82d593b
DDAG
1320 *
1321 * On systems where host-page-size > target-page-size it will send all the
1322 * pages in a host page that are dirty.
56e93d26
JQ
1323 */
1324
1325static int ram_find_and_save_block(QEMUFile *f, bool last_stage,
1326 uint64_t *bytes_transferred)
1327{
b8fb8cb7 1328 PageSearchStatus pss;
a82d593b 1329 MigrationState *ms = migrate_get_current();
56e93d26 1330 int pages = 0;
b9e60928 1331 bool again, found;
f3f491fc
DDAG
1332 ram_addr_t dirty_ram_abs; /* Address of the start of the dirty page in
1333 ram_addr_t space */
56e93d26 1334
b8fb8cb7
DDAG
1335 pss.block = last_seen_block;
1336 pss.offset = last_offset;
1337 pss.complete_round = false;
1338
1339 if (!pss.block) {
1340 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
1341 }
56e93d26 1342
b9e60928 1343 do {
a82d593b
DDAG
1344 again = true;
1345 found = get_queued_page(ms, &pss, &dirty_ram_abs);
b9e60928 1346
a82d593b
DDAG
1347 if (!found) {
1348 /* priority queue empty, so just search for something dirty */
1349 found = find_dirty_block(f, &pss, &again, &dirty_ram_abs);
1350 }
f3f491fc 1351
a82d593b 1352 if (found) {
a08f6890 1353 pages = ram_save_host_page(ms, f, &pss,
a82d593b
DDAG
1354 last_stage, bytes_transferred,
1355 dirty_ram_abs);
56e93d26 1356 }
b9e60928 1357 } while (!pages && again);
56e93d26 1358
b8fb8cb7
DDAG
1359 last_seen_block = pss.block;
1360 last_offset = pss.offset;
56e93d26
JQ
1361
1362 return pages;
1363}
1364
1365void acct_update_position(QEMUFile *f, size_t size, bool zero)
1366{
1367 uint64_t pages = size / TARGET_PAGE_SIZE;
1368 if (zero) {
1369 acct_info.dup_pages += pages;
1370 } else {
1371 acct_info.norm_pages += pages;
1372 bytes_transferred += size;
1373 qemu_update_position(f, size);
1374 }
1375}
1376
1377static ram_addr_t ram_save_remaining(void)
1378{
1379 return migration_dirty_pages;
1380}
1381
1382uint64_t ram_bytes_remaining(void)
1383{
1384 return ram_save_remaining() * TARGET_PAGE_SIZE;
1385}
1386
1387uint64_t ram_bytes_transferred(void)
1388{
1389 return bytes_transferred;
1390}
1391
1392uint64_t ram_bytes_total(void)
1393{
1394 RAMBlock *block;
1395 uint64_t total = 0;
1396
1397 rcu_read_lock();
1398 QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
1399 total += block->used_length;
1400 rcu_read_unlock();
1401 return total;
1402}
1403
1404void free_xbzrle_decoded_buf(void)
1405{
1406 g_free(xbzrle_decoded_buf);
1407 xbzrle_decoded_buf = NULL;
1408}
1409
60be6340
DL
1410static void migration_bitmap_free(struct BitmapRcu *bmap)
1411{
1412 g_free(bmap->bmap);
f3f491fc 1413 g_free(bmap->unsentmap);
60be6340
DL
1414 g_free(bmap);
1415}
1416
6ad2a215 1417static void ram_migration_cleanup(void *opaque)
56e93d26 1418{
2ff64038
LZ
1419 /* caller have hold iothread lock or is in a bh, so there is
1420 * no writing race against this migration_bitmap
1421 */
60be6340
DL
1422 struct BitmapRcu *bitmap = migration_bitmap_rcu;
1423 atomic_rcu_set(&migration_bitmap_rcu, NULL);
2ff64038 1424 if (bitmap) {
56e93d26 1425 memory_global_dirty_log_stop();
60be6340 1426 call_rcu(bitmap, migration_bitmap_free, rcu);
56e93d26
JQ
1427 }
1428
1429 XBZRLE_cache_lock();
1430 if (XBZRLE.cache) {
1431 cache_fini(XBZRLE.cache);
1432 g_free(XBZRLE.encoded_buf);
1433 g_free(XBZRLE.current_buf);
adb65dec 1434 g_free(ZERO_TARGET_PAGE);
56e93d26
JQ
1435 XBZRLE.cache = NULL;
1436 XBZRLE.encoded_buf = NULL;
1437 XBZRLE.current_buf = NULL;
1438 }
1439 XBZRLE_cache_unlock();
1440}
1441
56e93d26
JQ
1442static void reset_ram_globals(void)
1443{
1444 last_seen_block = NULL;
1445 last_sent_block = NULL;
1446 last_offset = 0;
1447 last_version = ram_list.version;
1448 ram_bulk_stage = true;
1449}
1450
1451#define MAX_WAIT 50 /* ms, half buffered_file limit */
1452
dd631697
LZ
1453void migration_bitmap_extend(ram_addr_t old, ram_addr_t new)
1454{
1455 /* called in qemu main thread, so there is
1456 * no writing race against this migration_bitmap
1457 */
60be6340
DL
1458 if (migration_bitmap_rcu) {
1459 struct BitmapRcu *old_bitmap = migration_bitmap_rcu, *bitmap;
1460 bitmap = g_new(struct BitmapRcu, 1);
1461 bitmap->bmap = bitmap_new(new);
dd631697
LZ
1462
1463 /* prevent migration_bitmap content from being set bit
1464 * by migration_bitmap_sync_range() at the same time.
1465 * it is safe to migration if migration_bitmap is cleared bit
1466 * at the same time.
1467 */
1468 qemu_mutex_lock(&migration_bitmap_mutex);
60be6340
DL
1469 bitmap_copy(bitmap->bmap, old_bitmap->bmap, old);
1470 bitmap_set(bitmap->bmap, old, new - old);
f3f491fc
DDAG
1471
1472 /* We don't have a way to safely extend the sentmap
1473 * with RCU; so mark it as missing, entry to postcopy
1474 * will fail.
1475 */
1476 bitmap->unsentmap = NULL;
1477
60be6340 1478 atomic_rcu_set(&migration_bitmap_rcu, bitmap);
dd631697
LZ
1479 qemu_mutex_unlock(&migration_bitmap_mutex);
1480 migration_dirty_pages += new - old;
60be6340 1481 call_rcu(old_bitmap, migration_bitmap_free, rcu);
dd631697
LZ
1482 }
1483}
56e93d26 1484
4f2e4252
DDAG
1485/*
1486 * 'expected' is the value you expect the bitmap mostly to be full
1487 * of; it won't bother printing lines that are all this value.
1488 * If 'todump' is null the migration bitmap is dumped.
1489 */
1490void ram_debug_dump_bitmap(unsigned long *todump, bool expected)
1491{
1492 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1493
1494 int64_t cur;
1495 int64_t linelen = 128;
1496 char linebuf[129];
1497
1498 if (!todump) {
1499 todump = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1500 }
1501
1502 for (cur = 0; cur < ram_pages; cur += linelen) {
1503 int64_t curb;
1504 bool found = false;
1505 /*
1506 * Last line; catch the case where the line length
1507 * is longer than remaining ram
1508 */
1509 if (cur + linelen > ram_pages) {
1510 linelen = ram_pages - cur;
1511 }
1512 for (curb = 0; curb < linelen; curb++) {
1513 bool thisbit = test_bit(cur + curb, todump);
1514 linebuf[curb] = thisbit ? '1' : '.';
1515 found = found || (thisbit != expected);
1516 }
1517 if (found) {
1518 linebuf[curb] = '\0';
1519 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
1520 }
1521 }
1522}
1523
e0b266f0
DDAG
1524/* **** functions for postcopy ***** */
1525
1526/*
1527 * Callback from postcopy_each_ram_send_discard for each RAMBlock
1528 * Note: At this point the 'unsentmap' is the processed bitmap combined
1529 * with the dirtymap; so a '1' means it's either dirty or unsent.
1530 * start,length: Indexes into the bitmap for the first bit
1531 * representing the named block and length in target-pages
1532 */
1533static int postcopy_send_discard_bm_ram(MigrationState *ms,
1534 PostcopyDiscardState *pds,
1535 unsigned long start,
1536 unsigned long length)
1537{
1538 unsigned long end = start + length; /* one after the end */
1539 unsigned long current;
1540 unsigned long *unsentmap;
1541
1542 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1543 for (current = start; current < end; ) {
1544 unsigned long one = find_next_bit(unsentmap, end, current);
1545
1546 if (one <= end) {
1547 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
1548 unsigned long discard_length;
1549
1550 if (zero >= end) {
1551 discard_length = end - one;
1552 } else {
1553 discard_length = zero - one;
1554 }
d688c62d
DDAG
1555 if (discard_length) {
1556 postcopy_discard_send_range(ms, pds, one, discard_length);
1557 }
e0b266f0
DDAG
1558 current = one + discard_length;
1559 } else {
1560 current = one;
1561 }
1562 }
1563
1564 return 0;
1565}
1566
1567/*
1568 * Utility for the outgoing postcopy code.
1569 * Calls postcopy_send_discard_bm_ram for each RAMBlock
1570 * passing it bitmap indexes and name.
1571 * Returns: 0 on success
1572 * (qemu_ram_foreach_block ends up passing unscaled lengths
1573 * which would mean postcopy code would have to deal with target page)
1574 */
1575static int postcopy_each_ram_send_discard(MigrationState *ms)
1576{
1577 struct RAMBlock *block;
1578 int ret;
1579
1580 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1581 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1582 PostcopyDiscardState *pds = postcopy_discard_send_init(ms,
1583 first,
1584 block->idstr);
1585
1586 /*
1587 * Postcopy sends chunks of bitmap over the wire, but it
1588 * just needs indexes at this point, avoids it having
1589 * target page specific code.
1590 */
1591 ret = postcopy_send_discard_bm_ram(ms, pds, first,
1592 block->used_length >> TARGET_PAGE_BITS);
1593 postcopy_discard_send_finish(ms, pds);
1594 if (ret) {
1595 return ret;
1596 }
1597 }
1598
1599 return 0;
1600}
1601
99e314eb
DDAG
1602/*
1603 * Helper for postcopy_chunk_hostpages; it's called twice to cleanup
1604 * the two bitmaps, that are similar, but one is inverted.
1605 *
1606 * We search for runs of target-pages that don't start or end on a
1607 * host page boundary;
1608 * unsent_pass=true: Cleans up partially unsent host pages by searching
1609 * the unsentmap
1610 * unsent_pass=false: Cleans up partially dirty host pages by searching
1611 * the main migration bitmap
1612 *
1613 */
1614static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
1615 RAMBlock *block,
1616 PostcopyDiscardState *pds)
1617{
1618 unsigned long *bitmap;
1619 unsigned long *unsentmap;
1620 unsigned int host_ratio = qemu_host_page_size / TARGET_PAGE_SIZE;
1621 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1622 unsigned long len = block->used_length >> TARGET_PAGE_BITS;
1623 unsigned long last = first + (len - 1);
1624 unsigned long run_start;
1625
1626 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1627 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1628
1629 if (unsent_pass) {
1630 /* Find a sent page */
1631 run_start = find_next_zero_bit(unsentmap, last + 1, first);
1632 } else {
1633 /* Find a dirty page */
1634 run_start = find_next_bit(bitmap, last + 1, first);
1635 }
1636
1637 while (run_start <= last) {
1638 bool do_fixup = false;
1639 unsigned long fixup_start_addr;
1640 unsigned long host_offset;
1641
1642 /*
1643 * If the start of this run of pages is in the middle of a host
1644 * page, then we need to fixup this host page.
1645 */
1646 host_offset = run_start % host_ratio;
1647 if (host_offset) {
1648 do_fixup = true;
1649 run_start -= host_offset;
1650 fixup_start_addr = run_start;
1651 /* For the next pass */
1652 run_start = run_start + host_ratio;
1653 } else {
1654 /* Find the end of this run */
1655 unsigned long run_end;
1656 if (unsent_pass) {
1657 run_end = find_next_bit(unsentmap, last + 1, run_start + 1);
1658 } else {
1659 run_end = find_next_zero_bit(bitmap, last + 1, run_start + 1);
1660 }
1661 /*
1662 * If the end isn't at the start of a host page, then the
1663 * run doesn't finish at the end of a host page
1664 * and we need to discard.
1665 */
1666 host_offset = run_end % host_ratio;
1667 if (host_offset) {
1668 do_fixup = true;
1669 fixup_start_addr = run_end - host_offset;
1670 /*
1671 * This host page has gone, the next loop iteration starts
1672 * from after the fixup
1673 */
1674 run_start = fixup_start_addr + host_ratio;
1675 } else {
1676 /*
1677 * No discards on this iteration, next loop starts from
1678 * next sent/dirty page
1679 */
1680 run_start = run_end + 1;
1681 }
1682 }
1683
1684 if (do_fixup) {
1685 unsigned long page;
1686
1687 /* Tell the destination to discard this page */
1688 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
1689 /* For the unsent_pass we:
1690 * discard partially sent pages
1691 * For the !unsent_pass (dirty) we:
1692 * discard partially dirty pages that were sent
1693 * (any partially sent pages were already discarded
1694 * by the previous unsent_pass)
1695 */
1696 postcopy_discard_send_range(ms, pds, fixup_start_addr,
1697 host_ratio);
1698 }
1699
1700 /* Clean up the bitmap */
1701 for (page = fixup_start_addr;
1702 page < fixup_start_addr + host_ratio; page++) {
1703 /* All pages in this host page are now not sent */
1704 set_bit(page, unsentmap);
1705
1706 /*
1707 * Remark them as dirty, updating the count for any pages
1708 * that weren't previously dirty.
1709 */
1710 migration_dirty_pages += !test_and_set_bit(page, bitmap);
1711 }
1712 }
1713
1714 if (unsent_pass) {
1715 /* Find the next sent page for the next iteration */
1716 run_start = find_next_zero_bit(unsentmap, last + 1,
1717 run_start);
1718 } else {
1719 /* Find the next dirty page for the next iteration */
1720 run_start = find_next_bit(bitmap, last + 1, run_start);
1721 }
1722 }
1723}
1724
1725/*
1726 * Utility for the outgoing postcopy code.
1727 *
1728 * Discard any partially sent host-page size chunks, mark any partially
1729 * dirty host-page size chunks as all dirty.
1730 *
1731 * Returns: 0 on success
1732 */
1733static int postcopy_chunk_hostpages(MigrationState *ms)
1734{
1735 struct RAMBlock *block;
1736
1737 if (qemu_host_page_size == TARGET_PAGE_SIZE) {
1738 /* Easy case - TPS==HPS - nothing to be done */
1739 return 0;
1740 }
1741
1742 /* Easiest way to make sure we don't resume in the middle of a host-page */
1743 last_seen_block = NULL;
1744 last_sent_block = NULL;
1745 last_offset = 0;
1746
1747 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1748 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1749
1750 PostcopyDiscardState *pds =
1751 postcopy_discard_send_init(ms, first, block->idstr);
1752
1753 /* First pass: Discard all partially sent host pages */
1754 postcopy_chunk_hostpages_pass(ms, true, block, pds);
1755 /*
1756 * Second pass: Ensure that all partially dirty host pages are made
1757 * fully dirty.
1758 */
1759 postcopy_chunk_hostpages_pass(ms, false, block, pds);
1760
1761 postcopy_discard_send_finish(ms, pds);
1762 } /* ram_list loop */
1763
1764 return 0;
1765}
1766
e0b266f0
DDAG
1767/*
1768 * Transmit the set of pages to be discarded after precopy to the target
1769 * these are pages that:
1770 * a) Have been previously transmitted but are now dirty again
1771 * b) Pages that have never been transmitted, this ensures that
1772 * any pages on the destination that have been mapped by background
1773 * tasks get discarded (transparent huge pages is the specific concern)
1774 * Hopefully this is pretty sparse
1775 */
1776int ram_postcopy_send_discard_bitmap(MigrationState *ms)
1777{
1778 int ret;
1779 unsigned long *bitmap, *unsentmap;
1780
1781 rcu_read_lock();
1782
1783 /* This should be our last sync, the src is now paused */
1784 migration_bitmap_sync();
1785
1786 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1787 if (!unsentmap) {
1788 /* We don't have a safe way to resize the sentmap, so
1789 * if the bitmap was resized it will be NULL at this
1790 * point.
1791 */
1792 error_report("migration ram resized during precopy phase");
1793 rcu_read_unlock();
1794 return -EINVAL;
1795 }
1796
99e314eb
DDAG
1797 /* Deal with TPS != HPS */
1798 ret = postcopy_chunk_hostpages(ms);
1799 if (ret) {
1800 rcu_read_unlock();
1801 return ret;
1802 }
1803
e0b266f0
DDAG
1804 /*
1805 * Update the unsentmap to be unsentmap = unsentmap | dirty
1806 */
1807 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1808 bitmap_or(unsentmap, unsentmap, bitmap,
1809 last_ram_offset() >> TARGET_PAGE_BITS);
1810
1811
1812 trace_ram_postcopy_send_discard_bitmap();
1813#ifdef DEBUG_POSTCOPY
1814 ram_debug_dump_bitmap(unsentmap, true);
1815#endif
1816
1817 ret = postcopy_each_ram_send_discard(ms);
1818 rcu_read_unlock();
1819
1820 return ret;
1821}
1822
1823/*
1824 * At the start of the postcopy phase of migration, any now-dirty
1825 * precopied pages are discarded.
1826 *
1827 * start, length describe a byte address range within the RAMBlock
1828 *
1829 * Returns 0 on success.
1830 */
1831int ram_discard_range(MigrationIncomingState *mis,
1832 const char *block_name,
1833 uint64_t start, size_t length)
1834{
1835 int ret = -1;
1836
1837 rcu_read_lock();
1838 RAMBlock *rb = qemu_ram_block_by_name(block_name);
1839
1840 if (!rb) {
1841 error_report("ram_discard_range: Failed to find block '%s'",
1842 block_name);
1843 goto err;
1844 }
1845
1846 uint8_t *host_startaddr = rb->host + start;
1847
1848 if ((uintptr_t)host_startaddr & (qemu_host_page_size - 1)) {
1849 error_report("ram_discard_range: Unaligned start address: %p",
1850 host_startaddr);
1851 goto err;
1852 }
1853
1854 if ((start + length) <= rb->used_length) {
1855 uint8_t *host_endaddr = host_startaddr + length;
1856 if ((uintptr_t)host_endaddr & (qemu_host_page_size - 1)) {
1857 error_report("ram_discard_range: Unaligned end address: %p",
1858 host_endaddr);
1859 goto err;
1860 }
1861 ret = postcopy_ram_discard_range(mis, host_startaddr, length);
1862 } else {
1863 error_report("ram_discard_range: Overrun block '%s' (%" PRIu64
9458ad6b 1864 "/%zx/" RAM_ADDR_FMT")",
e0b266f0
DDAG
1865 block_name, start, length, rb->used_length);
1866 }
1867
1868err:
1869 rcu_read_unlock();
1870
1871 return ret;
1872}
1873
1874
56e93d26
JQ
1875/* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
1876 * long-running RCU critical section. When rcu-reclaims in the code
1877 * start to become numerous it will be necessary to reduce the
1878 * granularity of these critical sections.
1879 */
1880
1881static int ram_save_setup(QEMUFile *f, void *opaque)
1882{
1883 RAMBlock *block;
1884 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
1885
56e93d26
JQ
1886 dirty_rate_high_cnt = 0;
1887 bitmap_sync_count = 0;
1888 migration_bitmap_sync_init();
dd631697 1889 qemu_mutex_init(&migration_bitmap_mutex);
56e93d26
JQ
1890
1891 if (migrate_use_xbzrle()) {
1892 XBZRLE_cache_lock();
adb65dec 1893 ZERO_TARGET_PAGE = g_malloc0(TARGET_PAGE_SIZE);
56e93d26
JQ
1894 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
1895 TARGET_PAGE_SIZE,
1896 TARGET_PAGE_SIZE);
1897 if (!XBZRLE.cache) {
1898 XBZRLE_cache_unlock();
1899 error_report("Error creating cache");
1900 return -1;
1901 }
1902 XBZRLE_cache_unlock();
1903
1904 /* We prefer not to abort if there is no memory */
1905 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
1906 if (!XBZRLE.encoded_buf) {
1907 error_report("Error allocating encoded_buf");
1908 return -1;
1909 }
1910
1911 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
1912 if (!XBZRLE.current_buf) {
1913 error_report("Error allocating current_buf");
1914 g_free(XBZRLE.encoded_buf);
1915 XBZRLE.encoded_buf = NULL;
1916 return -1;
1917 }
1918
1919 acct_clear();
1920 }
1921
49877834
PB
1922 /* For memory_global_dirty_log_start below. */
1923 qemu_mutex_lock_iothread();
1924
56e93d26
JQ
1925 qemu_mutex_lock_ramlist();
1926 rcu_read_lock();
1927 bytes_transferred = 0;
1928 reset_ram_globals();
1929
1930 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
f3f491fc 1931 migration_bitmap_rcu = g_new0(struct BitmapRcu, 1);
60be6340
DL
1932 migration_bitmap_rcu->bmap = bitmap_new(ram_bitmap_pages);
1933 bitmap_set(migration_bitmap_rcu->bmap, 0, ram_bitmap_pages);
56e93d26 1934
f3f491fc
DDAG
1935 if (migrate_postcopy_ram()) {
1936 migration_bitmap_rcu->unsentmap = bitmap_new(ram_bitmap_pages);
1937 bitmap_set(migration_bitmap_rcu->unsentmap, 0, ram_bitmap_pages);
1938 }
1939
56e93d26
JQ
1940 /*
1941 * Count the total number of pages used by ram blocks not including any
1942 * gaps due to alignment or unplugs.
1943 */
1944 migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
1945
1946 memory_global_dirty_log_start();
1947 migration_bitmap_sync();
1948 qemu_mutex_unlock_ramlist();
49877834 1949 qemu_mutex_unlock_iothread();
56e93d26
JQ
1950
1951 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
1952
1953 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1954 qemu_put_byte(f, strlen(block->idstr));
1955 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
1956 qemu_put_be64(f, block->used_length);
1957 }
1958
1959 rcu_read_unlock();
1960
1961 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
1962 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
1963
1964 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1965
1966 return 0;
1967}
1968
1969static int ram_save_iterate(QEMUFile *f, void *opaque)
1970{
1971 int ret;
1972 int i;
1973 int64_t t0;
1974 int pages_sent = 0;
1975
1976 rcu_read_lock();
1977 if (ram_list.version != last_version) {
1978 reset_ram_globals();
1979 }
1980
1981 /* Read version before ram_list.blocks */
1982 smp_rmb();
1983
1984 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
1985
1986 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1987 i = 0;
1988 while ((ret = qemu_file_rate_limit(f)) == 0) {
1989 int pages;
1990
1991 pages = ram_find_and_save_block(f, false, &bytes_transferred);
1992 /* no more pages to sent */
1993 if (pages == 0) {
1994 break;
1995 }
1996 pages_sent += pages;
1997 acct_info.iterations++;
070afca2 1998
56e93d26
JQ
1999 /* we want to check in the 1st loop, just in case it was the 1st time
2000 and we had to sync the dirty bitmap.
2001 qemu_get_clock_ns() is a bit expensive, so we only check each some
2002 iterations
2003 */
2004 if ((i & 63) == 0) {
2005 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
2006 if (t1 > MAX_WAIT) {
2007 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
2008 t1, i);
2009 break;
2010 }
2011 }
2012 i++;
2013 }
2014 flush_compressed_data(f);
2015 rcu_read_unlock();
2016
2017 /*
2018 * Must occur before EOS (or any QEMUFile operation)
2019 * because of RDMA protocol.
2020 */
2021 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
2022
2023 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2024 bytes_transferred += 8;
2025
2026 ret = qemu_file_get_error(f);
2027 if (ret < 0) {
2028 return ret;
2029 }
2030
2031 return pages_sent;
2032}
2033
2034/* Called with iothread lock */
2035static int ram_save_complete(QEMUFile *f, void *opaque)
2036{
2037 rcu_read_lock();
2038
663e6c1d
DDAG
2039 if (!migration_in_postcopy(migrate_get_current())) {
2040 migration_bitmap_sync();
2041 }
56e93d26
JQ
2042
2043 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
2044
2045 /* try transferring iterative blocks of memory */
2046
2047 /* flush all remaining blocks regardless of rate limiting */
2048 while (true) {
2049 int pages;
2050
2051 pages = ram_find_and_save_block(f, true, &bytes_transferred);
2052 /* no more blocks to sent */
2053 if (pages == 0) {
2054 break;
2055 }
2056 }
2057
2058 flush_compressed_data(f);
2059 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
56e93d26
JQ
2060
2061 rcu_read_unlock();
d09a6fde 2062
56e93d26
JQ
2063 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2064
2065 return 0;
2066}
2067
c31b098f
DDAG
2068static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
2069 uint64_t *non_postcopiable_pending,
2070 uint64_t *postcopiable_pending)
56e93d26
JQ
2071{
2072 uint64_t remaining_size;
2073
2074 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
2075
663e6c1d
DDAG
2076 if (!migration_in_postcopy(migrate_get_current()) &&
2077 remaining_size < max_size) {
56e93d26
JQ
2078 qemu_mutex_lock_iothread();
2079 rcu_read_lock();
2080 migration_bitmap_sync();
2081 rcu_read_unlock();
2082 qemu_mutex_unlock_iothread();
2083 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
2084 }
c31b098f
DDAG
2085
2086 /* We can do postcopy, and all the data is postcopiable */
2087 *postcopiable_pending += remaining_size;
56e93d26
JQ
2088}
2089
2090static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
2091{
2092 unsigned int xh_len;
2093 int xh_flags;
063e760a 2094 uint8_t *loaded_data;
56e93d26
JQ
2095
2096 if (!xbzrle_decoded_buf) {
2097 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2098 }
063e760a 2099 loaded_data = xbzrle_decoded_buf;
56e93d26
JQ
2100
2101 /* extract RLE header */
2102 xh_flags = qemu_get_byte(f);
2103 xh_len = qemu_get_be16(f);
2104
2105 if (xh_flags != ENCODING_FLAG_XBZRLE) {
2106 error_report("Failed to load XBZRLE page - wrong compression!");
2107 return -1;
2108 }
2109
2110 if (xh_len > TARGET_PAGE_SIZE) {
2111 error_report("Failed to load XBZRLE page - len overflow!");
2112 return -1;
2113 }
2114 /* load data and decode */
063e760a 2115 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
56e93d26
JQ
2116
2117 /* decode RLE */
063e760a 2118 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
56e93d26
JQ
2119 TARGET_PAGE_SIZE) == -1) {
2120 error_report("Failed to load XBZRLE page - decode error!");
2121 return -1;
2122 }
2123
2124 return 0;
2125}
2126
2127/* Must be called from within a rcu critical section.
2128 * Returns a pointer from within the RCU-protected ram_list.
2129 */
a7180877 2130/*
4c4bad48 2131 * Read a RAMBlock ID from the stream f.
a7180877
DDAG
2132 *
2133 * f: Stream to read from
a7180877
DDAG
2134 * flags: Page flags (mostly to see if it's a continuation of previous block)
2135 */
4c4bad48
HZ
2136static inline RAMBlock *ram_block_from_stream(QEMUFile *f,
2137 int flags)
56e93d26
JQ
2138{
2139 static RAMBlock *block = NULL;
2140 char id[256];
2141 uint8_t len;
2142
2143 if (flags & RAM_SAVE_FLAG_CONTINUE) {
4c4bad48 2144 if (!block) {
56e93d26
JQ
2145 error_report("Ack, bad migration stream!");
2146 return NULL;
2147 }
4c4bad48 2148 return block;
56e93d26
JQ
2149 }
2150
2151 len = qemu_get_byte(f);
2152 qemu_get_buffer(f, (uint8_t *)id, len);
2153 id[len] = 0;
2154
e3dd7493 2155 block = qemu_ram_block_by_name(id);
4c4bad48
HZ
2156 if (!block) {
2157 error_report("Can't find block %s", id);
2158 return NULL;
56e93d26
JQ
2159 }
2160
4c4bad48
HZ
2161 return block;
2162}
2163
2164static inline void *host_from_ram_block_offset(RAMBlock *block,
2165 ram_addr_t offset)
2166{
2167 if (!offset_in_ramblock(block, offset)) {
2168 return NULL;
2169 }
2170
2171 return block->host + offset;
56e93d26
JQ
2172}
2173
2174/*
2175 * If a page (or a whole RDMA chunk) has been
2176 * determined to be zero, then zap it.
2177 */
2178void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
2179{
2180 if (ch != 0 || !is_zero_range(host, size)) {
2181 memset(host, ch, size);
2182 }
2183}
2184
2185static void *do_data_decompress(void *opaque)
2186{
2187 DecompressParam *param = opaque;
2188 unsigned long pagesize;
33d151f4
LL
2189 uint8_t *des;
2190 int len;
56e93d26 2191
33d151f4 2192 qemu_mutex_lock(&param->mutex);
90e56fb4 2193 while (!param->quit) {
33d151f4
LL
2194 if (param->des) {
2195 des = param->des;
2196 len = param->len;
2197 param->des = 0;
2198 qemu_mutex_unlock(&param->mutex);
2199
56e93d26 2200 pagesize = TARGET_PAGE_SIZE;
73a8912b
LL
2201 /* uncompress() will return failed in some case, especially
2202 * when the page is dirted when doing the compression, it's
2203 * not a problem because the dirty page will be retransferred
2204 * and uncompress() won't break the data in other pages.
2205 */
33d151f4
LL
2206 uncompress((Bytef *)des, &pagesize,
2207 (const Bytef *)param->compbuf, len);
73a8912b 2208
33d151f4
LL
2209 qemu_mutex_lock(&decomp_done_lock);
2210 param->done = true;
2211 qemu_cond_signal(&decomp_done_cond);
2212 qemu_mutex_unlock(&decomp_done_lock);
2213
2214 qemu_mutex_lock(&param->mutex);
2215 } else {
2216 qemu_cond_wait(&param->cond, &param->mutex);
2217 }
56e93d26 2218 }
33d151f4 2219 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
2220
2221 return NULL;
2222}
2223
5533b2e9
LL
2224static void wait_for_decompress_done(void)
2225{
2226 int idx, thread_count;
2227
2228 if (!migrate_use_compression()) {
2229 return;
2230 }
2231
2232 thread_count = migrate_decompress_threads();
2233 qemu_mutex_lock(&decomp_done_lock);
2234 for (idx = 0; idx < thread_count; idx++) {
2235 while (!decomp_param[idx].done) {
2236 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2237 }
2238 }
2239 qemu_mutex_unlock(&decomp_done_lock);
2240}
2241
56e93d26
JQ
2242void migrate_decompress_threads_create(void)
2243{
2244 int i, thread_count;
2245
2246 thread_count = migrate_decompress_threads();
2247 decompress_threads = g_new0(QemuThread, thread_count);
2248 decomp_param = g_new0(DecompressParam, thread_count);
73a8912b
LL
2249 qemu_mutex_init(&decomp_done_lock);
2250 qemu_cond_init(&decomp_done_cond);
56e93d26
JQ
2251 for (i = 0; i < thread_count; i++) {
2252 qemu_mutex_init(&decomp_param[i].mutex);
2253 qemu_cond_init(&decomp_param[i].cond);
2254 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
73a8912b 2255 decomp_param[i].done = true;
90e56fb4 2256 decomp_param[i].quit = false;
56e93d26
JQ
2257 qemu_thread_create(decompress_threads + i, "decompress",
2258 do_data_decompress, decomp_param + i,
2259 QEMU_THREAD_JOINABLE);
2260 }
2261}
2262
2263void migrate_decompress_threads_join(void)
2264{
2265 int i, thread_count;
2266
56e93d26
JQ
2267 thread_count = migrate_decompress_threads();
2268 for (i = 0; i < thread_count; i++) {
2269 qemu_mutex_lock(&decomp_param[i].mutex);
90e56fb4 2270 decomp_param[i].quit = true;
56e93d26
JQ
2271 qemu_cond_signal(&decomp_param[i].cond);
2272 qemu_mutex_unlock(&decomp_param[i].mutex);
2273 }
2274 for (i = 0; i < thread_count; i++) {
2275 qemu_thread_join(decompress_threads + i);
2276 qemu_mutex_destroy(&decomp_param[i].mutex);
2277 qemu_cond_destroy(&decomp_param[i].cond);
2278 g_free(decomp_param[i].compbuf);
2279 }
2280 g_free(decompress_threads);
2281 g_free(decomp_param);
56e93d26
JQ
2282 decompress_threads = NULL;
2283 decomp_param = NULL;
56e93d26
JQ
2284}
2285
c1bc6626 2286static void decompress_data_with_multi_threads(QEMUFile *f,
56e93d26
JQ
2287 void *host, int len)
2288{
2289 int idx, thread_count;
2290
2291 thread_count = migrate_decompress_threads();
73a8912b 2292 qemu_mutex_lock(&decomp_done_lock);
56e93d26
JQ
2293 while (true) {
2294 for (idx = 0; idx < thread_count; idx++) {
73a8912b 2295 if (decomp_param[idx].done) {
33d151f4
LL
2296 decomp_param[idx].done = false;
2297 qemu_mutex_lock(&decomp_param[idx].mutex);
c1bc6626 2298 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
56e93d26
JQ
2299 decomp_param[idx].des = host;
2300 decomp_param[idx].len = len;
33d151f4
LL
2301 qemu_cond_signal(&decomp_param[idx].cond);
2302 qemu_mutex_unlock(&decomp_param[idx].mutex);
56e93d26
JQ
2303 break;
2304 }
2305 }
2306 if (idx < thread_count) {
2307 break;
73a8912b
LL
2308 } else {
2309 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
56e93d26
JQ
2310 }
2311 }
73a8912b 2312 qemu_mutex_unlock(&decomp_done_lock);
56e93d26
JQ
2313}
2314
1caddf8a
DDAG
2315/*
2316 * Allocate data structures etc needed by incoming migration with postcopy-ram
2317 * postcopy-ram's similarly names postcopy_ram_incoming_init does the work
2318 */
2319int ram_postcopy_incoming_init(MigrationIncomingState *mis)
2320{
2321 size_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
2322
2323 return postcopy_ram_incoming_init(mis, ram_pages);
2324}
2325
a7180877
DDAG
2326/*
2327 * Called in postcopy mode by ram_load().
2328 * rcu_read_lock is taken prior to this being called.
2329 */
2330static int ram_load_postcopy(QEMUFile *f)
2331{
2332 int flags = 0, ret = 0;
2333 bool place_needed = false;
2334 bool matching_page_sizes = qemu_host_page_size == TARGET_PAGE_SIZE;
2335 MigrationIncomingState *mis = migration_incoming_get_current();
2336 /* Temporary page that is later 'placed' */
2337 void *postcopy_host_page = postcopy_get_tmp_page(mis);
c53b7ddc 2338 void *last_host = NULL;
a3b6ff6d 2339 bool all_zero = false;
a7180877
DDAG
2340
2341 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2342 ram_addr_t addr;
2343 void *host = NULL;
2344 void *page_buffer = NULL;
2345 void *place_source = NULL;
2346 uint8_t ch;
a7180877
DDAG
2347
2348 addr = qemu_get_be64(f);
2349 flags = addr & ~TARGET_PAGE_MASK;
2350 addr &= TARGET_PAGE_MASK;
2351
2352 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
2353 place_needed = false;
2354 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE)) {
4c4bad48
HZ
2355 RAMBlock *block = ram_block_from_stream(f, flags);
2356
2357 host = host_from_ram_block_offset(block, addr);
a7180877
DDAG
2358 if (!host) {
2359 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2360 ret = -EINVAL;
2361 break;
2362 }
a7180877
DDAG
2363 /*
2364 * Postcopy requires that we place whole host pages atomically.
2365 * To make it atomic, the data is read into a temporary page
2366 * that's moved into place later.
2367 * The migration protocol uses, possibly smaller, target-pages
2368 * however the source ensures it always sends all the components
2369 * of a host page in order.
2370 */
2371 page_buffer = postcopy_host_page +
2372 ((uintptr_t)host & ~qemu_host_page_mask);
2373 /* If all TP are zero then we can optimise the place */
2374 if (!((uintptr_t)host & ~qemu_host_page_mask)) {
2375 all_zero = true;
c53b7ddc
DDAG
2376 } else {
2377 /* not the 1st TP within the HP */
2378 if (host != (last_host + TARGET_PAGE_SIZE)) {
9af9e0fe 2379 error_report("Non-sequential target page %p/%p",
c53b7ddc
DDAG
2380 host, last_host);
2381 ret = -EINVAL;
2382 break;
2383 }
a7180877
DDAG
2384 }
2385
c53b7ddc 2386
a7180877
DDAG
2387 /*
2388 * If it's the last part of a host page then we place the host
2389 * page
2390 */
2391 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
2392 ~qemu_host_page_mask) == 0;
2393 place_source = postcopy_host_page;
2394 }
c53b7ddc 2395 last_host = host;
a7180877
DDAG
2396
2397 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2398 case RAM_SAVE_FLAG_COMPRESS:
2399 ch = qemu_get_byte(f);
2400 memset(page_buffer, ch, TARGET_PAGE_SIZE);
2401 if (ch) {
2402 all_zero = false;
2403 }
2404 break;
2405
2406 case RAM_SAVE_FLAG_PAGE:
2407 all_zero = false;
2408 if (!place_needed || !matching_page_sizes) {
2409 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
2410 } else {
2411 /* Avoids the qemu_file copy during postcopy, which is
2412 * going to do a copy later; can only do it when we
2413 * do this read in one go (matching page sizes)
2414 */
2415 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
2416 TARGET_PAGE_SIZE);
2417 }
2418 break;
2419 case RAM_SAVE_FLAG_EOS:
2420 /* normal exit */
2421 break;
2422 default:
2423 error_report("Unknown combination of migration flags: %#x"
2424 " (postcopy mode)", flags);
2425 ret = -EINVAL;
2426 }
2427
2428 if (place_needed) {
2429 /* This gets called at the last target page in the host page */
2430 if (all_zero) {
2431 ret = postcopy_place_page_zero(mis,
2432 host + TARGET_PAGE_SIZE -
2433 qemu_host_page_size);
2434 } else {
2435 ret = postcopy_place_page(mis, host + TARGET_PAGE_SIZE -
2436 qemu_host_page_size,
2437 place_source);
2438 }
2439 }
2440 if (!ret) {
2441 ret = qemu_file_get_error(f);
2442 }
2443 }
2444
2445 return ret;
2446}
2447
56e93d26
JQ
2448static int ram_load(QEMUFile *f, void *opaque, int version_id)
2449{
2450 int flags = 0, ret = 0;
2451 static uint64_t seq_iter;
2452 int len = 0;
a7180877
DDAG
2453 /*
2454 * If system is running in postcopy mode, page inserts to host memory must
2455 * be atomic
2456 */
2457 bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING;
56e93d26
JQ
2458
2459 seq_iter++;
2460
2461 if (version_id != 4) {
2462 ret = -EINVAL;
2463 }
2464
2465 /* This RCU critical section can be very long running.
2466 * When RCU reclaims in the code start to become numerous,
2467 * it will be necessary to reduce the granularity of this
2468 * critical section.
2469 */
2470 rcu_read_lock();
a7180877
DDAG
2471
2472 if (postcopy_running) {
2473 ret = ram_load_postcopy(f);
2474 }
2475
2476 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
56e93d26 2477 ram_addr_t addr, total_ram_bytes;
a776aa15 2478 void *host = NULL;
56e93d26
JQ
2479 uint8_t ch;
2480
2481 addr = qemu_get_be64(f);
2482 flags = addr & ~TARGET_PAGE_MASK;
2483 addr &= TARGET_PAGE_MASK;
2484
a776aa15
DDAG
2485 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE |
2486 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4c4bad48
HZ
2487 RAMBlock *block = ram_block_from_stream(f, flags);
2488
2489 host = host_from_ram_block_offset(block, addr);
a776aa15
DDAG
2490 if (!host) {
2491 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2492 ret = -EINVAL;
2493 break;
2494 }
2495 }
2496
56e93d26
JQ
2497 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2498 case RAM_SAVE_FLAG_MEM_SIZE:
2499 /* Synchronize RAM block list */
2500 total_ram_bytes = addr;
2501 while (!ret && total_ram_bytes) {
2502 RAMBlock *block;
56e93d26
JQ
2503 char id[256];
2504 ram_addr_t length;
2505
2506 len = qemu_get_byte(f);
2507 qemu_get_buffer(f, (uint8_t *)id, len);
2508 id[len] = 0;
2509 length = qemu_get_be64(f);
2510
e3dd7493
DDAG
2511 block = qemu_ram_block_by_name(id);
2512 if (block) {
2513 if (length != block->used_length) {
2514 Error *local_err = NULL;
56e93d26 2515
fa53a0e5 2516 ret = qemu_ram_resize(block, length,
e3dd7493
DDAG
2517 &local_err);
2518 if (local_err) {
2519 error_report_err(local_err);
56e93d26 2520 }
56e93d26 2521 }
e3dd7493
DDAG
2522 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
2523 block->idstr);
2524 } else {
56e93d26
JQ
2525 error_report("Unknown ramblock \"%s\", cannot "
2526 "accept migration", id);
2527 ret = -EINVAL;
2528 }
2529
2530 total_ram_bytes -= length;
2531 }
2532 break;
a776aa15 2533
56e93d26 2534 case RAM_SAVE_FLAG_COMPRESS:
56e93d26
JQ
2535 ch = qemu_get_byte(f);
2536 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
2537 break;
a776aa15 2538
56e93d26 2539 case RAM_SAVE_FLAG_PAGE:
56e93d26
JQ
2540 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
2541 break;
56e93d26 2542
a776aa15 2543 case RAM_SAVE_FLAG_COMPRESS_PAGE:
56e93d26
JQ
2544 len = qemu_get_be32(f);
2545 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
2546 error_report("Invalid compressed data length: %d", len);
2547 ret = -EINVAL;
2548 break;
2549 }
c1bc6626 2550 decompress_data_with_multi_threads(f, host, len);
56e93d26 2551 break;
a776aa15 2552
56e93d26 2553 case RAM_SAVE_FLAG_XBZRLE:
56e93d26
JQ
2554 if (load_xbzrle(f, addr, host) < 0) {
2555 error_report("Failed to decompress XBZRLE page at "
2556 RAM_ADDR_FMT, addr);
2557 ret = -EINVAL;
2558 break;
2559 }
2560 break;
2561 case RAM_SAVE_FLAG_EOS:
2562 /* normal exit */
2563 break;
2564 default:
2565 if (flags & RAM_SAVE_FLAG_HOOK) {
632e3a5c 2566 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
56e93d26
JQ
2567 } else {
2568 error_report("Unknown combination of migration flags: %#x",
2569 flags);
2570 ret = -EINVAL;
2571 }
2572 }
2573 if (!ret) {
2574 ret = qemu_file_get_error(f);
2575 }
2576 }
2577
5533b2e9 2578 wait_for_decompress_done();
56e93d26
JQ
2579 rcu_read_unlock();
2580 DPRINTF("Completed load of VM with exit code %d seq iteration "
2581 "%" PRIu64 "\n", ret, seq_iter);
2582 return ret;
2583}
2584
2585static SaveVMHandlers savevm_ram_handlers = {
2586 .save_live_setup = ram_save_setup,
2587 .save_live_iterate = ram_save_iterate,
763c906b 2588 .save_live_complete_postcopy = ram_save_complete,
a3e06c3d 2589 .save_live_complete_precopy = ram_save_complete,
56e93d26
JQ
2590 .save_live_pending = ram_save_pending,
2591 .load_state = ram_load,
6ad2a215 2592 .cleanup = ram_migration_cleanup,
56e93d26
JQ
2593};
2594
2595void ram_mig_init(void)
2596{
2597 qemu_mutex_init(&XBZRLE.lock);
2598 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
2599}