]>
Commit | Line | Data |
---|---|---|
56e93d26 JQ |
1 | /* |
2 | * QEMU System Emulator | |
3 | * | |
4 | * Copyright (c) 2003-2008 Fabrice Bellard | |
76cc7b58 JQ |
5 | * Copyright (c) 2011-2015 Red Hat Inc |
6 | * | |
7 | * Authors: | |
8 | * Juan Quintela <quintela@redhat.com> | |
56e93d26 JQ |
9 | * |
10 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
11 | * of this software and associated documentation files (the "Software"), to deal | |
12 | * in the Software without restriction, including without limitation the rights | |
13 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
14 | * copies of the Software, and to permit persons to whom the Software is | |
15 | * furnished to do so, subject to the following conditions: | |
16 | * | |
17 | * The above copyright notice and this permission notice shall be included in | |
18 | * all copies or substantial portions of the Software. | |
19 | * | |
20 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
21 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
23 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
24 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
25 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
26 | * THE SOFTWARE. | |
27 | */ | |
e688df6b | 28 | |
1393a485 | 29 | #include "qemu/osdep.h" |
f348b6d1 | 30 | #include "qemu/cutils.h" |
56e93d26 JQ |
31 | #include "qemu/bitops.h" |
32 | #include "qemu/bitmap.h" | |
7205c9ec | 33 | #include "qemu/main-loop.h" |
709e3fe8 | 34 | #include "xbzrle.h" |
7b1e1a22 | 35 | #include "ram.h" |
6666c96a | 36 | #include "migration.h" |
f2a8f0a6 | 37 | #include "migration/register.h" |
7b1e1a22 | 38 | #include "migration/misc.h" |
08a0aee1 | 39 | #include "qemu-file.h" |
be07b0ac | 40 | #include "postcopy-ram.h" |
53d37d36 | 41 | #include "page_cache.h" |
56e93d26 | 42 | #include "qemu/error-report.h" |
e688df6b | 43 | #include "qapi/error.h" |
ab7cbb0b | 44 | #include "qapi/qapi-types-migration.h" |
9af23989 | 45 | #include "qapi/qapi-events-migration.h" |
8acabf69 | 46 | #include "qapi/qmp/qerror.h" |
56e93d26 | 47 | #include "trace.h" |
56e93d26 | 48 | #include "exec/ram_addr.h" |
f9494614 | 49 | #include "exec/target_page.h" |
56e93d26 | 50 | #include "qemu/rcu_queue.h" |
a91246c9 | 51 | #include "migration/colo.h" |
53d37d36 | 52 | #include "block.h" |
b0c3cf94 | 53 | #include "sysemu/cpu-throttle.h" |
edd090c7 | 54 | #include "savevm.h" |
b9ee2f7d | 55 | #include "qemu/iov.h" |
d32ca5ad | 56 | #include "multifd.h" |
278e2f55 AG |
57 | #include "sysemu/runstate.h" |
58 | ||
e5fdf920 LS |
59 | #include "hw/boards.h" /* for machine_dump_guest_core() */ |
60 | ||
278e2f55 AG |
61 | #if defined(__linux__) |
62 | #include "qemu/userfaultfd.h" | |
63 | #endif /* defined(__linux__) */ | |
56e93d26 | 64 | |
56e93d26 JQ |
65 | /***********************************************************/ |
66 | /* ram save/restore */ | |
67 | ||
bb890ed5 JQ |
68 | /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it |
69 | * worked for pages that where filled with the same char. We switched | |
70 | * it to only search for the zero value. And to avoid confusion with | |
71 | * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. | |
72 | */ | |
73 | ||
56e93d26 | 74 | #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ |
bb890ed5 | 75 | #define RAM_SAVE_FLAG_ZERO 0x02 |
56e93d26 JQ |
76 | #define RAM_SAVE_FLAG_MEM_SIZE 0x04 |
77 | #define RAM_SAVE_FLAG_PAGE 0x08 | |
78 | #define RAM_SAVE_FLAG_EOS 0x10 | |
79 | #define RAM_SAVE_FLAG_CONTINUE 0x20 | |
80 | #define RAM_SAVE_FLAG_XBZRLE 0x40 | |
81 | /* 0x80 is reserved in migration.h start with 0x100 next */ | |
82 | #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 | |
83 | ||
56e93d26 JQ |
84 | static inline bool is_zero_range(uint8_t *p, uint64_t size) |
85 | { | |
a1febc49 | 86 | return buffer_is_zero(p, size); |
56e93d26 JQ |
87 | } |
88 | ||
9360447d JQ |
89 | XBZRLECacheStats xbzrle_counters; |
90 | ||
56e93d26 JQ |
91 | /* struct contains XBZRLE cache and a static page |
92 | used by the compression */ | |
93 | static struct { | |
94 | /* buffer used for XBZRLE encoding */ | |
95 | uint8_t *encoded_buf; | |
96 | /* buffer for storing page content */ | |
97 | uint8_t *current_buf; | |
98 | /* Cache for XBZRLE, Protected by lock. */ | |
99 | PageCache *cache; | |
100 | QemuMutex lock; | |
c00e0928 JQ |
101 | /* it will store a page full of zeros */ |
102 | uint8_t *zero_target_page; | |
f265e0e4 JQ |
103 | /* buffer used for XBZRLE decoding */ |
104 | uint8_t *decoded_buf; | |
56e93d26 JQ |
105 | } XBZRLE; |
106 | ||
56e93d26 JQ |
107 | static void XBZRLE_cache_lock(void) |
108 | { | |
f4c51a6b | 109 | if (migrate_use_xbzrle()) { |
56e93d26 | 110 | qemu_mutex_lock(&XBZRLE.lock); |
f4c51a6b | 111 | } |
56e93d26 JQ |
112 | } |
113 | ||
114 | static void XBZRLE_cache_unlock(void) | |
115 | { | |
f4c51a6b | 116 | if (migrate_use_xbzrle()) { |
56e93d26 | 117 | qemu_mutex_unlock(&XBZRLE.lock); |
f4c51a6b | 118 | } |
56e93d26 JQ |
119 | } |
120 | ||
3d0684b2 JQ |
121 | /** |
122 | * xbzrle_cache_resize: resize the xbzrle cache | |
123 | * | |
cbde7be9 | 124 | * This function is called from migrate_params_apply in main |
3d0684b2 JQ |
125 | * thread, possibly while a migration is in progress. A running |
126 | * migration may be using the cache and might finish during this call, | |
127 | * hence changes to the cache are protected by XBZRLE.lock(). | |
128 | * | |
c9dede2d | 129 | * Returns 0 for success or -1 for error |
3d0684b2 JQ |
130 | * |
131 | * @new_size: new cache size | |
8acabf69 | 132 | * @errp: set *errp if the check failed, with reason |
56e93d26 | 133 | */ |
8b9407a0 | 134 | int xbzrle_cache_resize(uint64_t new_size, Error **errp) |
56e93d26 JQ |
135 | { |
136 | PageCache *new_cache; | |
c9dede2d | 137 | int64_t ret = 0; |
56e93d26 | 138 | |
8acabf69 JQ |
139 | /* Check for truncation */ |
140 | if (new_size != (size_t)new_size) { | |
141 | error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", | |
142 | "exceeding address space"); | |
143 | return -1; | |
144 | } | |
145 | ||
2a313e5c JQ |
146 | if (new_size == migrate_xbzrle_cache_size()) { |
147 | /* nothing to do */ | |
c9dede2d | 148 | return 0; |
2a313e5c JQ |
149 | } |
150 | ||
56e93d26 JQ |
151 | XBZRLE_cache_lock(); |
152 | ||
153 | if (XBZRLE.cache != NULL) { | |
80f8dfde | 154 | new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); |
56e93d26 | 155 | if (!new_cache) { |
56e93d26 JQ |
156 | ret = -1; |
157 | goto out; | |
158 | } | |
159 | ||
160 | cache_fini(XBZRLE.cache); | |
161 | XBZRLE.cache = new_cache; | |
162 | } | |
56e93d26 JQ |
163 | out: |
164 | XBZRLE_cache_unlock(); | |
165 | return ret; | |
166 | } | |
167 | ||
3ded54b1 | 168 | bool ramblock_is_ignored(RAMBlock *block) |
fbd162e6 YK |
169 | { |
170 | return !qemu_ram_is_migratable(block) || | |
171 | (migrate_ignore_shared() && qemu_ram_is_shared(block)); | |
172 | } | |
173 | ||
343f632c DDAG |
174 | #undef RAMBLOCK_FOREACH |
175 | ||
fbd162e6 YK |
176 | int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) |
177 | { | |
178 | RAMBlock *block; | |
179 | int ret = 0; | |
180 | ||
89ac5a1d DDAG |
181 | RCU_READ_LOCK_GUARD(); |
182 | ||
fbd162e6 YK |
183 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
184 | ret = func(block, opaque); | |
185 | if (ret) { | |
186 | break; | |
187 | } | |
188 | } | |
fbd162e6 YK |
189 | return ret; |
190 | } | |
191 | ||
f9494614 AP |
192 | static void ramblock_recv_map_init(void) |
193 | { | |
194 | RAMBlock *rb; | |
195 | ||
fbd162e6 | 196 | RAMBLOCK_FOREACH_NOT_IGNORED(rb) { |
f9494614 AP |
197 | assert(!rb->receivedmap); |
198 | rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); | |
199 | } | |
200 | } | |
201 | ||
202 | int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) | |
203 | { | |
204 | return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), | |
205 | rb->receivedmap); | |
206 | } | |
207 | ||
1cba9f6e DDAG |
208 | bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) |
209 | { | |
210 | return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); | |
211 | } | |
212 | ||
f9494614 AP |
213 | void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) |
214 | { | |
215 | set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); | |
216 | } | |
217 | ||
218 | void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, | |
219 | size_t nr) | |
220 | { | |
221 | bitmap_set_atomic(rb->receivedmap, | |
222 | ramblock_recv_bitmap_offset(host_addr, rb), | |
223 | nr); | |
224 | } | |
225 | ||
a335debb PX |
226 | #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) |
227 | ||
228 | /* | |
229 | * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). | |
230 | * | |
231 | * Returns >0 if success with sent bytes, or <0 if error. | |
232 | */ | |
233 | int64_t ramblock_recv_bitmap_send(QEMUFile *file, | |
234 | const char *block_name) | |
235 | { | |
236 | RAMBlock *block = qemu_ram_block_by_name(block_name); | |
237 | unsigned long *le_bitmap, nbits; | |
238 | uint64_t size; | |
239 | ||
240 | if (!block) { | |
241 | error_report("%s: invalid block name: %s", __func__, block_name); | |
242 | return -1; | |
243 | } | |
244 | ||
898ba906 | 245 | nbits = block->postcopy_length >> TARGET_PAGE_BITS; |
a335debb PX |
246 | |
247 | /* | |
248 | * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit | |
249 | * machines we may need 4 more bytes for padding (see below | |
250 | * comment). So extend it a bit before hand. | |
251 | */ | |
252 | le_bitmap = bitmap_new(nbits + BITS_PER_LONG); | |
253 | ||
254 | /* | |
255 | * Always use little endian when sending the bitmap. This is | |
256 | * required that when source and destination VMs are not using the | |
3a4452d8 | 257 | * same endianness. (Note: big endian won't work.) |
a335debb PX |
258 | */ |
259 | bitmap_to_le(le_bitmap, block->receivedmap, nbits); | |
260 | ||
261 | /* Size of the bitmap, in bytes */ | |
a725ef9f | 262 | size = DIV_ROUND_UP(nbits, 8); |
a335debb PX |
263 | |
264 | /* | |
265 | * size is always aligned to 8 bytes for 64bit machines, but it | |
266 | * may not be true for 32bit machines. We need this padding to | |
267 | * make sure the migration can survive even between 32bit and | |
268 | * 64bit machines. | |
269 | */ | |
270 | size = ROUND_UP(size, 8); | |
271 | ||
272 | qemu_put_be64(file, size); | |
273 | qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); | |
274 | /* | |
275 | * Mark as an end, in case the middle part is screwed up due to | |
3a4452d8 | 276 | * some "mysterious" reason. |
a335debb PX |
277 | */ |
278 | qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); | |
279 | qemu_fflush(file); | |
280 | ||
bf269906 | 281 | g_free(le_bitmap); |
a335debb PX |
282 | |
283 | if (qemu_file_get_error(file)) { | |
284 | return qemu_file_get_error(file); | |
285 | } | |
286 | ||
287 | return size + sizeof(size); | |
288 | } | |
289 | ||
ec481c6c JQ |
290 | /* |
291 | * An outstanding page request, on the source, having been received | |
292 | * and queued | |
293 | */ | |
294 | struct RAMSrcPageRequest { | |
295 | RAMBlock *rb; | |
296 | hwaddr offset; | |
297 | hwaddr len; | |
298 | ||
299 | QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; | |
300 | }; | |
301 | ||
6f37bb8b JQ |
302 | /* State of RAM for migration */ |
303 | struct RAMState { | |
204b88b8 JQ |
304 | /* QEMUFile used for this migration */ |
305 | QEMUFile *f; | |
278e2f55 AG |
306 | /* UFFD file descriptor, used in 'write-tracking' migration */ |
307 | int uffdio_fd; | |
6f37bb8b JQ |
308 | /* Last block that we have visited searching for dirty pages */ |
309 | RAMBlock *last_seen_block; | |
310 | /* Last block from where we have sent data */ | |
311 | RAMBlock *last_sent_block; | |
269ace29 JQ |
312 | /* Last dirty target page we have sent */ |
313 | ram_addr_t last_page; | |
6f37bb8b JQ |
314 | /* last ram version we have seen */ |
315 | uint32_t last_version; | |
8d820d6f JQ |
316 | /* How many times we have dirty too many pages */ |
317 | int dirty_rate_high_cnt; | |
f664da80 JQ |
318 | /* these variables are used for bitmap sync */ |
319 | /* last time we did a full bitmap_sync */ | |
320 | int64_t time_last_bitmap_sync; | |
eac74159 | 321 | /* bytes transferred at start_time */ |
c4bdf0cf | 322 | uint64_t bytes_xfer_prev; |
a66cd90c | 323 | /* number of dirty pages since start_time */ |
68908ed6 | 324 | uint64_t num_dirty_pages_period; |
b5833fde JQ |
325 | /* xbzrle misses since the beginning of the period */ |
326 | uint64_t xbzrle_cache_miss_prev; | |
e460a4b1 WW |
327 | /* Amount of xbzrle pages since the beginning of the period */ |
328 | uint64_t xbzrle_pages_prev; | |
329 | /* Amount of xbzrle encoded bytes since the beginning of the period */ | |
330 | uint64_t xbzrle_bytes_prev; | |
1a373522 DH |
331 | /* Start using XBZRLE (e.g., after the first round). */ |
332 | bool xbzrle_enabled; | |
76e03000 XG |
333 | |
334 | /* compression statistics since the beginning of the period */ | |
335 | /* amount of count that no free thread to compress data */ | |
336 | uint64_t compress_thread_busy_prev; | |
337 | /* amount bytes after compression */ | |
338 | uint64_t compressed_size_prev; | |
339 | /* amount of compressed pages */ | |
340 | uint64_t compress_pages_prev; | |
341 | ||
be8b02ed XG |
342 | /* total handled target pages at the beginning of period */ |
343 | uint64_t target_page_count_prev; | |
344 | /* total handled target pages since start */ | |
345 | uint64_t target_page_count; | |
9360447d | 346 | /* number of dirty bits in the bitmap */ |
2dfaf12e | 347 | uint64_t migration_dirty_pages; |
386a907b | 348 | /* Protects modification of the bitmap and migration dirty pages */ |
108cfae0 | 349 | QemuMutex bitmap_mutex; |
68a098f3 JQ |
350 | /* The RAMBlock used in the last src_page_requests */ |
351 | RAMBlock *last_req_rb; | |
ec481c6c JQ |
352 | /* Queue of outstanding page requests from the destination */ |
353 | QemuMutex src_page_req_mutex; | |
b58deb34 | 354 | QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; |
6f37bb8b JQ |
355 | }; |
356 | typedef struct RAMState RAMState; | |
357 | ||
53518d94 | 358 | static RAMState *ram_state; |
6f37bb8b | 359 | |
bd227060 WW |
360 | static NotifierWithReturnList precopy_notifier_list; |
361 | ||
362 | void precopy_infrastructure_init(void) | |
363 | { | |
364 | notifier_with_return_list_init(&precopy_notifier_list); | |
365 | } | |
366 | ||
367 | void precopy_add_notifier(NotifierWithReturn *n) | |
368 | { | |
369 | notifier_with_return_list_add(&precopy_notifier_list, n); | |
370 | } | |
371 | ||
372 | void precopy_remove_notifier(NotifierWithReturn *n) | |
373 | { | |
374 | notifier_with_return_remove(n); | |
375 | } | |
376 | ||
377 | int precopy_notify(PrecopyNotifyReason reason, Error **errp) | |
378 | { | |
379 | PrecopyNotifyData pnd; | |
380 | pnd.reason = reason; | |
381 | pnd.errp = errp; | |
382 | ||
383 | return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); | |
384 | } | |
385 | ||
9edabd4d | 386 | uint64_t ram_bytes_remaining(void) |
2f4fde93 | 387 | { |
bae416e5 DDAG |
388 | return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : |
389 | 0; | |
2f4fde93 JQ |
390 | } |
391 | ||
9360447d | 392 | MigrationStats ram_counters; |
96506894 | 393 | |
b8fb8cb7 DDAG |
394 | /* used by the search for pages to send */ |
395 | struct PageSearchStatus { | |
396 | /* Current block being searched */ | |
397 | RAMBlock *block; | |
a935e30f JQ |
398 | /* Current page to search from */ |
399 | unsigned long page; | |
b8fb8cb7 DDAG |
400 | /* Set once we wrap around */ |
401 | bool complete_round; | |
402 | }; | |
403 | typedef struct PageSearchStatus PageSearchStatus; | |
404 | ||
76e03000 XG |
405 | CompressionStats compression_counters; |
406 | ||
56e93d26 | 407 | struct CompressParam { |
56e93d26 | 408 | bool done; |
90e56fb4 | 409 | bool quit; |
5e5fdcff | 410 | bool zero_page; |
56e93d26 JQ |
411 | QEMUFile *file; |
412 | QemuMutex mutex; | |
413 | QemuCond cond; | |
414 | RAMBlock *block; | |
415 | ram_addr_t offset; | |
34ab9e97 XG |
416 | |
417 | /* internally used fields */ | |
dcaf446e | 418 | z_stream stream; |
34ab9e97 | 419 | uint8_t *originbuf; |
56e93d26 JQ |
420 | }; |
421 | typedef struct CompressParam CompressParam; | |
422 | ||
423 | struct DecompressParam { | |
73a8912b | 424 | bool done; |
90e56fb4 | 425 | bool quit; |
56e93d26 JQ |
426 | QemuMutex mutex; |
427 | QemuCond cond; | |
428 | void *des; | |
d341d9f3 | 429 | uint8_t *compbuf; |
56e93d26 | 430 | int len; |
797ca154 | 431 | z_stream stream; |
56e93d26 JQ |
432 | }; |
433 | typedef struct DecompressParam DecompressParam; | |
434 | ||
435 | static CompressParam *comp_param; | |
436 | static QemuThread *compress_threads; | |
437 | /* comp_done_cond is used to wake up the migration thread when | |
438 | * one of the compression threads has finished the compression. | |
439 | * comp_done_lock is used to co-work with comp_done_cond. | |
440 | */ | |
0d9f9a5c LL |
441 | static QemuMutex comp_done_lock; |
442 | static QemuCond comp_done_cond; | |
56e93d26 JQ |
443 | /* The empty QEMUFileOps will be used by file in CompressParam */ |
444 | static const QEMUFileOps empty_ops = { }; | |
445 | ||
34ab9e97 | 446 | static QEMUFile *decomp_file; |
56e93d26 JQ |
447 | static DecompressParam *decomp_param; |
448 | static QemuThread *decompress_threads; | |
73a8912b LL |
449 | static QemuMutex decomp_done_lock; |
450 | static QemuCond decomp_done_cond; | |
56e93d26 | 451 | |
5e5fdcff | 452 | static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, |
6ef3771c | 453 | ram_addr_t offset, uint8_t *source_buf); |
56e93d26 JQ |
454 | |
455 | static void *do_data_compress(void *opaque) | |
456 | { | |
457 | CompressParam *param = opaque; | |
a7a9a88f LL |
458 | RAMBlock *block; |
459 | ram_addr_t offset; | |
5e5fdcff | 460 | bool zero_page; |
56e93d26 | 461 | |
a7a9a88f | 462 | qemu_mutex_lock(¶m->mutex); |
90e56fb4 | 463 | while (!param->quit) { |
a7a9a88f LL |
464 | if (param->block) { |
465 | block = param->block; | |
466 | offset = param->offset; | |
467 | param->block = NULL; | |
468 | qemu_mutex_unlock(¶m->mutex); | |
469 | ||
5e5fdcff XG |
470 | zero_page = do_compress_ram_page(param->file, ¶m->stream, |
471 | block, offset, param->originbuf); | |
a7a9a88f | 472 | |
0d9f9a5c | 473 | qemu_mutex_lock(&comp_done_lock); |
a7a9a88f | 474 | param->done = true; |
5e5fdcff | 475 | param->zero_page = zero_page; |
0d9f9a5c LL |
476 | qemu_cond_signal(&comp_done_cond); |
477 | qemu_mutex_unlock(&comp_done_lock); | |
a7a9a88f LL |
478 | |
479 | qemu_mutex_lock(¶m->mutex); | |
480 | } else { | |
56e93d26 JQ |
481 | qemu_cond_wait(¶m->cond, ¶m->mutex); |
482 | } | |
56e93d26 | 483 | } |
a7a9a88f | 484 | qemu_mutex_unlock(¶m->mutex); |
56e93d26 JQ |
485 | |
486 | return NULL; | |
487 | } | |
488 | ||
f0afa331 | 489 | static void compress_threads_save_cleanup(void) |
56e93d26 JQ |
490 | { |
491 | int i, thread_count; | |
492 | ||
05306935 | 493 | if (!migrate_use_compression() || !comp_param) { |
56e93d26 JQ |
494 | return; |
495 | } | |
05306935 | 496 | |
56e93d26 JQ |
497 | thread_count = migrate_compress_threads(); |
498 | for (i = 0; i < thread_count; i++) { | |
dcaf446e XG |
499 | /* |
500 | * we use it as a indicator which shows if the thread is | |
501 | * properly init'd or not | |
502 | */ | |
503 | if (!comp_param[i].file) { | |
504 | break; | |
505 | } | |
05306935 FL |
506 | |
507 | qemu_mutex_lock(&comp_param[i].mutex); | |
508 | comp_param[i].quit = true; | |
509 | qemu_cond_signal(&comp_param[i].cond); | |
510 | qemu_mutex_unlock(&comp_param[i].mutex); | |
511 | ||
56e93d26 | 512 | qemu_thread_join(compress_threads + i); |
56e93d26 JQ |
513 | qemu_mutex_destroy(&comp_param[i].mutex); |
514 | qemu_cond_destroy(&comp_param[i].cond); | |
dcaf446e | 515 | deflateEnd(&comp_param[i].stream); |
34ab9e97 | 516 | g_free(comp_param[i].originbuf); |
dcaf446e XG |
517 | qemu_fclose(comp_param[i].file); |
518 | comp_param[i].file = NULL; | |
56e93d26 | 519 | } |
0d9f9a5c LL |
520 | qemu_mutex_destroy(&comp_done_lock); |
521 | qemu_cond_destroy(&comp_done_cond); | |
56e93d26 JQ |
522 | g_free(compress_threads); |
523 | g_free(comp_param); | |
56e93d26 JQ |
524 | compress_threads = NULL; |
525 | comp_param = NULL; | |
56e93d26 JQ |
526 | } |
527 | ||
dcaf446e | 528 | static int compress_threads_save_setup(void) |
56e93d26 JQ |
529 | { |
530 | int i, thread_count; | |
531 | ||
532 | if (!migrate_use_compression()) { | |
dcaf446e | 533 | return 0; |
56e93d26 | 534 | } |
56e93d26 JQ |
535 | thread_count = migrate_compress_threads(); |
536 | compress_threads = g_new0(QemuThread, thread_count); | |
537 | comp_param = g_new0(CompressParam, thread_count); | |
0d9f9a5c LL |
538 | qemu_cond_init(&comp_done_cond); |
539 | qemu_mutex_init(&comp_done_lock); | |
56e93d26 | 540 | for (i = 0; i < thread_count; i++) { |
34ab9e97 XG |
541 | comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); |
542 | if (!comp_param[i].originbuf) { | |
543 | goto exit; | |
544 | } | |
545 | ||
dcaf446e XG |
546 | if (deflateInit(&comp_param[i].stream, |
547 | migrate_compress_level()) != Z_OK) { | |
34ab9e97 | 548 | g_free(comp_param[i].originbuf); |
dcaf446e XG |
549 | goto exit; |
550 | } | |
551 | ||
e110aa91 C |
552 | /* comp_param[i].file is just used as a dummy buffer to save data, |
553 | * set its ops to empty. | |
56e93d26 | 554 | */ |
c6ad5be7 | 555 | comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops, false); |
56e93d26 | 556 | comp_param[i].done = true; |
90e56fb4 | 557 | comp_param[i].quit = false; |
56e93d26 JQ |
558 | qemu_mutex_init(&comp_param[i].mutex); |
559 | qemu_cond_init(&comp_param[i].cond); | |
560 | qemu_thread_create(compress_threads + i, "compress", | |
561 | do_data_compress, comp_param + i, | |
562 | QEMU_THREAD_JOINABLE); | |
563 | } | |
dcaf446e XG |
564 | return 0; |
565 | ||
566 | exit: | |
567 | compress_threads_save_cleanup(); | |
568 | return -1; | |
56e93d26 JQ |
569 | } |
570 | ||
571 | /** | |
3d0684b2 | 572 | * save_page_header: write page header to wire |
56e93d26 JQ |
573 | * |
574 | * If this is the 1st block, it also writes the block identification | |
575 | * | |
3d0684b2 | 576 | * Returns the number of bytes written |
56e93d26 JQ |
577 | * |
578 | * @f: QEMUFile where to send the data | |
579 | * @block: block that contains the page we want to send | |
580 | * @offset: offset inside the block for the page | |
581 | * in the lower bits, it contains flags | |
582 | */ | |
2bf3aa85 JQ |
583 | static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, |
584 | ram_addr_t offset) | |
56e93d26 | 585 | { |
9f5f380b | 586 | size_t size, len; |
56e93d26 | 587 | |
24795694 JQ |
588 | if (block == rs->last_sent_block) { |
589 | offset |= RAM_SAVE_FLAG_CONTINUE; | |
590 | } | |
2bf3aa85 | 591 | qemu_put_be64(f, offset); |
56e93d26 JQ |
592 | size = 8; |
593 | ||
594 | if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { | |
9f5f380b | 595 | len = strlen(block->idstr); |
2bf3aa85 JQ |
596 | qemu_put_byte(f, len); |
597 | qemu_put_buffer(f, (uint8_t *)block->idstr, len); | |
9f5f380b | 598 | size += 1 + len; |
24795694 | 599 | rs->last_sent_block = block; |
56e93d26 JQ |
600 | } |
601 | return size; | |
602 | } | |
603 | ||
3d0684b2 | 604 | /** |
179a8080 | 605 | * mig_throttle_guest_down: throttle down the guest |
3d0684b2 JQ |
606 | * |
607 | * Reduce amount of guest cpu execution to hopefully slow down memory | |
608 | * writes. If guest dirty memory rate is reduced below the rate at | |
609 | * which we can transfer pages to the destination then we should be | |
610 | * able to complete migration. Some workloads dirty memory way too | |
611 | * fast and will not effectively converge, even with auto-converge. | |
070afca2 | 612 | */ |
cbbf8182 KZ |
613 | static void mig_throttle_guest_down(uint64_t bytes_dirty_period, |
614 | uint64_t bytes_dirty_threshold) | |
070afca2 JH |
615 | { |
616 | MigrationState *s = migrate_get_current(); | |
2594f56d | 617 | uint64_t pct_initial = s->parameters.cpu_throttle_initial; |
cbbf8182 KZ |
618 | uint64_t pct_increment = s->parameters.cpu_throttle_increment; |
619 | bool pct_tailslow = s->parameters.cpu_throttle_tailslow; | |
4cbc9c7f | 620 | int pct_max = s->parameters.max_cpu_throttle; |
070afca2 | 621 | |
cbbf8182 KZ |
622 | uint64_t throttle_now = cpu_throttle_get_percentage(); |
623 | uint64_t cpu_now, cpu_ideal, throttle_inc; | |
624 | ||
070afca2 JH |
625 | /* We have not started throttling yet. Let's start it. */ |
626 | if (!cpu_throttle_active()) { | |
627 | cpu_throttle_set(pct_initial); | |
628 | } else { | |
629 | /* Throttling already on, just increase the rate */ | |
cbbf8182 KZ |
630 | if (!pct_tailslow) { |
631 | throttle_inc = pct_increment; | |
632 | } else { | |
633 | /* Compute the ideal CPU percentage used by Guest, which may | |
634 | * make the dirty rate match the dirty rate threshold. */ | |
635 | cpu_now = 100 - throttle_now; | |
636 | cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / | |
637 | bytes_dirty_period); | |
638 | throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); | |
639 | } | |
640 | cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); | |
070afca2 JH |
641 | } |
642 | } | |
643 | ||
91fe9a8d RL |
644 | void mig_throttle_counter_reset(void) |
645 | { | |
646 | RAMState *rs = ram_state; | |
647 | ||
648 | rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); | |
649 | rs->num_dirty_pages_period = 0; | |
650 | rs->bytes_xfer_prev = ram_counters.transferred; | |
651 | } | |
652 | ||
3d0684b2 JQ |
653 | /** |
654 | * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache | |
655 | * | |
6f37bb8b | 656 | * @rs: current RAM state |
3d0684b2 JQ |
657 | * @current_addr: address for the zero page |
658 | * | |
659 | * Update the xbzrle cache to reflect a page that's been sent as all 0. | |
56e93d26 JQ |
660 | * The important thing is that a stale (not-yet-0'd) page be replaced |
661 | * by the new data. | |
662 | * As a bonus, if the page wasn't in the cache it gets added so that | |
3d0684b2 | 663 | * when a small write is made into the 0'd page it gets XBZRLE sent. |
56e93d26 | 664 | */ |
6f37bb8b | 665 | static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) |
56e93d26 | 666 | { |
1a373522 | 667 | if (!rs->xbzrle_enabled) { |
56e93d26 JQ |
668 | return; |
669 | } | |
670 | ||
671 | /* We don't care if this fails to allocate a new cache page | |
672 | * as long as it updated an old one */ | |
c00e0928 | 673 | cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, |
9360447d | 674 | ram_counters.dirty_sync_count); |
56e93d26 JQ |
675 | } |
676 | ||
677 | #define ENCODING_FLAG_XBZRLE 0x1 | |
678 | ||
679 | /** | |
680 | * save_xbzrle_page: compress and send current page | |
681 | * | |
682 | * Returns: 1 means that we wrote the page | |
683 | * 0 means that page is identical to the one already sent | |
684 | * -1 means that xbzrle would be longer than normal | |
685 | * | |
5a987738 | 686 | * @rs: current RAM state |
3d0684b2 JQ |
687 | * @current_data: pointer to the address of the page contents |
688 | * @current_addr: addr of the page | |
56e93d26 JQ |
689 | * @block: block that contains the page we want to send |
690 | * @offset: offset inside the block for the page | |
691 | * @last_stage: if we are at the completion stage | |
56e93d26 | 692 | */ |
204b88b8 | 693 | static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, |
56e93d26 | 694 | ram_addr_t current_addr, RAMBlock *block, |
072c2511 | 695 | ram_addr_t offset, bool last_stage) |
56e93d26 JQ |
696 | { |
697 | int encoded_len = 0, bytes_xbzrle; | |
698 | uint8_t *prev_cached_page; | |
699 | ||
9360447d JQ |
700 | if (!cache_is_cached(XBZRLE.cache, current_addr, |
701 | ram_counters.dirty_sync_count)) { | |
702 | xbzrle_counters.cache_miss++; | |
56e93d26 JQ |
703 | if (!last_stage) { |
704 | if (cache_insert(XBZRLE.cache, current_addr, *current_data, | |
9360447d | 705 | ram_counters.dirty_sync_count) == -1) { |
56e93d26 JQ |
706 | return -1; |
707 | } else { | |
708 | /* update *current_data when the page has been | |
709 | inserted into cache */ | |
710 | *current_data = get_cached_data(XBZRLE.cache, current_addr); | |
711 | } | |
712 | } | |
713 | return -1; | |
714 | } | |
715 | ||
e460a4b1 WW |
716 | /* |
717 | * Reaching here means the page has hit the xbzrle cache, no matter what | |
718 | * encoding result it is (normal encoding, overflow or skipping the page), | |
3a4452d8 | 719 | * count the page as encoded. This is used to calculate the encoding rate. |
e460a4b1 WW |
720 | * |
721 | * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB, | |
722 | * 2nd page turns out to be skipped (i.e. no new bytes written to the | |
723 | * page), the overall encoding rate will be 8KB / 2KB = 4, which has the | |
724 | * skipped page included. In this way, the encoding rate can tell if the | |
725 | * guest page is good for xbzrle encoding. | |
726 | */ | |
727 | xbzrle_counters.pages++; | |
56e93d26 JQ |
728 | prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); |
729 | ||
730 | /* save current buffer into memory */ | |
731 | memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); | |
732 | ||
733 | /* XBZRLE encoding (if there is no overflow) */ | |
734 | encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, | |
735 | TARGET_PAGE_SIZE, XBZRLE.encoded_buf, | |
736 | TARGET_PAGE_SIZE); | |
ca353803 WY |
737 | |
738 | /* | |
739 | * Update the cache contents, so that it corresponds to the data | |
740 | * sent, in all cases except where we skip the page. | |
741 | */ | |
742 | if (!last_stage && encoded_len != 0) { | |
743 | memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); | |
744 | /* | |
745 | * In the case where we couldn't compress, ensure that the caller | |
746 | * sends the data from the cache, since the guest might have | |
747 | * changed the RAM since we copied it. | |
748 | */ | |
749 | *current_data = prev_cached_page; | |
750 | } | |
751 | ||
56e93d26 | 752 | if (encoded_len == 0) { |
55c4446b | 753 | trace_save_xbzrle_page_skipping(); |
56e93d26 JQ |
754 | return 0; |
755 | } else if (encoded_len == -1) { | |
55c4446b | 756 | trace_save_xbzrle_page_overflow(); |
9360447d | 757 | xbzrle_counters.overflow++; |
e460a4b1 | 758 | xbzrle_counters.bytes += TARGET_PAGE_SIZE; |
56e93d26 JQ |
759 | return -1; |
760 | } | |
761 | ||
56e93d26 | 762 | /* Send XBZRLE based compressed page */ |
2bf3aa85 | 763 | bytes_xbzrle = save_page_header(rs, rs->f, block, |
204b88b8 JQ |
764 | offset | RAM_SAVE_FLAG_XBZRLE); |
765 | qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); | |
766 | qemu_put_be16(rs->f, encoded_len); | |
767 | qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); | |
56e93d26 | 768 | bytes_xbzrle += encoded_len + 1 + 2; |
e460a4b1 WW |
769 | /* |
770 | * Like compressed_size (please see update_compress_thread_counts), | |
771 | * the xbzrle encoded bytes don't count the 8 byte header with | |
772 | * RAM_SAVE_FLAG_CONTINUE. | |
773 | */ | |
774 | xbzrle_counters.bytes += bytes_xbzrle - 8; | |
9360447d | 775 | ram_counters.transferred += bytes_xbzrle; |
56e93d26 JQ |
776 | |
777 | return 1; | |
778 | } | |
779 | ||
3d0684b2 JQ |
780 | /** |
781 | * migration_bitmap_find_dirty: find the next dirty page from start | |
f3f491fc | 782 | * |
a5f7b1a6 | 783 | * Returns the page offset within memory region of the start of a dirty page |
3d0684b2 | 784 | * |
6f37bb8b | 785 | * @rs: current RAM state |
3d0684b2 | 786 | * @rb: RAMBlock where to search for dirty pages |
a935e30f | 787 | * @start: page where we start the search |
f3f491fc | 788 | */ |
56e93d26 | 789 | static inline |
a935e30f | 790 | unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, |
f20e2865 | 791 | unsigned long start) |
56e93d26 | 792 | { |
6b6712ef JQ |
793 | unsigned long size = rb->used_length >> TARGET_PAGE_BITS; |
794 | unsigned long *bitmap = rb->bmap; | |
56e93d26 | 795 | |
fbd162e6 | 796 | if (ramblock_is_ignored(rb)) { |
b895de50 CLG |
797 | return size; |
798 | } | |
799 | ||
1a373522 | 800 | return find_next_bit(bitmap, size, start); |
56e93d26 JQ |
801 | } |
802 | ||
1230a25f | 803 | static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb, |
3143577d WW |
804 | unsigned long page) |
805 | { | |
806 | uint8_t shift; | |
807 | hwaddr size, start; | |
808 | ||
809 | if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) { | |
810 | return; | |
811 | } | |
812 | ||
813 | shift = rb->clear_bmap_shift; | |
814 | /* | |
815 | * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this | |
816 | * can make things easier sometimes since then start address | |
817 | * of the small chunk will always be 64 pages aligned so the | |
818 | * bitmap will always be aligned to unsigned long. We should | |
819 | * even be able to remove this restriction but I'm simply | |
820 | * keeping it. | |
821 | */ | |
822 | assert(shift >= 6); | |
823 | ||
824 | size = 1ULL << (TARGET_PAGE_BITS + shift); | |
7648297d | 825 | start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size); |
3143577d WW |
826 | trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); |
827 | memory_region_clear_dirty_bitmap(rb->mr, start, size); | |
828 | } | |
829 | ||
830 | static void | |
1230a25f | 831 | migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb, |
3143577d WW |
832 | unsigned long start, |
833 | unsigned long npages) | |
834 | { | |
835 | unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift; | |
836 | unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages); | |
837 | unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages); | |
838 | ||
839 | /* | |
840 | * Clear pages from start to start + npages - 1, so the end boundary is | |
841 | * exclusive. | |
842 | */ | |
843 | for (i = chunk_start; i < chunk_end; i += chunk_pages) { | |
1230a25f | 844 | migration_clear_memory_region_dirty_bitmap(rb, i); |
3143577d WW |
845 | } |
846 | } | |
847 | ||
a6a83cef RL |
848 | /* |
849 | * colo_bitmap_find_diry:find contiguous dirty pages from start | |
850 | * | |
851 | * Returns the page offset within memory region of the start of the contiguout | |
852 | * dirty page | |
853 | * | |
854 | * @rs: current RAM state | |
855 | * @rb: RAMBlock where to search for dirty pages | |
856 | * @start: page where we start the search | |
857 | * @num: the number of contiguous dirty pages | |
858 | */ | |
859 | static inline | |
860 | unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, | |
861 | unsigned long start, unsigned long *num) | |
862 | { | |
863 | unsigned long size = rb->used_length >> TARGET_PAGE_BITS; | |
864 | unsigned long *bitmap = rb->bmap; | |
865 | unsigned long first, next; | |
866 | ||
867 | *num = 0; | |
868 | ||
869 | if (ramblock_is_ignored(rb)) { | |
870 | return size; | |
871 | } | |
872 | ||
873 | first = find_next_bit(bitmap, size, start); | |
874 | if (first >= size) { | |
875 | return first; | |
876 | } | |
877 | next = find_next_zero_bit(bitmap, size, first + 1); | |
878 | assert(next >= first); | |
879 | *num = next - first; | |
880 | return first; | |
881 | } | |
882 | ||
06b10688 | 883 | static inline bool migration_bitmap_clear_dirty(RAMState *rs, |
f20e2865 JQ |
884 | RAMBlock *rb, |
885 | unsigned long page) | |
a82d593b DDAG |
886 | { |
887 | bool ret; | |
a82d593b | 888 | |
002cad6b PX |
889 | /* |
890 | * Clear dirty bitmap if needed. This _must_ be called before we | |
891 | * send any of the page in the chunk because we need to make sure | |
892 | * we can capture further page content changes when we sync dirty | |
893 | * log the next time. So as long as we are going to send any of | |
894 | * the page in the chunk we clear the remote dirty bitmap for all. | |
895 | * Clearing it earlier won't be a problem, but too late will. | |
896 | */ | |
1230a25f | 897 | migration_clear_memory_region_dirty_bitmap(rb, page); |
002cad6b | 898 | |
6b6712ef | 899 | ret = test_and_clear_bit(page, rb->bmap); |
a82d593b | 900 | if (ret) { |
0d8ec885 | 901 | rs->migration_dirty_pages--; |
a82d593b | 902 | } |
386a907b | 903 | |
a82d593b DDAG |
904 | return ret; |
905 | } | |
906 | ||
be39b4cd DH |
907 | static void dirty_bitmap_clear_section(MemoryRegionSection *section, |
908 | void *opaque) | |
909 | { | |
910 | const hwaddr offset = section->offset_within_region; | |
911 | const hwaddr size = int128_get64(section->size); | |
912 | const unsigned long start = offset >> TARGET_PAGE_BITS; | |
913 | const unsigned long npages = size >> TARGET_PAGE_BITS; | |
914 | RAMBlock *rb = section->mr->ram_block; | |
915 | uint64_t *cleared_bits = opaque; | |
916 | ||
917 | /* | |
918 | * We don't grab ram_state->bitmap_mutex because we expect to run | |
919 | * only when starting migration or during postcopy recovery where | |
920 | * we don't have concurrent access. | |
921 | */ | |
922 | if (!migration_in_postcopy() && !migrate_background_snapshot()) { | |
923 | migration_clear_memory_region_dirty_bitmap_range(rb, start, npages); | |
924 | } | |
925 | *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages); | |
926 | bitmap_clear(rb->bmap, start, npages); | |
927 | } | |
928 | ||
929 | /* | |
930 | * Exclude all dirty pages from migration that fall into a discarded range as | |
931 | * managed by a RamDiscardManager responsible for the mapped memory region of | |
932 | * the RAMBlock. Clear the corresponding bits in the dirty bitmaps. | |
933 | * | |
934 | * Discarded pages ("logically unplugged") have undefined content and must | |
935 | * not get migrated, because even reading these pages for migration might | |
936 | * result in undesired behavior. | |
937 | * | |
938 | * Returns the number of cleared bits in the RAMBlock dirty bitmap. | |
939 | * | |
940 | * Note: The result is only stable while migrating (precopy/postcopy). | |
941 | */ | |
942 | static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb) | |
943 | { | |
944 | uint64_t cleared_bits = 0; | |
945 | ||
946 | if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) { | |
947 | RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); | |
948 | MemoryRegionSection section = { | |
949 | .mr = rb->mr, | |
950 | .offset_within_region = 0, | |
951 | .size = int128_make64(qemu_ram_get_used_length(rb)), | |
952 | }; | |
953 | ||
954 | ram_discard_manager_replay_discarded(rdm, §ion, | |
955 | dirty_bitmap_clear_section, | |
956 | &cleared_bits); | |
957 | } | |
958 | return cleared_bits; | |
959 | } | |
960 | ||
9470c5e0 DH |
961 | /* |
962 | * Check if a host-page aligned page falls into a discarded range as managed by | |
963 | * a RamDiscardManager responsible for the mapped memory region of the RAMBlock. | |
964 | * | |
965 | * Note: The result is only stable while migrating (precopy/postcopy). | |
966 | */ | |
967 | bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start) | |
968 | { | |
969 | if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { | |
970 | RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); | |
971 | MemoryRegionSection section = { | |
972 | .mr = rb->mr, | |
973 | .offset_within_region = start, | |
974 | .size = int128_make64(qemu_ram_pagesize(rb)), | |
975 | }; | |
976 | ||
977 | return !ram_discard_manager_is_populated(rdm, §ion); | |
978 | } | |
979 | return false; | |
980 | } | |
981 | ||
267691b6 | 982 | /* Called with RCU critical section */ |
7a3e9571 | 983 | static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) |
56e93d26 | 984 | { |
fb613580 KZ |
985 | uint64_t new_dirty_pages = |
986 | cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length); | |
987 | ||
988 | rs->migration_dirty_pages += new_dirty_pages; | |
989 | rs->num_dirty_pages_period += new_dirty_pages; | |
56e93d26 JQ |
990 | } |
991 | ||
3d0684b2 JQ |
992 | /** |
993 | * ram_pagesize_summary: calculate all the pagesizes of a VM | |
994 | * | |
995 | * Returns a summary bitmap of the page sizes of all RAMBlocks | |
996 | * | |
997 | * For VMs with just normal pages this is equivalent to the host page | |
998 | * size. If it's got some huge pages then it's the OR of all the | |
999 | * different page sizes. | |
e8ca1db2 DDAG |
1000 | */ |
1001 | uint64_t ram_pagesize_summary(void) | |
1002 | { | |
1003 | RAMBlock *block; | |
1004 | uint64_t summary = 0; | |
1005 | ||
fbd162e6 | 1006 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
e8ca1db2 DDAG |
1007 | summary |= block->page_size; |
1008 | } | |
1009 | ||
1010 | return summary; | |
1011 | } | |
1012 | ||
aecbfe9c XG |
1013 | uint64_t ram_get_total_transferred_pages(void) |
1014 | { | |
1015 | return ram_counters.normal + ram_counters.duplicate + | |
1016 | compression_counters.pages + xbzrle_counters.pages; | |
1017 | } | |
1018 | ||
b734035b XG |
1019 | static void migration_update_rates(RAMState *rs, int64_t end_time) |
1020 | { | |
be8b02ed | 1021 | uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; |
76e03000 | 1022 | double compressed_size; |
b734035b XG |
1023 | |
1024 | /* calculate period counters */ | |
1025 | ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 | |
1026 | / (end_time - rs->time_last_bitmap_sync); | |
1027 | ||
be8b02ed | 1028 | if (!page_count) { |
b734035b XG |
1029 | return; |
1030 | } | |
1031 | ||
1032 | if (migrate_use_xbzrle()) { | |
e460a4b1 WW |
1033 | double encoded_size, unencoded_size; |
1034 | ||
b734035b | 1035 | xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - |
be8b02ed | 1036 | rs->xbzrle_cache_miss_prev) / page_count; |
b734035b | 1037 | rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; |
e460a4b1 WW |
1038 | unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) * |
1039 | TARGET_PAGE_SIZE; | |
1040 | encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev; | |
92271402 | 1041 | if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) { |
e460a4b1 | 1042 | xbzrle_counters.encoding_rate = 0; |
e460a4b1 WW |
1043 | } else { |
1044 | xbzrle_counters.encoding_rate = unencoded_size / encoded_size; | |
1045 | } | |
1046 | rs->xbzrle_pages_prev = xbzrle_counters.pages; | |
1047 | rs->xbzrle_bytes_prev = xbzrle_counters.bytes; | |
b734035b | 1048 | } |
76e03000 XG |
1049 | |
1050 | if (migrate_use_compression()) { | |
1051 | compression_counters.busy_rate = (double)(compression_counters.busy - | |
1052 | rs->compress_thread_busy_prev) / page_count; | |
1053 | rs->compress_thread_busy_prev = compression_counters.busy; | |
1054 | ||
1055 | compressed_size = compression_counters.compressed_size - | |
1056 | rs->compressed_size_prev; | |
1057 | if (compressed_size) { | |
1058 | double uncompressed_size = (compression_counters.pages - | |
1059 | rs->compress_pages_prev) * TARGET_PAGE_SIZE; | |
1060 | ||
1061 | /* Compression-Ratio = Uncompressed-size / Compressed-size */ | |
1062 | compression_counters.compression_rate = | |
1063 | uncompressed_size / compressed_size; | |
1064 | ||
1065 | rs->compress_pages_prev = compression_counters.pages; | |
1066 | rs->compressed_size_prev = compression_counters.compressed_size; | |
1067 | } | |
1068 | } | |
b734035b XG |
1069 | } |
1070 | ||
dc14a470 KZ |
1071 | static void migration_trigger_throttle(RAMState *rs) |
1072 | { | |
1073 | MigrationState *s = migrate_get_current(); | |
1074 | uint64_t threshold = s->parameters.throttle_trigger_threshold; | |
1075 | ||
1076 | uint64_t bytes_xfer_period = ram_counters.transferred - rs->bytes_xfer_prev; | |
1077 | uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; | |
1078 | uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; | |
1079 | ||
1080 | /* During block migration the auto-converge logic incorrectly detects | |
1081 | * that ram migration makes no progress. Avoid this by disabling the | |
1082 | * throttling logic during the bulk phase of block migration. */ | |
1083 | if (migrate_auto_converge() && !blk_mig_bulk_active()) { | |
1084 | /* The following detection logic can be refined later. For now: | |
1085 | Check to see if the ratio between dirtied bytes and the approx. | |
1086 | amount of bytes that just got transferred since the last time | |
1087 | we were in this routine reaches the threshold. If that happens | |
1088 | twice, start or increase throttling. */ | |
1089 | ||
1090 | if ((bytes_dirty_period > bytes_dirty_threshold) && | |
1091 | (++rs->dirty_rate_high_cnt >= 2)) { | |
1092 | trace_migration_throttle(); | |
1093 | rs->dirty_rate_high_cnt = 0; | |
cbbf8182 KZ |
1094 | mig_throttle_guest_down(bytes_dirty_period, |
1095 | bytes_dirty_threshold); | |
dc14a470 KZ |
1096 | } |
1097 | } | |
1098 | } | |
1099 | ||
8d820d6f | 1100 | static void migration_bitmap_sync(RAMState *rs) |
56e93d26 JQ |
1101 | { |
1102 | RAMBlock *block; | |
56e93d26 | 1103 | int64_t end_time; |
56e93d26 | 1104 | |
9360447d | 1105 | ram_counters.dirty_sync_count++; |
56e93d26 | 1106 | |
f664da80 JQ |
1107 | if (!rs->time_last_bitmap_sync) { |
1108 | rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); | |
56e93d26 JQ |
1109 | } |
1110 | ||
1111 | trace_migration_bitmap_sync_start(); | |
9c1f8f44 | 1112 | memory_global_dirty_log_sync(); |
56e93d26 | 1113 | |
108cfae0 | 1114 | qemu_mutex_lock(&rs->bitmap_mutex); |
89ac5a1d DDAG |
1115 | WITH_RCU_READ_LOCK_GUARD() { |
1116 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
1117 | ramblock_sync_dirty_bitmap(rs, block); | |
1118 | } | |
1119 | ram_counters.remaining = ram_bytes_remaining(); | |
56e93d26 | 1120 | } |
108cfae0 | 1121 | qemu_mutex_unlock(&rs->bitmap_mutex); |
56e93d26 | 1122 | |
9458a9a1 | 1123 | memory_global_after_dirty_log_sync(); |
a66cd90c | 1124 | trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); |
1ffb5dfd | 1125 | |
56e93d26 JQ |
1126 | end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); |
1127 | ||
1128 | /* more than 1 second = 1000 millisecons */ | |
f664da80 | 1129 | if (end_time > rs->time_last_bitmap_sync + 1000) { |
dc14a470 | 1130 | migration_trigger_throttle(rs); |
070afca2 | 1131 | |
b734035b XG |
1132 | migration_update_rates(rs, end_time); |
1133 | ||
be8b02ed | 1134 | rs->target_page_count_prev = rs->target_page_count; |
d693c6f1 FF |
1135 | |
1136 | /* reset period counters */ | |
f664da80 | 1137 | rs->time_last_bitmap_sync = end_time; |
a66cd90c | 1138 | rs->num_dirty_pages_period = 0; |
dc14a470 | 1139 | rs->bytes_xfer_prev = ram_counters.transferred; |
56e93d26 | 1140 | } |
4addcd4f | 1141 | if (migrate_use_events()) { |
3ab72385 | 1142 | qapi_event_send_migration_pass(ram_counters.dirty_sync_count); |
4addcd4f | 1143 | } |
56e93d26 JQ |
1144 | } |
1145 | ||
bd227060 WW |
1146 | static void migration_bitmap_sync_precopy(RAMState *rs) |
1147 | { | |
1148 | Error *local_err = NULL; | |
1149 | ||
1150 | /* | |
1151 | * The current notifier usage is just an optimization to migration, so we | |
1152 | * don't stop the normal migration process in the error case. | |
1153 | */ | |
1154 | if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { | |
1155 | error_report_err(local_err); | |
b4a1733c | 1156 | local_err = NULL; |
bd227060 WW |
1157 | } |
1158 | ||
1159 | migration_bitmap_sync(rs); | |
1160 | ||
1161 | if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { | |
1162 | error_report_err(local_err); | |
1163 | } | |
1164 | } | |
1165 | ||
6c97ec5f XG |
1166 | /** |
1167 | * save_zero_page_to_file: send the zero page to the file | |
1168 | * | |
1169 | * Returns the size of data written to the file, 0 means the page is not | |
1170 | * a zero page | |
1171 | * | |
1172 | * @rs: current RAM state | |
1173 | * @file: the file where the data is saved | |
1174 | * @block: block that contains the page we want to send | |
1175 | * @offset: offset inside the block for the page | |
1176 | */ | |
1177 | static int save_zero_page_to_file(RAMState *rs, QEMUFile *file, | |
1178 | RAMBlock *block, ram_addr_t offset) | |
1179 | { | |
1180 | uint8_t *p = block->host + offset; | |
1181 | int len = 0; | |
1182 | ||
1183 | if (is_zero_range(p, TARGET_PAGE_SIZE)) { | |
1184 | len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO); | |
1185 | qemu_put_byte(file, 0); | |
1186 | len += 1; | |
1187 | } | |
1188 | return len; | |
1189 | } | |
1190 | ||
56e93d26 | 1191 | /** |
3d0684b2 | 1192 | * save_zero_page: send the zero page to the stream |
56e93d26 | 1193 | * |
3d0684b2 | 1194 | * Returns the number of pages written. |
56e93d26 | 1195 | * |
f7ccd61b | 1196 | * @rs: current RAM state |
56e93d26 JQ |
1197 | * @block: block that contains the page we want to send |
1198 | * @offset: offset inside the block for the page | |
56e93d26 | 1199 | */ |
7faccdc3 | 1200 | static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) |
56e93d26 | 1201 | { |
6c97ec5f | 1202 | int len = save_zero_page_to_file(rs, rs->f, block, offset); |
56e93d26 | 1203 | |
6c97ec5f | 1204 | if (len) { |
9360447d | 1205 | ram_counters.duplicate++; |
6c97ec5f XG |
1206 | ram_counters.transferred += len; |
1207 | return 1; | |
56e93d26 | 1208 | } |
6c97ec5f | 1209 | return -1; |
56e93d26 JQ |
1210 | } |
1211 | ||
5727309d | 1212 | static void ram_release_pages(const char *rbname, uint64_t offset, int pages) |
53f09a10 | 1213 | { |
5727309d | 1214 | if (!migrate_release_ram() || !migration_in_postcopy()) { |
53f09a10 PB |
1215 | return; |
1216 | } | |
1217 | ||
8bba004c | 1218 | ram_discard_range(rbname, offset, ((ram_addr_t)pages) << TARGET_PAGE_BITS); |
53f09a10 PB |
1219 | } |
1220 | ||
059ff0fb XG |
1221 | /* |
1222 | * @pages: the number of pages written by the control path, | |
1223 | * < 0 - error | |
1224 | * > 0 - number of pages written | |
1225 | * | |
1226 | * Return true if the pages has been saved, otherwise false is returned. | |
1227 | */ | |
1228 | static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, | |
1229 | int *pages) | |
1230 | { | |
1231 | uint64_t bytes_xmit = 0; | |
1232 | int ret; | |
1233 | ||
1234 | *pages = -1; | |
1235 | ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE, | |
1236 | &bytes_xmit); | |
1237 | if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { | |
1238 | return false; | |
1239 | } | |
1240 | ||
1241 | if (bytes_xmit) { | |
1242 | ram_counters.transferred += bytes_xmit; | |
1243 | *pages = 1; | |
1244 | } | |
1245 | ||
1246 | if (ret == RAM_SAVE_CONTROL_DELAYED) { | |
1247 | return true; | |
1248 | } | |
1249 | ||
1250 | if (bytes_xmit > 0) { | |
1251 | ram_counters.normal++; | |
1252 | } else if (bytes_xmit == 0) { | |
1253 | ram_counters.duplicate++; | |
1254 | } | |
1255 | ||
1256 | return true; | |
1257 | } | |
1258 | ||
65dacaa0 XG |
1259 | /* |
1260 | * directly send the page to the stream | |
1261 | * | |
1262 | * Returns the number of pages written. | |
1263 | * | |
1264 | * @rs: current RAM state | |
1265 | * @block: block that contains the page we want to send | |
1266 | * @offset: offset inside the block for the page | |
1267 | * @buf: the page to be sent | |
1268 | * @async: send to page asyncly | |
1269 | */ | |
1270 | static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, | |
1271 | uint8_t *buf, bool async) | |
1272 | { | |
1273 | ram_counters.transferred += save_page_header(rs, rs->f, block, | |
1274 | offset | RAM_SAVE_FLAG_PAGE); | |
1275 | if (async) { | |
1276 | qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE, | |
1277 | migrate_release_ram() & | |
1278 | migration_in_postcopy()); | |
1279 | } else { | |
1280 | qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE); | |
1281 | } | |
1282 | ram_counters.transferred += TARGET_PAGE_SIZE; | |
1283 | ram_counters.normal++; | |
1284 | return 1; | |
1285 | } | |
1286 | ||
56e93d26 | 1287 | /** |
3d0684b2 | 1288 | * ram_save_page: send the given page to the stream |
56e93d26 | 1289 | * |
3d0684b2 | 1290 | * Returns the number of pages written. |
3fd3c4b3 DDAG |
1291 | * < 0 - error |
1292 | * >=0 - Number of pages written - this might legally be 0 | |
1293 | * if xbzrle noticed the page was the same. | |
56e93d26 | 1294 | * |
6f37bb8b | 1295 | * @rs: current RAM state |
56e93d26 JQ |
1296 | * @block: block that contains the page we want to send |
1297 | * @offset: offset inside the block for the page | |
1298 | * @last_stage: if we are at the completion stage | |
56e93d26 | 1299 | */ |
a0a8aa14 | 1300 | static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) |
56e93d26 JQ |
1301 | { |
1302 | int pages = -1; | |
56e93d26 | 1303 | uint8_t *p; |
56e93d26 | 1304 | bool send_async = true; |
a08f6890 | 1305 | RAMBlock *block = pss->block; |
8bba004c | 1306 | ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; |
059ff0fb | 1307 | ram_addr_t current_addr = block->offset + offset; |
56e93d26 | 1308 | |
2f68e399 | 1309 | p = block->host + offset; |
1db9d8e5 | 1310 | trace_ram_save_page(block->idstr, (uint64_t)offset, p); |
56e93d26 | 1311 | |
56e93d26 | 1312 | XBZRLE_cache_lock(); |
1a373522 | 1313 | if (rs->xbzrle_enabled && !migration_in_postcopy()) { |
059ff0fb XG |
1314 | pages = save_xbzrle_page(rs, &p, current_addr, block, |
1315 | offset, last_stage); | |
1316 | if (!last_stage) { | |
1317 | /* Can't send this cached data async, since the cache page | |
1318 | * might get updated before it gets to the wire | |
56e93d26 | 1319 | */ |
059ff0fb | 1320 | send_async = false; |
56e93d26 JQ |
1321 | } |
1322 | } | |
1323 | ||
1324 | /* XBZRLE overflow or normal page */ | |
1325 | if (pages == -1) { | |
65dacaa0 | 1326 | pages = save_normal_page(rs, block, offset, p, send_async); |
56e93d26 JQ |
1327 | } |
1328 | ||
1329 | XBZRLE_cache_unlock(); | |
1330 | ||
1331 | return pages; | |
1332 | } | |
1333 | ||
b9ee2f7d JQ |
1334 | static int ram_save_multifd_page(RAMState *rs, RAMBlock *block, |
1335 | ram_addr_t offset) | |
1336 | { | |
67a4c891 | 1337 | if (multifd_queue_page(rs->f, block, offset) < 0) { |
713f762a IR |
1338 | return -1; |
1339 | } | |
b9ee2f7d JQ |
1340 | ram_counters.normal++; |
1341 | ||
1342 | return 1; | |
1343 | } | |
1344 | ||
5e5fdcff | 1345 | static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, |
6ef3771c | 1346 | ram_addr_t offset, uint8_t *source_buf) |
56e93d26 | 1347 | { |
53518d94 | 1348 | RAMState *rs = ram_state; |
a7a9a88f | 1349 | uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); |
5e5fdcff | 1350 | bool zero_page = false; |
6ef3771c | 1351 | int ret; |
56e93d26 | 1352 | |
5e5fdcff XG |
1353 | if (save_zero_page_to_file(rs, f, block, offset)) { |
1354 | zero_page = true; | |
1355 | goto exit; | |
1356 | } | |
1357 | ||
6ef3771c | 1358 | save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE); |
34ab9e97 XG |
1359 | |
1360 | /* | |
1361 | * copy it to a internal buffer to avoid it being modified by VM | |
1362 | * so that we can catch up the error during compression and | |
1363 | * decompression | |
1364 | */ | |
1365 | memcpy(source_buf, p, TARGET_PAGE_SIZE); | |
6ef3771c XG |
1366 | ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); |
1367 | if (ret < 0) { | |
1368 | qemu_file_set_error(migrate_get_current()->to_dst_file, ret); | |
b3be2896 | 1369 | error_report("compressed data failed!"); |
5e5fdcff | 1370 | return false; |
b3be2896 | 1371 | } |
56e93d26 | 1372 | |
5e5fdcff | 1373 | exit: |
6ef3771c | 1374 | ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); |
5e5fdcff XG |
1375 | return zero_page; |
1376 | } | |
1377 | ||
1378 | static void | |
1379 | update_compress_thread_counts(const CompressParam *param, int bytes_xmit) | |
1380 | { | |
76e03000 XG |
1381 | ram_counters.transferred += bytes_xmit; |
1382 | ||
5e5fdcff XG |
1383 | if (param->zero_page) { |
1384 | ram_counters.duplicate++; | |
76e03000 | 1385 | return; |
5e5fdcff | 1386 | } |
76e03000 XG |
1387 | |
1388 | /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ | |
1389 | compression_counters.compressed_size += bytes_xmit - 8; | |
1390 | compression_counters.pages++; | |
56e93d26 JQ |
1391 | } |
1392 | ||
32b05495 XG |
1393 | static bool save_page_use_compression(RAMState *rs); |
1394 | ||
ce25d337 | 1395 | static void flush_compressed_data(RAMState *rs) |
56e93d26 JQ |
1396 | { |
1397 | int idx, len, thread_count; | |
1398 | ||
32b05495 | 1399 | if (!save_page_use_compression(rs)) { |
56e93d26 JQ |
1400 | return; |
1401 | } | |
1402 | thread_count = migrate_compress_threads(); | |
a7a9a88f | 1403 | |
0d9f9a5c | 1404 | qemu_mutex_lock(&comp_done_lock); |
56e93d26 | 1405 | for (idx = 0; idx < thread_count; idx++) { |
a7a9a88f | 1406 | while (!comp_param[idx].done) { |
0d9f9a5c | 1407 | qemu_cond_wait(&comp_done_cond, &comp_done_lock); |
56e93d26 | 1408 | } |
a7a9a88f | 1409 | } |
0d9f9a5c | 1410 | qemu_mutex_unlock(&comp_done_lock); |
a7a9a88f LL |
1411 | |
1412 | for (idx = 0; idx < thread_count; idx++) { | |
1413 | qemu_mutex_lock(&comp_param[idx].mutex); | |
90e56fb4 | 1414 | if (!comp_param[idx].quit) { |
ce25d337 | 1415 | len = qemu_put_qemu_file(rs->f, comp_param[idx].file); |
5e5fdcff XG |
1416 | /* |
1417 | * it's safe to fetch zero_page without holding comp_done_lock | |
1418 | * as there is no further request submitted to the thread, | |
1419 | * i.e, the thread should be waiting for a request at this point. | |
1420 | */ | |
1421 | update_compress_thread_counts(&comp_param[idx], len); | |
56e93d26 | 1422 | } |
a7a9a88f | 1423 | qemu_mutex_unlock(&comp_param[idx].mutex); |
56e93d26 JQ |
1424 | } |
1425 | } | |
1426 | ||
1427 | static inline void set_compress_params(CompressParam *param, RAMBlock *block, | |
1428 | ram_addr_t offset) | |
1429 | { | |
1430 | param->block = block; | |
1431 | param->offset = offset; | |
1432 | } | |
1433 | ||
ce25d337 JQ |
1434 | static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, |
1435 | ram_addr_t offset) | |
56e93d26 JQ |
1436 | { |
1437 | int idx, thread_count, bytes_xmit = -1, pages = -1; | |
1d58872a | 1438 | bool wait = migrate_compress_wait_thread(); |
56e93d26 JQ |
1439 | |
1440 | thread_count = migrate_compress_threads(); | |
0d9f9a5c | 1441 | qemu_mutex_lock(&comp_done_lock); |
1d58872a XG |
1442 | retry: |
1443 | for (idx = 0; idx < thread_count; idx++) { | |
1444 | if (comp_param[idx].done) { | |
1445 | comp_param[idx].done = false; | |
1446 | bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); | |
1447 | qemu_mutex_lock(&comp_param[idx].mutex); | |
1448 | set_compress_params(&comp_param[idx], block, offset); | |
1449 | qemu_cond_signal(&comp_param[idx].cond); | |
1450 | qemu_mutex_unlock(&comp_param[idx].mutex); | |
1451 | pages = 1; | |
5e5fdcff | 1452 | update_compress_thread_counts(&comp_param[idx], bytes_xmit); |
56e93d26 | 1453 | break; |
56e93d26 JQ |
1454 | } |
1455 | } | |
1d58872a XG |
1456 | |
1457 | /* | |
1458 | * wait for the free thread if the user specifies 'compress-wait-thread', | |
1459 | * otherwise we will post the page out in the main thread as normal page. | |
1460 | */ | |
1461 | if (pages < 0 && wait) { | |
1462 | qemu_cond_wait(&comp_done_cond, &comp_done_lock); | |
1463 | goto retry; | |
1464 | } | |
0d9f9a5c | 1465 | qemu_mutex_unlock(&comp_done_lock); |
56e93d26 JQ |
1466 | |
1467 | return pages; | |
1468 | } | |
1469 | ||
3d0684b2 JQ |
1470 | /** |
1471 | * find_dirty_block: find the next dirty page and update any state | |
1472 | * associated with the search process. | |
b9e60928 | 1473 | * |
a5f7b1a6 | 1474 | * Returns true if a page is found |
b9e60928 | 1475 | * |
6f37bb8b | 1476 | * @rs: current RAM state |
3d0684b2 JQ |
1477 | * @pss: data about the state of the current dirty page scan |
1478 | * @again: set to false if the search has scanned the whole of RAM | |
b9e60928 | 1479 | */ |
f20e2865 | 1480 | static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) |
b9e60928 | 1481 | { |
f20e2865 | 1482 | pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); |
6f37bb8b | 1483 | if (pss->complete_round && pss->block == rs->last_seen_block && |
a935e30f | 1484 | pss->page >= rs->last_page) { |
b9e60928 DDAG |
1485 | /* |
1486 | * We've been once around the RAM and haven't found anything. | |
1487 | * Give up. | |
1488 | */ | |
1489 | *again = false; | |
1490 | return false; | |
1491 | } | |
542147f4 DH |
1492 | if (!offset_in_ramblock(pss->block, |
1493 | ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) { | |
b9e60928 | 1494 | /* Didn't find anything in this RAM Block */ |
a935e30f | 1495 | pss->page = 0; |
b9e60928 DDAG |
1496 | pss->block = QLIST_NEXT_RCU(pss->block, next); |
1497 | if (!pss->block) { | |
48df9d80 XG |
1498 | /* |
1499 | * If memory migration starts over, we will meet a dirtied page | |
1500 | * which may still exists in compression threads's ring, so we | |
1501 | * should flush the compressed data to make sure the new page | |
1502 | * is not overwritten by the old one in the destination. | |
1503 | * | |
1504 | * Also If xbzrle is on, stop using the data compression at this | |
1505 | * point. In theory, xbzrle can do better than compression. | |
1506 | */ | |
1507 | flush_compressed_data(rs); | |
1508 | ||
b9e60928 DDAG |
1509 | /* Hit the end of the list */ |
1510 | pss->block = QLIST_FIRST_RCU(&ram_list.blocks); | |
1511 | /* Flag that we've looped */ | |
1512 | pss->complete_round = true; | |
1a373522 DH |
1513 | /* After the first round, enable XBZRLE. */ |
1514 | if (migrate_use_xbzrle()) { | |
1515 | rs->xbzrle_enabled = true; | |
1516 | } | |
b9e60928 DDAG |
1517 | } |
1518 | /* Didn't find anything this time, but try again on the new block */ | |
1519 | *again = true; | |
1520 | return false; | |
1521 | } else { | |
1522 | /* Can go around again, but... */ | |
1523 | *again = true; | |
1524 | /* We've found something so probably don't need to */ | |
1525 | return true; | |
1526 | } | |
1527 | } | |
1528 | ||
3d0684b2 JQ |
1529 | /** |
1530 | * unqueue_page: gets a page of the queue | |
1531 | * | |
a82d593b | 1532 | * Helper for 'get_queued_page' - gets a page off the queue |
a82d593b | 1533 | * |
3d0684b2 JQ |
1534 | * Returns the block of the page (or NULL if none available) |
1535 | * | |
ec481c6c | 1536 | * @rs: current RAM state |
3d0684b2 | 1537 | * @offset: used to return the offset within the RAMBlock |
a82d593b | 1538 | */ |
f20e2865 | 1539 | static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) |
a82d593b DDAG |
1540 | { |
1541 | RAMBlock *block = NULL; | |
1542 | ||
ae526e32 XG |
1543 | if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) { |
1544 | return NULL; | |
1545 | } | |
1546 | ||
6e8a355d | 1547 | QEMU_LOCK_GUARD(&rs->src_page_req_mutex); |
ec481c6c JQ |
1548 | if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { |
1549 | struct RAMSrcPageRequest *entry = | |
1550 | QSIMPLEQ_FIRST(&rs->src_page_requests); | |
a82d593b DDAG |
1551 | block = entry->rb; |
1552 | *offset = entry->offset; | |
a82d593b DDAG |
1553 | |
1554 | if (entry->len > TARGET_PAGE_SIZE) { | |
1555 | entry->len -= TARGET_PAGE_SIZE; | |
1556 | entry->offset += TARGET_PAGE_SIZE; | |
1557 | } else { | |
1558 | memory_region_unref(block->mr); | |
ec481c6c | 1559 | QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); |
a82d593b | 1560 | g_free(entry); |
e03a34f8 | 1561 | migration_consume_urgent_request(); |
a82d593b DDAG |
1562 | } |
1563 | } | |
a82d593b DDAG |
1564 | |
1565 | return block; | |
1566 | } | |
1567 | ||
278e2f55 AG |
1568 | #if defined(__linux__) |
1569 | /** | |
1570 | * poll_fault_page: try to get next UFFD write fault page and, if pending fault | |
1571 | * is found, return RAM block pointer and page offset | |
1572 | * | |
1573 | * Returns pointer to the RAMBlock containing faulting page, | |
1574 | * NULL if no write faults are pending | |
1575 | * | |
1576 | * @rs: current RAM state | |
1577 | * @offset: page offset from the beginning of the block | |
1578 | */ | |
1579 | static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) | |
1580 | { | |
1581 | struct uffd_msg uffd_msg; | |
1582 | void *page_address; | |
82ea3e3b | 1583 | RAMBlock *block; |
278e2f55 AG |
1584 | int res; |
1585 | ||
1586 | if (!migrate_background_snapshot()) { | |
1587 | return NULL; | |
1588 | } | |
1589 | ||
1590 | res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1); | |
1591 | if (res <= 0) { | |
1592 | return NULL; | |
1593 | } | |
1594 | ||
1595 | page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address; | |
82ea3e3b AG |
1596 | block = qemu_ram_block_from_host(page_address, false, offset); |
1597 | assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0); | |
1598 | return block; | |
278e2f55 AG |
1599 | } |
1600 | ||
1601 | /** | |
1602 | * ram_save_release_protection: release UFFD write protection after | |
1603 | * a range of pages has been saved | |
1604 | * | |
1605 | * @rs: current RAM state | |
1606 | * @pss: page-search-status structure | |
1607 | * @start_page: index of the first page in the range relative to pss->block | |
1608 | * | |
1609 | * Returns 0 on success, negative value in case of an error | |
1610 | */ | |
1611 | static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, | |
1612 | unsigned long start_page) | |
1613 | { | |
1614 | int res = 0; | |
1615 | ||
1616 | /* Check if page is from UFFD-managed region. */ | |
1617 | if (pss->block->flags & RAM_UF_WRITEPROTECT) { | |
1618 | void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS); | |
1619 | uint64_t run_length = (pss->page - start_page + 1) << TARGET_PAGE_BITS; | |
1620 | ||
1621 | /* Flush async buffers before un-protect. */ | |
1622 | qemu_fflush(rs->f); | |
1623 | /* Un-protect memory range. */ | |
1624 | res = uffd_change_protection(rs->uffdio_fd, page_address, run_length, | |
1625 | false, false); | |
1626 | } | |
1627 | ||
1628 | return res; | |
1629 | } | |
1630 | ||
1631 | /* ram_write_tracking_available: check if kernel supports required UFFD features | |
1632 | * | |
1633 | * Returns true if supports, false otherwise | |
1634 | */ | |
1635 | bool ram_write_tracking_available(void) | |
1636 | { | |
1637 | uint64_t uffd_features; | |
1638 | int res; | |
1639 | ||
1640 | res = uffd_query_features(&uffd_features); | |
1641 | return (res == 0 && | |
1642 | (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0); | |
1643 | } | |
1644 | ||
1645 | /* ram_write_tracking_compatible: check if guest configuration is | |
1646 | * compatible with 'write-tracking' | |
1647 | * | |
1648 | * Returns true if compatible, false otherwise | |
1649 | */ | |
1650 | bool ram_write_tracking_compatible(void) | |
1651 | { | |
1652 | const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT); | |
1653 | int uffd_fd; | |
82ea3e3b | 1654 | RAMBlock *block; |
278e2f55 AG |
1655 | bool ret = false; |
1656 | ||
1657 | /* Open UFFD file descriptor */ | |
1658 | uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false); | |
1659 | if (uffd_fd < 0) { | |
1660 | return false; | |
1661 | } | |
1662 | ||
1663 | RCU_READ_LOCK_GUARD(); | |
1664 | ||
82ea3e3b | 1665 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
278e2f55 AG |
1666 | uint64_t uffd_ioctls; |
1667 | ||
1668 | /* Nothing to do with read-only and MMIO-writable regions */ | |
82ea3e3b | 1669 | if (block->mr->readonly || block->mr->rom_device) { |
278e2f55 AG |
1670 | continue; |
1671 | } | |
1672 | /* Try to register block memory via UFFD-IO to track writes */ | |
82ea3e3b | 1673 | if (uffd_register_memory(uffd_fd, block->host, block->max_length, |
278e2f55 AG |
1674 | UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) { |
1675 | goto out; | |
1676 | } | |
1677 | if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) { | |
1678 | goto out; | |
1679 | } | |
1680 | } | |
1681 | ret = true; | |
1682 | ||
1683 | out: | |
1684 | uffd_close_fd(uffd_fd); | |
1685 | return ret; | |
1686 | } | |
1687 | ||
f7b9dcfb DH |
1688 | static inline void populate_read_range(RAMBlock *block, ram_addr_t offset, |
1689 | ram_addr_t size) | |
1690 | { | |
1691 | /* | |
1692 | * We read one byte of each page; this will preallocate page tables if | |
1693 | * required and populate the shared zeropage on MAP_PRIVATE anonymous memory | |
1694 | * where no page was populated yet. This might require adaption when | |
1695 | * supporting other mappings, like shmem. | |
1696 | */ | |
1697 | for (; offset < size; offset += block->page_size) { | |
1698 | char tmp = *((char *)block->host + offset); | |
1699 | ||
1700 | /* Don't optimize the read out */ | |
1701 | asm volatile("" : "+r" (tmp)); | |
1702 | } | |
1703 | } | |
1704 | ||
6fee3a1f DH |
1705 | static inline int populate_read_section(MemoryRegionSection *section, |
1706 | void *opaque) | |
1707 | { | |
1708 | const hwaddr size = int128_get64(section->size); | |
1709 | hwaddr offset = section->offset_within_region; | |
1710 | RAMBlock *block = section->mr->ram_block; | |
1711 | ||
1712 | populate_read_range(block, offset, size); | |
1713 | return 0; | |
1714 | } | |
1715 | ||
eeccb99c | 1716 | /* |
f7b9dcfb DH |
1717 | * ram_block_populate_read: preallocate page tables and populate pages in the |
1718 | * RAM block by reading a byte of each page. | |
eeccb99c AG |
1719 | * |
1720 | * Since it's solely used for userfault_fd WP feature, here we just | |
1721 | * hardcode page size to qemu_real_host_page_size. | |
1722 | * | |
82ea3e3b | 1723 | * @block: RAM block to populate |
eeccb99c | 1724 | */ |
6fee3a1f | 1725 | static void ram_block_populate_read(RAMBlock *rb) |
eeccb99c | 1726 | { |
6fee3a1f DH |
1727 | /* |
1728 | * Skip populating all pages that fall into a discarded range as managed by | |
1729 | * a RamDiscardManager responsible for the mapped memory region of the | |
1730 | * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock | |
1731 | * must not get populated automatically. We don't have to track | |
1732 | * modifications via userfaultfd WP reliably, because these pages will | |
1733 | * not be part of the migration stream either way -- see | |
1734 | * ramblock_dirty_bitmap_exclude_discarded_pages(). | |
1735 | * | |
1736 | * Note: The result is only stable while migrating (precopy/postcopy). | |
1737 | */ | |
1738 | if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { | |
1739 | RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); | |
1740 | MemoryRegionSection section = { | |
1741 | .mr = rb->mr, | |
1742 | .offset_within_region = 0, | |
1743 | .size = rb->mr->size, | |
1744 | }; | |
1745 | ||
1746 | ram_discard_manager_replay_populated(rdm, §ion, | |
1747 | populate_read_section, NULL); | |
1748 | } else { | |
1749 | populate_read_range(rb, 0, rb->used_length); | |
1750 | } | |
eeccb99c AG |
1751 | } |
1752 | ||
1753 | /* | |
1754 | * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking | |
1755 | */ | |
1756 | void ram_write_tracking_prepare(void) | |
1757 | { | |
82ea3e3b | 1758 | RAMBlock *block; |
eeccb99c AG |
1759 | |
1760 | RCU_READ_LOCK_GUARD(); | |
1761 | ||
82ea3e3b | 1762 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
eeccb99c | 1763 | /* Nothing to do with read-only and MMIO-writable regions */ |
82ea3e3b | 1764 | if (block->mr->readonly || block->mr->rom_device) { |
eeccb99c AG |
1765 | continue; |
1766 | } | |
1767 | ||
1768 | /* | |
1769 | * Populate pages of the RAM block before enabling userfault_fd | |
1770 | * write protection. | |
1771 | * | |
1772 | * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with | |
1773 | * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip | |
1774 | * pages with pte_none() entries in page table. | |
1775 | */ | |
f7b9dcfb | 1776 | ram_block_populate_read(block); |
eeccb99c AG |
1777 | } |
1778 | } | |
1779 | ||
278e2f55 AG |
1780 | /* |
1781 | * ram_write_tracking_start: start UFFD-WP memory tracking | |
1782 | * | |
1783 | * Returns 0 for success or negative value in case of error | |
1784 | */ | |
1785 | int ram_write_tracking_start(void) | |
1786 | { | |
1787 | int uffd_fd; | |
1788 | RAMState *rs = ram_state; | |
82ea3e3b | 1789 | RAMBlock *block; |
278e2f55 AG |
1790 | |
1791 | /* Open UFFD file descriptor */ | |
1792 | uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true); | |
1793 | if (uffd_fd < 0) { | |
1794 | return uffd_fd; | |
1795 | } | |
1796 | rs->uffdio_fd = uffd_fd; | |
1797 | ||
1798 | RCU_READ_LOCK_GUARD(); | |
1799 | ||
82ea3e3b | 1800 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
278e2f55 | 1801 | /* Nothing to do with read-only and MMIO-writable regions */ |
82ea3e3b | 1802 | if (block->mr->readonly || block->mr->rom_device) { |
278e2f55 AG |
1803 | continue; |
1804 | } | |
1805 | ||
1806 | /* Register block memory with UFFD to track writes */ | |
82ea3e3b AG |
1807 | if (uffd_register_memory(rs->uffdio_fd, block->host, |
1808 | block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) { | |
278e2f55 AG |
1809 | goto fail; |
1810 | } | |
1811 | /* Apply UFFD write protection to the block memory range */ | |
82ea3e3b AG |
1812 | if (uffd_change_protection(rs->uffdio_fd, block->host, |
1813 | block->max_length, true, false)) { | |
278e2f55 AG |
1814 | goto fail; |
1815 | } | |
82ea3e3b AG |
1816 | block->flags |= RAM_UF_WRITEPROTECT; |
1817 | memory_region_ref(block->mr); | |
278e2f55 | 1818 | |
82ea3e3b AG |
1819 | trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size, |
1820 | block->host, block->max_length); | |
278e2f55 AG |
1821 | } |
1822 | ||
1823 | return 0; | |
1824 | ||
1825 | fail: | |
1826 | error_report("ram_write_tracking_start() failed: restoring initial memory state"); | |
1827 | ||
82ea3e3b AG |
1828 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
1829 | if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { | |
278e2f55 AG |
1830 | continue; |
1831 | } | |
1832 | /* | |
1833 | * In case some memory block failed to be write-protected | |
1834 | * remove protection and unregister all succeeded RAM blocks | |
1835 | */ | |
82ea3e3b AG |
1836 | uffd_change_protection(rs->uffdio_fd, block->host, block->max_length, |
1837 | false, false); | |
1838 | uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); | |
278e2f55 | 1839 | /* Cleanup flags and remove reference */ |
82ea3e3b AG |
1840 | block->flags &= ~RAM_UF_WRITEPROTECT; |
1841 | memory_region_unref(block->mr); | |
278e2f55 AG |
1842 | } |
1843 | ||
1844 | uffd_close_fd(uffd_fd); | |
1845 | rs->uffdio_fd = -1; | |
1846 | return -1; | |
1847 | } | |
1848 | ||
1849 | /** | |
1850 | * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection | |
1851 | */ | |
1852 | void ram_write_tracking_stop(void) | |
1853 | { | |
1854 | RAMState *rs = ram_state; | |
82ea3e3b | 1855 | RAMBlock *block; |
278e2f55 AG |
1856 | |
1857 | RCU_READ_LOCK_GUARD(); | |
1858 | ||
82ea3e3b AG |
1859 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
1860 | if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { | |
278e2f55 AG |
1861 | continue; |
1862 | } | |
1863 | /* Remove protection and unregister all affected RAM blocks */ | |
82ea3e3b AG |
1864 | uffd_change_protection(rs->uffdio_fd, block->host, block->max_length, |
1865 | false, false); | |
1866 | uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); | |
278e2f55 | 1867 | |
82ea3e3b AG |
1868 | trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size, |
1869 | block->host, block->max_length); | |
278e2f55 AG |
1870 | |
1871 | /* Cleanup flags and remove reference */ | |
82ea3e3b AG |
1872 | block->flags &= ~RAM_UF_WRITEPROTECT; |
1873 | memory_region_unref(block->mr); | |
278e2f55 AG |
1874 | } |
1875 | ||
1876 | /* Finally close UFFD file descriptor */ | |
1877 | uffd_close_fd(rs->uffdio_fd); | |
1878 | rs->uffdio_fd = -1; | |
1879 | } | |
1880 | ||
1881 | #else | |
1882 | /* No target OS support, stubs just fail or ignore */ | |
1883 | ||
1884 | static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) | |
1885 | { | |
1886 | (void) rs; | |
1887 | (void) offset; | |
1888 | ||
1889 | return NULL; | |
1890 | } | |
1891 | ||
1892 | static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, | |
1893 | unsigned long start_page) | |
1894 | { | |
1895 | (void) rs; | |
1896 | (void) pss; | |
1897 | (void) start_page; | |
1898 | ||
1899 | return 0; | |
1900 | } | |
1901 | ||
1902 | bool ram_write_tracking_available(void) | |
1903 | { | |
1904 | return false; | |
1905 | } | |
1906 | ||
1907 | bool ram_write_tracking_compatible(void) | |
1908 | { | |
1909 | assert(0); | |
1910 | return false; | |
1911 | } | |
1912 | ||
1913 | int ram_write_tracking_start(void) | |
1914 | { | |
1915 | assert(0); | |
1916 | return -1; | |
1917 | } | |
1918 | ||
1919 | void ram_write_tracking_stop(void) | |
1920 | { | |
1921 | assert(0); | |
1922 | } | |
1923 | #endif /* defined(__linux__) */ | |
1924 | ||
3d0684b2 | 1925 | /** |
ff1543af | 1926 | * get_queued_page: unqueue a page from the postcopy requests |
3d0684b2 JQ |
1927 | * |
1928 | * Skips pages that are already sent (!dirty) | |
a82d593b | 1929 | * |
a5f7b1a6 | 1930 | * Returns true if a queued page is found |
a82d593b | 1931 | * |
6f37bb8b | 1932 | * @rs: current RAM state |
3d0684b2 | 1933 | * @pss: data about the state of the current dirty page scan |
a82d593b | 1934 | */ |
f20e2865 | 1935 | static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) |
a82d593b DDAG |
1936 | { |
1937 | RAMBlock *block; | |
1938 | ram_addr_t offset; | |
1939 | bool dirty; | |
1940 | ||
1941 | do { | |
f20e2865 | 1942 | block = unqueue_page(rs, &offset); |
a82d593b DDAG |
1943 | /* |
1944 | * We're sending this page, and since it's postcopy nothing else | |
1945 | * will dirty it, and we must make sure it doesn't get sent again | |
1946 | * even if this queue request was received after the background | |
1947 | * search already sent it. | |
1948 | */ | |
1949 | if (block) { | |
f20e2865 JQ |
1950 | unsigned long page; |
1951 | ||
6b6712ef JQ |
1952 | page = offset >> TARGET_PAGE_BITS; |
1953 | dirty = test_bit(page, block->bmap); | |
a82d593b | 1954 | if (!dirty) { |
06b10688 | 1955 | trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, |
64737606 | 1956 | page); |
a82d593b | 1957 | } else { |
f20e2865 | 1958 | trace_get_queued_page(block->idstr, (uint64_t)offset, page); |
a82d593b DDAG |
1959 | } |
1960 | } | |
1961 | ||
1962 | } while (block && !dirty); | |
1963 | ||
278e2f55 AG |
1964 | if (!block) { |
1965 | /* | |
1966 | * Poll write faults too if background snapshot is enabled; that's | |
1967 | * when we have vcpus got blocked by the write protected pages. | |
1968 | */ | |
1969 | block = poll_fault_page(rs, &offset); | |
1970 | } | |
1971 | ||
a82d593b | 1972 | if (block) { |
a82d593b DDAG |
1973 | /* |
1974 | * We want the background search to continue from the queued page | |
1975 | * since the guest is likely to want other pages near to the page | |
1976 | * it just requested. | |
1977 | */ | |
1978 | pss->block = block; | |
a935e30f | 1979 | pss->page = offset >> TARGET_PAGE_BITS; |
422314e7 WY |
1980 | |
1981 | /* | |
1982 | * This unqueued page would break the "one round" check, even is | |
1983 | * really rare. | |
1984 | */ | |
1985 | pss->complete_round = false; | |
a82d593b DDAG |
1986 | } |
1987 | ||
1988 | return !!block; | |
1989 | } | |
1990 | ||
6c595cde | 1991 | /** |
5e58f968 JQ |
1992 | * migration_page_queue_free: drop any remaining pages in the ram |
1993 | * request queue | |
6c595cde | 1994 | * |
3d0684b2 JQ |
1995 | * It should be empty at the end anyway, but in error cases there may |
1996 | * be some left. in case that there is any page left, we drop it. | |
1997 | * | |
6c595cde | 1998 | */ |
83c13382 | 1999 | static void migration_page_queue_free(RAMState *rs) |
6c595cde | 2000 | { |
ec481c6c | 2001 | struct RAMSrcPageRequest *mspr, *next_mspr; |
6c595cde DDAG |
2002 | /* This queue generally should be empty - but in the case of a failed |
2003 | * migration might have some droppings in. | |
2004 | */ | |
89ac5a1d | 2005 | RCU_READ_LOCK_GUARD(); |
ec481c6c | 2006 | QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { |
6c595cde | 2007 | memory_region_unref(mspr->rb->mr); |
ec481c6c | 2008 | QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); |
6c595cde DDAG |
2009 | g_free(mspr); |
2010 | } | |
6c595cde DDAG |
2011 | } |
2012 | ||
2013 | /** | |
3d0684b2 JQ |
2014 | * ram_save_queue_pages: queue the page for transmission |
2015 | * | |
2016 | * A request from postcopy destination for example. | |
2017 | * | |
2018 | * Returns zero on success or negative on error | |
2019 | * | |
3d0684b2 JQ |
2020 | * @rbname: Name of the RAMBLock of the request. NULL means the |
2021 | * same that last one. | |
2022 | * @start: starting address from the start of the RAMBlock | |
2023 | * @len: length (in bytes) to send | |
6c595cde | 2024 | */ |
96506894 | 2025 | int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) |
6c595cde DDAG |
2026 | { |
2027 | RAMBlock *ramblock; | |
53518d94 | 2028 | RAMState *rs = ram_state; |
6c595cde | 2029 | |
9360447d | 2030 | ram_counters.postcopy_requests++; |
89ac5a1d DDAG |
2031 | RCU_READ_LOCK_GUARD(); |
2032 | ||
6c595cde DDAG |
2033 | if (!rbname) { |
2034 | /* Reuse last RAMBlock */ | |
68a098f3 | 2035 | ramblock = rs->last_req_rb; |
6c595cde DDAG |
2036 | |
2037 | if (!ramblock) { | |
2038 | /* | |
2039 | * Shouldn't happen, we can't reuse the last RAMBlock if | |
2040 | * it's the 1st request. | |
2041 | */ | |
2042 | error_report("ram_save_queue_pages no previous block"); | |
03acb4e9 | 2043 | return -1; |
6c595cde DDAG |
2044 | } |
2045 | } else { | |
2046 | ramblock = qemu_ram_block_by_name(rbname); | |
2047 | ||
2048 | if (!ramblock) { | |
2049 | /* We shouldn't be asked for a non-existent RAMBlock */ | |
2050 | error_report("ram_save_queue_pages no block '%s'", rbname); | |
03acb4e9 | 2051 | return -1; |
6c595cde | 2052 | } |
68a098f3 | 2053 | rs->last_req_rb = ramblock; |
6c595cde DDAG |
2054 | } |
2055 | trace_ram_save_queue_pages(ramblock->idstr, start, len); | |
542147f4 | 2056 | if (!offset_in_ramblock(ramblock, start + len - 1)) { |
9458ad6b JQ |
2057 | error_report("%s request overrun start=" RAM_ADDR_FMT " len=" |
2058 | RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, | |
6c595cde | 2059 | __func__, start, len, ramblock->used_length); |
03acb4e9 | 2060 | return -1; |
6c595cde DDAG |
2061 | } |
2062 | ||
ec481c6c JQ |
2063 | struct RAMSrcPageRequest *new_entry = |
2064 | g_malloc0(sizeof(struct RAMSrcPageRequest)); | |
6c595cde DDAG |
2065 | new_entry->rb = ramblock; |
2066 | new_entry->offset = start; | |
2067 | new_entry->len = len; | |
2068 | ||
2069 | memory_region_ref(ramblock->mr); | |
ec481c6c JQ |
2070 | qemu_mutex_lock(&rs->src_page_req_mutex); |
2071 | QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); | |
e03a34f8 | 2072 | migration_make_urgent_request(); |
ec481c6c | 2073 | qemu_mutex_unlock(&rs->src_page_req_mutex); |
6c595cde DDAG |
2074 | |
2075 | return 0; | |
6c595cde DDAG |
2076 | } |
2077 | ||
d7400a34 XG |
2078 | static bool save_page_use_compression(RAMState *rs) |
2079 | { | |
2080 | if (!migrate_use_compression()) { | |
2081 | return false; | |
2082 | } | |
2083 | ||
2084 | /* | |
1a373522 DH |
2085 | * If xbzrle is enabled (e.g., after first round of migration), stop |
2086 | * using the data compression. In theory, xbzrle can do better than | |
2087 | * compression. | |
d7400a34 | 2088 | */ |
1a373522 DH |
2089 | if (rs->xbzrle_enabled) { |
2090 | return false; | |
d7400a34 XG |
2091 | } |
2092 | ||
1a373522 | 2093 | return true; |
d7400a34 XG |
2094 | } |
2095 | ||
5e5fdcff XG |
2096 | /* |
2097 | * try to compress the page before posting it out, return true if the page | |
2098 | * has been properly handled by compression, otherwise needs other | |
2099 | * paths to handle it | |
2100 | */ | |
2101 | static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) | |
2102 | { | |
2103 | if (!save_page_use_compression(rs)) { | |
2104 | return false; | |
2105 | } | |
2106 | ||
2107 | /* | |
2108 | * When starting the process of a new block, the first page of | |
2109 | * the block should be sent out before other pages in the same | |
2110 | * block, and all the pages in last block should have been sent | |
2111 | * out, keeping this order is important, because the 'cont' flag | |
2112 | * is used to avoid resending the block name. | |
2113 | * | |
2114 | * We post the fist page as normal page as compression will take | |
2115 | * much CPU resource. | |
2116 | */ | |
2117 | if (block != rs->last_sent_block) { | |
2118 | flush_compressed_data(rs); | |
2119 | return false; | |
2120 | } | |
2121 | ||
2122 | if (compress_page_with_multi_thread(rs, block, offset) > 0) { | |
2123 | return true; | |
2124 | } | |
2125 | ||
76e03000 | 2126 | compression_counters.busy++; |
5e5fdcff XG |
2127 | return false; |
2128 | } | |
2129 | ||
a82d593b | 2130 | /** |
3d0684b2 | 2131 | * ram_save_target_page: save one target page |
a82d593b | 2132 | * |
3d0684b2 | 2133 | * Returns the number of pages written |
a82d593b | 2134 | * |
6f37bb8b | 2135 | * @rs: current RAM state |
3d0684b2 | 2136 | * @pss: data about the page we want to send |
a82d593b | 2137 | * @last_stage: if we are at the completion stage |
a82d593b | 2138 | */ |
a0a8aa14 | 2139 | static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, |
f20e2865 | 2140 | bool last_stage) |
a82d593b | 2141 | { |
a8ec91f9 | 2142 | RAMBlock *block = pss->block; |
8bba004c | 2143 | ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; |
a8ec91f9 XG |
2144 | int res; |
2145 | ||
2146 | if (control_save_page(rs, block, offset, &res)) { | |
2147 | return res; | |
2148 | } | |
2149 | ||
5e5fdcff XG |
2150 | if (save_compress_page(rs, block, offset)) { |
2151 | return 1; | |
d7400a34 XG |
2152 | } |
2153 | ||
2154 | res = save_zero_page(rs, block, offset); | |
2155 | if (res > 0) { | |
2156 | /* Must let xbzrle know, otherwise a previous (now 0'd) cached | |
2157 | * page would be stale | |
2158 | */ | |
2159 | if (!save_page_use_compression(rs)) { | |
2160 | XBZRLE_cache_lock(); | |
2161 | xbzrle_cache_zero_page(rs, block->offset + offset); | |
2162 | XBZRLE_cache_unlock(); | |
2163 | } | |
2164 | ram_release_pages(block->idstr, offset, res); | |
2165 | return res; | |
2166 | } | |
2167 | ||
da3f56cb | 2168 | /* |
c6b3a2e0 WY |
2169 | * Do not use multifd for: |
2170 | * 1. Compression as the first page in the new block should be posted out | |
2171 | * before sending the compressed page | |
2172 | * 2. In postcopy as one whole host page should be placed | |
da3f56cb | 2173 | */ |
c6b3a2e0 WY |
2174 | if (!save_page_use_compression(rs) && migrate_use_multifd() |
2175 | && !migration_in_postcopy()) { | |
b9ee2f7d | 2176 | return ram_save_multifd_page(rs, block, offset); |
a82d593b DDAG |
2177 | } |
2178 | ||
1faa5665 | 2179 | return ram_save_page(rs, pss, last_stage); |
a82d593b DDAG |
2180 | } |
2181 | ||
2182 | /** | |
3d0684b2 | 2183 | * ram_save_host_page: save a whole host page |
a82d593b | 2184 | * |
3d0684b2 JQ |
2185 | * Starting at *offset send pages up to the end of the current host |
2186 | * page. It's valid for the initial offset to point into the middle of | |
2187 | * a host page in which case the remainder of the hostpage is sent. | |
2188 | * Only dirty target pages are sent. Note that the host page size may | |
2189 | * be a huge page for this block. | |
1eb3fc0a DDAG |
2190 | * The saving stops at the boundary of the used_length of the block |
2191 | * if the RAMBlock isn't a multiple of the host page size. | |
a82d593b | 2192 | * |
3d0684b2 JQ |
2193 | * Returns the number of pages written or negative on error |
2194 | * | |
6f37bb8b | 2195 | * @rs: current RAM state |
3d0684b2 | 2196 | * @ms: current migration state |
3d0684b2 | 2197 | * @pss: data about the page we want to send |
a82d593b | 2198 | * @last_stage: if we are at the completion stage |
a82d593b | 2199 | */ |
a0a8aa14 | 2200 | static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, |
f20e2865 | 2201 | bool last_stage) |
a82d593b DDAG |
2202 | { |
2203 | int tmppages, pages = 0; | |
a935e30f JQ |
2204 | size_t pagesize_bits = |
2205 | qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; | |
ba1b7c81 KJ |
2206 | unsigned long hostpage_boundary = |
2207 | QEMU_ALIGN_UP(pss->page + 1, pagesize_bits); | |
278e2f55 AG |
2208 | unsigned long start_page = pss->page; |
2209 | int res; | |
4c011c37 | 2210 | |
fbd162e6 | 2211 | if (ramblock_is_ignored(pss->block)) { |
b895de50 CLG |
2212 | error_report("block %s should not be migrated !", pss->block->idstr); |
2213 | return 0; | |
2214 | } | |
2215 | ||
a82d593b | 2216 | do { |
1faa5665 | 2217 | /* Check the pages is dirty and if it is send it */ |
ba1b7c81 KJ |
2218 | if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { |
2219 | tmppages = ram_save_target_page(rs, pss, last_stage); | |
2220 | if (tmppages < 0) { | |
2221 | return tmppages; | |
2222 | } | |
a82d593b | 2223 | |
ba1b7c81 KJ |
2224 | pages += tmppages; |
2225 | /* | |
2226 | * Allow rate limiting to happen in the middle of huge pages if | |
2227 | * something is sent in the current iteration. | |
2228 | */ | |
2229 | if (pagesize_bits > 1 && tmppages > 0) { | |
2230 | migration_rate_limit(); | |
2231 | } | |
23feba90 | 2232 | } |
ba1b7c81 KJ |
2233 | pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); |
2234 | } while ((pss->page < hostpage_boundary) && | |
8bba004c AR |
2235 | offset_in_ramblock(pss->block, |
2236 | ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)); | |
ba1b7c81 KJ |
2237 | /* The offset we leave with is the min boundary of host page and block */ |
2238 | pss->page = MIN(pss->page, hostpage_boundary) - 1; | |
278e2f55 AG |
2239 | |
2240 | res = ram_save_release_protection(rs, pss, start_page); | |
2241 | return (res < 0 ? res : pages); | |
a82d593b | 2242 | } |
6c595cde | 2243 | |
56e93d26 | 2244 | /** |
3d0684b2 | 2245 | * ram_find_and_save_block: finds a dirty page and sends it to f |
56e93d26 JQ |
2246 | * |
2247 | * Called within an RCU critical section. | |
2248 | * | |
e8f3735f XG |
2249 | * Returns the number of pages written where zero means no dirty pages, |
2250 | * or negative on error | |
56e93d26 | 2251 | * |
6f37bb8b | 2252 | * @rs: current RAM state |
56e93d26 | 2253 | * @last_stage: if we are at the completion stage |
a82d593b DDAG |
2254 | * |
2255 | * On systems where host-page-size > target-page-size it will send all the | |
2256 | * pages in a host page that are dirty. | |
56e93d26 JQ |
2257 | */ |
2258 | ||
ce25d337 | 2259 | static int ram_find_and_save_block(RAMState *rs, bool last_stage) |
56e93d26 | 2260 | { |
b8fb8cb7 | 2261 | PageSearchStatus pss; |
56e93d26 | 2262 | int pages = 0; |
b9e60928 | 2263 | bool again, found; |
56e93d26 | 2264 | |
0827b9e9 AA |
2265 | /* No dirty page as there is zero RAM */ |
2266 | if (!ram_bytes_total()) { | |
2267 | return pages; | |
2268 | } | |
2269 | ||
6f37bb8b | 2270 | pss.block = rs->last_seen_block; |
a935e30f | 2271 | pss.page = rs->last_page; |
b8fb8cb7 DDAG |
2272 | pss.complete_round = false; |
2273 | ||
2274 | if (!pss.block) { | |
2275 | pss.block = QLIST_FIRST_RCU(&ram_list.blocks); | |
2276 | } | |
56e93d26 | 2277 | |
b9e60928 | 2278 | do { |
a82d593b | 2279 | again = true; |
f20e2865 | 2280 | found = get_queued_page(rs, &pss); |
b9e60928 | 2281 | |
a82d593b DDAG |
2282 | if (!found) { |
2283 | /* priority queue empty, so just search for something dirty */ | |
f20e2865 | 2284 | found = find_dirty_block(rs, &pss, &again); |
a82d593b | 2285 | } |
f3f491fc | 2286 | |
a82d593b | 2287 | if (found) { |
f20e2865 | 2288 | pages = ram_save_host_page(rs, &pss, last_stage); |
56e93d26 | 2289 | } |
b9e60928 | 2290 | } while (!pages && again); |
56e93d26 | 2291 | |
6f37bb8b | 2292 | rs->last_seen_block = pss.block; |
a935e30f | 2293 | rs->last_page = pss.page; |
56e93d26 JQ |
2294 | |
2295 | return pages; | |
2296 | } | |
2297 | ||
2298 | void acct_update_position(QEMUFile *f, size_t size, bool zero) | |
2299 | { | |
2300 | uint64_t pages = size / TARGET_PAGE_SIZE; | |
f7ccd61b | 2301 | |
56e93d26 | 2302 | if (zero) { |
9360447d | 2303 | ram_counters.duplicate += pages; |
56e93d26 | 2304 | } else { |
9360447d JQ |
2305 | ram_counters.normal += pages; |
2306 | ram_counters.transferred += size; | |
56e93d26 JQ |
2307 | qemu_update_position(f, size); |
2308 | } | |
2309 | } | |
2310 | ||
fbd162e6 | 2311 | static uint64_t ram_bytes_total_common(bool count_ignored) |
56e93d26 JQ |
2312 | { |
2313 | RAMBlock *block; | |
2314 | uint64_t total = 0; | |
2315 | ||
89ac5a1d DDAG |
2316 | RCU_READ_LOCK_GUARD(); |
2317 | ||
fbd162e6 YK |
2318 | if (count_ignored) { |
2319 | RAMBLOCK_FOREACH_MIGRATABLE(block) { | |
2320 | total += block->used_length; | |
2321 | } | |
2322 | } else { | |
2323 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
2324 | total += block->used_length; | |
2325 | } | |
99e15582 | 2326 | } |
56e93d26 JQ |
2327 | return total; |
2328 | } | |
2329 | ||
fbd162e6 YK |
2330 | uint64_t ram_bytes_total(void) |
2331 | { | |
2332 | return ram_bytes_total_common(false); | |
2333 | } | |
2334 | ||
f265e0e4 | 2335 | static void xbzrle_load_setup(void) |
56e93d26 | 2336 | { |
f265e0e4 | 2337 | XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); |
56e93d26 JQ |
2338 | } |
2339 | ||
f265e0e4 JQ |
2340 | static void xbzrle_load_cleanup(void) |
2341 | { | |
2342 | g_free(XBZRLE.decoded_buf); | |
2343 | XBZRLE.decoded_buf = NULL; | |
2344 | } | |
2345 | ||
7d7c96be PX |
2346 | static void ram_state_cleanup(RAMState **rsp) |
2347 | { | |
b9ccaf6d DDAG |
2348 | if (*rsp) { |
2349 | migration_page_queue_free(*rsp); | |
2350 | qemu_mutex_destroy(&(*rsp)->bitmap_mutex); | |
2351 | qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); | |
2352 | g_free(*rsp); | |
2353 | *rsp = NULL; | |
2354 | } | |
7d7c96be PX |
2355 | } |
2356 | ||
84593a08 PX |
2357 | static void xbzrle_cleanup(void) |
2358 | { | |
2359 | XBZRLE_cache_lock(); | |
2360 | if (XBZRLE.cache) { | |
2361 | cache_fini(XBZRLE.cache); | |
2362 | g_free(XBZRLE.encoded_buf); | |
2363 | g_free(XBZRLE.current_buf); | |
2364 | g_free(XBZRLE.zero_target_page); | |
2365 | XBZRLE.cache = NULL; | |
2366 | XBZRLE.encoded_buf = NULL; | |
2367 | XBZRLE.current_buf = NULL; | |
2368 | XBZRLE.zero_target_page = NULL; | |
2369 | } | |
2370 | XBZRLE_cache_unlock(); | |
2371 | } | |
2372 | ||
f265e0e4 | 2373 | static void ram_save_cleanup(void *opaque) |
56e93d26 | 2374 | { |
53518d94 | 2375 | RAMState **rsp = opaque; |
6b6712ef | 2376 | RAMBlock *block; |
eb859c53 | 2377 | |
278e2f55 AG |
2378 | /* We don't use dirty log with background snapshots */ |
2379 | if (!migrate_background_snapshot()) { | |
2380 | /* caller have hold iothread lock or is in a bh, so there is | |
2381 | * no writing race against the migration bitmap | |
2382 | */ | |
63b41db4 HH |
2383 | if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) { |
2384 | /* | |
2385 | * do not stop dirty log without starting it, since | |
2386 | * memory_global_dirty_log_stop will assert that | |
2387 | * memory_global_dirty_log_start/stop used in pairs | |
2388 | */ | |
2389 | memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); | |
2390 | } | |
278e2f55 | 2391 | } |
6b6712ef | 2392 | |
fbd162e6 | 2393 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
002cad6b PX |
2394 | g_free(block->clear_bmap); |
2395 | block->clear_bmap = NULL; | |
6b6712ef JQ |
2396 | g_free(block->bmap); |
2397 | block->bmap = NULL; | |
56e93d26 JQ |
2398 | } |
2399 | ||
84593a08 | 2400 | xbzrle_cleanup(); |
f0afa331 | 2401 | compress_threads_save_cleanup(); |
7d7c96be | 2402 | ram_state_cleanup(rsp); |
56e93d26 JQ |
2403 | } |
2404 | ||
6f37bb8b | 2405 | static void ram_state_reset(RAMState *rs) |
56e93d26 | 2406 | { |
6f37bb8b JQ |
2407 | rs->last_seen_block = NULL; |
2408 | rs->last_sent_block = NULL; | |
269ace29 | 2409 | rs->last_page = 0; |
6f37bb8b | 2410 | rs->last_version = ram_list.version; |
1a373522 | 2411 | rs->xbzrle_enabled = false; |
56e93d26 JQ |
2412 | } |
2413 | ||
2414 | #define MAX_WAIT 50 /* ms, half buffered_file limit */ | |
2415 | ||
4f2e4252 DDAG |
2416 | /* |
2417 | * 'expected' is the value you expect the bitmap mostly to be full | |
2418 | * of; it won't bother printing lines that are all this value. | |
2419 | * If 'todump' is null the migration bitmap is dumped. | |
2420 | */ | |
6b6712ef JQ |
2421 | void ram_debug_dump_bitmap(unsigned long *todump, bool expected, |
2422 | unsigned long pages) | |
4f2e4252 | 2423 | { |
4f2e4252 DDAG |
2424 | int64_t cur; |
2425 | int64_t linelen = 128; | |
2426 | char linebuf[129]; | |
2427 | ||
6b6712ef | 2428 | for (cur = 0; cur < pages; cur += linelen) { |
4f2e4252 DDAG |
2429 | int64_t curb; |
2430 | bool found = false; | |
2431 | /* | |
2432 | * Last line; catch the case where the line length | |
2433 | * is longer than remaining ram | |
2434 | */ | |
6b6712ef JQ |
2435 | if (cur + linelen > pages) { |
2436 | linelen = pages - cur; | |
4f2e4252 DDAG |
2437 | } |
2438 | for (curb = 0; curb < linelen; curb++) { | |
2439 | bool thisbit = test_bit(cur + curb, todump); | |
2440 | linebuf[curb] = thisbit ? '1' : '.'; | |
2441 | found = found || (thisbit != expected); | |
2442 | } | |
2443 | if (found) { | |
2444 | linebuf[curb] = '\0'; | |
2445 | fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); | |
2446 | } | |
2447 | } | |
2448 | } | |
2449 | ||
e0b266f0 DDAG |
2450 | /* **** functions for postcopy ***** */ |
2451 | ||
ced1c616 PB |
2452 | void ram_postcopy_migrated_memory_release(MigrationState *ms) |
2453 | { | |
2454 | struct RAMBlock *block; | |
ced1c616 | 2455 | |
fbd162e6 | 2456 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
6b6712ef JQ |
2457 | unsigned long *bitmap = block->bmap; |
2458 | unsigned long range = block->used_length >> TARGET_PAGE_BITS; | |
2459 | unsigned long run_start = find_next_zero_bit(bitmap, range, 0); | |
ced1c616 PB |
2460 | |
2461 | while (run_start < range) { | |
2462 | unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); | |
8bba004c AR |
2463 | ram_discard_range(block->idstr, |
2464 | ((ram_addr_t)run_start) << TARGET_PAGE_BITS, | |
2465 | ((ram_addr_t)(run_end - run_start)) | |
2466 | << TARGET_PAGE_BITS); | |
ced1c616 PB |
2467 | run_start = find_next_zero_bit(bitmap, range, run_end + 1); |
2468 | } | |
2469 | } | |
2470 | } | |
2471 | ||
3d0684b2 JQ |
2472 | /** |
2473 | * postcopy_send_discard_bm_ram: discard a RAMBlock | |
2474 | * | |
2475 | * Returns zero on success | |
2476 | * | |
e0b266f0 | 2477 | * Callback from postcopy_each_ram_send_discard for each RAMBlock |
3d0684b2 JQ |
2478 | * |
2479 | * @ms: current migration state | |
89dab31b | 2480 | * @block: RAMBlock to discard |
e0b266f0 | 2481 | */ |
810cf2bb | 2482 | static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) |
e0b266f0 | 2483 | { |
6b6712ef | 2484 | unsigned long end = block->used_length >> TARGET_PAGE_BITS; |
e0b266f0 | 2485 | unsigned long current; |
1e7cf8c3 | 2486 | unsigned long *bitmap = block->bmap; |
e0b266f0 | 2487 | |
6b6712ef | 2488 | for (current = 0; current < end; ) { |
1e7cf8c3 | 2489 | unsigned long one = find_next_bit(bitmap, end, current); |
33a5cb62 | 2490 | unsigned long zero, discard_length; |
e0b266f0 | 2491 | |
33a5cb62 WY |
2492 | if (one >= end) { |
2493 | break; | |
2494 | } | |
e0b266f0 | 2495 | |
1e7cf8c3 | 2496 | zero = find_next_zero_bit(bitmap, end, one + 1); |
33a5cb62 WY |
2497 | |
2498 | if (zero >= end) { | |
2499 | discard_length = end - one; | |
e0b266f0 | 2500 | } else { |
33a5cb62 WY |
2501 | discard_length = zero - one; |
2502 | } | |
810cf2bb | 2503 | postcopy_discard_send_range(ms, one, discard_length); |
33a5cb62 | 2504 | current = one + discard_length; |
e0b266f0 DDAG |
2505 | } |
2506 | ||
2507 | return 0; | |
2508 | } | |
2509 | ||
3d0684b2 JQ |
2510 | /** |
2511 | * postcopy_each_ram_send_discard: discard all RAMBlocks | |
2512 | * | |
2513 | * Returns 0 for success or negative for error | |
2514 | * | |
e0b266f0 DDAG |
2515 | * Utility for the outgoing postcopy code. |
2516 | * Calls postcopy_send_discard_bm_ram for each RAMBlock | |
2517 | * passing it bitmap indexes and name. | |
e0b266f0 DDAG |
2518 | * (qemu_ram_foreach_block ends up passing unscaled lengths |
2519 | * which would mean postcopy code would have to deal with target page) | |
3d0684b2 JQ |
2520 | * |
2521 | * @ms: current migration state | |
e0b266f0 DDAG |
2522 | */ |
2523 | static int postcopy_each_ram_send_discard(MigrationState *ms) | |
2524 | { | |
2525 | struct RAMBlock *block; | |
2526 | int ret; | |
2527 | ||
fbd162e6 | 2528 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
810cf2bb | 2529 | postcopy_discard_send_init(ms, block->idstr); |
e0b266f0 DDAG |
2530 | |
2531 | /* | |
2532 | * Postcopy sends chunks of bitmap over the wire, but it | |
2533 | * just needs indexes at this point, avoids it having | |
2534 | * target page specific code. | |
2535 | */ | |
810cf2bb WY |
2536 | ret = postcopy_send_discard_bm_ram(ms, block); |
2537 | postcopy_discard_send_finish(ms); | |
e0b266f0 DDAG |
2538 | if (ret) { |
2539 | return ret; | |
2540 | } | |
2541 | } | |
2542 | ||
2543 | return 0; | |
2544 | } | |
2545 | ||
3d0684b2 | 2546 | /** |
8324ef86 | 2547 | * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages |
3d0684b2 JQ |
2548 | * |
2549 | * Helper for postcopy_chunk_hostpages; it's called twice to | |
2550 | * canonicalize the two bitmaps, that are similar, but one is | |
2551 | * inverted. | |
99e314eb | 2552 | * |
3d0684b2 JQ |
2553 | * Postcopy requires that all target pages in a hostpage are dirty or |
2554 | * clean, not a mix. This function canonicalizes the bitmaps. | |
99e314eb | 2555 | * |
3d0684b2 | 2556 | * @ms: current migration state |
3d0684b2 | 2557 | * @block: block that contains the page we want to canonicalize |
99e314eb | 2558 | */ |
1e7cf8c3 | 2559 | static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) |
99e314eb | 2560 | { |
53518d94 | 2561 | RAMState *rs = ram_state; |
6b6712ef | 2562 | unsigned long *bitmap = block->bmap; |
29c59172 | 2563 | unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; |
6b6712ef | 2564 | unsigned long pages = block->used_length >> TARGET_PAGE_BITS; |
99e314eb DDAG |
2565 | unsigned long run_start; |
2566 | ||
29c59172 DDAG |
2567 | if (block->page_size == TARGET_PAGE_SIZE) { |
2568 | /* Easy case - TPS==HPS for a non-huge page RAMBlock */ | |
2569 | return; | |
2570 | } | |
2571 | ||
1e7cf8c3 WY |
2572 | /* Find a dirty page */ |
2573 | run_start = find_next_bit(bitmap, pages, 0); | |
99e314eb | 2574 | |
6b6712ef | 2575 | while (run_start < pages) { |
99e314eb DDAG |
2576 | |
2577 | /* | |
2578 | * If the start of this run of pages is in the middle of a host | |
2579 | * page, then we need to fixup this host page. | |
2580 | */ | |
9dec3cc3 | 2581 | if (QEMU_IS_ALIGNED(run_start, host_ratio)) { |
99e314eb | 2582 | /* Find the end of this run */ |
1e7cf8c3 | 2583 | run_start = find_next_zero_bit(bitmap, pages, run_start + 1); |
99e314eb DDAG |
2584 | /* |
2585 | * If the end isn't at the start of a host page, then the | |
2586 | * run doesn't finish at the end of a host page | |
2587 | * and we need to discard. | |
2588 | */ | |
99e314eb DDAG |
2589 | } |
2590 | ||
9dec3cc3 | 2591 | if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { |
99e314eb | 2592 | unsigned long page; |
dad45ab2 WY |
2593 | unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, |
2594 | host_ratio); | |
2595 | run_start = QEMU_ALIGN_UP(run_start, host_ratio); | |
99e314eb | 2596 | |
99e314eb DDAG |
2597 | /* Clean up the bitmap */ |
2598 | for (page = fixup_start_addr; | |
2599 | page < fixup_start_addr + host_ratio; page++) { | |
99e314eb DDAG |
2600 | /* |
2601 | * Remark them as dirty, updating the count for any pages | |
2602 | * that weren't previously dirty. | |
2603 | */ | |
0d8ec885 | 2604 | rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); |
99e314eb DDAG |
2605 | } |
2606 | } | |
2607 | ||
1e7cf8c3 WY |
2608 | /* Find the next dirty page for the next iteration */ |
2609 | run_start = find_next_bit(bitmap, pages, run_start); | |
99e314eb DDAG |
2610 | } |
2611 | } | |
2612 | ||
3d0684b2 | 2613 | /** |
89dab31b | 2614 | * postcopy_chunk_hostpages: discard any partially sent host page |
3d0684b2 | 2615 | * |
99e314eb DDAG |
2616 | * Utility for the outgoing postcopy code. |
2617 | * | |
2618 | * Discard any partially sent host-page size chunks, mark any partially | |
29c59172 DDAG |
2619 | * dirty host-page size chunks as all dirty. In this case the host-page |
2620 | * is the host-page for the particular RAMBlock, i.e. it might be a huge page | |
99e314eb | 2621 | * |
3d0684b2 JQ |
2622 | * Returns zero on success |
2623 | * | |
2624 | * @ms: current migration state | |
6b6712ef | 2625 | * @block: block we want to work with |
99e314eb | 2626 | */ |
6b6712ef | 2627 | static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) |
99e314eb | 2628 | { |
810cf2bb | 2629 | postcopy_discard_send_init(ms, block->idstr); |
99e314eb | 2630 | |
6b6712ef | 2631 | /* |
1e7cf8c3 | 2632 | * Ensure that all partially dirty host pages are made fully dirty. |
6b6712ef | 2633 | */ |
1e7cf8c3 | 2634 | postcopy_chunk_hostpages_pass(ms, block); |
99e314eb | 2635 | |
810cf2bb | 2636 | postcopy_discard_send_finish(ms); |
99e314eb DDAG |
2637 | return 0; |
2638 | } | |
2639 | ||
3d0684b2 JQ |
2640 | /** |
2641 | * ram_postcopy_send_discard_bitmap: transmit the discard bitmap | |
2642 | * | |
2643 | * Returns zero on success | |
2644 | * | |
e0b266f0 DDAG |
2645 | * Transmit the set of pages to be discarded after precopy to the target |
2646 | * these are pages that: | |
2647 | * a) Have been previously transmitted but are now dirty again | |
2648 | * b) Pages that have never been transmitted, this ensures that | |
2649 | * any pages on the destination that have been mapped by background | |
2650 | * tasks get discarded (transparent huge pages is the specific concern) | |
2651 | * Hopefully this is pretty sparse | |
3d0684b2 JQ |
2652 | * |
2653 | * @ms: current migration state | |
e0b266f0 DDAG |
2654 | */ |
2655 | int ram_postcopy_send_discard_bitmap(MigrationState *ms) | |
2656 | { | |
53518d94 | 2657 | RAMState *rs = ram_state; |
6b6712ef | 2658 | RAMBlock *block; |
e0b266f0 | 2659 | int ret; |
e0b266f0 | 2660 | |
89ac5a1d | 2661 | RCU_READ_LOCK_GUARD(); |
e0b266f0 DDAG |
2662 | |
2663 | /* This should be our last sync, the src is now paused */ | |
eb859c53 | 2664 | migration_bitmap_sync(rs); |
e0b266f0 | 2665 | |
6b6712ef JQ |
2666 | /* Easiest way to make sure we don't resume in the middle of a host-page */ |
2667 | rs->last_seen_block = NULL; | |
2668 | rs->last_sent_block = NULL; | |
2669 | rs->last_page = 0; | |
e0b266f0 | 2670 | |
fbd162e6 | 2671 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
6b6712ef JQ |
2672 | /* Deal with TPS != HPS and huge pages */ |
2673 | ret = postcopy_chunk_hostpages(ms, block); | |
2674 | if (ret) { | |
6b6712ef JQ |
2675 | return ret; |
2676 | } | |
e0b266f0 | 2677 | |
e0b266f0 | 2678 | #ifdef DEBUG_POSTCOPY |
1e7cf8c3 WY |
2679 | ram_debug_dump_bitmap(block->bmap, true, |
2680 | block->used_length >> TARGET_PAGE_BITS); | |
e0b266f0 | 2681 | #endif |
6b6712ef JQ |
2682 | } |
2683 | trace_ram_postcopy_send_discard_bitmap(); | |
e0b266f0 | 2684 | |
b3ac2b94 | 2685 | return postcopy_each_ram_send_discard(ms); |
e0b266f0 DDAG |
2686 | } |
2687 | ||
3d0684b2 JQ |
2688 | /** |
2689 | * ram_discard_range: discard dirtied pages at the beginning of postcopy | |
e0b266f0 | 2690 | * |
3d0684b2 | 2691 | * Returns zero on success |
e0b266f0 | 2692 | * |
36449157 JQ |
2693 | * @rbname: name of the RAMBlock of the request. NULL means the |
2694 | * same that last one. | |
3d0684b2 JQ |
2695 | * @start: RAMBlock starting page |
2696 | * @length: RAMBlock size | |
e0b266f0 | 2697 | */ |
aaa2064c | 2698 | int ram_discard_range(const char *rbname, uint64_t start, size_t length) |
e0b266f0 | 2699 | { |
36449157 | 2700 | trace_ram_discard_range(rbname, start, length); |
d3a5038c | 2701 | |
89ac5a1d | 2702 | RCU_READ_LOCK_GUARD(); |
36449157 | 2703 | RAMBlock *rb = qemu_ram_block_by_name(rbname); |
e0b266f0 DDAG |
2704 | |
2705 | if (!rb) { | |
36449157 | 2706 | error_report("ram_discard_range: Failed to find block '%s'", rbname); |
03acb4e9 | 2707 | return -1; |
e0b266f0 DDAG |
2708 | } |
2709 | ||
814bb08f PX |
2710 | /* |
2711 | * On source VM, we don't need to update the received bitmap since | |
2712 | * we don't even have one. | |
2713 | */ | |
2714 | if (rb->receivedmap) { | |
2715 | bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), | |
2716 | length >> qemu_target_page_bits()); | |
2717 | } | |
2718 | ||
03acb4e9 | 2719 | return ram_block_discard_range(rb, start, length); |
e0b266f0 DDAG |
2720 | } |
2721 | ||
84593a08 PX |
2722 | /* |
2723 | * For every allocation, we will try not to crash the VM if the | |
2724 | * allocation failed. | |
2725 | */ | |
2726 | static int xbzrle_init(void) | |
2727 | { | |
2728 | Error *local_err = NULL; | |
2729 | ||
2730 | if (!migrate_use_xbzrle()) { | |
2731 | return 0; | |
2732 | } | |
2733 | ||
2734 | XBZRLE_cache_lock(); | |
2735 | ||
2736 | XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); | |
2737 | if (!XBZRLE.zero_target_page) { | |
2738 | error_report("%s: Error allocating zero page", __func__); | |
2739 | goto err_out; | |
2740 | } | |
2741 | ||
2742 | XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), | |
2743 | TARGET_PAGE_SIZE, &local_err); | |
2744 | if (!XBZRLE.cache) { | |
2745 | error_report_err(local_err); | |
2746 | goto free_zero_page; | |
2747 | } | |
2748 | ||
2749 | XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); | |
2750 | if (!XBZRLE.encoded_buf) { | |
2751 | error_report("%s: Error allocating encoded_buf", __func__); | |
2752 | goto free_cache; | |
2753 | } | |
2754 | ||
2755 | XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); | |
2756 | if (!XBZRLE.current_buf) { | |
2757 | error_report("%s: Error allocating current_buf", __func__); | |
2758 | goto free_encoded_buf; | |
2759 | } | |
2760 | ||
2761 | /* We are all good */ | |
2762 | XBZRLE_cache_unlock(); | |
2763 | return 0; | |
2764 | ||
2765 | free_encoded_buf: | |
2766 | g_free(XBZRLE.encoded_buf); | |
2767 | XBZRLE.encoded_buf = NULL; | |
2768 | free_cache: | |
2769 | cache_fini(XBZRLE.cache); | |
2770 | XBZRLE.cache = NULL; | |
2771 | free_zero_page: | |
2772 | g_free(XBZRLE.zero_target_page); | |
2773 | XBZRLE.zero_target_page = NULL; | |
2774 | err_out: | |
2775 | XBZRLE_cache_unlock(); | |
2776 | return -ENOMEM; | |
2777 | } | |
2778 | ||
53518d94 | 2779 | static int ram_state_init(RAMState **rsp) |
56e93d26 | 2780 | { |
7d00ee6a PX |
2781 | *rsp = g_try_new0(RAMState, 1); |
2782 | ||
2783 | if (!*rsp) { | |
2784 | error_report("%s: Init ramstate fail", __func__); | |
2785 | return -1; | |
2786 | } | |
53518d94 JQ |
2787 | |
2788 | qemu_mutex_init(&(*rsp)->bitmap_mutex); | |
2789 | qemu_mutex_init(&(*rsp)->src_page_req_mutex); | |
2790 | QSIMPLEQ_INIT(&(*rsp)->src_page_requests); | |
56e93d26 | 2791 | |
7d00ee6a | 2792 | /* |
40c4d4a8 IR |
2793 | * Count the total number of pages used by ram blocks not including any |
2794 | * gaps due to alignment or unplugs. | |
03158519 | 2795 | * This must match with the initial values of dirty bitmap. |
7d00ee6a | 2796 | */ |
40c4d4a8 | 2797 | (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; |
7d00ee6a PX |
2798 | ram_state_reset(*rsp); |
2799 | ||
2800 | return 0; | |
2801 | } | |
2802 | ||
d6eff5d7 | 2803 | static void ram_list_init_bitmaps(void) |
7d00ee6a | 2804 | { |
002cad6b | 2805 | MigrationState *ms = migrate_get_current(); |
d6eff5d7 PX |
2806 | RAMBlock *block; |
2807 | unsigned long pages; | |
002cad6b | 2808 | uint8_t shift; |
56e93d26 | 2809 | |
0827b9e9 AA |
2810 | /* Skip setting bitmap if there is no RAM */ |
2811 | if (ram_bytes_total()) { | |
002cad6b PX |
2812 | shift = ms->clear_bitmap_shift; |
2813 | if (shift > CLEAR_BITMAP_SHIFT_MAX) { | |
2814 | error_report("clear_bitmap_shift (%u) too big, using " | |
2815 | "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); | |
2816 | shift = CLEAR_BITMAP_SHIFT_MAX; | |
2817 | } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { | |
2818 | error_report("clear_bitmap_shift (%u) too small, using " | |
2819 | "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); | |
2820 | shift = CLEAR_BITMAP_SHIFT_MIN; | |
2821 | } | |
2822 | ||
fbd162e6 | 2823 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
d6eff5d7 | 2824 | pages = block->max_length >> TARGET_PAGE_BITS; |
03158519 WY |
2825 | /* |
2826 | * The initial dirty bitmap for migration must be set with all | |
2827 | * ones to make sure we'll migrate every guest RAM page to | |
2828 | * destination. | |
40c4d4a8 IR |
2829 | * Here we set RAMBlock.bmap all to 1 because when rebegin a |
2830 | * new migration after a failed migration, ram_list. | |
2831 | * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole | |
2832 | * guest memory. | |
03158519 | 2833 | */ |
6b6712ef | 2834 | block->bmap = bitmap_new(pages); |
40c4d4a8 | 2835 | bitmap_set(block->bmap, 0, pages); |
002cad6b PX |
2836 | block->clear_bmap_shift = shift; |
2837 | block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); | |
0827b9e9 | 2838 | } |
f3f491fc | 2839 | } |
d6eff5d7 PX |
2840 | } |
2841 | ||
be39b4cd DH |
2842 | static void migration_bitmap_clear_discarded_pages(RAMState *rs) |
2843 | { | |
2844 | unsigned long pages; | |
2845 | RAMBlock *rb; | |
2846 | ||
2847 | RCU_READ_LOCK_GUARD(); | |
2848 | ||
2849 | RAMBLOCK_FOREACH_NOT_IGNORED(rb) { | |
2850 | pages = ramblock_dirty_bitmap_clear_discarded_pages(rb); | |
2851 | rs->migration_dirty_pages -= pages; | |
2852 | } | |
2853 | } | |
2854 | ||
d6eff5d7 PX |
2855 | static void ram_init_bitmaps(RAMState *rs) |
2856 | { | |
2857 | /* For memory_global_dirty_log_start below. */ | |
2858 | qemu_mutex_lock_iothread(); | |
2859 | qemu_mutex_lock_ramlist(); | |
f3f491fc | 2860 | |
89ac5a1d DDAG |
2861 | WITH_RCU_READ_LOCK_GUARD() { |
2862 | ram_list_init_bitmaps(); | |
278e2f55 AG |
2863 | /* We don't use dirty log with background snapshots */ |
2864 | if (!migrate_background_snapshot()) { | |
63b41db4 | 2865 | memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); |
278e2f55 AG |
2866 | migration_bitmap_sync_precopy(rs); |
2867 | } | |
89ac5a1d | 2868 | } |
56e93d26 | 2869 | qemu_mutex_unlock_ramlist(); |
49877834 | 2870 | qemu_mutex_unlock_iothread(); |
be39b4cd DH |
2871 | |
2872 | /* | |
2873 | * After an eventual first bitmap sync, fixup the initial bitmap | |
2874 | * containing all 1s to exclude any discarded pages from migration. | |
2875 | */ | |
2876 | migration_bitmap_clear_discarded_pages(rs); | |
d6eff5d7 PX |
2877 | } |
2878 | ||
2879 | static int ram_init_all(RAMState **rsp) | |
2880 | { | |
2881 | if (ram_state_init(rsp)) { | |
2882 | return -1; | |
2883 | } | |
2884 | ||
2885 | if (xbzrle_init()) { | |
2886 | ram_state_cleanup(rsp); | |
2887 | return -1; | |
2888 | } | |
2889 | ||
2890 | ram_init_bitmaps(*rsp); | |
a91246c9 HZ |
2891 | |
2892 | return 0; | |
2893 | } | |
2894 | ||
08614f34 PX |
2895 | static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) |
2896 | { | |
2897 | RAMBlock *block; | |
2898 | uint64_t pages = 0; | |
2899 | ||
2900 | /* | |
2901 | * Postcopy is not using xbzrle/compression, so no need for that. | |
2902 | * Also, since source are already halted, we don't need to care | |
2903 | * about dirty page logging as well. | |
2904 | */ | |
2905 | ||
fbd162e6 | 2906 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
08614f34 PX |
2907 | pages += bitmap_count_one(block->bmap, |
2908 | block->used_length >> TARGET_PAGE_BITS); | |
2909 | } | |
2910 | ||
2911 | /* This may not be aligned with current bitmaps. Recalculate. */ | |
2912 | rs->migration_dirty_pages = pages; | |
2913 | ||
1a373522 | 2914 | ram_state_reset(rs); |
08614f34 PX |
2915 | |
2916 | /* Update RAMState cache of output QEMUFile */ | |
2917 | rs->f = out; | |
2918 | ||
2919 | trace_ram_state_resume_prepare(pages); | |
2920 | } | |
2921 | ||
6bcb05fc WW |
2922 | /* |
2923 | * This function clears bits of the free pages reported by the caller from the | |
2924 | * migration dirty bitmap. @addr is the host address corresponding to the | |
2925 | * start of the continuous guest free pages, and @len is the total bytes of | |
2926 | * those pages. | |
2927 | */ | |
2928 | void qemu_guest_free_page_hint(void *addr, size_t len) | |
2929 | { | |
2930 | RAMBlock *block; | |
2931 | ram_addr_t offset; | |
2932 | size_t used_len, start, npages; | |
2933 | MigrationState *s = migrate_get_current(); | |
2934 | ||
2935 | /* This function is currently expected to be used during live migration */ | |
2936 | if (!migration_is_setup_or_active(s->state)) { | |
2937 | return; | |
2938 | } | |
2939 | ||
2940 | for (; len > 0; len -= used_len, addr += used_len) { | |
2941 | block = qemu_ram_block_from_host(addr, false, &offset); | |
2942 | if (unlikely(!block || offset >= block->used_length)) { | |
2943 | /* | |
2944 | * The implementation might not support RAMBlock resize during | |
2945 | * live migration, but it could happen in theory with future | |
2946 | * updates. So we add a check here to capture that case. | |
2947 | */ | |
2948 | error_report_once("%s unexpected error", __func__); | |
2949 | return; | |
2950 | } | |
2951 | ||
2952 | if (len <= block->used_length - offset) { | |
2953 | used_len = len; | |
2954 | } else { | |
2955 | used_len = block->used_length - offset; | |
2956 | } | |
2957 | ||
2958 | start = offset >> TARGET_PAGE_BITS; | |
2959 | npages = used_len >> TARGET_PAGE_BITS; | |
2960 | ||
2961 | qemu_mutex_lock(&ram_state->bitmap_mutex); | |
3143577d WW |
2962 | /* |
2963 | * The skipped free pages are equavalent to be sent from clear_bmap's | |
2964 | * perspective, so clear the bits from the memory region bitmap which | |
2965 | * are initially set. Otherwise those skipped pages will be sent in | |
2966 | * the next round after syncing from the memory region bitmap. | |
2967 | */ | |
1230a25f | 2968 | migration_clear_memory_region_dirty_bitmap_range(block, start, npages); |
6bcb05fc WW |
2969 | ram_state->migration_dirty_pages -= |
2970 | bitmap_count_one_with_offset(block->bmap, start, npages); | |
2971 | bitmap_clear(block->bmap, start, npages); | |
2972 | qemu_mutex_unlock(&ram_state->bitmap_mutex); | |
2973 | } | |
2974 | } | |
2975 | ||
3d0684b2 JQ |
2976 | /* |
2977 | * Each of ram_save_setup, ram_save_iterate and ram_save_complete has | |
a91246c9 HZ |
2978 | * long-running RCU critical section. When rcu-reclaims in the code |
2979 | * start to become numerous it will be necessary to reduce the | |
2980 | * granularity of these critical sections. | |
2981 | */ | |
2982 | ||
3d0684b2 JQ |
2983 | /** |
2984 | * ram_save_setup: Setup RAM for migration | |
2985 | * | |
2986 | * Returns zero to indicate success and negative for error | |
2987 | * | |
2988 | * @f: QEMUFile where to send the data | |
2989 | * @opaque: RAMState pointer | |
2990 | */ | |
a91246c9 HZ |
2991 | static int ram_save_setup(QEMUFile *f, void *opaque) |
2992 | { | |
53518d94 | 2993 | RAMState **rsp = opaque; |
a91246c9 HZ |
2994 | RAMBlock *block; |
2995 | ||
dcaf446e XG |
2996 | if (compress_threads_save_setup()) { |
2997 | return -1; | |
2998 | } | |
2999 | ||
a91246c9 HZ |
3000 | /* migration has already setup the bitmap, reuse it. */ |
3001 | if (!migration_in_colo_state()) { | |
7d00ee6a | 3002 | if (ram_init_all(rsp) != 0) { |
dcaf446e | 3003 | compress_threads_save_cleanup(); |
a91246c9 | 3004 | return -1; |
53518d94 | 3005 | } |
a91246c9 | 3006 | } |
53518d94 | 3007 | (*rsp)->f = f; |
a91246c9 | 3008 | |
0e6ebd48 DDAG |
3009 | WITH_RCU_READ_LOCK_GUARD() { |
3010 | qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE); | |
56e93d26 | 3011 | |
0e6ebd48 DDAG |
3012 | RAMBLOCK_FOREACH_MIGRATABLE(block) { |
3013 | qemu_put_byte(f, strlen(block->idstr)); | |
3014 | qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); | |
3015 | qemu_put_be64(f, block->used_length); | |
3016 | if (migrate_postcopy_ram() && block->page_size != | |
3017 | qemu_host_page_size) { | |
3018 | qemu_put_be64(f, block->page_size); | |
3019 | } | |
3020 | if (migrate_ignore_shared()) { | |
3021 | qemu_put_be64(f, block->mr->addr); | |
3022 | } | |
fbd162e6 | 3023 | } |
56e93d26 JQ |
3024 | } |
3025 | ||
56e93d26 JQ |
3026 | ram_control_before_iterate(f, RAM_CONTROL_SETUP); |
3027 | ram_control_after_iterate(f, RAM_CONTROL_SETUP); | |
3028 | ||
99f2c6fb | 3029 | multifd_send_sync_main(f); |
56e93d26 | 3030 | qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
35374cbd | 3031 | qemu_fflush(f); |
56e93d26 JQ |
3032 | |
3033 | return 0; | |
3034 | } | |
3035 | ||
3d0684b2 JQ |
3036 | /** |
3037 | * ram_save_iterate: iterative stage for migration | |
3038 | * | |
3039 | * Returns zero to indicate success and negative for error | |
3040 | * | |
3041 | * @f: QEMUFile where to send the data | |
3042 | * @opaque: RAMState pointer | |
3043 | */ | |
56e93d26 JQ |
3044 | static int ram_save_iterate(QEMUFile *f, void *opaque) |
3045 | { | |
53518d94 JQ |
3046 | RAMState **temp = opaque; |
3047 | RAMState *rs = *temp; | |
3d4095b2 | 3048 | int ret = 0; |
56e93d26 JQ |
3049 | int i; |
3050 | int64_t t0; | |
5c90308f | 3051 | int done = 0; |
56e93d26 | 3052 | |
b2557345 PL |
3053 | if (blk_mig_bulk_active()) { |
3054 | /* Avoid transferring ram during bulk phase of block migration as | |
3055 | * the bulk phase will usually take a long time and transferring | |
3056 | * ram updates during that time is pointless. */ | |
3057 | goto out; | |
3058 | } | |
3059 | ||
63268c49 PX |
3060 | /* |
3061 | * We'll take this lock a little bit long, but it's okay for two reasons. | |
3062 | * Firstly, the only possible other thread to take it is who calls | |
3063 | * qemu_guest_free_page_hint(), which should be rare; secondly, see | |
3064 | * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which | |
3065 | * guarantees that we'll at least released it in a regular basis. | |
3066 | */ | |
3067 | qemu_mutex_lock(&rs->bitmap_mutex); | |
89ac5a1d DDAG |
3068 | WITH_RCU_READ_LOCK_GUARD() { |
3069 | if (ram_list.version != rs->last_version) { | |
3070 | ram_state_reset(rs); | |
3071 | } | |
56e93d26 | 3072 | |
89ac5a1d DDAG |
3073 | /* Read version before ram_list.blocks */ |
3074 | smp_rmb(); | |
56e93d26 | 3075 | |
89ac5a1d | 3076 | ram_control_before_iterate(f, RAM_CONTROL_ROUND); |
56e93d26 | 3077 | |
89ac5a1d DDAG |
3078 | t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
3079 | i = 0; | |
3080 | while ((ret = qemu_file_rate_limit(f)) == 0 || | |
3081 | !QSIMPLEQ_EMPTY(&rs->src_page_requests)) { | |
3082 | int pages; | |
e03a34f8 | 3083 | |
89ac5a1d DDAG |
3084 | if (qemu_file_get_error(f)) { |
3085 | break; | |
3086 | } | |
e8f3735f | 3087 | |
89ac5a1d DDAG |
3088 | pages = ram_find_and_save_block(rs, false); |
3089 | /* no more pages to sent */ | |
3090 | if (pages == 0) { | |
3091 | done = 1; | |
3092 | break; | |
3093 | } | |
e8f3735f | 3094 | |
89ac5a1d DDAG |
3095 | if (pages < 0) { |
3096 | qemu_file_set_error(f, pages); | |
56e93d26 JQ |
3097 | break; |
3098 | } | |
89ac5a1d DDAG |
3099 | |
3100 | rs->target_page_count += pages; | |
3101 | ||
644acf99 WY |
3102 | /* |
3103 | * During postcopy, it is necessary to make sure one whole host | |
3104 | * page is sent in one chunk. | |
3105 | */ | |
3106 | if (migrate_postcopy_ram()) { | |
3107 | flush_compressed_data(rs); | |
3108 | } | |
3109 | ||
89ac5a1d DDAG |
3110 | /* |
3111 | * we want to check in the 1st loop, just in case it was the 1st | |
3112 | * time and we had to sync the dirty bitmap. | |
3113 | * qemu_clock_get_ns() is a bit expensive, so we only check each | |
3114 | * some iterations | |
3115 | */ | |
3116 | if ((i & 63) == 0) { | |
3117 | uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / | |
3118 | 1000000; | |
3119 | if (t1 > MAX_WAIT) { | |
3120 | trace_ram_save_iterate_big_wait(t1, i); | |
3121 | break; | |
3122 | } | |
3123 | } | |
3124 | i++; | |
56e93d26 | 3125 | } |
56e93d26 | 3126 | } |
63268c49 | 3127 | qemu_mutex_unlock(&rs->bitmap_mutex); |
56e93d26 JQ |
3128 | |
3129 | /* | |
3130 | * Must occur before EOS (or any QEMUFile operation) | |
3131 | * because of RDMA protocol. | |
3132 | */ | |
3133 | ram_control_after_iterate(f, RAM_CONTROL_ROUND); | |
3134 | ||
b2557345 | 3135 | out: |
b69a0227 JQ |
3136 | if (ret >= 0 |
3137 | && migration_is_setup_or_active(migrate_get_current()->state)) { | |
99f2c6fb | 3138 | multifd_send_sync_main(rs->f); |
3d4095b2 JQ |
3139 | qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
3140 | qemu_fflush(f); | |
3141 | ram_counters.transferred += 8; | |
56e93d26 | 3142 | |
3d4095b2 JQ |
3143 | ret = qemu_file_get_error(f); |
3144 | } | |
56e93d26 JQ |
3145 | if (ret < 0) { |
3146 | return ret; | |
3147 | } | |
3148 | ||
5c90308f | 3149 | return done; |
56e93d26 JQ |
3150 | } |
3151 | ||
3d0684b2 JQ |
3152 | /** |
3153 | * ram_save_complete: function called to send the remaining amount of ram | |
3154 | * | |
e8f3735f | 3155 | * Returns zero to indicate success or negative on error |
3d0684b2 JQ |
3156 | * |
3157 | * Called with iothread lock | |
3158 | * | |
3159 | * @f: QEMUFile where to send the data | |
3160 | * @opaque: RAMState pointer | |
3161 | */ | |
56e93d26 JQ |
3162 | static int ram_save_complete(QEMUFile *f, void *opaque) |
3163 | { | |
53518d94 JQ |
3164 | RAMState **temp = opaque; |
3165 | RAMState *rs = *temp; | |
e8f3735f | 3166 | int ret = 0; |
6f37bb8b | 3167 | |
89ac5a1d DDAG |
3168 | WITH_RCU_READ_LOCK_GUARD() { |
3169 | if (!migration_in_postcopy()) { | |
3170 | migration_bitmap_sync_precopy(rs); | |
3171 | } | |
56e93d26 | 3172 | |
89ac5a1d | 3173 | ram_control_before_iterate(f, RAM_CONTROL_FINISH); |
56e93d26 | 3174 | |
89ac5a1d | 3175 | /* try transferring iterative blocks of memory */ |
56e93d26 | 3176 | |
89ac5a1d DDAG |
3177 | /* flush all remaining blocks regardless of rate limiting */ |
3178 | while (true) { | |
3179 | int pages; | |
56e93d26 | 3180 | |
89ac5a1d DDAG |
3181 | pages = ram_find_and_save_block(rs, !migration_in_colo_state()); |
3182 | /* no more blocks to sent */ | |
3183 | if (pages == 0) { | |
3184 | break; | |
3185 | } | |
3186 | if (pages < 0) { | |
3187 | ret = pages; | |
3188 | break; | |
3189 | } | |
e8f3735f | 3190 | } |
56e93d26 | 3191 | |
89ac5a1d DDAG |
3192 | flush_compressed_data(rs); |
3193 | ram_control_after_iterate(f, RAM_CONTROL_FINISH); | |
3194 | } | |
d09a6fde | 3195 | |
3d4095b2 | 3196 | if (ret >= 0) { |
99f2c6fb | 3197 | multifd_send_sync_main(rs->f); |
3d4095b2 JQ |
3198 | qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
3199 | qemu_fflush(f); | |
3200 | } | |
56e93d26 | 3201 | |
e8f3735f | 3202 | return ret; |
56e93d26 JQ |
3203 | } |
3204 | ||
c31b098f | 3205 | static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, |
47995026 VSO |
3206 | uint64_t *res_precopy_only, |
3207 | uint64_t *res_compatible, | |
3208 | uint64_t *res_postcopy_only) | |
56e93d26 | 3209 | { |
53518d94 JQ |
3210 | RAMState **temp = opaque; |
3211 | RAMState *rs = *temp; | |
56e93d26 JQ |
3212 | uint64_t remaining_size; |
3213 | ||
9edabd4d | 3214 | remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; |
56e93d26 | 3215 | |
5727309d | 3216 | if (!migration_in_postcopy() && |
663e6c1d | 3217 | remaining_size < max_size) { |
56e93d26 | 3218 | qemu_mutex_lock_iothread(); |
89ac5a1d DDAG |
3219 | WITH_RCU_READ_LOCK_GUARD() { |
3220 | migration_bitmap_sync_precopy(rs); | |
3221 | } | |
56e93d26 | 3222 | qemu_mutex_unlock_iothread(); |
9edabd4d | 3223 | remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; |
56e93d26 | 3224 | } |
c31b098f | 3225 | |
86e1167e VSO |
3226 | if (migrate_postcopy_ram()) { |
3227 | /* We can do postcopy, and all the data is postcopiable */ | |
47995026 | 3228 | *res_compatible += remaining_size; |
86e1167e | 3229 | } else { |
47995026 | 3230 | *res_precopy_only += remaining_size; |
86e1167e | 3231 | } |
56e93d26 JQ |
3232 | } |
3233 | ||
3234 | static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) | |
3235 | { | |
3236 | unsigned int xh_len; | |
3237 | int xh_flags; | |
063e760a | 3238 | uint8_t *loaded_data; |
56e93d26 | 3239 | |
56e93d26 JQ |
3240 | /* extract RLE header */ |
3241 | xh_flags = qemu_get_byte(f); | |
3242 | xh_len = qemu_get_be16(f); | |
3243 | ||
3244 | if (xh_flags != ENCODING_FLAG_XBZRLE) { | |
3245 | error_report("Failed to load XBZRLE page - wrong compression!"); | |
3246 | return -1; | |
3247 | } | |
3248 | ||
3249 | if (xh_len > TARGET_PAGE_SIZE) { | |
3250 | error_report("Failed to load XBZRLE page - len overflow!"); | |
3251 | return -1; | |
3252 | } | |
f265e0e4 | 3253 | loaded_data = XBZRLE.decoded_buf; |
56e93d26 | 3254 | /* load data and decode */ |
f265e0e4 | 3255 | /* it can change loaded_data to point to an internal buffer */ |
063e760a | 3256 | qemu_get_buffer_in_place(f, &loaded_data, xh_len); |
56e93d26 JQ |
3257 | |
3258 | /* decode RLE */ | |
063e760a | 3259 | if (xbzrle_decode_buffer(loaded_data, xh_len, host, |
56e93d26 JQ |
3260 | TARGET_PAGE_SIZE) == -1) { |
3261 | error_report("Failed to load XBZRLE page - decode error!"); | |
3262 | return -1; | |
3263 | } | |
3264 | ||
3265 | return 0; | |
3266 | } | |
3267 | ||
3d0684b2 JQ |
3268 | /** |
3269 | * ram_block_from_stream: read a RAMBlock id from the migration stream | |
3270 | * | |
3271 | * Must be called from within a rcu critical section. | |
3272 | * | |
56e93d26 | 3273 | * Returns a pointer from within the RCU-protected ram_list. |
a7180877 | 3274 | * |
3d0684b2 JQ |
3275 | * @f: QEMUFile where to read the data from |
3276 | * @flags: Page flags (mostly to see if it's a continuation of previous block) | |
a7180877 | 3277 | */ |
3d0684b2 | 3278 | static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) |
56e93d26 | 3279 | { |
49324e93 | 3280 | static RAMBlock *block; |
56e93d26 JQ |
3281 | char id[256]; |
3282 | uint8_t len; | |
3283 | ||
3284 | if (flags & RAM_SAVE_FLAG_CONTINUE) { | |
4c4bad48 | 3285 | if (!block) { |
56e93d26 JQ |
3286 | error_report("Ack, bad migration stream!"); |
3287 | return NULL; | |
3288 | } | |
4c4bad48 | 3289 | return block; |
56e93d26 JQ |
3290 | } |
3291 | ||
3292 | len = qemu_get_byte(f); | |
3293 | qemu_get_buffer(f, (uint8_t *)id, len); | |
3294 | id[len] = 0; | |
3295 | ||
e3dd7493 | 3296 | block = qemu_ram_block_by_name(id); |
4c4bad48 HZ |
3297 | if (!block) { |
3298 | error_report("Can't find block %s", id); | |
3299 | return NULL; | |
56e93d26 JQ |
3300 | } |
3301 | ||
fbd162e6 | 3302 | if (ramblock_is_ignored(block)) { |
b895de50 CLG |
3303 | error_report("block %s should not be migrated !", id); |
3304 | return NULL; | |
3305 | } | |
3306 | ||
4c4bad48 HZ |
3307 | return block; |
3308 | } | |
3309 | ||
3310 | static inline void *host_from_ram_block_offset(RAMBlock *block, | |
3311 | ram_addr_t offset) | |
3312 | { | |
3313 | if (!offset_in_ramblock(block, offset)) { | |
3314 | return NULL; | |
3315 | } | |
3316 | ||
3317 | return block->host + offset; | |
56e93d26 JQ |
3318 | } |
3319 | ||
6a23f639 DH |
3320 | static void *host_page_from_ram_block_offset(RAMBlock *block, |
3321 | ram_addr_t offset) | |
3322 | { | |
3323 | /* Note: Explicitly no check against offset_in_ramblock(). */ | |
3324 | return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset), | |
3325 | block->page_size); | |
3326 | } | |
3327 | ||
3328 | static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block, | |
3329 | ram_addr_t offset) | |
3330 | { | |
3331 | return ((uintptr_t)block->host + offset) & (block->page_size - 1); | |
3332 | } | |
3333 | ||
13af18f2 | 3334 | static inline void *colo_cache_from_block_offset(RAMBlock *block, |
8af66371 | 3335 | ram_addr_t offset, bool record_bitmap) |
13af18f2 ZC |
3336 | { |
3337 | if (!offset_in_ramblock(block, offset)) { | |
3338 | return NULL; | |
3339 | } | |
3340 | if (!block->colo_cache) { | |
3341 | error_report("%s: colo_cache is NULL in block :%s", | |
3342 | __func__, block->idstr); | |
3343 | return NULL; | |
3344 | } | |
7d9acafa ZC |
3345 | |
3346 | /* | |
3347 | * During colo checkpoint, we need bitmap of these migrated pages. | |
3348 | * It help us to decide which pages in ram cache should be flushed | |
3349 | * into VM's RAM later. | |
3350 | */ | |
8af66371 HZ |
3351 | if (record_bitmap && |
3352 | !test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) { | |
7d9acafa ZC |
3353 | ram_state->migration_dirty_pages++; |
3354 | } | |
13af18f2 ZC |
3355 | return block->colo_cache + offset; |
3356 | } | |
3357 | ||
3d0684b2 JQ |
3358 | /** |
3359 | * ram_handle_compressed: handle the zero page case | |
3360 | * | |
56e93d26 JQ |
3361 | * If a page (or a whole RDMA chunk) has been |
3362 | * determined to be zero, then zap it. | |
3d0684b2 JQ |
3363 | * |
3364 | * @host: host address for the zero page | |
3365 | * @ch: what the page is filled from. We only support zero | |
3366 | * @size: size of the zero page | |
56e93d26 JQ |
3367 | */ |
3368 | void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) | |
3369 | { | |
3370 | if (ch != 0 || !is_zero_range(host, size)) { | |
3371 | memset(host, ch, size); | |
3372 | } | |
3373 | } | |
3374 | ||
797ca154 XG |
3375 | /* return the size after decompression, or negative value on error */ |
3376 | static int | |
3377 | qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, | |
3378 | const uint8_t *source, size_t source_len) | |
3379 | { | |
3380 | int err; | |
3381 | ||
3382 | err = inflateReset(stream); | |
3383 | if (err != Z_OK) { | |
3384 | return -1; | |
3385 | } | |
3386 | ||
3387 | stream->avail_in = source_len; | |
3388 | stream->next_in = (uint8_t *)source; | |
3389 | stream->avail_out = dest_len; | |
3390 | stream->next_out = dest; | |
3391 | ||
3392 | err = inflate(stream, Z_NO_FLUSH); | |
3393 | if (err != Z_STREAM_END) { | |
3394 | return -1; | |
3395 | } | |
3396 | ||
3397 | return stream->total_out; | |
3398 | } | |
3399 | ||
56e93d26 JQ |
3400 | static void *do_data_decompress(void *opaque) |
3401 | { | |
3402 | DecompressParam *param = opaque; | |
3403 | unsigned long pagesize; | |
33d151f4 | 3404 | uint8_t *des; |
34ab9e97 | 3405 | int len, ret; |
56e93d26 | 3406 | |
33d151f4 | 3407 | qemu_mutex_lock(¶m->mutex); |
90e56fb4 | 3408 | while (!param->quit) { |
33d151f4 LL |
3409 | if (param->des) { |
3410 | des = param->des; | |
3411 | len = param->len; | |
3412 | param->des = 0; | |
3413 | qemu_mutex_unlock(¶m->mutex); | |
3414 | ||
56e93d26 | 3415 | pagesize = TARGET_PAGE_SIZE; |
34ab9e97 XG |
3416 | |
3417 | ret = qemu_uncompress_data(¶m->stream, des, pagesize, | |
3418 | param->compbuf, len); | |
f548222c | 3419 | if (ret < 0 && migrate_get_current()->decompress_error_check) { |
34ab9e97 XG |
3420 | error_report("decompress data failed"); |
3421 | qemu_file_set_error(decomp_file, ret); | |
3422 | } | |
73a8912b | 3423 | |
33d151f4 LL |
3424 | qemu_mutex_lock(&decomp_done_lock); |
3425 | param->done = true; | |
3426 | qemu_cond_signal(&decomp_done_cond); | |
3427 | qemu_mutex_unlock(&decomp_done_lock); | |
3428 | ||
3429 | qemu_mutex_lock(¶m->mutex); | |
3430 | } else { | |
3431 | qemu_cond_wait(¶m->cond, ¶m->mutex); | |
3432 | } | |
56e93d26 | 3433 | } |
33d151f4 | 3434 | qemu_mutex_unlock(¶m->mutex); |
56e93d26 JQ |
3435 | |
3436 | return NULL; | |
3437 | } | |
3438 | ||
34ab9e97 | 3439 | static int wait_for_decompress_done(void) |
5533b2e9 LL |
3440 | { |
3441 | int idx, thread_count; | |
3442 | ||
3443 | if (!migrate_use_compression()) { | |
34ab9e97 | 3444 | return 0; |
5533b2e9 LL |
3445 | } |
3446 | ||
3447 | thread_count = migrate_decompress_threads(); | |
3448 | qemu_mutex_lock(&decomp_done_lock); | |
3449 | for (idx = 0; idx < thread_count; idx++) { | |
3450 | while (!decomp_param[idx].done) { | |
3451 | qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); | |
3452 | } | |
3453 | } | |
3454 | qemu_mutex_unlock(&decomp_done_lock); | |
34ab9e97 | 3455 | return qemu_file_get_error(decomp_file); |
5533b2e9 LL |
3456 | } |
3457 | ||
f0afa331 | 3458 | static void compress_threads_load_cleanup(void) |
56e93d26 JQ |
3459 | { |
3460 | int i, thread_count; | |
3461 | ||
3416ab5b JQ |
3462 | if (!migrate_use_compression()) { |
3463 | return; | |
3464 | } | |
56e93d26 JQ |
3465 | thread_count = migrate_decompress_threads(); |
3466 | for (i = 0; i < thread_count; i++) { | |
797ca154 XG |
3467 | /* |
3468 | * we use it as a indicator which shows if the thread is | |
3469 | * properly init'd or not | |
3470 | */ | |
3471 | if (!decomp_param[i].compbuf) { | |
3472 | break; | |
3473 | } | |
3474 | ||
56e93d26 | 3475 | qemu_mutex_lock(&decomp_param[i].mutex); |
90e56fb4 | 3476 | decomp_param[i].quit = true; |
56e93d26 JQ |
3477 | qemu_cond_signal(&decomp_param[i].cond); |
3478 | qemu_mutex_unlock(&decomp_param[i].mutex); | |
3479 | } | |
3480 | for (i = 0; i < thread_count; i++) { | |
797ca154 XG |
3481 | if (!decomp_param[i].compbuf) { |
3482 | break; | |
3483 | } | |
3484 | ||
56e93d26 JQ |
3485 | qemu_thread_join(decompress_threads + i); |
3486 | qemu_mutex_destroy(&decomp_param[i].mutex); | |
3487 | qemu_cond_destroy(&decomp_param[i].cond); | |
797ca154 | 3488 | inflateEnd(&decomp_param[i].stream); |
56e93d26 | 3489 | g_free(decomp_param[i].compbuf); |
797ca154 | 3490 | decomp_param[i].compbuf = NULL; |
56e93d26 JQ |
3491 | } |
3492 | g_free(decompress_threads); | |
3493 | g_free(decomp_param); | |
56e93d26 JQ |
3494 | decompress_threads = NULL; |
3495 | decomp_param = NULL; | |
34ab9e97 | 3496 | decomp_file = NULL; |
56e93d26 JQ |
3497 | } |
3498 | ||
34ab9e97 | 3499 | static int compress_threads_load_setup(QEMUFile *f) |
797ca154 XG |
3500 | { |
3501 | int i, thread_count; | |
3502 | ||
3503 | if (!migrate_use_compression()) { | |
3504 | return 0; | |
3505 | } | |
3506 | ||
3507 | thread_count = migrate_decompress_threads(); | |
3508 | decompress_threads = g_new0(QemuThread, thread_count); | |
3509 | decomp_param = g_new0(DecompressParam, thread_count); | |
3510 | qemu_mutex_init(&decomp_done_lock); | |
3511 | qemu_cond_init(&decomp_done_cond); | |
34ab9e97 | 3512 | decomp_file = f; |
797ca154 XG |
3513 | for (i = 0; i < thread_count; i++) { |
3514 | if (inflateInit(&decomp_param[i].stream) != Z_OK) { | |
3515 | goto exit; | |
3516 | } | |
3517 | ||
3518 | decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); | |
3519 | qemu_mutex_init(&decomp_param[i].mutex); | |
3520 | qemu_cond_init(&decomp_param[i].cond); | |
3521 | decomp_param[i].done = true; | |
3522 | decomp_param[i].quit = false; | |
3523 | qemu_thread_create(decompress_threads + i, "decompress", | |
3524 | do_data_decompress, decomp_param + i, | |
3525 | QEMU_THREAD_JOINABLE); | |
3526 | } | |
3527 | return 0; | |
3528 | exit: | |
3529 | compress_threads_load_cleanup(); | |
3530 | return -1; | |
3531 | } | |
3532 | ||
c1bc6626 | 3533 | static void decompress_data_with_multi_threads(QEMUFile *f, |
56e93d26 JQ |
3534 | void *host, int len) |
3535 | { | |
3536 | int idx, thread_count; | |
3537 | ||
3538 | thread_count = migrate_decompress_threads(); | |
37396950 | 3539 | QEMU_LOCK_GUARD(&decomp_done_lock); |
56e93d26 JQ |
3540 | while (true) { |
3541 | for (idx = 0; idx < thread_count; idx++) { | |
73a8912b | 3542 | if (decomp_param[idx].done) { |
33d151f4 LL |
3543 | decomp_param[idx].done = false; |
3544 | qemu_mutex_lock(&decomp_param[idx].mutex); | |
c1bc6626 | 3545 | qemu_get_buffer(f, decomp_param[idx].compbuf, len); |
56e93d26 JQ |
3546 | decomp_param[idx].des = host; |
3547 | decomp_param[idx].len = len; | |
33d151f4 LL |
3548 | qemu_cond_signal(&decomp_param[idx].cond); |
3549 | qemu_mutex_unlock(&decomp_param[idx].mutex); | |
56e93d26 JQ |
3550 | break; |
3551 | } | |
3552 | } | |
3553 | if (idx < thread_count) { | |
3554 | break; | |
73a8912b LL |
3555 | } else { |
3556 | qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); | |
56e93d26 JQ |
3557 | } |
3558 | } | |
3559 | } | |
3560 | ||
b70cb3b4 RL |
3561 | static void colo_init_ram_state(void) |
3562 | { | |
3563 | ram_state_init(&ram_state); | |
b70cb3b4 RL |
3564 | } |
3565 | ||
13af18f2 ZC |
3566 | /* |
3567 | * colo cache: this is for secondary VM, we cache the whole | |
3568 | * memory of the secondary VM, it is need to hold the global lock | |
3569 | * to call this helper. | |
3570 | */ | |
3571 | int colo_init_ram_cache(void) | |
3572 | { | |
3573 | RAMBlock *block; | |
3574 | ||
44901b5a PB |
3575 | WITH_RCU_READ_LOCK_GUARD() { |
3576 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
3577 | block->colo_cache = qemu_anon_ram_alloc(block->used_length, | |
8dbe22c6 | 3578 | NULL, false, false); |
44901b5a PB |
3579 | if (!block->colo_cache) { |
3580 | error_report("%s: Can't alloc memory for COLO cache of block %s," | |
3581 | "size 0x" RAM_ADDR_FMT, __func__, block->idstr, | |
3582 | block->used_length); | |
3583 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
3584 | if (block->colo_cache) { | |
3585 | qemu_anon_ram_free(block->colo_cache, block->used_length); | |
3586 | block->colo_cache = NULL; | |
3587 | } | |
89ac5a1d | 3588 | } |
44901b5a | 3589 | return -errno; |
89ac5a1d | 3590 | } |
e5fdf920 LS |
3591 | if (!machine_dump_guest_core(current_machine)) { |
3592 | qemu_madvise(block->colo_cache, block->used_length, | |
3593 | QEMU_MADV_DONTDUMP); | |
3594 | } | |
13af18f2 | 3595 | } |
13af18f2 | 3596 | } |
44901b5a | 3597 | |
7d9acafa ZC |
3598 | /* |
3599 | * Record the dirty pages that sent by PVM, we use this dirty bitmap together | |
3600 | * with to decide which page in cache should be flushed into SVM's RAM. Here | |
3601 | * we use the same name 'ram_bitmap' as for migration. | |
3602 | */ | |
3603 | if (ram_bytes_total()) { | |
3604 | RAMBlock *block; | |
3605 | ||
fbd162e6 | 3606 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
7d9acafa | 3607 | unsigned long pages = block->max_length >> TARGET_PAGE_BITS; |
7d9acafa | 3608 | block->bmap = bitmap_new(pages); |
7d9acafa ZC |
3609 | } |
3610 | } | |
7d9acafa | 3611 | |
b70cb3b4 | 3612 | colo_init_ram_state(); |
13af18f2 | 3613 | return 0; |
13af18f2 ZC |
3614 | } |
3615 | ||
0393031a HZ |
3616 | /* TODO: duplicated with ram_init_bitmaps */ |
3617 | void colo_incoming_start_dirty_log(void) | |
3618 | { | |
3619 | RAMBlock *block = NULL; | |
3620 | /* For memory_global_dirty_log_start below. */ | |
3621 | qemu_mutex_lock_iothread(); | |
3622 | qemu_mutex_lock_ramlist(); | |
3623 | ||
3624 | memory_global_dirty_log_sync(); | |
3625 | WITH_RCU_READ_LOCK_GUARD() { | |
3626 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
3627 | ramblock_sync_dirty_bitmap(ram_state, block); | |
3628 | /* Discard this dirty bitmap record */ | |
3629 | bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); | |
3630 | } | |
63b41db4 | 3631 | memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); |
0393031a HZ |
3632 | } |
3633 | ram_state->migration_dirty_pages = 0; | |
3634 | qemu_mutex_unlock_ramlist(); | |
3635 | qemu_mutex_unlock_iothread(); | |
3636 | } | |
3637 | ||
13af18f2 ZC |
3638 | /* It is need to hold the global lock to call this helper */ |
3639 | void colo_release_ram_cache(void) | |
3640 | { | |
3641 | RAMBlock *block; | |
3642 | ||
63b41db4 | 3643 | memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); |
fbd162e6 | 3644 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
7d9acafa ZC |
3645 | g_free(block->bmap); |
3646 | block->bmap = NULL; | |
3647 | } | |
3648 | ||
89ac5a1d DDAG |
3649 | WITH_RCU_READ_LOCK_GUARD() { |
3650 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
3651 | if (block->colo_cache) { | |
3652 | qemu_anon_ram_free(block->colo_cache, block->used_length); | |
3653 | block->colo_cache = NULL; | |
3654 | } | |
13af18f2 ZC |
3655 | } |
3656 | } | |
0393031a | 3657 | ram_state_cleanup(&ram_state); |
13af18f2 ZC |
3658 | } |
3659 | ||
f265e0e4 JQ |
3660 | /** |
3661 | * ram_load_setup: Setup RAM for migration incoming side | |
3662 | * | |
3663 | * Returns zero to indicate success and negative for error | |
3664 | * | |
3665 | * @f: QEMUFile where to receive the data | |
3666 | * @opaque: RAMState pointer | |
3667 | */ | |
3668 | static int ram_load_setup(QEMUFile *f, void *opaque) | |
3669 | { | |
34ab9e97 | 3670 | if (compress_threads_load_setup(f)) { |
797ca154 XG |
3671 | return -1; |
3672 | } | |
3673 | ||
f265e0e4 | 3674 | xbzrle_load_setup(); |
f9494614 | 3675 | ramblock_recv_map_init(); |
13af18f2 | 3676 | |
f265e0e4 JQ |
3677 | return 0; |
3678 | } | |
3679 | ||
3680 | static int ram_load_cleanup(void *opaque) | |
3681 | { | |
f9494614 | 3682 | RAMBlock *rb; |
56eb90af | 3683 | |
fbd162e6 | 3684 | RAMBLOCK_FOREACH_NOT_IGNORED(rb) { |
bd108a44 | 3685 | qemu_ram_block_writeback(rb); |
56eb90af JH |
3686 | } |
3687 | ||
f265e0e4 | 3688 | xbzrle_load_cleanup(); |
f0afa331 | 3689 | compress_threads_load_cleanup(); |
f9494614 | 3690 | |
fbd162e6 | 3691 | RAMBLOCK_FOREACH_NOT_IGNORED(rb) { |
f9494614 AP |
3692 | g_free(rb->receivedmap); |
3693 | rb->receivedmap = NULL; | |
3694 | } | |
13af18f2 | 3695 | |
f265e0e4 JQ |
3696 | return 0; |
3697 | } | |
3698 | ||
3d0684b2 JQ |
3699 | /** |
3700 | * ram_postcopy_incoming_init: allocate postcopy data structures | |
3701 | * | |
3702 | * Returns 0 for success and negative if there was one error | |
3703 | * | |
3704 | * @mis: current migration incoming state | |
3705 | * | |
3706 | * Allocate data structures etc needed by incoming migration with | |
3707 | * postcopy-ram. postcopy-ram's similarly names | |
3708 | * postcopy_ram_incoming_init does the work. | |
1caddf8a DDAG |
3709 | */ |
3710 | int ram_postcopy_incoming_init(MigrationIncomingState *mis) | |
3711 | { | |
c136180c | 3712 | return postcopy_ram_incoming_init(mis); |
1caddf8a DDAG |
3713 | } |
3714 | ||
3d0684b2 JQ |
3715 | /** |
3716 | * ram_load_postcopy: load a page in postcopy case | |
3717 | * | |
3718 | * Returns 0 for success or -errno in case of error | |
3719 | * | |
a7180877 DDAG |
3720 | * Called in postcopy mode by ram_load(). |
3721 | * rcu_read_lock is taken prior to this being called. | |
3d0684b2 JQ |
3722 | * |
3723 | * @f: QEMUFile where to send the data | |
a7180877 DDAG |
3724 | */ |
3725 | static int ram_load_postcopy(QEMUFile *f) | |
3726 | { | |
3727 | int flags = 0, ret = 0; | |
3728 | bool place_needed = false; | |
1aa83678 | 3729 | bool matches_target_page_size = false; |
a7180877 DDAG |
3730 | MigrationIncomingState *mis = migration_incoming_get_current(); |
3731 | /* Temporary page that is later 'placed' */ | |
3414322a | 3732 | void *postcopy_host_page = mis->postcopy_tmp_page; |
6a23f639 | 3733 | void *host_page = NULL; |
ddf35bdf | 3734 | bool all_zero = true; |
4cbb3c63 | 3735 | int target_pages = 0; |
a7180877 DDAG |
3736 | |
3737 | while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { | |
3738 | ram_addr_t addr; | |
a7180877 DDAG |
3739 | void *page_buffer = NULL; |
3740 | void *place_source = NULL; | |
df9ff5e1 | 3741 | RAMBlock *block = NULL; |
a7180877 | 3742 | uint8_t ch; |
644acf99 | 3743 | int len; |
a7180877 DDAG |
3744 | |
3745 | addr = qemu_get_be64(f); | |
7a9ddfbf PX |
3746 | |
3747 | /* | |
3748 | * If qemu file error, we should stop here, and then "addr" | |
3749 | * may be invalid | |
3750 | */ | |
3751 | ret = qemu_file_get_error(f); | |
3752 | if (ret) { | |
3753 | break; | |
3754 | } | |
3755 | ||
a7180877 DDAG |
3756 | flags = addr & ~TARGET_PAGE_MASK; |
3757 | addr &= TARGET_PAGE_MASK; | |
3758 | ||
3759 | trace_ram_load_postcopy_loop((uint64_t)addr, flags); | |
644acf99 WY |
3760 | if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | |
3761 | RAM_SAVE_FLAG_COMPRESS_PAGE)) { | |
df9ff5e1 | 3762 | block = ram_block_from_stream(f, flags); |
6a23f639 DH |
3763 | if (!block) { |
3764 | ret = -EINVAL; | |
3765 | break; | |
3766 | } | |
4c4bad48 | 3767 | |
898ba906 DH |
3768 | /* |
3769 | * Relying on used_length is racy and can result in false positives. | |
3770 | * We might place pages beyond used_length in case RAM was shrunk | |
3771 | * while in postcopy, which is fine - trying to place via | |
3772 | * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault. | |
3773 | */ | |
3774 | if (!block->host || addr >= block->postcopy_length) { | |
a7180877 DDAG |
3775 | error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); |
3776 | ret = -EINVAL; | |
3777 | break; | |
3778 | } | |
4cbb3c63 | 3779 | target_pages++; |
1aa83678 | 3780 | matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; |
a7180877 | 3781 | /* |
28abd200 DDAG |
3782 | * Postcopy requires that we place whole host pages atomically; |
3783 | * these may be huge pages for RAMBlocks that are backed by | |
3784 | * hugetlbfs. | |
a7180877 DDAG |
3785 | * To make it atomic, the data is read into a temporary page |
3786 | * that's moved into place later. | |
3787 | * The migration protocol uses, possibly smaller, target-pages | |
3788 | * however the source ensures it always sends all the components | |
91ba442f | 3789 | * of a host page in one chunk. |
a7180877 DDAG |
3790 | */ |
3791 | page_buffer = postcopy_host_page + | |
6a23f639 DH |
3792 | host_page_offset_from_ram_block_offset(block, addr); |
3793 | /* If all TP are zero then we can optimise the place */ | |
e5e73b0f | 3794 | if (target_pages == 1) { |
6a23f639 DH |
3795 | host_page = host_page_from_ram_block_offset(block, addr); |
3796 | } else if (host_page != host_page_from_ram_block_offset(block, | |
3797 | addr)) { | |
c53b7ddc | 3798 | /* not the 1st TP within the HP */ |
6a23f639 DH |
3799 | error_report("Non-same host page %p/%p", host_page, |
3800 | host_page_from_ram_block_offset(block, addr)); | |
3801 | ret = -EINVAL; | |
3802 | break; | |
a7180877 DDAG |
3803 | } |
3804 | ||
3805 | /* | |
3806 | * If it's the last part of a host page then we place the host | |
3807 | * page | |
3808 | */ | |
4cbb3c63 WY |
3809 | if (target_pages == (block->page_size / TARGET_PAGE_SIZE)) { |
3810 | place_needed = true; | |
4cbb3c63 | 3811 | } |
a7180877 DDAG |
3812 | place_source = postcopy_host_page; |
3813 | } | |
3814 | ||
3815 | switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { | |
bb890ed5 | 3816 | case RAM_SAVE_FLAG_ZERO: |
a7180877 | 3817 | ch = qemu_get_byte(f); |
2e36bc1b WY |
3818 | /* |
3819 | * Can skip to set page_buffer when | |
3820 | * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). | |
3821 | */ | |
3822 | if (ch || !matches_target_page_size) { | |
3823 | memset(page_buffer, ch, TARGET_PAGE_SIZE); | |
3824 | } | |
a7180877 DDAG |
3825 | if (ch) { |
3826 | all_zero = false; | |
3827 | } | |
3828 | break; | |
3829 | ||
3830 | case RAM_SAVE_FLAG_PAGE: | |
3831 | all_zero = false; | |
1aa83678 PX |
3832 | if (!matches_target_page_size) { |
3833 | /* For huge pages, we always use temporary buffer */ | |
a7180877 DDAG |
3834 | qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); |
3835 | } else { | |
1aa83678 PX |
3836 | /* |
3837 | * For small pages that matches target page size, we | |
3838 | * avoid the qemu_file copy. Instead we directly use | |
3839 | * the buffer of QEMUFile to place the page. Note: we | |
3840 | * cannot do any QEMUFile operation before using that | |
3841 | * buffer to make sure the buffer is valid when | |
3842 | * placing the page. | |
a7180877 DDAG |
3843 | */ |
3844 | qemu_get_buffer_in_place(f, (uint8_t **)&place_source, | |
3845 | TARGET_PAGE_SIZE); | |
3846 | } | |
3847 | break; | |
644acf99 WY |
3848 | case RAM_SAVE_FLAG_COMPRESS_PAGE: |
3849 | all_zero = false; | |
3850 | len = qemu_get_be32(f); | |
3851 | if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { | |
3852 | error_report("Invalid compressed data length: %d", len); | |
3853 | ret = -EINVAL; | |
3854 | break; | |
3855 | } | |
3856 | decompress_data_with_multi_threads(f, page_buffer, len); | |
3857 | break; | |
3858 | ||
a7180877 DDAG |
3859 | case RAM_SAVE_FLAG_EOS: |
3860 | /* normal exit */ | |
6df264ac | 3861 | multifd_recv_sync_main(); |
a7180877 DDAG |
3862 | break; |
3863 | default: | |
29fccade | 3864 | error_report("Unknown combination of migration flags: 0x%x" |
a7180877 DDAG |
3865 | " (postcopy mode)", flags); |
3866 | ret = -EINVAL; | |
7a9ddfbf PX |
3867 | break; |
3868 | } | |
3869 | ||
644acf99 WY |
3870 | /* Got the whole host page, wait for decompress before placing. */ |
3871 | if (place_needed) { | |
3872 | ret |= wait_for_decompress_done(); | |
3873 | } | |
3874 | ||
7a9ddfbf PX |
3875 | /* Detect for any possible file errors */ |
3876 | if (!ret && qemu_file_get_error(f)) { | |
3877 | ret = qemu_file_get_error(f); | |
a7180877 DDAG |
3878 | } |
3879 | ||
7a9ddfbf | 3880 | if (!ret && place_needed) { |
a7180877 | 3881 | if (all_zero) { |
6a23f639 | 3882 | ret = postcopy_place_page_zero(mis, host_page, block); |
a7180877 | 3883 | } else { |
6a23f639 DH |
3884 | ret = postcopy_place_page(mis, host_page, place_source, |
3885 | block); | |
a7180877 | 3886 | } |
ddf35bdf DH |
3887 | place_needed = false; |
3888 | target_pages = 0; | |
3889 | /* Assume we have a zero page until we detect something different */ | |
3890 | all_zero = true; | |
a7180877 | 3891 | } |
a7180877 DDAG |
3892 | } |
3893 | ||
3894 | return ret; | |
3895 | } | |
3896 | ||
acab30b8 DHB |
3897 | static bool postcopy_is_advised(void) |
3898 | { | |
3899 | PostcopyState ps = postcopy_state_get(); | |
3900 | return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; | |
3901 | } | |
3902 | ||
3903 | static bool postcopy_is_running(void) | |
3904 | { | |
3905 | PostcopyState ps = postcopy_state_get(); | |
3906 | return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; | |
3907 | } | |
3908 | ||
e6f4aa18 ZC |
3909 | /* |
3910 | * Flush content of RAM cache into SVM's memory. | |
3911 | * Only flush the pages that be dirtied by PVM or SVM or both. | |
3912 | */ | |
24fa16f8 | 3913 | void colo_flush_ram_cache(void) |
e6f4aa18 ZC |
3914 | { |
3915 | RAMBlock *block = NULL; | |
3916 | void *dst_host; | |
3917 | void *src_host; | |
3918 | unsigned long offset = 0; | |
3919 | ||
d1955d22 | 3920 | memory_global_dirty_log_sync(); |
63268c49 | 3921 | qemu_mutex_lock(&ram_state->bitmap_mutex); |
89ac5a1d DDAG |
3922 | WITH_RCU_READ_LOCK_GUARD() { |
3923 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
3924 | ramblock_sync_dirty_bitmap(ram_state, block); | |
3925 | } | |
d1955d22 | 3926 | } |
d1955d22 | 3927 | |
e6f4aa18 | 3928 | trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); |
89ac5a1d DDAG |
3929 | WITH_RCU_READ_LOCK_GUARD() { |
3930 | block = QLIST_FIRST_RCU(&ram_list.blocks); | |
e6f4aa18 | 3931 | |
89ac5a1d | 3932 | while (block) { |
a6a83cef | 3933 | unsigned long num = 0; |
e6f4aa18 | 3934 | |
a6a83cef | 3935 | offset = colo_bitmap_find_dirty(ram_state, block, offset, &num); |
542147f4 DH |
3936 | if (!offset_in_ramblock(block, |
3937 | ((ram_addr_t)offset) << TARGET_PAGE_BITS)) { | |
89ac5a1d | 3938 | offset = 0; |
a6a83cef | 3939 | num = 0; |
89ac5a1d DDAG |
3940 | block = QLIST_NEXT_RCU(block, next); |
3941 | } else { | |
a6a83cef RL |
3942 | unsigned long i = 0; |
3943 | ||
3944 | for (i = 0; i < num; i++) { | |
3945 | migration_bitmap_clear_dirty(ram_state, block, offset + i); | |
3946 | } | |
8bba004c AR |
3947 | dst_host = block->host |
3948 | + (((ram_addr_t)offset) << TARGET_PAGE_BITS); | |
3949 | src_host = block->colo_cache | |
3950 | + (((ram_addr_t)offset) << TARGET_PAGE_BITS); | |
a6a83cef RL |
3951 | memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num); |
3952 | offset += num; | |
89ac5a1d | 3953 | } |
e6f4aa18 ZC |
3954 | } |
3955 | } | |
e6f4aa18 | 3956 | trace_colo_flush_ram_cache_end(); |
63268c49 | 3957 | qemu_mutex_unlock(&ram_state->bitmap_mutex); |
e6f4aa18 ZC |
3958 | } |
3959 | ||
10da4a36 WY |
3960 | /** |
3961 | * ram_load_precopy: load pages in precopy case | |
3962 | * | |
3963 | * Returns 0 for success or -errno in case of error | |
3964 | * | |
3965 | * Called in precopy mode by ram_load(). | |
3966 | * rcu_read_lock is taken prior to this being called. | |
3967 | * | |
3968 | * @f: QEMUFile where to send the data | |
3969 | */ | |
3970 | static int ram_load_precopy(QEMUFile *f) | |
56e93d26 | 3971 | { |
e65cec5e | 3972 | int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0; |
ef08fb38 | 3973 | /* ADVISE is earlier, it shows the source has the postcopy capability on */ |
acab30b8 | 3974 | bool postcopy_advised = postcopy_is_advised(); |
edc60127 JQ |
3975 | if (!migrate_use_compression()) { |
3976 | invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; | |
3977 | } | |
a7180877 | 3978 | |
10da4a36 | 3979 | while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { |
56e93d26 | 3980 | ram_addr_t addr, total_ram_bytes; |
0393031a | 3981 | void *host = NULL, *host_bak = NULL; |
56e93d26 JQ |
3982 | uint8_t ch; |
3983 | ||
e65cec5e YK |
3984 | /* |
3985 | * Yield periodically to let main loop run, but an iteration of | |
3986 | * the main loop is expensive, so do it each some iterations | |
3987 | */ | |
3988 | if ((i & 32767) == 0 && qemu_in_coroutine()) { | |
3989 | aio_co_schedule(qemu_get_current_aio_context(), | |
3990 | qemu_coroutine_self()); | |
3991 | qemu_coroutine_yield(); | |
3992 | } | |
3993 | i++; | |
3994 | ||
56e93d26 JQ |
3995 | addr = qemu_get_be64(f); |
3996 | flags = addr & ~TARGET_PAGE_MASK; | |
3997 | addr &= TARGET_PAGE_MASK; | |
3998 | ||
edc60127 JQ |
3999 | if (flags & invalid_flags) { |
4000 | if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { | |
4001 | error_report("Received an unexpected compressed page"); | |
4002 | } | |
4003 | ||
4004 | ret = -EINVAL; | |
4005 | break; | |
4006 | } | |
4007 | ||
bb890ed5 | 4008 | if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | |
a776aa15 | 4009 | RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { |
4c4bad48 HZ |
4010 | RAMBlock *block = ram_block_from_stream(f, flags); |
4011 | ||
0393031a | 4012 | host = host_from_ram_block_offset(block, addr); |
13af18f2 | 4013 | /* |
0393031a HZ |
4014 | * After going into COLO stage, we should not load the page |
4015 | * into SVM's memory directly, we put them into colo_cache firstly. | |
4016 | * NOTE: We need to keep a copy of SVM's ram in colo_cache. | |
4017 | * Previously, we copied all these memory in preparing stage of COLO | |
4018 | * while we need to stop VM, which is a time-consuming process. | |
4019 | * Here we optimize it by a trick, back-up every page while in | |
4020 | * migration process while COLO is enabled, though it affects the | |
4021 | * speed of the migration, but it obviously reduce the downtime of | |
4022 | * back-up all SVM'S memory in COLO preparing stage. | |
13af18f2 | 4023 | */ |
0393031a HZ |
4024 | if (migration_incoming_colo_enabled()) { |
4025 | if (migration_incoming_in_colo_state()) { | |
4026 | /* In COLO stage, put all pages into cache temporarily */ | |
8af66371 | 4027 | host = colo_cache_from_block_offset(block, addr, true); |
0393031a HZ |
4028 | } else { |
4029 | /* | |
4030 | * In migration stage but before COLO stage, | |
4031 | * Put all pages into both cache and SVM's memory. | |
4032 | */ | |
8af66371 | 4033 | host_bak = colo_cache_from_block_offset(block, addr, false); |
0393031a | 4034 | } |
13af18f2 | 4035 | } |
a776aa15 DDAG |
4036 | if (!host) { |
4037 | error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); | |
4038 | ret = -EINVAL; | |
4039 | break; | |
4040 | } | |
13af18f2 ZC |
4041 | if (!migration_incoming_in_colo_state()) { |
4042 | ramblock_recv_bitmap_set(block, host); | |
4043 | } | |
4044 | ||
1db9d8e5 | 4045 | trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); |
a776aa15 DDAG |
4046 | } |
4047 | ||
56e93d26 JQ |
4048 | switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { |
4049 | case RAM_SAVE_FLAG_MEM_SIZE: | |
4050 | /* Synchronize RAM block list */ | |
4051 | total_ram_bytes = addr; | |
4052 | while (!ret && total_ram_bytes) { | |
4053 | RAMBlock *block; | |
56e93d26 JQ |
4054 | char id[256]; |
4055 | ram_addr_t length; | |
4056 | ||
4057 | len = qemu_get_byte(f); | |
4058 | qemu_get_buffer(f, (uint8_t *)id, len); | |
4059 | id[len] = 0; | |
4060 | length = qemu_get_be64(f); | |
4061 | ||
e3dd7493 | 4062 | block = qemu_ram_block_by_name(id); |
b895de50 CLG |
4063 | if (block && !qemu_ram_is_migratable(block)) { |
4064 | error_report("block %s should not be migrated !", id); | |
4065 | ret = -EINVAL; | |
4066 | } else if (block) { | |
e3dd7493 DDAG |
4067 | if (length != block->used_length) { |
4068 | Error *local_err = NULL; | |
56e93d26 | 4069 | |
fa53a0e5 | 4070 | ret = qemu_ram_resize(block, length, |
e3dd7493 DDAG |
4071 | &local_err); |
4072 | if (local_err) { | |
4073 | error_report_err(local_err); | |
56e93d26 | 4074 | } |
56e93d26 | 4075 | } |
ef08fb38 | 4076 | /* For postcopy we need to check hugepage sizes match */ |
e846b746 | 4077 | if (postcopy_advised && migrate_postcopy_ram() && |
ef08fb38 DDAG |
4078 | block->page_size != qemu_host_page_size) { |
4079 | uint64_t remote_page_size = qemu_get_be64(f); | |
4080 | if (remote_page_size != block->page_size) { | |
4081 | error_report("Mismatched RAM page size %s " | |
4082 | "(local) %zd != %" PRId64, | |
4083 | id, block->page_size, | |
4084 | remote_page_size); | |
4085 | ret = -EINVAL; | |
4086 | } | |
4087 | } | |
fbd162e6 YK |
4088 | if (migrate_ignore_shared()) { |
4089 | hwaddr addr = qemu_get_be64(f); | |
fbd162e6 YK |
4090 | if (ramblock_is_ignored(block) && |
4091 | block->mr->addr != addr) { | |
4092 | error_report("Mismatched GPAs for block %s " | |
4093 | "%" PRId64 "!= %" PRId64, | |
4094 | id, (uint64_t)addr, | |
4095 | (uint64_t)block->mr->addr); | |
4096 | ret = -EINVAL; | |
4097 | } | |
4098 | } | |
e3dd7493 DDAG |
4099 | ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, |
4100 | block->idstr); | |
4101 | } else { | |
56e93d26 JQ |
4102 | error_report("Unknown ramblock \"%s\", cannot " |
4103 | "accept migration", id); | |
4104 | ret = -EINVAL; | |
4105 | } | |
4106 | ||
4107 | total_ram_bytes -= length; | |
4108 | } | |
4109 | break; | |
a776aa15 | 4110 | |
bb890ed5 | 4111 | case RAM_SAVE_FLAG_ZERO: |
56e93d26 JQ |
4112 | ch = qemu_get_byte(f); |
4113 | ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); | |
4114 | break; | |
a776aa15 | 4115 | |
56e93d26 | 4116 | case RAM_SAVE_FLAG_PAGE: |
56e93d26 JQ |
4117 | qemu_get_buffer(f, host, TARGET_PAGE_SIZE); |
4118 | break; | |
56e93d26 | 4119 | |
a776aa15 | 4120 | case RAM_SAVE_FLAG_COMPRESS_PAGE: |
56e93d26 JQ |
4121 | len = qemu_get_be32(f); |
4122 | if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { | |
4123 | error_report("Invalid compressed data length: %d", len); | |
4124 | ret = -EINVAL; | |
4125 | break; | |
4126 | } | |
c1bc6626 | 4127 | decompress_data_with_multi_threads(f, host, len); |
56e93d26 | 4128 | break; |
a776aa15 | 4129 | |
56e93d26 | 4130 | case RAM_SAVE_FLAG_XBZRLE: |
56e93d26 JQ |
4131 | if (load_xbzrle(f, addr, host) < 0) { |
4132 | error_report("Failed to decompress XBZRLE page at " | |
4133 | RAM_ADDR_FMT, addr); | |
4134 | ret = -EINVAL; | |
4135 | break; | |
4136 | } | |
4137 | break; | |
4138 | case RAM_SAVE_FLAG_EOS: | |
4139 | /* normal exit */ | |
6df264ac | 4140 | multifd_recv_sync_main(); |
56e93d26 JQ |
4141 | break; |
4142 | default: | |
4143 | if (flags & RAM_SAVE_FLAG_HOOK) { | |
632e3a5c | 4144 | ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); |
56e93d26 | 4145 | } else { |
29fccade | 4146 | error_report("Unknown combination of migration flags: 0x%x", |
56e93d26 JQ |
4147 | flags); |
4148 | ret = -EINVAL; | |
4149 | } | |
4150 | } | |
4151 | if (!ret) { | |
4152 | ret = qemu_file_get_error(f); | |
4153 | } | |
0393031a HZ |
4154 | if (!ret && host_bak) { |
4155 | memcpy(host_bak, host, TARGET_PAGE_SIZE); | |
4156 | } | |
56e93d26 JQ |
4157 | } |
4158 | ||
ca1a6b70 | 4159 | ret |= wait_for_decompress_done(); |
10da4a36 WY |
4160 | return ret; |
4161 | } | |
4162 | ||
4163 | static int ram_load(QEMUFile *f, void *opaque, int version_id) | |
4164 | { | |
4165 | int ret = 0; | |
4166 | static uint64_t seq_iter; | |
4167 | /* | |
4168 | * If system is running in postcopy mode, page inserts to host memory must | |
4169 | * be atomic | |
4170 | */ | |
4171 | bool postcopy_running = postcopy_is_running(); | |
4172 | ||
4173 | seq_iter++; | |
4174 | ||
4175 | if (version_id != 4) { | |
4176 | return -EINVAL; | |
4177 | } | |
4178 | ||
4179 | /* | |
4180 | * This RCU critical section can be very long running. | |
4181 | * When RCU reclaims in the code start to become numerous, | |
4182 | * it will be necessary to reduce the granularity of this | |
4183 | * critical section. | |
4184 | */ | |
89ac5a1d DDAG |
4185 | WITH_RCU_READ_LOCK_GUARD() { |
4186 | if (postcopy_running) { | |
4187 | ret = ram_load_postcopy(f); | |
4188 | } else { | |
4189 | ret = ram_load_precopy(f); | |
4190 | } | |
10da4a36 | 4191 | } |
55c4446b | 4192 | trace_ram_load_complete(ret, seq_iter); |
e6f4aa18 | 4193 | |
56e93d26 JQ |
4194 | return ret; |
4195 | } | |
4196 | ||
c6467627 VSO |
4197 | static bool ram_has_postcopy(void *opaque) |
4198 | { | |
469dd51b | 4199 | RAMBlock *rb; |
fbd162e6 | 4200 | RAMBLOCK_FOREACH_NOT_IGNORED(rb) { |
469dd51b JH |
4201 | if (ramblock_is_pmem(rb)) { |
4202 | info_report("Block: %s, host: %p is a nvdimm memory, postcopy" | |
4203 | "is not supported now!", rb->idstr, rb->host); | |
4204 | return false; | |
4205 | } | |
4206 | } | |
4207 | ||
c6467627 VSO |
4208 | return migrate_postcopy_ram(); |
4209 | } | |
4210 | ||
edd090c7 PX |
4211 | /* Sync all the dirty bitmap with destination VM. */ |
4212 | static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) | |
4213 | { | |
4214 | RAMBlock *block; | |
4215 | QEMUFile *file = s->to_dst_file; | |
4216 | int ramblock_count = 0; | |
4217 | ||
4218 | trace_ram_dirty_bitmap_sync_start(); | |
4219 | ||
fbd162e6 | 4220 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
edd090c7 PX |
4221 | qemu_savevm_send_recv_bitmap(file, block->idstr); |
4222 | trace_ram_dirty_bitmap_request(block->idstr); | |
4223 | ramblock_count++; | |
4224 | } | |
4225 | ||
4226 | trace_ram_dirty_bitmap_sync_wait(); | |
4227 | ||
4228 | /* Wait until all the ramblocks' dirty bitmap synced */ | |
4229 | while (ramblock_count--) { | |
4230 | qemu_sem_wait(&s->rp_state.rp_sem); | |
4231 | } | |
4232 | ||
4233 | trace_ram_dirty_bitmap_sync_complete(); | |
4234 | ||
4235 | return 0; | |
4236 | } | |
4237 | ||
4238 | static void ram_dirty_bitmap_reload_notify(MigrationState *s) | |
4239 | { | |
4240 | qemu_sem_post(&s->rp_state.rp_sem); | |
4241 | } | |
4242 | ||
a335debb PX |
4243 | /* |
4244 | * Read the received bitmap, revert it as the initial dirty bitmap. | |
4245 | * This is only used when the postcopy migration is paused but wants | |
4246 | * to resume from a middle point. | |
4247 | */ | |
4248 | int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) | |
4249 | { | |
4250 | int ret = -EINVAL; | |
43044ac0 | 4251 | /* from_dst_file is always valid because we're within rp_thread */ |
a335debb PX |
4252 | QEMUFile *file = s->rp_state.from_dst_file; |
4253 | unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; | |
a725ef9f | 4254 | uint64_t local_size = DIV_ROUND_UP(nbits, 8); |
a335debb PX |
4255 | uint64_t size, end_mark; |
4256 | ||
4257 | trace_ram_dirty_bitmap_reload_begin(block->idstr); | |
4258 | ||
4259 | if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { | |
4260 | error_report("%s: incorrect state %s", __func__, | |
4261 | MigrationStatus_str(s->state)); | |
4262 | return -EINVAL; | |
4263 | } | |
4264 | ||
4265 | /* | |
4266 | * Note: see comments in ramblock_recv_bitmap_send() on why we | |
3a4452d8 | 4267 | * need the endianness conversion, and the paddings. |
a335debb PX |
4268 | */ |
4269 | local_size = ROUND_UP(local_size, 8); | |
4270 | ||
4271 | /* Add paddings */ | |
4272 | le_bitmap = bitmap_new(nbits + BITS_PER_LONG); | |
4273 | ||
4274 | size = qemu_get_be64(file); | |
4275 | ||
4276 | /* The size of the bitmap should match with our ramblock */ | |
4277 | if (size != local_size) { | |
4278 | error_report("%s: ramblock '%s' bitmap size mismatch " | |
4279 | "(0x%"PRIx64" != 0x%"PRIx64")", __func__, | |
4280 | block->idstr, size, local_size); | |
4281 | ret = -EINVAL; | |
4282 | goto out; | |
4283 | } | |
4284 | ||
4285 | size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); | |
4286 | end_mark = qemu_get_be64(file); | |
4287 | ||
4288 | ret = qemu_file_get_error(file); | |
4289 | if (ret || size != local_size) { | |
4290 | error_report("%s: read bitmap failed for ramblock '%s': %d" | |
4291 | " (size 0x%"PRIx64", got: 0x%"PRIx64")", | |
4292 | __func__, block->idstr, ret, local_size, size); | |
4293 | ret = -EIO; | |
4294 | goto out; | |
4295 | } | |
4296 | ||
4297 | if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { | |
af3bbbe9 | 4298 | error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64, |
a335debb PX |
4299 | __func__, block->idstr, end_mark); |
4300 | ret = -EINVAL; | |
4301 | goto out; | |
4302 | } | |
4303 | ||
4304 | /* | |
3a4452d8 | 4305 | * Endianness conversion. We are during postcopy (though paused). |
a335debb PX |
4306 | * The dirty bitmap won't change. We can directly modify it. |
4307 | */ | |
4308 | bitmap_from_le(block->bmap, le_bitmap, nbits); | |
4309 | ||
4310 | /* | |
4311 | * What we received is "received bitmap". Revert it as the initial | |
4312 | * dirty bitmap for this ramblock. | |
4313 | */ | |
4314 | bitmap_complement(block->bmap, block->bmap, nbits); | |
4315 | ||
be39b4cd DH |
4316 | /* Clear dirty bits of discarded ranges that we don't want to migrate. */ |
4317 | ramblock_dirty_bitmap_clear_discarded_pages(block); | |
4318 | ||
4319 | /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */ | |
a335debb PX |
4320 | trace_ram_dirty_bitmap_reload_complete(block->idstr); |
4321 | ||
edd090c7 PX |
4322 | /* |
4323 | * We succeeded to sync bitmap for current ramblock. If this is | |
4324 | * the last one to sync, we need to notify the main send thread. | |
4325 | */ | |
4326 | ram_dirty_bitmap_reload_notify(s); | |
4327 | ||
a335debb PX |
4328 | ret = 0; |
4329 | out: | |
bf269906 | 4330 | g_free(le_bitmap); |
a335debb PX |
4331 | return ret; |
4332 | } | |
4333 | ||
edd090c7 PX |
4334 | static int ram_resume_prepare(MigrationState *s, void *opaque) |
4335 | { | |
4336 | RAMState *rs = *(RAMState **)opaque; | |
08614f34 | 4337 | int ret; |
edd090c7 | 4338 | |
08614f34 PX |
4339 | ret = ram_dirty_bitmap_sync_all(s, rs); |
4340 | if (ret) { | |
4341 | return ret; | |
4342 | } | |
4343 | ||
4344 | ram_state_resume_prepare(rs, s->to_dst_file); | |
4345 | ||
4346 | return 0; | |
edd090c7 PX |
4347 | } |
4348 | ||
56e93d26 | 4349 | static SaveVMHandlers savevm_ram_handlers = { |
9907e842 | 4350 | .save_setup = ram_save_setup, |
56e93d26 | 4351 | .save_live_iterate = ram_save_iterate, |
763c906b | 4352 | .save_live_complete_postcopy = ram_save_complete, |
a3e06c3d | 4353 | .save_live_complete_precopy = ram_save_complete, |
c6467627 | 4354 | .has_postcopy = ram_has_postcopy, |
56e93d26 JQ |
4355 | .save_live_pending = ram_save_pending, |
4356 | .load_state = ram_load, | |
f265e0e4 JQ |
4357 | .save_cleanup = ram_save_cleanup, |
4358 | .load_setup = ram_load_setup, | |
4359 | .load_cleanup = ram_load_cleanup, | |
edd090c7 | 4360 | .resume_prepare = ram_resume_prepare, |
56e93d26 JQ |
4361 | }; |
4362 | ||
c7c0e724 DH |
4363 | static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host, |
4364 | size_t old_size, size_t new_size) | |
4365 | { | |
cc61c703 | 4366 | PostcopyState ps = postcopy_state_get(); |
c7c0e724 DH |
4367 | ram_addr_t offset; |
4368 | RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset); | |
4369 | Error *err = NULL; | |
4370 | ||
4371 | if (ramblock_is_ignored(rb)) { | |
4372 | return; | |
4373 | } | |
4374 | ||
4375 | if (!migration_is_idle()) { | |
4376 | /* | |
4377 | * Precopy code on the source cannot deal with the size of RAM blocks | |
4378 | * changing at random points in time - especially after sending the | |
4379 | * RAM block sizes in the migration stream, they must no longer change. | |
4380 | * Abort and indicate a proper reason. | |
4381 | */ | |
4382 | error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr); | |
458fecca | 4383 | migration_cancel(err); |
c7c0e724 | 4384 | error_free(err); |
c7c0e724 | 4385 | } |
cc61c703 DH |
4386 | |
4387 | switch (ps) { | |
4388 | case POSTCOPY_INCOMING_ADVISE: | |
4389 | /* | |
4390 | * Update what ram_postcopy_incoming_init()->init_range() does at the | |
4391 | * time postcopy was advised. Syncing RAM blocks with the source will | |
4392 | * result in RAM resizes. | |
4393 | */ | |
4394 | if (old_size < new_size) { | |
4395 | if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) { | |
4396 | error_report("RAM block '%s' discard of resized RAM failed", | |
4397 | rb->idstr); | |
4398 | } | |
4399 | } | |
898ba906 | 4400 | rb->postcopy_length = new_size; |
cc61c703 DH |
4401 | break; |
4402 | case POSTCOPY_INCOMING_NONE: | |
4403 | case POSTCOPY_INCOMING_RUNNING: | |
4404 | case POSTCOPY_INCOMING_END: | |
4405 | /* | |
4406 | * Once our guest is running, postcopy does no longer care about | |
4407 | * resizes. When growing, the new memory was not available on the | |
4408 | * source, no handler needed. | |
4409 | */ | |
4410 | break; | |
4411 | default: | |
4412 | error_report("RAM block '%s' resized during postcopy state: %d", | |
4413 | rb->idstr, ps); | |
4414 | exit(-1); | |
4415 | } | |
c7c0e724 DH |
4416 | } |
4417 | ||
4418 | static RAMBlockNotifier ram_mig_ram_notifier = { | |
4419 | .ram_block_resized = ram_mig_ram_block_resized, | |
4420 | }; | |
4421 | ||
56e93d26 JQ |
4422 | void ram_mig_init(void) |
4423 | { | |
4424 | qemu_mutex_init(&XBZRLE.lock); | |
ce62df53 | 4425 | register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); |
c7c0e724 | 4426 | ram_block_notifier_add(&ram_mig_ram_notifier); |
56e93d26 | 4427 | } |