]> git.proxmox.com Git - mirror_qemu.git/blame - migration/ram.c
Merge remote-tracking branch 'remotes/stefanha/tags/block-pull-request' into staging
[mirror_qemu.git] / migration / ram.c
CommitLineData
56e93d26
JQ
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
76cc7b58
JQ
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
56e93d26
JQ
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
e688df6b 28
1393a485 29#include "qemu/osdep.h"
33c11879 30#include "cpu.h"
56e93d26 31#include <zlib.h>
f348b6d1 32#include "qemu/cutils.h"
56e93d26
JQ
33#include "qemu/bitops.h"
34#include "qemu/bitmap.h"
7205c9ec 35#include "qemu/main-loop.h"
709e3fe8 36#include "xbzrle.h"
7b1e1a22 37#include "ram.h"
6666c96a 38#include "migration.h"
71bb07db 39#include "socket.h"
f2a8f0a6 40#include "migration/register.h"
7b1e1a22 41#include "migration/misc.h"
08a0aee1 42#include "qemu-file.h"
be07b0ac 43#include "postcopy-ram.h"
53d37d36 44#include "page_cache.h"
56e93d26 45#include "qemu/error-report.h"
e688df6b 46#include "qapi/error.h"
9af23989 47#include "qapi/qapi-events-migration.h"
8acabf69 48#include "qapi/qmp/qerror.h"
56e93d26 49#include "trace.h"
56e93d26 50#include "exec/ram_addr.h"
f9494614 51#include "exec/target_page.h"
56e93d26 52#include "qemu/rcu_queue.h"
a91246c9 53#include "migration/colo.h"
53d37d36 54#include "block.h"
af8b7d2b
JQ
55#include "sysemu/sysemu.h"
56#include "qemu/uuid.h"
edd090c7 57#include "savevm.h"
b9ee2f7d 58#include "qemu/iov.h"
56e93d26 59
56e93d26
JQ
60/***********************************************************/
61/* ram save/restore */
62
bb890ed5
JQ
63/* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
64 * worked for pages that where filled with the same char. We switched
65 * it to only search for the zero value. And to avoid confusion with
66 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
67 */
68
56e93d26 69#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
bb890ed5 70#define RAM_SAVE_FLAG_ZERO 0x02
56e93d26
JQ
71#define RAM_SAVE_FLAG_MEM_SIZE 0x04
72#define RAM_SAVE_FLAG_PAGE 0x08
73#define RAM_SAVE_FLAG_EOS 0x10
74#define RAM_SAVE_FLAG_CONTINUE 0x20
75#define RAM_SAVE_FLAG_XBZRLE 0x40
76/* 0x80 is reserved in migration.h start with 0x100 next */
77#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
78
56e93d26
JQ
79static inline bool is_zero_range(uint8_t *p, uint64_t size)
80{
a1febc49 81 return buffer_is_zero(p, size);
56e93d26
JQ
82}
83
9360447d
JQ
84XBZRLECacheStats xbzrle_counters;
85
56e93d26
JQ
86/* struct contains XBZRLE cache and a static page
87 used by the compression */
88static struct {
89 /* buffer used for XBZRLE encoding */
90 uint8_t *encoded_buf;
91 /* buffer for storing page content */
92 uint8_t *current_buf;
93 /* Cache for XBZRLE, Protected by lock. */
94 PageCache *cache;
95 QemuMutex lock;
c00e0928
JQ
96 /* it will store a page full of zeros */
97 uint8_t *zero_target_page;
f265e0e4
JQ
98 /* buffer used for XBZRLE decoding */
99 uint8_t *decoded_buf;
56e93d26
JQ
100} XBZRLE;
101
56e93d26
JQ
102static void XBZRLE_cache_lock(void)
103{
104 if (migrate_use_xbzrle())
105 qemu_mutex_lock(&XBZRLE.lock);
106}
107
108static void XBZRLE_cache_unlock(void)
109{
110 if (migrate_use_xbzrle())
111 qemu_mutex_unlock(&XBZRLE.lock);
112}
113
3d0684b2
JQ
114/**
115 * xbzrle_cache_resize: resize the xbzrle cache
116 *
117 * This function is called from qmp_migrate_set_cache_size in main
118 * thread, possibly while a migration is in progress. A running
119 * migration may be using the cache and might finish during this call,
120 * hence changes to the cache are protected by XBZRLE.lock().
121 *
c9dede2d 122 * Returns 0 for success or -1 for error
3d0684b2
JQ
123 *
124 * @new_size: new cache size
8acabf69 125 * @errp: set *errp if the check failed, with reason
56e93d26 126 */
c9dede2d 127int xbzrle_cache_resize(int64_t new_size, Error **errp)
56e93d26
JQ
128{
129 PageCache *new_cache;
c9dede2d 130 int64_t ret = 0;
56e93d26 131
8acabf69
JQ
132 /* Check for truncation */
133 if (new_size != (size_t)new_size) {
134 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
135 "exceeding address space");
136 return -1;
137 }
138
2a313e5c
JQ
139 if (new_size == migrate_xbzrle_cache_size()) {
140 /* nothing to do */
c9dede2d 141 return 0;
2a313e5c
JQ
142 }
143
56e93d26
JQ
144 XBZRLE_cache_lock();
145
146 if (XBZRLE.cache != NULL) {
80f8dfde 147 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
56e93d26 148 if (!new_cache) {
56e93d26
JQ
149 ret = -1;
150 goto out;
151 }
152
153 cache_fini(XBZRLE.cache);
154 XBZRLE.cache = new_cache;
155 }
56e93d26
JQ
156out:
157 XBZRLE_cache_unlock();
158 return ret;
159}
160
b895de50
CLG
161/* Should be holding either ram_list.mutex, or the RCU lock. */
162#define RAMBLOCK_FOREACH_MIGRATABLE(block) \
343f632c 163 INTERNAL_RAMBLOCK_FOREACH(block) \
b895de50
CLG
164 if (!qemu_ram_is_migratable(block)) {} else
165
343f632c
DDAG
166#undef RAMBLOCK_FOREACH
167
f9494614
AP
168static void ramblock_recv_map_init(void)
169{
170 RAMBlock *rb;
171
b895de50 172 RAMBLOCK_FOREACH_MIGRATABLE(rb) {
f9494614
AP
173 assert(!rb->receivedmap);
174 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
175 }
176}
177
178int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
179{
180 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
181 rb->receivedmap);
182}
183
1cba9f6e
DDAG
184bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
185{
186 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
187}
188
f9494614
AP
189void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
190{
191 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
192}
193
194void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
195 size_t nr)
196{
197 bitmap_set_atomic(rb->receivedmap,
198 ramblock_recv_bitmap_offset(host_addr, rb),
199 nr);
200}
201
a335debb
PX
202#define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
203
204/*
205 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
206 *
207 * Returns >0 if success with sent bytes, or <0 if error.
208 */
209int64_t ramblock_recv_bitmap_send(QEMUFile *file,
210 const char *block_name)
211{
212 RAMBlock *block = qemu_ram_block_by_name(block_name);
213 unsigned long *le_bitmap, nbits;
214 uint64_t size;
215
216 if (!block) {
217 error_report("%s: invalid block name: %s", __func__, block_name);
218 return -1;
219 }
220
221 nbits = block->used_length >> TARGET_PAGE_BITS;
222
223 /*
224 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
225 * machines we may need 4 more bytes for padding (see below
226 * comment). So extend it a bit before hand.
227 */
228 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
229
230 /*
231 * Always use little endian when sending the bitmap. This is
232 * required that when source and destination VMs are not using the
233 * same endianess. (Note: big endian won't work.)
234 */
235 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
236
237 /* Size of the bitmap, in bytes */
a725ef9f 238 size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
239
240 /*
241 * size is always aligned to 8 bytes for 64bit machines, but it
242 * may not be true for 32bit machines. We need this padding to
243 * make sure the migration can survive even between 32bit and
244 * 64bit machines.
245 */
246 size = ROUND_UP(size, 8);
247
248 qemu_put_be64(file, size);
249 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
250 /*
251 * Mark as an end, in case the middle part is screwed up due to
252 * some "misterious" reason.
253 */
254 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
255 qemu_fflush(file);
256
bf269906 257 g_free(le_bitmap);
a335debb
PX
258
259 if (qemu_file_get_error(file)) {
260 return qemu_file_get_error(file);
261 }
262
263 return size + sizeof(size);
264}
265
ec481c6c
JQ
266/*
267 * An outstanding page request, on the source, having been received
268 * and queued
269 */
270struct RAMSrcPageRequest {
271 RAMBlock *rb;
272 hwaddr offset;
273 hwaddr len;
274
275 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
276};
277
6f37bb8b
JQ
278/* State of RAM for migration */
279struct RAMState {
204b88b8
JQ
280 /* QEMUFile used for this migration */
281 QEMUFile *f;
6f37bb8b
JQ
282 /* Last block that we have visited searching for dirty pages */
283 RAMBlock *last_seen_block;
284 /* Last block from where we have sent data */
285 RAMBlock *last_sent_block;
269ace29
JQ
286 /* Last dirty target page we have sent */
287 ram_addr_t last_page;
6f37bb8b
JQ
288 /* last ram version we have seen */
289 uint32_t last_version;
290 /* We are in the first round */
291 bool ram_bulk_stage;
8d820d6f
JQ
292 /* How many times we have dirty too many pages */
293 int dirty_rate_high_cnt;
f664da80
JQ
294 /* these variables are used for bitmap sync */
295 /* last time we did a full bitmap_sync */
296 int64_t time_last_bitmap_sync;
eac74159 297 /* bytes transferred at start_time */
c4bdf0cf 298 uint64_t bytes_xfer_prev;
a66cd90c 299 /* number of dirty pages since start_time */
68908ed6 300 uint64_t num_dirty_pages_period;
b5833fde
JQ
301 /* xbzrle misses since the beginning of the period */
302 uint64_t xbzrle_cache_miss_prev;
36040d9c
JQ
303 /* number of iterations at the beginning of period */
304 uint64_t iterations_prev;
23b28c3c
JQ
305 /* Iterations since start */
306 uint64_t iterations;
9360447d 307 /* number of dirty bits in the bitmap */
2dfaf12e
PX
308 uint64_t migration_dirty_pages;
309 /* protects modification of the bitmap */
108cfae0 310 QemuMutex bitmap_mutex;
68a098f3
JQ
311 /* The RAMBlock used in the last src_page_requests */
312 RAMBlock *last_req_rb;
ec481c6c
JQ
313 /* Queue of outstanding page requests from the destination */
314 QemuMutex src_page_req_mutex;
315 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests;
6f37bb8b
JQ
316};
317typedef struct RAMState RAMState;
318
53518d94 319static RAMState *ram_state;
6f37bb8b 320
9edabd4d 321uint64_t ram_bytes_remaining(void)
2f4fde93 322{
bae416e5
DDAG
323 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
324 0;
2f4fde93
JQ
325}
326
9360447d 327MigrationStats ram_counters;
96506894 328
b8fb8cb7
DDAG
329/* used by the search for pages to send */
330struct PageSearchStatus {
331 /* Current block being searched */
332 RAMBlock *block;
a935e30f
JQ
333 /* Current page to search from */
334 unsigned long page;
b8fb8cb7
DDAG
335 /* Set once we wrap around */
336 bool complete_round;
337};
338typedef struct PageSearchStatus PageSearchStatus;
339
56e93d26 340struct CompressParam {
56e93d26 341 bool done;
90e56fb4 342 bool quit;
56e93d26
JQ
343 QEMUFile *file;
344 QemuMutex mutex;
345 QemuCond cond;
346 RAMBlock *block;
347 ram_addr_t offset;
34ab9e97
XG
348
349 /* internally used fields */
dcaf446e 350 z_stream stream;
34ab9e97 351 uint8_t *originbuf;
56e93d26
JQ
352};
353typedef struct CompressParam CompressParam;
354
355struct DecompressParam {
73a8912b 356 bool done;
90e56fb4 357 bool quit;
56e93d26
JQ
358 QemuMutex mutex;
359 QemuCond cond;
360 void *des;
d341d9f3 361 uint8_t *compbuf;
56e93d26 362 int len;
797ca154 363 z_stream stream;
56e93d26
JQ
364};
365typedef struct DecompressParam DecompressParam;
366
367static CompressParam *comp_param;
368static QemuThread *compress_threads;
369/* comp_done_cond is used to wake up the migration thread when
370 * one of the compression threads has finished the compression.
371 * comp_done_lock is used to co-work with comp_done_cond.
372 */
0d9f9a5c
LL
373static QemuMutex comp_done_lock;
374static QemuCond comp_done_cond;
56e93d26
JQ
375/* The empty QEMUFileOps will be used by file in CompressParam */
376static const QEMUFileOps empty_ops = { };
377
34ab9e97 378static QEMUFile *decomp_file;
56e93d26
JQ
379static DecompressParam *decomp_param;
380static QemuThread *decompress_threads;
73a8912b
LL
381static QemuMutex decomp_done_lock;
382static QemuCond decomp_done_cond;
56e93d26 383
dcaf446e 384static int do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
34ab9e97 385 ram_addr_t offset, uint8_t *source_buf);
56e93d26
JQ
386
387static void *do_data_compress(void *opaque)
388{
389 CompressParam *param = opaque;
a7a9a88f
LL
390 RAMBlock *block;
391 ram_addr_t offset;
56e93d26 392
a7a9a88f 393 qemu_mutex_lock(&param->mutex);
90e56fb4 394 while (!param->quit) {
a7a9a88f
LL
395 if (param->block) {
396 block = param->block;
397 offset = param->offset;
398 param->block = NULL;
399 qemu_mutex_unlock(&param->mutex);
400
34ab9e97
XG
401 do_compress_ram_page(param->file, &param->stream, block, offset,
402 param->originbuf);
a7a9a88f 403
0d9f9a5c 404 qemu_mutex_lock(&comp_done_lock);
a7a9a88f 405 param->done = true;
0d9f9a5c
LL
406 qemu_cond_signal(&comp_done_cond);
407 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
408
409 qemu_mutex_lock(&param->mutex);
410 } else {
56e93d26
JQ
411 qemu_cond_wait(&param->cond, &param->mutex);
412 }
56e93d26 413 }
a7a9a88f 414 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
415
416 return NULL;
417}
418
419static inline void terminate_compression_threads(void)
420{
421 int idx, thread_count;
422
423 thread_count = migrate_compress_threads();
3d0684b2 424
56e93d26
JQ
425 for (idx = 0; idx < thread_count; idx++) {
426 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 427 comp_param[idx].quit = true;
56e93d26
JQ
428 qemu_cond_signal(&comp_param[idx].cond);
429 qemu_mutex_unlock(&comp_param[idx].mutex);
430 }
431}
432
f0afa331 433static void compress_threads_save_cleanup(void)
56e93d26
JQ
434{
435 int i, thread_count;
436
437 if (!migrate_use_compression()) {
438 return;
439 }
440 terminate_compression_threads();
441 thread_count = migrate_compress_threads();
442 for (i = 0; i < thread_count; i++) {
dcaf446e
XG
443 /*
444 * we use it as a indicator which shows if the thread is
445 * properly init'd or not
446 */
447 if (!comp_param[i].file) {
448 break;
449 }
56e93d26 450 qemu_thread_join(compress_threads + i);
56e93d26
JQ
451 qemu_mutex_destroy(&comp_param[i].mutex);
452 qemu_cond_destroy(&comp_param[i].cond);
dcaf446e 453 deflateEnd(&comp_param[i].stream);
34ab9e97 454 g_free(comp_param[i].originbuf);
dcaf446e
XG
455 qemu_fclose(comp_param[i].file);
456 comp_param[i].file = NULL;
56e93d26 457 }
0d9f9a5c
LL
458 qemu_mutex_destroy(&comp_done_lock);
459 qemu_cond_destroy(&comp_done_cond);
56e93d26
JQ
460 g_free(compress_threads);
461 g_free(comp_param);
56e93d26
JQ
462 compress_threads = NULL;
463 comp_param = NULL;
56e93d26
JQ
464}
465
dcaf446e 466static int compress_threads_save_setup(void)
56e93d26
JQ
467{
468 int i, thread_count;
469
470 if (!migrate_use_compression()) {
dcaf446e 471 return 0;
56e93d26 472 }
56e93d26
JQ
473 thread_count = migrate_compress_threads();
474 compress_threads = g_new0(QemuThread, thread_count);
475 comp_param = g_new0(CompressParam, thread_count);
0d9f9a5c
LL
476 qemu_cond_init(&comp_done_cond);
477 qemu_mutex_init(&comp_done_lock);
56e93d26 478 for (i = 0; i < thread_count; i++) {
34ab9e97
XG
479 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
480 if (!comp_param[i].originbuf) {
481 goto exit;
482 }
483
dcaf446e
XG
484 if (deflateInit(&comp_param[i].stream,
485 migrate_compress_level()) != Z_OK) {
34ab9e97 486 g_free(comp_param[i].originbuf);
dcaf446e
XG
487 goto exit;
488 }
489
e110aa91
C
490 /* comp_param[i].file is just used as a dummy buffer to save data,
491 * set its ops to empty.
56e93d26
JQ
492 */
493 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
494 comp_param[i].done = true;
90e56fb4 495 comp_param[i].quit = false;
56e93d26
JQ
496 qemu_mutex_init(&comp_param[i].mutex);
497 qemu_cond_init(&comp_param[i].cond);
498 qemu_thread_create(compress_threads + i, "compress",
499 do_data_compress, comp_param + i,
500 QEMU_THREAD_JOINABLE);
501 }
dcaf446e
XG
502 return 0;
503
504exit:
505 compress_threads_save_cleanup();
506 return -1;
56e93d26
JQ
507}
508
f986c3d2
JQ
509/* Multiple fd's */
510
af8b7d2b
JQ
511#define MULTIFD_MAGIC 0x11223344U
512#define MULTIFD_VERSION 1
513
6df264ac
JQ
514#define MULTIFD_FLAG_SYNC (1 << 0)
515
af8b7d2b
JQ
516typedef struct {
517 uint32_t magic;
518 uint32_t version;
519 unsigned char uuid[16]; /* QemuUUID */
520 uint8_t id;
521} __attribute__((packed)) MultiFDInit_t;
522
2a26c979
JQ
523typedef struct {
524 uint32_t magic;
525 uint32_t version;
526 uint32_t flags;
527 uint32_t size;
528 uint32_t used;
529 uint64_t packet_num;
530 char ramblock[256];
531 uint64_t offset[];
532} __attribute__((packed)) MultiFDPacket_t;
533
34c55a94
JQ
534typedef struct {
535 /* number of used pages */
536 uint32_t used;
537 /* number of allocated pages */
538 uint32_t allocated;
539 /* global number of generated multifd packets */
540 uint64_t packet_num;
541 /* offset of each page */
542 ram_addr_t *offset;
543 /* pointer to each page */
544 struct iovec *iov;
545 RAMBlock *block;
546} MultiFDPages_t;
547
8c4598f2
JQ
548typedef struct {
549 /* this fields are not changed once the thread is created */
550 /* channel number */
f986c3d2 551 uint8_t id;
8c4598f2 552 /* channel thread name */
f986c3d2 553 char *name;
8c4598f2 554 /* channel thread id */
f986c3d2 555 QemuThread thread;
8c4598f2 556 /* communication channel */
60df2d4a 557 QIOChannel *c;
8c4598f2 558 /* sem where to wait for more work */
f986c3d2 559 QemuSemaphore sem;
8c4598f2 560 /* this mutex protects the following parameters */
f986c3d2 561 QemuMutex mutex;
8c4598f2 562 /* is this channel thread running */
66770707 563 bool running;
8c4598f2 564 /* should this thread finish */
f986c3d2 565 bool quit;
0beb5ed3
JQ
566 /* thread has work to do */
567 int pending_job;
34c55a94
JQ
568 /* array of pages to sent */
569 MultiFDPages_t *pages;
2a26c979
JQ
570 /* packet allocated len */
571 uint32_t packet_len;
572 /* pointer to the packet */
573 MultiFDPacket_t *packet;
574 /* multifd flags for each packet */
575 uint32_t flags;
576 /* global number of generated multifd packets */
577 uint64_t packet_num;
408ea6ae
JQ
578 /* thread local variables */
579 /* packets sent through this channel */
580 uint64_t num_packets;
581 /* pages sent through this channel */
582 uint64_t num_pages;
6df264ac
JQ
583 /* syncs main thread and channels */
584 QemuSemaphore sem_sync;
8c4598f2
JQ
585} MultiFDSendParams;
586
587typedef struct {
588 /* this fields are not changed once the thread is created */
589 /* channel number */
590 uint8_t id;
591 /* channel thread name */
592 char *name;
593 /* channel thread id */
594 QemuThread thread;
595 /* communication channel */
596 QIOChannel *c;
8c4598f2
JQ
597 /* this mutex protects the following parameters */
598 QemuMutex mutex;
599 /* is this channel thread running */
600 bool running;
34c55a94
JQ
601 /* array of pages to receive */
602 MultiFDPages_t *pages;
2a26c979
JQ
603 /* packet allocated len */
604 uint32_t packet_len;
605 /* pointer to the packet */
606 MultiFDPacket_t *packet;
607 /* multifd flags for each packet */
608 uint32_t flags;
609 /* global number of generated multifd packets */
610 uint64_t packet_num;
408ea6ae
JQ
611 /* thread local variables */
612 /* packets sent through this channel */
613 uint64_t num_packets;
614 /* pages sent through this channel */
615 uint64_t num_pages;
6df264ac
JQ
616 /* syncs main thread and channels */
617 QemuSemaphore sem_sync;
8c4598f2 618} MultiFDRecvParams;
f986c3d2 619
af8b7d2b
JQ
620static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
621{
622 MultiFDInit_t msg;
623 int ret;
624
625 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
626 msg.version = cpu_to_be32(MULTIFD_VERSION);
627 msg.id = p->id;
628 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
629
630 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
631 if (ret != 0) {
632 return -1;
633 }
634 return 0;
635}
636
637static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
638{
639 MultiFDInit_t msg;
640 int ret;
641
642 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
643 if (ret != 0) {
644 return -1;
645 }
646
647 be32_to_cpus(&msg.magic);
648 be32_to_cpus(&msg.version);
649
650 if (msg.magic != MULTIFD_MAGIC) {
651 error_setg(errp, "multifd: received packet magic %x "
652 "expected %x", msg.magic, MULTIFD_MAGIC);
653 return -1;
654 }
655
656 if (msg.version != MULTIFD_VERSION) {
657 error_setg(errp, "multifd: received packet version %d "
658 "expected %d", msg.version, MULTIFD_VERSION);
659 return -1;
660 }
661
662 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
663 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
664 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
665
666 error_setg(errp, "multifd: received uuid '%s' and expected "
667 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
668 g_free(uuid);
669 g_free(msg_uuid);
670 return -1;
671 }
672
673 if (msg.id > migrate_multifd_channels()) {
674 error_setg(errp, "multifd: received channel version %d "
675 "expected %d", msg.version, MULTIFD_VERSION);
676 return -1;
677 }
678
679 return msg.id;
680}
681
34c55a94
JQ
682static MultiFDPages_t *multifd_pages_init(size_t size)
683{
684 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
685
686 pages->allocated = size;
687 pages->iov = g_new0(struct iovec, size);
688 pages->offset = g_new0(ram_addr_t, size);
689
690 return pages;
691}
692
693static void multifd_pages_clear(MultiFDPages_t *pages)
694{
695 pages->used = 0;
696 pages->allocated = 0;
697 pages->packet_num = 0;
698 pages->block = NULL;
699 g_free(pages->iov);
700 pages->iov = NULL;
701 g_free(pages->offset);
702 pages->offset = NULL;
703 g_free(pages);
704}
705
2a26c979
JQ
706static void multifd_send_fill_packet(MultiFDSendParams *p)
707{
708 MultiFDPacket_t *packet = p->packet;
709 int i;
710
711 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
712 packet->version = cpu_to_be32(MULTIFD_VERSION);
713 packet->flags = cpu_to_be32(p->flags);
714 packet->size = cpu_to_be32(migrate_multifd_page_count());
715 packet->used = cpu_to_be32(p->pages->used);
716 packet->packet_num = cpu_to_be64(p->packet_num);
717
718 if (p->pages->block) {
719 strncpy(packet->ramblock, p->pages->block->idstr, 256);
720 }
721
722 for (i = 0; i < p->pages->used; i++) {
723 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
724 }
725}
726
727static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
728{
729 MultiFDPacket_t *packet = p->packet;
730 RAMBlock *block;
731 int i;
732
2a26c979
JQ
733 be32_to_cpus(&packet->magic);
734 if (packet->magic != MULTIFD_MAGIC) {
735 error_setg(errp, "multifd: received packet "
736 "magic %x and expected magic %x",
737 packet->magic, MULTIFD_MAGIC);
738 return -1;
739 }
740
741 be32_to_cpus(&packet->version);
742 if (packet->version != MULTIFD_VERSION) {
743 error_setg(errp, "multifd: received packet "
744 "version %d and expected version %d",
745 packet->version, MULTIFD_VERSION);
746 return -1;
747 }
748
749 p->flags = be32_to_cpu(packet->flags);
750
751 be32_to_cpus(&packet->size);
752 if (packet->size > migrate_multifd_page_count()) {
753 error_setg(errp, "multifd: received packet "
754 "with size %d and expected maximum size %d",
755 packet->size, migrate_multifd_page_count()) ;
756 return -1;
757 }
758
759 p->pages->used = be32_to_cpu(packet->used);
760 if (p->pages->used > packet->size) {
761 error_setg(errp, "multifd: received packet "
762 "with size %d and expected maximum size %d",
763 p->pages->used, packet->size) ;
764 return -1;
765 }
766
767 p->packet_num = be64_to_cpu(packet->packet_num);
768
769 if (p->pages->used) {
770 /* make sure that ramblock is 0 terminated */
771 packet->ramblock[255] = 0;
772 block = qemu_ram_block_by_name(packet->ramblock);
773 if (!block) {
774 error_setg(errp, "multifd: unknown ram block %s",
775 packet->ramblock);
776 return -1;
777 }
778 }
779
780 for (i = 0; i < p->pages->used; i++) {
781 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
782
783 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
784 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
785 " (max " RAM_ADDR_FMT ")",
786 offset, block->max_length);
787 return -1;
788 }
789 p->pages->iov[i].iov_base = block->host + offset;
790 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
791 }
792
793 return 0;
794}
795
f986c3d2
JQ
796struct {
797 MultiFDSendParams *params;
798 /* number of created threads */
799 int count;
34c55a94
JQ
800 /* array of pages to sent */
801 MultiFDPages_t *pages;
6df264ac
JQ
802 /* syncs main thread and channels */
803 QemuSemaphore sem_sync;
804 /* global number of generated multifd packets */
805 uint64_t packet_num;
b9ee2f7d
JQ
806 /* send channels ready */
807 QemuSemaphore channels_ready;
f986c3d2
JQ
808} *multifd_send_state;
809
b9ee2f7d
JQ
810/*
811 * How we use multifd_send_state->pages and channel->pages?
812 *
813 * We create a pages for each channel, and a main one. Each time that
814 * we need to send a batch of pages we interchange the ones between
815 * multifd_send_state and the channel that is sending it. There are
816 * two reasons for that:
817 * - to not have to do so many mallocs during migration
818 * - to make easier to know what to free at the end of migration
819 *
820 * This way we always know who is the owner of each "pages" struct,
821 * and we don't need any loocking. It belongs to the migration thread
822 * or to the channel thread. Switching is safe because the migration
823 * thread is using the channel mutex when changing it, and the channel
824 * have to had finish with its own, otherwise pending_job can't be
825 * false.
826 */
827
828static void multifd_send_pages(void)
829{
830 int i;
831 static int next_channel;
832 MultiFDSendParams *p = NULL; /* make happy gcc */
833 MultiFDPages_t *pages = multifd_send_state->pages;
834 uint64_t transferred;
835
836 qemu_sem_wait(&multifd_send_state->channels_ready);
837 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
838 p = &multifd_send_state->params[i];
839
840 qemu_mutex_lock(&p->mutex);
841 if (!p->pending_job) {
842 p->pending_job++;
843 next_channel = (i + 1) % migrate_multifd_channels();
844 break;
845 }
846 qemu_mutex_unlock(&p->mutex);
847 }
848 p->pages->used = 0;
849
850 p->packet_num = multifd_send_state->packet_num++;
851 p->pages->block = NULL;
852 multifd_send_state->pages = p->pages;
853 p->pages = pages;
854 transferred = pages->used * TARGET_PAGE_SIZE + p->packet_len;
855 ram_counters.multifd_bytes += transferred;
856 ram_counters.transferred += transferred;;
857 qemu_mutex_unlock(&p->mutex);
858 qemu_sem_post(&p->sem);
859}
860
861static void multifd_queue_page(RAMBlock *block, ram_addr_t offset)
862{
863 MultiFDPages_t *pages = multifd_send_state->pages;
864
865 if (!pages->block) {
866 pages->block = block;
867 }
868
869 if (pages->block == block) {
870 pages->offset[pages->used] = offset;
871 pages->iov[pages->used].iov_base = block->host + offset;
872 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
873 pages->used++;
874
875 if (pages->used < pages->allocated) {
876 return;
877 }
878 }
879
880 multifd_send_pages();
881
882 if (pages->block != block) {
883 multifd_queue_page(block, offset);
884 }
885}
886
66770707 887static void multifd_send_terminate_threads(Error *err)
f986c3d2
JQ
888{
889 int i;
890
7a169d74
JQ
891 if (err) {
892 MigrationState *s = migrate_get_current();
893 migrate_set_error(s, err);
894 if (s->state == MIGRATION_STATUS_SETUP ||
895 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
896 s->state == MIGRATION_STATUS_DEVICE ||
897 s->state == MIGRATION_STATUS_ACTIVE) {
898 migrate_set_state(&s->state, s->state,
899 MIGRATION_STATUS_FAILED);
900 }
901 }
902
66770707 903 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
904 MultiFDSendParams *p = &multifd_send_state->params[i];
905
906 qemu_mutex_lock(&p->mutex);
907 p->quit = true;
908 qemu_sem_post(&p->sem);
909 qemu_mutex_unlock(&p->mutex);
910 }
911}
912
913int multifd_save_cleanup(Error **errp)
914{
915 int i;
916 int ret = 0;
917
918 if (!migrate_use_multifd()) {
919 return 0;
920 }
66770707
JQ
921 multifd_send_terminate_threads(NULL);
922 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
923 MultiFDSendParams *p = &multifd_send_state->params[i];
924
66770707
JQ
925 if (p->running) {
926 qemu_thread_join(&p->thread);
927 }
60df2d4a
JQ
928 socket_send_channel_destroy(p->c);
929 p->c = NULL;
f986c3d2
JQ
930 qemu_mutex_destroy(&p->mutex);
931 qemu_sem_destroy(&p->sem);
6df264ac 932 qemu_sem_destroy(&p->sem_sync);
f986c3d2
JQ
933 g_free(p->name);
934 p->name = NULL;
34c55a94
JQ
935 multifd_pages_clear(p->pages);
936 p->pages = NULL;
2a26c979
JQ
937 p->packet_len = 0;
938 g_free(p->packet);
939 p->packet = NULL;
f986c3d2 940 }
b9ee2f7d 941 qemu_sem_destroy(&multifd_send_state->channels_ready);
6df264ac 942 qemu_sem_destroy(&multifd_send_state->sem_sync);
f986c3d2
JQ
943 g_free(multifd_send_state->params);
944 multifd_send_state->params = NULL;
34c55a94
JQ
945 multifd_pages_clear(multifd_send_state->pages);
946 multifd_send_state->pages = NULL;
f986c3d2
JQ
947 g_free(multifd_send_state);
948 multifd_send_state = NULL;
949 return ret;
950}
951
6df264ac
JQ
952static void multifd_send_sync_main(void)
953{
954 int i;
955
956 if (!migrate_use_multifd()) {
957 return;
958 }
b9ee2f7d
JQ
959 if (multifd_send_state->pages->used) {
960 multifd_send_pages();
961 }
6df264ac
JQ
962 for (i = 0; i < migrate_multifd_channels(); i++) {
963 MultiFDSendParams *p = &multifd_send_state->params[i];
964
965 trace_multifd_send_sync_main_signal(p->id);
966
967 qemu_mutex_lock(&p->mutex);
b9ee2f7d
JQ
968
969 p->packet_num = multifd_send_state->packet_num++;
6df264ac
JQ
970 p->flags |= MULTIFD_FLAG_SYNC;
971 p->pending_job++;
972 qemu_mutex_unlock(&p->mutex);
973 qemu_sem_post(&p->sem);
974 }
975 for (i = 0; i < migrate_multifd_channels(); i++) {
976 MultiFDSendParams *p = &multifd_send_state->params[i];
977
978 trace_multifd_send_sync_main_wait(p->id);
979 qemu_sem_wait(&multifd_send_state->sem_sync);
980 }
981 trace_multifd_send_sync_main(multifd_send_state->packet_num);
982}
983
f986c3d2
JQ
984static void *multifd_send_thread(void *opaque)
985{
986 MultiFDSendParams *p = opaque;
af8b7d2b 987 Error *local_err = NULL;
8b2db7f5 988 int ret;
af8b7d2b 989
408ea6ae
JQ
990 trace_multifd_send_thread_start(p->id);
991
af8b7d2b
JQ
992 if (multifd_send_initial_packet(p, &local_err) < 0) {
993 goto out;
994 }
408ea6ae
JQ
995 /* initial packet */
996 p->num_packets = 1;
f986c3d2
JQ
997
998 while (true) {
d82628e4 999 qemu_sem_wait(&p->sem);
f986c3d2 1000 qemu_mutex_lock(&p->mutex);
0beb5ed3
JQ
1001
1002 if (p->pending_job) {
1003 uint32_t used = p->pages->used;
1004 uint64_t packet_num = p->packet_num;
1005 uint32_t flags = p->flags;
1006
1007 multifd_send_fill_packet(p);
1008 p->flags = 0;
1009 p->num_packets++;
1010 p->num_pages += used;
1011 p->pages->used = 0;
1012 qemu_mutex_unlock(&p->mutex);
1013
1014 trace_multifd_send(p->id, packet_num, used, flags);
1015
8b2db7f5
JQ
1016 ret = qio_channel_write_all(p->c, (void *)p->packet,
1017 p->packet_len, &local_err);
1018 if (ret != 0) {
1019 break;
1020 }
1021
1022 ret = qio_channel_writev_all(p->c, p->pages->iov, used, &local_err);
1023 if (ret != 0) {
1024 break;
1025 }
0beb5ed3
JQ
1026
1027 qemu_mutex_lock(&p->mutex);
1028 p->pending_job--;
1029 qemu_mutex_unlock(&p->mutex);
6df264ac
JQ
1030
1031 if (flags & MULTIFD_FLAG_SYNC) {
1032 qemu_sem_post(&multifd_send_state->sem_sync);
1033 }
b9ee2f7d 1034 qemu_sem_post(&multifd_send_state->channels_ready);
0beb5ed3 1035 } else if (p->quit) {
f986c3d2
JQ
1036 qemu_mutex_unlock(&p->mutex);
1037 break;
6df264ac
JQ
1038 } else {
1039 qemu_mutex_unlock(&p->mutex);
1040 /* sometimes there are spurious wakeups */
f986c3d2 1041 }
f986c3d2
JQ
1042 }
1043
af8b7d2b
JQ
1044out:
1045 if (local_err) {
1046 multifd_send_terminate_threads(local_err);
1047 }
1048
66770707
JQ
1049 qemu_mutex_lock(&p->mutex);
1050 p->running = false;
1051 qemu_mutex_unlock(&p->mutex);
1052
408ea6ae
JQ
1053 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1054
f986c3d2
JQ
1055 return NULL;
1056}
1057
60df2d4a
JQ
1058static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1059{
1060 MultiFDSendParams *p = opaque;
1061 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1062 Error *local_err = NULL;
1063
1064 if (qio_task_propagate_error(task, &local_err)) {
1065 if (multifd_save_cleanup(&local_err) != 0) {
1066 migrate_set_error(migrate_get_current(), local_err);
1067 }
1068 } else {
1069 p->c = QIO_CHANNEL(sioc);
1070 qio_channel_set_delay(p->c, false);
1071 p->running = true;
1072 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1073 QEMU_THREAD_JOINABLE);
1074
1075 atomic_inc(&multifd_send_state->count);
1076 }
1077}
1078
f986c3d2
JQ
1079int multifd_save_setup(void)
1080{
1081 int thread_count;
34c55a94 1082 uint32_t page_count = migrate_multifd_page_count();
f986c3d2
JQ
1083 uint8_t i;
1084
1085 if (!migrate_use_multifd()) {
1086 return 0;
1087 }
1088 thread_count = migrate_multifd_channels();
1089 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1090 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
66770707 1091 atomic_set(&multifd_send_state->count, 0);
34c55a94 1092 multifd_send_state->pages = multifd_pages_init(page_count);
6df264ac 1093 qemu_sem_init(&multifd_send_state->sem_sync, 0);
b9ee2f7d 1094 qemu_sem_init(&multifd_send_state->channels_ready, 0);
34c55a94 1095
f986c3d2
JQ
1096 for (i = 0; i < thread_count; i++) {
1097 MultiFDSendParams *p = &multifd_send_state->params[i];
1098
1099 qemu_mutex_init(&p->mutex);
1100 qemu_sem_init(&p->sem, 0);
6df264ac 1101 qemu_sem_init(&p->sem_sync, 0);
f986c3d2 1102 p->quit = false;
0beb5ed3 1103 p->pending_job = 0;
f986c3d2 1104 p->id = i;
34c55a94 1105 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1106 p->packet_len = sizeof(MultiFDPacket_t)
1107 + sizeof(ram_addr_t) * page_count;
1108 p->packet = g_malloc0(p->packet_len);
f986c3d2 1109 p->name = g_strdup_printf("multifdsend_%d", i);
60df2d4a 1110 socket_send_channel_create(multifd_new_send_channel_async, p);
f986c3d2
JQ
1111 }
1112 return 0;
1113}
1114
f986c3d2
JQ
1115struct {
1116 MultiFDRecvParams *params;
1117 /* number of created threads */
1118 int count;
6df264ac
JQ
1119 /* syncs main thread and channels */
1120 QemuSemaphore sem_sync;
1121 /* global number of generated multifd packets */
1122 uint64_t packet_num;
f986c3d2
JQ
1123} *multifd_recv_state;
1124
66770707 1125static void multifd_recv_terminate_threads(Error *err)
f986c3d2
JQ
1126{
1127 int i;
1128
7a169d74
JQ
1129 if (err) {
1130 MigrationState *s = migrate_get_current();
1131 migrate_set_error(s, err);
1132 if (s->state == MIGRATION_STATUS_SETUP ||
1133 s->state == MIGRATION_STATUS_ACTIVE) {
1134 migrate_set_state(&s->state, s->state,
1135 MIGRATION_STATUS_FAILED);
1136 }
1137 }
1138
66770707 1139 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1140 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1141
1142 qemu_mutex_lock(&p->mutex);
7a5cc33c
JQ
1143 /* We could arrive here for two reasons:
1144 - normal quit, i.e. everything went fine, just finished
1145 - error quit: We close the channels so the channel threads
1146 finish the qio_channel_read_all_eof() */
1147 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
f986c3d2
JQ
1148 qemu_mutex_unlock(&p->mutex);
1149 }
1150}
1151
1152int multifd_load_cleanup(Error **errp)
1153{
1154 int i;
1155 int ret = 0;
1156
1157 if (!migrate_use_multifd()) {
1158 return 0;
1159 }
66770707
JQ
1160 multifd_recv_terminate_threads(NULL);
1161 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1162 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1163
66770707
JQ
1164 if (p->running) {
1165 qemu_thread_join(&p->thread);
1166 }
60df2d4a
JQ
1167 object_unref(OBJECT(p->c));
1168 p->c = NULL;
f986c3d2 1169 qemu_mutex_destroy(&p->mutex);
6df264ac 1170 qemu_sem_destroy(&p->sem_sync);
f986c3d2
JQ
1171 g_free(p->name);
1172 p->name = NULL;
34c55a94
JQ
1173 multifd_pages_clear(p->pages);
1174 p->pages = NULL;
2a26c979
JQ
1175 p->packet_len = 0;
1176 g_free(p->packet);
1177 p->packet = NULL;
f986c3d2 1178 }
6df264ac 1179 qemu_sem_destroy(&multifd_recv_state->sem_sync);
f986c3d2
JQ
1180 g_free(multifd_recv_state->params);
1181 multifd_recv_state->params = NULL;
1182 g_free(multifd_recv_state);
1183 multifd_recv_state = NULL;
1184
1185 return ret;
1186}
1187
6df264ac
JQ
1188static void multifd_recv_sync_main(void)
1189{
1190 int i;
1191
1192 if (!migrate_use_multifd()) {
1193 return;
1194 }
1195 for (i = 0; i < migrate_multifd_channels(); i++) {
1196 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1197
6df264ac
JQ
1198 trace_multifd_recv_sync_main_wait(p->id);
1199 qemu_sem_wait(&multifd_recv_state->sem_sync);
1200 qemu_mutex_lock(&p->mutex);
1201 if (multifd_recv_state->packet_num < p->packet_num) {
1202 multifd_recv_state->packet_num = p->packet_num;
1203 }
1204 qemu_mutex_unlock(&p->mutex);
1205 }
1206 for (i = 0; i < migrate_multifd_channels(); i++) {
1207 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1208
1209 trace_multifd_recv_sync_main_signal(p->id);
6df264ac
JQ
1210 qemu_sem_post(&p->sem_sync);
1211 }
1212 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1213}
1214
f986c3d2
JQ
1215static void *multifd_recv_thread(void *opaque)
1216{
1217 MultiFDRecvParams *p = opaque;
2a26c979
JQ
1218 Error *local_err = NULL;
1219 int ret;
f986c3d2 1220
408ea6ae
JQ
1221 trace_multifd_recv_thread_start(p->id);
1222
f986c3d2 1223 while (true) {
6df264ac
JQ
1224 uint32_t used;
1225 uint32_t flags;
0beb5ed3 1226
8b2db7f5
JQ
1227 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1228 p->packet_len, &local_err);
1229 if (ret == 0) { /* EOF */
1230 break;
1231 }
1232 if (ret == -1) { /* Error */
1233 break;
1234 }
2a26c979 1235
6df264ac
JQ
1236 qemu_mutex_lock(&p->mutex);
1237 ret = multifd_recv_unfill_packet(p, &local_err);
1238 if (ret) {
f986c3d2
JQ
1239 qemu_mutex_unlock(&p->mutex);
1240 break;
1241 }
6df264ac
JQ
1242
1243 used = p->pages->used;
1244 flags = p->flags;
1245 trace_multifd_recv(p->id, p->packet_num, used, flags);
6df264ac
JQ
1246 p->num_packets++;
1247 p->num_pages += used;
f986c3d2 1248 qemu_mutex_unlock(&p->mutex);
6df264ac 1249
8b2db7f5
JQ
1250 ret = qio_channel_readv_all(p->c, p->pages->iov, used, &local_err);
1251 if (ret != 0) {
1252 break;
1253 }
1254
6df264ac
JQ
1255 if (flags & MULTIFD_FLAG_SYNC) {
1256 qemu_sem_post(&multifd_recv_state->sem_sync);
1257 qemu_sem_wait(&p->sem_sync);
1258 }
f986c3d2
JQ
1259 }
1260
d82628e4
JQ
1261 if (local_err) {
1262 multifd_recv_terminate_threads(local_err);
1263 }
66770707
JQ
1264 qemu_mutex_lock(&p->mutex);
1265 p->running = false;
1266 qemu_mutex_unlock(&p->mutex);
1267
408ea6ae
JQ
1268 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1269
f986c3d2
JQ
1270 return NULL;
1271}
1272
1273int multifd_load_setup(void)
1274{
1275 int thread_count;
34c55a94 1276 uint32_t page_count = migrate_multifd_page_count();
f986c3d2
JQ
1277 uint8_t i;
1278
1279 if (!migrate_use_multifd()) {
1280 return 0;
1281 }
1282 thread_count = migrate_multifd_channels();
1283 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1284 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
66770707 1285 atomic_set(&multifd_recv_state->count, 0);
6df264ac 1286 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
34c55a94 1287
f986c3d2
JQ
1288 for (i = 0; i < thread_count; i++) {
1289 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1290
1291 qemu_mutex_init(&p->mutex);
6df264ac 1292 qemu_sem_init(&p->sem_sync, 0);
f986c3d2 1293 p->id = i;
34c55a94 1294 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1295 p->packet_len = sizeof(MultiFDPacket_t)
1296 + sizeof(ram_addr_t) * page_count;
1297 p->packet = g_malloc0(p->packet_len);
f986c3d2 1298 p->name = g_strdup_printf("multifdrecv_%d", i);
f986c3d2
JQ
1299 }
1300 return 0;
1301}
1302
62c1e0ca
JQ
1303bool multifd_recv_all_channels_created(void)
1304{
1305 int thread_count = migrate_multifd_channels();
1306
1307 if (!migrate_use_multifd()) {
1308 return true;
1309 }
1310
1311 return thread_count == atomic_read(&multifd_recv_state->count);
1312}
1313
81e62053
PX
1314/* Return true if multifd is ready for the migration, otherwise false */
1315bool multifd_recv_new_channel(QIOChannel *ioc)
71bb07db 1316{
60df2d4a 1317 MultiFDRecvParams *p;
af8b7d2b
JQ
1318 Error *local_err = NULL;
1319 int id;
60df2d4a 1320
af8b7d2b
JQ
1321 id = multifd_recv_initial_packet(ioc, &local_err);
1322 if (id < 0) {
1323 multifd_recv_terminate_threads(local_err);
81e62053 1324 return false;
af8b7d2b
JQ
1325 }
1326
1327 p = &multifd_recv_state->params[id];
1328 if (p->c != NULL) {
1329 error_setg(&local_err, "multifd: received id '%d' already setup'",
1330 id);
1331 multifd_recv_terminate_threads(local_err);
81e62053 1332 return false;
af8b7d2b 1333 }
60df2d4a
JQ
1334 p->c = ioc;
1335 object_ref(OBJECT(ioc));
408ea6ae
JQ
1336 /* initial packet */
1337 p->num_packets = 1;
60df2d4a
JQ
1338
1339 p->running = true;
1340 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1341 QEMU_THREAD_JOINABLE);
1342 atomic_inc(&multifd_recv_state->count);
81e62053 1343 return multifd_recv_state->count == migrate_multifd_channels();
71bb07db
JQ
1344}
1345
56e93d26 1346/**
3d0684b2 1347 * save_page_header: write page header to wire
56e93d26
JQ
1348 *
1349 * If this is the 1st block, it also writes the block identification
1350 *
3d0684b2 1351 * Returns the number of bytes written
56e93d26
JQ
1352 *
1353 * @f: QEMUFile where to send the data
1354 * @block: block that contains the page we want to send
1355 * @offset: offset inside the block for the page
1356 * in the lower bits, it contains flags
1357 */
2bf3aa85
JQ
1358static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1359 ram_addr_t offset)
56e93d26 1360{
9f5f380b 1361 size_t size, len;
56e93d26 1362
24795694
JQ
1363 if (block == rs->last_sent_block) {
1364 offset |= RAM_SAVE_FLAG_CONTINUE;
1365 }
2bf3aa85 1366 qemu_put_be64(f, offset);
56e93d26
JQ
1367 size = 8;
1368
1369 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
9f5f380b 1370 len = strlen(block->idstr);
2bf3aa85
JQ
1371 qemu_put_byte(f, len);
1372 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
9f5f380b 1373 size += 1 + len;
24795694 1374 rs->last_sent_block = block;
56e93d26
JQ
1375 }
1376 return size;
1377}
1378
3d0684b2
JQ
1379/**
1380 * mig_throttle_guest_down: throotle down the guest
1381 *
1382 * Reduce amount of guest cpu execution to hopefully slow down memory
1383 * writes. If guest dirty memory rate is reduced below the rate at
1384 * which we can transfer pages to the destination then we should be
1385 * able to complete migration. Some workloads dirty memory way too
1386 * fast and will not effectively converge, even with auto-converge.
070afca2
JH
1387 */
1388static void mig_throttle_guest_down(void)
1389{
1390 MigrationState *s = migrate_get_current();
2594f56d
DB
1391 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1392 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
070afca2
JH
1393
1394 /* We have not started throttling yet. Let's start it. */
1395 if (!cpu_throttle_active()) {
1396 cpu_throttle_set(pct_initial);
1397 } else {
1398 /* Throttling already on, just increase the rate */
1399 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
1400 }
1401}
1402
3d0684b2
JQ
1403/**
1404 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1405 *
6f37bb8b 1406 * @rs: current RAM state
3d0684b2
JQ
1407 * @current_addr: address for the zero page
1408 *
1409 * Update the xbzrle cache to reflect a page that's been sent as all 0.
56e93d26
JQ
1410 * The important thing is that a stale (not-yet-0'd) page be replaced
1411 * by the new data.
1412 * As a bonus, if the page wasn't in the cache it gets added so that
3d0684b2 1413 * when a small write is made into the 0'd page it gets XBZRLE sent.
56e93d26 1414 */
6f37bb8b 1415static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
56e93d26 1416{
6f37bb8b 1417 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
56e93d26
JQ
1418 return;
1419 }
1420
1421 /* We don't care if this fails to allocate a new cache page
1422 * as long as it updated an old one */
c00e0928 1423 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
9360447d 1424 ram_counters.dirty_sync_count);
56e93d26
JQ
1425}
1426
1427#define ENCODING_FLAG_XBZRLE 0x1
1428
1429/**
1430 * save_xbzrle_page: compress and send current page
1431 *
1432 * Returns: 1 means that we wrote the page
1433 * 0 means that page is identical to the one already sent
1434 * -1 means that xbzrle would be longer than normal
1435 *
5a987738 1436 * @rs: current RAM state
3d0684b2
JQ
1437 * @current_data: pointer to the address of the page contents
1438 * @current_addr: addr of the page
56e93d26
JQ
1439 * @block: block that contains the page we want to send
1440 * @offset: offset inside the block for the page
1441 * @last_stage: if we are at the completion stage
56e93d26 1442 */
204b88b8 1443static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
56e93d26 1444 ram_addr_t current_addr, RAMBlock *block,
072c2511 1445 ram_addr_t offset, bool last_stage)
56e93d26
JQ
1446{
1447 int encoded_len = 0, bytes_xbzrle;
1448 uint8_t *prev_cached_page;
1449
9360447d
JQ
1450 if (!cache_is_cached(XBZRLE.cache, current_addr,
1451 ram_counters.dirty_sync_count)) {
1452 xbzrle_counters.cache_miss++;
56e93d26
JQ
1453 if (!last_stage) {
1454 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
9360447d 1455 ram_counters.dirty_sync_count) == -1) {
56e93d26
JQ
1456 return -1;
1457 } else {
1458 /* update *current_data when the page has been
1459 inserted into cache */
1460 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1461 }
1462 }
1463 return -1;
1464 }
1465
1466 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1467
1468 /* save current buffer into memory */
1469 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1470
1471 /* XBZRLE encoding (if there is no overflow) */
1472 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1473 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1474 TARGET_PAGE_SIZE);
1475 if (encoded_len == 0) {
55c4446b 1476 trace_save_xbzrle_page_skipping();
56e93d26
JQ
1477 return 0;
1478 } else if (encoded_len == -1) {
55c4446b 1479 trace_save_xbzrle_page_overflow();
9360447d 1480 xbzrle_counters.overflow++;
56e93d26
JQ
1481 /* update data in the cache */
1482 if (!last_stage) {
1483 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
1484 *current_data = prev_cached_page;
1485 }
1486 return -1;
1487 }
1488
1489 /* we need to update the data in the cache, in order to get the same data */
1490 if (!last_stage) {
1491 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1492 }
1493
1494 /* Send XBZRLE based compressed page */
2bf3aa85 1495 bytes_xbzrle = save_page_header(rs, rs->f, block,
204b88b8
JQ
1496 offset | RAM_SAVE_FLAG_XBZRLE);
1497 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1498 qemu_put_be16(rs->f, encoded_len);
1499 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
56e93d26 1500 bytes_xbzrle += encoded_len + 1 + 2;
9360447d
JQ
1501 xbzrle_counters.pages++;
1502 xbzrle_counters.bytes += bytes_xbzrle;
1503 ram_counters.transferred += bytes_xbzrle;
56e93d26
JQ
1504
1505 return 1;
1506}
1507
3d0684b2
JQ
1508/**
1509 * migration_bitmap_find_dirty: find the next dirty page from start
f3f491fc 1510 *
3d0684b2
JQ
1511 * Called with rcu_read_lock() to protect migration_bitmap
1512 *
1513 * Returns the byte offset within memory region of the start of a dirty page
1514 *
6f37bb8b 1515 * @rs: current RAM state
3d0684b2 1516 * @rb: RAMBlock where to search for dirty pages
a935e30f 1517 * @start: page where we start the search
f3f491fc 1518 */
56e93d26 1519static inline
a935e30f 1520unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
f20e2865 1521 unsigned long start)
56e93d26 1522{
6b6712ef
JQ
1523 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1524 unsigned long *bitmap = rb->bmap;
56e93d26
JQ
1525 unsigned long next;
1526
b895de50
CLG
1527 if (!qemu_ram_is_migratable(rb)) {
1528 return size;
1529 }
1530
6b6712ef
JQ
1531 if (rs->ram_bulk_stage && start > 0) {
1532 next = start + 1;
56e93d26 1533 } else {
6b6712ef 1534 next = find_next_bit(bitmap, size, start);
56e93d26
JQ
1535 }
1536
6b6712ef 1537 return next;
56e93d26
JQ
1538}
1539
06b10688 1540static inline bool migration_bitmap_clear_dirty(RAMState *rs,
f20e2865
JQ
1541 RAMBlock *rb,
1542 unsigned long page)
a82d593b
DDAG
1543{
1544 bool ret;
a82d593b 1545
6b6712ef 1546 ret = test_and_clear_bit(page, rb->bmap);
a82d593b
DDAG
1547
1548 if (ret) {
0d8ec885 1549 rs->migration_dirty_pages--;
a82d593b
DDAG
1550 }
1551 return ret;
1552}
1553
15440dd5
JQ
1554static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
1555 ram_addr_t start, ram_addr_t length)
56e93d26 1556{
0d8ec885 1557 rs->migration_dirty_pages +=
6b6712ef 1558 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
0d8ec885 1559 &rs->num_dirty_pages_period);
56e93d26
JQ
1560}
1561
3d0684b2
JQ
1562/**
1563 * ram_pagesize_summary: calculate all the pagesizes of a VM
1564 *
1565 * Returns a summary bitmap of the page sizes of all RAMBlocks
1566 *
1567 * For VMs with just normal pages this is equivalent to the host page
1568 * size. If it's got some huge pages then it's the OR of all the
1569 * different page sizes.
e8ca1db2
DDAG
1570 */
1571uint64_t ram_pagesize_summary(void)
1572{
1573 RAMBlock *block;
1574 uint64_t summary = 0;
1575
b895de50 1576 RAMBLOCK_FOREACH_MIGRATABLE(block) {
e8ca1db2
DDAG
1577 summary |= block->page_size;
1578 }
1579
1580 return summary;
1581}
1582
b734035b
XG
1583static void migration_update_rates(RAMState *rs, int64_t end_time)
1584{
1585 uint64_t iter_count = rs->iterations - rs->iterations_prev;
1586
1587 /* calculate period counters */
1588 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1589 / (end_time - rs->time_last_bitmap_sync);
1590
1591 if (!iter_count) {
1592 return;
1593 }
1594
1595 if (migrate_use_xbzrle()) {
1596 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1597 rs->xbzrle_cache_miss_prev) / iter_count;
1598 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1599 }
1600}
1601
8d820d6f 1602static void migration_bitmap_sync(RAMState *rs)
56e93d26
JQ
1603{
1604 RAMBlock *block;
56e93d26 1605 int64_t end_time;
c4bdf0cf 1606 uint64_t bytes_xfer_now;
56e93d26 1607
9360447d 1608 ram_counters.dirty_sync_count++;
56e93d26 1609
f664da80
JQ
1610 if (!rs->time_last_bitmap_sync) {
1611 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
56e93d26
JQ
1612 }
1613
1614 trace_migration_bitmap_sync_start();
9c1f8f44 1615 memory_global_dirty_log_sync();
56e93d26 1616
108cfae0 1617 qemu_mutex_lock(&rs->bitmap_mutex);
56e93d26 1618 rcu_read_lock();
b895de50 1619 RAMBLOCK_FOREACH_MIGRATABLE(block) {
15440dd5 1620 migration_bitmap_sync_range(rs, block, 0, block->used_length);
56e93d26 1621 }
650af890 1622 ram_counters.remaining = ram_bytes_remaining();
56e93d26 1623 rcu_read_unlock();
108cfae0 1624 qemu_mutex_unlock(&rs->bitmap_mutex);
56e93d26 1625
a66cd90c 1626 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1ffb5dfd 1627
56e93d26
JQ
1628 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1629
1630 /* more than 1 second = 1000 millisecons */
f664da80 1631 if (end_time > rs->time_last_bitmap_sync + 1000) {
9360447d 1632 bytes_xfer_now = ram_counters.transferred;
d693c6f1 1633
9ac78b61
PL
1634 /* During block migration the auto-converge logic incorrectly detects
1635 * that ram migration makes no progress. Avoid this by disabling the
1636 * throttling logic during the bulk phase of block migration. */
1637 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
56e93d26
JQ
1638 /* The following detection logic can be refined later. For now:
1639 Check to see if the dirtied bytes is 50% more than the approx.
1640 amount of bytes that just got transferred since the last time we
070afca2
JH
1641 were in this routine. If that happens twice, start or increase
1642 throttling */
070afca2 1643
d693c6f1 1644 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
eac74159 1645 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
b4a3c64b 1646 (++rs->dirty_rate_high_cnt >= 2)) {
56e93d26 1647 trace_migration_throttle();
8d820d6f 1648 rs->dirty_rate_high_cnt = 0;
070afca2 1649 mig_throttle_guest_down();
d693c6f1 1650 }
56e93d26 1651 }
070afca2 1652
b734035b
XG
1653 migration_update_rates(rs, end_time);
1654
1655 rs->iterations_prev = rs->iterations;
d693c6f1
FF
1656
1657 /* reset period counters */
f664da80 1658 rs->time_last_bitmap_sync = end_time;
a66cd90c 1659 rs->num_dirty_pages_period = 0;
d2a4d85a 1660 rs->bytes_xfer_prev = bytes_xfer_now;
56e93d26 1661 }
4addcd4f 1662 if (migrate_use_events()) {
9360447d 1663 qapi_event_send_migration_pass(ram_counters.dirty_sync_count, NULL);
4addcd4f 1664 }
56e93d26
JQ
1665}
1666
1667/**
3d0684b2 1668 * save_zero_page: send the zero page to the stream
56e93d26 1669 *
3d0684b2 1670 * Returns the number of pages written.
56e93d26 1671 *
f7ccd61b 1672 * @rs: current RAM state
56e93d26
JQ
1673 * @block: block that contains the page we want to send
1674 * @offset: offset inside the block for the page
56e93d26 1675 */
7faccdc3 1676static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
56e93d26 1677{
7faccdc3 1678 uint8_t *p = block->host + offset;
56e93d26
JQ
1679 int pages = -1;
1680
1681 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
9360447d
JQ
1682 ram_counters.duplicate++;
1683 ram_counters.transferred +=
bb890ed5 1684 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_ZERO);
ce25d337 1685 qemu_put_byte(rs->f, 0);
9360447d 1686 ram_counters.transferred += 1;
56e93d26
JQ
1687 pages = 1;
1688 }
1689
1690 return pages;
1691}
1692
5727309d 1693static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
53f09a10 1694{
5727309d 1695 if (!migrate_release_ram() || !migration_in_postcopy()) {
53f09a10
PB
1696 return;
1697 }
1698
aaa2064c 1699 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
53f09a10
PB
1700}
1701
059ff0fb
XG
1702/*
1703 * @pages: the number of pages written by the control path,
1704 * < 0 - error
1705 * > 0 - number of pages written
1706 *
1707 * Return true if the pages has been saved, otherwise false is returned.
1708 */
1709static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1710 int *pages)
1711{
1712 uint64_t bytes_xmit = 0;
1713 int ret;
1714
1715 *pages = -1;
1716 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1717 &bytes_xmit);
1718 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1719 return false;
1720 }
1721
1722 if (bytes_xmit) {
1723 ram_counters.transferred += bytes_xmit;
1724 *pages = 1;
1725 }
1726
1727 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1728 return true;
1729 }
1730
1731 if (bytes_xmit > 0) {
1732 ram_counters.normal++;
1733 } else if (bytes_xmit == 0) {
1734 ram_counters.duplicate++;
1735 }
1736
1737 return true;
1738}
1739
65dacaa0
XG
1740/*
1741 * directly send the page to the stream
1742 *
1743 * Returns the number of pages written.
1744 *
1745 * @rs: current RAM state
1746 * @block: block that contains the page we want to send
1747 * @offset: offset inside the block for the page
1748 * @buf: the page to be sent
1749 * @async: send to page asyncly
1750 */
1751static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1752 uint8_t *buf, bool async)
1753{
1754 ram_counters.transferred += save_page_header(rs, rs->f, block,
1755 offset | RAM_SAVE_FLAG_PAGE);
1756 if (async) {
1757 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1758 migrate_release_ram() &
1759 migration_in_postcopy());
1760 } else {
1761 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1762 }
1763 ram_counters.transferred += TARGET_PAGE_SIZE;
1764 ram_counters.normal++;
1765 return 1;
1766}
1767
56e93d26 1768/**
3d0684b2 1769 * ram_save_page: send the given page to the stream
56e93d26 1770 *
3d0684b2 1771 * Returns the number of pages written.
3fd3c4b3
DDAG
1772 * < 0 - error
1773 * >=0 - Number of pages written - this might legally be 0
1774 * if xbzrle noticed the page was the same.
56e93d26 1775 *
6f37bb8b 1776 * @rs: current RAM state
56e93d26
JQ
1777 * @block: block that contains the page we want to send
1778 * @offset: offset inside the block for the page
1779 * @last_stage: if we are at the completion stage
56e93d26 1780 */
a0a8aa14 1781static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
56e93d26
JQ
1782{
1783 int pages = -1;
56e93d26 1784 uint8_t *p;
56e93d26 1785 bool send_async = true;
a08f6890 1786 RAMBlock *block = pss->block;
a935e30f 1787 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
059ff0fb 1788 ram_addr_t current_addr = block->offset + offset;
56e93d26 1789
2f68e399 1790 p = block->host + offset;
1db9d8e5 1791 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
56e93d26 1792
56e93d26 1793 XBZRLE_cache_lock();
d7400a34
XG
1794 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
1795 migrate_use_xbzrle()) {
059ff0fb
XG
1796 pages = save_xbzrle_page(rs, &p, current_addr, block,
1797 offset, last_stage);
1798 if (!last_stage) {
1799 /* Can't send this cached data async, since the cache page
1800 * might get updated before it gets to the wire
56e93d26 1801 */
059ff0fb 1802 send_async = false;
56e93d26
JQ
1803 }
1804 }
1805
1806 /* XBZRLE overflow or normal page */
1807 if (pages == -1) {
65dacaa0 1808 pages = save_normal_page(rs, block, offset, p, send_async);
56e93d26
JQ
1809 }
1810
1811 XBZRLE_cache_unlock();
1812
1813 return pages;
1814}
1815
b9ee2f7d
JQ
1816static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
1817 ram_addr_t offset)
1818{
b9ee2f7d 1819 multifd_queue_page(block, offset);
b9ee2f7d
JQ
1820 ram_counters.normal++;
1821
1822 return 1;
1823}
1824
dcaf446e 1825static int do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
34ab9e97 1826 ram_addr_t offset, uint8_t *source_buf)
56e93d26 1827{
53518d94 1828 RAMState *rs = ram_state;
56e93d26 1829 int bytes_sent, blen;
a7a9a88f 1830 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
56e93d26 1831
2bf3aa85 1832 bytes_sent = save_page_header(rs, f, block, offset |
56e93d26 1833 RAM_SAVE_FLAG_COMPRESS_PAGE);
34ab9e97
XG
1834
1835 /*
1836 * copy it to a internal buffer to avoid it being modified by VM
1837 * so that we can catch up the error during compression and
1838 * decompression
1839 */
1840 memcpy(source_buf, p, TARGET_PAGE_SIZE);
1841 blen = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
b3be2896
LL
1842 if (blen < 0) {
1843 bytes_sent = 0;
1844 qemu_file_set_error(migrate_get_current()->to_dst_file, blen);
1845 error_report("compressed data failed!");
1846 } else {
1847 bytes_sent += blen;
5727309d 1848 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
b3be2896 1849 }
56e93d26
JQ
1850
1851 return bytes_sent;
1852}
1853
ce25d337 1854static void flush_compressed_data(RAMState *rs)
56e93d26
JQ
1855{
1856 int idx, len, thread_count;
1857
1858 if (!migrate_use_compression()) {
1859 return;
1860 }
1861 thread_count = migrate_compress_threads();
a7a9a88f 1862
0d9f9a5c 1863 qemu_mutex_lock(&comp_done_lock);
56e93d26 1864 for (idx = 0; idx < thread_count; idx++) {
a7a9a88f 1865 while (!comp_param[idx].done) {
0d9f9a5c 1866 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26 1867 }
a7a9a88f 1868 }
0d9f9a5c 1869 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
1870
1871 for (idx = 0; idx < thread_count; idx++) {
1872 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 1873 if (!comp_param[idx].quit) {
ce25d337 1874 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
9360447d 1875 ram_counters.transferred += len;
56e93d26 1876 }
a7a9a88f 1877 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26
JQ
1878 }
1879}
1880
1881static inline void set_compress_params(CompressParam *param, RAMBlock *block,
1882 ram_addr_t offset)
1883{
1884 param->block = block;
1885 param->offset = offset;
1886}
1887
ce25d337
JQ
1888static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
1889 ram_addr_t offset)
56e93d26
JQ
1890{
1891 int idx, thread_count, bytes_xmit = -1, pages = -1;
1892
1893 thread_count = migrate_compress_threads();
0d9f9a5c 1894 qemu_mutex_lock(&comp_done_lock);
56e93d26
JQ
1895 while (true) {
1896 for (idx = 0; idx < thread_count; idx++) {
1897 if (comp_param[idx].done) {
a7a9a88f 1898 comp_param[idx].done = false;
ce25d337 1899 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
a7a9a88f 1900 qemu_mutex_lock(&comp_param[idx].mutex);
56e93d26 1901 set_compress_params(&comp_param[idx], block, offset);
a7a9a88f
LL
1902 qemu_cond_signal(&comp_param[idx].cond);
1903 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26 1904 pages = 1;
9360447d
JQ
1905 ram_counters.normal++;
1906 ram_counters.transferred += bytes_xmit;
56e93d26
JQ
1907 break;
1908 }
1909 }
1910 if (pages > 0) {
1911 break;
1912 } else {
0d9f9a5c 1913 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26
JQ
1914 }
1915 }
0d9f9a5c 1916 qemu_mutex_unlock(&comp_done_lock);
56e93d26
JQ
1917
1918 return pages;
1919}
1920
3d0684b2
JQ
1921/**
1922 * find_dirty_block: find the next dirty page and update any state
1923 * associated with the search process.
b9e60928 1924 *
3d0684b2 1925 * Returns if a page is found
b9e60928 1926 *
6f37bb8b 1927 * @rs: current RAM state
3d0684b2
JQ
1928 * @pss: data about the state of the current dirty page scan
1929 * @again: set to false if the search has scanned the whole of RAM
b9e60928 1930 */
f20e2865 1931static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
b9e60928 1932{
f20e2865 1933 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
6f37bb8b 1934 if (pss->complete_round && pss->block == rs->last_seen_block &&
a935e30f 1935 pss->page >= rs->last_page) {
b9e60928
DDAG
1936 /*
1937 * We've been once around the RAM and haven't found anything.
1938 * Give up.
1939 */
1940 *again = false;
1941 return false;
1942 }
a935e30f 1943 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
b9e60928 1944 /* Didn't find anything in this RAM Block */
a935e30f 1945 pss->page = 0;
b9e60928
DDAG
1946 pss->block = QLIST_NEXT_RCU(pss->block, next);
1947 if (!pss->block) {
1948 /* Hit the end of the list */
1949 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1950 /* Flag that we've looped */
1951 pss->complete_round = true;
6f37bb8b 1952 rs->ram_bulk_stage = false;
b9e60928
DDAG
1953 if (migrate_use_xbzrle()) {
1954 /* If xbzrle is on, stop using the data compression at this
1955 * point. In theory, xbzrle can do better than compression.
1956 */
ce25d337 1957 flush_compressed_data(rs);
b9e60928
DDAG
1958 }
1959 }
1960 /* Didn't find anything this time, but try again on the new block */
1961 *again = true;
1962 return false;
1963 } else {
1964 /* Can go around again, but... */
1965 *again = true;
1966 /* We've found something so probably don't need to */
1967 return true;
1968 }
1969}
1970
3d0684b2
JQ
1971/**
1972 * unqueue_page: gets a page of the queue
1973 *
a82d593b 1974 * Helper for 'get_queued_page' - gets a page off the queue
a82d593b 1975 *
3d0684b2
JQ
1976 * Returns the block of the page (or NULL if none available)
1977 *
ec481c6c 1978 * @rs: current RAM state
3d0684b2 1979 * @offset: used to return the offset within the RAMBlock
a82d593b 1980 */
f20e2865 1981static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
a82d593b
DDAG
1982{
1983 RAMBlock *block = NULL;
1984
ec481c6c
JQ
1985 qemu_mutex_lock(&rs->src_page_req_mutex);
1986 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
1987 struct RAMSrcPageRequest *entry =
1988 QSIMPLEQ_FIRST(&rs->src_page_requests);
a82d593b
DDAG
1989 block = entry->rb;
1990 *offset = entry->offset;
a82d593b
DDAG
1991
1992 if (entry->len > TARGET_PAGE_SIZE) {
1993 entry->len -= TARGET_PAGE_SIZE;
1994 entry->offset += TARGET_PAGE_SIZE;
1995 } else {
1996 memory_region_unref(block->mr);
ec481c6c 1997 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
a82d593b 1998 g_free(entry);
e03a34f8 1999 migration_consume_urgent_request();
a82d593b
DDAG
2000 }
2001 }
ec481c6c 2002 qemu_mutex_unlock(&rs->src_page_req_mutex);
a82d593b
DDAG
2003
2004 return block;
2005}
2006
3d0684b2
JQ
2007/**
2008 * get_queued_page: unqueue a page from the postocpy requests
2009 *
2010 * Skips pages that are already sent (!dirty)
a82d593b 2011 *
3d0684b2 2012 * Returns if a queued page is found
a82d593b 2013 *
6f37bb8b 2014 * @rs: current RAM state
3d0684b2 2015 * @pss: data about the state of the current dirty page scan
a82d593b 2016 */
f20e2865 2017static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
a82d593b
DDAG
2018{
2019 RAMBlock *block;
2020 ram_addr_t offset;
2021 bool dirty;
2022
2023 do {
f20e2865 2024 block = unqueue_page(rs, &offset);
a82d593b
DDAG
2025 /*
2026 * We're sending this page, and since it's postcopy nothing else
2027 * will dirty it, and we must make sure it doesn't get sent again
2028 * even if this queue request was received after the background
2029 * search already sent it.
2030 */
2031 if (block) {
f20e2865
JQ
2032 unsigned long page;
2033
6b6712ef
JQ
2034 page = offset >> TARGET_PAGE_BITS;
2035 dirty = test_bit(page, block->bmap);
a82d593b 2036 if (!dirty) {
06b10688 2037 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
6b6712ef 2038 page, test_bit(page, block->unsentmap));
a82d593b 2039 } else {
f20e2865 2040 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
a82d593b
DDAG
2041 }
2042 }
2043
2044 } while (block && !dirty);
2045
2046 if (block) {
2047 /*
2048 * As soon as we start servicing pages out of order, then we have
2049 * to kill the bulk stage, since the bulk stage assumes
2050 * in (migration_bitmap_find_and_reset_dirty) that every page is
2051 * dirty, that's no longer true.
2052 */
6f37bb8b 2053 rs->ram_bulk_stage = false;
a82d593b
DDAG
2054
2055 /*
2056 * We want the background search to continue from the queued page
2057 * since the guest is likely to want other pages near to the page
2058 * it just requested.
2059 */
2060 pss->block = block;
a935e30f 2061 pss->page = offset >> TARGET_PAGE_BITS;
a82d593b
DDAG
2062 }
2063
2064 return !!block;
2065}
2066
6c595cde 2067/**
5e58f968
JQ
2068 * migration_page_queue_free: drop any remaining pages in the ram
2069 * request queue
6c595cde 2070 *
3d0684b2
JQ
2071 * It should be empty at the end anyway, but in error cases there may
2072 * be some left. in case that there is any page left, we drop it.
2073 *
6c595cde 2074 */
83c13382 2075static void migration_page_queue_free(RAMState *rs)
6c595cde 2076{
ec481c6c 2077 struct RAMSrcPageRequest *mspr, *next_mspr;
6c595cde
DDAG
2078 /* This queue generally should be empty - but in the case of a failed
2079 * migration might have some droppings in.
2080 */
2081 rcu_read_lock();
ec481c6c 2082 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
6c595cde 2083 memory_region_unref(mspr->rb->mr);
ec481c6c 2084 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
6c595cde
DDAG
2085 g_free(mspr);
2086 }
2087 rcu_read_unlock();
2088}
2089
2090/**
3d0684b2
JQ
2091 * ram_save_queue_pages: queue the page for transmission
2092 *
2093 * A request from postcopy destination for example.
2094 *
2095 * Returns zero on success or negative on error
2096 *
3d0684b2
JQ
2097 * @rbname: Name of the RAMBLock of the request. NULL means the
2098 * same that last one.
2099 * @start: starting address from the start of the RAMBlock
2100 * @len: length (in bytes) to send
6c595cde 2101 */
96506894 2102int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
6c595cde
DDAG
2103{
2104 RAMBlock *ramblock;
53518d94 2105 RAMState *rs = ram_state;
6c595cde 2106
9360447d 2107 ram_counters.postcopy_requests++;
6c595cde
DDAG
2108 rcu_read_lock();
2109 if (!rbname) {
2110 /* Reuse last RAMBlock */
68a098f3 2111 ramblock = rs->last_req_rb;
6c595cde
DDAG
2112
2113 if (!ramblock) {
2114 /*
2115 * Shouldn't happen, we can't reuse the last RAMBlock if
2116 * it's the 1st request.
2117 */
2118 error_report("ram_save_queue_pages no previous block");
2119 goto err;
2120 }
2121 } else {
2122 ramblock = qemu_ram_block_by_name(rbname);
2123
2124 if (!ramblock) {
2125 /* We shouldn't be asked for a non-existent RAMBlock */
2126 error_report("ram_save_queue_pages no block '%s'", rbname);
2127 goto err;
2128 }
68a098f3 2129 rs->last_req_rb = ramblock;
6c595cde
DDAG
2130 }
2131 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2132 if (start+len > ramblock->used_length) {
9458ad6b
JQ
2133 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2134 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
6c595cde
DDAG
2135 __func__, start, len, ramblock->used_length);
2136 goto err;
2137 }
2138
ec481c6c
JQ
2139 struct RAMSrcPageRequest *new_entry =
2140 g_malloc0(sizeof(struct RAMSrcPageRequest));
6c595cde
DDAG
2141 new_entry->rb = ramblock;
2142 new_entry->offset = start;
2143 new_entry->len = len;
2144
2145 memory_region_ref(ramblock->mr);
ec481c6c
JQ
2146 qemu_mutex_lock(&rs->src_page_req_mutex);
2147 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
e03a34f8 2148 migration_make_urgent_request();
ec481c6c 2149 qemu_mutex_unlock(&rs->src_page_req_mutex);
6c595cde
DDAG
2150 rcu_read_unlock();
2151
2152 return 0;
2153
2154err:
2155 rcu_read_unlock();
2156 return -1;
2157}
2158
d7400a34
XG
2159static bool save_page_use_compression(RAMState *rs)
2160{
2161 if (!migrate_use_compression()) {
2162 return false;
2163 }
2164
2165 /*
2166 * If xbzrle is on, stop using the data compression after first
2167 * round of migration even if compression is enabled. In theory,
2168 * xbzrle can do better than compression.
2169 */
2170 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2171 return true;
2172 }
2173
2174 return false;
2175}
2176
a82d593b 2177/**
3d0684b2 2178 * ram_save_target_page: save one target page
a82d593b 2179 *
3d0684b2 2180 * Returns the number of pages written
a82d593b 2181 *
6f37bb8b 2182 * @rs: current RAM state
3d0684b2 2183 * @pss: data about the page we want to send
a82d593b 2184 * @last_stage: if we are at the completion stage
a82d593b 2185 */
a0a8aa14 2186static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2187 bool last_stage)
a82d593b 2188{
a8ec91f9
XG
2189 RAMBlock *block = pss->block;
2190 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2191 int res;
2192
2193 if (control_save_page(rs, block, offset, &res)) {
2194 return res;
2195 }
2196
1faa5665 2197 /*
d7400a34
XG
2198 * When starting the process of a new block, the first page of
2199 * the block should be sent out before other pages in the same
2200 * block, and all the pages in last block should have been sent
2201 * out, keeping this order is important, because the 'cont' flag
2202 * is used to avoid resending the block name.
1faa5665 2203 */
d7400a34
XG
2204 if (block != rs->last_sent_block && save_page_use_compression(rs)) {
2205 flush_compressed_data(rs);
2206 }
2207
2208 res = save_zero_page(rs, block, offset);
2209 if (res > 0) {
2210 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2211 * page would be stale
2212 */
2213 if (!save_page_use_compression(rs)) {
2214 XBZRLE_cache_lock();
2215 xbzrle_cache_zero_page(rs, block->offset + offset);
2216 XBZRLE_cache_unlock();
2217 }
2218 ram_release_pages(block->idstr, offset, res);
2219 return res;
2220 }
2221
da3f56cb
XG
2222 /*
2223 * Make sure the first page is sent out before other pages.
2224 *
2225 * we post it as normal page as compression will take much
2226 * CPU resource.
2227 */
2228 if (block == rs->last_sent_block && save_page_use_compression(rs)) {
701b1876 2229 return compress_page_with_multi_thread(rs, block, offset);
b9ee2f7d
JQ
2230 } else if (migrate_use_multifd()) {
2231 return ram_save_multifd_page(rs, block, offset);
a82d593b
DDAG
2232 }
2233
1faa5665 2234 return ram_save_page(rs, pss, last_stage);
a82d593b
DDAG
2235}
2236
2237/**
3d0684b2 2238 * ram_save_host_page: save a whole host page
a82d593b 2239 *
3d0684b2
JQ
2240 * Starting at *offset send pages up to the end of the current host
2241 * page. It's valid for the initial offset to point into the middle of
2242 * a host page in which case the remainder of the hostpage is sent.
2243 * Only dirty target pages are sent. Note that the host page size may
2244 * be a huge page for this block.
1eb3fc0a
DDAG
2245 * The saving stops at the boundary of the used_length of the block
2246 * if the RAMBlock isn't a multiple of the host page size.
a82d593b 2247 *
3d0684b2
JQ
2248 * Returns the number of pages written or negative on error
2249 *
6f37bb8b 2250 * @rs: current RAM state
3d0684b2 2251 * @ms: current migration state
3d0684b2 2252 * @pss: data about the page we want to send
a82d593b 2253 * @last_stage: if we are at the completion stage
a82d593b 2254 */
a0a8aa14 2255static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2256 bool last_stage)
a82d593b
DDAG
2257{
2258 int tmppages, pages = 0;
a935e30f
JQ
2259 size_t pagesize_bits =
2260 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
4c011c37 2261
b895de50
CLG
2262 if (!qemu_ram_is_migratable(pss->block)) {
2263 error_report("block %s should not be migrated !", pss->block->idstr);
2264 return 0;
2265 }
2266
a82d593b 2267 do {
1faa5665
XG
2268 /* Check the pages is dirty and if it is send it */
2269 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2270 pss->page++;
2271 continue;
2272 }
2273
f20e2865 2274 tmppages = ram_save_target_page(rs, pss, last_stage);
a82d593b
DDAG
2275 if (tmppages < 0) {
2276 return tmppages;
2277 }
2278
2279 pages += tmppages;
1faa5665
XG
2280 if (pss->block->unsentmap) {
2281 clear_bit(pss->page, pss->block->unsentmap);
2282 }
2283
a935e30f 2284 pss->page++;
1eb3fc0a
DDAG
2285 } while ((pss->page & (pagesize_bits - 1)) &&
2286 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
a82d593b
DDAG
2287
2288 /* The offset we leave with is the last one we looked at */
a935e30f 2289 pss->page--;
a82d593b
DDAG
2290 return pages;
2291}
6c595cde 2292
56e93d26 2293/**
3d0684b2 2294 * ram_find_and_save_block: finds a dirty page and sends it to f
56e93d26
JQ
2295 *
2296 * Called within an RCU critical section.
2297 *
3d0684b2 2298 * Returns the number of pages written where zero means no dirty pages
56e93d26 2299 *
6f37bb8b 2300 * @rs: current RAM state
56e93d26 2301 * @last_stage: if we are at the completion stage
a82d593b
DDAG
2302 *
2303 * On systems where host-page-size > target-page-size it will send all the
2304 * pages in a host page that are dirty.
56e93d26
JQ
2305 */
2306
ce25d337 2307static int ram_find_and_save_block(RAMState *rs, bool last_stage)
56e93d26 2308{
b8fb8cb7 2309 PageSearchStatus pss;
56e93d26 2310 int pages = 0;
b9e60928 2311 bool again, found;
56e93d26 2312
0827b9e9
AA
2313 /* No dirty page as there is zero RAM */
2314 if (!ram_bytes_total()) {
2315 return pages;
2316 }
2317
6f37bb8b 2318 pss.block = rs->last_seen_block;
a935e30f 2319 pss.page = rs->last_page;
b8fb8cb7
DDAG
2320 pss.complete_round = false;
2321
2322 if (!pss.block) {
2323 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2324 }
56e93d26 2325
b9e60928 2326 do {
a82d593b 2327 again = true;
f20e2865 2328 found = get_queued_page(rs, &pss);
b9e60928 2329
a82d593b
DDAG
2330 if (!found) {
2331 /* priority queue empty, so just search for something dirty */
f20e2865 2332 found = find_dirty_block(rs, &pss, &again);
a82d593b 2333 }
f3f491fc 2334
a82d593b 2335 if (found) {
f20e2865 2336 pages = ram_save_host_page(rs, &pss, last_stage);
56e93d26 2337 }
b9e60928 2338 } while (!pages && again);
56e93d26 2339
6f37bb8b 2340 rs->last_seen_block = pss.block;
a935e30f 2341 rs->last_page = pss.page;
56e93d26
JQ
2342
2343 return pages;
2344}
2345
2346void acct_update_position(QEMUFile *f, size_t size, bool zero)
2347{
2348 uint64_t pages = size / TARGET_PAGE_SIZE;
f7ccd61b 2349
56e93d26 2350 if (zero) {
9360447d 2351 ram_counters.duplicate += pages;
56e93d26 2352 } else {
9360447d
JQ
2353 ram_counters.normal += pages;
2354 ram_counters.transferred += size;
56e93d26
JQ
2355 qemu_update_position(f, size);
2356 }
2357}
2358
56e93d26
JQ
2359uint64_t ram_bytes_total(void)
2360{
2361 RAMBlock *block;
2362 uint64_t total = 0;
2363
2364 rcu_read_lock();
b895de50 2365 RAMBLOCK_FOREACH_MIGRATABLE(block) {
56e93d26 2366 total += block->used_length;
99e15582 2367 }
56e93d26
JQ
2368 rcu_read_unlock();
2369 return total;
2370}
2371
f265e0e4 2372static void xbzrle_load_setup(void)
56e93d26 2373{
f265e0e4 2374 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
56e93d26
JQ
2375}
2376
f265e0e4
JQ
2377static void xbzrle_load_cleanup(void)
2378{
2379 g_free(XBZRLE.decoded_buf);
2380 XBZRLE.decoded_buf = NULL;
2381}
2382
7d7c96be
PX
2383static void ram_state_cleanup(RAMState **rsp)
2384{
b9ccaf6d
DDAG
2385 if (*rsp) {
2386 migration_page_queue_free(*rsp);
2387 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2388 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2389 g_free(*rsp);
2390 *rsp = NULL;
2391 }
7d7c96be
PX
2392}
2393
84593a08
PX
2394static void xbzrle_cleanup(void)
2395{
2396 XBZRLE_cache_lock();
2397 if (XBZRLE.cache) {
2398 cache_fini(XBZRLE.cache);
2399 g_free(XBZRLE.encoded_buf);
2400 g_free(XBZRLE.current_buf);
2401 g_free(XBZRLE.zero_target_page);
2402 XBZRLE.cache = NULL;
2403 XBZRLE.encoded_buf = NULL;
2404 XBZRLE.current_buf = NULL;
2405 XBZRLE.zero_target_page = NULL;
2406 }
2407 XBZRLE_cache_unlock();
2408}
2409
f265e0e4 2410static void ram_save_cleanup(void *opaque)
56e93d26 2411{
53518d94 2412 RAMState **rsp = opaque;
6b6712ef 2413 RAMBlock *block;
eb859c53 2414
2ff64038
LZ
2415 /* caller have hold iothread lock or is in a bh, so there is
2416 * no writing race against this migration_bitmap
2417 */
6b6712ef
JQ
2418 memory_global_dirty_log_stop();
2419
b895de50 2420 RAMBLOCK_FOREACH_MIGRATABLE(block) {
6b6712ef
JQ
2421 g_free(block->bmap);
2422 block->bmap = NULL;
2423 g_free(block->unsentmap);
2424 block->unsentmap = NULL;
56e93d26
JQ
2425 }
2426
84593a08 2427 xbzrle_cleanup();
f0afa331 2428 compress_threads_save_cleanup();
7d7c96be 2429 ram_state_cleanup(rsp);
56e93d26
JQ
2430}
2431
6f37bb8b 2432static void ram_state_reset(RAMState *rs)
56e93d26 2433{
6f37bb8b
JQ
2434 rs->last_seen_block = NULL;
2435 rs->last_sent_block = NULL;
269ace29 2436 rs->last_page = 0;
6f37bb8b
JQ
2437 rs->last_version = ram_list.version;
2438 rs->ram_bulk_stage = true;
56e93d26
JQ
2439}
2440
2441#define MAX_WAIT 50 /* ms, half buffered_file limit */
2442
4f2e4252
DDAG
2443/*
2444 * 'expected' is the value you expect the bitmap mostly to be full
2445 * of; it won't bother printing lines that are all this value.
2446 * If 'todump' is null the migration bitmap is dumped.
2447 */
6b6712ef
JQ
2448void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2449 unsigned long pages)
4f2e4252 2450{
4f2e4252
DDAG
2451 int64_t cur;
2452 int64_t linelen = 128;
2453 char linebuf[129];
2454
6b6712ef 2455 for (cur = 0; cur < pages; cur += linelen) {
4f2e4252
DDAG
2456 int64_t curb;
2457 bool found = false;
2458 /*
2459 * Last line; catch the case where the line length
2460 * is longer than remaining ram
2461 */
6b6712ef
JQ
2462 if (cur + linelen > pages) {
2463 linelen = pages - cur;
4f2e4252
DDAG
2464 }
2465 for (curb = 0; curb < linelen; curb++) {
2466 bool thisbit = test_bit(cur + curb, todump);
2467 linebuf[curb] = thisbit ? '1' : '.';
2468 found = found || (thisbit != expected);
2469 }
2470 if (found) {
2471 linebuf[curb] = '\0';
2472 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2473 }
2474 }
2475}
2476
e0b266f0
DDAG
2477/* **** functions for postcopy ***** */
2478
ced1c616
PB
2479void ram_postcopy_migrated_memory_release(MigrationState *ms)
2480{
2481 struct RAMBlock *block;
ced1c616 2482
b895de50 2483 RAMBLOCK_FOREACH_MIGRATABLE(block) {
6b6712ef
JQ
2484 unsigned long *bitmap = block->bmap;
2485 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2486 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
ced1c616
PB
2487
2488 while (run_start < range) {
2489 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
aaa2064c 2490 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
ced1c616
PB
2491 (run_end - run_start) << TARGET_PAGE_BITS);
2492 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2493 }
2494 }
2495}
2496
3d0684b2
JQ
2497/**
2498 * postcopy_send_discard_bm_ram: discard a RAMBlock
2499 *
2500 * Returns zero on success
2501 *
e0b266f0
DDAG
2502 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2503 * Note: At this point the 'unsentmap' is the processed bitmap combined
2504 * with the dirtymap; so a '1' means it's either dirty or unsent.
3d0684b2
JQ
2505 *
2506 * @ms: current migration state
2507 * @pds: state for postcopy
2508 * @start: RAMBlock starting page
2509 * @length: RAMBlock size
e0b266f0
DDAG
2510 */
2511static int postcopy_send_discard_bm_ram(MigrationState *ms,
2512 PostcopyDiscardState *pds,
6b6712ef 2513 RAMBlock *block)
e0b266f0 2514{
6b6712ef 2515 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
e0b266f0 2516 unsigned long current;
6b6712ef 2517 unsigned long *unsentmap = block->unsentmap;
e0b266f0 2518
6b6712ef 2519 for (current = 0; current < end; ) {
e0b266f0
DDAG
2520 unsigned long one = find_next_bit(unsentmap, end, current);
2521
2522 if (one <= end) {
2523 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2524 unsigned long discard_length;
2525
2526 if (zero >= end) {
2527 discard_length = end - one;
2528 } else {
2529 discard_length = zero - one;
2530 }
d688c62d
DDAG
2531 if (discard_length) {
2532 postcopy_discard_send_range(ms, pds, one, discard_length);
2533 }
e0b266f0
DDAG
2534 current = one + discard_length;
2535 } else {
2536 current = one;
2537 }
2538 }
2539
2540 return 0;
2541}
2542
3d0684b2
JQ
2543/**
2544 * postcopy_each_ram_send_discard: discard all RAMBlocks
2545 *
2546 * Returns 0 for success or negative for error
2547 *
e0b266f0
DDAG
2548 * Utility for the outgoing postcopy code.
2549 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2550 * passing it bitmap indexes and name.
e0b266f0
DDAG
2551 * (qemu_ram_foreach_block ends up passing unscaled lengths
2552 * which would mean postcopy code would have to deal with target page)
3d0684b2
JQ
2553 *
2554 * @ms: current migration state
e0b266f0
DDAG
2555 */
2556static int postcopy_each_ram_send_discard(MigrationState *ms)
2557{
2558 struct RAMBlock *block;
2559 int ret;
2560
b895de50 2561 RAMBLOCK_FOREACH_MIGRATABLE(block) {
6b6712ef
JQ
2562 PostcopyDiscardState *pds =
2563 postcopy_discard_send_init(ms, block->idstr);
e0b266f0
DDAG
2564
2565 /*
2566 * Postcopy sends chunks of bitmap over the wire, but it
2567 * just needs indexes at this point, avoids it having
2568 * target page specific code.
2569 */
6b6712ef 2570 ret = postcopy_send_discard_bm_ram(ms, pds, block);
e0b266f0
DDAG
2571 postcopy_discard_send_finish(ms, pds);
2572 if (ret) {
2573 return ret;
2574 }
2575 }
2576
2577 return 0;
2578}
2579
3d0684b2
JQ
2580/**
2581 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2582 *
2583 * Helper for postcopy_chunk_hostpages; it's called twice to
2584 * canonicalize the two bitmaps, that are similar, but one is
2585 * inverted.
99e314eb 2586 *
3d0684b2
JQ
2587 * Postcopy requires that all target pages in a hostpage are dirty or
2588 * clean, not a mix. This function canonicalizes the bitmaps.
99e314eb 2589 *
3d0684b2
JQ
2590 * @ms: current migration state
2591 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2592 * otherwise we need to canonicalize partially dirty host pages
2593 * @block: block that contains the page we want to canonicalize
2594 * @pds: state for postcopy
99e314eb
DDAG
2595 */
2596static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2597 RAMBlock *block,
2598 PostcopyDiscardState *pds)
2599{
53518d94 2600 RAMState *rs = ram_state;
6b6712ef
JQ
2601 unsigned long *bitmap = block->bmap;
2602 unsigned long *unsentmap = block->unsentmap;
29c59172 2603 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
6b6712ef 2604 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
99e314eb
DDAG
2605 unsigned long run_start;
2606
29c59172
DDAG
2607 if (block->page_size == TARGET_PAGE_SIZE) {
2608 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2609 return;
2610 }
2611
99e314eb
DDAG
2612 if (unsent_pass) {
2613 /* Find a sent page */
6b6712ef 2614 run_start = find_next_zero_bit(unsentmap, pages, 0);
99e314eb
DDAG
2615 } else {
2616 /* Find a dirty page */
6b6712ef 2617 run_start = find_next_bit(bitmap, pages, 0);
99e314eb
DDAG
2618 }
2619
6b6712ef 2620 while (run_start < pages) {
99e314eb
DDAG
2621 bool do_fixup = false;
2622 unsigned long fixup_start_addr;
2623 unsigned long host_offset;
2624
2625 /*
2626 * If the start of this run of pages is in the middle of a host
2627 * page, then we need to fixup this host page.
2628 */
2629 host_offset = run_start % host_ratio;
2630 if (host_offset) {
2631 do_fixup = true;
2632 run_start -= host_offset;
2633 fixup_start_addr = run_start;
2634 /* For the next pass */
2635 run_start = run_start + host_ratio;
2636 } else {
2637 /* Find the end of this run */
2638 unsigned long run_end;
2639 if (unsent_pass) {
6b6712ef 2640 run_end = find_next_bit(unsentmap, pages, run_start + 1);
99e314eb 2641 } else {
6b6712ef 2642 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
99e314eb
DDAG
2643 }
2644 /*
2645 * If the end isn't at the start of a host page, then the
2646 * run doesn't finish at the end of a host page
2647 * and we need to discard.
2648 */
2649 host_offset = run_end % host_ratio;
2650 if (host_offset) {
2651 do_fixup = true;
2652 fixup_start_addr = run_end - host_offset;
2653 /*
2654 * This host page has gone, the next loop iteration starts
2655 * from after the fixup
2656 */
2657 run_start = fixup_start_addr + host_ratio;
2658 } else {
2659 /*
2660 * No discards on this iteration, next loop starts from
2661 * next sent/dirty page
2662 */
2663 run_start = run_end + 1;
2664 }
2665 }
2666
2667 if (do_fixup) {
2668 unsigned long page;
2669
2670 /* Tell the destination to discard this page */
2671 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2672 /* For the unsent_pass we:
2673 * discard partially sent pages
2674 * For the !unsent_pass (dirty) we:
2675 * discard partially dirty pages that were sent
2676 * (any partially sent pages were already discarded
2677 * by the previous unsent_pass)
2678 */
2679 postcopy_discard_send_range(ms, pds, fixup_start_addr,
2680 host_ratio);
2681 }
2682
2683 /* Clean up the bitmap */
2684 for (page = fixup_start_addr;
2685 page < fixup_start_addr + host_ratio; page++) {
2686 /* All pages in this host page are now not sent */
2687 set_bit(page, unsentmap);
2688
2689 /*
2690 * Remark them as dirty, updating the count for any pages
2691 * that weren't previously dirty.
2692 */
0d8ec885 2693 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
99e314eb
DDAG
2694 }
2695 }
2696
2697 if (unsent_pass) {
2698 /* Find the next sent page for the next iteration */
6b6712ef 2699 run_start = find_next_zero_bit(unsentmap, pages, run_start);
99e314eb
DDAG
2700 } else {
2701 /* Find the next dirty page for the next iteration */
6b6712ef 2702 run_start = find_next_bit(bitmap, pages, run_start);
99e314eb
DDAG
2703 }
2704 }
2705}
2706
3d0684b2
JQ
2707/**
2708 * postcopy_chuck_hostpages: discrad any partially sent host page
2709 *
99e314eb
DDAG
2710 * Utility for the outgoing postcopy code.
2711 *
2712 * Discard any partially sent host-page size chunks, mark any partially
29c59172
DDAG
2713 * dirty host-page size chunks as all dirty. In this case the host-page
2714 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
99e314eb 2715 *
3d0684b2
JQ
2716 * Returns zero on success
2717 *
2718 * @ms: current migration state
6b6712ef 2719 * @block: block we want to work with
99e314eb 2720 */
6b6712ef 2721static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
99e314eb 2722{
6b6712ef
JQ
2723 PostcopyDiscardState *pds =
2724 postcopy_discard_send_init(ms, block->idstr);
99e314eb 2725
6b6712ef
JQ
2726 /* First pass: Discard all partially sent host pages */
2727 postcopy_chunk_hostpages_pass(ms, true, block, pds);
2728 /*
2729 * Second pass: Ensure that all partially dirty host pages are made
2730 * fully dirty.
2731 */
2732 postcopy_chunk_hostpages_pass(ms, false, block, pds);
99e314eb 2733
6b6712ef 2734 postcopy_discard_send_finish(ms, pds);
99e314eb
DDAG
2735 return 0;
2736}
2737
3d0684b2
JQ
2738/**
2739 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2740 *
2741 * Returns zero on success
2742 *
e0b266f0
DDAG
2743 * Transmit the set of pages to be discarded after precopy to the target
2744 * these are pages that:
2745 * a) Have been previously transmitted but are now dirty again
2746 * b) Pages that have never been transmitted, this ensures that
2747 * any pages on the destination that have been mapped by background
2748 * tasks get discarded (transparent huge pages is the specific concern)
2749 * Hopefully this is pretty sparse
3d0684b2
JQ
2750 *
2751 * @ms: current migration state
e0b266f0
DDAG
2752 */
2753int ram_postcopy_send_discard_bitmap(MigrationState *ms)
2754{
53518d94 2755 RAMState *rs = ram_state;
6b6712ef 2756 RAMBlock *block;
e0b266f0 2757 int ret;
e0b266f0
DDAG
2758
2759 rcu_read_lock();
2760
2761 /* This should be our last sync, the src is now paused */
eb859c53 2762 migration_bitmap_sync(rs);
e0b266f0 2763
6b6712ef
JQ
2764 /* Easiest way to make sure we don't resume in the middle of a host-page */
2765 rs->last_seen_block = NULL;
2766 rs->last_sent_block = NULL;
2767 rs->last_page = 0;
e0b266f0 2768
b895de50 2769 RAMBLOCK_FOREACH_MIGRATABLE(block) {
6b6712ef
JQ
2770 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2771 unsigned long *bitmap = block->bmap;
2772 unsigned long *unsentmap = block->unsentmap;
2773
2774 if (!unsentmap) {
2775 /* We don't have a safe way to resize the sentmap, so
2776 * if the bitmap was resized it will be NULL at this
2777 * point.
2778 */
2779 error_report("migration ram resized during precopy phase");
2780 rcu_read_unlock();
2781 return -EINVAL;
2782 }
2783 /* Deal with TPS != HPS and huge pages */
2784 ret = postcopy_chunk_hostpages(ms, block);
2785 if (ret) {
2786 rcu_read_unlock();
2787 return ret;
2788 }
e0b266f0 2789
6b6712ef
JQ
2790 /*
2791 * Update the unsentmap to be unsentmap = unsentmap | dirty
2792 */
2793 bitmap_or(unsentmap, unsentmap, bitmap, pages);
e0b266f0 2794#ifdef DEBUG_POSTCOPY
6b6712ef 2795 ram_debug_dump_bitmap(unsentmap, true, pages);
e0b266f0 2796#endif
6b6712ef
JQ
2797 }
2798 trace_ram_postcopy_send_discard_bitmap();
e0b266f0
DDAG
2799
2800 ret = postcopy_each_ram_send_discard(ms);
2801 rcu_read_unlock();
2802
2803 return ret;
2804}
2805
3d0684b2
JQ
2806/**
2807 * ram_discard_range: discard dirtied pages at the beginning of postcopy
e0b266f0 2808 *
3d0684b2 2809 * Returns zero on success
e0b266f0 2810 *
36449157
JQ
2811 * @rbname: name of the RAMBlock of the request. NULL means the
2812 * same that last one.
3d0684b2
JQ
2813 * @start: RAMBlock starting page
2814 * @length: RAMBlock size
e0b266f0 2815 */
aaa2064c 2816int ram_discard_range(const char *rbname, uint64_t start, size_t length)
e0b266f0
DDAG
2817{
2818 int ret = -1;
2819
36449157 2820 trace_ram_discard_range(rbname, start, length);
d3a5038c 2821
e0b266f0 2822 rcu_read_lock();
36449157 2823 RAMBlock *rb = qemu_ram_block_by_name(rbname);
e0b266f0
DDAG
2824
2825 if (!rb) {
36449157 2826 error_report("ram_discard_range: Failed to find block '%s'", rbname);
e0b266f0
DDAG
2827 goto err;
2828 }
2829
f9494614
AP
2830 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2831 length >> qemu_target_page_bits());
d3a5038c 2832 ret = ram_block_discard_range(rb, start, length);
e0b266f0
DDAG
2833
2834err:
2835 rcu_read_unlock();
2836
2837 return ret;
2838}
2839
84593a08
PX
2840/*
2841 * For every allocation, we will try not to crash the VM if the
2842 * allocation failed.
2843 */
2844static int xbzrle_init(void)
2845{
2846 Error *local_err = NULL;
2847
2848 if (!migrate_use_xbzrle()) {
2849 return 0;
2850 }
2851
2852 XBZRLE_cache_lock();
2853
2854 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2855 if (!XBZRLE.zero_target_page) {
2856 error_report("%s: Error allocating zero page", __func__);
2857 goto err_out;
2858 }
2859
2860 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2861 TARGET_PAGE_SIZE, &local_err);
2862 if (!XBZRLE.cache) {
2863 error_report_err(local_err);
2864 goto free_zero_page;
2865 }
2866
2867 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2868 if (!XBZRLE.encoded_buf) {
2869 error_report("%s: Error allocating encoded_buf", __func__);
2870 goto free_cache;
2871 }
2872
2873 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2874 if (!XBZRLE.current_buf) {
2875 error_report("%s: Error allocating current_buf", __func__);
2876 goto free_encoded_buf;
2877 }
2878
2879 /* We are all good */
2880 XBZRLE_cache_unlock();
2881 return 0;
2882
2883free_encoded_buf:
2884 g_free(XBZRLE.encoded_buf);
2885 XBZRLE.encoded_buf = NULL;
2886free_cache:
2887 cache_fini(XBZRLE.cache);
2888 XBZRLE.cache = NULL;
2889free_zero_page:
2890 g_free(XBZRLE.zero_target_page);
2891 XBZRLE.zero_target_page = NULL;
2892err_out:
2893 XBZRLE_cache_unlock();
2894 return -ENOMEM;
2895}
2896
53518d94 2897static int ram_state_init(RAMState **rsp)
56e93d26 2898{
7d00ee6a
PX
2899 *rsp = g_try_new0(RAMState, 1);
2900
2901 if (!*rsp) {
2902 error_report("%s: Init ramstate fail", __func__);
2903 return -1;
2904 }
53518d94
JQ
2905
2906 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2907 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2908 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
56e93d26 2909
7d00ee6a
PX
2910 /*
2911 * Count the total number of pages used by ram blocks not including any
2912 * gaps due to alignment or unplugs.
2913 */
2914 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
2915
2916 ram_state_reset(*rsp);
2917
2918 return 0;
2919}
2920
d6eff5d7 2921static void ram_list_init_bitmaps(void)
7d00ee6a 2922{
d6eff5d7
PX
2923 RAMBlock *block;
2924 unsigned long pages;
56e93d26 2925
0827b9e9
AA
2926 /* Skip setting bitmap if there is no RAM */
2927 if (ram_bytes_total()) {
b895de50 2928 RAMBLOCK_FOREACH_MIGRATABLE(block) {
d6eff5d7 2929 pages = block->max_length >> TARGET_PAGE_BITS;
6b6712ef
JQ
2930 block->bmap = bitmap_new(pages);
2931 bitmap_set(block->bmap, 0, pages);
2932 if (migrate_postcopy_ram()) {
2933 block->unsentmap = bitmap_new(pages);
2934 bitmap_set(block->unsentmap, 0, pages);
2935 }
0827b9e9 2936 }
f3f491fc 2937 }
d6eff5d7
PX
2938}
2939
2940static void ram_init_bitmaps(RAMState *rs)
2941{
2942 /* For memory_global_dirty_log_start below. */
2943 qemu_mutex_lock_iothread();
2944 qemu_mutex_lock_ramlist();
2945 rcu_read_lock();
f3f491fc 2946
d6eff5d7 2947 ram_list_init_bitmaps();
56e93d26 2948 memory_global_dirty_log_start();
d6eff5d7
PX
2949 migration_bitmap_sync(rs);
2950
2951 rcu_read_unlock();
56e93d26 2952 qemu_mutex_unlock_ramlist();
49877834 2953 qemu_mutex_unlock_iothread();
d6eff5d7
PX
2954}
2955
2956static int ram_init_all(RAMState **rsp)
2957{
2958 if (ram_state_init(rsp)) {
2959 return -1;
2960 }
2961
2962 if (xbzrle_init()) {
2963 ram_state_cleanup(rsp);
2964 return -1;
2965 }
2966
2967 ram_init_bitmaps(*rsp);
a91246c9
HZ
2968
2969 return 0;
2970}
2971
08614f34
PX
2972static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2973{
2974 RAMBlock *block;
2975 uint64_t pages = 0;
2976
2977 /*
2978 * Postcopy is not using xbzrle/compression, so no need for that.
2979 * Also, since source are already halted, we don't need to care
2980 * about dirty page logging as well.
2981 */
2982
ff0769a4 2983 RAMBLOCK_FOREACH_MIGRATABLE(block) {
08614f34
PX
2984 pages += bitmap_count_one(block->bmap,
2985 block->used_length >> TARGET_PAGE_BITS);
2986 }
2987
2988 /* This may not be aligned with current bitmaps. Recalculate. */
2989 rs->migration_dirty_pages = pages;
2990
2991 rs->last_seen_block = NULL;
2992 rs->last_sent_block = NULL;
2993 rs->last_page = 0;
2994 rs->last_version = ram_list.version;
2995 /*
2996 * Disable the bulk stage, otherwise we'll resend the whole RAM no
2997 * matter what we have sent.
2998 */
2999 rs->ram_bulk_stage = false;
3000
3001 /* Update RAMState cache of output QEMUFile */
3002 rs->f = out;
3003
3004 trace_ram_state_resume_prepare(pages);
3005}
3006
3d0684b2
JQ
3007/*
3008 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
a91246c9
HZ
3009 * long-running RCU critical section. When rcu-reclaims in the code
3010 * start to become numerous it will be necessary to reduce the
3011 * granularity of these critical sections.
3012 */
3013
3d0684b2
JQ
3014/**
3015 * ram_save_setup: Setup RAM for migration
3016 *
3017 * Returns zero to indicate success and negative for error
3018 *
3019 * @f: QEMUFile where to send the data
3020 * @opaque: RAMState pointer
3021 */
a91246c9
HZ
3022static int ram_save_setup(QEMUFile *f, void *opaque)
3023{
53518d94 3024 RAMState **rsp = opaque;
a91246c9
HZ
3025 RAMBlock *block;
3026
dcaf446e
XG
3027 if (compress_threads_save_setup()) {
3028 return -1;
3029 }
3030
a91246c9
HZ
3031 /* migration has already setup the bitmap, reuse it. */
3032 if (!migration_in_colo_state()) {
7d00ee6a 3033 if (ram_init_all(rsp) != 0) {
dcaf446e 3034 compress_threads_save_cleanup();
a91246c9 3035 return -1;
53518d94 3036 }
a91246c9 3037 }
53518d94 3038 (*rsp)->f = f;
a91246c9
HZ
3039
3040 rcu_read_lock();
56e93d26
JQ
3041
3042 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
3043
b895de50 3044 RAMBLOCK_FOREACH_MIGRATABLE(block) {
56e93d26
JQ
3045 qemu_put_byte(f, strlen(block->idstr));
3046 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3047 qemu_put_be64(f, block->used_length);
ef08fb38
DDAG
3048 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3049 qemu_put_be64(f, block->page_size);
3050 }
56e93d26
JQ
3051 }
3052
3053 rcu_read_unlock();
3054
3055 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3056 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3057
6df264ac 3058 multifd_send_sync_main();
56e93d26 3059 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3060 qemu_fflush(f);
56e93d26
JQ
3061
3062 return 0;
3063}
3064
3d0684b2
JQ
3065/**
3066 * ram_save_iterate: iterative stage for migration
3067 *
3068 * Returns zero to indicate success and negative for error
3069 *
3070 * @f: QEMUFile where to send the data
3071 * @opaque: RAMState pointer
3072 */
56e93d26
JQ
3073static int ram_save_iterate(QEMUFile *f, void *opaque)
3074{
53518d94
JQ
3075 RAMState **temp = opaque;
3076 RAMState *rs = *temp;
56e93d26
JQ
3077 int ret;
3078 int i;
3079 int64_t t0;
5c90308f 3080 int done = 0;
56e93d26 3081
b2557345
PL
3082 if (blk_mig_bulk_active()) {
3083 /* Avoid transferring ram during bulk phase of block migration as
3084 * the bulk phase will usually take a long time and transferring
3085 * ram updates during that time is pointless. */
3086 goto out;
3087 }
3088
56e93d26 3089 rcu_read_lock();
6f37bb8b
JQ
3090 if (ram_list.version != rs->last_version) {
3091 ram_state_reset(rs);
56e93d26
JQ
3092 }
3093
3094 /* Read version before ram_list.blocks */
3095 smp_rmb();
3096
3097 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3098
3099 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3100 i = 0;
e03a34f8
DDAG
3101 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3102 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
56e93d26
JQ
3103 int pages;
3104
e03a34f8
DDAG
3105 if (qemu_file_get_error(f)) {
3106 break;
3107 }
3108
ce25d337 3109 pages = ram_find_and_save_block(rs, false);
56e93d26
JQ
3110 /* no more pages to sent */
3111 if (pages == 0) {
5c90308f 3112 done = 1;
56e93d26
JQ
3113 break;
3114 }
23b28c3c 3115 rs->iterations++;
070afca2 3116
56e93d26
JQ
3117 /* we want to check in the 1st loop, just in case it was the 1st time
3118 and we had to sync the dirty bitmap.
3119 qemu_get_clock_ns() is a bit expensive, so we only check each some
3120 iterations
3121 */
3122 if ((i & 63) == 0) {
3123 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3124 if (t1 > MAX_WAIT) {
55c4446b 3125 trace_ram_save_iterate_big_wait(t1, i);
56e93d26
JQ
3126 break;
3127 }
3128 }
3129 i++;
3130 }
ce25d337 3131 flush_compressed_data(rs);
56e93d26
JQ
3132 rcu_read_unlock();
3133
3134 /*
3135 * Must occur before EOS (or any QEMUFile operation)
3136 * because of RDMA protocol.
3137 */
3138 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3139
6df264ac 3140 multifd_send_sync_main();
b2557345 3141out:
56e93d26 3142 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3143 qemu_fflush(f);
9360447d 3144 ram_counters.transferred += 8;
56e93d26
JQ
3145
3146 ret = qemu_file_get_error(f);
3147 if (ret < 0) {
3148 return ret;
3149 }
3150
5c90308f 3151 return done;
56e93d26
JQ
3152}
3153
3d0684b2
JQ
3154/**
3155 * ram_save_complete: function called to send the remaining amount of ram
3156 *
3157 * Returns zero to indicate success
3158 *
3159 * Called with iothread lock
3160 *
3161 * @f: QEMUFile where to send the data
3162 * @opaque: RAMState pointer
3163 */
56e93d26
JQ
3164static int ram_save_complete(QEMUFile *f, void *opaque)
3165{
53518d94
JQ
3166 RAMState **temp = opaque;
3167 RAMState *rs = *temp;
6f37bb8b 3168
56e93d26
JQ
3169 rcu_read_lock();
3170
5727309d 3171 if (!migration_in_postcopy()) {
8d820d6f 3172 migration_bitmap_sync(rs);
663e6c1d 3173 }
56e93d26
JQ
3174
3175 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3176
3177 /* try transferring iterative blocks of memory */
3178
3179 /* flush all remaining blocks regardless of rate limiting */
3180 while (true) {
3181 int pages;
3182
ce25d337 3183 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
56e93d26
JQ
3184 /* no more blocks to sent */
3185 if (pages == 0) {
3186 break;
3187 }
3188 }
3189
ce25d337 3190 flush_compressed_data(rs);
56e93d26 3191 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
56e93d26
JQ
3192
3193 rcu_read_unlock();
d09a6fde 3194
6df264ac 3195 multifd_send_sync_main();
56e93d26 3196 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3197 qemu_fflush(f);
56e93d26
JQ
3198
3199 return 0;
3200}
3201
c31b098f 3202static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
47995026
VSO
3203 uint64_t *res_precopy_only,
3204 uint64_t *res_compatible,
3205 uint64_t *res_postcopy_only)
56e93d26 3206{
53518d94
JQ
3207 RAMState **temp = opaque;
3208 RAMState *rs = *temp;
56e93d26
JQ
3209 uint64_t remaining_size;
3210
9edabd4d 3211 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3212
5727309d 3213 if (!migration_in_postcopy() &&
663e6c1d 3214 remaining_size < max_size) {
56e93d26
JQ
3215 qemu_mutex_lock_iothread();
3216 rcu_read_lock();
8d820d6f 3217 migration_bitmap_sync(rs);
56e93d26
JQ
3218 rcu_read_unlock();
3219 qemu_mutex_unlock_iothread();
9edabd4d 3220 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3221 }
c31b098f 3222
86e1167e
VSO
3223 if (migrate_postcopy_ram()) {
3224 /* We can do postcopy, and all the data is postcopiable */
47995026 3225 *res_compatible += remaining_size;
86e1167e 3226 } else {
47995026 3227 *res_precopy_only += remaining_size;
86e1167e 3228 }
56e93d26
JQ
3229}
3230
3231static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3232{
3233 unsigned int xh_len;
3234 int xh_flags;
063e760a 3235 uint8_t *loaded_data;
56e93d26 3236
56e93d26
JQ
3237 /* extract RLE header */
3238 xh_flags = qemu_get_byte(f);
3239 xh_len = qemu_get_be16(f);
3240
3241 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3242 error_report("Failed to load XBZRLE page - wrong compression!");
3243 return -1;
3244 }
3245
3246 if (xh_len > TARGET_PAGE_SIZE) {
3247 error_report("Failed to load XBZRLE page - len overflow!");
3248 return -1;
3249 }
f265e0e4 3250 loaded_data = XBZRLE.decoded_buf;
56e93d26 3251 /* load data and decode */
f265e0e4 3252 /* it can change loaded_data to point to an internal buffer */
063e760a 3253 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
56e93d26
JQ
3254
3255 /* decode RLE */
063e760a 3256 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
56e93d26
JQ
3257 TARGET_PAGE_SIZE) == -1) {
3258 error_report("Failed to load XBZRLE page - decode error!");
3259 return -1;
3260 }
3261
3262 return 0;
3263}
3264
3d0684b2
JQ
3265/**
3266 * ram_block_from_stream: read a RAMBlock id from the migration stream
3267 *
3268 * Must be called from within a rcu critical section.
3269 *
56e93d26 3270 * Returns a pointer from within the RCU-protected ram_list.
a7180877 3271 *
3d0684b2
JQ
3272 * @f: QEMUFile where to read the data from
3273 * @flags: Page flags (mostly to see if it's a continuation of previous block)
a7180877 3274 */
3d0684b2 3275static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
56e93d26
JQ
3276{
3277 static RAMBlock *block = NULL;
3278 char id[256];
3279 uint8_t len;
3280
3281 if (flags & RAM_SAVE_FLAG_CONTINUE) {
4c4bad48 3282 if (!block) {
56e93d26
JQ
3283 error_report("Ack, bad migration stream!");
3284 return NULL;
3285 }
4c4bad48 3286 return block;
56e93d26
JQ
3287 }
3288
3289 len = qemu_get_byte(f);
3290 qemu_get_buffer(f, (uint8_t *)id, len);
3291 id[len] = 0;
3292
e3dd7493 3293 block = qemu_ram_block_by_name(id);
4c4bad48
HZ
3294 if (!block) {
3295 error_report("Can't find block %s", id);
3296 return NULL;
56e93d26
JQ
3297 }
3298
b895de50
CLG
3299 if (!qemu_ram_is_migratable(block)) {
3300 error_report("block %s should not be migrated !", id);
3301 return NULL;
3302 }
3303
4c4bad48
HZ
3304 return block;
3305}
3306
3307static inline void *host_from_ram_block_offset(RAMBlock *block,
3308 ram_addr_t offset)
3309{
3310 if (!offset_in_ramblock(block, offset)) {
3311 return NULL;
3312 }
3313
3314 return block->host + offset;
56e93d26
JQ
3315}
3316
3d0684b2
JQ
3317/**
3318 * ram_handle_compressed: handle the zero page case
3319 *
56e93d26
JQ
3320 * If a page (or a whole RDMA chunk) has been
3321 * determined to be zero, then zap it.
3d0684b2
JQ
3322 *
3323 * @host: host address for the zero page
3324 * @ch: what the page is filled from. We only support zero
3325 * @size: size of the zero page
56e93d26
JQ
3326 */
3327void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3328{
3329 if (ch != 0 || !is_zero_range(host, size)) {
3330 memset(host, ch, size);
3331 }
3332}
3333
797ca154
XG
3334/* return the size after decompression, or negative value on error */
3335static int
3336qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3337 const uint8_t *source, size_t source_len)
3338{
3339 int err;
3340
3341 err = inflateReset(stream);
3342 if (err != Z_OK) {
3343 return -1;
3344 }
3345
3346 stream->avail_in = source_len;
3347 stream->next_in = (uint8_t *)source;
3348 stream->avail_out = dest_len;
3349 stream->next_out = dest;
3350
3351 err = inflate(stream, Z_NO_FLUSH);
3352 if (err != Z_STREAM_END) {
3353 return -1;
3354 }
3355
3356 return stream->total_out;
3357}
3358
56e93d26
JQ
3359static void *do_data_decompress(void *opaque)
3360{
3361 DecompressParam *param = opaque;
3362 unsigned long pagesize;
33d151f4 3363 uint8_t *des;
34ab9e97 3364 int len, ret;
56e93d26 3365
33d151f4 3366 qemu_mutex_lock(&param->mutex);
90e56fb4 3367 while (!param->quit) {
33d151f4
LL
3368 if (param->des) {
3369 des = param->des;
3370 len = param->len;
3371 param->des = 0;
3372 qemu_mutex_unlock(&param->mutex);
3373
56e93d26 3374 pagesize = TARGET_PAGE_SIZE;
34ab9e97
XG
3375
3376 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3377 param->compbuf, len);
f548222c 3378 if (ret < 0 && migrate_get_current()->decompress_error_check) {
34ab9e97
XG
3379 error_report("decompress data failed");
3380 qemu_file_set_error(decomp_file, ret);
3381 }
73a8912b 3382
33d151f4
LL
3383 qemu_mutex_lock(&decomp_done_lock);
3384 param->done = true;
3385 qemu_cond_signal(&decomp_done_cond);
3386 qemu_mutex_unlock(&decomp_done_lock);
3387
3388 qemu_mutex_lock(&param->mutex);
3389 } else {
3390 qemu_cond_wait(&param->cond, &param->mutex);
3391 }
56e93d26 3392 }
33d151f4 3393 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
3394
3395 return NULL;
3396}
3397
34ab9e97 3398static int wait_for_decompress_done(void)
5533b2e9
LL
3399{
3400 int idx, thread_count;
3401
3402 if (!migrate_use_compression()) {
34ab9e97 3403 return 0;
5533b2e9
LL
3404 }
3405
3406 thread_count = migrate_decompress_threads();
3407 qemu_mutex_lock(&decomp_done_lock);
3408 for (idx = 0; idx < thread_count; idx++) {
3409 while (!decomp_param[idx].done) {
3410 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3411 }
3412 }
3413 qemu_mutex_unlock(&decomp_done_lock);
34ab9e97 3414 return qemu_file_get_error(decomp_file);
5533b2e9
LL
3415}
3416
f0afa331 3417static void compress_threads_load_cleanup(void)
56e93d26
JQ
3418{
3419 int i, thread_count;
3420
3416ab5b
JQ
3421 if (!migrate_use_compression()) {
3422 return;
3423 }
56e93d26
JQ
3424 thread_count = migrate_decompress_threads();
3425 for (i = 0; i < thread_count; i++) {
797ca154
XG
3426 /*
3427 * we use it as a indicator which shows if the thread is
3428 * properly init'd or not
3429 */
3430 if (!decomp_param[i].compbuf) {
3431 break;
3432 }
3433
56e93d26 3434 qemu_mutex_lock(&decomp_param[i].mutex);
90e56fb4 3435 decomp_param[i].quit = true;
56e93d26
JQ
3436 qemu_cond_signal(&decomp_param[i].cond);
3437 qemu_mutex_unlock(&decomp_param[i].mutex);
3438 }
3439 for (i = 0; i < thread_count; i++) {
797ca154
XG
3440 if (!decomp_param[i].compbuf) {
3441 break;
3442 }
3443
56e93d26
JQ
3444 qemu_thread_join(decompress_threads + i);
3445 qemu_mutex_destroy(&decomp_param[i].mutex);
3446 qemu_cond_destroy(&decomp_param[i].cond);
797ca154 3447 inflateEnd(&decomp_param[i].stream);
56e93d26 3448 g_free(decomp_param[i].compbuf);
797ca154 3449 decomp_param[i].compbuf = NULL;
56e93d26
JQ
3450 }
3451 g_free(decompress_threads);
3452 g_free(decomp_param);
56e93d26
JQ
3453 decompress_threads = NULL;
3454 decomp_param = NULL;
34ab9e97 3455 decomp_file = NULL;
56e93d26
JQ
3456}
3457
34ab9e97 3458static int compress_threads_load_setup(QEMUFile *f)
797ca154
XG
3459{
3460 int i, thread_count;
3461
3462 if (!migrate_use_compression()) {
3463 return 0;
3464 }
3465
3466 thread_count = migrate_decompress_threads();
3467 decompress_threads = g_new0(QemuThread, thread_count);
3468 decomp_param = g_new0(DecompressParam, thread_count);
3469 qemu_mutex_init(&decomp_done_lock);
3470 qemu_cond_init(&decomp_done_cond);
34ab9e97 3471 decomp_file = f;
797ca154
XG
3472 for (i = 0; i < thread_count; i++) {
3473 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3474 goto exit;
3475 }
3476
3477 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3478 qemu_mutex_init(&decomp_param[i].mutex);
3479 qemu_cond_init(&decomp_param[i].cond);
3480 decomp_param[i].done = true;
3481 decomp_param[i].quit = false;
3482 qemu_thread_create(decompress_threads + i, "decompress",
3483 do_data_decompress, decomp_param + i,
3484 QEMU_THREAD_JOINABLE);
3485 }
3486 return 0;
3487exit:
3488 compress_threads_load_cleanup();
3489 return -1;
3490}
3491
c1bc6626 3492static void decompress_data_with_multi_threads(QEMUFile *f,
56e93d26
JQ
3493 void *host, int len)
3494{
3495 int idx, thread_count;
3496
3497 thread_count = migrate_decompress_threads();
73a8912b 3498 qemu_mutex_lock(&decomp_done_lock);
56e93d26
JQ
3499 while (true) {
3500 for (idx = 0; idx < thread_count; idx++) {
73a8912b 3501 if (decomp_param[idx].done) {
33d151f4
LL
3502 decomp_param[idx].done = false;
3503 qemu_mutex_lock(&decomp_param[idx].mutex);
c1bc6626 3504 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
56e93d26
JQ
3505 decomp_param[idx].des = host;
3506 decomp_param[idx].len = len;
33d151f4
LL
3507 qemu_cond_signal(&decomp_param[idx].cond);
3508 qemu_mutex_unlock(&decomp_param[idx].mutex);
56e93d26
JQ
3509 break;
3510 }
3511 }
3512 if (idx < thread_count) {
3513 break;
73a8912b
LL
3514 } else {
3515 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
56e93d26
JQ
3516 }
3517 }
73a8912b 3518 qemu_mutex_unlock(&decomp_done_lock);
56e93d26
JQ
3519}
3520
f265e0e4
JQ
3521/**
3522 * ram_load_setup: Setup RAM for migration incoming side
3523 *
3524 * Returns zero to indicate success and negative for error
3525 *
3526 * @f: QEMUFile where to receive the data
3527 * @opaque: RAMState pointer
3528 */
3529static int ram_load_setup(QEMUFile *f, void *opaque)
3530{
34ab9e97 3531 if (compress_threads_load_setup(f)) {
797ca154
XG
3532 return -1;
3533 }
3534
f265e0e4 3535 xbzrle_load_setup();
f9494614 3536 ramblock_recv_map_init();
f265e0e4
JQ
3537 return 0;
3538}
3539
3540static int ram_load_cleanup(void *opaque)
3541{
f9494614 3542 RAMBlock *rb;
f265e0e4 3543 xbzrle_load_cleanup();
f0afa331 3544 compress_threads_load_cleanup();
f9494614 3545
b895de50 3546 RAMBLOCK_FOREACH_MIGRATABLE(rb) {
f9494614
AP
3547 g_free(rb->receivedmap);
3548 rb->receivedmap = NULL;
3549 }
f265e0e4
JQ
3550 return 0;
3551}
3552
3d0684b2
JQ
3553/**
3554 * ram_postcopy_incoming_init: allocate postcopy data structures
3555 *
3556 * Returns 0 for success and negative if there was one error
3557 *
3558 * @mis: current migration incoming state
3559 *
3560 * Allocate data structures etc needed by incoming migration with
3561 * postcopy-ram. postcopy-ram's similarly names
3562 * postcopy_ram_incoming_init does the work.
1caddf8a
DDAG
3563 */
3564int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3565{
c136180c 3566 return postcopy_ram_incoming_init(mis);
1caddf8a
DDAG
3567}
3568
3d0684b2
JQ
3569/**
3570 * ram_load_postcopy: load a page in postcopy case
3571 *
3572 * Returns 0 for success or -errno in case of error
3573 *
a7180877
DDAG
3574 * Called in postcopy mode by ram_load().
3575 * rcu_read_lock is taken prior to this being called.
3d0684b2
JQ
3576 *
3577 * @f: QEMUFile where to send the data
a7180877
DDAG
3578 */
3579static int ram_load_postcopy(QEMUFile *f)
3580{
3581 int flags = 0, ret = 0;
3582 bool place_needed = false;
1aa83678 3583 bool matches_target_page_size = false;
a7180877
DDAG
3584 MigrationIncomingState *mis = migration_incoming_get_current();
3585 /* Temporary page that is later 'placed' */
3586 void *postcopy_host_page = postcopy_get_tmp_page(mis);
c53b7ddc 3587 void *last_host = NULL;
a3b6ff6d 3588 bool all_zero = false;
a7180877
DDAG
3589
3590 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3591 ram_addr_t addr;
3592 void *host = NULL;
3593 void *page_buffer = NULL;
3594 void *place_source = NULL;
df9ff5e1 3595 RAMBlock *block = NULL;
a7180877 3596 uint8_t ch;
a7180877
DDAG
3597
3598 addr = qemu_get_be64(f);
7a9ddfbf
PX
3599
3600 /*
3601 * If qemu file error, we should stop here, and then "addr"
3602 * may be invalid
3603 */
3604 ret = qemu_file_get_error(f);
3605 if (ret) {
3606 break;
3607 }
3608
a7180877
DDAG
3609 flags = addr & ~TARGET_PAGE_MASK;
3610 addr &= TARGET_PAGE_MASK;
3611
3612 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
3613 place_needed = false;
bb890ed5 3614 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
df9ff5e1 3615 block = ram_block_from_stream(f, flags);
4c4bad48
HZ
3616
3617 host = host_from_ram_block_offset(block, addr);
a7180877
DDAG
3618 if (!host) {
3619 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3620 ret = -EINVAL;
3621 break;
3622 }
1aa83678 3623 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
a7180877 3624 /*
28abd200
DDAG
3625 * Postcopy requires that we place whole host pages atomically;
3626 * these may be huge pages for RAMBlocks that are backed by
3627 * hugetlbfs.
a7180877
DDAG
3628 * To make it atomic, the data is read into a temporary page
3629 * that's moved into place later.
3630 * The migration protocol uses, possibly smaller, target-pages
3631 * however the source ensures it always sends all the components
3632 * of a host page in order.
3633 */
3634 page_buffer = postcopy_host_page +
28abd200 3635 ((uintptr_t)host & (block->page_size - 1));
a7180877 3636 /* If all TP are zero then we can optimise the place */
28abd200 3637 if (!((uintptr_t)host & (block->page_size - 1))) {
a7180877 3638 all_zero = true;
c53b7ddc
DDAG
3639 } else {
3640 /* not the 1st TP within the HP */
3641 if (host != (last_host + TARGET_PAGE_SIZE)) {
9af9e0fe 3642 error_report("Non-sequential target page %p/%p",
c53b7ddc
DDAG
3643 host, last_host);
3644 ret = -EINVAL;
3645 break;
3646 }
a7180877
DDAG
3647 }
3648
c53b7ddc 3649
a7180877
DDAG
3650 /*
3651 * If it's the last part of a host page then we place the host
3652 * page
3653 */
3654 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
28abd200 3655 (block->page_size - 1)) == 0;
a7180877
DDAG
3656 place_source = postcopy_host_page;
3657 }
c53b7ddc 3658 last_host = host;
a7180877
DDAG
3659
3660 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
bb890ed5 3661 case RAM_SAVE_FLAG_ZERO:
a7180877
DDAG
3662 ch = qemu_get_byte(f);
3663 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3664 if (ch) {
3665 all_zero = false;
3666 }
3667 break;
3668
3669 case RAM_SAVE_FLAG_PAGE:
3670 all_zero = false;
1aa83678
PX
3671 if (!matches_target_page_size) {
3672 /* For huge pages, we always use temporary buffer */
a7180877
DDAG
3673 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3674 } else {
1aa83678
PX
3675 /*
3676 * For small pages that matches target page size, we
3677 * avoid the qemu_file copy. Instead we directly use
3678 * the buffer of QEMUFile to place the page. Note: we
3679 * cannot do any QEMUFile operation before using that
3680 * buffer to make sure the buffer is valid when
3681 * placing the page.
a7180877
DDAG
3682 */
3683 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3684 TARGET_PAGE_SIZE);
3685 }
3686 break;
3687 case RAM_SAVE_FLAG_EOS:
3688 /* normal exit */
6df264ac 3689 multifd_recv_sync_main();
a7180877
DDAG
3690 break;
3691 default:
3692 error_report("Unknown combination of migration flags: %#x"
3693 " (postcopy mode)", flags);
3694 ret = -EINVAL;
7a9ddfbf
PX
3695 break;
3696 }
3697
3698 /* Detect for any possible file errors */
3699 if (!ret && qemu_file_get_error(f)) {
3700 ret = qemu_file_get_error(f);
a7180877
DDAG
3701 }
3702
7a9ddfbf 3703 if (!ret && place_needed) {
a7180877 3704 /* This gets called at the last target page in the host page */
df9ff5e1
DDAG
3705 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
3706
a7180877 3707 if (all_zero) {
df9ff5e1 3708 ret = postcopy_place_page_zero(mis, place_dest,
8be4620b 3709 block);
a7180877 3710 } else {
df9ff5e1 3711 ret = postcopy_place_page(mis, place_dest,
8be4620b 3712 place_source, block);
a7180877
DDAG
3713 }
3714 }
a7180877
DDAG
3715 }
3716
3717 return ret;
3718}
3719
acab30b8
DHB
3720static bool postcopy_is_advised(void)
3721{
3722 PostcopyState ps = postcopy_state_get();
3723 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
3724}
3725
3726static bool postcopy_is_running(void)
3727{
3728 PostcopyState ps = postcopy_state_get();
3729 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3730}
3731
56e93d26
JQ
3732static int ram_load(QEMUFile *f, void *opaque, int version_id)
3733{
edc60127 3734 int flags = 0, ret = 0, invalid_flags = 0;
56e93d26
JQ
3735 static uint64_t seq_iter;
3736 int len = 0;
a7180877
DDAG
3737 /*
3738 * If system is running in postcopy mode, page inserts to host memory must
3739 * be atomic
3740 */
acab30b8 3741 bool postcopy_running = postcopy_is_running();
ef08fb38 3742 /* ADVISE is earlier, it shows the source has the postcopy capability on */
acab30b8 3743 bool postcopy_advised = postcopy_is_advised();
56e93d26
JQ
3744
3745 seq_iter++;
3746
3747 if (version_id != 4) {
3748 ret = -EINVAL;
3749 }
3750
edc60127
JQ
3751 if (!migrate_use_compression()) {
3752 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3753 }
56e93d26
JQ
3754 /* This RCU critical section can be very long running.
3755 * When RCU reclaims in the code start to become numerous,
3756 * it will be necessary to reduce the granularity of this
3757 * critical section.
3758 */
3759 rcu_read_lock();
a7180877
DDAG
3760
3761 if (postcopy_running) {
3762 ret = ram_load_postcopy(f);
3763 }
3764
3765 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
56e93d26 3766 ram_addr_t addr, total_ram_bytes;
a776aa15 3767 void *host = NULL;
56e93d26
JQ
3768 uint8_t ch;
3769
3770 addr = qemu_get_be64(f);
3771 flags = addr & ~TARGET_PAGE_MASK;
3772 addr &= TARGET_PAGE_MASK;
3773
edc60127
JQ
3774 if (flags & invalid_flags) {
3775 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3776 error_report("Received an unexpected compressed page");
3777 }
3778
3779 ret = -EINVAL;
3780 break;
3781 }
3782
bb890ed5 3783 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
a776aa15 3784 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4c4bad48
HZ
3785 RAMBlock *block = ram_block_from_stream(f, flags);
3786
3787 host = host_from_ram_block_offset(block, addr);
a776aa15
DDAG
3788 if (!host) {
3789 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3790 ret = -EINVAL;
3791 break;
3792 }
f9494614 3793 ramblock_recv_bitmap_set(block, host);
1db9d8e5 3794 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
a776aa15
DDAG
3795 }
3796
56e93d26
JQ
3797 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3798 case RAM_SAVE_FLAG_MEM_SIZE:
3799 /* Synchronize RAM block list */
3800 total_ram_bytes = addr;
3801 while (!ret && total_ram_bytes) {
3802 RAMBlock *block;
56e93d26
JQ
3803 char id[256];
3804 ram_addr_t length;
3805
3806 len = qemu_get_byte(f);
3807 qemu_get_buffer(f, (uint8_t *)id, len);
3808 id[len] = 0;
3809 length = qemu_get_be64(f);
3810
e3dd7493 3811 block = qemu_ram_block_by_name(id);
b895de50
CLG
3812 if (block && !qemu_ram_is_migratable(block)) {
3813 error_report("block %s should not be migrated !", id);
3814 ret = -EINVAL;
3815 } else if (block) {
e3dd7493
DDAG
3816 if (length != block->used_length) {
3817 Error *local_err = NULL;
56e93d26 3818
fa53a0e5 3819 ret = qemu_ram_resize(block, length,
e3dd7493
DDAG
3820 &local_err);
3821 if (local_err) {
3822 error_report_err(local_err);
56e93d26 3823 }
56e93d26 3824 }
ef08fb38
DDAG
3825 /* For postcopy we need to check hugepage sizes match */
3826 if (postcopy_advised &&
3827 block->page_size != qemu_host_page_size) {
3828 uint64_t remote_page_size = qemu_get_be64(f);
3829 if (remote_page_size != block->page_size) {
3830 error_report("Mismatched RAM page size %s "
3831 "(local) %zd != %" PRId64,
3832 id, block->page_size,
3833 remote_page_size);
3834 ret = -EINVAL;
3835 }
3836 }
e3dd7493
DDAG
3837 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
3838 block->idstr);
3839 } else {
56e93d26
JQ
3840 error_report("Unknown ramblock \"%s\", cannot "
3841 "accept migration", id);
3842 ret = -EINVAL;
3843 }
3844
3845 total_ram_bytes -= length;
3846 }
3847 break;
a776aa15 3848
bb890ed5 3849 case RAM_SAVE_FLAG_ZERO:
56e93d26
JQ
3850 ch = qemu_get_byte(f);
3851 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
3852 break;
a776aa15 3853
56e93d26 3854 case RAM_SAVE_FLAG_PAGE:
56e93d26
JQ
3855 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
3856 break;
56e93d26 3857
a776aa15 3858 case RAM_SAVE_FLAG_COMPRESS_PAGE:
56e93d26
JQ
3859 len = qemu_get_be32(f);
3860 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3861 error_report("Invalid compressed data length: %d", len);
3862 ret = -EINVAL;
3863 break;
3864 }
c1bc6626 3865 decompress_data_with_multi_threads(f, host, len);
56e93d26 3866 break;
a776aa15 3867
56e93d26 3868 case RAM_SAVE_FLAG_XBZRLE:
56e93d26
JQ
3869 if (load_xbzrle(f, addr, host) < 0) {
3870 error_report("Failed to decompress XBZRLE page at "
3871 RAM_ADDR_FMT, addr);
3872 ret = -EINVAL;
3873 break;
3874 }
3875 break;
3876 case RAM_SAVE_FLAG_EOS:
3877 /* normal exit */
6df264ac 3878 multifd_recv_sync_main();
56e93d26
JQ
3879 break;
3880 default:
3881 if (flags & RAM_SAVE_FLAG_HOOK) {
632e3a5c 3882 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
56e93d26
JQ
3883 } else {
3884 error_report("Unknown combination of migration flags: %#x",
3885 flags);
3886 ret = -EINVAL;
3887 }
3888 }
3889 if (!ret) {
3890 ret = qemu_file_get_error(f);
3891 }
3892 }
3893
34ab9e97 3894 ret |= wait_for_decompress_done();
56e93d26 3895 rcu_read_unlock();
55c4446b 3896 trace_ram_load_complete(ret, seq_iter);
56e93d26
JQ
3897 return ret;
3898}
3899
c6467627
VSO
3900static bool ram_has_postcopy(void *opaque)
3901{
3902 return migrate_postcopy_ram();
3903}
3904
edd090c7
PX
3905/* Sync all the dirty bitmap with destination VM. */
3906static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
3907{
3908 RAMBlock *block;
3909 QEMUFile *file = s->to_dst_file;
3910 int ramblock_count = 0;
3911
3912 trace_ram_dirty_bitmap_sync_start();
3913
ff0769a4 3914 RAMBLOCK_FOREACH_MIGRATABLE(block) {
edd090c7
PX
3915 qemu_savevm_send_recv_bitmap(file, block->idstr);
3916 trace_ram_dirty_bitmap_request(block->idstr);
3917 ramblock_count++;
3918 }
3919
3920 trace_ram_dirty_bitmap_sync_wait();
3921
3922 /* Wait until all the ramblocks' dirty bitmap synced */
3923 while (ramblock_count--) {
3924 qemu_sem_wait(&s->rp_state.rp_sem);
3925 }
3926
3927 trace_ram_dirty_bitmap_sync_complete();
3928
3929 return 0;
3930}
3931
3932static void ram_dirty_bitmap_reload_notify(MigrationState *s)
3933{
3934 qemu_sem_post(&s->rp_state.rp_sem);
3935}
3936
a335debb
PX
3937/*
3938 * Read the received bitmap, revert it as the initial dirty bitmap.
3939 * This is only used when the postcopy migration is paused but wants
3940 * to resume from a middle point.
3941 */
3942int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
3943{
3944 int ret = -EINVAL;
3945 QEMUFile *file = s->rp_state.from_dst_file;
3946 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
a725ef9f 3947 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
3948 uint64_t size, end_mark;
3949
3950 trace_ram_dirty_bitmap_reload_begin(block->idstr);
3951
3952 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
3953 error_report("%s: incorrect state %s", __func__,
3954 MigrationStatus_str(s->state));
3955 return -EINVAL;
3956 }
3957
3958 /*
3959 * Note: see comments in ramblock_recv_bitmap_send() on why we
3960 * need the endianess convertion, and the paddings.
3961 */
3962 local_size = ROUND_UP(local_size, 8);
3963
3964 /* Add paddings */
3965 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
3966
3967 size = qemu_get_be64(file);
3968
3969 /* The size of the bitmap should match with our ramblock */
3970 if (size != local_size) {
3971 error_report("%s: ramblock '%s' bitmap size mismatch "
3972 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
3973 block->idstr, size, local_size);
3974 ret = -EINVAL;
3975 goto out;
3976 }
3977
3978 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
3979 end_mark = qemu_get_be64(file);
3980
3981 ret = qemu_file_get_error(file);
3982 if (ret || size != local_size) {
3983 error_report("%s: read bitmap failed for ramblock '%s': %d"
3984 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
3985 __func__, block->idstr, ret, local_size, size);
3986 ret = -EIO;
3987 goto out;
3988 }
3989
3990 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
3991 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
3992 __func__, block->idstr, end_mark);
3993 ret = -EINVAL;
3994 goto out;
3995 }
3996
3997 /*
3998 * Endianess convertion. We are during postcopy (though paused).
3999 * The dirty bitmap won't change. We can directly modify it.
4000 */
4001 bitmap_from_le(block->bmap, le_bitmap, nbits);
4002
4003 /*
4004 * What we received is "received bitmap". Revert it as the initial
4005 * dirty bitmap for this ramblock.
4006 */
4007 bitmap_complement(block->bmap, block->bmap, nbits);
4008
4009 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4010
edd090c7
PX
4011 /*
4012 * We succeeded to sync bitmap for current ramblock. If this is
4013 * the last one to sync, we need to notify the main send thread.
4014 */
4015 ram_dirty_bitmap_reload_notify(s);
4016
a335debb
PX
4017 ret = 0;
4018out:
bf269906 4019 g_free(le_bitmap);
a335debb
PX
4020 return ret;
4021}
4022
edd090c7
PX
4023static int ram_resume_prepare(MigrationState *s, void *opaque)
4024{
4025 RAMState *rs = *(RAMState **)opaque;
08614f34 4026 int ret;
edd090c7 4027
08614f34
PX
4028 ret = ram_dirty_bitmap_sync_all(s, rs);
4029 if (ret) {
4030 return ret;
4031 }
4032
4033 ram_state_resume_prepare(rs, s->to_dst_file);
4034
4035 return 0;
edd090c7
PX
4036}
4037
56e93d26 4038static SaveVMHandlers savevm_ram_handlers = {
9907e842 4039 .save_setup = ram_save_setup,
56e93d26 4040 .save_live_iterate = ram_save_iterate,
763c906b 4041 .save_live_complete_postcopy = ram_save_complete,
a3e06c3d 4042 .save_live_complete_precopy = ram_save_complete,
c6467627 4043 .has_postcopy = ram_has_postcopy,
56e93d26
JQ
4044 .save_live_pending = ram_save_pending,
4045 .load_state = ram_load,
f265e0e4
JQ
4046 .save_cleanup = ram_save_cleanup,
4047 .load_setup = ram_load_setup,
4048 .load_cleanup = ram_load_cleanup,
edd090c7 4049 .resume_prepare = ram_resume_prepare,
56e93d26
JQ
4050};
4051
4052void ram_mig_init(void)
4053{
4054 qemu_mutex_init(&XBZRLE.lock);
6f37bb8b 4055 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
56e93d26 4056}