]> git.proxmox.com Git - mirror_qemu.git/blame - migration/ram.c
migration: do not flush_compressed_data at the end of iteration
[mirror_qemu.git] / migration / ram.c
CommitLineData
56e93d26
JQ
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
76cc7b58
JQ
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
56e93d26
JQ
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
e688df6b 28
1393a485 29#include "qemu/osdep.h"
33c11879 30#include "cpu.h"
56e93d26 31#include <zlib.h>
f348b6d1 32#include "qemu/cutils.h"
56e93d26
JQ
33#include "qemu/bitops.h"
34#include "qemu/bitmap.h"
7205c9ec 35#include "qemu/main-loop.h"
56eb90af 36#include "qemu/pmem.h"
709e3fe8 37#include "xbzrle.h"
7b1e1a22 38#include "ram.h"
6666c96a 39#include "migration.h"
71bb07db 40#include "socket.h"
f2a8f0a6 41#include "migration/register.h"
7b1e1a22 42#include "migration/misc.h"
08a0aee1 43#include "qemu-file.h"
be07b0ac 44#include "postcopy-ram.h"
53d37d36 45#include "page_cache.h"
56e93d26 46#include "qemu/error-report.h"
e688df6b 47#include "qapi/error.h"
9af23989 48#include "qapi/qapi-events-migration.h"
8acabf69 49#include "qapi/qmp/qerror.h"
56e93d26 50#include "trace.h"
56e93d26 51#include "exec/ram_addr.h"
f9494614 52#include "exec/target_page.h"
56e93d26 53#include "qemu/rcu_queue.h"
a91246c9 54#include "migration/colo.h"
53d37d36 55#include "block.h"
af8b7d2b
JQ
56#include "sysemu/sysemu.h"
57#include "qemu/uuid.h"
edd090c7 58#include "savevm.h"
b9ee2f7d 59#include "qemu/iov.h"
56e93d26 60
56e93d26
JQ
61/***********************************************************/
62/* ram save/restore */
63
bb890ed5
JQ
64/* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
68 */
69
56e93d26 70#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
bb890ed5 71#define RAM_SAVE_FLAG_ZERO 0x02
56e93d26
JQ
72#define RAM_SAVE_FLAG_MEM_SIZE 0x04
73#define RAM_SAVE_FLAG_PAGE 0x08
74#define RAM_SAVE_FLAG_EOS 0x10
75#define RAM_SAVE_FLAG_CONTINUE 0x20
76#define RAM_SAVE_FLAG_XBZRLE 0x40
77/* 0x80 is reserved in migration.h start with 0x100 next */
78#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79
56e93d26
JQ
80static inline bool is_zero_range(uint8_t *p, uint64_t size)
81{
a1febc49 82 return buffer_is_zero(p, size);
56e93d26
JQ
83}
84
9360447d
JQ
85XBZRLECacheStats xbzrle_counters;
86
56e93d26
JQ
87/* struct contains XBZRLE cache and a static page
88 used by the compression */
89static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
c00e0928
JQ
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
f265e0e4
JQ
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
56e93d26
JQ
101} XBZRLE;
102
56e93d26
JQ
103static void XBZRLE_cache_lock(void)
104{
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
107}
108
109static void XBZRLE_cache_unlock(void)
110{
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
113}
114
3d0684b2
JQ
115/**
116 * xbzrle_cache_resize: resize the xbzrle cache
117 *
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
122 *
c9dede2d 123 * Returns 0 for success or -1 for error
3d0684b2
JQ
124 *
125 * @new_size: new cache size
8acabf69 126 * @errp: set *errp if the check failed, with reason
56e93d26 127 */
c9dede2d 128int xbzrle_cache_resize(int64_t new_size, Error **errp)
56e93d26
JQ
129{
130 PageCache *new_cache;
c9dede2d 131 int64_t ret = 0;
56e93d26 132
8acabf69
JQ
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
138 }
139
2a313e5c
JQ
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
c9dede2d 142 return 0;
2a313e5c
JQ
143 }
144
56e93d26
JQ
145 XBZRLE_cache_lock();
146
147 if (XBZRLE.cache != NULL) {
80f8dfde 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
56e93d26 149 if (!new_cache) {
56e93d26
JQ
150 ret = -1;
151 goto out;
152 }
153
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
156 }
56e93d26
JQ
157out:
158 XBZRLE_cache_unlock();
159 return ret;
160}
161
b895de50
CLG
162/* Should be holding either ram_list.mutex, or the RCU lock. */
163#define RAMBLOCK_FOREACH_MIGRATABLE(block) \
343f632c 164 INTERNAL_RAMBLOCK_FOREACH(block) \
b895de50
CLG
165 if (!qemu_ram_is_migratable(block)) {} else
166
343f632c
DDAG
167#undef RAMBLOCK_FOREACH
168
f9494614
AP
169static void ramblock_recv_map_init(void)
170{
171 RAMBlock *rb;
172
b895de50 173 RAMBLOCK_FOREACH_MIGRATABLE(rb) {
f9494614
AP
174 assert(!rb->receivedmap);
175 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
176 }
177}
178
179int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
180{
181 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
182 rb->receivedmap);
183}
184
1cba9f6e
DDAG
185bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
186{
187 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
188}
189
f9494614
AP
190void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
191{
192 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
193}
194
195void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
196 size_t nr)
197{
198 bitmap_set_atomic(rb->receivedmap,
199 ramblock_recv_bitmap_offset(host_addr, rb),
200 nr);
201}
202
a335debb
PX
203#define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
204
205/*
206 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
207 *
208 * Returns >0 if success with sent bytes, or <0 if error.
209 */
210int64_t ramblock_recv_bitmap_send(QEMUFile *file,
211 const char *block_name)
212{
213 RAMBlock *block = qemu_ram_block_by_name(block_name);
214 unsigned long *le_bitmap, nbits;
215 uint64_t size;
216
217 if (!block) {
218 error_report("%s: invalid block name: %s", __func__, block_name);
219 return -1;
220 }
221
222 nbits = block->used_length >> TARGET_PAGE_BITS;
223
224 /*
225 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
226 * machines we may need 4 more bytes for padding (see below
227 * comment). So extend it a bit before hand.
228 */
229 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
230
231 /*
232 * Always use little endian when sending the bitmap. This is
233 * required that when source and destination VMs are not using the
234 * same endianess. (Note: big endian won't work.)
235 */
236 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
237
238 /* Size of the bitmap, in bytes */
a725ef9f 239 size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
240
241 /*
242 * size is always aligned to 8 bytes for 64bit machines, but it
243 * may not be true for 32bit machines. We need this padding to
244 * make sure the migration can survive even between 32bit and
245 * 64bit machines.
246 */
247 size = ROUND_UP(size, 8);
248
249 qemu_put_be64(file, size);
250 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
251 /*
252 * Mark as an end, in case the middle part is screwed up due to
253 * some "misterious" reason.
254 */
255 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
256 qemu_fflush(file);
257
bf269906 258 g_free(le_bitmap);
a335debb
PX
259
260 if (qemu_file_get_error(file)) {
261 return qemu_file_get_error(file);
262 }
263
264 return size + sizeof(size);
265}
266
ec481c6c
JQ
267/*
268 * An outstanding page request, on the source, having been received
269 * and queued
270 */
271struct RAMSrcPageRequest {
272 RAMBlock *rb;
273 hwaddr offset;
274 hwaddr len;
275
276 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
277};
278
6f37bb8b
JQ
279/* State of RAM for migration */
280struct RAMState {
204b88b8
JQ
281 /* QEMUFile used for this migration */
282 QEMUFile *f;
6f37bb8b
JQ
283 /* Last block that we have visited searching for dirty pages */
284 RAMBlock *last_seen_block;
285 /* Last block from where we have sent data */
286 RAMBlock *last_sent_block;
269ace29
JQ
287 /* Last dirty target page we have sent */
288 ram_addr_t last_page;
6f37bb8b
JQ
289 /* last ram version we have seen */
290 uint32_t last_version;
291 /* We are in the first round */
292 bool ram_bulk_stage;
8d820d6f
JQ
293 /* How many times we have dirty too many pages */
294 int dirty_rate_high_cnt;
f664da80
JQ
295 /* these variables are used for bitmap sync */
296 /* last time we did a full bitmap_sync */
297 int64_t time_last_bitmap_sync;
eac74159 298 /* bytes transferred at start_time */
c4bdf0cf 299 uint64_t bytes_xfer_prev;
a66cd90c 300 /* number of dirty pages since start_time */
68908ed6 301 uint64_t num_dirty_pages_period;
b5833fde
JQ
302 /* xbzrle misses since the beginning of the period */
303 uint64_t xbzrle_cache_miss_prev;
be8b02ed
XG
304 /* total handled target pages at the beginning of period */
305 uint64_t target_page_count_prev;
306 /* total handled target pages since start */
307 uint64_t target_page_count;
9360447d 308 /* number of dirty bits in the bitmap */
2dfaf12e
PX
309 uint64_t migration_dirty_pages;
310 /* protects modification of the bitmap */
108cfae0 311 QemuMutex bitmap_mutex;
68a098f3
JQ
312 /* The RAMBlock used in the last src_page_requests */
313 RAMBlock *last_req_rb;
ec481c6c
JQ
314 /* Queue of outstanding page requests from the destination */
315 QemuMutex src_page_req_mutex;
316 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests;
6f37bb8b
JQ
317};
318typedef struct RAMState RAMState;
319
53518d94 320static RAMState *ram_state;
6f37bb8b 321
9edabd4d 322uint64_t ram_bytes_remaining(void)
2f4fde93 323{
bae416e5
DDAG
324 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
325 0;
2f4fde93
JQ
326}
327
9360447d 328MigrationStats ram_counters;
96506894 329
b8fb8cb7
DDAG
330/* used by the search for pages to send */
331struct PageSearchStatus {
332 /* Current block being searched */
333 RAMBlock *block;
a935e30f
JQ
334 /* Current page to search from */
335 unsigned long page;
b8fb8cb7
DDAG
336 /* Set once we wrap around */
337 bool complete_round;
338};
339typedef struct PageSearchStatus PageSearchStatus;
340
56e93d26 341struct CompressParam {
56e93d26 342 bool done;
90e56fb4 343 bool quit;
5e5fdcff 344 bool zero_page;
56e93d26
JQ
345 QEMUFile *file;
346 QemuMutex mutex;
347 QemuCond cond;
348 RAMBlock *block;
349 ram_addr_t offset;
34ab9e97
XG
350
351 /* internally used fields */
dcaf446e 352 z_stream stream;
34ab9e97 353 uint8_t *originbuf;
56e93d26
JQ
354};
355typedef struct CompressParam CompressParam;
356
357struct DecompressParam {
73a8912b 358 bool done;
90e56fb4 359 bool quit;
56e93d26
JQ
360 QemuMutex mutex;
361 QemuCond cond;
362 void *des;
d341d9f3 363 uint8_t *compbuf;
56e93d26 364 int len;
797ca154 365 z_stream stream;
56e93d26
JQ
366};
367typedef struct DecompressParam DecompressParam;
368
369static CompressParam *comp_param;
370static QemuThread *compress_threads;
371/* comp_done_cond is used to wake up the migration thread when
372 * one of the compression threads has finished the compression.
373 * comp_done_lock is used to co-work with comp_done_cond.
374 */
0d9f9a5c
LL
375static QemuMutex comp_done_lock;
376static QemuCond comp_done_cond;
56e93d26
JQ
377/* The empty QEMUFileOps will be used by file in CompressParam */
378static const QEMUFileOps empty_ops = { };
379
34ab9e97 380static QEMUFile *decomp_file;
56e93d26
JQ
381static DecompressParam *decomp_param;
382static QemuThread *decompress_threads;
73a8912b
LL
383static QemuMutex decomp_done_lock;
384static QemuCond decomp_done_cond;
56e93d26 385
5e5fdcff 386static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 387 ram_addr_t offset, uint8_t *source_buf);
56e93d26
JQ
388
389static void *do_data_compress(void *opaque)
390{
391 CompressParam *param = opaque;
a7a9a88f
LL
392 RAMBlock *block;
393 ram_addr_t offset;
5e5fdcff 394 bool zero_page;
56e93d26 395
a7a9a88f 396 qemu_mutex_lock(&param->mutex);
90e56fb4 397 while (!param->quit) {
a7a9a88f
LL
398 if (param->block) {
399 block = param->block;
400 offset = param->offset;
401 param->block = NULL;
402 qemu_mutex_unlock(&param->mutex);
403
5e5fdcff
XG
404 zero_page = do_compress_ram_page(param->file, &param->stream,
405 block, offset, param->originbuf);
a7a9a88f 406
0d9f9a5c 407 qemu_mutex_lock(&comp_done_lock);
a7a9a88f 408 param->done = true;
5e5fdcff 409 param->zero_page = zero_page;
0d9f9a5c
LL
410 qemu_cond_signal(&comp_done_cond);
411 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
412
413 qemu_mutex_lock(&param->mutex);
414 } else {
56e93d26
JQ
415 qemu_cond_wait(&param->cond, &param->mutex);
416 }
56e93d26 417 }
a7a9a88f 418 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
419
420 return NULL;
421}
422
423static inline void terminate_compression_threads(void)
424{
425 int idx, thread_count;
426
427 thread_count = migrate_compress_threads();
3d0684b2 428
56e93d26
JQ
429 for (idx = 0; idx < thread_count; idx++) {
430 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 431 comp_param[idx].quit = true;
56e93d26
JQ
432 qemu_cond_signal(&comp_param[idx].cond);
433 qemu_mutex_unlock(&comp_param[idx].mutex);
434 }
435}
436
f0afa331 437static void compress_threads_save_cleanup(void)
56e93d26
JQ
438{
439 int i, thread_count;
440
441 if (!migrate_use_compression()) {
442 return;
443 }
444 terminate_compression_threads();
445 thread_count = migrate_compress_threads();
446 for (i = 0; i < thread_count; i++) {
dcaf446e
XG
447 /*
448 * we use it as a indicator which shows if the thread is
449 * properly init'd or not
450 */
451 if (!comp_param[i].file) {
452 break;
453 }
56e93d26 454 qemu_thread_join(compress_threads + i);
56e93d26
JQ
455 qemu_mutex_destroy(&comp_param[i].mutex);
456 qemu_cond_destroy(&comp_param[i].cond);
dcaf446e 457 deflateEnd(&comp_param[i].stream);
34ab9e97 458 g_free(comp_param[i].originbuf);
dcaf446e
XG
459 qemu_fclose(comp_param[i].file);
460 comp_param[i].file = NULL;
56e93d26 461 }
0d9f9a5c
LL
462 qemu_mutex_destroy(&comp_done_lock);
463 qemu_cond_destroy(&comp_done_cond);
56e93d26
JQ
464 g_free(compress_threads);
465 g_free(comp_param);
56e93d26
JQ
466 compress_threads = NULL;
467 comp_param = NULL;
56e93d26
JQ
468}
469
dcaf446e 470static int compress_threads_save_setup(void)
56e93d26
JQ
471{
472 int i, thread_count;
473
474 if (!migrate_use_compression()) {
dcaf446e 475 return 0;
56e93d26 476 }
56e93d26
JQ
477 thread_count = migrate_compress_threads();
478 compress_threads = g_new0(QemuThread, thread_count);
479 comp_param = g_new0(CompressParam, thread_count);
0d9f9a5c
LL
480 qemu_cond_init(&comp_done_cond);
481 qemu_mutex_init(&comp_done_lock);
56e93d26 482 for (i = 0; i < thread_count; i++) {
34ab9e97
XG
483 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
484 if (!comp_param[i].originbuf) {
485 goto exit;
486 }
487
dcaf446e
XG
488 if (deflateInit(&comp_param[i].stream,
489 migrate_compress_level()) != Z_OK) {
34ab9e97 490 g_free(comp_param[i].originbuf);
dcaf446e
XG
491 goto exit;
492 }
493
e110aa91
C
494 /* comp_param[i].file is just used as a dummy buffer to save data,
495 * set its ops to empty.
56e93d26
JQ
496 */
497 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
498 comp_param[i].done = true;
90e56fb4 499 comp_param[i].quit = false;
56e93d26
JQ
500 qemu_mutex_init(&comp_param[i].mutex);
501 qemu_cond_init(&comp_param[i].cond);
502 qemu_thread_create(compress_threads + i, "compress",
503 do_data_compress, comp_param + i,
504 QEMU_THREAD_JOINABLE);
505 }
dcaf446e
XG
506 return 0;
507
508exit:
509 compress_threads_save_cleanup();
510 return -1;
56e93d26
JQ
511}
512
f986c3d2
JQ
513/* Multiple fd's */
514
af8b7d2b
JQ
515#define MULTIFD_MAGIC 0x11223344U
516#define MULTIFD_VERSION 1
517
6df264ac
JQ
518#define MULTIFD_FLAG_SYNC (1 << 0)
519
af8b7d2b
JQ
520typedef struct {
521 uint32_t magic;
522 uint32_t version;
523 unsigned char uuid[16]; /* QemuUUID */
524 uint8_t id;
525} __attribute__((packed)) MultiFDInit_t;
526
2a26c979
JQ
527typedef struct {
528 uint32_t magic;
529 uint32_t version;
530 uint32_t flags;
531 uint32_t size;
532 uint32_t used;
533 uint64_t packet_num;
534 char ramblock[256];
535 uint64_t offset[];
536} __attribute__((packed)) MultiFDPacket_t;
537
34c55a94
JQ
538typedef struct {
539 /* number of used pages */
540 uint32_t used;
541 /* number of allocated pages */
542 uint32_t allocated;
543 /* global number of generated multifd packets */
544 uint64_t packet_num;
545 /* offset of each page */
546 ram_addr_t *offset;
547 /* pointer to each page */
548 struct iovec *iov;
549 RAMBlock *block;
550} MultiFDPages_t;
551
8c4598f2
JQ
552typedef struct {
553 /* this fields are not changed once the thread is created */
554 /* channel number */
f986c3d2 555 uint8_t id;
8c4598f2 556 /* channel thread name */
f986c3d2 557 char *name;
8c4598f2 558 /* channel thread id */
f986c3d2 559 QemuThread thread;
8c4598f2 560 /* communication channel */
60df2d4a 561 QIOChannel *c;
8c4598f2 562 /* sem where to wait for more work */
f986c3d2 563 QemuSemaphore sem;
8c4598f2 564 /* this mutex protects the following parameters */
f986c3d2 565 QemuMutex mutex;
8c4598f2 566 /* is this channel thread running */
66770707 567 bool running;
8c4598f2 568 /* should this thread finish */
f986c3d2 569 bool quit;
0beb5ed3
JQ
570 /* thread has work to do */
571 int pending_job;
34c55a94
JQ
572 /* array of pages to sent */
573 MultiFDPages_t *pages;
2a26c979
JQ
574 /* packet allocated len */
575 uint32_t packet_len;
576 /* pointer to the packet */
577 MultiFDPacket_t *packet;
578 /* multifd flags for each packet */
579 uint32_t flags;
580 /* global number of generated multifd packets */
581 uint64_t packet_num;
408ea6ae
JQ
582 /* thread local variables */
583 /* packets sent through this channel */
584 uint64_t num_packets;
585 /* pages sent through this channel */
586 uint64_t num_pages;
6df264ac
JQ
587 /* syncs main thread and channels */
588 QemuSemaphore sem_sync;
8c4598f2
JQ
589} MultiFDSendParams;
590
591typedef struct {
592 /* this fields are not changed once the thread is created */
593 /* channel number */
594 uint8_t id;
595 /* channel thread name */
596 char *name;
597 /* channel thread id */
598 QemuThread thread;
599 /* communication channel */
600 QIOChannel *c;
8c4598f2
JQ
601 /* this mutex protects the following parameters */
602 QemuMutex mutex;
603 /* is this channel thread running */
604 bool running;
34c55a94
JQ
605 /* array of pages to receive */
606 MultiFDPages_t *pages;
2a26c979
JQ
607 /* packet allocated len */
608 uint32_t packet_len;
609 /* pointer to the packet */
610 MultiFDPacket_t *packet;
611 /* multifd flags for each packet */
612 uint32_t flags;
613 /* global number of generated multifd packets */
614 uint64_t packet_num;
408ea6ae
JQ
615 /* thread local variables */
616 /* packets sent through this channel */
617 uint64_t num_packets;
618 /* pages sent through this channel */
619 uint64_t num_pages;
6df264ac
JQ
620 /* syncs main thread and channels */
621 QemuSemaphore sem_sync;
8c4598f2 622} MultiFDRecvParams;
f986c3d2 623
af8b7d2b
JQ
624static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
625{
626 MultiFDInit_t msg;
627 int ret;
628
629 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
630 msg.version = cpu_to_be32(MULTIFD_VERSION);
631 msg.id = p->id;
632 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
633
634 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
635 if (ret != 0) {
636 return -1;
637 }
638 return 0;
639}
640
641static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
642{
643 MultiFDInit_t msg;
644 int ret;
645
646 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
647 if (ret != 0) {
648 return -1;
649 }
650
651 be32_to_cpus(&msg.magic);
652 be32_to_cpus(&msg.version);
653
654 if (msg.magic != MULTIFD_MAGIC) {
655 error_setg(errp, "multifd: received packet magic %x "
656 "expected %x", msg.magic, MULTIFD_MAGIC);
657 return -1;
658 }
659
660 if (msg.version != MULTIFD_VERSION) {
661 error_setg(errp, "multifd: received packet version %d "
662 "expected %d", msg.version, MULTIFD_VERSION);
663 return -1;
664 }
665
666 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
667 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
668 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
669
670 error_setg(errp, "multifd: received uuid '%s' and expected "
671 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
672 g_free(uuid);
673 g_free(msg_uuid);
674 return -1;
675 }
676
677 if (msg.id > migrate_multifd_channels()) {
678 error_setg(errp, "multifd: received channel version %d "
679 "expected %d", msg.version, MULTIFD_VERSION);
680 return -1;
681 }
682
683 return msg.id;
684}
685
34c55a94
JQ
686static MultiFDPages_t *multifd_pages_init(size_t size)
687{
688 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
689
690 pages->allocated = size;
691 pages->iov = g_new0(struct iovec, size);
692 pages->offset = g_new0(ram_addr_t, size);
693
694 return pages;
695}
696
697static void multifd_pages_clear(MultiFDPages_t *pages)
698{
699 pages->used = 0;
700 pages->allocated = 0;
701 pages->packet_num = 0;
702 pages->block = NULL;
703 g_free(pages->iov);
704 pages->iov = NULL;
705 g_free(pages->offset);
706 pages->offset = NULL;
707 g_free(pages);
708}
709
2a26c979
JQ
710static void multifd_send_fill_packet(MultiFDSendParams *p)
711{
712 MultiFDPacket_t *packet = p->packet;
713 int i;
714
715 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
716 packet->version = cpu_to_be32(MULTIFD_VERSION);
717 packet->flags = cpu_to_be32(p->flags);
718 packet->size = cpu_to_be32(migrate_multifd_page_count());
719 packet->used = cpu_to_be32(p->pages->used);
720 packet->packet_num = cpu_to_be64(p->packet_num);
721
722 if (p->pages->block) {
723 strncpy(packet->ramblock, p->pages->block->idstr, 256);
724 }
725
726 for (i = 0; i < p->pages->used; i++) {
727 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
728 }
729}
730
731static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
732{
733 MultiFDPacket_t *packet = p->packet;
734 RAMBlock *block;
735 int i;
736
2a26c979
JQ
737 be32_to_cpus(&packet->magic);
738 if (packet->magic != MULTIFD_MAGIC) {
739 error_setg(errp, "multifd: received packet "
740 "magic %x and expected magic %x",
741 packet->magic, MULTIFD_MAGIC);
742 return -1;
743 }
744
745 be32_to_cpus(&packet->version);
746 if (packet->version != MULTIFD_VERSION) {
747 error_setg(errp, "multifd: received packet "
748 "version %d and expected version %d",
749 packet->version, MULTIFD_VERSION);
750 return -1;
751 }
752
753 p->flags = be32_to_cpu(packet->flags);
754
755 be32_to_cpus(&packet->size);
756 if (packet->size > migrate_multifd_page_count()) {
757 error_setg(errp, "multifd: received packet "
758 "with size %d and expected maximum size %d",
759 packet->size, migrate_multifd_page_count()) ;
760 return -1;
761 }
762
763 p->pages->used = be32_to_cpu(packet->used);
764 if (p->pages->used > packet->size) {
765 error_setg(errp, "multifd: received packet "
766 "with size %d and expected maximum size %d",
767 p->pages->used, packet->size) ;
768 return -1;
769 }
770
771 p->packet_num = be64_to_cpu(packet->packet_num);
772
773 if (p->pages->used) {
774 /* make sure that ramblock is 0 terminated */
775 packet->ramblock[255] = 0;
776 block = qemu_ram_block_by_name(packet->ramblock);
777 if (!block) {
778 error_setg(errp, "multifd: unknown ram block %s",
779 packet->ramblock);
780 return -1;
781 }
782 }
783
784 for (i = 0; i < p->pages->used; i++) {
785 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
786
787 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
788 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
789 " (max " RAM_ADDR_FMT ")",
790 offset, block->max_length);
791 return -1;
792 }
793 p->pages->iov[i].iov_base = block->host + offset;
794 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
795 }
796
797 return 0;
798}
799
f986c3d2
JQ
800struct {
801 MultiFDSendParams *params;
802 /* number of created threads */
803 int count;
34c55a94
JQ
804 /* array of pages to sent */
805 MultiFDPages_t *pages;
6df264ac
JQ
806 /* syncs main thread and channels */
807 QemuSemaphore sem_sync;
808 /* global number of generated multifd packets */
809 uint64_t packet_num;
b9ee2f7d
JQ
810 /* send channels ready */
811 QemuSemaphore channels_ready;
f986c3d2
JQ
812} *multifd_send_state;
813
b9ee2f7d
JQ
814/*
815 * How we use multifd_send_state->pages and channel->pages?
816 *
817 * We create a pages for each channel, and a main one. Each time that
818 * we need to send a batch of pages we interchange the ones between
819 * multifd_send_state and the channel that is sending it. There are
820 * two reasons for that:
821 * - to not have to do so many mallocs during migration
822 * - to make easier to know what to free at the end of migration
823 *
824 * This way we always know who is the owner of each "pages" struct,
825 * and we don't need any loocking. It belongs to the migration thread
826 * or to the channel thread. Switching is safe because the migration
827 * thread is using the channel mutex when changing it, and the channel
828 * have to had finish with its own, otherwise pending_job can't be
829 * false.
830 */
831
832static void multifd_send_pages(void)
833{
834 int i;
835 static int next_channel;
836 MultiFDSendParams *p = NULL; /* make happy gcc */
837 MultiFDPages_t *pages = multifd_send_state->pages;
838 uint64_t transferred;
839
840 qemu_sem_wait(&multifd_send_state->channels_ready);
841 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
842 p = &multifd_send_state->params[i];
843
844 qemu_mutex_lock(&p->mutex);
845 if (!p->pending_job) {
846 p->pending_job++;
847 next_channel = (i + 1) % migrate_multifd_channels();
848 break;
849 }
850 qemu_mutex_unlock(&p->mutex);
851 }
852 p->pages->used = 0;
853
854 p->packet_num = multifd_send_state->packet_num++;
855 p->pages->block = NULL;
856 multifd_send_state->pages = p->pages;
857 p->pages = pages;
4fcefd44 858 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
b9ee2f7d
JQ
859 ram_counters.multifd_bytes += transferred;
860 ram_counters.transferred += transferred;;
861 qemu_mutex_unlock(&p->mutex);
862 qemu_sem_post(&p->sem);
863}
864
865static void multifd_queue_page(RAMBlock *block, ram_addr_t offset)
866{
867 MultiFDPages_t *pages = multifd_send_state->pages;
868
869 if (!pages->block) {
870 pages->block = block;
871 }
872
873 if (pages->block == block) {
874 pages->offset[pages->used] = offset;
875 pages->iov[pages->used].iov_base = block->host + offset;
876 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
877 pages->used++;
878
879 if (pages->used < pages->allocated) {
880 return;
881 }
882 }
883
884 multifd_send_pages();
885
886 if (pages->block != block) {
887 multifd_queue_page(block, offset);
888 }
889}
890
66770707 891static void multifd_send_terminate_threads(Error *err)
f986c3d2
JQ
892{
893 int i;
894
7a169d74
JQ
895 if (err) {
896 MigrationState *s = migrate_get_current();
897 migrate_set_error(s, err);
898 if (s->state == MIGRATION_STATUS_SETUP ||
899 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
900 s->state == MIGRATION_STATUS_DEVICE ||
901 s->state == MIGRATION_STATUS_ACTIVE) {
902 migrate_set_state(&s->state, s->state,
903 MIGRATION_STATUS_FAILED);
904 }
905 }
906
66770707 907 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
908 MultiFDSendParams *p = &multifd_send_state->params[i];
909
910 qemu_mutex_lock(&p->mutex);
911 p->quit = true;
912 qemu_sem_post(&p->sem);
913 qemu_mutex_unlock(&p->mutex);
914 }
915}
916
917int multifd_save_cleanup(Error **errp)
918{
919 int i;
920 int ret = 0;
921
922 if (!migrate_use_multifd()) {
923 return 0;
924 }
66770707
JQ
925 multifd_send_terminate_threads(NULL);
926 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
927 MultiFDSendParams *p = &multifd_send_state->params[i];
928
66770707
JQ
929 if (p->running) {
930 qemu_thread_join(&p->thread);
931 }
60df2d4a
JQ
932 socket_send_channel_destroy(p->c);
933 p->c = NULL;
f986c3d2
JQ
934 qemu_mutex_destroy(&p->mutex);
935 qemu_sem_destroy(&p->sem);
6df264ac 936 qemu_sem_destroy(&p->sem_sync);
f986c3d2
JQ
937 g_free(p->name);
938 p->name = NULL;
34c55a94
JQ
939 multifd_pages_clear(p->pages);
940 p->pages = NULL;
2a26c979
JQ
941 p->packet_len = 0;
942 g_free(p->packet);
943 p->packet = NULL;
f986c3d2 944 }
b9ee2f7d 945 qemu_sem_destroy(&multifd_send_state->channels_ready);
6df264ac 946 qemu_sem_destroy(&multifd_send_state->sem_sync);
f986c3d2
JQ
947 g_free(multifd_send_state->params);
948 multifd_send_state->params = NULL;
34c55a94
JQ
949 multifd_pages_clear(multifd_send_state->pages);
950 multifd_send_state->pages = NULL;
f986c3d2
JQ
951 g_free(multifd_send_state);
952 multifd_send_state = NULL;
953 return ret;
954}
955
6df264ac
JQ
956static void multifd_send_sync_main(void)
957{
958 int i;
959
960 if (!migrate_use_multifd()) {
961 return;
962 }
b9ee2f7d
JQ
963 if (multifd_send_state->pages->used) {
964 multifd_send_pages();
965 }
6df264ac
JQ
966 for (i = 0; i < migrate_multifd_channels(); i++) {
967 MultiFDSendParams *p = &multifd_send_state->params[i];
968
969 trace_multifd_send_sync_main_signal(p->id);
970
971 qemu_mutex_lock(&p->mutex);
b9ee2f7d
JQ
972
973 p->packet_num = multifd_send_state->packet_num++;
6df264ac
JQ
974 p->flags |= MULTIFD_FLAG_SYNC;
975 p->pending_job++;
976 qemu_mutex_unlock(&p->mutex);
977 qemu_sem_post(&p->sem);
978 }
979 for (i = 0; i < migrate_multifd_channels(); i++) {
980 MultiFDSendParams *p = &multifd_send_state->params[i];
981
982 trace_multifd_send_sync_main_wait(p->id);
983 qemu_sem_wait(&multifd_send_state->sem_sync);
984 }
985 trace_multifd_send_sync_main(multifd_send_state->packet_num);
986}
987
f986c3d2
JQ
988static void *multifd_send_thread(void *opaque)
989{
990 MultiFDSendParams *p = opaque;
af8b7d2b 991 Error *local_err = NULL;
8b2db7f5 992 int ret;
af8b7d2b 993
408ea6ae 994 trace_multifd_send_thread_start(p->id);
74637e6f 995 rcu_register_thread();
408ea6ae 996
af8b7d2b
JQ
997 if (multifd_send_initial_packet(p, &local_err) < 0) {
998 goto out;
999 }
408ea6ae
JQ
1000 /* initial packet */
1001 p->num_packets = 1;
f986c3d2
JQ
1002
1003 while (true) {
d82628e4 1004 qemu_sem_wait(&p->sem);
f986c3d2 1005 qemu_mutex_lock(&p->mutex);
0beb5ed3
JQ
1006
1007 if (p->pending_job) {
1008 uint32_t used = p->pages->used;
1009 uint64_t packet_num = p->packet_num;
1010 uint32_t flags = p->flags;
1011
1012 multifd_send_fill_packet(p);
1013 p->flags = 0;
1014 p->num_packets++;
1015 p->num_pages += used;
1016 p->pages->used = 0;
1017 qemu_mutex_unlock(&p->mutex);
1018
1019 trace_multifd_send(p->id, packet_num, used, flags);
1020
8b2db7f5
JQ
1021 ret = qio_channel_write_all(p->c, (void *)p->packet,
1022 p->packet_len, &local_err);
1023 if (ret != 0) {
1024 break;
1025 }
1026
1027 ret = qio_channel_writev_all(p->c, p->pages->iov, used, &local_err);
1028 if (ret != 0) {
1029 break;
1030 }
0beb5ed3
JQ
1031
1032 qemu_mutex_lock(&p->mutex);
1033 p->pending_job--;
1034 qemu_mutex_unlock(&p->mutex);
6df264ac
JQ
1035
1036 if (flags & MULTIFD_FLAG_SYNC) {
1037 qemu_sem_post(&multifd_send_state->sem_sync);
1038 }
b9ee2f7d 1039 qemu_sem_post(&multifd_send_state->channels_ready);
0beb5ed3 1040 } else if (p->quit) {
f986c3d2
JQ
1041 qemu_mutex_unlock(&p->mutex);
1042 break;
6df264ac
JQ
1043 } else {
1044 qemu_mutex_unlock(&p->mutex);
1045 /* sometimes there are spurious wakeups */
f986c3d2 1046 }
f986c3d2
JQ
1047 }
1048
af8b7d2b
JQ
1049out:
1050 if (local_err) {
1051 multifd_send_terminate_threads(local_err);
1052 }
1053
66770707
JQ
1054 qemu_mutex_lock(&p->mutex);
1055 p->running = false;
1056 qemu_mutex_unlock(&p->mutex);
1057
74637e6f 1058 rcu_unregister_thread();
408ea6ae
JQ
1059 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1060
f986c3d2
JQ
1061 return NULL;
1062}
1063
60df2d4a
JQ
1064static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1065{
1066 MultiFDSendParams *p = opaque;
1067 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1068 Error *local_err = NULL;
1069
1070 if (qio_task_propagate_error(task, &local_err)) {
1071 if (multifd_save_cleanup(&local_err) != 0) {
1072 migrate_set_error(migrate_get_current(), local_err);
1073 }
1074 } else {
1075 p->c = QIO_CHANNEL(sioc);
1076 qio_channel_set_delay(p->c, false);
1077 p->running = true;
1078 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1079 QEMU_THREAD_JOINABLE);
1080
1081 atomic_inc(&multifd_send_state->count);
1082 }
1083}
1084
f986c3d2
JQ
1085int multifd_save_setup(void)
1086{
1087 int thread_count;
34c55a94 1088 uint32_t page_count = migrate_multifd_page_count();
f986c3d2
JQ
1089 uint8_t i;
1090
1091 if (!migrate_use_multifd()) {
1092 return 0;
1093 }
1094 thread_count = migrate_multifd_channels();
1095 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1096 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
66770707 1097 atomic_set(&multifd_send_state->count, 0);
34c55a94 1098 multifd_send_state->pages = multifd_pages_init(page_count);
6df264ac 1099 qemu_sem_init(&multifd_send_state->sem_sync, 0);
b9ee2f7d 1100 qemu_sem_init(&multifd_send_state->channels_ready, 0);
34c55a94 1101
f986c3d2
JQ
1102 for (i = 0; i < thread_count; i++) {
1103 MultiFDSendParams *p = &multifd_send_state->params[i];
1104
1105 qemu_mutex_init(&p->mutex);
1106 qemu_sem_init(&p->sem, 0);
6df264ac 1107 qemu_sem_init(&p->sem_sync, 0);
f986c3d2 1108 p->quit = false;
0beb5ed3 1109 p->pending_job = 0;
f986c3d2 1110 p->id = i;
34c55a94 1111 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1112 p->packet_len = sizeof(MultiFDPacket_t)
1113 + sizeof(ram_addr_t) * page_count;
1114 p->packet = g_malloc0(p->packet_len);
f986c3d2 1115 p->name = g_strdup_printf("multifdsend_%d", i);
60df2d4a 1116 socket_send_channel_create(multifd_new_send_channel_async, p);
f986c3d2
JQ
1117 }
1118 return 0;
1119}
1120
f986c3d2
JQ
1121struct {
1122 MultiFDRecvParams *params;
1123 /* number of created threads */
1124 int count;
6df264ac
JQ
1125 /* syncs main thread and channels */
1126 QemuSemaphore sem_sync;
1127 /* global number of generated multifd packets */
1128 uint64_t packet_num;
f986c3d2
JQ
1129} *multifd_recv_state;
1130
66770707 1131static void multifd_recv_terminate_threads(Error *err)
f986c3d2
JQ
1132{
1133 int i;
1134
7a169d74
JQ
1135 if (err) {
1136 MigrationState *s = migrate_get_current();
1137 migrate_set_error(s, err);
1138 if (s->state == MIGRATION_STATUS_SETUP ||
1139 s->state == MIGRATION_STATUS_ACTIVE) {
1140 migrate_set_state(&s->state, s->state,
1141 MIGRATION_STATUS_FAILED);
1142 }
1143 }
1144
66770707 1145 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1146 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1147
1148 qemu_mutex_lock(&p->mutex);
7a5cc33c
JQ
1149 /* We could arrive here for two reasons:
1150 - normal quit, i.e. everything went fine, just finished
1151 - error quit: We close the channels so the channel threads
1152 finish the qio_channel_read_all_eof() */
1153 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
f986c3d2
JQ
1154 qemu_mutex_unlock(&p->mutex);
1155 }
1156}
1157
1158int multifd_load_cleanup(Error **errp)
1159{
1160 int i;
1161 int ret = 0;
1162
1163 if (!migrate_use_multifd()) {
1164 return 0;
1165 }
66770707
JQ
1166 multifd_recv_terminate_threads(NULL);
1167 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1168 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1169
66770707
JQ
1170 if (p->running) {
1171 qemu_thread_join(&p->thread);
1172 }
60df2d4a
JQ
1173 object_unref(OBJECT(p->c));
1174 p->c = NULL;
f986c3d2 1175 qemu_mutex_destroy(&p->mutex);
6df264ac 1176 qemu_sem_destroy(&p->sem_sync);
f986c3d2
JQ
1177 g_free(p->name);
1178 p->name = NULL;
34c55a94
JQ
1179 multifd_pages_clear(p->pages);
1180 p->pages = NULL;
2a26c979
JQ
1181 p->packet_len = 0;
1182 g_free(p->packet);
1183 p->packet = NULL;
f986c3d2 1184 }
6df264ac 1185 qemu_sem_destroy(&multifd_recv_state->sem_sync);
f986c3d2
JQ
1186 g_free(multifd_recv_state->params);
1187 multifd_recv_state->params = NULL;
1188 g_free(multifd_recv_state);
1189 multifd_recv_state = NULL;
1190
1191 return ret;
1192}
1193
6df264ac
JQ
1194static void multifd_recv_sync_main(void)
1195{
1196 int i;
1197
1198 if (!migrate_use_multifd()) {
1199 return;
1200 }
1201 for (i = 0; i < migrate_multifd_channels(); i++) {
1202 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1203
6df264ac
JQ
1204 trace_multifd_recv_sync_main_wait(p->id);
1205 qemu_sem_wait(&multifd_recv_state->sem_sync);
1206 qemu_mutex_lock(&p->mutex);
1207 if (multifd_recv_state->packet_num < p->packet_num) {
1208 multifd_recv_state->packet_num = p->packet_num;
1209 }
1210 qemu_mutex_unlock(&p->mutex);
1211 }
1212 for (i = 0; i < migrate_multifd_channels(); i++) {
1213 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1214
1215 trace_multifd_recv_sync_main_signal(p->id);
6df264ac
JQ
1216 qemu_sem_post(&p->sem_sync);
1217 }
1218 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1219}
1220
f986c3d2
JQ
1221static void *multifd_recv_thread(void *opaque)
1222{
1223 MultiFDRecvParams *p = opaque;
2a26c979
JQ
1224 Error *local_err = NULL;
1225 int ret;
f986c3d2 1226
408ea6ae 1227 trace_multifd_recv_thread_start(p->id);
74637e6f 1228 rcu_register_thread();
408ea6ae 1229
f986c3d2 1230 while (true) {
6df264ac
JQ
1231 uint32_t used;
1232 uint32_t flags;
0beb5ed3 1233
8b2db7f5
JQ
1234 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1235 p->packet_len, &local_err);
1236 if (ret == 0) { /* EOF */
1237 break;
1238 }
1239 if (ret == -1) { /* Error */
1240 break;
1241 }
2a26c979 1242
6df264ac
JQ
1243 qemu_mutex_lock(&p->mutex);
1244 ret = multifd_recv_unfill_packet(p, &local_err);
1245 if (ret) {
f986c3d2
JQ
1246 qemu_mutex_unlock(&p->mutex);
1247 break;
1248 }
6df264ac
JQ
1249
1250 used = p->pages->used;
1251 flags = p->flags;
1252 trace_multifd_recv(p->id, p->packet_num, used, flags);
6df264ac
JQ
1253 p->num_packets++;
1254 p->num_pages += used;
f986c3d2 1255 qemu_mutex_unlock(&p->mutex);
6df264ac 1256
8b2db7f5
JQ
1257 ret = qio_channel_readv_all(p->c, p->pages->iov, used, &local_err);
1258 if (ret != 0) {
1259 break;
1260 }
1261
6df264ac
JQ
1262 if (flags & MULTIFD_FLAG_SYNC) {
1263 qemu_sem_post(&multifd_recv_state->sem_sync);
1264 qemu_sem_wait(&p->sem_sync);
1265 }
f986c3d2
JQ
1266 }
1267
d82628e4
JQ
1268 if (local_err) {
1269 multifd_recv_terminate_threads(local_err);
1270 }
66770707
JQ
1271 qemu_mutex_lock(&p->mutex);
1272 p->running = false;
1273 qemu_mutex_unlock(&p->mutex);
1274
74637e6f 1275 rcu_unregister_thread();
408ea6ae
JQ
1276 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1277
f986c3d2
JQ
1278 return NULL;
1279}
1280
1281int multifd_load_setup(void)
1282{
1283 int thread_count;
34c55a94 1284 uint32_t page_count = migrate_multifd_page_count();
f986c3d2
JQ
1285 uint8_t i;
1286
1287 if (!migrate_use_multifd()) {
1288 return 0;
1289 }
1290 thread_count = migrate_multifd_channels();
1291 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1292 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
66770707 1293 atomic_set(&multifd_recv_state->count, 0);
6df264ac 1294 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
34c55a94 1295
f986c3d2
JQ
1296 for (i = 0; i < thread_count; i++) {
1297 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1298
1299 qemu_mutex_init(&p->mutex);
6df264ac 1300 qemu_sem_init(&p->sem_sync, 0);
f986c3d2 1301 p->id = i;
34c55a94 1302 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1303 p->packet_len = sizeof(MultiFDPacket_t)
1304 + sizeof(ram_addr_t) * page_count;
1305 p->packet = g_malloc0(p->packet_len);
f986c3d2 1306 p->name = g_strdup_printf("multifdrecv_%d", i);
f986c3d2
JQ
1307 }
1308 return 0;
1309}
1310
62c1e0ca
JQ
1311bool multifd_recv_all_channels_created(void)
1312{
1313 int thread_count = migrate_multifd_channels();
1314
1315 if (!migrate_use_multifd()) {
1316 return true;
1317 }
1318
1319 return thread_count == atomic_read(&multifd_recv_state->count);
1320}
1321
81e62053
PX
1322/* Return true if multifd is ready for the migration, otherwise false */
1323bool multifd_recv_new_channel(QIOChannel *ioc)
71bb07db 1324{
60df2d4a 1325 MultiFDRecvParams *p;
af8b7d2b
JQ
1326 Error *local_err = NULL;
1327 int id;
60df2d4a 1328
af8b7d2b
JQ
1329 id = multifd_recv_initial_packet(ioc, &local_err);
1330 if (id < 0) {
1331 multifd_recv_terminate_threads(local_err);
81e62053 1332 return false;
af8b7d2b
JQ
1333 }
1334
1335 p = &multifd_recv_state->params[id];
1336 if (p->c != NULL) {
1337 error_setg(&local_err, "multifd: received id '%d' already setup'",
1338 id);
1339 multifd_recv_terminate_threads(local_err);
81e62053 1340 return false;
af8b7d2b 1341 }
60df2d4a
JQ
1342 p->c = ioc;
1343 object_ref(OBJECT(ioc));
408ea6ae
JQ
1344 /* initial packet */
1345 p->num_packets = 1;
60df2d4a
JQ
1346
1347 p->running = true;
1348 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1349 QEMU_THREAD_JOINABLE);
1350 atomic_inc(&multifd_recv_state->count);
81e62053 1351 return multifd_recv_state->count == migrate_multifd_channels();
71bb07db
JQ
1352}
1353
56e93d26 1354/**
3d0684b2 1355 * save_page_header: write page header to wire
56e93d26
JQ
1356 *
1357 * If this is the 1st block, it also writes the block identification
1358 *
3d0684b2 1359 * Returns the number of bytes written
56e93d26
JQ
1360 *
1361 * @f: QEMUFile where to send the data
1362 * @block: block that contains the page we want to send
1363 * @offset: offset inside the block for the page
1364 * in the lower bits, it contains flags
1365 */
2bf3aa85
JQ
1366static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1367 ram_addr_t offset)
56e93d26 1368{
9f5f380b 1369 size_t size, len;
56e93d26 1370
24795694
JQ
1371 if (block == rs->last_sent_block) {
1372 offset |= RAM_SAVE_FLAG_CONTINUE;
1373 }
2bf3aa85 1374 qemu_put_be64(f, offset);
56e93d26
JQ
1375 size = 8;
1376
1377 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
9f5f380b 1378 len = strlen(block->idstr);
2bf3aa85
JQ
1379 qemu_put_byte(f, len);
1380 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
9f5f380b 1381 size += 1 + len;
24795694 1382 rs->last_sent_block = block;
56e93d26
JQ
1383 }
1384 return size;
1385}
1386
3d0684b2
JQ
1387/**
1388 * mig_throttle_guest_down: throotle down the guest
1389 *
1390 * Reduce amount of guest cpu execution to hopefully slow down memory
1391 * writes. If guest dirty memory rate is reduced below the rate at
1392 * which we can transfer pages to the destination then we should be
1393 * able to complete migration. Some workloads dirty memory way too
1394 * fast and will not effectively converge, even with auto-converge.
070afca2
JH
1395 */
1396static void mig_throttle_guest_down(void)
1397{
1398 MigrationState *s = migrate_get_current();
2594f56d
DB
1399 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1400 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
4cbc9c7f 1401 int pct_max = s->parameters.max_cpu_throttle;
070afca2
JH
1402
1403 /* We have not started throttling yet. Let's start it. */
1404 if (!cpu_throttle_active()) {
1405 cpu_throttle_set(pct_initial);
1406 } else {
1407 /* Throttling already on, just increase the rate */
4cbc9c7f
LQ
1408 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1409 pct_max));
070afca2
JH
1410 }
1411}
1412
3d0684b2
JQ
1413/**
1414 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1415 *
6f37bb8b 1416 * @rs: current RAM state
3d0684b2
JQ
1417 * @current_addr: address for the zero page
1418 *
1419 * Update the xbzrle cache to reflect a page that's been sent as all 0.
56e93d26
JQ
1420 * The important thing is that a stale (not-yet-0'd) page be replaced
1421 * by the new data.
1422 * As a bonus, if the page wasn't in the cache it gets added so that
3d0684b2 1423 * when a small write is made into the 0'd page it gets XBZRLE sent.
56e93d26 1424 */
6f37bb8b 1425static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
56e93d26 1426{
6f37bb8b 1427 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
56e93d26
JQ
1428 return;
1429 }
1430
1431 /* We don't care if this fails to allocate a new cache page
1432 * as long as it updated an old one */
c00e0928 1433 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
9360447d 1434 ram_counters.dirty_sync_count);
56e93d26
JQ
1435}
1436
1437#define ENCODING_FLAG_XBZRLE 0x1
1438
1439/**
1440 * save_xbzrle_page: compress and send current page
1441 *
1442 * Returns: 1 means that we wrote the page
1443 * 0 means that page is identical to the one already sent
1444 * -1 means that xbzrle would be longer than normal
1445 *
5a987738 1446 * @rs: current RAM state
3d0684b2
JQ
1447 * @current_data: pointer to the address of the page contents
1448 * @current_addr: addr of the page
56e93d26
JQ
1449 * @block: block that contains the page we want to send
1450 * @offset: offset inside the block for the page
1451 * @last_stage: if we are at the completion stage
56e93d26 1452 */
204b88b8 1453static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
56e93d26 1454 ram_addr_t current_addr, RAMBlock *block,
072c2511 1455 ram_addr_t offset, bool last_stage)
56e93d26
JQ
1456{
1457 int encoded_len = 0, bytes_xbzrle;
1458 uint8_t *prev_cached_page;
1459
9360447d
JQ
1460 if (!cache_is_cached(XBZRLE.cache, current_addr,
1461 ram_counters.dirty_sync_count)) {
1462 xbzrle_counters.cache_miss++;
56e93d26
JQ
1463 if (!last_stage) {
1464 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
9360447d 1465 ram_counters.dirty_sync_count) == -1) {
56e93d26
JQ
1466 return -1;
1467 } else {
1468 /* update *current_data when the page has been
1469 inserted into cache */
1470 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1471 }
1472 }
1473 return -1;
1474 }
1475
1476 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1477
1478 /* save current buffer into memory */
1479 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1480
1481 /* XBZRLE encoding (if there is no overflow) */
1482 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1483 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1484 TARGET_PAGE_SIZE);
1485 if (encoded_len == 0) {
55c4446b 1486 trace_save_xbzrle_page_skipping();
56e93d26
JQ
1487 return 0;
1488 } else if (encoded_len == -1) {
55c4446b 1489 trace_save_xbzrle_page_overflow();
9360447d 1490 xbzrle_counters.overflow++;
56e93d26
JQ
1491 /* update data in the cache */
1492 if (!last_stage) {
1493 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
1494 *current_data = prev_cached_page;
1495 }
1496 return -1;
1497 }
1498
1499 /* we need to update the data in the cache, in order to get the same data */
1500 if (!last_stage) {
1501 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1502 }
1503
1504 /* Send XBZRLE based compressed page */
2bf3aa85 1505 bytes_xbzrle = save_page_header(rs, rs->f, block,
204b88b8
JQ
1506 offset | RAM_SAVE_FLAG_XBZRLE);
1507 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1508 qemu_put_be16(rs->f, encoded_len);
1509 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
56e93d26 1510 bytes_xbzrle += encoded_len + 1 + 2;
9360447d
JQ
1511 xbzrle_counters.pages++;
1512 xbzrle_counters.bytes += bytes_xbzrle;
1513 ram_counters.transferred += bytes_xbzrle;
56e93d26
JQ
1514
1515 return 1;
1516}
1517
3d0684b2
JQ
1518/**
1519 * migration_bitmap_find_dirty: find the next dirty page from start
f3f491fc 1520 *
3d0684b2
JQ
1521 * Called with rcu_read_lock() to protect migration_bitmap
1522 *
1523 * Returns the byte offset within memory region of the start of a dirty page
1524 *
6f37bb8b 1525 * @rs: current RAM state
3d0684b2 1526 * @rb: RAMBlock where to search for dirty pages
a935e30f 1527 * @start: page where we start the search
f3f491fc 1528 */
56e93d26 1529static inline
a935e30f 1530unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
f20e2865 1531 unsigned long start)
56e93d26 1532{
6b6712ef
JQ
1533 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1534 unsigned long *bitmap = rb->bmap;
56e93d26
JQ
1535 unsigned long next;
1536
b895de50
CLG
1537 if (!qemu_ram_is_migratable(rb)) {
1538 return size;
1539 }
1540
6b6712ef
JQ
1541 if (rs->ram_bulk_stage && start > 0) {
1542 next = start + 1;
56e93d26 1543 } else {
6b6712ef 1544 next = find_next_bit(bitmap, size, start);
56e93d26
JQ
1545 }
1546
6b6712ef 1547 return next;
56e93d26
JQ
1548}
1549
06b10688 1550static inline bool migration_bitmap_clear_dirty(RAMState *rs,
f20e2865
JQ
1551 RAMBlock *rb,
1552 unsigned long page)
a82d593b
DDAG
1553{
1554 bool ret;
a82d593b 1555
6b6712ef 1556 ret = test_and_clear_bit(page, rb->bmap);
a82d593b
DDAG
1557
1558 if (ret) {
0d8ec885 1559 rs->migration_dirty_pages--;
a82d593b
DDAG
1560 }
1561 return ret;
1562}
1563
15440dd5
JQ
1564static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
1565 ram_addr_t start, ram_addr_t length)
56e93d26 1566{
0d8ec885 1567 rs->migration_dirty_pages +=
6b6712ef 1568 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
0d8ec885 1569 &rs->num_dirty_pages_period);
56e93d26
JQ
1570}
1571
3d0684b2
JQ
1572/**
1573 * ram_pagesize_summary: calculate all the pagesizes of a VM
1574 *
1575 * Returns a summary bitmap of the page sizes of all RAMBlocks
1576 *
1577 * For VMs with just normal pages this is equivalent to the host page
1578 * size. If it's got some huge pages then it's the OR of all the
1579 * different page sizes.
e8ca1db2
DDAG
1580 */
1581uint64_t ram_pagesize_summary(void)
1582{
1583 RAMBlock *block;
1584 uint64_t summary = 0;
1585
b895de50 1586 RAMBLOCK_FOREACH_MIGRATABLE(block) {
e8ca1db2
DDAG
1587 summary |= block->page_size;
1588 }
1589
1590 return summary;
1591}
1592
b734035b
XG
1593static void migration_update_rates(RAMState *rs, int64_t end_time)
1594{
be8b02ed 1595 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
b734035b
XG
1596
1597 /* calculate period counters */
1598 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1599 / (end_time - rs->time_last_bitmap_sync);
1600
be8b02ed 1601 if (!page_count) {
b734035b
XG
1602 return;
1603 }
1604
1605 if (migrate_use_xbzrle()) {
1606 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
be8b02ed 1607 rs->xbzrle_cache_miss_prev) / page_count;
b734035b
XG
1608 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1609 }
1610}
1611
8d820d6f 1612static void migration_bitmap_sync(RAMState *rs)
56e93d26
JQ
1613{
1614 RAMBlock *block;
56e93d26 1615 int64_t end_time;
c4bdf0cf 1616 uint64_t bytes_xfer_now;
56e93d26 1617
9360447d 1618 ram_counters.dirty_sync_count++;
56e93d26 1619
f664da80
JQ
1620 if (!rs->time_last_bitmap_sync) {
1621 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
56e93d26
JQ
1622 }
1623
1624 trace_migration_bitmap_sync_start();
9c1f8f44 1625 memory_global_dirty_log_sync();
56e93d26 1626
108cfae0 1627 qemu_mutex_lock(&rs->bitmap_mutex);
56e93d26 1628 rcu_read_lock();
b895de50 1629 RAMBLOCK_FOREACH_MIGRATABLE(block) {
15440dd5 1630 migration_bitmap_sync_range(rs, block, 0, block->used_length);
56e93d26 1631 }
650af890 1632 ram_counters.remaining = ram_bytes_remaining();
56e93d26 1633 rcu_read_unlock();
108cfae0 1634 qemu_mutex_unlock(&rs->bitmap_mutex);
56e93d26 1635
a66cd90c 1636 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1ffb5dfd 1637
56e93d26
JQ
1638 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1639
1640 /* more than 1 second = 1000 millisecons */
f664da80 1641 if (end_time > rs->time_last_bitmap_sync + 1000) {
9360447d 1642 bytes_xfer_now = ram_counters.transferred;
d693c6f1 1643
9ac78b61
PL
1644 /* During block migration the auto-converge logic incorrectly detects
1645 * that ram migration makes no progress. Avoid this by disabling the
1646 * throttling logic during the bulk phase of block migration. */
1647 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
56e93d26
JQ
1648 /* The following detection logic can be refined later. For now:
1649 Check to see if the dirtied bytes is 50% more than the approx.
1650 amount of bytes that just got transferred since the last time we
070afca2
JH
1651 were in this routine. If that happens twice, start or increase
1652 throttling */
070afca2 1653
d693c6f1 1654 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
eac74159 1655 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
b4a3c64b 1656 (++rs->dirty_rate_high_cnt >= 2)) {
56e93d26 1657 trace_migration_throttle();
8d820d6f 1658 rs->dirty_rate_high_cnt = 0;
070afca2 1659 mig_throttle_guest_down();
d693c6f1 1660 }
56e93d26 1661 }
070afca2 1662
b734035b
XG
1663 migration_update_rates(rs, end_time);
1664
be8b02ed 1665 rs->target_page_count_prev = rs->target_page_count;
d693c6f1
FF
1666
1667 /* reset period counters */
f664da80 1668 rs->time_last_bitmap_sync = end_time;
a66cd90c 1669 rs->num_dirty_pages_period = 0;
d2a4d85a 1670 rs->bytes_xfer_prev = bytes_xfer_now;
56e93d26 1671 }
4addcd4f 1672 if (migrate_use_events()) {
3ab72385 1673 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
4addcd4f 1674 }
56e93d26
JQ
1675}
1676
6c97ec5f
XG
1677/**
1678 * save_zero_page_to_file: send the zero page to the file
1679 *
1680 * Returns the size of data written to the file, 0 means the page is not
1681 * a zero page
1682 *
1683 * @rs: current RAM state
1684 * @file: the file where the data is saved
1685 * @block: block that contains the page we want to send
1686 * @offset: offset inside the block for the page
1687 */
1688static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1689 RAMBlock *block, ram_addr_t offset)
1690{
1691 uint8_t *p = block->host + offset;
1692 int len = 0;
1693
1694 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1695 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1696 qemu_put_byte(file, 0);
1697 len += 1;
1698 }
1699 return len;
1700}
1701
56e93d26 1702/**
3d0684b2 1703 * save_zero_page: send the zero page to the stream
56e93d26 1704 *
3d0684b2 1705 * Returns the number of pages written.
56e93d26 1706 *
f7ccd61b 1707 * @rs: current RAM state
56e93d26
JQ
1708 * @block: block that contains the page we want to send
1709 * @offset: offset inside the block for the page
56e93d26 1710 */
7faccdc3 1711static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
56e93d26 1712{
6c97ec5f 1713 int len = save_zero_page_to_file(rs, rs->f, block, offset);
56e93d26 1714
6c97ec5f 1715 if (len) {
9360447d 1716 ram_counters.duplicate++;
6c97ec5f
XG
1717 ram_counters.transferred += len;
1718 return 1;
56e93d26 1719 }
6c97ec5f 1720 return -1;
56e93d26
JQ
1721}
1722
5727309d 1723static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
53f09a10 1724{
5727309d 1725 if (!migrate_release_ram() || !migration_in_postcopy()) {
53f09a10
PB
1726 return;
1727 }
1728
aaa2064c 1729 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
53f09a10
PB
1730}
1731
059ff0fb
XG
1732/*
1733 * @pages: the number of pages written by the control path,
1734 * < 0 - error
1735 * > 0 - number of pages written
1736 *
1737 * Return true if the pages has been saved, otherwise false is returned.
1738 */
1739static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1740 int *pages)
1741{
1742 uint64_t bytes_xmit = 0;
1743 int ret;
1744
1745 *pages = -1;
1746 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1747 &bytes_xmit);
1748 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1749 return false;
1750 }
1751
1752 if (bytes_xmit) {
1753 ram_counters.transferred += bytes_xmit;
1754 *pages = 1;
1755 }
1756
1757 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1758 return true;
1759 }
1760
1761 if (bytes_xmit > 0) {
1762 ram_counters.normal++;
1763 } else if (bytes_xmit == 0) {
1764 ram_counters.duplicate++;
1765 }
1766
1767 return true;
1768}
1769
65dacaa0
XG
1770/*
1771 * directly send the page to the stream
1772 *
1773 * Returns the number of pages written.
1774 *
1775 * @rs: current RAM state
1776 * @block: block that contains the page we want to send
1777 * @offset: offset inside the block for the page
1778 * @buf: the page to be sent
1779 * @async: send to page asyncly
1780 */
1781static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1782 uint8_t *buf, bool async)
1783{
1784 ram_counters.transferred += save_page_header(rs, rs->f, block,
1785 offset | RAM_SAVE_FLAG_PAGE);
1786 if (async) {
1787 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1788 migrate_release_ram() &
1789 migration_in_postcopy());
1790 } else {
1791 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1792 }
1793 ram_counters.transferred += TARGET_PAGE_SIZE;
1794 ram_counters.normal++;
1795 return 1;
1796}
1797
56e93d26 1798/**
3d0684b2 1799 * ram_save_page: send the given page to the stream
56e93d26 1800 *
3d0684b2 1801 * Returns the number of pages written.
3fd3c4b3
DDAG
1802 * < 0 - error
1803 * >=0 - Number of pages written - this might legally be 0
1804 * if xbzrle noticed the page was the same.
56e93d26 1805 *
6f37bb8b 1806 * @rs: current RAM state
56e93d26
JQ
1807 * @block: block that contains the page we want to send
1808 * @offset: offset inside the block for the page
1809 * @last_stage: if we are at the completion stage
56e93d26 1810 */
a0a8aa14 1811static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
56e93d26
JQ
1812{
1813 int pages = -1;
56e93d26 1814 uint8_t *p;
56e93d26 1815 bool send_async = true;
a08f6890 1816 RAMBlock *block = pss->block;
a935e30f 1817 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
059ff0fb 1818 ram_addr_t current_addr = block->offset + offset;
56e93d26 1819
2f68e399 1820 p = block->host + offset;
1db9d8e5 1821 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
56e93d26 1822
56e93d26 1823 XBZRLE_cache_lock();
d7400a34
XG
1824 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
1825 migrate_use_xbzrle()) {
059ff0fb
XG
1826 pages = save_xbzrle_page(rs, &p, current_addr, block,
1827 offset, last_stage);
1828 if (!last_stage) {
1829 /* Can't send this cached data async, since the cache page
1830 * might get updated before it gets to the wire
56e93d26 1831 */
059ff0fb 1832 send_async = false;
56e93d26
JQ
1833 }
1834 }
1835
1836 /* XBZRLE overflow or normal page */
1837 if (pages == -1) {
65dacaa0 1838 pages = save_normal_page(rs, block, offset, p, send_async);
56e93d26
JQ
1839 }
1840
1841 XBZRLE_cache_unlock();
1842
1843 return pages;
1844}
1845
b9ee2f7d
JQ
1846static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
1847 ram_addr_t offset)
1848{
b9ee2f7d 1849 multifd_queue_page(block, offset);
b9ee2f7d
JQ
1850 ram_counters.normal++;
1851
1852 return 1;
1853}
1854
5e5fdcff 1855static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 1856 ram_addr_t offset, uint8_t *source_buf)
56e93d26 1857{
53518d94 1858 RAMState *rs = ram_state;
a7a9a88f 1859 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
5e5fdcff 1860 bool zero_page = false;
6ef3771c 1861 int ret;
56e93d26 1862
5e5fdcff
XG
1863 if (save_zero_page_to_file(rs, f, block, offset)) {
1864 zero_page = true;
1865 goto exit;
1866 }
1867
6ef3771c 1868 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
34ab9e97
XG
1869
1870 /*
1871 * copy it to a internal buffer to avoid it being modified by VM
1872 * so that we can catch up the error during compression and
1873 * decompression
1874 */
1875 memcpy(source_buf, p, TARGET_PAGE_SIZE);
6ef3771c
XG
1876 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
1877 if (ret < 0) {
1878 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
b3be2896 1879 error_report("compressed data failed!");
5e5fdcff 1880 return false;
b3be2896 1881 }
56e93d26 1882
5e5fdcff 1883exit:
6ef3771c 1884 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
5e5fdcff
XG
1885 return zero_page;
1886}
1887
1888static void
1889update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
1890{
1891 if (param->zero_page) {
1892 ram_counters.duplicate++;
1893 }
1894 ram_counters.transferred += bytes_xmit;
56e93d26
JQ
1895}
1896
ce25d337 1897static void flush_compressed_data(RAMState *rs)
56e93d26
JQ
1898{
1899 int idx, len, thread_count;
1900
1901 if (!migrate_use_compression()) {
1902 return;
1903 }
1904 thread_count = migrate_compress_threads();
a7a9a88f 1905
0d9f9a5c 1906 qemu_mutex_lock(&comp_done_lock);
56e93d26 1907 for (idx = 0; idx < thread_count; idx++) {
a7a9a88f 1908 while (!comp_param[idx].done) {
0d9f9a5c 1909 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26 1910 }
a7a9a88f 1911 }
0d9f9a5c 1912 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
1913
1914 for (idx = 0; idx < thread_count; idx++) {
1915 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 1916 if (!comp_param[idx].quit) {
ce25d337 1917 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
5e5fdcff
XG
1918 /*
1919 * it's safe to fetch zero_page without holding comp_done_lock
1920 * as there is no further request submitted to the thread,
1921 * i.e, the thread should be waiting for a request at this point.
1922 */
1923 update_compress_thread_counts(&comp_param[idx], len);
56e93d26 1924 }
a7a9a88f 1925 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26
JQ
1926 }
1927}
1928
1929static inline void set_compress_params(CompressParam *param, RAMBlock *block,
1930 ram_addr_t offset)
1931{
1932 param->block = block;
1933 param->offset = offset;
1934}
1935
ce25d337
JQ
1936static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
1937 ram_addr_t offset)
56e93d26
JQ
1938{
1939 int idx, thread_count, bytes_xmit = -1, pages = -1;
1d58872a 1940 bool wait = migrate_compress_wait_thread();
56e93d26
JQ
1941
1942 thread_count = migrate_compress_threads();
0d9f9a5c 1943 qemu_mutex_lock(&comp_done_lock);
1d58872a
XG
1944retry:
1945 for (idx = 0; idx < thread_count; idx++) {
1946 if (comp_param[idx].done) {
1947 comp_param[idx].done = false;
1948 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1949 qemu_mutex_lock(&comp_param[idx].mutex);
1950 set_compress_params(&comp_param[idx], block, offset);
1951 qemu_cond_signal(&comp_param[idx].cond);
1952 qemu_mutex_unlock(&comp_param[idx].mutex);
1953 pages = 1;
5e5fdcff 1954 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
56e93d26 1955 break;
56e93d26
JQ
1956 }
1957 }
1d58872a
XG
1958
1959 /*
1960 * wait for the free thread if the user specifies 'compress-wait-thread',
1961 * otherwise we will post the page out in the main thread as normal page.
1962 */
1963 if (pages < 0 && wait) {
1964 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1965 goto retry;
1966 }
0d9f9a5c 1967 qemu_mutex_unlock(&comp_done_lock);
56e93d26
JQ
1968
1969 return pages;
1970}
1971
3d0684b2
JQ
1972/**
1973 * find_dirty_block: find the next dirty page and update any state
1974 * associated with the search process.
b9e60928 1975 *
3d0684b2 1976 * Returns if a page is found
b9e60928 1977 *
6f37bb8b 1978 * @rs: current RAM state
3d0684b2
JQ
1979 * @pss: data about the state of the current dirty page scan
1980 * @again: set to false if the search has scanned the whole of RAM
b9e60928 1981 */
f20e2865 1982static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
b9e60928 1983{
f20e2865 1984 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
6f37bb8b 1985 if (pss->complete_round && pss->block == rs->last_seen_block &&
a935e30f 1986 pss->page >= rs->last_page) {
b9e60928
DDAG
1987 /*
1988 * We've been once around the RAM and haven't found anything.
1989 * Give up.
1990 */
1991 *again = false;
1992 return false;
1993 }
a935e30f 1994 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
b9e60928 1995 /* Didn't find anything in this RAM Block */
a935e30f 1996 pss->page = 0;
b9e60928
DDAG
1997 pss->block = QLIST_NEXT_RCU(pss->block, next);
1998 if (!pss->block) {
48df9d80
XG
1999 /*
2000 * If memory migration starts over, we will meet a dirtied page
2001 * which may still exists in compression threads's ring, so we
2002 * should flush the compressed data to make sure the new page
2003 * is not overwritten by the old one in the destination.
2004 *
2005 * Also If xbzrle is on, stop using the data compression at this
2006 * point. In theory, xbzrle can do better than compression.
2007 */
2008 flush_compressed_data(rs);
2009
b9e60928
DDAG
2010 /* Hit the end of the list */
2011 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2012 /* Flag that we've looped */
2013 pss->complete_round = true;
6f37bb8b 2014 rs->ram_bulk_stage = false;
b9e60928
DDAG
2015 }
2016 /* Didn't find anything this time, but try again on the new block */
2017 *again = true;
2018 return false;
2019 } else {
2020 /* Can go around again, but... */
2021 *again = true;
2022 /* We've found something so probably don't need to */
2023 return true;
2024 }
2025}
2026
3d0684b2
JQ
2027/**
2028 * unqueue_page: gets a page of the queue
2029 *
a82d593b 2030 * Helper for 'get_queued_page' - gets a page off the queue
a82d593b 2031 *
3d0684b2
JQ
2032 * Returns the block of the page (or NULL if none available)
2033 *
ec481c6c 2034 * @rs: current RAM state
3d0684b2 2035 * @offset: used to return the offset within the RAMBlock
a82d593b 2036 */
f20e2865 2037static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
a82d593b
DDAG
2038{
2039 RAMBlock *block = NULL;
2040
ae526e32
XG
2041 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2042 return NULL;
2043 }
2044
ec481c6c
JQ
2045 qemu_mutex_lock(&rs->src_page_req_mutex);
2046 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2047 struct RAMSrcPageRequest *entry =
2048 QSIMPLEQ_FIRST(&rs->src_page_requests);
a82d593b
DDAG
2049 block = entry->rb;
2050 *offset = entry->offset;
a82d593b
DDAG
2051
2052 if (entry->len > TARGET_PAGE_SIZE) {
2053 entry->len -= TARGET_PAGE_SIZE;
2054 entry->offset += TARGET_PAGE_SIZE;
2055 } else {
2056 memory_region_unref(block->mr);
ec481c6c 2057 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
a82d593b 2058 g_free(entry);
e03a34f8 2059 migration_consume_urgent_request();
a82d593b
DDAG
2060 }
2061 }
ec481c6c 2062 qemu_mutex_unlock(&rs->src_page_req_mutex);
a82d593b
DDAG
2063
2064 return block;
2065}
2066
3d0684b2
JQ
2067/**
2068 * get_queued_page: unqueue a page from the postocpy requests
2069 *
2070 * Skips pages that are already sent (!dirty)
a82d593b 2071 *
3d0684b2 2072 * Returns if a queued page is found
a82d593b 2073 *
6f37bb8b 2074 * @rs: current RAM state
3d0684b2 2075 * @pss: data about the state of the current dirty page scan
a82d593b 2076 */
f20e2865 2077static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
a82d593b
DDAG
2078{
2079 RAMBlock *block;
2080 ram_addr_t offset;
2081 bool dirty;
2082
2083 do {
f20e2865 2084 block = unqueue_page(rs, &offset);
a82d593b
DDAG
2085 /*
2086 * We're sending this page, and since it's postcopy nothing else
2087 * will dirty it, and we must make sure it doesn't get sent again
2088 * even if this queue request was received after the background
2089 * search already sent it.
2090 */
2091 if (block) {
f20e2865
JQ
2092 unsigned long page;
2093
6b6712ef
JQ
2094 page = offset >> TARGET_PAGE_BITS;
2095 dirty = test_bit(page, block->bmap);
a82d593b 2096 if (!dirty) {
06b10688 2097 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
6b6712ef 2098 page, test_bit(page, block->unsentmap));
a82d593b 2099 } else {
f20e2865 2100 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
a82d593b
DDAG
2101 }
2102 }
2103
2104 } while (block && !dirty);
2105
2106 if (block) {
2107 /*
2108 * As soon as we start servicing pages out of order, then we have
2109 * to kill the bulk stage, since the bulk stage assumes
2110 * in (migration_bitmap_find_and_reset_dirty) that every page is
2111 * dirty, that's no longer true.
2112 */
6f37bb8b 2113 rs->ram_bulk_stage = false;
a82d593b
DDAG
2114
2115 /*
2116 * We want the background search to continue from the queued page
2117 * since the guest is likely to want other pages near to the page
2118 * it just requested.
2119 */
2120 pss->block = block;
a935e30f 2121 pss->page = offset >> TARGET_PAGE_BITS;
a82d593b
DDAG
2122 }
2123
2124 return !!block;
2125}
2126
6c595cde 2127/**
5e58f968
JQ
2128 * migration_page_queue_free: drop any remaining pages in the ram
2129 * request queue
6c595cde 2130 *
3d0684b2
JQ
2131 * It should be empty at the end anyway, but in error cases there may
2132 * be some left. in case that there is any page left, we drop it.
2133 *
6c595cde 2134 */
83c13382 2135static void migration_page_queue_free(RAMState *rs)
6c595cde 2136{
ec481c6c 2137 struct RAMSrcPageRequest *mspr, *next_mspr;
6c595cde
DDAG
2138 /* This queue generally should be empty - but in the case of a failed
2139 * migration might have some droppings in.
2140 */
2141 rcu_read_lock();
ec481c6c 2142 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
6c595cde 2143 memory_region_unref(mspr->rb->mr);
ec481c6c 2144 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
6c595cde
DDAG
2145 g_free(mspr);
2146 }
2147 rcu_read_unlock();
2148}
2149
2150/**
3d0684b2
JQ
2151 * ram_save_queue_pages: queue the page for transmission
2152 *
2153 * A request from postcopy destination for example.
2154 *
2155 * Returns zero on success or negative on error
2156 *
3d0684b2
JQ
2157 * @rbname: Name of the RAMBLock of the request. NULL means the
2158 * same that last one.
2159 * @start: starting address from the start of the RAMBlock
2160 * @len: length (in bytes) to send
6c595cde 2161 */
96506894 2162int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
6c595cde
DDAG
2163{
2164 RAMBlock *ramblock;
53518d94 2165 RAMState *rs = ram_state;
6c595cde 2166
9360447d 2167 ram_counters.postcopy_requests++;
6c595cde
DDAG
2168 rcu_read_lock();
2169 if (!rbname) {
2170 /* Reuse last RAMBlock */
68a098f3 2171 ramblock = rs->last_req_rb;
6c595cde
DDAG
2172
2173 if (!ramblock) {
2174 /*
2175 * Shouldn't happen, we can't reuse the last RAMBlock if
2176 * it's the 1st request.
2177 */
2178 error_report("ram_save_queue_pages no previous block");
2179 goto err;
2180 }
2181 } else {
2182 ramblock = qemu_ram_block_by_name(rbname);
2183
2184 if (!ramblock) {
2185 /* We shouldn't be asked for a non-existent RAMBlock */
2186 error_report("ram_save_queue_pages no block '%s'", rbname);
2187 goto err;
2188 }
68a098f3 2189 rs->last_req_rb = ramblock;
6c595cde
DDAG
2190 }
2191 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2192 if (start+len > ramblock->used_length) {
9458ad6b
JQ
2193 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2194 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
6c595cde
DDAG
2195 __func__, start, len, ramblock->used_length);
2196 goto err;
2197 }
2198
ec481c6c
JQ
2199 struct RAMSrcPageRequest *new_entry =
2200 g_malloc0(sizeof(struct RAMSrcPageRequest));
6c595cde
DDAG
2201 new_entry->rb = ramblock;
2202 new_entry->offset = start;
2203 new_entry->len = len;
2204
2205 memory_region_ref(ramblock->mr);
ec481c6c
JQ
2206 qemu_mutex_lock(&rs->src_page_req_mutex);
2207 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
e03a34f8 2208 migration_make_urgent_request();
ec481c6c 2209 qemu_mutex_unlock(&rs->src_page_req_mutex);
6c595cde
DDAG
2210 rcu_read_unlock();
2211
2212 return 0;
2213
2214err:
2215 rcu_read_unlock();
2216 return -1;
2217}
2218
d7400a34
XG
2219static bool save_page_use_compression(RAMState *rs)
2220{
2221 if (!migrate_use_compression()) {
2222 return false;
2223 }
2224
2225 /*
2226 * If xbzrle is on, stop using the data compression after first
2227 * round of migration even if compression is enabled. In theory,
2228 * xbzrle can do better than compression.
2229 */
2230 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2231 return true;
2232 }
2233
2234 return false;
2235}
2236
5e5fdcff
XG
2237/*
2238 * try to compress the page before posting it out, return true if the page
2239 * has been properly handled by compression, otherwise needs other
2240 * paths to handle it
2241 */
2242static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2243{
2244 if (!save_page_use_compression(rs)) {
2245 return false;
2246 }
2247
2248 /*
2249 * When starting the process of a new block, the first page of
2250 * the block should be sent out before other pages in the same
2251 * block, and all the pages in last block should have been sent
2252 * out, keeping this order is important, because the 'cont' flag
2253 * is used to avoid resending the block name.
2254 *
2255 * We post the fist page as normal page as compression will take
2256 * much CPU resource.
2257 */
2258 if (block != rs->last_sent_block) {
2259 flush_compressed_data(rs);
2260 return false;
2261 }
2262
2263 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2264 return true;
2265 }
2266
2267 return false;
2268}
2269
a82d593b 2270/**
3d0684b2 2271 * ram_save_target_page: save one target page
a82d593b 2272 *
3d0684b2 2273 * Returns the number of pages written
a82d593b 2274 *
6f37bb8b 2275 * @rs: current RAM state
3d0684b2 2276 * @pss: data about the page we want to send
a82d593b 2277 * @last_stage: if we are at the completion stage
a82d593b 2278 */
a0a8aa14 2279static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2280 bool last_stage)
a82d593b 2281{
a8ec91f9
XG
2282 RAMBlock *block = pss->block;
2283 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2284 int res;
2285
2286 if (control_save_page(rs, block, offset, &res)) {
2287 return res;
2288 }
2289
5e5fdcff
XG
2290 if (save_compress_page(rs, block, offset)) {
2291 return 1;
d7400a34
XG
2292 }
2293
2294 res = save_zero_page(rs, block, offset);
2295 if (res > 0) {
2296 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2297 * page would be stale
2298 */
2299 if (!save_page_use_compression(rs)) {
2300 XBZRLE_cache_lock();
2301 xbzrle_cache_zero_page(rs, block->offset + offset);
2302 XBZRLE_cache_unlock();
2303 }
2304 ram_release_pages(block->idstr, offset, res);
2305 return res;
2306 }
2307
da3f56cb 2308 /*
5e5fdcff
XG
2309 * do not use multifd for compression as the first page in the new
2310 * block should be posted out before sending the compressed page
da3f56cb 2311 */
5e5fdcff 2312 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
b9ee2f7d 2313 return ram_save_multifd_page(rs, block, offset);
a82d593b
DDAG
2314 }
2315
1faa5665 2316 return ram_save_page(rs, pss, last_stage);
a82d593b
DDAG
2317}
2318
2319/**
3d0684b2 2320 * ram_save_host_page: save a whole host page
a82d593b 2321 *
3d0684b2
JQ
2322 * Starting at *offset send pages up to the end of the current host
2323 * page. It's valid for the initial offset to point into the middle of
2324 * a host page in which case the remainder of the hostpage is sent.
2325 * Only dirty target pages are sent. Note that the host page size may
2326 * be a huge page for this block.
1eb3fc0a
DDAG
2327 * The saving stops at the boundary of the used_length of the block
2328 * if the RAMBlock isn't a multiple of the host page size.
a82d593b 2329 *
3d0684b2
JQ
2330 * Returns the number of pages written or negative on error
2331 *
6f37bb8b 2332 * @rs: current RAM state
3d0684b2 2333 * @ms: current migration state
3d0684b2 2334 * @pss: data about the page we want to send
a82d593b 2335 * @last_stage: if we are at the completion stage
a82d593b 2336 */
a0a8aa14 2337static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2338 bool last_stage)
a82d593b
DDAG
2339{
2340 int tmppages, pages = 0;
a935e30f
JQ
2341 size_t pagesize_bits =
2342 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
4c011c37 2343
b895de50
CLG
2344 if (!qemu_ram_is_migratable(pss->block)) {
2345 error_report("block %s should not be migrated !", pss->block->idstr);
2346 return 0;
2347 }
2348
a82d593b 2349 do {
1faa5665
XG
2350 /* Check the pages is dirty and if it is send it */
2351 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2352 pss->page++;
2353 continue;
2354 }
2355
f20e2865 2356 tmppages = ram_save_target_page(rs, pss, last_stage);
a82d593b
DDAG
2357 if (tmppages < 0) {
2358 return tmppages;
2359 }
2360
2361 pages += tmppages;
1faa5665
XG
2362 if (pss->block->unsentmap) {
2363 clear_bit(pss->page, pss->block->unsentmap);
2364 }
2365
a935e30f 2366 pss->page++;
1eb3fc0a
DDAG
2367 } while ((pss->page & (pagesize_bits - 1)) &&
2368 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
a82d593b
DDAG
2369
2370 /* The offset we leave with is the last one we looked at */
a935e30f 2371 pss->page--;
a82d593b
DDAG
2372 return pages;
2373}
6c595cde 2374
56e93d26 2375/**
3d0684b2 2376 * ram_find_and_save_block: finds a dirty page and sends it to f
56e93d26
JQ
2377 *
2378 * Called within an RCU critical section.
2379 *
e8f3735f
XG
2380 * Returns the number of pages written where zero means no dirty pages,
2381 * or negative on error
56e93d26 2382 *
6f37bb8b 2383 * @rs: current RAM state
56e93d26 2384 * @last_stage: if we are at the completion stage
a82d593b
DDAG
2385 *
2386 * On systems where host-page-size > target-page-size it will send all the
2387 * pages in a host page that are dirty.
56e93d26
JQ
2388 */
2389
ce25d337 2390static int ram_find_and_save_block(RAMState *rs, bool last_stage)
56e93d26 2391{
b8fb8cb7 2392 PageSearchStatus pss;
56e93d26 2393 int pages = 0;
b9e60928 2394 bool again, found;
56e93d26 2395
0827b9e9
AA
2396 /* No dirty page as there is zero RAM */
2397 if (!ram_bytes_total()) {
2398 return pages;
2399 }
2400
6f37bb8b 2401 pss.block = rs->last_seen_block;
a935e30f 2402 pss.page = rs->last_page;
b8fb8cb7
DDAG
2403 pss.complete_round = false;
2404
2405 if (!pss.block) {
2406 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2407 }
56e93d26 2408
b9e60928 2409 do {
a82d593b 2410 again = true;
f20e2865 2411 found = get_queued_page(rs, &pss);
b9e60928 2412
a82d593b
DDAG
2413 if (!found) {
2414 /* priority queue empty, so just search for something dirty */
f20e2865 2415 found = find_dirty_block(rs, &pss, &again);
a82d593b 2416 }
f3f491fc 2417
a82d593b 2418 if (found) {
f20e2865 2419 pages = ram_save_host_page(rs, &pss, last_stage);
56e93d26 2420 }
b9e60928 2421 } while (!pages && again);
56e93d26 2422
6f37bb8b 2423 rs->last_seen_block = pss.block;
a935e30f 2424 rs->last_page = pss.page;
56e93d26
JQ
2425
2426 return pages;
2427}
2428
2429void acct_update_position(QEMUFile *f, size_t size, bool zero)
2430{
2431 uint64_t pages = size / TARGET_PAGE_SIZE;
f7ccd61b 2432
56e93d26 2433 if (zero) {
9360447d 2434 ram_counters.duplicate += pages;
56e93d26 2435 } else {
9360447d
JQ
2436 ram_counters.normal += pages;
2437 ram_counters.transferred += size;
56e93d26
JQ
2438 qemu_update_position(f, size);
2439 }
2440}
2441
56e93d26
JQ
2442uint64_t ram_bytes_total(void)
2443{
2444 RAMBlock *block;
2445 uint64_t total = 0;
2446
2447 rcu_read_lock();
b895de50 2448 RAMBLOCK_FOREACH_MIGRATABLE(block) {
56e93d26 2449 total += block->used_length;
99e15582 2450 }
56e93d26
JQ
2451 rcu_read_unlock();
2452 return total;
2453}
2454
f265e0e4 2455static void xbzrle_load_setup(void)
56e93d26 2456{
f265e0e4 2457 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
56e93d26
JQ
2458}
2459
f265e0e4
JQ
2460static void xbzrle_load_cleanup(void)
2461{
2462 g_free(XBZRLE.decoded_buf);
2463 XBZRLE.decoded_buf = NULL;
2464}
2465
7d7c96be
PX
2466static void ram_state_cleanup(RAMState **rsp)
2467{
b9ccaf6d
DDAG
2468 if (*rsp) {
2469 migration_page_queue_free(*rsp);
2470 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2471 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2472 g_free(*rsp);
2473 *rsp = NULL;
2474 }
7d7c96be
PX
2475}
2476
84593a08
PX
2477static void xbzrle_cleanup(void)
2478{
2479 XBZRLE_cache_lock();
2480 if (XBZRLE.cache) {
2481 cache_fini(XBZRLE.cache);
2482 g_free(XBZRLE.encoded_buf);
2483 g_free(XBZRLE.current_buf);
2484 g_free(XBZRLE.zero_target_page);
2485 XBZRLE.cache = NULL;
2486 XBZRLE.encoded_buf = NULL;
2487 XBZRLE.current_buf = NULL;
2488 XBZRLE.zero_target_page = NULL;
2489 }
2490 XBZRLE_cache_unlock();
2491}
2492
f265e0e4 2493static void ram_save_cleanup(void *opaque)
56e93d26 2494{
53518d94 2495 RAMState **rsp = opaque;
6b6712ef 2496 RAMBlock *block;
eb859c53 2497
2ff64038
LZ
2498 /* caller have hold iothread lock or is in a bh, so there is
2499 * no writing race against this migration_bitmap
2500 */
6b6712ef
JQ
2501 memory_global_dirty_log_stop();
2502
b895de50 2503 RAMBLOCK_FOREACH_MIGRATABLE(block) {
6b6712ef
JQ
2504 g_free(block->bmap);
2505 block->bmap = NULL;
2506 g_free(block->unsentmap);
2507 block->unsentmap = NULL;
56e93d26
JQ
2508 }
2509
84593a08 2510 xbzrle_cleanup();
f0afa331 2511 compress_threads_save_cleanup();
7d7c96be 2512 ram_state_cleanup(rsp);
56e93d26
JQ
2513}
2514
6f37bb8b 2515static void ram_state_reset(RAMState *rs)
56e93d26 2516{
6f37bb8b
JQ
2517 rs->last_seen_block = NULL;
2518 rs->last_sent_block = NULL;
269ace29 2519 rs->last_page = 0;
6f37bb8b
JQ
2520 rs->last_version = ram_list.version;
2521 rs->ram_bulk_stage = true;
56e93d26
JQ
2522}
2523
2524#define MAX_WAIT 50 /* ms, half buffered_file limit */
2525
4f2e4252
DDAG
2526/*
2527 * 'expected' is the value you expect the bitmap mostly to be full
2528 * of; it won't bother printing lines that are all this value.
2529 * If 'todump' is null the migration bitmap is dumped.
2530 */
6b6712ef
JQ
2531void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2532 unsigned long pages)
4f2e4252 2533{
4f2e4252
DDAG
2534 int64_t cur;
2535 int64_t linelen = 128;
2536 char linebuf[129];
2537
6b6712ef 2538 for (cur = 0; cur < pages; cur += linelen) {
4f2e4252
DDAG
2539 int64_t curb;
2540 bool found = false;
2541 /*
2542 * Last line; catch the case where the line length
2543 * is longer than remaining ram
2544 */
6b6712ef
JQ
2545 if (cur + linelen > pages) {
2546 linelen = pages - cur;
4f2e4252
DDAG
2547 }
2548 for (curb = 0; curb < linelen; curb++) {
2549 bool thisbit = test_bit(cur + curb, todump);
2550 linebuf[curb] = thisbit ? '1' : '.';
2551 found = found || (thisbit != expected);
2552 }
2553 if (found) {
2554 linebuf[curb] = '\0';
2555 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2556 }
2557 }
2558}
2559
e0b266f0
DDAG
2560/* **** functions for postcopy ***** */
2561
ced1c616
PB
2562void ram_postcopy_migrated_memory_release(MigrationState *ms)
2563{
2564 struct RAMBlock *block;
ced1c616 2565
b895de50 2566 RAMBLOCK_FOREACH_MIGRATABLE(block) {
6b6712ef
JQ
2567 unsigned long *bitmap = block->bmap;
2568 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2569 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
ced1c616
PB
2570
2571 while (run_start < range) {
2572 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
aaa2064c 2573 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
ced1c616
PB
2574 (run_end - run_start) << TARGET_PAGE_BITS);
2575 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2576 }
2577 }
2578}
2579
3d0684b2
JQ
2580/**
2581 * postcopy_send_discard_bm_ram: discard a RAMBlock
2582 *
2583 * Returns zero on success
2584 *
e0b266f0
DDAG
2585 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2586 * Note: At this point the 'unsentmap' is the processed bitmap combined
2587 * with the dirtymap; so a '1' means it's either dirty or unsent.
3d0684b2
JQ
2588 *
2589 * @ms: current migration state
2590 * @pds: state for postcopy
2591 * @start: RAMBlock starting page
2592 * @length: RAMBlock size
e0b266f0
DDAG
2593 */
2594static int postcopy_send_discard_bm_ram(MigrationState *ms,
2595 PostcopyDiscardState *pds,
6b6712ef 2596 RAMBlock *block)
e0b266f0 2597{
6b6712ef 2598 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
e0b266f0 2599 unsigned long current;
6b6712ef 2600 unsigned long *unsentmap = block->unsentmap;
e0b266f0 2601
6b6712ef 2602 for (current = 0; current < end; ) {
e0b266f0
DDAG
2603 unsigned long one = find_next_bit(unsentmap, end, current);
2604
2605 if (one <= end) {
2606 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2607 unsigned long discard_length;
2608
2609 if (zero >= end) {
2610 discard_length = end - one;
2611 } else {
2612 discard_length = zero - one;
2613 }
d688c62d
DDAG
2614 if (discard_length) {
2615 postcopy_discard_send_range(ms, pds, one, discard_length);
2616 }
e0b266f0
DDAG
2617 current = one + discard_length;
2618 } else {
2619 current = one;
2620 }
2621 }
2622
2623 return 0;
2624}
2625
3d0684b2
JQ
2626/**
2627 * postcopy_each_ram_send_discard: discard all RAMBlocks
2628 *
2629 * Returns 0 for success or negative for error
2630 *
e0b266f0
DDAG
2631 * Utility for the outgoing postcopy code.
2632 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2633 * passing it bitmap indexes and name.
e0b266f0
DDAG
2634 * (qemu_ram_foreach_block ends up passing unscaled lengths
2635 * which would mean postcopy code would have to deal with target page)
3d0684b2
JQ
2636 *
2637 * @ms: current migration state
e0b266f0
DDAG
2638 */
2639static int postcopy_each_ram_send_discard(MigrationState *ms)
2640{
2641 struct RAMBlock *block;
2642 int ret;
2643
b895de50 2644 RAMBLOCK_FOREACH_MIGRATABLE(block) {
6b6712ef
JQ
2645 PostcopyDiscardState *pds =
2646 postcopy_discard_send_init(ms, block->idstr);
e0b266f0
DDAG
2647
2648 /*
2649 * Postcopy sends chunks of bitmap over the wire, but it
2650 * just needs indexes at this point, avoids it having
2651 * target page specific code.
2652 */
6b6712ef 2653 ret = postcopy_send_discard_bm_ram(ms, pds, block);
e0b266f0
DDAG
2654 postcopy_discard_send_finish(ms, pds);
2655 if (ret) {
2656 return ret;
2657 }
2658 }
2659
2660 return 0;
2661}
2662
3d0684b2
JQ
2663/**
2664 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2665 *
2666 * Helper for postcopy_chunk_hostpages; it's called twice to
2667 * canonicalize the two bitmaps, that are similar, but one is
2668 * inverted.
99e314eb 2669 *
3d0684b2
JQ
2670 * Postcopy requires that all target pages in a hostpage are dirty or
2671 * clean, not a mix. This function canonicalizes the bitmaps.
99e314eb 2672 *
3d0684b2
JQ
2673 * @ms: current migration state
2674 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2675 * otherwise we need to canonicalize partially dirty host pages
2676 * @block: block that contains the page we want to canonicalize
2677 * @pds: state for postcopy
99e314eb
DDAG
2678 */
2679static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2680 RAMBlock *block,
2681 PostcopyDiscardState *pds)
2682{
53518d94 2683 RAMState *rs = ram_state;
6b6712ef
JQ
2684 unsigned long *bitmap = block->bmap;
2685 unsigned long *unsentmap = block->unsentmap;
29c59172 2686 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
6b6712ef 2687 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
99e314eb
DDAG
2688 unsigned long run_start;
2689
29c59172
DDAG
2690 if (block->page_size == TARGET_PAGE_SIZE) {
2691 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2692 return;
2693 }
2694
99e314eb
DDAG
2695 if (unsent_pass) {
2696 /* Find a sent page */
6b6712ef 2697 run_start = find_next_zero_bit(unsentmap, pages, 0);
99e314eb
DDAG
2698 } else {
2699 /* Find a dirty page */
6b6712ef 2700 run_start = find_next_bit(bitmap, pages, 0);
99e314eb
DDAG
2701 }
2702
6b6712ef 2703 while (run_start < pages) {
99e314eb
DDAG
2704 bool do_fixup = false;
2705 unsigned long fixup_start_addr;
2706 unsigned long host_offset;
2707
2708 /*
2709 * If the start of this run of pages is in the middle of a host
2710 * page, then we need to fixup this host page.
2711 */
2712 host_offset = run_start % host_ratio;
2713 if (host_offset) {
2714 do_fixup = true;
2715 run_start -= host_offset;
2716 fixup_start_addr = run_start;
2717 /* For the next pass */
2718 run_start = run_start + host_ratio;
2719 } else {
2720 /* Find the end of this run */
2721 unsigned long run_end;
2722 if (unsent_pass) {
6b6712ef 2723 run_end = find_next_bit(unsentmap, pages, run_start + 1);
99e314eb 2724 } else {
6b6712ef 2725 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
99e314eb
DDAG
2726 }
2727 /*
2728 * If the end isn't at the start of a host page, then the
2729 * run doesn't finish at the end of a host page
2730 * and we need to discard.
2731 */
2732 host_offset = run_end % host_ratio;
2733 if (host_offset) {
2734 do_fixup = true;
2735 fixup_start_addr = run_end - host_offset;
2736 /*
2737 * This host page has gone, the next loop iteration starts
2738 * from after the fixup
2739 */
2740 run_start = fixup_start_addr + host_ratio;
2741 } else {
2742 /*
2743 * No discards on this iteration, next loop starts from
2744 * next sent/dirty page
2745 */
2746 run_start = run_end + 1;
2747 }
2748 }
2749
2750 if (do_fixup) {
2751 unsigned long page;
2752
2753 /* Tell the destination to discard this page */
2754 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2755 /* For the unsent_pass we:
2756 * discard partially sent pages
2757 * For the !unsent_pass (dirty) we:
2758 * discard partially dirty pages that were sent
2759 * (any partially sent pages were already discarded
2760 * by the previous unsent_pass)
2761 */
2762 postcopy_discard_send_range(ms, pds, fixup_start_addr,
2763 host_ratio);
2764 }
2765
2766 /* Clean up the bitmap */
2767 for (page = fixup_start_addr;
2768 page < fixup_start_addr + host_ratio; page++) {
2769 /* All pages in this host page are now not sent */
2770 set_bit(page, unsentmap);
2771
2772 /*
2773 * Remark them as dirty, updating the count for any pages
2774 * that weren't previously dirty.
2775 */
0d8ec885 2776 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
99e314eb
DDAG
2777 }
2778 }
2779
2780 if (unsent_pass) {
2781 /* Find the next sent page for the next iteration */
6b6712ef 2782 run_start = find_next_zero_bit(unsentmap, pages, run_start);
99e314eb
DDAG
2783 } else {
2784 /* Find the next dirty page for the next iteration */
6b6712ef 2785 run_start = find_next_bit(bitmap, pages, run_start);
99e314eb
DDAG
2786 }
2787 }
2788}
2789
3d0684b2
JQ
2790/**
2791 * postcopy_chuck_hostpages: discrad any partially sent host page
2792 *
99e314eb
DDAG
2793 * Utility for the outgoing postcopy code.
2794 *
2795 * Discard any partially sent host-page size chunks, mark any partially
29c59172
DDAG
2796 * dirty host-page size chunks as all dirty. In this case the host-page
2797 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
99e314eb 2798 *
3d0684b2
JQ
2799 * Returns zero on success
2800 *
2801 * @ms: current migration state
6b6712ef 2802 * @block: block we want to work with
99e314eb 2803 */
6b6712ef 2804static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
99e314eb 2805{
6b6712ef
JQ
2806 PostcopyDiscardState *pds =
2807 postcopy_discard_send_init(ms, block->idstr);
99e314eb 2808
6b6712ef
JQ
2809 /* First pass: Discard all partially sent host pages */
2810 postcopy_chunk_hostpages_pass(ms, true, block, pds);
2811 /*
2812 * Second pass: Ensure that all partially dirty host pages are made
2813 * fully dirty.
2814 */
2815 postcopy_chunk_hostpages_pass(ms, false, block, pds);
99e314eb 2816
6b6712ef 2817 postcopy_discard_send_finish(ms, pds);
99e314eb
DDAG
2818 return 0;
2819}
2820
3d0684b2
JQ
2821/**
2822 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2823 *
2824 * Returns zero on success
2825 *
e0b266f0
DDAG
2826 * Transmit the set of pages to be discarded after precopy to the target
2827 * these are pages that:
2828 * a) Have been previously transmitted but are now dirty again
2829 * b) Pages that have never been transmitted, this ensures that
2830 * any pages on the destination that have been mapped by background
2831 * tasks get discarded (transparent huge pages is the specific concern)
2832 * Hopefully this is pretty sparse
3d0684b2
JQ
2833 *
2834 * @ms: current migration state
e0b266f0
DDAG
2835 */
2836int ram_postcopy_send_discard_bitmap(MigrationState *ms)
2837{
53518d94 2838 RAMState *rs = ram_state;
6b6712ef 2839 RAMBlock *block;
e0b266f0 2840 int ret;
e0b266f0
DDAG
2841
2842 rcu_read_lock();
2843
2844 /* This should be our last sync, the src is now paused */
eb859c53 2845 migration_bitmap_sync(rs);
e0b266f0 2846
6b6712ef
JQ
2847 /* Easiest way to make sure we don't resume in the middle of a host-page */
2848 rs->last_seen_block = NULL;
2849 rs->last_sent_block = NULL;
2850 rs->last_page = 0;
e0b266f0 2851
b895de50 2852 RAMBLOCK_FOREACH_MIGRATABLE(block) {
6b6712ef
JQ
2853 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2854 unsigned long *bitmap = block->bmap;
2855 unsigned long *unsentmap = block->unsentmap;
2856
2857 if (!unsentmap) {
2858 /* We don't have a safe way to resize the sentmap, so
2859 * if the bitmap was resized it will be NULL at this
2860 * point.
2861 */
2862 error_report("migration ram resized during precopy phase");
2863 rcu_read_unlock();
2864 return -EINVAL;
2865 }
2866 /* Deal with TPS != HPS and huge pages */
2867 ret = postcopy_chunk_hostpages(ms, block);
2868 if (ret) {
2869 rcu_read_unlock();
2870 return ret;
2871 }
e0b266f0 2872
6b6712ef
JQ
2873 /*
2874 * Update the unsentmap to be unsentmap = unsentmap | dirty
2875 */
2876 bitmap_or(unsentmap, unsentmap, bitmap, pages);
e0b266f0 2877#ifdef DEBUG_POSTCOPY
6b6712ef 2878 ram_debug_dump_bitmap(unsentmap, true, pages);
e0b266f0 2879#endif
6b6712ef
JQ
2880 }
2881 trace_ram_postcopy_send_discard_bitmap();
e0b266f0
DDAG
2882
2883 ret = postcopy_each_ram_send_discard(ms);
2884 rcu_read_unlock();
2885
2886 return ret;
2887}
2888
3d0684b2
JQ
2889/**
2890 * ram_discard_range: discard dirtied pages at the beginning of postcopy
e0b266f0 2891 *
3d0684b2 2892 * Returns zero on success
e0b266f0 2893 *
36449157
JQ
2894 * @rbname: name of the RAMBlock of the request. NULL means the
2895 * same that last one.
3d0684b2
JQ
2896 * @start: RAMBlock starting page
2897 * @length: RAMBlock size
e0b266f0 2898 */
aaa2064c 2899int ram_discard_range(const char *rbname, uint64_t start, size_t length)
e0b266f0
DDAG
2900{
2901 int ret = -1;
2902
36449157 2903 trace_ram_discard_range(rbname, start, length);
d3a5038c 2904
e0b266f0 2905 rcu_read_lock();
36449157 2906 RAMBlock *rb = qemu_ram_block_by_name(rbname);
e0b266f0
DDAG
2907
2908 if (!rb) {
36449157 2909 error_report("ram_discard_range: Failed to find block '%s'", rbname);
e0b266f0
DDAG
2910 goto err;
2911 }
2912
814bb08f
PX
2913 /*
2914 * On source VM, we don't need to update the received bitmap since
2915 * we don't even have one.
2916 */
2917 if (rb->receivedmap) {
2918 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2919 length >> qemu_target_page_bits());
2920 }
2921
d3a5038c 2922 ret = ram_block_discard_range(rb, start, length);
e0b266f0
DDAG
2923
2924err:
2925 rcu_read_unlock();
2926
2927 return ret;
2928}
2929
84593a08
PX
2930/*
2931 * For every allocation, we will try not to crash the VM if the
2932 * allocation failed.
2933 */
2934static int xbzrle_init(void)
2935{
2936 Error *local_err = NULL;
2937
2938 if (!migrate_use_xbzrle()) {
2939 return 0;
2940 }
2941
2942 XBZRLE_cache_lock();
2943
2944 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2945 if (!XBZRLE.zero_target_page) {
2946 error_report("%s: Error allocating zero page", __func__);
2947 goto err_out;
2948 }
2949
2950 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2951 TARGET_PAGE_SIZE, &local_err);
2952 if (!XBZRLE.cache) {
2953 error_report_err(local_err);
2954 goto free_zero_page;
2955 }
2956
2957 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2958 if (!XBZRLE.encoded_buf) {
2959 error_report("%s: Error allocating encoded_buf", __func__);
2960 goto free_cache;
2961 }
2962
2963 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2964 if (!XBZRLE.current_buf) {
2965 error_report("%s: Error allocating current_buf", __func__);
2966 goto free_encoded_buf;
2967 }
2968
2969 /* We are all good */
2970 XBZRLE_cache_unlock();
2971 return 0;
2972
2973free_encoded_buf:
2974 g_free(XBZRLE.encoded_buf);
2975 XBZRLE.encoded_buf = NULL;
2976free_cache:
2977 cache_fini(XBZRLE.cache);
2978 XBZRLE.cache = NULL;
2979free_zero_page:
2980 g_free(XBZRLE.zero_target_page);
2981 XBZRLE.zero_target_page = NULL;
2982err_out:
2983 XBZRLE_cache_unlock();
2984 return -ENOMEM;
2985}
2986
53518d94 2987static int ram_state_init(RAMState **rsp)
56e93d26 2988{
7d00ee6a
PX
2989 *rsp = g_try_new0(RAMState, 1);
2990
2991 if (!*rsp) {
2992 error_report("%s: Init ramstate fail", __func__);
2993 return -1;
2994 }
53518d94
JQ
2995
2996 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2997 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2998 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
56e93d26 2999
7d00ee6a
PX
3000 /*
3001 * Count the total number of pages used by ram blocks not including any
3002 * gaps due to alignment or unplugs.
3003 */
3004 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3005
3006 ram_state_reset(*rsp);
3007
3008 return 0;
3009}
3010
d6eff5d7 3011static void ram_list_init_bitmaps(void)
7d00ee6a 3012{
d6eff5d7
PX
3013 RAMBlock *block;
3014 unsigned long pages;
56e93d26 3015
0827b9e9
AA
3016 /* Skip setting bitmap if there is no RAM */
3017 if (ram_bytes_total()) {
b895de50 3018 RAMBLOCK_FOREACH_MIGRATABLE(block) {
d6eff5d7 3019 pages = block->max_length >> TARGET_PAGE_BITS;
6b6712ef
JQ
3020 block->bmap = bitmap_new(pages);
3021 bitmap_set(block->bmap, 0, pages);
3022 if (migrate_postcopy_ram()) {
3023 block->unsentmap = bitmap_new(pages);
3024 bitmap_set(block->unsentmap, 0, pages);
3025 }
0827b9e9 3026 }
f3f491fc 3027 }
d6eff5d7
PX
3028}
3029
3030static void ram_init_bitmaps(RAMState *rs)
3031{
3032 /* For memory_global_dirty_log_start below. */
3033 qemu_mutex_lock_iothread();
3034 qemu_mutex_lock_ramlist();
3035 rcu_read_lock();
f3f491fc 3036
d6eff5d7 3037 ram_list_init_bitmaps();
56e93d26 3038 memory_global_dirty_log_start();
d6eff5d7
PX
3039 migration_bitmap_sync(rs);
3040
3041 rcu_read_unlock();
56e93d26 3042 qemu_mutex_unlock_ramlist();
49877834 3043 qemu_mutex_unlock_iothread();
d6eff5d7
PX
3044}
3045
3046static int ram_init_all(RAMState **rsp)
3047{
3048 if (ram_state_init(rsp)) {
3049 return -1;
3050 }
3051
3052 if (xbzrle_init()) {
3053 ram_state_cleanup(rsp);
3054 return -1;
3055 }
3056
3057 ram_init_bitmaps(*rsp);
a91246c9
HZ
3058
3059 return 0;
3060}
3061
08614f34
PX
3062static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3063{
3064 RAMBlock *block;
3065 uint64_t pages = 0;
3066
3067 /*
3068 * Postcopy is not using xbzrle/compression, so no need for that.
3069 * Also, since source are already halted, we don't need to care
3070 * about dirty page logging as well.
3071 */
3072
ff0769a4 3073 RAMBLOCK_FOREACH_MIGRATABLE(block) {
08614f34
PX
3074 pages += bitmap_count_one(block->bmap,
3075 block->used_length >> TARGET_PAGE_BITS);
3076 }
3077
3078 /* This may not be aligned with current bitmaps. Recalculate. */
3079 rs->migration_dirty_pages = pages;
3080
3081 rs->last_seen_block = NULL;
3082 rs->last_sent_block = NULL;
3083 rs->last_page = 0;
3084 rs->last_version = ram_list.version;
3085 /*
3086 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3087 * matter what we have sent.
3088 */
3089 rs->ram_bulk_stage = false;
3090
3091 /* Update RAMState cache of output QEMUFile */
3092 rs->f = out;
3093
3094 trace_ram_state_resume_prepare(pages);
3095}
3096
3d0684b2
JQ
3097/*
3098 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
a91246c9
HZ
3099 * long-running RCU critical section. When rcu-reclaims in the code
3100 * start to become numerous it will be necessary to reduce the
3101 * granularity of these critical sections.
3102 */
3103
3d0684b2
JQ
3104/**
3105 * ram_save_setup: Setup RAM for migration
3106 *
3107 * Returns zero to indicate success and negative for error
3108 *
3109 * @f: QEMUFile where to send the data
3110 * @opaque: RAMState pointer
3111 */
a91246c9
HZ
3112static int ram_save_setup(QEMUFile *f, void *opaque)
3113{
53518d94 3114 RAMState **rsp = opaque;
a91246c9
HZ
3115 RAMBlock *block;
3116
dcaf446e
XG
3117 if (compress_threads_save_setup()) {
3118 return -1;
3119 }
3120
a91246c9
HZ
3121 /* migration has already setup the bitmap, reuse it. */
3122 if (!migration_in_colo_state()) {
7d00ee6a 3123 if (ram_init_all(rsp) != 0) {
dcaf446e 3124 compress_threads_save_cleanup();
a91246c9 3125 return -1;
53518d94 3126 }
a91246c9 3127 }
53518d94 3128 (*rsp)->f = f;
a91246c9
HZ
3129
3130 rcu_read_lock();
56e93d26
JQ
3131
3132 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
3133
b895de50 3134 RAMBLOCK_FOREACH_MIGRATABLE(block) {
56e93d26
JQ
3135 qemu_put_byte(f, strlen(block->idstr));
3136 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3137 qemu_put_be64(f, block->used_length);
ef08fb38
DDAG
3138 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3139 qemu_put_be64(f, block->page_size);
3140 }
56e93d26
JQ
3141 }
3142
3143 rcu_read_unlock();
3144
3145 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3146 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3147
6df264ac 3148 multifd_send_sync_main();
56e93d26 3149 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3150 qemu_fflush(f);
56e93d26
JQ
3151
3152 return 0;
3153}
3154
3d0684b2
JQ
3155/**
3156 * ram_save_iterate: iterative stage for migration
3157 *
3158 * Returns zero to indicate success and negative for error
3159 *
3160 * @f: QEMUFile where to send the data
3161 * @opaque: RAMState pointer
3162 */
56e93d26
JQ
3163static int ram_save_iterate(QEMUFile *f, void *opaque)
3164{
53518d94
JQ
3165 RAMState **temp = opaque;
3166 RAMState *rs = *temp;
56e93d26
JQ
3167 int ret;
3168 int i;
3169 int64_t t0;
5c90308f 3170 int done = 0;
56e93d26 3171
b2557345
PL
3172 if (blk_mig_bulk_active()) {
3173 /* Avoid transferring ram during bulk phase of block migration as
3174 * the bulk phase will usually take a long time and transferring
3175 * ram updates during that time is pointless. */
3176 goto out;
3177 }
3178
56e93d26 3179 rcu_read_lock();
6f37bb8b
JQ
3180 if (ram_list.version != rs->last_version) {
3181 ram_state_reset(rs);
56e93d26
JQ
3182 }
3183
3184 /* Read version before ram_list.blocks */
3185 smp_rmb();
3186
3187 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3188
3189 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3190 i = 0;
e03a34f8
DDAG
3191 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3192 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
56e93d26
JQ
3193 int pages;
3194
e03a34f8
DDAG
3195 if (qemu_file_get_error(f)) {
3196 break;
3197 }
3198
ce25d337 3199 pages = ram_find_and_save_block(rs, false);
56e93d26
JQ
3200 /* no more pages to sent */
3201 if (pages == 0) {
5c90308f 3202 done = 1;
56e93d26
JQ
3203 break;
3204 }
e8f3735f
XG
3205
3206 if (pages < 0) {
3207 qemu_file_set_error(f, pages);
3208 break;
3209 }
3210
be8b02ed 3211 rs->target_page_count += pages;
070afca2 3212
56e93d26
JQ
3213 /* we want to check in the 1st loop, just in case it was the 1st time
3214 and we had to sync the dirty bitmap.
3215 qemu_get_clock_ns() is a bit expensive, so we only check each some
3216 iterations
3217 */
3218 if ((i & 63) == 0) {
3219 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3220 if (t1 > MAX_WAIT) {
55c4446b 3221 trace_ram_save_iterate_big_wait(t1, i);
56e93d26
JQ
3222 break;
3223 }
3224 }
3225 i++;
3226 }
56e93d26
JQ
3227 rcu_read_unlock();
3228
3229 /*
3230 * Must occur before EOS (or any QEMUFile operation)
3231 * because of RDMA protocol.
3232 */
3233 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3234
6df264ac 3235 multifd_send_sync_main();
b2557345 3236out:
56e93d26 3237 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3238 qemu_fflush(f);
9360447d 3239 ram_counters.transferred += 8;
56e93d26
JQ
3240
3241 ret = qemu_file_get_error(f);
3242 if (ret < 0) {
3243 return ret;
3244 }
3245
5c90308f 3246 return done;
56e93d26
JQ
3247}
3248
3d0684b2
JQ
3249/**
3250 * ram_save_complete: function called to send the remaining amount of ram
3251 *
e8f3735f 3252 * Returns zero to indicate success or negative on error
3d0684b2
JQ
3253 *
3254 * Called with iothread lock
3255 *
3256 * @f: QEMUFile where to send the data
3257 * @opaque: RAMState pointer
3258 */
56e93d26
JQ
3259static int ram_save_complete(QEMUFile *f, void *opaque)
3260{
53518d94
JQ
3261 RAMState **temp = opaque;
3262 RAMState *rs = *temp;
e8f3735f 3263 int ret = 0;
6f37bb8b 3264
56e93d26
JQ
3265 rcu_read_lock();
3266
5727309d 3267 if (!migration_in_postcopy()) {
8d820d6f 3268 migration_bitmap_sync(rs);
663e6c1d 3269 }
56e93d26
JQ
3270
3271 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3272
3273 /* try transferring iterative blocks of memory */
3274
3275 /* flush all remaining blocks regardless of rate limiting */
3276 while (true) {
3277 int pages;
3278
ce25d337 3279 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
56e93d26
JQ
3280 /* no more blocks to sent */
3281 if (pages == 0) {
3282 break;
3283 }
e8f3735f
XG
3284 if (pages < 0) {
3285 ret = pages;
3286 break;
3287 }
56e93d26
JQ
3288 }
3289
ce25d337 3290 flush_compressed_data(rs);
56e93d26 3291 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
56e93d26
JQ
3292
3293 rcu_read_unlock();
d09a6fde 3294
6df264ac 3295 multifd_send_sync_main();
56e93d26 3296 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3297 qemu_fflush(f);
56e93d26 3298
e8f3735f 3299 return ret;
56e93d26
JQ
3300}
3301
c31b098f 3302static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
47995026
VSO
3303 uint64_t *res_precopy_only,
3304 uint64_t *res_compatible,
3305 uint64_t *res_postcopy_only)
56e93d26 3306{
53518d94
JQ
3307 RAMState **temp = opaque;
3308 RAMState *rs = *temp;
56e93d26
JQ
3309 uint64_t remaining_size;
3310
9edabd4d 3311 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3312
5727309d 3313 if (!migration_in_postcopy() &&
663e6c1d 3314 remaining_size < max_size) {
56e93d26
JQ
3315 qemu_mutex_lock_iothread();
3316 rcu_read_lock();
8d820d6f 3317 migration_bitmap_sync(rs);
56e93d26
JQ
3318 rcu_read_unlock();
3319 qemu_mutex_unlock_iothread();
9edabd4d 3320 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3321 }
c31b098f 3322
86e1167e
VSO
3323 if (migrate_postcopy_ram()) {
3324 /* We can do postcopy, and all the data is postcopiable */
47995026 3325 *res_compatible += remaining_size;
86e1167e 3326 } else {
47995026 3327 *res_precopy_only += remaining_size;
86e1167e 3328 }
56e93d26
JQ
3329}
3330
3331static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3332{
3333 unsigned int xh_len;
3334 int xh_flags;
063e760a 3335 uint8_t *loaded_data;
56e93d26 3336
56e93d26
JQ
3337 /* extract RLE header */
3338 xh_flags = qemu_get_byte(f);
3339 xh_len = qemu_get_be16(f);
3340
3341 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3342 error_report("Failed to load XBZRLE page - wrong compression!");
3343 return -1;
3344 }
3345
3346 if (xh_len > TARGET_PAGE_SIZE) {
3347 error_report("Failed to load XBZRLE page - len overflow!");
3348 return -1;
3349 }
f265e0e4 3350 loaded_data = XBZRLE.decoded_buf;
56e93d26 3351 /* load data and decode */
f265e0e4 3352 /* it can change loaded_data to point to an internal buffer */
063e760a 3353 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
56e93d26
JQ
3354
3355 /* decode RLE */
063e760a 3356 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
56e93d26
JQ
3357 TARGET_PAGE_SIZE) == -1) {
3358 error_report("Failed to load XBZRLE page - decode error!");
3359 return -1;
3360 }
3361
3362 return 0;
3363}
3364
3d0684b2
JQ
3365/**
3366 * ram_block_from_stream: read a RAMBlock id from the migration stream
3367 *
3368 * Must be called from within a rcu critical section.
3369 *
56e93d26 3370 * Returns a pointer from within the RCU-protected ram_list.
a7180877 3371 *
3d0684b2
JQ
3372 * @f: QEMUFile where to read the data from
3373 * @flags: Page flags (mostly to see if it's a continuation of previous block)
a7180877 3374 */
3d0684b2 3375static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
56e93d26
JQ
3376{
3377 static RAMBlock *block = NULL;
3378 char id[256];
3379 uint8_t len;
3380
3381 if (flags & RAM_SAVE_FLAG_CONTINUE) {
4c4bad48 3382 if (!block) {
56e93d26
JQ
3383 error_report("Ack, bad migration stream!");
3384 return NULL;
3385 }
4c4bad48 3386 return block;
56e93d26
JQ
3387 }
3388
3389 len = qemu_get_byte(f);
3390 qemu_get_buffer(f, (uint8_t *)id, len);
3391 id[len] = 0;
3392
e3dd7493 3393 block = qemu_ram_block_by_name(id);
4c4bad48
HZ
3394 if (!block) {
3395 error_report("Can't find block %s", id);
3396 return NULL;
56e93d26
JQ
3397 }
3398
b895de50
CLG
3399 if (!qemu_ram_is_migratable(block)) {
3400 error_report("block %s should not be migrated !", id);
3401 return NULL;
3402 }
3403
4c4bad48
HZ
3404 return block;
3405}
3406
3407static inline void *host_from_ram_block_offset(RAMBlock *block,
3408 ram_addr_t offset)
3409{
3410 if (!offset_in_ramblock(block, offset)) {
3411 return NULL;
3412 }
3413
3414 return block->host + offset;
56e93d26
JQ
3415}
3416
3d0684b2
JQ
3417/**
3418 * ram_handle_compressed: handle the zero page case
3419 *
56e93d26
JQ
3420 * If a page (or a whole RDMA chunk) has been
3421 * determined to be zero, then zap it.
3d0684b2
JQ
3422 *
3423 * @host: host address for the zero page
3424 * @ch: what the page is filled from. We only support zero
3425 * @size: size of the zero page
56e93d26
JQ
3426 */
3427void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3428{
3429 if (ch != 0 || !is_zero_range(host, size)) {
3430 memset(host, ch, size);
3431 }
3432}
3433
797ca154
XG
3434/* return the size after decompression, or negative value on error */
3435static int
3436qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3437 const uint8_t *source, size_t source_len)
3438{
3439 int err;
3440
3441 err = inflateReset(stream);
3442 if (err != Z_OK) {
3443 return -1;
3444 }
3445
3446 stream->avail_in = source_len;
3447 stream->next_in = (uint8_t *)source;
3448 stream->avail_out = dest_len;
3449 stream->next_out = dest;
3450
3451 err = inflate(stream, Z_NO_FLUSH);
3452 if (err != Z_STREAM_END) {
3453 return -1;
3454 }
3455
3456 return stream->total_out;
3457}
3458
56e93d26
JQ
3459static void *do_data_decompress(void *opaque)
3460{
3461 DecompressParam *param = opaque;
3462 unsigned long pagesize;
33d151f4 3463 uint8_t *des;
34ab9e97 3464 int len, ret;
56e93d26 3465
33d151f4 3466 qemu_mutex_lock(&param->mutex);
90e56fb4 3467 while (!param->quit) {
33d151f4
LL
3468 if (param->des) {
3469 des = param->des;
3470 len = param->len;
3471 param->des = 0;
3472 qemu_mutex_unlock(&param->mutex);
3473
56e93d26 3474 pagesize = TARGET_PAGE_SIZE;
34ab9e97
XG
3475
3476 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3477 param->compbuf, len);
f548222c 3478 if (ret < 0 && migrate_get_current()->decompress_error_check) {
34ab9e97
XG
3479 error_report("decompress data failed");
3480 qemu_file_set_error(decomp_file, ret);
3481 }
73a8912b 3482
33d151f4
LL
3483 qemu_mutex_lock(&decomp_done_lock);
3484 param->done = true;
3485 qemu_cond_signal(&decomp_done_cond);
3486 qemu_mutex_unlock(&decomp_done_lock);
3487
3488 qemu_mutex_lock(&param->mutex);
3489 } else {
3490 qemu_cond_wait(&param->cond, &param->mutex);
3491 }
56e93d26 3492 }
33d151f4 3493 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
3494
3495 return NULL;
3496}
3497
34ab9e97 3498static int wait_for_decompress_done(void)
5533b2e9
LL
3499{
3500 int idx, thread_count;
3501
3502 if (!migrate_use_compression()) {
34ab9e97 3503 return 0;
5533b2e9
LL
3504 }
3505
3506 thread_count = migrate_decompress_threads();
3507 qemu_mutex_lock(&decomp_done_lock);
3508 for (idx = 0; idx < thread_count; idx++) {
3509 while (!decomp_param[idx].done) {
3510 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3511 }
3512 }
3513 qemu_mutex_unlock(&decomp_done_lock);
34ab9e97 3514 return qemu_file_get_error(decomp_file);
5533b2e9
LL
3515}
3516
f0afa331 3517static void compress_threads_load_cleanup(void)
56e93d26
JQ
3518{
3519 int i, thread_count;
3520
3416ab5b
JQ
3521 if (!migrate_use_compression()) {
3522 return;
3523 }
56e93d26
JQ
3524 thread_count = migrate_decompress_threads();
3525 for (i = 0; i < thread_count; i++) {
797ca154
XG
3526 /*
3527 * we use it as a indicator which shows if the thread is
3528 * properly init'd or not
3529 */
3530 if (!decomp_param[i].compbuf) {
3531 break;
3532 }
3533
56e93d26 3534 qemu_mutex_lock(&decomp_param[i].mutex);
90e56fb4 3535 decomp_param[i].quit = true;
56e93d26
JQ
3536 qemu_cond_signal(&decomp_param[i].cond);
3537 qemu_mutex_unlock(&decomp_param[i].mutex);
3538 }
3539 for (i = 0; i < thread_count; i++) {
797ca154
XG
3540 if (!decomp_param[i].compbuf) {
3541 break;
3542 }
3543
56e93d26
JQ
3544 qemu_thread_join(decompress_threads + i);
3545 qemu_mutex_destroy(&decomp_param[i].mutex);
3546 qemu_cond_destroy(&decomp_param[i].cond);
797ca154 3547 inflateEnd(&decomp_param[i].stream);
56e93d26 3548 g_free(decomp_param[i].compbuf);
797ca154 3549 decomp_param[i].compbuf = NULL;
56e93d26
JQ
3550 }
3551 g_free(decompress_threads);
3552 g_free(decomp_param);
56e93d26
JQ
3553 decompress_threads = NULL;
3554 decomp_param = NULL;
34ab9e97 3555 decomp_file = NULL;
56e93d26
JQ
3556}
3557
34ab9e97 3558static int compress_threads_load_setup(QEMUFile *f)
797ca154
XG
3559{
3560 int i, thread_count;
3561
3562 if (!migrate_use_compression()) {
3563 return 0;
3564 }
3565
3566 thread_count = migrate_decompress_threads();
3567 decompress_threads = g_new0(QemuThread, thread_count);
3568 decomp_param = g_new0(DecompressParam, thread_count);
3569 qemu_mutex_init(&decomp_done_lock);
3570 qemu_cond_init(&decomp_done_cond);
34ab9e97 3571 decomp_file = f;
797ca154
XG
3572 for (i = 0; i < thread_count; i++) {
3573 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3574 goto exit;
3575 }
3576
3577 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3578 qemu_mutex_init(&decomp_param[i].mutex);
3579 qemu_cond_init(&decomp_param[i].cond);
3580 decomp_param[i].done = true;
3581 decomp_param[i].quit = false;
3582 qemu_thread_create(decompress_threads + i, "decompress",
3583 do_data_decompress, decomp_param + i,
3584 QEMU_THREAD_JOINABLE);
3585 }
3586 return 0;
3587exit:
3588 compress_threads_load_cleanup();
3589 return -1;
3590}
3591
c1bc6626 3592static void decompress_data_with_multi_threads(QEMUFile *f,
56e93d26
JQ
3593 void *host, int len)
3594{
3595 int idx, thread_count;
3596
3597 thread_count = migrate_decompress_threads();
73a8912b 3598 qemu_mutex_lock(&decomp_done_lock);
56e93d26
JQ
3599 while (true) {
3600 for (idx = 0; idx < thread_count; idx++) {
73a8912b 3601 if (decomp_param[idx].done) {
33d151f4
LL
3602 decomp_param[idx].done = false;
3603 qemu_mutex_lock(&decomp_param[idx].mutex);
c1bc6626 3604 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
56e93d26
JQ
3605 decomp_param[idx].des = host;
3606 decomp_param[idx].len = len;
33d151f4
LL
3607 qemu_cond_signal(&decomp_param[idx].cond);
3608 qemu_mutex_unlock(&decomp_param[idx].mutex);
56e93d26
JQ
3609 break;
3610 }
3611 }
3612 if (idx < thread_count) {
3613 break;
73a8912b
LL
3614 } else {
3615 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
56e93d26
JQ
3616 }
3617 }
73a8912b 3618 qemu_mutex_unlock(&decomp_done_lock);
56e93d26
JQ
3619}
3620
f265e0e4
JQ
3621/**
3622 * ram_load_setup: Setup RAM for migration incoming side
3623 *
3624 * Returns zero to indicate success and negative for error
3625 *
3626 * @f: QEMUFile where to receive the data
3627 * @opaque: RAMState pointer
3628 */
3629static int ram_load_setup(QEMUFile *f, void *opaque)
3630{
34ab9e97 3631 if (compress_threads_load_setup(f)) {
797ca154
XG
3632 return -1;
3633 }
3634
f265e0e4 3635 xbzrle_load_setup();
f9494614 3636 ramblock_recv_map_init();
f265e0e4
JQ
3637 return 0;
3638}
3639
3640static int ram_load_cleanup(void *opaque)
3641{
f9494614 3642 RAMBlock *rb;
56eb90af
JH
3643
3644 RAMBLOCK_FOREACH_MIGRATABLE(rb) {
3645 if (ramblock_is_pmem(rb)) {
3646 pmem_persist(rb->host, rb->used_length);
3647 }
3648 }
3649
f265e0e4 3650 xbzrle_load_cleanup();
f0afa331 3651 compress_threads_load_cleanup();
f9494614 3652
b895de50 3653 RAMBLOCK_FOREACH_MIGRATABLE(rb) {
f9494614
AP
3654 g_free(rb->receivedmap);
3655 rb->receivedmap = NULL;
3656 }
f265e0e4
JQ
3657 return 0;
3658}
3659
3d0684b2
JQ
3660/**
3661 * ram_postcopy_incoming_init: allocate postcopy data structures
3662 *
3663 * Returns 0 for success and negative if there was one error
3664 *
3665 * @mis: current migration incoming state
3666 *
3667 * Allocate data structures etc needed by incoming migration with
3668 * postcopy-ram. postcopy-ram's similarly names
3669 * postcopy_ram_incoming_init does the work.
1caddf8a
DDAG
3670 */
3671int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3672{
c136180c 3673 return postcopy_ram_incoming_init(mis);
1caddf8a
DDAG
3674}
3675
3d0684b2
JQ
3676/**
3677 * ram_load_postcopy: load a page in postcopy case
3678 *
3679 * Returns 0 for success or -errno in case of error
3680 *
a7180877
DDAG
3681 * Called in postcopy mode by ram_load().
3682 * rcu_read_lock is taken prior to this being called.
3d0684b2
JQ
3683 *
3684 * @f: QEMUFile where to send the data
a7180877
DDAG
3685 */
3686static int ram_load_postcopy(QEMUFile *f)
3687{
3688 int flags = 0, ret = 0;
3689 bool place_needed = false;
1aa83678 3690 bool matches_target_page_size = false;
a7180877
DDAG
3691 MigrationIncomingState *mis = migration_incoming_get_current();
3692 /* Temporary page that is later 'placed' */
3693 void *postcopy_host_page = postcopy_get_tmp_page(mis);
c53b7ddc 3694 void *last_host = NULL;
a3b6ff6d 3695 bool all_zero = false;
a7180877
DDAG
3696
3697 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3698 ram_addr_t addr;
3699 void *host = NULL;
3700 void *page_buffer = NULL;
3701 void *place_source = NULL;
df9ff5e1 3702 RAMBlock *block = NULL;
a7180877 3703 uint8_t ch;
a7180877
DDAG
3704
3705 addr = qemu_get_be64(f);
7a9ddfbf
PX
3706
3707 /*
3708 * If qemu file error, we should stop here, and then "addr"
3709 * may be invalid
3710 */
3711 ret = qemu_file_get_error(f);
3712 if (ret) {
3713 break;
3714 }
3715
a7180877
DDAG
3716 flags = addr & ~TARGET_PAGE_MASK;
3717 addr &= TARGET_PAGE_MASK;
3718
3719 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
3720 place_needed = false;
bb890ed5 3721 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
df9ff5e1 3722 block = ram_block_from_stream(f, flags);
4c4bad48
HZ
3723
3724 host = host_from_ram_block_offset(block, addr);
a7180877
DDAG
3725 if (!host) {
3726 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3727 ret = -EINVAL;
3728 break;
3729 }
1aa83678 3730 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
a7180877 3731 /*
28abd200
DDAG
3732 * Postcopy requires that we place whole host pages atomically;
3733 * these may be huge pages for RAMBlocks that are backed by
3734 * hugetlbfs.
a7180877
DDAG
3735 * To make it atomic, the data is read into a temporary page
3736 * that's moved into place later.
3737 * The migration protocol uses, possibly smaller, target-pages
3738 * however the source ensures it always sends all the components
3739 * of a host page in order.
3740 */
3741 page_buffer = postcopy_host_page +
28abd200 3742 ((uintptr_t)host & (block->page_size - 1));
a7180877 3743 /* If all TP are zero then we can optimise the place */
28abd200 3744 if (!((uintptr_t)host & (block->page_size - 1))) {
a7180877 3745 all_zero = true;
c53b7ddc
DDAG
3746 } else {
3747 /* not the 1st TP within the HP */
3748 if (host != (last_host + TARGET_PAGE_SIZE)) {
9af9e0fe 3749 error_report("Non-sequential target page %p/%p",
c53b7ddc
DDAG
3750 host, last_host);
3751 ret = -EINVAL;
3752 break;
3753 }
a7180877
DDAG
3754 }
3755
c53b7ddc 3756
a7180877
DDAG
3757 /*
3758 * If it's the last part of a host page then we place the host
3759 * page
3760 */
3761 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
28abd200 3762 (block->page_size - 1)) == 0;
a7180877
DDAG
3763 place_source = postcopy_host_page;
3764 }
c53b7ddc 3765 last_host = host;
a7180877
DDAG
3766
3767 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
bb890ed5 3768 case RAM_SAVE_FLAG_ZERO:
a7180877
DDAG
3769 ch = qemu_get_byte(f);
3770 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3771 if (ch) {
3772 all_zero = false;
3773 }
3774 break;
3775
3776 case RAM_SAVE_FLAG_PAGE:
3777 all_zero = false;
1aa83678
PX
3778 if (!matches_target_page_size) {
3779 /* For huge pages, we always use temporary buffer */
a7180877
DDAG
3780 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3781 } else {
1aa83678
PX
3782 /*
3783 * For small pages that matches target page size, we
3784 * avoid the qemu_file copy. Instead we directly use
3785 * the buffer of QEMUFile to place the page. Note: we
3786 * cannot do any QEMUFile operation before using that
3787 * buffer to make sure the buffer is valid when
3788 * placing the page.
a7180877
DDAG
3789 */
3790 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3791 TARGET_PAGE_SIZE);
3792 }
3793 break;
3794 case RAM_SAVE_FLAG_EOS:
3795 /* normal exit */
6df264ac 3796 multifd_recv_sync_main();
a7180877
DDAG
3797 break;
3798 default:
3799 error_report("Unknown combination of migration flags: %#x"
3800 " (postcopy mode)", flags);
3801 ret = -EINVAL;
7a9ddfbf
PX
3802 break;
3803 }
3804
3805 /* Detect for any possible file errors */
3806 if (!ret && qemu_file_get_error(f)) {
3807 ret = qemu_file_get_error(f);
a7180877
DDAG
3808 }
3809
7a9ddfbf 3810 if (!ret && place_needed) {
a7180877 3811 /* This gets called at the last target page in the host page */
df9ff5e1
DDAG
3812 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
3813
a7180877 3814 if (all_zero) {
df9ff5e1 3815 ret = postcopy_place_page_zero(mis, place_dest,
8be4620b 3816 block);
a7180877 3817 } else {
df9ff5e1 3818 ret = postcopy_place_page(mis, place_dest,
8be4620b 3819 place_source, block);
a7180877
DDAG
3820 }
3821 }
a7180877
DDAG
3822 }
3823
3824 return ret;
3825}
3826
acab30b8
DHB
3827static bool postcopy_is_advised(void)
3828{
3829 PostcopyState ps = postcopy_state_get();
3830 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
3831}
3832
3833static bool postcopy_is_running(void)
3834{
3835 PostcopyState ps = postcopy_state_get();
3836 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3837}
3838
56e93d26
JQ
3839static int ram_load(QEMUFile *f, void *opaque, int version_id)
3840{
edc60127 3841 int flags = 0, ret = 0, invalid_flags = 0;
56e93d26
JQ
3842 static uint64_t seq_iter;
3843 int len = 0;
a7180877
DDAG
3844 /*
3845 * If system is running in postcopy mode, page inserts to host memory must
3846 * be atomic
3847 */
acab30b8 3848 bool postcopy_running = postcopy_is_running();
ef08fb38 3849 /* ADVISE is earlier, it shows the source has the postcopy capability on */
acab30b8 3850 bool postcopy_advised = postcopy_is_advised();
56e93d26
JQ
3851
3852 seq_iter++;
3853
3854 if (version_id != 4) {
3855 ret = -EINVAL;
3856 }
3857
edc60127
JQ
3858 if (!migrate_use_compression()) {
3859 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3860 }
56e93d26
JQ
3861 /* This RCU critical section can be very long running.
3862 * When RCU reclaims in the code start to become numerous,
3863 * it will be necessary to reduce the granularity of this
3864 * critical section.
3865 */
3866 rcu_read_lock();
a7180877
DDAG
3867
3868 if (postcopy_running) {
3869 ret = ram_load_postcopy(f);
3870 }
3871
3872 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
56e93d26 3873 ram_addr_t addr, total_ram_bytes;
a776aa15 3874 void *host = NULL;
56e93d26
JQ
3875 uint8_t ch;
3876
3877 addr = qemu_get_be64(f);
3878 flags = addr & ~TARGET_PAGE_MASK;
3879 addr &= TARGET_PAGE_MASK;
3880
edc60127
JQ
3881 if (flags & invalid_flags) {
3882 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3883 error_report("Received an unexpected compressed page");
3884 }
3885
3886 ret = -EINVAL;
3887 break;
3888 }
3889
bb890ed5 3890 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
a776aa15 3891 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4c4bad48
HZ
3892 RAMBlock *block = ram_block_from_stream(f, flags);
3893
3894 host = host_from_ram_block_offset(block, addr);
a776aa15
DDAG
3895 if (!host) {
3896 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3897 ret = -EINVAL;
3898 break;
3899 }
f9494614 3900 ramblock_recv_bitmap_set(block, host);
1db9d8e5 3901 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
a776aa15
DDAG
3902 }
3903
56e93d26
JQ
3904 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3905 case RAM_SAVE_FLAG_MEM_SIZE:
3906 /* Synchronize RAM block list */
3907 total_ram_bytes = addr;
3908 while (!ret && total_ram_bytes) {
3909 RAMBlock *block;
56e93d26
JQ
3910 char id[256];
3911 ram_addr_t length;
3912
3913 len = qemu_get_byte(f);
3914 qemu_get_buffer(f, (uint8_t *)id, len);
3915 id[len] = 0;
3916 length = qemu_get_be64(f);
3917
e3dd7493 3918 block = qemu_ram_block_by_name(id);
b895de50
CLG
3919 if (block && !qemu_ram_is_migratable(block)) {
3920 error_report("block %s should not be migrated !", id);
3921 ret = -EINVAL;
3922 } else if (block) {
e3dd7493
DDAG
3923 if (length != block->used_length) {
3924 Error *local_err = NULL;
56e93d26 3925
fa53a0e5 3926 ret = qemu_ram_resize(block, length,
e3dd7493
DDAG
3927 &local_err);
3928 if (local_err) {
3929 error_report_err(local_err);
56e93d26 3930 }
56e93d26 3931 }
ef08fb38
DDAG
3932 /* For postcopy we need to check hugepage sizes match */
3933 if (postcopy_advised &&
3934 block->page_size != qemu_host_page_size) {
3935 uint64_t remote_page_size = qemu_get_be64(f);
3936 if (remote_page_size != block->page_size) {
3937 error_report("Mismatched RAM page size %s "
3938 "(local) %zd != %" PRId64,
3939 id, block->page_size,
3940 remote_page_size);
3941 ret = -EINVAL;
3942 }
3943 }
e3dd7493
DDAG
3944 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
3945 block->idstr);
3946 } else {
56e93d26
JQ
3947 error_report("Unknown ramblock \"%s\", cannot "
3948 "accept migration", id);
3949 ret = -EINVAL;
3950 }
3951
3952 total_ram_bytes -= length;
3953 }
3954 break;
a776aa15 3955
bb890ed5 3956 case RAM_SAVE_FLAG_ZERO:
56e93d26
JQ
3957 ch = qemu_get_byte(f);
3958 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
3959 break;
a776aa15 3960
56e93d26 3961 case RAM_SAVE_FLAG_PAGE:
56e93d26
JQ
3962 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
3963 break;
56e93d26 3964
a776aa15 3965 case RAM_SAVE_FLAG_COMPRESS_PAGE:
56e93d26
JQ
3966 len = qemu_get_be32(f);
3967 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3968 error_report("Invalid compressed data length: %d", len);
3969 ret = -EINVAL;
3970 break;
3971 }
c1bc6626 3972 decompress_data_with_multi_threads(f, host, len);
56e93d26 3973 break;
a776aa15 3974
56e93d26 3975 case RAM_SAVE_FLAG_XBZRLE:
56e93d26
JQ
3976 if (load_xbzrle(f, addr, host) < 0) {
3977 error_report("Failed to decompress XBZRLE page at "
3978 RAM_ADDR_FMT, addr);
3979 ret = -EINVAL;
3980 break;
3981 }
3982 break;
3983 case RAM_SAVE_FLAG_EOS:
3984 /* normal exit */
6df264ac 3985 multifd_recv_sync_main();
56e93d26
JQ
3986 break;
3987 default:
3988 if (flags & RAM_SAVE_FLAG_HOOK) {
632e3a5c 3989 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
56e93d26
JQ
3990 } else {
3991 error_report("Unknown combination of migration flags: %#x",
3992 flags);
3993 ret = -EINVAL;
3994 }
3995 }
3996 if (!ret) {
3997 ret = qemu_file_get_error(f);
3998 }
3999 }
4000
34ab9e97 4001 ret |= wait_for_decompress_done();
56e93d26 4002 rcu_read_unlock();
55c4446b 4003 trace_ram_load_complete(ret, seq_iter);
56e93d26
JQ
4004 return ret;
4005}
4006
c6467627
VSO
4007static bool ram_has_postcopy(void *opaque)
4008{
469dd51b
JH
4009 RAMBlock *rb;
4010 RAMBLOCK_FOREACH_MIGRATABLE(rb) {
4011 if (ramblock_is_pmem(rb)) {
4012 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4013 "is not supported now!", rb->idstr, rb->host);
4014 return false;
4015 }
4016 }
4017
c6467627
VSO
4018 return migrate_postcopy_ram();
4019}
4020
edd090c7
PX
4021/* Sync all the dirty bitmap with destination VM. */
4022static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4023{
4024 RAMBlock *block;
4025 QEMUFile *file = s->to_dst_file;
4026 int ramblock_count = 0;
4027
4028 trace_ram_dirty_bitmap_sync_start();
4029
ff0769a4 4030 RAMBLOCK_FOREACH_MIGRATABLE(block) {
edd090c7
PX
4031 qemu_savevm_send_recv_bitmap(file, block->idstr);
4032 trace_ram_dirty_bitmap_request(block->idstr);
4033 ramblock_count++;
4034 }
4035
4036 trace_ram_dirty_bitmap_sync_wait();
4037
4038 /* Wait until all the ramblocks' dirty bitmap synced */
4039 while (ramblock_count--) {
4040 qemu_sem_wait(&s->rp_state.rp_sem);
4041 }
4042
4043 trace_ram_dirty_bitmap_sync_complete();
4044
4045 return 0;
4046}
4047
4048static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4049{
4050 qemu_sem_post(&s->rp_state.rp_sem);
4051}
4052
a335debb
PX
4053/*
4054 * Read the received bitmap, revert it as the initial dirty bitmap.
4055 * This is only used when the postcopy migration is paused but wants
4056 * to resume from a middle point.
4057 */
4058int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4059{
4060 int ret = -EINVAL;
4061 QEMUFile *file = s->rp_state.from_dst_file;
4062 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
a725ef9f 4063 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
4064 uint64_t size, end_mark;
4065
4066 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4067
4068 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4069 error_report("%s: incorrect state %s", __func__,
4070 MigrationStatus_str(s->state));
4071 return -EINVAL;
4072 }
4073
4074 /*
4075 * Note: see comments in ramblock_recv_bitmap_send() on why we
4076 * need the endianess convertion, and the paddings.
4077 */
4078 local_size = ROUND_UP(local_size, 8);
4079
4080 /* Add paddings */
4081 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4082
4083 size = qemu_get_be64(file);
4084
4085 /* The size of the bitmap should match with our ramblock */
4086 if (size != local_size) {
4087 error_report("%s: ramblock '%s' bitmap size mismatch "
4088 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4089 block->idstr, size, local_size);
4090 ret = -EINVAL;
4091 goto out;
4092 }
4093
4094 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4095 end_mark = qemu_get_be64(file);
4096
4097 ret = qemu_file_get_error(file);
4098 if (ret || size != local_size) {
4099 error_report("%s: read bitmap failed for ramblock '%s': %d"
4100 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4101 __func__, block->idstr, ret, local_size, size);
4102 ret = -EIO;
4103 goto out;
4104 }
4105
4106 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4107 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4108 __func__, block->idstr, end_mark);
4109 ret = -EINVAL;
4110 goto out;
4111 }
4112
4113 /*
4114 * Endianess convertion. We are during postcopy (though paused).
4115 * The dirty bitmap won't change. We can directly modify it.
4116 */
4117 bitmap_from_le(block->bmap, le_bitmap, nbits);
4118
4119 /*
4120 * What we received is "received bitmap". Revert it as the initial
4121 * dirty bitmap for this ramblock.
4122 */
4123 bitmap_complement(block->bmap, block->bmap, nbits);
4124
4125 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4126
edd090c7
PX
4127 /*
4128 * We succeeded to sync bitmap for current ramblock. If this is
4129 * the last one to sync, we need to notify the main send thread.
4130 */
4131 ram_dirty_bitmap_reload_notify(s);
4132
a335debb
PX
4133 ret = 0;
4134out:
bf269906 4135 g_free(le_bitmap);
a335debb
PX
4136 return ret;
4137}
4138
edd090c7
PX
4139static int ram_resume_prepare(MigrationState *s, void *opaque)
4140{
4141 RAMState *rs = *(RAMState **)opaque;
08614f34 4142 int ret;
edd090c7 4143
08614f34
PX
4144 ret = ram_dirty_bitmap_sync_all(s, rs);
4145 if (ret) {
4146 return ret;
4147 }
4148
4149 ram_state_resume_prepare(rs, s->to_dst_file);
4150
4151 return 0;
edd090c7
PX
4152}
4153
56e93d26 4154static SaveVMHandlers savevm_ram_handlers = {
9907e842 4155 .save_setup = ram_save_setup,
56e93d26 4156 .save_live_iterate = ram_save_iterate,
763c906b 4157 .save_live_complete_postcopy = ram_save_complete,
a3e06c3d 4158 .save_live_complete_precopy = ram_save_complete,
c6467627 4159 .has_postcopy = ram_has_postcopy,
56e93d26
JQ
4160 .save_live_pending = ram_save_pending,
4161 .load_state = ram_load,
f265e0e4
JQ
4162 .save_cleanup = ram_save_cleanup,
4163 .load_setup = ram_load_setup,
4164 .load_cleanup = ram_load_cleanup,
edd090c7 4165 .resume_prepare = ram_resume_prepare,
56e93d26
JQ
4166};
4167
4168void ram_mig_init(void)
4169{
4170 qemu_mutex_init(&XBZRLE.lock);
6f37bb8b 4171 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
56e93d26 4172}