]> git.proxmox.com Git - mirror_qemu.git/blame - migration/ram.c
migration/multifd: solve zero page causing multiple page faults
[mirror_qemu.git] / migration / ram.c
CommitLineData
56e93d26
JQ
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
76cc7b58
JQ
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
56e93d26
JQ
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
e688df6b 28
1393a485 29#include "qemu/osdep.h"
f348b6d1 30#include "qemu/cutils.h"
56e93d26
JQ
31#include "qemu/bitops.h"
32#include "qemu/bitmap.h"
b85ea5fa 33#include "qemu/madvise.h"
7205c9ec 34#include "qemu/main-loop.h"
709e3fe8 35#include "xbzrle.h"
b5ca3368 36#include "ram-compress.h"
7b1e1a22 37#include "ram.h"
6666c96a 38#include "migration.h"
947701cc 39#include "migration-stats.h"
f2a8f0a6 40#include "migration/register.h"
7b1e1a22 41#include "migration/misc.h"
08a0aee1 42#include "qemu-file.h"
be07b0ac 43#include "postcopy-ram.h"
53d37d36 44#include "page_cache.h"
56e93d26 45#include "qemu/error-report.h"
e688df6b 46#include "qapi/error.h"
ab7cbb0b 47#include "qapi/qapi-types-migration.h"
9af23989 48#include "qapi/qapi-events-migration.h"
acac51ba 49#include "qapi/qapi-commands-migration.h"
8acabf69 50#include "qapi/qmp/qerror.h"
56e93d26 51#include "trace.h"
56e93d26 52#include "exec/ram_addr.h"
f9494614 53#include "exec/target_page.h"
56e93d26 54#include "qemu/rcu_queue.h"
a91246c9 55#include "migration/colo.h"
53d37d36 56#include "block.h"
b0c3cf94 57#include "sysemu/cpu-throttle.h"
edd090c7 58#include "savevm.h"
b9ee2f7d 59#include "qemu/iov.h"
d32ca5ad 60#include "multifd.h"
278e2f55 61#include "sysemu/runstate.h"
48408174 62#include "rdma.h"
1f0776f1 63#include "options.h"
acac51ba
HH
64#include "sysemu/dirtylimit.h"
65#include "sysemu/kvm.h"
278e2f55 66
e5fdf920
LS
67#include "hw/boards.h" /* for machine_dump_guest_core() */
68
278e2f55
AG
69#if defined(__linux__)
70#include "qemu/userfaultfd.h"
71#endif /* defined(__linux__) */
56e93d26 72
56e93d26
JQ
73/***********************************************************/
74/* ram save/restore */
75
7b548761
JQ
76/*
77 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
78 * worked for pages that were filled with the same char. We switched
bb890ed5 79 * it to only search for the zero value. And to avoid confusion with
7b548761 80 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
bb890ed5 81 */
7b548761
JQ
82/*
83 * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now
84 */
85#define RAM_SAVE_FLAG_FULL 0x01
bb890ed5 86#define RAM_SAVE_FLAG_ZERO 0x02
56e93d26
JQ
87#define RAM_SAVE_FLAG_MEM_SIZE 0x04
88#define RAM_SAVE_FLAG_PAGE 0x08
89#define RAM_SAVE_FLAG_EOS 0x10
90#define RAM_SAVE_FLAG_CONTINUE 0x20
91#define RAM_SAVE_FLAG_XBZRLE 0x40
10cb3336 92/* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */
56e93d26 93#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
294e5a40 94#define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200
7b548761 95/* We can't use any flag that is bigger than 0x200 */
56e93d26 96
c2d5c4a7
FR
97/*
98 * mapped-ram migration supports O_DIRECT, so we need to make sure the
99 * userspace buffer, the IO operation size and the file offset are
100 * aligned according to the underlying device's block size. The first
101 * two are already aligned to page size, but we need to add padding to
102 * the file to align the offset. We cannot read the block size
103 * dynamically because the migration file can be moved between
104 * different systems, so use 1M to cover most block sizes and to keep
105 * the file offset aligned at page size as well.
106 */
107#define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000
108
2f6b8826
FR
109/*
110 * When doing mapped-ram migration, this is the amount we read from
111 * the pages region in the migration file at a time.
112 */
113#define MAPPED_RAM_LOAD_BUF_SIZE 0x100000
114
9360447d
JQ
115XBZRLECacheStats xbzrle_counters;
116
f1668764
PX
117/* used by the search for pages to send */
118struct PageSearchStatus {
119 /* The migration channel used for a specific host page */
120 QEMUFile *pss_channel;
ec6f3ab9
PX
121 /* Last block from where we have sent data */
122 RAMBlock *last_sent_block;
f1668764
PX
123 /* Current block being searched */
124 RAMBlock *block;
125 /* Current page to search from */
126 unsigned long page;
127 /* Set once we wrap around */
128 bool complete_round;
f1668764
PX
129 /* Whether we're sending a host page */
130 bool host_page_sending;
131 /* The start/end of current host page. Invalid if host_page_sending==false */
132 unsigned long host_page_start;
133 unsigned long host_page_end;
134};
135typedef struct PageSearchStatus PageSearchStatus;
136
56e93d26
JQ
137/* struct contains XBZRLE cache and a static page
138 used by the compression */
139static struct {
140 /* buffer used for XBZRLE encoding */
141 uint8_t *encoded_buf;
142 /* buffer for storing page content */
143 uint8_t *current_buf;
144 /* Cache for XBZRLE, Protected by lock. */
145 PageCache *cache;
146 QemuMutex lock;
c00e0928
JQ
147 /* it will store a page full of zeros */
148 uint8_t *zero_target_page;
f265e0e4
JQ
149 /* buffer used for XBZRLE decoding */
150 uint8_t *decoded_buf;
56e93d26
JQ
151} XBZRLE;
152
56e93d26
JQ
153static void XBZRLE_cache_lock(void)
154{
87dca0c9 155 if (migrate_xbzrle()) {
56e93d26 156 qemu_mutex_lock(&XBZRLE.lock);
f4c51a6b 157 }
56e93d26
JQ
158}
159
160static void XBZRLE_cache_unlock(void)
161{
87dca0c9 162 if (migrate_xbzrle()) {
56e93d26 163 qemu_mutex_unlock(&XBZRLE.lock);
f4c51a6b 164 }
56e93d26
JQ
165}
166
3d0684b2
JQ
167/**
168 * xbzrle_cache_resize: resize the xbzrle cache
169 *
cbde7be9 170 * This function is called from migrate_params_apply in main
3d0684b2
JQ
171 * thread, possibly while a migration is in progress. A running
172 * migration may be using the cache and might finish during this call,
173 * hence changes to the cache are protected by XBZRLE.lock().
174 *
c9dede2d 175 * Returns 0 for success or -1 for error
3d0684b2
JQ
176 *
177 * @new_size: new cache size
8acabf69 178 * @errp: set *errp if the check failed, with reason
56e93d26 179 */
8b9407a0 180int xbzrle_cache_resize(uint64_t new_size, Error **errp)
56e93d26
JQ
181{
182 PageCache *new_cache;
c9dede2d 183 int64_t ret = 0;
56e93d26 184
8acabf69
JQ
185 /* Check for truncation */
186 if (new_size != (size_t)new_size) {
187 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
188 "exceeding address space");
189 return -1;
190 }
191
2a313e5c
JQ
192 if (new_size == migrate_xbzrle_cache_size()) {
193 /* nothing to do */
c9dede2d 194 return 0;
2a313e5c
JQ
195 }
196
56e93d26
JQ
197 XBZRLE_cache_lock();
198
199 if (XBZRLE.cache != NULL) {
80f8dfde 200 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
56e93d26 201 if (!new_cache) {
56e93d26
JQ
202 ret = -1;
203 goto out;
204 }
205
206 cache_fini(XBZRLE.cache);
207 XBZRLE.cache = new_cache;
208 }
56e93d26
JQ
209out:
210 XBZRLE_cache_unlock();
211 return ret;
212}
213
20123ee1
PX
214static bool postcopy_preempt_active(void)
215{
216 return migrate_postcopy_preempt() && migration_in_postcopy();
217}
218
f161c88a 219bool migrate_ram_is_ignored(RAMBlock *block)
fbd162e6
YK
220{
221 return !qemu_ram_is_migratable(block) ||
b0182e53
SS
222 (migrate_ignore_shared() && qemu_ram_is_shared(block)
223 && qemu_ram_is_named_file(block));
fbd162e6
YK
224}
225
343f632c
DDAG
226#undef RAMBLOCK_FOREACH
227
fbd162e6
YK
228int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
229{
230 RAMBlock *block;
231 int ret = 0;
232
89ac5a1d
DDAG
233 RCU_READ_LOCK_GUARD();
234
fbd162e6
YK
235 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
236 ret = func(block, opaque);
237 if (ret) {
238 break;
239 }
240 }
fbd162e6
YK
241 return ret;
242}
243
f9494614
AP
244static void ramblock_recv_map_init(void)
245{
246 RAMBlock *rb;
247
fbd162e6 248 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
249 assert(!rb->receivedmap);
250 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
251 }
252}
253
254int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
255{
256 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
257 rb->receivedmap);
258}
259
1cba9f6e
DDAG
260bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
261{
262 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
263}
264
f9494614
AP
265void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
266{
267 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
268}
269
270void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
271 size_t nr)
272{
273 bitmap_set_atomic(rb->receivedmap,
274 ramblock_recv_bitmap_offset(host_addr, rb),
275 nr);
276}
277
5ef7e26b
YL
278void ramblock_recv_bitmap_set_offset(RAMBlock *rb, uint64_t byte_offset)
279{
280 set_bit_atomic(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
281}
a335debb
PX
282#define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
283
284/*
285 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
286 *
287 * Returns >0 if success with sent bytes, or <0 if error.
288 */
289int64_t ramblock_recv_bitmap_send(QEMUFile *file,
290 const char *block_name)
291{
292 RAMBlock *block = qemu_ram_block_by_name(block_name);
293 unsigned long *le_bitmap, nbits;
294 uint64_t size;
295
296 if (!block) {
297 error_report("%s: invalid block name: %s", __func__, block_name);
298 return -1;
299 }
300
898ba906 301 nbits = block->postcopy_length >> TARGET_PAGE_BITS;
a335debb
PX
302
303 /*
304 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
305 * machines we may need 4 more bytes for padding (see below
306 * comment). So extend it a bit before hand.
307 */
308 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
309
310 /*
311 * Always use little endian when sending the bitmap. This is
312 * required that when source and destination VMs are not using the
3a4452d8 313 * same endianness. (Note: big endian won't work.)
a335debb
PX
314 */
315 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
316
317 /* Size of the bitmap, in bytes */
a725ef9f 318 size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
319
320 /*
321 * size is always aligned to 8 bytes for 64bit machines, but it
322 * may not be true for 32bit machines. We need this padding to
323 * make sure the migration can survive even between 32bit and
324 * 64bit machines.
325 */
326 size = ROUND_UP(size, 8);
327
328 qemu_put_be64(file, size);
329 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
be07a0ed 330 g_free(le_bitmap);
a335debb
PX
331 /*
332 * Mark as an end, in case the middle part is screwed up due to
3a4452d8 333 * some "mysterious" reason.
a335debb
PX
334 */
335 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
be07a0ed
JQ
336 int ret = qemu_fflush(file);
337 if (ret) {
338 return ret;
a335debb
PX
339 }
340
341 return size + sizeof(size);
342}
343
ec481c6c
JQ
344/*
345 * An outstanding page request, on the source, having been received
346 * and queued
347 */
348struct RAMSrcPageRequest {
349 RAMBlock *rb;
350 hwaddr offset;
351 hwaddr len;
352
353 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
354};
355
6f37bb8b
JQ
356/* State of RAM for migration */
357struct RAMState {
f1668764
PX
358 /*
359 * PageSearchStatus structures for the channels when send pages.
360 * Protected by the bitmap_mutex.
361 */
362 PageSearchStatus pss[RAM_CHANNEL_MAX];
278e2f55
AG
363 /* UFFD file descriptor, used in 'write-tracking' migration */
364 int uffdio_fd;
8d80e195
JQ
365 /* total ram size in bytes */
366 uint64_t ram_bytes_total;
6f37bb8b
JQ
367 /* Last block that we have visited searching for dirty pages */
368 RAMBlock *last_seen_block;
269ace29
JQ
369 /* Last dirty target page we have sent */
370 ram_addr_t last_page;
6f37bb8b
JQ
371 /* last ram version we have seen */
372 uint32_t last_version;
8d820d6f
JQ
373 /* How many times we have dirty too many pages */
374 int dirty_rate_high_cnt;
f664da80
JQ
375 /* these variables are used for bitmap sync */
376 /* last time we did a full bitmap_sync */
377 int64_t time_last_bitmap_sync;
eac74159 378 /* bytes transferred at start_time */
c4bdf0cf 379 uint64_t bytes_xfer_prev;
a66cd90c 380 /* number of dirty pages since start_time */
68908ed6 381 uint64_t num_dirty_pages_period;
b5833fde
JQ
382 /* xbzrle misses since the beginning of the period */
383 uint64_t xbzrle_cache_miss_prev;
e460a4b1
WW
384 /* Amount of xbzrle pages since the beginning of the period */
385 uint64_t xbzrle_pages_prev;
386 /* Amount of xbzrle encoded bytes since the beginning of the period */
387 uint64_t xbzrle_bytes_prev;
f3095cc8
JQ
388 /* Are we really using XBZRLE (e.g., after the first round). */
389 bool xbzrle_started;
05931ec5
JQ
390 /* Are we on the last stage of migration */
391 bool last_stage;
76e03000 392
be8b02ed
XG
393 /* total handled target pages at the beginning of period */
394 uint64_t target_page_count_prev;
395 /* total handled target pages since start */
396 uint64_t target_page_count;
9360447d 397 /* number of dirty bits in the bitmap */
2dfaf12e 398 uint64_t migration_dirty_pages;
f1668764
PX
399 /*
400 * Protects:
401 * - dirty/clear bitmap
402 * - migration_dirty_pages
403 * - pss structures
404 */
108cfae0 405 QemuMutex bitmap_mutex;
68a098f3
JQ
406 /* The RAMBlock used in the last src_page_requests */
407 RAMBlock *last_req_rb;
ec481c6c
JQ
408 /* Queue of outstanding page requests from the destination */
409 QemuMutex src_page_req_mutex;
b58deb34 410 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
1015ff54
PX
411
412 /*
413 * This is only used when postcopy is in recovery phase, to communicate
414 * between the migration thread and the return path thread on dirty
415 * bitmap synchronizations. This field is unused in other stages of
416 * RAM migration.
417 */
418 unsigned int postcopy_bmap_sync_requested;
6f37bb8b
JQ
419};
420typedef struct RAMState RAMState;
421
53518d94 422static RAMState *ram_state;
6f37bb8b 423
bd227060
WW
424static NotifierWithReturnList precopy_notifier_list;
425
a1fe28df
PX
426/* Whether postcopy has queued requests? */
427static bool postcopy_has_request(RAMState *rs)
428{
429 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
430}
431
bd227060
WW
432void precopy_infrastructure_init(void)
433{
434 notifier_with_return_list_init(&precopy_notifier_list);
435}
436
437void precopy_add_notifier(NotifierWithReturn *n)
438{
439 notifier_with_return_list_add(&precopy_notifier_list, n);
440}
441
442void precopy_remove_notifier(NotifierWithReturn *n)
443{
444 notifier_with_return_remove(n);
445}
446
447int precopy_notify(PrecopyNotifyReason reason, Error **errp)
448{
449 PrecopyNotifyData pnd;
450 pnd.reason = reason;
bd227060 451
be19d836 452 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp);
bd227060
WW
453}
454
9edabd4d 455uint64_t ram_bytes_remaining(void)
2f4fde93 456{
bae416e5
DDAG
457 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
458 0;
2f4fde93
JQ
459}
460
26a26069 461void ram_transferred_add(uint64_t bytes)
4c2d0f6d 462{
ae680668 463 if (runstate_is_running()) {
aff3f660 464 stat64_add(&mig_stats.precopy_bytes, bytes);
ae680668 465 } else if (migration_in_postcopy()) {
aff3f660 466 stat64_add(&mig_stats.postcopy_bytes, bytes);
ae680668 467 } else {
aff3f660 468 stat64_add(&mig_stats.downtime_bytes, bytes);
ae680668 469 }
4c2d0f6d
DE
470}
471
4010ba38
JQ
472struct MigrationOps {
473 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
474};
475typedef struct MigrationOps MigrationOps;
476
477MigrationOps *migration_ops;
478
93589827
PX
479static int ram_save_host_page_urgent(PageSearchStatus *pss);
480
ebd88a49
PX
481/* NOTE: page is the PFN not real ram_addr_t. */
482static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
483{
484 pss->block = rb;
485 pss->page = page;
486 pss->complete_round = false;
487}
488
93589827
PX
489/*
490 * Check whether two PSSs are actively sending the same page. Return true
491 * if it is, false otherwise.
492 */
493static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
494{
495 return pss1->host_page_sending && pss2->host_page_sending &&
496 (pss1->host_page_start == pss2->host_page_start);
497}
498
56e93d26 499/**
3d0684b2 500 * save_page_header: write page header to wire
56e93d26
JQ
501 *
502 * If this is the 1st block, it also writes the block identification
503 *
3d0684b2 504 * Returns the number of bytes written
56e93d26 505 *
ec6f3ab9 506 * @pss: current PSS channel status
56e93d26
JQ
507 * @block: block that contains the page we want to send
508 * @offset: offset inside the block for the page
509 * in the lower bits, it contains flags
510 */
37502df3
LS
511static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
512 RAMBlock *block, ram_addr_t offset)
56e93d26 513{
9f5f380b 514 size_t size, len;
ec6f3ab9 515 bool same_block = (block == pss->last_sent_block);
56e93d26 516
10661f11 517 if (same_block) {
24795694
JQ
518 offset |= RAM_SAVE_FLAG_CONTINUE;
519 }
2bf3aa85 520 qemu_put_be64(f, offset);
56e93d26
JQ
521 size = 8;
522
10661f11 523 if (!same_block) {
9f5f380b 524 len = strlen(block->idstr);
2bf3aa85
JQ
525 qemu_put_byte(f, len);
526 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
9f5f380b 527 size += 1 + len;
ec6f3ab9 528 pss->last_sent_block = block;
56e93d26
JQ
529 }
530 return size;
531}
532
3d0684b2 533/**
179a8080 534 * mig_throttle_guest_down: throttle down the guest
3d0684b2
JQ
535 *
536 * Reduce amount of guest cpu execution to hopefully slow down memory
537 * writes. If guest dirty memory rate is reduced below the rate at
538 * which we can transfer pages to the destination then we should be
539 * able to complete migration. Some workloads dirty memory way too
540 * fast and will not effectively converge, even with auto-converge.
070afca2 541 */
cbbf8182
KZ
542static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
543 uint64_t bytes_dirty_threshold)
070afca2 544{
2a8ec380 545 uint64_t pct_initial = migrate_cpu_throttle_initial();
9605c2ac 546 uint64_t pct_increment = migrate_cpu_throttle_increment();
873f674c 547 bool pct_tailslow = migrate_cpu_throttle_tailslow();
24155bd0 548 int pct_max = migrate_max_cpu_throttle();
070afca2 549
cbbf8182
KZ
550 uint64_t throttle_now = cpu_throttle_get_percentage();
551 uint64_t cpu_now, cpu_ideal, throttle_inc;
552
070afca2
JH
553 /* We have not started throttling yet. Let's start it. */
554 if (!cpu_throttle_active()) {
555 cpu_throttle_set(pct_initial);
556 } else {
557 /* Throttling already on, just increase the rate */
cbbf8182
KZ
558 if (!pct_tailslow) {
559 throttle_inc = pct_increment;
560 } else {
561 /* Compute the ideal CPU percentage used by Guest, which may
562 * make the dirty rate match the dirty rate threshold. */
563 cpu_now = 100 - throttle_now;
564 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
565 bytes_dirty_period);
566 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
567 }
568 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
070afca2
JH
569 }
570}
571
91fe9a8d
RL
572void mig_throttle_counter_reset(void)
573{
574 RAMState *rs = ram_state;
575
576 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
577 rs->num_dirty_pages_period = 0;
897fd8bd 578 rs->bytes_xfer_prev = migration_transferred_bytes();
91fe9a8d
RL
579}
580
3d0684b2
JQ
581/**
582 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
583 *
584 * @current_addr: address for the zero page
585 *
586 * Update the xbzrle cache to reflect a page that's been sent as all 0.
56e93d26
JQ
587 * The important thing is that a stale (not-yet-0'd) page be replaced
588 * by the new data.
589 * As a bonus, if the page wasn't in the cache it gets added so that
3d0684b2 590 * when a small write is made into the 0'd page it gets XBZRLE sent.
56e93d26 591 */
8f47d4ee 592static void xbzrle_cache_zero_page(ram_addr_t current_addr)
56e93d26 593{
56e93d26
JQ
594 /* We don't care if this fails to allocate a new cache page
595 * as long as it updated an old one */
c00e0928 596 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
aff3f660 597 stat64_get(&mig_stats.dirty_sync_count));
56e93d26
JQ
598}
599
600#define ENCODING_FLAG_XBZRLE 0x1
601
602/**
603 * save_xbzrle_page: compress and send current page
604 *
605 * Returns: 1 means that we wrote the page
606 * 0 means that page is identical to the one already sent
607 * -1 means that xbzrle would be longer than normal
608 *
5a987738 609 * @rs: current RAM state
ec6f3ab9 610 * @pss: current PSS channel
3d0684b2
JQ
611 * @current_data: pointer to the address of the page contents
612 * @current_addr: addr of the page
56e93d26
JQ
613 * @block: block that contains the page we want to send
614 * @offset: offset inside the block for the page
56e93d26 615 */
ec6f3ab9 616static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
61717ea9
PX
617 uint8_t **current_data, ram_addr_t current_addr,
618 RAMBlock *block, ram_addr_t offset)
56e93d26
JQ
619{
620 int encoded_len = 0, bytes_xbzrle;
621 uint8_t *prev_cached_page;
ec6f3ab9 622 QEMUFile *file = pss->pss_channel;
aff3f660 623 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
56e93d26 624
536b5a4e 625 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
9360447d 626 xbzrle_counters.cache_miss++;
05931ec5 627 if (!rs->last_stage) {
56e93d26 628 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
536b5a4e 629 generation) == -1) {
56e93d26
JQ
630 return -1;
631 } else {
632 /* update *current_data when the page has been
633 inserted into cache */
634 *current_data = get_cached_data(XBZRLE.cache, current_addr);
635 }
636 }
637 return -1;
638 }
639
e460a4b1
WW
640 /*
641 * Reaching here means the page has hit the xbzrle cache, no matter what
642 * encoding result it is (normal encoding, overflow or skipping the page),
3a4452d8 643 * count the page as encoded. This is used to calculate the encoding rate.
e460a4b1
WW
644 *
645 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
646 * 2nd page turns out to be skipped (i.e. no new bytes written to the
647 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
648 * skipped page included. In this way, the encoding rate can tell if the
649 * guest page is good for xbzrle encoding.
650 */
651 xbzrle_counters.pages++;
56e93d26
JQ
652 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
653
654 /* save current buffer into memory */
655 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
656
657 /* XBZRLE encoding (if there is no overflow) */
7ba7db9f
RH
658 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
659 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
660 TARGET_PAGE_SIZE);
ca353803
WY
661
662 /*
663 * Update the cache contents, so that it corresponds to the data
664 * sent, in all cases except where we skip the page.
665 */
05931ec5 666 if (!rs->last_stage && encoded_len != 0) {
ca353803
WY
667 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
668 /*
669 * In the case where we couldn't compress, ensure that the caller
670 * sends the data from the cache, since the guest might have
671 * changed the RAM since we copied it.
672 */
673 *current_data = prev_cached_page;
674 }
675
56e93d26 676 if (encoded_len == 0) {
55c4446b 677 trace_save_xbzrle_page_skipping();
56e93d26
JQ
678 return 0;
679 } else if (encoded_len == -1) {
55c4446b 680 trace_save_xbzrle_page_overflow();
9360447d 681 xbzrle_counters.overflow++;
e460a4b1 682 xbzrle_counters.bytes += TARGET_PAGE_SIZE;
56e93d26
JQ
683 return -1;
684 }
685
56e93d26 686 /* Send XBZRLE based compressed page */
37502df3 687 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
204b88b8 688 offset | RAM_SAVE_FLAG_XBZRLE);
61717ea9
PX
689 qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
690 qemu_put_be16(file, encoded_len);
691 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
56e93d26 692 bytes_xbzrle += encoded_len + 1 + 2;
e460a4b1
WW
693 /*
694 * Like compressed_size (please see update_compress_thread_counts),
695 * the xbzrle encoded bytes don't count the 8 byte header with
696 * RAM_SAVE_FLAG_CONTINUE.
697 */
698 xbzrle_counters.bytes += bytes_xbzrle - 8;
4c2d0f6d 699 ram_transferred_add(bytes_xbzrle);
56e93d26
JQ
700
701 return 1;
702}
703
3d0684b2 704/**
d9e474ea 705 * pss_find_next_dirty: find the next dirty page of current ramblock
f3f491fc 706 *
d9e474ea
PX
707 * This function updates pss->page to point to the next dirty page index
708 * within the ramblock to migrate, or the end of ramblock when nothing
709 * found. Note that when pss->host_page_sending==true it means we're
710 * during sending a host page, so we won't look for dirty page that is
711 * outside the host page boundary.
3d0684b2 712 *
d9e474ea 713 * @pss: the current page search status
f3f491fc 714 */
d9e474ea 715static void pss_find_next_dirty(PageSearchStatus *pss)
56e93d26 716{
d9e474ea 717 RAMBlock *rb = pss->block;
6b6712ef
JQ
718 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
719 unsigned long *bitmap = rb->bmap;
56e93d26 720
f161c88a 721 if (migrate_ram_is_ignored(rb)) {
d9e474ea
PX
722 /* Points directly to the end, so we know no dirty page */
723 pss->page = size;
724 return;
725 }
726
727 /*
728 * If during sending a host page, only look for dirty pages within the
729 * current host page being send.
730 */
731 if (pss->host_page_sending) {
732 assert(pss->host_page_end);
733 size = MIN(size, pss->host_page_end);
b895de50
CLG
734 }
735
d9e474ea 736 pss->page = find_next_bit(bitmap, size, pss->page);
56e93d26
JQ
737}
738
1230a25f 739static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
3143577d
WW
740 unsigned long page)
741{
742 uint8_t shift;
743 hwaddr size, start;
744
745 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
746 return;
747 }
748
749 shift = rb->clear_bmap_shift;
750 /*
751 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
752 * can make things easier sometimes since then start address
753 * of the small chunk will always be 64 pages aligned so the
754 * bitmap will always be aligned to unsigned long. We should
755 * even be able to remove this restriction but I'm simply
756 * keeping it.
757 */
758 assert(shift >= 6);
759
760 size = 1ULL << (TARGET_PAGE_BITS + shift);
7648297d 761 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
3143577d
WW
762 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
763 memory_region_clear_dirty_bitmap(rb->mr, start, size);
764}
765
766static void
1230a25f 767migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
3143577d
WW
768 unsigned long start,
769 unsigned long npages)
770{
771 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
772 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
773 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
774
775 /*
776 * Clear pages from start to start + npages - 1, so the end boundary is
777 * exclusive.
778 */
779 for (i = chunk_start; i < chunk_end; i += chunk_pages) {
1230a25f 780 migration_clear_memory_region_dirty_bitmap(rb, i);
3143577d
WW
781 }
782}
783
a6a83cef
RL
784/*
785 * colo_bitmap_find_diry:find contiguous dirty pages from start
786 *
787 * Returns the page offset within memory region of the start of the contiguout
788 * dirty page
789 *
790 * @rs: current RAM state
791 * @rb: RAMBlock where to search for dirty pages
792 * @start: page where we start the search
793 * @num: the number of contiguous dirty pages
794 */
795static inline
796unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
797 unsigned long start, unsigned long *num)
798{
799 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
800 unsigned long *bitmap = rb->bmap;
801 unsigned long first, next;
802
803 *num = 0;
804
f161c88a 805 if (migrate_ram_is_ignored(rb)) {
a6a83cef
RL
806 return size;
807 }
808
809 first = find_next_bit(bitmap, size, start);
810 if (first >= size) {
811 return first;
812 }
813 next = find_next_zero_bit(bitmap, size, first + 1);
814 assert(next >= first);
815 *num = next - first;
816 return first;
817}
818
06b10688 819static inline bool migration_bitmap_clear_dirty(RAMState *rs,
f20e2865
JQ
820 RAMBlock *rb,
821 unsigned long page)
a82d593b
DDAG
822{
823 bool ret;
a82d593b 824
002cad6b
PX
825 /*
826 * Clear dirty bitmap if needed. This _must_ be called before we
827 * send any of the page in the chunk because we need to make sure
828 * we can capture further page content changes when we sync dirty
829 * log the next time. So as long as we are going to send any of
830 * the page in the chunk we clear the remote dirty bitmap for all.
831 * Clearing it earlier won't be a problem, but too late will.
832 */
1230a25f 833 migration_clear_memory_region_dirty_bitmap(rb, page);
002cad6b 834
6b6712ef 835 ret = test_and_clear_bit(page, rb->bmap);
a82d593b 836 if (ret) {
0d8ec885 837 rs->migration_dirty_pages--;
a82d593b 838 }
386a907b 839
a82d593b
DDAG
840 return ret;
841}
842
be39b4cd
DH
843static void dirty_bitmap_clear_section(MemoryRegionSection *section,
844 void *opaque)
845{
846 const hwaddr offset = section->offset_within_region;
847 const hwaddr size = int128_get64(section->size);
848 const unsigned long start = offset >> TARGET_PAGE_BITS;
849 const unsigned long npages = size >> TARGET_PAGE_BITS;
850 RAMBlock *rb = section->mr->ram_block;
851 uint64_t *cleared_bits = opaque;
852
853 /*
854 * We don't grab ram_state->bitmap_mutex because we expect to run
855 * only when starting migration or during postcopy recovery where
856 * we don't have concurrent access.
857 */
858 if (!migration_in_postcopy() && !migrate_background_snapshot()) {
859 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
860 }
861 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
862 bitmap_clear(rb->bmap, start, npages);
863}
864
865/*
866 * Exclude all dirty pages from migration that fall into a discarded range as
867 * managed by a RamDiscardManager responsible for the mapped memory region of
868 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
869 *
870 * Discarded pages ("logically unplugged") have undefined content and must
871 * not get migrated, because even reading these pages for migration might
872 * result in undesired behavior.
873 *
874 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
875 *
876 * Note: The result is only stable while migrating (precopy/postcopy).
877 */
878static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
879{
880 uint64_t cleared_bits = 0;
881
882 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
883 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
884 MemoryRegionSection section = {
885 .mr = rb->mr,
886 .offset_within_region = 0,
887 .size = int128_make64(qemu_ram_get_used_length(rb)),
888 };
889
890 ram_discard_manager_replay_discarded(rdm, &section,
891 dirty_bitmap_clear_section,
892 &cleared_bits);
893 }
894 return cleared_bits;
895}
896
9470c5e0
DH
897/*
898 * Check if a host-page aligned page falls into a discarded range as managed by
899 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
900 *
901 * Note: The result is only stable while migrating (precopy/postcopy).
902 */
903bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
904{
905 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
906 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
907 MemoryRegionSection section = {
908 .mr = rb->mr,
909 .offset_within_region = start,
910 .size = int128_make64(qemu_ram_pagesize(rb)),
911 };
912
913 return !ram_discard_manager_is_populated(rdm, &section);
914 }
915 return false;
916}
917
267691b6 918/* Called with RCU critical section */
7a3e9571 919static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
56e93d26 920{
fb613580
KZ
921 uint64_t new_dirty_pages =
922 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
923
924 rs->migration_dirty_pages += new_dirty_pages;
925 rs->num_dirty_pages_period += new_dirty_pages;
56e93d26
JQ
926}
927
3d0684b2
JQ
928/**
929 * ram_pagesize_summary: calculate all the pagesizes of a VM
930 *
931 * Returns a summary bitmap of the page sizes of all RAMBlocks
932 *
933 * For VMs with just normal pages this is equivalent to the host page
934 * size. If it's got some huge pages then it's the OR of all the
935 * different page sizes.
e8ca1db2
DDAG
936 */
937uint64_t ram_pagesize_summary(void)
938{
939 RAMBlock *block;
940 uint64_t summary = 0;
941
fbd162e6 942 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
e8ca1db2
DDAG
943 summary |= block->page_size;
944 }
945
946 return summary;
947}
948
aecbfe9c
XG
949uint64_t ram_get_total_transferred_pages(void)
950{
aff3f660
JQ
951 return stat64_get(&mig_stats.normal_pages) +
952 stat64_get(&mig_stats.zero_pages) +
8258f2fa 953 compress_ram_pages() + xbzrle_counters.pages;
aecbfe9c
XG
954}
955
b734035b
XG
956static void migration_update_rates(RAMState *rs, int64_t end_time)
957{
be8b02ed 958 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
b734035b
XG
959
960 /* calculate period counters */
aff3f660 961 stat64_set(&mig_stats.dirty_pages_rate,
72f8e587
JQ
962 rs->num_dirty_pages_period * 1000 /
963 (end_time - rs->time_last_bitmap_sync));
b734035b 964
be8b02ed 965 if (!page_count) {
b734035b
XG
966 return;
967 }
968
87dca0c9 969 if (migrate_xbzrle()) {
e460a4b1
WW
970 double encoded_size, unencoded_size;
971
b734035b 972 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
be8b02ed 973 rs->xbzrle_cache_miss_prev) / page_count;
b734035b 974 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
e460a4b1
WW
975 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
976 TARGET_PAGE_SIZE;
977 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
92271402 978 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
e460a4b1 979 xbzrle_counters.encoding_rate = 0;
e460a4b1
WW
980 } else {
981 xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
982 }
983 rs->xbzrle_pages_prev = xbzrle_counters.pages;
984 rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
b734035b 985 }
fb36fb27 986 compress_update_rates(page_count);
b734035b
XG
987}
988
acac51ba
HH
989/*
990 * Enable dirty-limit to throttle down the guest
991 */
992static void migration_dirty_limit_guest(void)
993{
994 /*
995 * dirty page rate quota for all vCPUs fetched from
996 * migration parameter 'vcpu_dirty_limit'
997 */
998 static int64_t quota_dirtyrate;
999 MigrationState *s = migrate_get_current();
1000
1001 /*
1002 * If dirty limit already enabled and migration parameter
1003 * vcpu-dirty-limit untouched.
1004 */
1005 if (dirtylimit_in_service() &&
1006 quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
1007 return;
1008 }
1009
1010 quota_dirtyrate = s->parameters.vcpu_dirty_limit;
1011
1012 /*
1013 * Set all vCPU a quota dirtyrate, note that the second
1014 * parameter will be ignored if setting all vCPU for the vm
1015 */
1016 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
1017 trace_migration_dirty_limit_guest(quota_dirtyrate);
1018}
1019
dc14a470
KZ
1020static void migration_trigger_throttle(RAMState *rs)
1021{
6499efdb 1022 uint64_t threshold = migrate_throttle_trigger_threshold();
23b7576d 1023 uint64_t bytes_xfer_period =
897fd8bd 1024 migration_transferred_bytes() - rs->bytes_xfer_prev;
dc14a470
KZ
1025 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1026 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1027
1028 /* During block migration the auto-converge logic incorrectly detects
1029 * that ram migration makes no progress. Avoid this by disabling the
1030 * throttling logic during the bulk phase of block migration. */
bb9993c6
HH
1031 if (blk_mig_bulk_active()) {
1032 return;
1033 }
1034
310ad562
HH
1035 /*
1036 * The following detection logic can be refined later. For now:
1037 * Check to see if the ratio between dirtied bytes and the approx.
1038 * amount of bytes that just got transferred since the last time
1039 * we were in this routine reaches the threshold. If that happens
1040 * twice, start or increase throttling.
1041 */
1042 if ((bytes_dirty_period > bytes_dirty_threshold) &&
1043 (++rs->dirty_rate_high_cnt >= 2)) {
1044 rs->dirty_rate_high_cnt = 0;
1045 if (migrate_auto_converge()) {
dc14a470 1046 trace_migration_throttle();
cbbf8182
KZ
1047 mig_throttle_guest_down(bytes_dirty_period,
1048 bytes_dirty_threshold);
acac51ba
HH
1049 } else if (migrate_dirty_limit()) {
1050 migration_dirty_limit_guest();
dc14a470
KZ
1051 }
1052 }
1053}
1054
1e493be5 1055static void migration_bitmap_sync(RAMState *rs, bool last_stage)
56e93d26
JQ
1056{
1057 RAMBlock *block;
56e93d26 1058 int64_t end_time;
56e93d26 1059
aff3f660 1060 stat64_add(&mig_stats.dirty_sync_count, 1);
56e93d26 1061
f664da80
JQ
1062 if (!rs->time_last_bitmap_sync) {
1063 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
56e93d26
JQ
1064 }
1065
1066 trace_migration_bitmap_sync_start();
1e493be5 1067 memory_global_dirty_log_sync(last_stage);
56e93d26 1068
108cfae0 1069 qemu_mutex_lock(&rs->bitmap_mutex);
89ac5a1d
DDAG
1070 WITH_RCU_READ_LOCK_GUARD() {
1071 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1072 ramblock_sync_dirty_bitmap(rs, block);
1073 }
aff3f660 1074 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
56e93d26 1075 }
108cfae0 1076 qemu_mutex_unlock(&rs->bitmap_mutex);
56e93d26 1077
9458a9a1 1078 memory_global_after_dirty_log_sync();
a66cd90c 1079 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1ffb5dfd 1080
56e93d26
JQ
1081 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1082
1083 /* more than 1 second = 1000 millisecons */
f664da80 1084 if (end_time > rs->time_last_bitmap_sync + 1000) {
dc14a470 1085 migration_trigger_throttle(rs);
070afca2 1086
b734035b
XG
1087 migration_update_rates(rs, end_time);
1088
be8b02ed 1089 rs->target_page_count_prev = rs->target_page_count;
d693c6f1
FF
1090
1091 /* reset period counters */
f664da80 1092 rs->time_last_bitmap_sync = end_time;
a66cd90c 1093 rs->num_dirty_pages_period = 0;
897fd8bd 1094 rs->bytes_xfer_prev = migration_transferred_bytes();
56e93d26 1095 }
b890902c 1096 if (migrate_events()) {
aff3f660 1097 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
536b5a4e 1098 qapi_event_send_migration_pass(generation);
4addcd4f 1099 }
56e93d26
JQ
1100}
1101
1e493be5 1102static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
bd227060
WW
1103{
1104 Error *local_err = NULL;
1105
1106 /*
1107 * The current notifier usage is just an optimization to migration, so we
1108 * don't stop the normal migration process in the error case.
1109 */
1110 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1111 error_report_err(local_err);
b4a1733c 1112 local_err = NULL;
bd227060
WW
1113 }
1114
1e493be5 1115 migration_bitmap_sync(rs, last_stage);
bd227060
WW
1116
1117 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1118 error_report_err(local_err);
1119 }
1120}
1121
a4dbaf8e 1122void ram_release_page(const char *rbname, uint64_t offset)
47fe16ff
JQ
1123{
1124 if (!migrate_release_ram() || !migration_in_postcopy()) {
1125 return;
1126 }
1127
1128 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1129}
1130
56e93d26 1131/**
3d0684b2 1132 * save_zero_page: send the zero page to the stream
56e93d26 1133 *
3d0684b2 1134 * Returns the number of pages written.
56e93d26 1135 *
ccc09db8 1136 * @rs: current RAM state
ec6f3ab9 1137 * @pss: current PSS channel
56e93d26 1138 * @offset: offset inside the block for the page
56e93d26 1139 */
e8e4e7ac 1140static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
61717ea9 1141 ram_addr_t offset)
56e93d26 1142{
e8e4e7ac 1143 uint8_t *p = pss->block->host + offset;
8697eb85
FR
1144 QEMUFile *file = pss->pss_channel;
1145 int len = 0;
56e93d26 1146
5fdbb1df
HX
1147 if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_NONE) {
1148 return 0;
1149 }
1150
8697eb85
FR
1151 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1152 return 0;
56e93d26 1153 }
ccc09db8 1154
c2d5c4a7
FR
1155 stat64_add(&mig_stats.zero_pages, 1);
1156
1157 if (migrate_mapped_ram()) {
1158 /* zero pages are not transferred with mapped-ram */
f427d90b 1159 clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap);
c2d5c4a7
FR
1160 return 1;
1161 }
1162
e8e4e7ac 1163 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
8697eb85
FR
1164 qemu_put_byte(file, 0);
1165 len += 1;
e8e4e7ac 1166 ram_release_page(pss->block->idstr, offset);
ccc09db8
FR
1167 ram_transferred_add(len);
1168
1169 /*
1170 * Must let xbzrle know, otherwise a previous (now 0'd) cached
1171 * page would be stale.
1172 */
1173 if (rs->xbzrle_started) {
1174 XBZRLE_cache_lock();
e8e4e7ac 1175 xbzrle_cache_zero_page(pss->block->offset + offset);
ccc09db8
FR
1176 XBZRLE_cache_unlock();
1177 }
1178
8697eb85 1179 return len;
56e93d26
JQ
1180}
1181
059ff0fb
XG
1182/*
1183 * @pages: the number of pages written by the control path,
1184 * < 0 - error
1185 * > 0 - number of pages written
1186 *
1187 * Return true if the pages has been saved, otherwise false is returned.
1188 */
944853c2 1189static bool control_save_page(PageSearchStatus *pss,
61717ea9 1190 ram_addr_t offset, int *pages)
059ff0fb 1191{
059ff0fb
XG
1192 int ret;
1193
944853c2 1194 ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset,
e493008d 1195 TARGET_PAGE_SIZE);
059ff0fb
XG
1196 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1197 return false;
1198 }
1199
059ff0fb 1200 if (ret == RAM_SAVE_CONTROL_DELAYED) {
9c53d369 1201 *pages = 1;
059ff0fb
XG
1202 return true;
1203 }
9c53d369 1204 *pages = ret;
059ff0fb
XG
1205 return true;
1206}
1207
65dacaa0
XG
1208/*
1209 * directly send the page to the stream
1210 *
1211 * Returns the number of pages written.
1212 *
ec6f3ab9 1213 * @pss: current PSS channel
65dacaa0
XG
1214 * @block: block that contains the page we want to send
1215 * @offset: offset inside the block for the page
1216 * @buf: the page to be sent
1217 * @async: send to page asyncly
1218 */
ec6f3ab9 1219static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
61717ea9 1220 ram_addr_t offset, uint8_t *buf, bool async)
65dacaa0 1221{
ec6f3ab9
PX
1222 QEMUFile *file = pss->pss_channel;
1223
c2d5c4a7
FR
1224 if (migrate_mapped_ram()) {
1225 qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE,
1226 block->pages_offset + offset);
1227 set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap);
65dacaa0 1228 } else {
c2d5c4a7
FR
1229 ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1230 offset | RAM_SAVE_FLAG_PAGE));
1231 if (async) {
1232 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1233 migrate_release_ram() &&
1234 migration_in_postcopy());
1235 } else {
1236 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1237 }
65dacaa0 1238 }
4c2d0f6d 1239 ram_transferred_add(TARGET_PAGE_SIZE);
aff3f660 1240 stat64_add(&mig_stats.normal_pages, 1);
65dacaa0
XG
1241 return 1;
1242}
1243
56e93d26 1244/**
3d0684b2 1245 * ram_save_page: send the given page to the stream
56e93d26 1246 *
3d0684b2 1247 * Returns the number of pages written.
3fd3c4b3
DDAG
1248 * < 0 - error
1249 * >=0 - Number of pages written - this might legally be 0
1250 * if xbzrle noticed the page was the same.
56e93d26 1251 *
6f37bb8b 1252 * @rs: current RAM state
56e93d26
JQ
1253 * @block: block that contains the page we want to send
1254 * @offset: offset inside the block for the page
56e93d26 1255 */
05931ec5 1256static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
56e93d26
JQ
1257{
1258 int pages = -1;
56e93d26 1259 uint8_t *p;
56e93d26 1260 bool send_async = true;
a08f6890 1261 RAMBlock *block = pss->block;
8bba004c 1262 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
059ff0fb 1263 ram_addr_t current_addr = block->offset + offset;
56e93d26 1264
2f68e399 1265 p = block->host + offset;
1db9d8e5 1266 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
56e93d26 1267
56e93d26 1268 XBZRLE_cache_lock();
f3095cc8 1269 if (rs->xbzrle_started && !migration_in_postcopy()) {
ec6f3ab9 1270 pages = save_xbzrle_page(rs, pss, &p, current_addr,
61717ea9 1271 block, offset);
05931ec5 1272 if (!rs->last_stage) {
059ff0fb
XG
1273 /* Can't send this cached data async, since the cache page
1274 * might get updated before it gets to the wire
56e93d26 1275 */
059ff0fb 1276 send_async = false;
56e93d26
JQ
1277 }
1278 }
1279
1280 /* XBZRLE overflow or normal page */
1281 if (pages == -1) {
ec6f3ab9 1282 pages = save_normal_page(pss, block, offset, p, send_async);
56e93d26
JQ
1283 }
1284
1285 XBZRLE_cache_unlock();
1286
1287 return pages;
1288}
1289
9346fa18 1290static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset)
b9ee2f7d 1291{
d6556d17 1292 if (!multifd_queue_page(block, offset)) {
713f762a
IR
1293 return -1;
1294 }
b9ee2f7d
JQ
1295
1296 return 1;
1297}
1298
742ec5f3 1299int compress_send_queued_data(CompressParam *param)
56e93d26 1300{
3e81763e 1301 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY];
eaa238ab 1302 MigrationState *ms = migrate_get_current();
3e81763e
LS
1303 QEMUFile *file = ms->to_dst_file;
1304 int len = 0;
1305
1306 RAMBlock *block = param->block;
1307 ram_addr_t offset = param->offset;
1308
1309 if (param->result == RES_NONE) {
1310 return 0;
1311 }
1312
1313 assert(block == pss->last_sent_block);
1314
1315 if (param->result == RES_ZEROPAGE) {
4024cc85 1316 assert(qemu_file_buffer_empty(param->file));
3e81763e
LS
1317 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1318 qemu_put_byte(file, 0);
1319 len += 1;
1320 ram_release_page(block->idstr, offset);
1321 } else if (param->result == RES_COMPRESS) {
4024cc85 1322 assert(!qemu_file_buffer_empty(param->file));
3e81763e
LS
1323 len += save_page_header(pss, file, block,
1324 offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1325 len += qemu_put_qemu_file(file, param->file);
1326 } else {
1327 abort();
1328 }
1329
680628d2
LS
1330 update_compress_thread_counts(param, len);
1331
3e81763e
LS
1332 return len;
1333}
1334
31e2ac74
JQ
1335#define PAGE_ALL_CLEAN 0
1336#define PAGE_TRY_AGAIN 1
1337#define PAGE_DIRTY_FOUND 2
3d0684b2
JQ
1338/**
1339 * find_dirty_block: find the next dirty page and update any state
1340 * associated with the search process.
b9e60928 1341 *
31e2ac74 1342 * Returns:
294e5a40 1343 * <0: An error happened
31e2ac74
JQ
1344 * PAGE_ALL_CLEAN: no dirty page found, give up
1345 * PAGE_TRY_AGAIN: no dirty page found, retry for next block
1346 * PAGE_DIRTY_FOUND: dirty page found
b9e60928 1347 *
6f37bb8b 1348 * @rs: current RAM state
3d0684b2
JQ
1349 * @pss: data about the state of the current dirty page scan
1350 * @again: set to false if the search has scanned the whole of RAM
b9e60928 1351 */
31e2ac74 1352static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
b9e60928 1353{
d9e474ea
PX
1354 /* Update pss->page for the next dirty bit in ramblock */
1355 pss_find_next_dirty(pss);
1356
6f37bb8b 1357 if (pss->complete_round && pss->block == rs->last_seen_block &&
a935e30f 1358 pss->page >= rs->last_page) {
b9e60928
DDAG
1359 /*
1360 * We've been once around the RAM and haven't found anything.
1361 * Give up.
1362 */
31e2ac74 1363 return PAGE_ALL_CLEAN;
b9e60928 1364 }
542147f4
DH
1365 if (!offset_in_ramblock(pss->block,
1366 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
b9e60928 1367 /* Didn't find anything in this RAM Block */
a935e30f 1368 pss->page = 0;
b9e60928
DDAG
1369 pss->block = QLIST_NEXT_RCU(pss->block, next);
1370 if (!pss->block) {
d4f34485 1371 if (migrate_multifd() &&
9d01778a
FR
1372 (!migrate_multifd_flush_after_each_section() ||
1373 migrate_mapped_ram())) {
294e5a40 1374 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
9346fa18 1375 int ret = multifd_send_sync_main();
294e5a40
JQ
1376 if (ret < 0) {
1377 return ret;
1378 }
9d01778a
FR
1379
1380 if (!migrate_mapped_ram()) {
1381 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1382 qemu_fflush(f);
1383 }
294e5a40 1384 }
48df9d80
XG
1385 /*
1386 * If memory migration starts over, we will meet a dirtied page
1387 * which may still exists in compression threads's ring, so we
1388 * should flush the compressed data to make sure the new page
1389 * is not overwritten by the old one in the destination.
1390 *
1391 * Also If xbzrle is on, stop using the data compression at this
1392 * point. In theory, xbzrle can do better than compression.
1393 */
8020bc9a 1394 compress_flush_data();
48df9d80 1395
b9e60928
DDAG
1396 /* Hit the end of the list */
1397 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1398 /* Flag that we've looped */
1399 pss->complete_round = true;
1a373522 1400 /* After the first round, enable XBZRLE. */
87dca0c9 1401 if (migrate_xbzrle()) {
f3095cc8 1402 rs->xbzrle_started = true;
1a373522 1403 }
b9e60928
DDAG
1404 }
1405 /* Didn't find anything this time, but try again on the new block */
31e2ac74 1406 return PAGE_TRY_AGAIN;
b9e60928 1407 } else {
31e2ac74
JQ
1408 /* We've found something */
1409 return PAGE_DIRTY_FOUND;
b9e60928
DDAG
1410 }
1411}
1412
3d0684b2
JQ
1413/**
1414 * unqueue_page: gets a page of the queue
1415 *
a82d593b 1416 * Helper for 'get_queued_page' - gets a page off the queue
a82d593b 1417 *
3d0684b2
JQ
1418 * Returns the block of the page (or NULL if none available)
1419 *
ec481c6c 1420 * @rs: current RAM state
3d0684b2 1421 * @offset: used to return the offset within the RAMBlock
a82d593b 1422 */
f20e2865 1423static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
a82d593b 1424{
a1fe28df 1425 struct RAMSrcPageRequest *entry;
a82d593b
DDAG
1426 RAMBlock *block = NULL;
1427
a1fe28df 1428 if (!postcopy_has_request(rs)) {
ae526e32
XG
1429 return NULL;
1430 }
1431
6e8a355d 1432 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
a1fe28df
PX
1433
1434 /*
1435 * This should _never_ change even after we take the lock, because no one
1436 * should be taking anything off the request list other than us.
1437 */
1438 assert(postcopy_has_request(rs));
1439
1440 entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1441 block = entry->rb;
1442 *offset = entry->offset;
1443
777f53c7
TH
1444 if (entry->len > TARGET_PAGE_SIZE) {
1445 entry->len -= TARGET_PAGE_SIZE;
1446 entry->offset += TARGET_PAGE_SIZE;
a1fe28df
PX
1447 } else {
1448 memory_region_unref(block->mr);
1449 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1450 g_free(entry);
1451 migration_consume_urgent_request();
a82d593b 1452 }
a82d593b
DDAG
1453
1454 return block;
1455}
1456
278e2f55
AG
1457#if defined(__linux__)
1458/**
1459 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1460 * is found, return RAM block pointer and page offset
1461 *
1462 * Returns pointer to the RAMBlock containing faulting page,
1463 * NULL if no write faults are pending
1464 *
1465 * @rs: current RAM state
1466 * @offset: page offset from the beginning of the block
1467 */
1468static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1469{
1470 struct uffd_msg uffd_msg;
1471 void *page_address;
82ea3e3b 1472 RAMBlock *block;
278e2f55
AG
1473 int res;
1474
1475 if (!migrate_background_snapshot()) {
1476 return NULL;
1477 }
1478
1479 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1480 if (res <= 0) {
1481 return NULL;
1482 }
1483
1484 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
82ea3e3b
AG
1485 block = qemu_ram_block_from_host(page_address, false, offset);
1486 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1487 return block;
278e2f55
AG
1488}
1489
1490/**
1491 * ram_save_release_protection: release UFFD write protection after
1492 * a range of pages has been saved
1493 *
1494 * @rs: current RAM state
1495 * @pss: page-search-status structure
1496 * @start_page: index of the first page in the range relative to pss->block
1497 *
1498 * Returns 0 on success, negative value in case of an error
1499*/
1500static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1501 unsigned long start_page)
1502{
1503 int res = 0;
1504
1505 /* Check if page is from UFFD-managed region. */
1506 if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1507 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
258f5c98 1508 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
278e2f55
AG
1509
1510 /* Flush async buffers before un-protect. */
61717ea9 1511 qemu_fflush(pss->pss_channel);
278e2f55
AG
1512 /* Un-protect memory range. */
1513 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1514 false, false);
1515 }
1516
1517 return res;
1518}
1519
1520/* ram_write_tracking_available: check if kernel supports required UFFD features
1521 *
1522 * Returns true if supports, false otherwise
1523 */
1524bool ram_write_tracking_available(void)
1525{
1526 uint64_t uffd_features;
1527 int res;
1528
1529 res = uffd_query_features(&uffd_features);
1530 return (res == 0 &&
1531 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1532}
1533
1534/* ram_write_tracking_compatible: check if guest configuration is
1535 * compatible with 'write-tracking'
1536 *
1537 * Returns true if compatible, false otherwise
1538 */
1539bool ram_write_tracking_compatible(void)
1540{
1541 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1542 int uffd_fd;
82ea3e3b 1543 RAMBlock *block;
278e2f55
AG
1544 bool ret = false;
1545
1546 /* Open UFFD file descriptor */
1547 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1548 if (uffd_fd < 0) {
1549 return false;
1550 }
1551
1552 RCU_READ_LOCK_GUARD();
1553
82ea3e3b 1554 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
278e2f55
AG
1555 uint64_t uffd_ioctls;
1556
1557 /* Nothing to do with read-only and MMIO-writable regions */
82ea3e3b 1558 if (block->mr->readonly || block->mr->rom_device) {
278e2f55
AG
1559 continue;
1560 }
1561 /* Try to register block memory via UFFD-IO to track writes */
82ea3e3b 1562 if (uffd_register_memory(uffd_fd, block->host, block->max_length,
278e2f55
AG
1563 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1564 goto out;
1565 }
1566 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1567 goto out;
1568 }
1569 }
1570 ret = true;
1571
1572out:
1573 uffd_close_fd(uffd_fd);
1574 return ret;
1575}
1576
f7b9dcfb
DH
1577static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1578 ram_addr_t size)
1579{
5f19a449
DH
1580 const ram_addr_t end = offset + size;
1581
f7b9dcfb
DH
1582 /*
1583 * We read one byte of each page; this will preallocate page tables if
1584 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1585 * where no page was populated yet. This might require adaption when
1586 * supporting other mappings, like shmem.
1587 */
5f19a449 1588 for (; offset < end; offset += block->page_size) {
f7b9dcfb
DH
1589 char tmp = *((char *)block->host + offset);
1590
1591 /* Don't optimize the read out */
1592 asm volatile("" : "+r" (tmp));
1593 }
1594}
1595
6fee3a1f
DH
1596static inline int populate_read_section(MemoryRegionSection *section,
1597 void *opaque)
1598{
1599 const hwaddr size = int128_get64(section->size);
1600 hwaddr offset = section->offset_within_region;
1601 RAMBlock *block = section->mr->ram_block;
1602
1603 populate_read_range(block, offset, size);
1604 return 0;
1605}
1606
eeccb99c 1607/*
f7b9dcfb
DH
1608 * ram_block_populate_read: preallocate page tables and populate pages in the
1609 * RAM block by reading a byte of each page.
eeccb99c
AG
1610 *
1611 * Since it's solely used for userfault_fd WP feature, here we just
1612 * hardcode page size to qemu_real_host_page_size.
1613 *
82ea3e3b 1614 * @block: RAM block to populate
eeccb99c 1615 */
6fee3a1f 1616static void ram_block_populate_read(RAMBlock *rb)
eeccb99c 1617{
6fee3a1f
DH
1618 /*
1619 * Skip populating all pages that fall into a discarded range as managed by
1620 * a RamDiscardManager responsible for the mapped memory region of the
1621 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1622 * must not get populated automatically. We don't have to track
1623 * modifications via userfaultfd WP reliably, because these pages will
1624 * not be part of the migration stream either way -- see
1625 * ramblock_dirty_bitmap_exclude_discarded_pages().
1626 *
1627 * Note: The result is only stable while migrating (precopy/postcopy).
1628 */
1629 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1630 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1631 MemoryRegionSection section = {
1632 .mr = rb->mr,
1633 .offset_within_region = 0,
1634 .size = rb->mr->size,
1635 };
1636
1637 ram_discard_manager_replay_populated(rdm, &section,
1638 populate_read_section, NULL);
1639 } else {
1640 populate_read_range(rb, 0, rb->used_length);
1641 }
eeccb99c
AG
1642}
1643
1644/*
1645 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1646 */
1647void ram_write_tracking_prepare(void)
1648{
82ea3e3b 1649 RAMBlock *block;
eeccb99c
AG
1650
1651 RCU_READ_LOCK_GUARD();
1652
82ea3e3b 1653 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
eeccb99c 1654 /* Nothing to do with read-only and MMIO-writable regions */
82ea3e3b 1655 if (block->mr->readonly || block->mr->rom_device) {
eeccb99c
AG
1656 continue;
1657 }
1658
1659 /*
1660 * Populate pages of the RAM block before enabling userfault_fd
1661 * write protection.
1662 *
1663 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1664 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1665 * pages with pte_none() entries in page table.
1666 */
f7b9dcfb 1667 ram_block_populate_read(block);
eeccb99c
AG
1668 }
1669}
1670
e41c5770
DH
1671static inline int uffd_protect_section(MemoryRegionSection *section,
1672 void *opaque)
1673{
1674 const hwaddr size = int128_get64(section->size);
1675 const hwaddr offset = section->offset_within_region;
1676 RAMBlock *rb = section->mr->ram_block;
1677 int uffd_fd = (uintptr_t)opaque;
1678
1679 return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1680 false);
1681}
1682
1683static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1684{
1685 assert(rb->flags & RAM_UF_WRITEPROTECT);
1686
1687 /* See ram_block_populate_read() */
1688 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1689 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1690 MemoryRegionSection section = {
1691 .mr = rb->mr,
1692 .offset_within_region = 0,
1693 .size = rb->mr->size,
1694 };
1695
1696 return ram_discard_manager_replay_populated(rdm, &section,
1697 uffd_protect_section,
1698 (void *)(uintptr_t)uffd_fd);
1699 }
1700 return uffd_change_protection(uffd_fd, rb->host,
1701 rb->used_length, true, false);
1702}
1703
278e2f55
AG
1704/*
1705 * ram_write_tracking_start: start UFFD-WP memory tracking
1706 *
1707 * Returns 0 for success or negative value in case of error
1708 */
1709int ram_write_tracking_start(void)
1710{
1711 int uffd_fd;
1712 RAMState *rs = ram_state;
82ea3e3b 1713 RAMBlock *block;
278e2f55
AG
1714
1715 /* Open UFFD file descriptor */
1716 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1717 if (uffd_fd < 0) {
1718 return uffd_fd;
1719 }
1720 rs->uffdio_fd = uffd_fd;
1721
1722 RCU_READ_LOCK_GUARD();
1723
82ea3e3b 1724 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
278e2f55 1725 /* Nothing to do with read-only and MMIO-writable regions */
82ea3e3b 1726 if (block->mr->readonly || block->mr->rom_device) {
278e2f55
AG
1727 continue;
1728 }
1729
1730 /* Register block memory with UFFD to track writes */
82ea3e3b
AG
1731 if (uffd_register_memory(rs->uffdio_fd, block->host,
1732 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
278e2f55
AG
1733 goto fail;
1734 }
72ef3a37
DH
1735 block->flags |= RAM_UF_WRITEPROTECT;
1736 memory_region_ref(block->mr);
1737
278e2f55 1738 /* Apply UFFD write protection to the block memory range */
e41c5770 1739 if (ram_block_uffd_protect(block, uffd_fd)) {
278e2f55
AG
1740 goto fail;
1741 }
278e2f55 1742
82ea3e3b
AG
1743 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1744 block->host, block->max_length);
278e2f55
AG
1745 }
1746
1747 return 0;
1748
1749fail:
1750 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1751
82ea3e3b
AG
1752 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1753 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
278e2f55
AG
1754 continue;
1755 }
82ea3e3b 1756 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
278e2f55 1757 /* Cleanup flags and remove reference */
82ea3e3b
AG
1758 block->flags &= ~RAM_UF_WRITEPROTECT;
1759 memory_region_unref(block->mr);
278e2f55
AG
1760 }
1761
1762 uffd_close_fd(uffd_fd);
1763 rs->uffdio_fd = -1;
1764 return -1;
1765}
1766
1767/**
1768 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1769 */
1770void ram_write_tracking_stop(void)
1771{
1772 RAMState *rs = ram_state;
82ea3e3b 1773 RAMBlock *block;
278e2f55
AG
1774
1775 RCU_READ_LOCK_GUARD();
1776
82ea3e3b
AG
1777 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1778 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
278e2f55
AG
1779 continue;
1780 }
82ea3e3b 1781 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
278e2f55 1782
82ea3e3b
AG
1783 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1784 block->host, block->max_length);
278e2f55
AG
1785
1786 /* Cleanup flags and remove reference */
82ea3e3b
AG
1787 block->flags &= ~RAM_UF_WRITEPROTECT;
1788 memory_region_unref(block->mr);
278e2f55
AG
1789 }
1790
1791 /* Finally close UFFD file descriptor */
1792 uffd_close_fd(rs->uffdio_fd);
1793 rs->uffdio_fd = -1;
1794}
1795
1796#else
1797/* No target OS support, stubs just fail or ignore */
1798
1799static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1800{
1801 (void) rs;
1802 (void) offset;
1803
1804 return NULL;
1805}
1806
1807static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1808 unsigned long start_page)
1809{
1810 (void) rs;
1811 (void) pss;
1812 (void) start_page;
1813
1814 return 0;
1815}
1816
1817bool ram_write_tracking_available(void)
1818{
1819 return false;
1820}
1821
1822bool ram_write_tracking_compatible(void)
1823{
1824 assert(0);
1825 return false;
1826}
1827
1828int ram_write_tracking_start(void)
1829{
1830 assert(0);
1831 return -1;
1832}
1833
1834void ram_write_tracking_stop(void)
1835{
1836 assert(0);
1837}
1838#endif /* defined(__linux__) */
1839
3d0684b2 1840/**
ff1543af 1841 * get_queued_page: unqueue a page from the postcopy requests
3d0684b2
JQ
1842 *
1843 * Skips pages that are already sent (!dirty)
a82d593b 1844 *
a5f7b1a6 1845 * Returns true if a queued page is found
a82d593b 1846 *
6f37bb8b 1847 * @rs: current RAM state
3d0684b2 1848 * @pss: data about the state of the current dirty page scan
a82d593b 1849 */
f20e2865 1850static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
a82d593b
DDAG
1851{
1852 RAMBlock *block;
1853 ram_addr_t offset;
777f53c7
TH
1854 bool dirty;
1855
1856 do {
1857 block = unqueue_page(rs, &offset);
1858 /*
1859 * We're sending this page, and since it's postcopy nothing else
1860 * will dirty it, and we must make sure it doesn't get sent again
1861 * even if this queue request was received after the background
1862 * search already sent it.
1863 */
1864 if (block) {
1865 unsigned long page;
1866
1867 page = offset >> TARGET_PAGE_BITS;
1868 dirty = test_bit(page, block->bmap);
1869 if (!dirty) {
1870 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1871 page);
1872 } else {
1873 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1874 }
1875 }
a82d593b 1876
777f53c7 1877 } while (block && !dirty);
a82d593b 1878
b062106d 1879 if (!block) {
278e2f55
AG
1880 /*
1881 * Poll write faults too if background snapshot is enabled; that's
1882 * when we have vcpus got blocked by the write protected pages.
1883 */
1884 block = poll_fault_page(rs, &offset);
1885 }
1886
a82d593b 1887 if (block) {
a82d593b
DDAG
1888 /*
1889 * We want the background search to continue from the queued page
1890 * since the guest is likely to want other pages near to the page
1891 * it just requested.
1892 */
1893 pss->block = block;
a935e30f 1894 pss->page = offset >> TARGET_PAGE_BITS;
422314e7
WY
1895
1896 /*
1897 * This unqueued page would break the "one round" check, even is
1898 * really rare.
1899 */
1900 pss->complete_round = false;
a82d593b
DDAG
1901 }
1902
1903 return !!block;
1904}
1905
6c595cde 1906/**
5e58f968
JQ
1907 * migration_page_queue_free: drop any remaining pages in the ram
1908 * request queue
6c595cde 1909 *
3d0684b2
JQ
1910 * It should be empty at the end anyway, but in error cases there may
1911 * be some left. in case that there is any page left, we drop it.
1912 *
6c595cde 1913 */
83c13382 1914static void migration_page_queue_free(RAMState *rs)
6c595cde 1915{
ec481c6c 1916 struct RAMSrcPageRequest *mspr, *next_mspr;
6c595cde
DDAG
1917 /* This queue generally should be empty - but in the case of a failed
1918 * migration might have some droppings in.
1919 */
89ac5a1d 1920 RCU_READ_LOCK_GUARD();
ec481c6c 1921 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
6c595cde 1922 memory_region_unref(mspr->rb->mr);
ec481c6c 1923 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
6c595cde
DDAG
1924 g_free(mspr);
1925 }
6c595cde
DDAG
1926}
1927
1928/**
3d0684b2
JQ
1929 * ram_save_queue_pages: queue the page for transmission
1930 *
1931 * A request from postcopy destination for example.
1932 *
1933 * Returns zero on success or negative on error
1934 *
3d0684b2
JQ
1935 * @rbname: Name of the RAMBLock of the request. NULL means the
1936 * same that last one.
1937 * @start: starting address from the start of the RAMBlock
1938 * @len: length (in bytes) to send
6c595cde 1939 */
7aa6070d
PX
1940int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len,
1941 Error **errp)
6c595cde
DDAG
1942{
1943 RAMBlock *ramblock;
53518d94 1944 RAMState *rs = ram_state;
6c595cde 1945
aff3f660 1946 stat64_add(&mig_stats.postcopy_requests, 1);
89ac5a1d
DDAG
1947 RCU_READ_LOCK_GUARD();
1948
6c595cde
DDAG
1949 if (!rbname) {
1950 /* Reuse last RAMBlock */
68a098f3 1951 ramblock = rs->last_req_rb;
6c595cde
DDAG
1952
1953 if (!ramblock) {
1954 /*
1955 * Shouldn't happen, we can't reuse the last RAMBlock if
1956 * it's the 1st request.
1957 */
7aa6070d 1958 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block");
03acb4e9 1959 return -1;
6c595cde
DDAG
1960 }
1961 } else {
1962 ramblock = qemu_ram_block_by_name(rbname);
1963
1964 if (!ramblock) {
1965 /* We shouldn't be asked for a non-existent RAMBlock */
7aa6070d 1966 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname);
03acb4e9 1967 return -1;
6c595cde 1968 }
68a098f3 1969 rs->last_req_rb = ramblock;
6c595cde
DDAG
1970 }
1971 trace_ram_save_queue_pages(ramblock->idstr, start, len);
542147f4 1972 if (!offset_in_ramblock(ramblock, start + len - 1)) {
7aa6070d
PX
1973 error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, "
1974 "start=" RAM_ADDR_FMT " len="
1975 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1976 start, len, ramblock->used_length);
03acb4e9 1977 return -1;
6c595cde
DDAG
1978 }
1979
93589827
PX
1980 /*
1981 * When with postcopy preempt, we send back the page directly in the
1982 * rp-return thread.
1983 */
1984 if (postcopy_preempt_active()) {
1985 ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1986 size_t page_size = qemu_ram_pagesize(ramblock);
1987 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1988 int ret = 0;
1989
1990 qemu_mutex_lock(&rs->bitmap_mutex);
1991
1992 pss_init(pss, ramblock, page_start);
1993 /*
1994 * Always use the preempt channel, and make sure it's there. It's
1995 * safe to access without lock, because when rp-thread is running
1996 * we should be the only one who operates on the qemufile
1997 */
1998 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
93589827
PX
1999 assert(pss->pss_channel);
2000
2001 /*
2002 * It must be either one or multiple of host page size. Just
2003 * assert; if something wrong we're mostly split brain anyway.
2004 */
2005 assert(len % page_size == 0);
2006 while (len) {
2007 if (ram_save_host_page_urgent(pss)) {
7aa6070d
PX
2008 error_setg(errp, "ram_save_host_page_urgent() failed: "
2009 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
2010 ramblock->idstr, start);
93589827
PX
2011 ret = -1;
2012 break;
2013 }
2014 /*
2015 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
2016 * will automatically be moved and point to the next host page
2017 * we're going to send, so no need to update here.
2018 *
2019 * Normally QEMU never sends >1 host page in requests, so
2020 * logically we don't even need that as the loop should only
2021 * run once, but just to be consistent.
2022 */
2023 len -= page_size;
2024 };
2025 qemu_mutex_unlock(&rs->bitmap_mutex);
2026
2027 return ret;
2028 }
2029
ec481c6c 2030 struct RAMSrcPageRequest *new_entry =
b21e2380 2031 g_new0(struct RAMSrcPageRequest, 1);
6c595cde
DDAG
2032 new_entry->rb = ramblock;
2033 new_entry->offset = start;
2034 new_entry->len = len;
2035
2036 memory_region_ref(ramblock->mr);
ec481c6c
JQ
2037 qemu_mutex_lock(&rs->src_page_req_mutex);
2038 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
e03a34f8 2039 migration_make_urgent_request();
ec481c6c 2040 qemu_mutex_unlock(&rs->src_page_req_mutex);
6c595cde
DDAG
2041
2042 return 0;
6c595cde
DDAG
2043}
2044
5e5fdcff
XG
2045/*
2046 * try to compress the page before posting it out, return true if the page
2047 * has been properly handled by compression, otherwise needs other
2048 * paths to handle it
2049 */
ec6f3ab9 2050static bool save_compress_page(RAMState *rs, PageSearchStatus *pss,
d637a182 2051 ram_addr_t offset)
5e5fdcff 2052{
4e400f90 2053 if (!migrate_compress()) {
5e5fdcff
XG
2054 return false;
2055 }
2056
2057 /*
2058 * When starting the process of a new block, the first page of
2059 * the block should be sent out before other pages in the same
2060 * block, and all the pages in last block should have been sent
2061 * out, keeping this order is important, because the 'cont' flag
2062 * is used to avoid resending the block name.
2063 *
2064 * We post the fist page as normal page as compression will take
2065 * much CPU resource.
2066 */
d637a182 2067 if (pss->block != pss->last_sent_block) {
8020bc9a 2068 compress_flush_data();
5e5fdcff
XG
2069 return false;
2070 }
2071
250b1d7e 2072 return compress_page_with_multi_thread(pss->block, offset,
742ec5f3 2073 compress_send_queued_data);
5e5fdcff
XG
2074}
2075
a82d593b 2076/**
4010ba38 2077 * ram_save_target_page_legacy: save one target page
a82d593b 2078 *
3d0684b2 2079 * Returns the number of pages written
a82d593b 2080 *
6f37bb8b 2081 * @rs: current RAM state
3d0684b2 2082 * @pss: data about the page we want to send
a82d593b 2083 */
4010ba38 2084static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
a82d593b 2085{
8bba004c 2086 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
a8ec91f9
XG
2087 int res;
2088
944853c2 2089 if (control_save_page(pss, offset, &res)) {
a8ec91f9
XG
2090 return res;
2091 }
2092
d637a182 2093 if (save_compress_page(rs, pss, offset)) {
5e5fdcff 2094 return 1;
d7400a34
XG
2095 }
2096
e8e4e7ac 2097 if (save_zero_page(rs, pss, offset)) {
8697eb85 2098 return 1;
d7400a34
XG
2099 }
2100
9ae90f73
HX
2101 return ram_save_page(rs, pss);
2102}
2103
2104/**
2105 * ram_save_target_page_multifd: send one target page to multifd workers
2106 *
2107 * Returns 1 if the page was queued, -1 otherwise.
2108 *
2109 * @rs: current RAM state
2110 * @pss: data about the page we want to send
2111 */
2112static int ram_save_target_page_multifd(RAMState *rs, PageSearchStatus *pss)
2113{
2114 RAMBlock *block = pss->block;
2115 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2116
da3f56cb 2117 /*
9ae90f73
HX
2118 * While using multifd live migration, we still need to handle zero
2119 * page checking on the migration main thread.
da3f56cb 2120 */
9ae90f73
HX
2121 if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_LEGACY) {
2122 if (save_zero_page(rs, pss, offset)) {
2123 return 1;
2124 }
a82d593b
DDAG
2125 }
2126
9ae90f73 2127 return ram_save_multifd_page(block, offset);
a82d593b
DDAG
2128}
2129
d9e474ea
PX
2130/* Should be called before sending a host page */
2131static void pss_host_page_prepare(PageSearchStatus *pss)
2132{
2133 /* How many guest pages are there in one host page? */
2134 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2135
2136 pss->host_page_sending = true;
301d7ffe
PX
2137 if (guest_pfns <= 1) {
2138 /*
2139 * This covers both when guest psize == host psize, or when guest
2140 * has larger psize than the host (guest_pfns==0).
2141 *
2142 * For the latter, we always send one whole guest page per
2143 * iteration of the host page (example: an Alpha VM on x86 host
2144 * will have guest psize 8K while host psize 4K).
2145 */
2146 pss->host_page_start = pss->page;
2147 pss->host_page_end = pss->page + 1;
2148 } else {
2149 /*
2150 * The host page spans over multiple guest pages, we send them
2151 * within the same host page iteration.
2152 */
2153 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2154 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2155 }
d9e474ea
PX
2156}
2157
2158/*
2159 * Whether the page pointed by PSS is within the host page being sent.
2160 * Must be called after a previous pss_host_page_prepare().
2161 */
2162static bool pss_within_range(PageSearchStatus *pss)
2163{
2164 ram_addr_t ram_addr;
2165
2166 assert(pss->host_page_sending);
2167
2168 /* Over host-page boundary? */
2169 if (pss->page >= pss->host_page_end) {
2170 return false;
2171 }
2172
2173 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2174
2175 return offset_in_ramblock(pss->block, ram_addr);
2176}
2177
2178static void pss_host_page_finish(PageSearchStatus *pss)
2179{
2180 pss->host_page_sending = false;
2181 /* This is not needed, but just to reset it */
2182 pss->host_page_start = pss->host_page_end = 0;
2183}
2184
93589827
PX
2185/*
2186 * Send an urgent host page specified by `pss'. Need to be called with
2187 * bitmap_mutex held.
2188 *
2189 * Returns 0 if save host page succeeded, false otherwise.
2190 */
2191static int ram_save_host_page_urgent(PageSearchStatus *pss)
2192{
2193 bool page_dirty, sent = false;
2194 RAMState *rs = ram_state;
2195 int ret = 0;
2196
2197 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2198 pss_host_page_prepare(pss);
2199
2200 /*
2201 * If precopy is sending the same page, let it be done in precopy, or
2202 * we could send the same page in two channels and none of them will
2203 * receive the whole page.
2204 */
2205 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2206 trace_postcopy_preempt_hit(pss->block->idstr,
2207 pss->page << TARGET_PAGE_BITS);
2208 return 0;
2209 }
2210
2211 do {
2212 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2213
2214 if (page_dirty) {
2215 /* Be strict to return code; it must be 1, or what else? */
4010ba38 2216 if (migration_ops->ram_save_target_page(rs, pss) != 1) {
93589827
PX
2217 error_report_once("%s: ram_save_target_page failed", __func__);
2218 ret = -1;
2219 goto out;
2220 }
2221 sent = true;
2222 }
2223 pss_find_next_dirty(pss);
2224 } while (pss_within_range(pss));
2225out:
2226 pss_host_page_finish(pss);
2227 /* For urgent requests, flush immediately if sent */
2228 if (sent) {
2229 qemu_fflush(pss->pss_channel);
2230 }
2231 return ret;
2232}
2233
a82d593b 2234/**
3d0684b2 2235 * ram_save_host_page: save a whole host page
a82d593b 2236 *
3d0684b2
JQ
2237 * Starting at *offset send pages up to the end of the current host
2238 * page. It's valid for the initial offset to point into the middle of
2239 * a host page in which case the remainder of the hostpage is sent.
2240 * Only dirty target pages are sent. Note that the host page size may
2241 * be a huge page for this block.
f3321554 2242 *
1eb3fc0a
DDAG
2243 * The saving stops at the boundary of the used_length of the block
2244 * if the RAMBlock isn't a multiple of the host page size.
a82d593b 2245 *
f3321554
PX
2246 * The caller must be with ram_state.bitmap_mutex held to call this
2247 * function. Note that this function can temporarily release the lock, but
2248 * when the function is returned it'll make sure the lock is still held.
2249 *
3d0684b2
JQ
2250 * Returns the number of pages written or negative on error
2251 *
6f37bb8b 2252 * @rs: current RAM state
3d0684b2 2253 * @pss: data about the page we want to send
a82d593b 2254 */
05931ec5 2255static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
a82d593b 2256{
f3321554 2257 bool page_dirty, preempt_active = postcopy_preempt_active();
a82d593b 2258 int tmppages, pages = 0;
a935e30f
JQ
2259 size_t pagesize_bits =
2260 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
278e2f55
AG
2261 unsigned long start_page = pss->page;
2262 int res;
4c011c37 2263
f161c88a 2264 if (migrate_ram_is_ignored(pss->block)) {
b895de50
CLG
2265 error_report("block %s should not be migrated !", pss->block->idstr);
2266 return 0;
2267 }
2268
d9e474ea
PX
2269 /* Update host page boundary information */
2270 pss_host_page_prepare(pss);
2271
a82d593b 2272 do {
f3321554 2273 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
a82d593b 2274
f3321554
PX
2275 /* Check the pages is dirty and if it is send it */
2276 if (page_dirty) {
ba1b7c81 2277 /*
f3321554
PX
2278 * Properly yield the lock only in postcopy preempt mode
2279 * because both migration thread and rp-return thread can
2280 * operate on the bitmaps.
ba1b7c81 2281 */
f3321554
PX
2282 if (preempt_active) {
2283 qemu_mutex_unlock(&rs->bitmap_mutex);
ba1b7c81 2284 }
4010ba38 2285 tmppages = migration_ops->ram_save_target_page(rs, pss);
f3321554
PX
2286 if (tmppages >= 0) {
2287 pages += tmppages;
2288 /*
2289 * Allow rate limiting to happen in the middle of huge pages if
2290 * something is sent in the current iteration.
2291 */
2292 if (pagesize_bits > 1 && tmppages > 0) {
2293 migration_rate_limit();
2294 }
2295 }
2296 if (preempt_active) {
2297 qemu_mutex_lock(&rs->bitmap_mutex);
2298 }
2299 } else {
2300 tmppages = 0;
23feba90 2301 }
f3321554
PX
2302
2303 if (tmppages < 0) {
d9e474ea 2304 pss_host_page_finish(pss);
f3321554
PX
2305 return tmppages;
2306 }
2307
d9e474ea
PX
2308 pss_find_next_dirty(pss);
2309 } while (pss_within_range(pss));
2310
2311 pss_host_page_finish(pss);
278e2f55
AG
2312
2313 res = ram_save_release_protection(rs, pss, start_page);
2314 return (res < 0 ? res : pages);
a82d593b 2315}
6c595cde 2316
56e93d26 2317/**
3d0684b2 2318 * ram_find_and_save_block: finds a dirty page and sends it to f
56e93d26
JQ
2319 *
2320 * Called within an RCU critical section.
2321 *
e8f3735f
XG
2322 * Returns the number of pages written where zero means no dirty pages,
2323 * or negative on error
56e93d26 2324 *
6f37bb8b 2325 * @rs: current RAM state
a82d593b
DDAG
2326 *
2327 * On systems where host-page-size > target-page-size it will send all the
2328 * pages in a host page that are dirty.
56e93d26 2329 */
05931ec5 2330static int ram_find_and_save_block(RAMState *rs)
56e93d26 2331{
f1668764 2332 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
56e93d26 2333 int pages = 0;
56e93d26 2334
0827b9e9 2335 /* No dirty page as there is zero RAM */
8d80e195 2336 if (!rs->ram_bytes_total) {
0827b9e9
AA
2337 return pages;
2338 }
2339
4934a5dd
PX
2340 /*
2341 * Always keep last_seen_block/last_page valid during this procedure,
2342 * because find_dirty_block() relies on these values (e.g., we compare
2343 * last_seen_block with pss.block to see whether we searched all the
2344 * ramblocks) to detect the completion of migration. Having NULL value
2345 * of last_seen_block can conditionally cause below loop to run forever.
2346 */
2347 if (!rs->last_seen_block) {
2348 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2349 rs->last_page = 0;
2350 }
2351
f1668764 2352 pss_init(pss, rs->last_seen_block, rs->last_page);
b8fb8cb7 2353
31e2ac74 2354 while (true){
51efd36f 2355 if (!get_queued_page(rs, pss)) {
b062106d 2356 /* priority queue empty, so just search for something dirty */
31e2ac74
JQ
2357 int res = find_dirty_block(rs, pss);
2358 if (res != PAGE_DIRTY_FOUND) {
2359 if (res == PAGE_ALL_CLEAN) {
51efd36f 2360 break;
31e2ac74
JQ
2361 } else if (res == PAGE_TRY_AGAIN) {
2362 continue;
294e5a40
JQ
2363 } else if (res < 0) {
2364 pages = res;
2365 break;
51efd36f
JQ
2366 }
2367 }
56e93d26 2368 }
51efd36f 2369 pages = ram_save_host_page(rs, pss);
31e2ac74
JQ
2370 if (pages) {
2371 break;
2372 }
2373 }
56e93d26 2374
f1668764
PX
2375 rs->last_seen_block = pss->block;
2376 rs->last_page = pss->page;
56e93d26
JQ
2377
2378 return pages;
2379}
2380
8008a272 2381static uint64_t ram_bytes_total_with_ignored(void)
56e93d26
JQ
2382{
2383 RAMBlock *block;
2384 uint64_t total = 0;
2385
89ac5a1d
DDAG
2386 RCU_READ_LOCK_GUARD();
2387
8008a272
JQ
2388 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2389 total += block->used_length;
99e15582 2390 }
56e93d26
JQ
2391 return total;
2392}
2393
fbd162e6
YK
2394uint64_t ram_bytes_total(void)
2395{
8008a272
JQ
2396 RAMBlock *block;
2397 uint64_t total = 0;
2398
2399 RCU_READ_LOCK_GUARD();
2400
2401 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2402 total += block->used_length;
2403 }
2404 return total;
fbd162e6
YK
2405}
2406
f265e0e4 2407static void xbzrle_load_setup(void)
56e93d26 2408{
f265e0e4 2409 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
56e93d26
JQ
2410}
2411
f265e0e4
JQ
2412static void xbzrle_load_cleanup(void)
2413{
2414 g_free(XBZRLE.decoded_buf);
2415 XBZRLE.decoded_buf = NULL;
2416}
2417
7d7c96be
PX
2418static void ram_state_cleanup(RAMState **rsp)
2419{
b9ccaf6d
DDAG
2420 if (*rsp) {
2421 migration_page_queue_free(*rsp);
2422 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2423 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2424 g_free(*rsp);
2425 *rsp = NULL;
2426 }
7d7c96be
PX
2427}
2428
84593a08
PX
2429static void xbzrle_cleanup(void)
2430{
2431 XBZRLE_cache_lock();
2432 if (XBZRLE.cache) {
2433 cache_fini(XBZRLE.cache);
2434 g_free(XBZRLE.encoded_buf);
2435 g_free(XBZRLE.current_buf);
2436 g_free(XBZRLE.zero_target_page);
2437 XBZRLE.cache = NULL;
2438 XBZRLE.encoded_buf = NULL;
2439 XBZRLE.current_buf = NULL;
2440 XBZRLE.zero_target_page = NULL;
2441 }
2442 XBZRLE_cache_unlock();
2443}
2444
92c20b2f
CLG
2445static void ram_bitmaps_destroy(void)
2446{
2447 RAMBlock *block;
2448
2449 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2450 g_free(block->clear_bmap);
2451 block->clear_bmap = NULL;
2452 g_free(block->bmap);
2453 block->bmap = NULL;
2454 g_free(block->file_bmap);
2455 block->file_bmap = NULL;
2456 }
2457}
2458
f265e0e4 2459static void ram_save_cleanup(void *opaque)
56e93d26 2460{
53518d94 2461 RAMState **rsp = opaque;
eb859c53 2462
278e2f55
AG
2463 /* We don't use dirty log with background snapshots */
2464 if (!migrate_background_snapshot()) {
a4a411fb 2465 /* caller have hold BQL or is in a bh, so there is
278e2f55
AG
2466 * no writing race against the migration bitmap
2467 */
63b41db4
HH
2468 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2469 /*
2470 * do not stop dirty log without starting it, since
2471 * memory_global_dirty_log_stop will assert that
2472 * memory_global_dirty_log_start/stop used in pairs
2473 */
2474 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2475 }
278e2f55 2476 }
6b6712ef 2477
92c20b2f 2478 ram_bitmaps_destroy();
56e93d26 2479
84593a08 2480 xbzrle_cleanup();
f0afa331 2481 compress_threads_save_cleanup();
7d7c96be 2482 ram_state_cleanup(rsp);
4010ba38
JQ
2483 g_free(migration_ops);
2484 migration_ops = NULL;
56e93d26
JQ
2485}
2486
6f37bb8b 2487static void ram_state_reset(RAMState *rs)
56e93d26 2488{
ec6f3ab9
PX
2489 int i;
2490
2491 for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2492 rs->pss[i].last_sent_block = NULL;
2493 }
2494
6f37bb8b 2495 rs->last_seen_block = NULL;
269ace29 2496 rs->last_page = 0;
6f37bb8b 2497 rs->last_version = ram_list.version;
f3095cc8 2498 rs->xbzrle_started = false;
56e93d26
JQ
2499}
2500
2501#define MAX_WAIT 50 /* ms, half buffered_file limit */
2502
e0b266f0
DDAG
2503/* **** functions for postcopy ***** */
2504
ced1c616
PB
2505void ram_postcopy_migrated_memory_release(MigrationState *ms)
2506{
2507 struct RAMBlock *block;
ced1c616 2508
fbd162e6 2509 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2510 unsigned long *bitmap = block->bmap;
2511 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2512 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
ced1c616
PB
2513
2514 while (run_start < range) {
2515 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
8bba004c
AR
2516 ram_discard_range(block->idstr,
2517 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2518 ((ram_addr_t)(run_end - run_start))
2519 << TARGET_PAGE_BITS);
ced1c616
PB
2520 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2521 }
2522 }
2523}
2524
3d0684b2
JQ
2525/**
2526 * postcopy_send_discard_bm_ram: discard a RAMBlock
2527 *
e0b266f0 2528 * Callback from postcopy_each_ram_send_discard for each RAMBlock
3d0684b2
JQ
2529 *
2530 * @ms: current migration state
89dab31b 2531 * @block: RAMBlock to discard
e0b266f0 2532 */
9e7d1223 2533static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
e0b266f0 2534{
6b6712ef 2535 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
e0b266f0 2536 unsigned long current;
1e7cf8c3 2537 unsigned long *bitmap = block->bmap;
e0b266f0 2538
6b6712ef 2539 for (current = 0; current < end; ) {
1e7cf8c3 2540 unsigned long one = find_next_bit(bitmap, end, current);
33a5cb62 2541 unsigned long zero, discard_length;
e0b266f0 2542
33a5cb62
WY
2543 if (one >= end) {
2544 break;
2545 }
e0b266f0 2546
1e7cf8c3 2547 zero = find_next_zero_bit(bitmap, end, one + 1);
33a5cb62
WY
2548
2549 if (zero >= end) {
2550 discard_length = end - one;
e0b266f0 2551 } else {
33a5cb62
WY
2552 discard_length = zero - one;
2553 }
810cf2bb 2554 postcopy_discard_send_range(ms, one, discard_length);
33a5cb62 2555 current = one + discard_length;
e0b266f0 2556 }
e0b266f0
DDAG
2557}
2558
f30c2e5b
PX
2559static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2560
3d0684b2
JQ
2561/**
2562 * postcopy_each_ram_send_discard: discard all RAMBlocks
2563 *
e0b266f0
DDAG
2564 * Utility for the outgoing postcopy code.
2565 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2566 * passing it bitmap indexes and name.
e0b266f0
DDAG
2567 * (qemu_ram_foreach_block ends up passing unscaled lengths
2568 * which would mean postcopy code would have to deal with target page)
3d0684b2
JQ
2569 *
2570 * @ms: current migration state
e0b266f0 2571 */
739fcc1b 2572static void postcopy_each_ram_send_discard(MigrationState *ms)
e0b266f0
DDAG
2573{
2574 struct RAMBlock *block;
e0b266f0 2575
fbd162e6 2576 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
810cf2bb 2577 postcopy_discard_send_init(ms, block->idstr);
e0b266f0 2578
f30c2e5b
PX
2579 /*
2580 * Deal with TPS != HPS and huge pages. It discard any partially sent
2581 * host-page size chunks, mark any partially dirty host-page size
2582 * chunks as all dirty. In this case the host-page is the host-page
2583 * for the particular RAMBlock, i.e. it might be a huge page.
2584 */
2585 postcopy_chunk_hostpages_pass(ms, block);
2586
e0b266f0
DDAG
2587 /*
2588 * Postcopy sends chunks of bitmap over the wire, but it
2589 * just needs indexes at this point, avoids it having
2590 * target page specific code.
2591 */
739fcc1b 2592 postcopy_send_discard_bm_ram(ms, block);
810cf2bb 2593 postcopy_discard_send_finish(ms);
e0b266f0 2594 }
e0b266f0
DDAG
2595}
2596
3d0684b2 2597/**
8324ef86 2598 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
3d0684b2
JQ
2599 *
2600 * Helper for postcopy_chunk_hostpages; it's called twice to
2601 * canonicalize the two bitmaps, that are similar, but one is
2602 * inverted.
99e314eb 2603 *
3d0684b2
JQ
2604 * Postcopy requires that all target pages in a hostpage are dirty or
2605 * clean, not a mix. This function canonicalizes the bitmaps.
99e314eb 2606 *
3d0684b2 2607 * @ms: current migration state
3d0684b2 2608 * @block: block that contains the page we want to canonicalize
99e314eb 2609 */
1e7cf8c3 2610static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
99e314eb 2611{
53518d94 2612 RAMState *rs = ram_state;
6b6712ef 2613 unsigned long *bitmap = block->bmap;
29c59172 2614 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
6b6712ef 2615 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
99e314eb
DDAG
2616 unsigned long run_start;
2617
29c59172
DDAG
2618 if (block->page_size == TARGET_PAGE_SIZE) {
2619 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2620 return;
2621 }
2622
1e7cf8c3
WY
2623 /* Find a dirty page */
2624 run_start = find_next_bit(bitmap, pages, 0);
99e314eb 2625
6b6712ef 2626 while (run_start < pages) {
99e314eb
DDAG
2627
2628 /*
2629 * If the start of this run of pages is in the middle of a host
2630 * page, then we need to fixup this host page.
2631 */
9dec3cc3 2632 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
99e314eb 2633 /* Find the end of this run */
1e7cf8c3 2634 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
99e314eb
DDAG
2635 /*
2636 * If the end isn't at the start of a host page, then the
2637 * run doesn't finish at the end of a host page
2638 * and we need to discard.
2639 */
99e314eb
DDAG
2640 }
2641
9dec3cc3 2642 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
99e314eb 2643 unsigned long page;
dad45ab2
WY
2644 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2645 host_ratio);
2646 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
99e314eb 2647
99e314eb
DDAG
2648 /* Clean up the bitmap */
2649 for (page = fixup_start_addr;
2650 page < fixup_start_addr + host_ratio; page++) {
99e314eb
DDAG
2651 /*
2652 * Remark them as dirty, updating the count for any pages
2653 * that weren't previously dirty.
2654 */
0d8ec885 2655 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
99e314eb
DDAG
2656 }
2657 }
2658
1e7cf8c3
WY
2659 /* Find the next dirty page for the next iteration */
2660 run_start = find_next_bit(bitmap, pages, run_start);
99e314eb
DDAG
2661 }
2662}
2663
3d0684b2
JQ
2664/**
2665 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2666 *
e0b266f0
DDAG
2667 * Transmit the set of pages to be discarded after precopy to the target
2668 * these are pages that:
2669 * a) Have been previously transmitted but are now dirty again
2670 * b) Pages that have never been transmitted, this ensures that
2671 * any pages on the destination that have been mapped by background
2672 * tasks get discarded (transparent huge pages is the specific concern)
2673 * Hopefully this is pretty sparse
3d0684b2
JQ
2674 *
2675 * @ms: current migration state
e0b266f0 2676 */
739fcc1b 2677void ram_postcopy_send_discard_bitmap(MigrationState *ms)
e0b266f0 2678{
53518d94 2679 RAMState *rs = ram_state;
e0b266f0 2680
89ac5a1d 2681 RCU_READ_LOCK_GUARD();
e0b266f0
DDAG
2682
2683 /* This should be our last sync, the src is now paused */
1e493be5 2684 migration_bitmap_sync(rs, false);
e0b266f0 2685
6b6712ef 2686 /* Easiest way to make sure we don't resume in the middle of a host-page */
ec6f3ab9 2687 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
6b6712ef 2688 rs->last_seen_block = NULL;
6b6712ef 2689 rs->last_page = 0;
e0b266f0 2690
739fcc1b 2691 postcopy_each_ram_send_discard(ms);
e0b266f0 2692
739fcc1b 2693 trace_ram_postcopy_send_discard_bitmap();
e0b266f0
DDAG
2694}
2695
3d0684b2
JQ
2696/**
2697 * ram_discard_range: discard dirtied pages at the beginning of postcopy
e0b266f0 2698 *
3d0684b2 2699 * Returns zero on success
e0b266f0 2700 *
36449157
JQ
2701 * @rbname: name of the RAMBlock of the request. NULL means the
2702 * same that last one.
3d0684b2
JQ
2703 * @start: RAMBlock starting page
2704 * @length: RAMBlock size
e0b266f0 2705 */
aaa2064c 2706int ram_discard_range(const char *rbname, uint64_t start, size_t length)
e0b266f0 2707{
36449157 2708 trace_ram_discard_range(rbname, start, length);
d3a5038c 2709
89ac5a1d 2710 RCU_READ_LOCK_GUARD();
36449157 2711 RAMBlock *rb = qemu_ram_block_by_name(rbname);
e0b266f0
DDAG
2712
2713 if (!rb) {
36449157 2714 error_report("ram_discard_range: Failed to find block '%s'", rbname);
03acb4e9 2715 return -1;
e0b266f0
DDAG
2716 }
2717
814bb08f
PX
2718 /*
2719 * On source VM, we don't need to update the received bitmap since
2720 * we don't even have one.
2721 */
2722 if (rb->receivedmap) {
2723 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2724 length >> qemu_target_page_bits());
2725 }
2726
03acb4e9 2727 return ram_block_discard_range(rb, start, length);
e0b266f0
DDAG
2728}
2729
84593a08
PX
2730/*
2731 * For every allocation, we will try not to crash the VM if the
2732 * allocation failed.
2733 */
7bee8ba8 2734static bool xbzrle_init(Error **errp)
84593a08 2735{
87dca0c9 2736 if (!migrate_xbzrle()) {
7bee8ba8 2737 return true;
84593a08
PX
2738 }
2739
2740 XBZRLE_cache_lock();
2741
2742 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2743 if (!XBZRLE.zero_target_page) {
7bee8ba8 2744 error_setg(errp, "%s: Error allocating zero page", __func__);
84593a08
PX
2745 goto err_out;
2746 }
2747
2748 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
7bee8ba8 2749 TARGET_PAGE_SIZE, errp);
84593a08 2750 if (!XBZRLE.cache) {
84593a08
PX
2751 goto free_zero_page;
2752 }
2753
2754 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2755 if (!XBZRLE.encoded_buf) {
7bee8ba8 2756 error_setg(errp, "%s: Error allocating encoded_buf", __func__);
84593a08
PX
2757 goto free_cache;
2758 }
2759
2760 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2761 if (!XBZRLE.current_buf) {
7bee8ba8 2762 error_setg(errp, "%s: Error allocating current_buf", __func__);
84593a08
PX
2763 goto free_encoded_buf;
2764 }
2765
2766 /* We are all good */
2767 XBZRLE_cache_unlock();
7bee8ba8 2768 return true;
84593a08
PX
2769
2770free_encoded_buf:
2771 g_free(XBZRLE.encoded_buf);
2772 XBZRLE.encoded_buf = NULL;
2773free_cache:
2774 cache_fini(XBZRLE.cache);
2775 XBZRLE.cache = NULL;
2776free_zero_page:
2777 g_free(XBZRLE.zero_target_page);
2778 XBZRLE.zero_target_page = NULL;
2779err_out:
2780 XBZRLE_cache_unlock();
7bee8ba8 2781 return false;
84593a08
PX
2782}
2783
16ecd25a 2784static bool ram_state_init(RAMState **rsp, Error **errp)
56e93d26 2785{
7d00ee6a
PX
2786 *rsp = g_try_new0(RAMState, 1);
2787
2788 if (!*rsp) {
16ecd25a
CLG
2789 error_setg(errp, "%s: Init ramstate fail", __func__);
2790 return false;
7d00ee6a 2791 }
53518d94
JQ
2792
2793 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2794 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2795 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
8d80e195 2796 (*rsp)->ram_bytes_total = ram_bytes_total();
56e93d26 2797
7d00ee6a 2798 /*
40c4d4a8
IR
2799 * Count the total number of pages used by ram blocks not including any
2800 * gaps due to alignment or unplugs.
03158519 2801 * This must match with the initial values of dirty bitmap.
7d00ee6a 2802 */
8d80e195 2803 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
7d00ee6a
PX
2804 ram_state_reset(*rsp);
2805
16ecd25a 2806 return true;
7d00ee6a
PX
2807}
2808
d6eff5d7 2809static void ram_list_init_bitmaps(void)
7d00ee6a 2810{
002cad6b 2811 MigrationState *ms = migrate_get_current();
d6eff5d7
PX
2812 RAMBlock *block;
2813 unsigned long pages;
002cad6b 2814 uint8_t shift;
56e93d26 2815
0827b9e9
AA
2816 /* Skip setting bitmap if there is no RAM */
2817 if (ram_bytes_total()) {
002cad6b
PX
2818 shift = ms->clear_bitmap_shift;
2819 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2820 error_report("clear_bitmap_shift (%u) too big, using "
2821 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2822 shift = CLEAR_BITMAP_SHIFT_MAX;
2823 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2824 error_report("clear_bitmap_shift (%u) too small, using "
2825 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2826 shift = CLEAR_BITMAP_SHIFT_MIN;
2827 }
2828
fbd162e6 2829 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
d6eff5d7 2830 pages = block->max_length >> TARGET_PAGE_BITS;
03158519
WY
2831 /*
2832 * The initial dirty bitmap for migration must be set with all
2833 * ones to make sure we'll migrate every guest RAM page to
2834 * destination.
40c4d4a8
IR
2835 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2836 * new migration after a failed migration, ram_list.
2837 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2838 * guest memory.
03158519 2839 */
6b6712ef 2840 block->bmap = bitmap_new(pages);
40c4d4a8 2841 bitmap_set(block->bmap, 0, pages);
c2d5c4a7
FR
2842 if (migrate_mapped_ram()) {
2843 block->file_bmap = bitmap_new(pages);
2844 }
002cad6b
PX
2845 block->clear_bmap_shift = shift;
2846 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
0827b9e9 2847 }
f3f491fc 2848 }
d6eff5d7
PX
2849}
2850
be39b4cd
DH
2851static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2852{
2853 unsigned long pages;
2854 RAMBlock *rb;
2855
2856 RCU_READ_LOCK_GUARD();
2857
2858 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2859 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2860 rs->migration_dirty_pages -= pages;
2861 }
2862}
2863
030b56b2 2864static bool ram_init_bitmaps(RAMState *rs, Error **errp)
d6eff5d7 2865{
639ec3fb
CLG
2866 bool ret = true;
2867
d6eff5d7 2868 qemu_mutex_lock_ramlist();
f3f491fc 2869
89ac5a1d
DDAG
2870 WITH_RCU_READ_LOCK_GUARD() {
2871 ram_list_init_bitmaps();
278e2f55
AG
2872 /* We don't use dirty log with background snapshots */
2873 if (!migrate_background_snapshot()) {
030b56b2 2874 ret = memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, errp);
639ec3fb 2875 if (!ret) {
639ec3fb
CLG
2876 goto out_unlock;
2877 }
1e493be5 2878 migration_bitmap_sync_precopy(rs, false);
278e2f55 2879 }
89ac5a1d 2880 }
639ec3fb 2881out_unlock:
56e93d26 2882 qemu_mutex_unlock_ramlist();
be39b4cd 2883
639ec3fb
CLG
2884 if (!ret) {
2885 ram_bitmaps_destroy();
030b56b2 2886 return false;
639ec3fb
CLG
2887 }
2888
be39b4cd
DH
2889 /*
2890 * After an eventual first bitmap sync, fixup the initial bitmap
2891 * containing all 1s to exclude any discarded pages from migration.
2892 */
2893 migration_bitmap_clear_discarded_pages(rs);
030b56b2 2894 return true;
d6eff5d7
PX
2895}
2896
030b56b2 2897static int ram_init_all(RAMState **rsp, Error **errp)
d6eff5d7 2898{
030b56b2 2899 if (!ram_state_init(rsp, errp)) {
d6eff5d7
PX
2900 return -1;
2901 }
2902
030b56b2 2903 if (!xbzrle_init(errp)) {
d6eff5d7
PX
2904 ram_state_cleanup(rsp);
2905 return -1;
2906 }
2907
030b56b2
CLG
2908 if (!ram_init_bitmaps(*rsp, errp)) {
2909 return -1;
2910 }
a91246c9
HZ
2911
2912 return 0;
2913}
2914
08614f34
PX
2915static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2916{
2917 RAMBlock *block;
2918 uint64_t pages = 0;
2919
2920 /*
2921 * Postcopy is not using xbzrle/compression, so no need for that.
2922 * Also, since source are already halted, we don't need to care
2923 * about dirty page logging as well.
2924 */
2925
fbd162e6 2926 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
08614f34
PX
2927 pages += bitmap_count_one(block->bmap,
2928 block->used_length >> TARGET_PAGE_BITS);
2929 }
2930
2931 /* This may not be aligned with current bitmaps. Recalculate. */
2932 rs->migration_dirty_pages = pages;
2933
1a373522 2934 ram_state_reset(rs);
08614f34
PX
2935
2936 /* Update RAMState cache of output QEMUFile */
7f401b80 2937 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
08614f34
PX
2938
2939 trace_ram_state_resume_prepare(pages);
2940}
2941
6bcb05fc
WW
2942/*
2943 * This function clears bits of the free pages reported by the caller from the
2944 * migration dirty bitmap. @addr is the host address corresponding to the
2945 * start of the continuous guest free pages, and @len is the total bytes of
2946 * those pages.
2947 */
2948void qemu_guest_free_page_hint(void *addr, size_t len)
2949{
2950 RAMBlock *block;
2951 ram_addr_t offset;
2952 size_t used_len, start, npages;
6bcb05fc
WW
2953
2954 /* This function is currently expected to be used during live migration */
7dcb3c87 2955 if (!migration_is_setup_or_active()) {
6bcb05fc
WW
2956 return;
2957 }
2958
2959 for (; len > 0; len -= used_len, addr += used_len) {
2960 block = qemu_ram_block_from_host(addr, false, &offset);
2961 if (unlikely(!block || offset >= block->used_length)) {
2962 /*
2963 * The implementation might not support RAMBlock resize during
2964 * live migration, but it could happen in theory with future
2965 * updates. So we add a check here to capture that case.
2966 */
2967 error_report_once("%s unexpected error", __func__);
2968 return;
2969 }
2970
2971 if (len <= block->used_length - offset) {
2972 used_len = len;
2973 } else {
2974 used_len = block->used_length - offset;
2975 }
2976
2977 start = offset >> TARGET_PAGE_BITS;
2978 npages = used_len >> TARGET_PAGE_BITS;
2979
2980 qemu_mutex_lock(&ram_state->bitmap_mutex);
3143577d
WW
2981 /*
2982 * The skipped free pages are equavalent to be sent from clear_bmap's
2983 * perspective, so clear the bits from the memory region bitmap which
2984 * are initially set. Otherwise those skipped pages will be sent in
2985 * the next round after syncing from the memory region bitmap.
2986 */
1230a25f 2987 migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
6bcb05fc
WW
2988 ram_state->migration_dirty_pages -=
2989 bitmap_count_one_with_offset(block->bmap, start, npages);
2990 bitmap_clear(block->bmap, start, npages);
2991 qemu_mutex_unlock(&ram_state->bitmap_mutex);
2992 }
2993}
2994
c2d5c4a7
FR
2995#define MAPPED_RAM_HDR_VERSION 1
2996struct MappedRamHeader {
2997 uint32_t version;
2998 /*
2999 * The target's page size, so we know how many pages are in the
3000 * bitmap.
3001 */
3002 uint64_t page_size;
3003 /*
3004 * The offset in the migration file where the pages bitmap is
3005 * stored.
3006 */
3007 uint64_t bitmap_offset;
3008 /*
3009 * The offset in the migration file where the actual pages (data)
3010 * are stored.
3011 */
3012 uint64_t pages_offset;
3013} QEMU_PACKED;
3014typedef struct MappedRamHeader MappedRamHeader;
3015
3016static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block)
3017{
3018 g_autofree MappedRamHeader *header = NULL;
3019 size_t header_size, bitmap_size;
3020 long num_pages;
3021
3022 header = g_new0(MappedRamHeader, 1);
3023 header_size = sizeof(MappedRamHeader);
3024
3025 num_pages = block->used_length >> TARGET_PAGE_BITS;
3026 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3027
3028 /*
3029 * Save the file offsets of where the bitmap and the pages should
3030 * go as they are written at the end of migration and during the
3031 * iterative phase, respectively.
3032 */
3033 block->bitmap_offset = qemu_get_offset(file) + header_size;
3034 block->pages_offset = ROUND_UP(block->bitmap_offset +
3035 bitmap_size,
3036 MAPPED_RAM_FILE_OFFSET_ALIGNMENT);
3037
3038 header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION);
3039 header->page_size = cpu_to_be64(TARGET_PAGE_SIZE);
3040 header->bitmap_offset = cpu_to_be64(block->bitmap_offset);
3041 header->pages_offset = cpu_to_be64(block->pages_offset);
3042
3043 qemu_put_buffer(file, (uint8_t *) header, header_size);
3044
3045 /* prepare offset for next ramblock */
3046 qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET);
3047}
3048
2f6b8826
FR
3049static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header,
3050 Error **errp)
3051{
3052 size_t ret, header_size = sizeof(MappedRamHeader);
3053
3054 ret = qemu_get_buffer(file, (uint8_t *)header, header_size);
3055 if (ret != header_size) {
3056 error_setg(errp, "Could not read whole mapped-ram migration header "
3057 "(expected %zd, got %zd bytes)", header_size, ret);
3058 return false;
3059 }
3060
3061 /* migration stream is big-endian */
3062 header->version = be32_to_cpu(header->version);
3063
3064 if (header->version > MAPPED_RAM_HDR_VERSION) {
3065 error_setg(errp, "Migration mapped-ram capability version not "
3066 "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION,
3067 header->version);
3068 return false;
3069 }
3070
3071 header->page_size = be64_to_cpu(header->page_size);
3072 header->bitmap_offset = be64_to_cpu(header->bitmap_offset);
3073 header->pages_offset = be64_to_cpu(header->pages_offset);
3074
3075 return true;
3076}
3077
3d0684b2
JQ
3078/*
3079 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
a91246c9
HZ
3080 * long-running RCU critical section. When rcu-reclaims in the code
3081 * start to become numerous it will be necessary to reduce the
3082 * granularity of these critical sections.
3083 */
3084
3d0684b2
JQ
3085/**
3086 * ram_save_setup: Setup RAM for migration
3087 *
3088 * Returns zero to indicate success and negative for error
3089 *
3090 * @f: QEMUFile where to send the data
3091 * @opaque: RAMState pointer
01c3ac68 3092 * @errp: pointer to Error*, to store an error if it happens.
3d0684b2 3093 */
01c3ac68 3094static int ram_save_setup(QEMUFile *f, void *opaque, Error **errp)
a91246c9 3095{
53518d94 3096 RAMState **rsp = opaque;
a91246c9 3097 RAMBlock *block;
5d220369 3098 int ret, max_hg_page_size;
a91246c9 3099
dcaf446e 3100 if (compress_threads_save_setup()) {
01c3ac68 3101 error_setg(errp, "%s: failed to start compress threads", __func__);
dcaf446e
XG
3102 return -1;
3103 }
3104
a91246c9
HZ
3105 /* migration has already setup the bitmap, reuse it. */
3106 if (!migration_in_colo_state()) {
030b56b2 3107 if (ram_init_all(rsp, errp) != 0) {
dcaf446e 3108 compress_threads_save_cleanup();
a91246c9 3109 return -1;
53518d94 3110 }
a91246c9 3111 }
7f401b80 3112 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
a91246c9 3113
5d220369
RH
3114 /*
3115 * ??? Mirrors the previous value of qemu_host_page_size,
3116 * but is this really what was intended for the migration?
3117 */
3118 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
3119
0e6ebd48 3120 WITH_RCU_READ_LOCK_GUARD() {
8008a272
JQ
3121 qemu_put_be64(f, ram_bytes_total_with_ignored()
3122 | RAM_SAVE_FLAG_MEM_SIZE);
56e93d26 3123
0e6ebd48
DDAG
3124 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3125 qemu_put_byte(f, strlen(block->idstr));
3126 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3127 qemu_put_be64(f, block->used_length);
5d220369
RH
3128 if (migrate_postcopy_ram() &&
3129 block->page_size != max_hg_page_size) {
0e6ebd48
DDAG
3130 qemu_put_be64(f, block->page_size);
3131 }
3132 if (migrate_ignore_shared()) {
3133 qemu_put_be64(f, block->mr->addr);
3134 }
c2d5c4a7
FR
3135
3136 if (migrate_mapped_ram()) {
3137 mapped_ram_setup_ramblock(f, block);
3138 }
fbd162e6 3139 }
56e93d26
JQ
3140 }
3141
b1b38387 3142 ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
48408174 3143 if (ret < 0) {
01c3ac68 3144 error_setg(errp, "%s: failed to start RDMA registration", __func__);
48408174 3145 qemu_file_set_error(f, ret);
a2326705 3146 return ret;
48408174 3147 }
5f5b8858 3148
b1b38387 3149 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
5f5b8858 3150 if (ret < 0) {
01c3ac68 3151 error_setg(errp, "%s: failed to stop RDMA registration", __func__);
5f5b8858 3152 qemu_file_set_error(f, ret);
a2326705 3153 return ret;
5f5b8858 3154 }
56e93d26 3155
4010ba38 3156 migration_ops = g_malloc0(sizeof(MigrationOps));
9ae90f73
HX
3157
3158 if (migrate_multifd()) {
3159 migration_ops->ram_save_target_page = ram_save_target_page_multifd;
3160 } else {
3161 migration_ops->ram_save_target_page = ram_save_target_page_legacy;
3162 }
930e239d 3163
195801d7 3164 bql_unlock();
9346fa18 3165 ret = multifd_send_sync_main();
195801d7 3166 bql_lock();
33d70973 3167 if (ret < 0) {
01c3ac68 3168 error_setg(errp, "%s: multifd synchronization failed", __func__);
33d70973
LB
3169 return ret;
3170 }
3171
9d01778a
FR
3172 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()
3173 && !migrate_mapped_ram()) {
294e5a40
JQ
3174 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3175 }
3176
56e93d26 3177 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
76936bbc
CLG
3178 ret = qemu_fflush(f);
3179 if (ret < 0) {
01c3ac68 3180 error_setg_errno(errp, -ret, "%s failed", __func__);
76936bbc
CLG
3181 }
3182 return ret;
56e93d26
JQ
3183}
3184
c2d5c4a7
FR
3185static void ram_save_file_bmap(QEMUFile *f)
3186{
3187 RAMBlock *block;
3188
3189 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3190 long num_pages = block->used_length >> TARGET_PAGE_BITS;
3191 long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3192
3193 qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size,
3194 block->bitmap_offset);
3195 ram_transferred_add(bitmap_size);
f427d90b
FR
3196
3197 /*
3198 * Free the bitmap here to catch any synchronization issues
3199 * with multifd channels. No channels should be sending pages
3200 * after we've written the bitmap to file.
3201 */
3202 g_free(block->file_bmap);
3203 block->file_bmap = NULL;
c2d5c4a7
FR
3204 }
3205}
3206
c3cdf3fb 3207void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset, bool set)
f427d90b 3208{
c3cdf3fb
FR
3209 if (set) {
3210 set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3211 } else {
3212 clear_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3213 }
f427d90b
FR
3214}
3215
3d0684b2
JQ
3216/**
3217 * ram_save_iterate: iterative stage for migration
3218 *
3219 * Returns zero to indicate success and negative for error
3220 *
3221 * @f: QEMUFile where to send the data
3222 * @opaque: RAMState pointer
3223 */
56e93d26
JQ
3224static int ram_save_iterate(QEMUFile *f, void *opaque)
3225{
53518d94
JQ
3226 RAMState **temp = opaque;
3227 RAMState *rs = *temp;
3d4095b2 3228 int ret = 0;
56e93d26
JQ
3229 int i;
3230 int64_t t0;
5c90308f 3231 int done = 0;
56e93d26 3232
b2557345
PL
3233 if (blk_mig_bulk_active()) {
3234 /* Avoid transferring ram during bulk phase of block migration as
3235 * the bulk phase will usually take a long time and transferring
3236 * ram updates during that time is pointless. */
3237 goto out;
3238 }
3239
63268c49
PX
3240 /*
3241 * We'll take this lock a little bit long, but it's okay for two reasons.
3242 * Firstly, the only possible other thread to take it is who calls
3243 * qemu_guest_free_page_hint(), which should be rare; secondly, see
3244 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3245 * guarantees that we'll at least released it in a regular basis.
3246 */
0983125b
JQ
3247 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
3248 WITH_RCU_READ_LOCK_GUARD() {
3249 if (ram_list.version != rs->last_version) {
3250 ram_state_reset(rs);
3251 }
56e93d26 3252
0983125b
JQ
3253 /* Read version before ram_list.blocks */
3254 smp_rmb();
56e93d26 3255
0983125b
JQ
3256 ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3257 if (ret < 0) {
3258 qemu_file_set_error(f, ret);
3259 goto out;
3260 }
56e93d26 3261
0983125b
JQ
3262 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3263 i = 0;
3264 while ((ret = migration_rate_exceeded(f)) == 0 ||
3265 postcopy_has_request(rs)) {
3266 int pages;
e03a34f8 3267
0983125b
JQ
3268 if (qemu_file_get_error(f)) {
3269 break;
3270 }
e8f3735f 3271
0983125b
JQ
3272 pages = ram_find_and_save_block(rs);
3273 /* no more pages to sent */
3274 if (pages == 0) {
3275 done = 1;
3276 break;
3277 }
e8f3735f 3278
0983125b
JQ
3279 if (pages < 0) {
3280 qemu_file_set_error(f, pages);
3281 break;
3282 }
89ac5a1d 3283
0983125b 3284 rs->target_page_count += pages;
89ac5a1d 3285
0983125b
JQ
3286 /*
3287 * During postcopy, it is necessary to make sure one whole host
3288 * page is sent in one chunk.
3289 */
3290 if (migrate_postcopy_ram()) {
3291 compress_flush_data();
3292 }
644acf99 3293
0983125b
JQ
3294 /*
3295 * we want to check in the 1st loop, just in case it was the 1st
3296 * time and we had to sync the dirty bitmap.
3297 * qemu_clock_get_ns() is a bit expensive, so we only check each
3298 * some iterations
3299 */
3300 if ((i & 63) == 0) {
3301 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3302 1000000;
3303 if (t1 > MAX_WAIT) {
3304 trace_ram_save_iterate_big_wait(t1, i);
3305 break;
3306 }
89ac5a1d 3307 }
0983125b 3308 i++;
89ac5a1d 3309 }
56e93d26 3310 }
56e93d26 3311 }
56e93d26
JQ
3312
3313 /*
3314 * Must occur before EOS (or any QEMUFile operation)
3315 * because of RDMA protocol.
3316 */
b1b38387 3317 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
5f5b8858
JQ
3318 if (ret < 0) {
3319 qemu_file_set_error(f, ret);
3320 }
56e93d26 3321
b2557345 3322out:
b69a0227 3323 if (ret >= 0
7dcb3c87 3324 && migration_is_setup_or_active()) {
9d01778a
FR
3325 if (migrate_multifd() && migrate_multifd_flush_after_each_section() &&
3326 !migrate_mapped_ram()) {
9346fa18 3327 ret = multifd_send_sync_main();
b05292c2
JQ
3328 if (ret < 0) {
3329 return ret;
3330 }
33d70973
LB
3331 }
3332
3d4095b2 3333 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
4c2d0f6d 3334 ram_transferred_add(8);
be07a0ed 3335 ret = qemu_fflush(f);
3d4095b2 3336 }
56e93d26
JQ
3337 if (ret < 0) {
3338 return ret;
3339 }
3340
5c90308f 3341 return done;
56e93d26
JQ
3342}
3343
3d0684b2
JQ
3344/**
3345 * ram_save_complete: function called to send the remaining amount of ram
3346 *
e8f3735f 3347 * Returns zero to indicate success or negative on error
3d0684b2 3348 *
a4a411fb 3349 * Called with the BQL
3d0684b2
JQ
3350 *
3351 * @f: QEMUFile where to send the data
3352 * @opaque: RAMState pointer
3353 */
56e93d26
JQ
3354static int ram_save_complete(QEMUFile *f, void *opaque)
3355{
53518d94
JQ
3356 RAMState **temp = opaque;
3357 RAMState *rs = *temp;
e8f3735f 3358 int ret = 0;
6f37bb8b 3359
05931ec5
JQ
3360 rs->last_stage = !migration_in_colo_state();
3361
89ac5a1d
DDAG
3362 WITH_RCU_READ_LOCK_GUARD() {
3363 if (!migration_in_postcopy()) {
1e493be5 3364 migration_bitmap_sync_precopy(rs, true);
89ac5a1d 3365 }
56e93d26 3366
b1b38387 3367 ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
48408174
JQ
3368 if (ret < 0) {
3369 qemu_file_set_error(f, ret);
a2326705 3370 return ret;
48408174 3371 }
56e93d26 3372
89ac5a1d 3373 /* try transferring iterative blocks of memory */
56e93d26 3374
89ac5a1d 3375 /* flush all remaining blocks regardless of rate limiting */
c13221b5 3376 qemu_mutex_lock(&rs->bitmap_mutex);
89ac5a1d
DDAG
3377 while (true) {
3378 int pages;
56e93d26 3379
05931ec5 3380 pages = ram_find_and_save_block(rs);
89ac5a1d
DDAG
3381 /* no more blocks to sent */
3382 if (pages == 0) {
3383 break;
3384 }
3385 if (pages < 0) {
a2326705
PX
3386 qemu_mutex_unlock(&rs->bitmap_mutex);
3387 return pages;
89ac5a1d 3388 }
e8f3735f 3389 }
c13221b5 3390 qemu_mutex_unlock(&rs->bitmap_mutex);
56e93d26 3391
8020bc9a 3392 compress_flush_data();
5f5b8858 3393
a2326705
PX
3394 ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3395 if (ret < 0) {
3396 qemu_file_set_error(f, ret);
3397 return ret;
5f5b8858 3398 }
89ac5a1d 3399 }
d09a6fde 3400
9346fa18 3401 ret = multifd_send_sync_main();
33d70973
LB
3402 if (ret < 0) {
3403 return ret;
3404 }
3405
c2d5c4a7
FR
3406 if (migrate_mapped_ram()) {
3407 ram_save_file_bmap(f);
3408
3409 if (qemu_file_get_error(f)) {
3410 Error *local_err = NULL;
3411 int err = qemu_file_get_error_obj(f, &local_err);
3412
3413 error_reportf_err(local_err, "Failed to write bitmap to file: ");
3414 return -err;
3415 }
3416 }
3417
9d01778a
FR
3418 if (migrate_multifd() && !migrate_multifd_flush_after_each_section() &&
3419 !migrate_mapped_ram()) {
294e5a40
JQ
3420 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3421 }
33d70973 3422 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
be07a0ed 3423 return qemu_fflush(f);
56e93d26
JQ
3424}
3425
24beea4e
JQ
3426static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3427 uint64_t *can_postcopy)
56e93d26 3428{
53518d94
JQ
3429 RAMState **temp = opaque;
3430 RAMState *rs = *temp;
56e93d26 3431
c8df4a7a 3432 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3433
c8df4a7a
JQ
3434 if (migrate_postcopy_ram()) {
3435 /* We can do postcopy, and all the data is postcopiable */
24beea4e 3436 *can_postcopy += remaining_size;
c8df4a7a 3437 } else {
24beea4e 3438 *must_precopy += remaining_size;
c8df4a7a
JQ
3439 }
3440}
3441
24beea4e
JQ
3442static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3443 uint64_t *can_postcopy)
c8df4a7a
JQ
3444{
3445 RAMState **temp = opaque;
3446 RAMState *rs = *temp;
b0504edd 3447 uint64_t remaining_size;
c8df4a7a 3448
b0504edd 3449 if (!migration_in_postcopy()) {
195801d7 3450 bql_lock();
89ac5a1d 3451 WITH_RCU_READ_LOCK_GUARD() {
1e493be5 3452 migration_bitmap_sync_precopy(rs, false);
89ac5a1d 3453 }
195801d7 3454 bql_unlock();
56e93d26 3455 }
c31b098f 3456
b0504edd
PX
3457 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3458
86e1167e
VSO
3459 if (migrate_postcopy_ram()) {
3460 /* We can do postcopy, and all the data is postcopiable */
24beea4e 3461 *can_postcopy += remaining_size;
86e1167e 3462 } else {
24beea4e 3463 *must_precopy += remaining_size;
86e1167e 3464 }
56e93d26
JQ
3465}
3466
3467static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3468{
3469 unsigned int xh_len;
3470 int xh_flags;
063e760a 3471 uint8_t *loaded_data;
56e93d26 3472
56e93d26
JQ
3473 /* extract RLE header */
3474 xh_flags = qemu_get_byte(f);
3475 xh_len = qemu_get_be16(f);
3476
3477 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3478 error_report("Failed to load XBZRLE page - wrong compression!");
3479 return -1;
3480 }
3481
3482 if (xh_len > TARGET_PAGE_SIZE) {
3483 error_report("Failed to load XBZRLE page - len overflow!");
3484 return -1;
3485 }
f265e0e4 3486 loaded_data = XBZRLE.decoded_buf;
56e93d26 3487 /* load data and decode */
f265e0e4 3488 /* it can change loaded_data to point to an internal buffer */
063e760a 3489 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
56e93d26
JQ
3490
3491 /* decode RLE */
063e760a 3492 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
56e93d26
JQ
3493 TARGET_PAGE_SIZE) == -1) {
3494 error_report("Failed to load XBZRLE page - decode error!");
3495 return -1;
3496 }
3497
3498 return 0;
3499}
3500
3d0684b2
JQ
3501/**
3502 * ram_block_from_stream: read a RAMBlock id from the migration stream
3503 *
3504 * Must be called from within a rcu critical section.
3505 *
56e93d26 3506 * Returns a pointer from within the RCU-protected ram_list.
a7180877 3507 *
755e8d7c 3508 * @mis: the migration incoming state pointer
3d0684b2
JQ
3509 * @f: QEMUFile where to read the data from
3510 * @flags: Page flags (mostly to see if it's a continuation of previous block)
c01b16ed 3511 * @channel: the channel we're using
a7180877 3512 */
755e8d7c 3513static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
c01b16ed
PX
3514 QEMUFile *f, int flags,
3515 int channel)
56e93d26 3516{
c01b16ed 3517 RAMBlock *block = mis->last_recv_block[channel];
56e93d26
JQ
3518 char id[256];
3519 uint8_t len;
3520
3521 if (flags & RAM_SAVE_FLAG_CONTINUE) {
4c4bad48 3522 if (!block) {
56e93d26
JQ
3523 error_report("Ack, bad migration stream!");
3524 return NULL;
3525 }
4c4bad48 3526 return block;
56e93d26
JQ
3527 }
3528
3529 len = qemu_get_byte(f);
3530 qemu_get_buffer(f, (uint8_t *)id, len);
3531 id[len] = 0;
3532
e3dd7493 3533 block = qemu_ram_block_by_name(id);
4c4bad48
HZ
3534 if (!block) {
3535 error_report("Can't find block %s", id);
3536 return NULL;
56e93d26
JQ
3537 }
3538
f161c88a 3539 if (migrate_ram_is_ignored(block)) {
b895de50
CLG
3540 error_report("block %s should not be migrated !", id);
3541 return NULL;
3542 }
3543
c01b16ed 3544 mis->last_recv_block[channel] = block;
755e8d7c 3545
4c4bad48
HZ
3546 return block;
3547}
3548
3549static inline void *host_from_ram_block_offset(RAMBlock *block,
3550 ram_addr_t offset)
3551{
3552 if (!offset_in_ramblock(block, offset)) {
3553 return NULL;
3554 }
3555
3556 return block->host + offset;
56e93d26
JQ
3557}
3558
6a23f639
DH
3559static void *host_page_from_ram_block_offset(RAMBlock *block,
3560 ram_addr_t offset)
3561{
3562 /* Note: Explicitly no check against offset_in_ramblock(). */
3563 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3564 block->page_size);
3565}
3566
3567static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3568 ram_addr_t offset)
3569{
3570 return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3571}
3572
871cfc54
LS
3573void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3574{
3575 qemu_mutex_lock(&ram_state->bitmap_mutex);
3576 for (int i = 0; i < pages; i++) {
3577 ram_addr_t offset = normal[i];
3578 ram_state->migration_dirty_pages += !test_and_set_bit(
3579 offset >> TARGET_PAGE_BITS,
3580 block->bmap);
3581 }
3582 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3583}
3584
13af18f2 3585static inline void *colo_cache_from_block_offset(RAMBlock *block,
8af66371 3586 ram_addr_t offset, bool record_bitmap)
13af18f2
ZC
3587{
3588 if (!offset_in_ramblock(block, offset)) {
3589 return NULL;
3590 }
3591 if (!block->colo_cache) {
3592 error_report("%s: colo_cache is NULL in block :%s",
3593 __func__, block->idstr);
3594 return NULL;
3595 }
7d9acafa
ZC
3596
3597 /*
3598 * During colo checkpoint, we need bitmap of these migrated pages.
3599 * It help us to decide which pages in ram cache should be flushed
3600 * into VM's RAM later.
3601 */
871cfc54
LS
3602 if (record_bitmap) {
3603 colo_record_bitmap(block, &offset, 1);
7d9acafa 3604 }
13af18f2
ZC
3605 return block->colo_cache + offset;
3606}
3607
3d0684b2 3608/**
7091dabe 3609 * ram_handle_zero: handle the zero page case
3d0684b2 3610 *
56e93d26
JQ
3611 * If a page (or a whole RDMA chunk) has been
3612 * determined to be zero, then zap it.
3d0684b2
JQ
3613 *
3614 * @host: host address for the zero page
3615 * @ch: what the page is filled from. We only support zero
3616 * @size: size of the zero page
56e93d26 3617 */
7091dabe 3618void ram_handle_zero(void *host, uint64_t size)
56e93d26 3619{
7091dabe
JQ
3620 if (!buffer_is_zero(host, size)) {
3621 memset(host, 0, size);
56e93d26
JQ
3622 }
3623}
3624
b70cb3b4
RL
3625static void colo_init_ram_state(void)
3626{
16ecd25a
CLG
3627 Error *local_err = NULL;
3628
3629 if (!ram_state_init(&ram_state, &local_err)) {
3630 error_report_err(local_err);
3631 }
b70cb3b4
RL
3632}
3633
13af18f2
ZC
3634/*
3635 * colo cache: this is for secondary VM, we cache the whole
3636 * memory of the secondary VM, it is need to hold the global lock
3637 * to call this helper.
3638 */
3639int colo_init_ram_cache(void)
3640{
3641 RAMBlock *block;
3642
44901b5a
PB
3643 WITH_RCU_READ_LOCK_GUARD() {
3644 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3645 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
8dbe22c6 3646 NULL, false, false);
44901b5a
PB
3647 if (!block->colo_cache) {
3648 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3649 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3650 block->used_length);
3651 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3652 if (block->colo_cache) {
3653 qemu_anon_ram_free(block->colo_cache, block->used_length);
3654 block->colo_cache = NULL;
3655 }
89ac5a1d 3656 }
44901b5a 3657 return -errno;
89ac5a1d 3658 }
e5fdf920
LS
3659 if (!machine_dump_guest_core(current_machine)) {
3660 qemu_madvise(block->colo_cache, block->used_length,
3661 QEMU_MADV_DONTDUMP);
3662 }
13af18f2 3663 }
13af18f2 3664 }
44901b5a 3665
7d9acafa
ZC
3666 /*
3667 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3668 * with to decide which page in cache should be flushed into SVM's RAM. Here
3669 * we use the same name 'ram_bitmap' as for migration.
3670 */
3671 if (ram_bytes_total()) {
fbd162e6 3672 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa 3673 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
7d9acafa 3674 block->bmap = bitmap_new(pages);
7d9acafa
ZC
3675 }
3676 }
7d9acafa 3677
b70cb3b4 3678 colo_init_ram_state();
13af18f2 3679 return 0;
13af18f2
ZC
3680}
3681
0393031a
HZ
3682/* TODO: duplicated with ram_init_bitmaps */
3683void colo_incoming_start_dirty_log(void)
3684{
3685 RAMBlock *block = NULL;
639ec3fb
CLG
3686 Error *local_err = NULL;
3687
0393031a 3688 /* For memory_global_dirty_log_start below. */
195801d7 3689 bql_lock();
0393031a
HZ
3690 qemu_mutex_lock_ramlist();
3691
1e493be5 3692 memory_global_dirty_log_sync(false);
0393031a
HZ
3693 WITH_RCU_READ_LOCK_GUARD() {
3694 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3695 ramblock_sync_dirty_bitmap(ram_state, block);
3696 /* Discard this dirty bitmap record */
3697 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3698 }
639ec3fb
CLG
3699 if (!memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION,
3700 &local_err)) {
3701 error_report_err(local_err);
3702 }
0393031a
HZ
3703 }
3704 ram_state->migration_dirty_pages = 0;
3705 qemu_mutex_unlock_ramlist();
195801d7 3706 bql_unlock();
0393031a
HZ
3707}
3708
13af18f2
ZC
3709/* It is need to hold the global lock to call this helper */
3710void colo_release_ram_cache(void)
3711{
3712 RAMBlock *block;
3713
63b41db4 3714 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
fbd162e6 3715 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
3716 g_free(block->bmap);
3717 block->bmap = NULL;
3718 }
3719
89ac5a1d
DDAG
3720 WITH_RCU_READ_LOCK_GUARD() {
3721 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3722 if (block->colo_cache) {
3723 qemu_anon_ram_free(block->colo_cache, block->used_length);
3724 block->colo_cache = NULL;
3725 }
13af18f2
ZC
3726 }
3727 }
0393031a 3728 ram_state_cleanup(&ram_state);
13af18f2
ZC
3729}
3730
f265e0e4
JQ
3731/**
3732 * ram_load_setup: Setup RAM for migration incoming side
3733 *
3734 * Returns zero to indicate success and negative for error
3735 *
3736 * @f: QEMUFile where to receive the data
3737 * @opaque: RAMState pointer
e4fa064d 3738 * @errp: pointer to Error*, to store an error if it happens.
f265e0e4 3739 */
e4fa064d 3740static int ram_load_setup(QEMUFile *f, void *opaque, Error **errp)
f265e0e4
JQ
3741{
3742 xbzrle_load_setup();
f9494614 3743 ramblock_recv_map_init();
13af18f2 3744
f265e0e4
JQ
3745 return 0;
3746}
3747
3748static int ram_load_cleanup(void *opaque)
3749{
f9494614 3750 RAMBlock *rb;
56eb90af 3751
fbd162e6 3752 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
bd108a44 3753 qemu_ram_block_writeback(rb);
56eb90af
JH
3754 }
3755
f265e0e4 3756 xbzrle_load_cleanup();
f9494614 3757
fbd162e6 3758 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
3759 g_free(rb->receivedmap);
3760 rb->receivedmap = NULL;
3761 }
13af18f2 3762
f265e0e4
JQ
3763 return 0;
3764}
3765
3d0684b2
JQ
3766/**
3767 * ram_postcopy_incoming_init: allocate postcopy data structures
3768 *
3769 * Returns 0 for success and negative if there was one error
3770 *
3771 * @mis: current migration incoming state
3772 *
3773 * Allocate data structures etc needed by incoming migration with
3774 * postcopy-ram. postcopy-ram's similarly names
3775 * postcopy_ram_incoming_init does the work.
1caddf8a
DDAG
3776 */
3777int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3778{
c136180c 3779 return postcopy_ram_incoming_init(mis);
1caddf8a
DDAG
3780}
3781
3d0684b2
JQ
3782/**
3783 * ram_load_postcopy: load a page in postcopy case
3784 *
3785 * Returns 0 for success or -errno in case of error
3786 *
a7180877
DDAG
3787 * Called in postcopy mode by ram_load().
3788 * rcu_read_lock is taken prior to this being called.
3d0684b2
JQ
3789 *
3790 * @f: QEMUFile where to send the data
36f62f11 3791 * @channel: the channel to use for loading
a7180877 3792 */
36f62f11 3793int ram_load_postcopy(QEMUFile *f, int channel)
a7180877
DDAG
3794{
3795 int flags = 0, ret = 0;
3796 bool place_needed = false;
1aa83678 3797 bool matches_target_page_size = false;
a7180877 3798 MigrationIncomingState *mis = migration_incoming_get_current();
36f62f11 3799 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
a7180877
DDAG
3800
3801 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3802 ram_addr_t addr;
a7180877
DDAG
3803 void *page_buffer = NULL;
3804 void *place_source = NULL;
df9ff5e1 3805 RAMBlock *block = NULL;
a7180877 3806 uint8_t ch;
644acf99 3807 int len;
a7180877
DDAG
3808
3809 addr = qemu_get_be64(f);
7a9ddfbf
PX
3810
3811 /*
3812 * If qemu file error, we should stop here, and then "addr"
3813 * may be invalid
3814 */
3815 ret = qemu_file_get_error(f);
3816 if (ret) {
3817 break;
3818 }
3819
a7180877
DDAG
3820 flags = addr & ~TARGET_PAGE_MASK;
3821 addr &= TARGET_PAGE_MASK;
3822
36f62f11 3823 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
644acf99
WY
3824 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3825 RAM_SAVE_FLAG_COMPRESS_PAGE)) {
c01b16ed 3826 block = ram_block_from_stream(mis, f, flags, channel);
6a23f639
DH
3827 if (!block) {
3828 ret = -EINVAL;
3829 break;
3830 }
4c4bad48 3831
898ba906
DH
3832 /*
3833 * Relying on used_length is racy and can result in false positives.
3834 * We might place pages beyond used_length in case RAM was shrunk
3835 * while in postcopy, which is fine - trying to place via
3836 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3837 */
3838 if (!block->host || addr >= block->postcopy_length) {
a7180877
DDAG
3839 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3840 ret = -EINVAL;
3841 break;
3842 }
77dadc3f 3843 tmp_page->target_pages++;
1aa83678 3844 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
a7180877 3845 /*
28abd200
DDAG
3846 * Postcopy requires that we place whole host pages atomically;
3847 * these may be huge pages for RAMBlocks that are backed by
3848 * hugetlbfs.
a7180877
DDAG
3849 * To make it atomic, the data is read into a temporary page
3850 * that's moved into place later.
3851 * The migration protocol uses, possibly smaller, target-pages
3852 * however the source ensures it always sends all the components
91ba442f 3853 * of a host page in one chunk.
a7180877 3854 */
77dadc3f 3855 page_buffer = tmp_page->tmp_huge_page +
6a23f639
DH
3856 host_page_offset_from_ram_block_offset(block, addr);
3857 /* If all TP are zero then we can optimise the place */
77dadc3f
PX
3858 if (tmp_page->target_pages == 1) {
3859 tmp_page->host_addr =
3860 host_page_from_ram_block_offset(block, addr);
3861 } else if (tmp_page->host_addr !=
3862 host_page_from_ram_block_offset(block, addr)) {
c53b7ddc 3863 /* not the 1st TP within the HP */
36f62f11 3864 error_report("Non-same host page detected on channel %d: "
cfc7dc8a
PX
3865 "Target host page %p, received host page %p "
3866 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
36f62f11 3867 channel, tmp_page->host_addr,
cfc7dc8a
PX
3868 host_page_from_ram_block_offset(block, addr),
3869 block->idstr, addr, tmp_page->target_pages);
6a23f639
DH
3870 ret = -EINVAL;
3871 break;
a7180877
DDAG
3872 }
3873
3874 /*
3875 * If it's the last part of a host page then we place the host
3876 * page
3877 */
77dadc3f
PX
3878 if (tmp_page->target_pages ==
3879 (block->page_size / TARGET_PAGE_SIZE)) {
4cbb3c63 3880 place_needed = true;
4cbb3c63 3881 }
77dadc3f 3882 place_source = tmp_page->tmp_huge_page;
a7180877
DDAG
3883 }
3884
3885 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
bb890ed5 3886 case RAM_SAVE_FLAG_ZERO:
a7180877 3887 ch = qemu_get_byte(f);
413d64fe
JQ
3888 if (ch != 0) {
3889 error_report("Found a zero page with value %d", ch);
3890 ret = -EINVAL;
3891 break;
3892 }
2e36bc1b
WY
3893 /*
3894 * Can skip to set page_buffer when
3895 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3896 */
413d64fe 3897 if (!matches_target_page_size) {
2e36bc1b
WY
3898 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3899 }
a7180877
DDAG
3900 break;
3901
3902 case RAM_SAVE_FLAG_PAGE:
77dadc3f 3903 tmp_page->all_zero = false;
1aa83678
PX
3904 if (!matches_target_page_size) {
3905 /* For huge pages, we always use temporary buffer */
a7180877
DDAG
3906 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3907 } else {
1aa83678
PX
3908 /*
3909 * For small pages that matches target page size, we
3910 * avoid the qemu_file copy. Instead we directly use
3911 * the buffer of QEMUFile to place the page. Note: we
3912 * cannot do any QEMUFile operation before using that
3913 * buffer to make sure the buffer is valid when
3914 * placing the page.
a7180877
DDAG
3915 */
3916 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3917 TARGET_PAGE_SIZE);
3918 }
3919 break;
644acf99 3920 case RAM_SAVE_FLAG_COMPRESS_PAGE:
77dadc3f 3921 tmp_page->all_zero = false;
644acf99
WY
3922 len = qemu_get_be32(f);
3923 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3924 error_report("Invalid compressed data length: %d", len);
3925 ret = -EINVAL;
3926 break;
3927 }
3928 decompress_data_with_multi_threads(f, page_buffer, len);
3929 break;
294e5a40
JQ
3930 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3931 multifd_recv_sync_main();
3932 break;
a7180877
DDAG
3933 case RAM_SAVE_FLAG_EOS:
3934 /* normal exit */
d4f34485
JQ
3935 if (migrate_multifd() &&
3936 migrate_multifd_flush_after_each_section()) {
b05292c2
JQ
3937 multifd_recv_sync_main();
3938 }
a7180877
DDAG
3939 break;
3940 default:
29fccade 3941 error_report("Unknown combination of migration flags: 0x%x"
a7180877
DDAG
3942 " (postcopy mode)", flags);
3943 ret = -EINVAL;
7a9ddfbf
PX
3944 break;
3945 }
3946
644acf99
WY
3947 /* Got the whole host page, wait for decompress before placing. */
3948 if (place_needed) {
3949 ret |= wait_for_decompress_done();
3950 }
3951
7a9ddfbf
PX
3952 /* Detect for any possible file errors */
3953 if (!ret && qemu_file_get_error(f)) {
3954 ret = qemu_file_get_error(f);
a7180877
DDAG
3955 }
3956
7a9ddfbf 3957 if (!ret && place_needed) {
77dadc3f
PX
3958 if (tmp_page->all_zero) {
3959 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
a7180877 3960 } else {
77dadc3f
PX
3961 ret = postcopy_place_page(mis, tmp_page->host_addr,
3962 place_source, block);
a7180877 3963 }
ddf35bdf 3964 place_needed = false;
77dadc3f 3965 postcopy_temp_page_reset(tmp_page);
a7180877 3966 }
a7180877
DDAG
3967 }
3968
3969 return ret;
3970}
3971
acab30b8
DHB
3972static bool postcopy_is_running(void)
3973{
3974 PostcopyState ps = postcopy_state_get();
3975 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3976}
3977
e6f4aa18
ZC
3978/*
3979 * Flush content of RAM cache into SVM's memory.
3980 * Only flush the pages that be dirtied by PVM or SVM or both.
3981 */
24fa16f8 3982void colo_flush_ram_cache(void)
e6f4aa18
ZC
3983{
3984 RAMBlock *block = NULL;
3985 void *dst_host;
3986 void *src_host;
3987 unsigned long offset = 0;
3988
1e493be5 3989 memory_global_dirty_log_sync(false);
9d638407 3990 qemu_mutex_lock(&ram_state->bitmap_mutex);
89ac5a1d
DDAG
3991 WITH_RCU_READ_LOCK_GUARD() {
3992 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3993 ramblock_sync_dirty_bitmap(ram_state, block);
3994 }
d1955d22 3995 }
d1955d22 3996
e6f4aa18 3997 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
89ac5a1d
DDAG
3998 WITH_RCU_READ_LOCK_GUARD() {
3999 block = QLIST_FIRST_RCU(&ram_list.blocks);
e6f4aa18 4000
89ac5a1d 4001 while (block) {
a6a83cef 4002 unsigned long num = 0;
e6f4aa18 4003
a6a83cef 4004 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
542147f4
DH
4005 if (!offset_in_ramblock(block,
4006 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
89ac5a1d 4007 offset = 0;
a6a83cef 4008 num = 0;
89ac5a1d
DDAG
4009 block = QLIST_NEXT_RCU(block, next);
4010 } else {
a6a83cef
RL
4011 unsigned long i = 0;
4012
4013 for (i = 0; i < num; i++) {
4014 migration_bitmap_clear_dirty(ram_state, block, offset + i);
4015 }
8bba004c
AR
4016 dst_host = block->host
4017 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
4018 src_host = block->colo_cache
4019 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
a6a83cef
RL
4020 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
4021 offset += num;
89ac5a1d 4022 }
e6f4aa18
ZC
4023 }
4024 }
9d638407 4025 qemu_mutex_unlock(&ram_state->bitmap_mutex);
e6f4aa18
ZC
4026 trace_colo_flush_ram_cache_end();
4027}
4028
a49d15a3
FR
4029static size_t ram_load_multifd_pages(void *host_addr, size_t size,
4030 uint64_t offset)
4031{
4032 MultiFDRecvData *data = multifd_get_recv_data();
4033
4034 data->opaque = host_addr;
4035 data->file_offset = offset;
4036 data->size = size;
4037
4038 if (!multifd_recv()) {
4039 return 0;
4040 }
4041
4042 return size;
4043}
4044
2f6b8826
FR
4045static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
4046 long num_pages, unsigned long *bitmap,
4047 Error **errp)
4048{
4049 ERRP_GUARD();
4050 unsigned long set_bit_idx, clear_bit_idx;
4051 ram_addr_t offset;
4052 void *host;
4053 size_t read, unread, size;
4054
4055 for (set_bit_idx = find_first_bit(bitmap, num_pages);
4056 set_bit_idx < num_pages;
4057 set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) {
4058
4059 clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1);
4060
4061 unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx);
4062 offset = set_bit_idx << TARGET_PAGE_BITS;
4063
4064 while (unread > 0) {
4065 host = host_from_ram_block_offset(block, offset);
4066 if (!host) {
4067 error_setg(errp, "page outside of ramblock %s range",
4068 block->idstr);
4069 return false;
4070 }
4071
4072 size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE);
4073
a49d15a3
FR
4074 if (migrate_multifd()) {
4075 read = ram_load_multifd_pages(host, size,
4076 block->pages_offset + offset);
4077 } else {
4078 read = qemu_get_buffer_at(f, host, size,
4079 block->pages_offset + offset);
4080 }
4081
2f6b8826
FR
4082 if (!read) {
4083 goto err;
4084 }
4085 offset += read;
4086 unread -= read;
4087 }
4088 }
4089
4090 return true;
4091
4092err:
4093 qemu_file_get_error_obj(f, errp);
4094 error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT
4095 "from file offset %" PRIx64 ": ", block->idstr, offset,
4096 block->pages_offset + offset);
4097 return false;
4098}
4099
4100static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
4101 ram_addr_t length, Error **errp)
4102{
4103 g_autofree unsigned long *bitmap = NULL;
4104 MappedRamHeader header;
4105 size_t bitmap_size;
4106 long num_pages;
4107
4108 if (!mapped_ram_read_header(f, &header, errp)) {
4109 return;
4110 }
4111
4112 block->pages_offset = header.pages_offset;
4113
4114 /*
4115 * Check the alignment of the file region that contains pages. We
4116 * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that
4117 * value to change in the future. Do only a sanity check with page
4118 * size alignment.
4119 */
4120 if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) {
4121 error_setg(errp,
4122 "Error reading ramblock %s pages, region has bad alignment",
4123 block->idstr);
4124 return;
4125 }
4126
4127 num_pages = length / header.page_size;
4128 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
4129
4130 bitmap = g_malloc0(bitmap_size);
4131 if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size,
4132 header.bitmap_offset) != bitmap_size) {
4133 error_setg(errp, "Error reading dirty bitmap");
4134 return;
4135 }
4136
4137 if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) {
4138 return;
4139 }
4140
4141 /* Skip pages array */
4142 qemu_set_offset(f, block->pages_offset + length, SEEK_SET);
4143
4144 return;
4145}
4146
2f5ced5b
NB
4147static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
4148{
4149 int ret = 0;
4150 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4151 bool postcopy_advised = migration_incoming_postcopy_advised();
5d220369 4152 int max_hg_page_size;
2f6b8826 4153 Error *local_err = NULL;
2f5ced5b
NB
4154
4155 assert(block);
4156
2f6b8826
FR
4157 if (migrate_mapped_ram()) {
4158 parse_ramblock_mapped_ram(f, block, length, &local_err);
4159 if (local_err) {
4160 error_report_err(local_err);
4161 return -EINVAL;
4162 }
4163 return 0;
4164 }
4165
2f5ced5b
NB
4166 if (!qemu_ram_is_migratable(block)) {
4167 error_report("block %s should not be migrated !", block->idstr);
4168 return -EINVAL;
4169 }
4170
4171 if (length != block->used_length) {
2f5ced5b
NB
4172 ret = qemu_ram_resize(block, length, &local_err);
4173 if (local_err) {
4174 error_report_err(local_err);
2c36076a 4175 return ret;
2f5ced5b
NB
4176 }
4177 }
5d220369
RH
4178
4179 /*
4180 * ??? Mirrors the previous value of qemu_host_page_size,
4181 * but is this really what was intended for the migration?
4182 */
4183 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
4184
2f5ced5b
NB
4185 /* For postcopy we need to check hugepage sizes match */
4186 if (postcopy_advised && migrate_postcopy_ram() &&
5d220369 4187 block->page_size != max_hg_page_size) {
2f5ced5b
NB
4188 uint64_t remote_page_size = qemu_get_be64(f);
4189 if (remote_page_size != block->page_size) {
4190 error_report("Mismatched RAM page size %s "
4191 "(local) %zd != %" PRId64, block->idstr,
4192 block->page_size, remote_page_size);
2c36076a 4193 return -EINVAL;
2f5ced5b
NB
4194 }
4195 }
4196 if (migrate_ignore_shared()) {
4197 hwaddr addr = qemu_get_be64(f);
4198 if (migrate_ram_is_ignored(block) &&
4199 block->mr->addr != addr) {
4200 error_report("Mismatched GPAs for block %s "
4201 "%" PRId64 "!= %" PRId64, block->idstr,
4202 (uint64_t)addr, (uint64_t)block->mr->addr);
2c36076a 4203 return -EINVAL;
2f5ced5b
NB
4204 }
4205 }
4206 ret = rdma_block_notification_handle(f, block->idstr);
4207 if (ret < 0) {
4208 qemu_file_set_error(f, ret);
4209 }
4210
4211 return ret;
4212}
4213
4214static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
4215{
4216 int ret = 0;
4217
4218 /* Synchronize RAM block list */
4219 while (!ret && total_ram_bytes) {
4220 RAMBlock *block;
4221 char id[256];
4222 ram_addr_t length;
4223 int len = qemu_get_byte(f);
4224
4225 qemu_get_buffer(f, (uint8_t *)id, len);
4226 id[len] = 0;
4227 length = qemu_get_be64(f);
4228
4229 block = qemu_ram_block_by_name(id);
4230 if (block) {
4231 ret = parse_ramblock(f, block, length);
4232 } else {
4233 error_report("Unknown ramblock \"%s\", cannot accept "
4234 "migration", id);
4235 ret = -EINVAL;
4236 }
4237 total_ram_bytes -= length;
4238 }
4239
4240 return ret;
4241}
4242
10da4a36
WY
4243/**
4244 * ram_load_precopy: load pages in precopy case
4245 *
4246 * Returns 0 for success or -errno in case of error
4247 *
4248 * Called in precopy mode by ram_load().
4249 * rcu_read_lock is taken prior to this being called.
4250 *
4251 * @f: QEMUFile where to send the data
4252 */
4253static int ram_load_precopy(QEMUFile *f)
56e93d26 4254{
755e8d7c 4255 MigrationIncomingState *mis = migration_incoming_get_current();
e65cec5e 4256 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
2f5ced5b 4257
a7a94d14 4258 if (!migrate_compress()) {
edc60127
JQ
4259 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4260 }
a7180877 4261
9d01778a
FR
4262 if (migrate_mapped_ram()) {
4263 invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH |
4264 RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE |
4265 RAM_SAVE_FLAG_ZERO);
4266 }
4267
10da4a36 4268 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2f5ced5b 4269 ram_addr_t addr;
0393031a 4270 void *host = NULL, *host_bak = NULL;
56e93d26
JQ
4271 uint8_t ch;
4272
e65cec5e
YK
4273 /*
4274 * Yield periodically to let main loop run, but an iteration of
4275 * the main loop is expensive, so do it each some iterations
4276 */
4277 if ((i & 32767) == 0 && qemu_in_coroutine()) {
4278 aio_co_schedule(qemu_get_current_aio_context(),
4279 qemu_coroutine_self());
4280 qemu_coroutine_yield();
4281 }
4282 i++;
4283
56e93d26 4284 addr = qemu_get_be64(f);
12ab1e4f
MD
4285 ret = qemu_file_get_error(f);
4286 if (ret) {
4287 error_report("Getting RAM address failed");
4288 break;
4289 }
4290
56e93d26
JQ
4291 flags = addr & ~TARGET_PAGE_MASK;
4292 addr &= TARGET_PAGE_MASK;
4293
edc60127 4294 if (flags & invalid_flags) {
9d01778a
FR
4295 error_report("Unexpected RAM flags: %d", flags & invalid_flags);
4296
edc60127
JQ
4297 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4298 error_report("Received an unexpected compressed page");
4299 }
4300
4301 ret = -EINVAL;
4302 break;
4303 }
4304
bb890ed5 4305 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
a776aa15 4306 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
c01b16ed
PX
4307 RAMBlock *block = ram_block_from_stream(mis, f, flags,
4308 RAM_CHANNEL_PRECOPY);
4c4bad48 4309
0393031a 4310 host = host_from_ram_block_offset(block, addr);
13af18f2 4311 /*
0393031a
HZ
4312 * After going into COLO stage, we should not load the page
4313 * into SVM's memory directly, we put them into colo_cache firstly.
4314 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
4315 * Previously, we copied all these memory in preparing stage of COLO
4316 * while we need to stop VM, which is a time-consuming process.
4317 * Here we optimize it by a trick, back-up every page while in
4318 * migration process while COLO is enabled, though it affects the
4319 * speed of the migration, but it obviously reduce the downtime of
4320 * back-up all SVM'S memory in COLO preparing stage.
13af18f2 4321 */
0393031a
HZ
4322 if (migration_incoming_colo_enabled()) {
4323 if (migration_incoming_in_colo_state()) {
4324 /* In COLO stage, put all pages into cache temporarily */
8af66371 4325 host = colo_cache_from_block_offset(block, addr, true);
0393031a
HZ
4326 } else {
4327 /*
4328 * In migration stage but before COLO stage,
4329 * Put all pages into both cache and SVM's memory.
4330 */
8af66371 4331 host_bak = colo_cache_from_block_offset(block, addr, false);
0393031a 4332 }
13af18f2 4333 }
a776aa15
DDAG
4334 if (!host) {
4335 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4336 ret = -EINVAL;
4337 break;
4338 }
13af18f2
ZC
4339 if (!migration_incoming_in_colo_state()) {
4340 ramblock_recv_bitmap_set(block, host);
4341 }
4342
1db9d8e5 4343 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
a776aa15
DDAG
4344 }
4345
56e93d26
JQ
4346 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4347 case RAM_SAVE_FLAG_MEM_SIZE:
2f5ced5b 4348 ret = parse_ramblocks(f, addr);
1a6e217c
PX
4349 /*
4350 * For mapped-ram migration (to a file) using multifd, we sync
4351 * once and for all here to make sure all tasks we queued to
4352 * multifd threads are completed, so that all the ramblocks
4353 * (including all the guest memory pages within) are fully
4354 * loaded after this sync returns.
4355 */
9d01778a
FR
4356 if (migrate_mapped_ram()) {
4357 multifd_recv_sync_main();
4358 }
56e93d26 4359 break;
a776aa15 4360
bb890ed5 4361 case RAM_SAVE_FLAG_ZERO:
56e93d26 4362 ch = qemu_get_byte(f);
413d64fe
JQ
4363 if (ch != 0) {
4364 error_report("Found a zero page with value %d", ch);
4365 ret = -EINVAL;
4366 break;
4367 }
7091dabe 4368 ram_handle_zero(host, TARGET_PAGE_SIZE);
56e93d26 4369 break;
a776aa15 4370
56e93d26 4371 case RAM_SAVE_FLAG_PAGE:
56e93d26
JQ
4372 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4373 break;
56e93d26 4374
a776aa15 4375 case RAM_SAVE_FLAG_COMPRESS_PAGE:
56e93d26
JQ
4376 len = qemu_get_be32(f);
4377 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4378 error_report("Invalid compressed data length: %d", len);
4379 ret = -EINVAL;
4380 break;
4381 }
c1bc6626 4382 decompress_data_with_multi_threads(f, host, len);
56e93d26 4383 break;
a776aa15 4384
56e93d26 4385 case RAM_SAVE_FLAG_XBZRLE:
56e93d26
JQ
4386 if (load_xbzrle(f, addr, host) < 0) {
4387 error_report("Failed to decompress XBZRLE page at "
4388 RAM_ADDR_FMT, addr);
4389 ret = -EINVAL;
4390 break;
4391 }
4392 break;
294e5a40
JQ
4393 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4394 multifd_recv_sync_main();
4395 break;
56e93d26
JQ
4396 case RAM_SAVE_FLAG_EOS:
4397 /* normal exit */
d4f34485 4398 if (migrate_multifd() &&
9d01778a
FR
4399 migrate_multifd_flush_after_each_section() &&
4400 /*
4401 * Mapped-ram migration flushes once and for all after
4402 * parsing ramblocks. Always ignore EOS for it.
4403 */
4404 !migrate_mapped_ram()) {
b05292c2
JQ
4405 multifd_recv_sync_main();
4406 }
56e93d26 4407 break;
5f1e7540 4408 case RAM_SAVE_FLAG_HOOK:
b1b38387 4409 ret = rdma_registration_handle(f);
f6d6c089
JQ
4410 if (ret < 0) {
4411 qemu_file_set_error(f, ret);
4412 }
5f1e7540 4413 break;
56e93d26 4414 default:
5f1e7540
JQ
4415 error_report("Unknown combination of migration flags: 0x%x", flags);
4416 ret = -EINVAL;
56e93d26
JQ
4417 }
4418 if (!ret) {
4419 ret = qemu_file_get_error(f);
4420 }
0393031a
HZ
4421 if (!ret && host_bak) {
4422 memcpy(host_bak, host, TARGET_PAGE_SIZE);
4423 }
56e93d26
JQ
4424 }
4425
ca1a6b70 4426 ret |= wait_for_decompress_done();
10da4a36
WY
4427 return ret;
4428}
4429
4430static int ram_load(QEMUFile *f, void *opaque, int version_id)
4431{
4432 int ret = 0;
4433 static uint64_t seq_iter;
4434 /*
4435 * If system is running in postcopy mode, page inserts to host memory must
4436 * be atomic
4437 */
4438 bool postcopy_running = postcopy_is_running();
4439
4440 seq_iter++;
4441
4442 if (version_id != 4) {
4443 return -EINVAL;
4444 }
4445
4446 /*
4447 * This RCU critical section can be very long running.
4448 * When RCU reclaims in the code start to become numerous,
4449 * it will be necessary to reduce the granularity of this
4450 * critical section.
4451 */
89ac5a1d
DDAG
4452 WITH_RCU_READ_LOCK_GUARD() {
4453 if (postcopy_running) {
36f62f11
PX
4454 /*
4455 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of
4456 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4457 * service fast page faults.
4458 */
4459 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
89ac5a1d
DDAG
4460 } else {
4461 ret = ram_load_precopy(f);
4462 }
10da4a36 4463 }
55c4446b 4464 trace_ram_load_complete(ret, seq_iter);
e6f4aa18 4465
56e93d26
JQ
4466 return ret;
4467}
4468
c6467627
VSO
4469static bool ram_has_postcopy(void *opaque)
4470{
469dd51b 4471 RAMBlock *rb;
fbd162e6 4472 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
469dd51b
JH
4473 if (ramblock_is_pmem(rb)) {
4474 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4475 "is not supported now!", rb->idstr, rb->host);
4476 return false;
4477 }
4478 }
4479
c6467627
VSO
4480 return migrate_postcopy_ram();
4481}
4482
edd090c7
PX
4483/* Sync all the dirty bitmap with destination VM. */
4484static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4485{
4486 RAMBlock *block;
4487 QEMUFile *file = s->to_dst_file;
edd090c7
PX
4488
4489 trace_ram_dirty_bitmap_sync_start();
4490
1015ff54 4491 qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
fbd162e6 4492 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
edd090c7
PX
4493 qemu_savevm_send_recv_bitmap(file, block->idstr);
4494 trace_ram_dirty_bitmap_request(block->idstr);
1015ff54 4495 qatomic_inc(&rs->postcopy_bmap_sync_requested);
edd090c7
PX
4496 }
4497
4498 trace_ram_dirty_bitmap_sync_wait();
4499
4500 /* Wait until all the ramblocks' dirty bitmap synced */
1015ff54 4501 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
f8c543e8
PX
4502 if (migration_rp_wait(s)) {
4503 return -1;
4504 }
edd090c7
PX
4505 }
4506
4507 trace_ram_dirty_bitmap_sync_complete();
4508
4509 return 0;
4510}
4511
a335debb
PX
4512/*
4513 * Read the received bitmap, revert it as the initial dirty bitmap.
4514 * This is only used when the postcopy migration is paused but wants
4515 * to resume from a middle point.
88577f32
PX
4516 *
4517 * Returns true if succeeded, false for errors.
a335debb 4518 */
88577f32 4519bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp)
a335debb 4520{
43044ac0 4521 /* from_dst_file is always valid because we're within rp_thread */
a335debb 4522 QEMUFile *file = s->rp_state.from_dst_file;
1a36e4c9
PMD
4523 g_autofree unsigned long *le_bitmap = NULL;
4524 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
a725ef9f 4525 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
a335debb 4526 uint64_t size, end_mark;
1015ff54 4527 RAMState *rs = ram_state;
a335debb
PX
4528
4529 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4530
4531 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
7aa6070d
PX
4532 error_setg(errp, "Reload bitmap in incorrect state %s",
4533 MigrationStatus_str(s->state));
88577f32 4534 return false;
a335debb
PX
4535 }
4536
4537 /*
4538 * Note: see comments in ramblock_recv_bitmap_send() on why we
3a4452d8 4539 * need the endianness conversion, and the paddings.
a335debb
PX
4540 */
4541 local_size = ROUND_UP(local_size, 8);
4542
4543 /* Add paddings */
4544 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4545
4546 size = qemu_get_be64(file);
4547
4548 /* The size of the bitmap should match with our ramblock */
4549 if (size != local_size) {
7aa6070d
PX
4550 error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64
4551 " != 0x%"PRIx64")", block->idstr, size, local_size);
88577f32 4552 return false;
a335debb
PX
4553 }
4554
4555 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4556 end_mark = qemu_get_be64(file);
4557
88577f32
PX
4558 if (qemu_file_get_error(file) || size != local_size) {
4559 error_setg(errp, "read bitmap failed for ramblock '%s': "
4560 "(size 0x%"PRIx64", got: 0x%"PRIx64")",
4561 block->idstr, local_size, size);
4562 return false;
a335debb
PX
4563 }
4564
4565 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
7aa6070d
PX
4566 error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64,
4567 block->idstr, end_mark);
88577f32 4568 return false;
a335debb
PX
4569 }
4570
4571 /*
3a4452d8 4572 * Endianness conversion. We are during postcopy (though paused).
a335debb
PX
4573 * The dirty bitmap won't change. We can directly modify it.
4574 */
4575 bitmap_from_le(block->bmap, le_bitmap, nbits);
4576
4577 /*
4578 * What we received is "received bitmap". Revert it as the initial
4579 * dirty bitmap for this ramblock.
4580 */
4581 bitmap_complement(block->bmap, block->bmap, nbits);
4582
be39b4cd
DH
4583 /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4584 ramblock_dirty_bitmap_clear_discarded_pages(block);
4585
4586 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
a335debb
PX
4587 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4588
1015ff54
PX
4589 qatomic_dec(&rs->postcopy_bmap_sync_requested);
4590
edd090c7 4591 /*
5e79a4bf
PX
4592 * We succeeded to sync bitmap for current ramblock. Always kick the
4593 * migration thread to check whether all requested bitmaps are
4594 * reloaded. NOTE: it's racy to only kick when requested==0, because
4595 * we don't know whether the migration thread may still be increasing
4596 * it.
edd090c7 4597 */
5e79a4bf 4598 migration_rp_kick(s);
edd090c7 4599
88577f32 4600 return true;
a335debb
PX
4601}
4602
edd090c7
PX
4603static int ram_resume_prepare(MigrationState *s, void *opaque)
4604{
4605 RAMState *rs = *(RAMState **)opaque;
08614f34 4606 int ret;
edd090c7 4607
08614f34
PX
4608 ret = ram_dirty_bitmap_sync_all(s, rs);
4609 if (ret) {
4610 return ret;
4611 }
4612
4613 ram_state_resume_prepare(rs, s->to_dst_file);
4614
4615 return 0;
edd090c7
PX
4616}
4617
36f62f11
PX
4618void postcopy_preempt_shutdown_file(MigrationState *s)
4619{
4620 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4621 qemu_fflush(s->postcopy_qemufile_src);
4622}
4623
56e93d26 4624static SaveVMHandlers savevm_ram_handlers = {
9907e842 4625 .save_setup = ram_save_setup,
56e93d26 4626 .save_live_iterate = ram_save_iterate,
763c906b 4627 .save_live_complete_postcopy = ram_save_complete,
a3e06c3d 4628 .save_live_complete_precopy = ram_save_complete,
c6467627 4629 .has_postcopy = ram_has_postcopy,
c8df4a7a
JQ
4630 .state_pending_exact = ram_state_pending_exact,
4631 .state_pending_estimate = ram_state_pending_estimate,
56e93d26 4632 .load_state = ram_load,
f265e0e4
JQ
4633 .save_cleanup = ram_save_cleanup,
4634 .load_setup = ram_load_setup,
4635 .load_cleanup = ram_load_cleanup,
edd090c7 4636 .resume_prepare = ram_resume_prepare,
56e93d26
JQ
4637};
4638
c7c0e724
DH
4639static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4640 size_t old_size, size_t new_size)
4641{
cc61c703 4642 PostcopyState ps = postcopy_state_get();
c7c0e724
DH
4643 ram_addr_t offset;
4644 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4645 Error *err = NULL;
4646
f75ed59f
DF
4647 if (!rb) {
4648 error_report("RAM block not found");
4649 return;
4650 }
4651
f161c88a 4652 if (migrate_ram_is_ignored(rb)) {
c7c0e724
DH
4653 return;
4654 }
4655
4656 if (!migration_is_idle()) {
4657 /*
4658 * Precopy code on the source cannot deal with the size of RAM blocks
4659 * changing at random points in time - especially after sending the
4660 * RAM block sizes in the migration stream, they must no longer change.
4661 * Abort and indicate a proper reason.
4662 */
4663 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
458fecca 4664 migration_cancel(err);
c7c0e724 4665 error_free(err);
c7c0e724 4666 }
cc61c703
DH
4667
4668 switch (ps) {
4669 case POSTCOPY_INCOMING_ADVISE:
4670 /*
4671 * Update what ram_postcopy_incoming_init()->init_range() does at the
4672 * time postcopy was advised. Syncing RAM blocks with the source will
4673 * result in RAM resizes.
4674 */
4675 if (old_size < new_size) {
4676 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4677 error_report("RAM block '%s' discard of resized RAM failed",
4678 rb->idstr);
4679 }
4680 }
898ba906 4681 rb->postcopy_length = new_size;
cc61c703
DH
4682 break;
4683 case POSTCOPY_INCOMING_NONE:
4684 case POSTCOPY_INCOMING_RUNNING:
4685 case POSTCOPY_INCOMING_END:
4686 /*
4687 * Once our guest is running, postcopy does no longer care about
4688 * resizes. When growing, the new memory was not available on the
4689 * source, no handler needed.
4690 */
4691 break;
4692 default:
4693 error_report("RAM block '%s' resized during postcopy state: %d",
4694 rb->idstr, ps);
4695 exit(-1);
4696 }
c7c0e724
DH
4697}
4698
4699static RAMBlockNotifier ram_mig_ram_notifier = {
4700 .ram_block_resized = ram_mig_ram_block_resized,
4701};
4702
56e93d26
JQ
4703void ram_mig_init(void)
4704{
4705 qemu_mutex_init(&XBZRLE.lock);
ce62df53 4706 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
c7c0e724 4707 ram_block_notifier_add(&ram_mig_ram_notifier);
56e93d26 4708}