]> git.proxmox.com Git - mirror_qemu.git/blame - migration/ram.c
ram: Split dirty bitmap by RAMBlock
[mirror_qemu.git] / migration / ram.c
CommitLineData
56e93d26
JQ
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
76cc7b58
JQ
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
56e93d26
JQ
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
1393a485 28#include "qemu/osdep.h"
33c11879
PB
29#include "qemu-common.h"
30#include "cpu.h"
56e93d26 31#include <zlib.h>
4addcd4f 32#include "qapi-event.h"
f348b6d1 33#include "qemu/cutils.h"
56e93d26
JQ
34#include "qemu/bitops.h"
35#include "qemu/bitmap.h"
7205c9ec
JQ
36#include "qemu/timer.h"
37#include "qemu/main-loop.h"
56e93d26 38#include "migration/migration.h"
e0b266f0 39#include "migration/postcopy-ram.h"
56e93d26
JQ
40#include "exec/address-spaces.h"
41#include "migration/page_cache.h"
56e93d26 42#include "qemu/error-report.h"
56e93d26 43#include "trace.h"
56e93d26 44#include "exec/ram_addr.h"
56e93d26 45#include "qemu/rcu_queue.h"
a91246c9 46#include "migration/colo.h"
56e93d26 47
56e93d26
JQ
48/***********************************************************/
49/* ram save/restore */
50
51#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
52#define RAM_SAVE_FLAG_COMPRESS 0x02
53#define RAM_SAVE_FLAG_MEM_SIZE 0x04
54#define RAM_SAVE_FLAG_PAGE 0x08
55#define RAM_SAVE_FLAG_EOS 0x10
56#define RAM_SAVE_FLAG_CONTINUE 0x20
57#define RAM_SAVE_FLAG_XBZRLE 0x40
58/* 0x80 is reserved in migration.h start with 0x100 next */
59#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
60
adb65dec 61static uint8_t *ZERO_TARGET_PAGE;
56e93d26
JQ
62
63static inline bool is_zero_range(uint8_t *p, uint64_t size)
64{
a1febc49 65 return buffer_is_zero(p, size);
56e93d26
JQ
66}
67
68/* struct contains XBZRLE cache and a static page
69 used by the compression */
70static struct {
71 /* buffer used for XBZRLE encoding */
72 uint8_t *encoded_buf;
73 /* buffer for storing page content */
74 uint8_t *current_buf;
75 /* Cache for XBZRLE, Protected by lock. */
76 PageCache *cache;
77 QemuMutex lock;
78} XBZRLE;
79
80/* buffer used for XBZRLE decoding */
81static uint8_t *xbzrle_decoded_buf;
82
83static void XBZRLE_cache_lock(void)
84{
85 if (migrate_use_xbzrle())
86 qemu_mutex_lock(&XBZRLE.lock);
87}
88
89static void XBZRLE_cache_unlock(void)
90{
91 if (migrate_use_xbzrle())
92 qemu_mutex_unlock(&XBZRLE.lock);
93}
94
3d0684b2
JQ
95/**
96 * xbzrle_cache_resize: resize the xbzrle cache
97 *
98 * This function is called from qmp_migrate_set_cache_size in main
99 * thread, possibly while a migration is in progress. A running
100 * migration may be using the cache and might finish during this call,
101 * hence changes to the cache are protected by XBZRLE.lock().
102 *
103 * Returns the new_size or negative in case of error.
104 *
105 * @new_size: new cache size
56e93d26
JQ
106 */
107int64_t xbzrle_cache_resize(int64_t new_size)
108{
109 PageCache *new_cache;
110 int64_t ret;
111
112 if (new_size < TARGET_PAGE_SIZE) {
113 return -1;
114 }
115
116 XBZRLE_cache_lock();
117
118 if (XBZRLE.cache != NULL) {
119 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
120 goto out_new_size;
121 }
122 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
123 TARGET_PAGE_SIZE);
124 if (!new_cache) {
125 error_report("Error creating cache");
126 ret = -1;
127 goto out;
128 }
129
130 cache_fini(XBZRLE.cache);
131 XBZRLE.cache = new_cache;
132 }
133
134out_new_size:
135 ret = pow2floor(new_size);
136out:
137 XBZRLE_cache_unlock();
138 return ret;
139}
140
ec481c6c
JQ
141/*
142 * An outstanding page request, on the source, having been received
143 * and queued
144 */
145struct RAMSrcPageRequest {
146 RAMBlock *rb;
147 hwaddr offset;
148 hwaddr len;
149
150 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
151};
152
6f37bb8b
JQ
153/* State of RAM for migration */
154struct RAMState {
204b88b8
JQ
155 /* QEMUFile used for this migration */
156 QEMUFile *f;
6f37bb8b
JQ
157 /* Last block that we have visited searching for dirty pages */
158 RAMBlock *last_seen_block;
159 /* Last block from where we have sent data */
160 RAMBlock *last_sent_block;
269ace29
JQ
161 /* Last dirty target page we have sent */
162 ram_addr_t last_page;
6f37bb8b
JQ
163 /* last ram version we have seen */
164 uint32_t last_version;
165 /* We are in the first round */
166 bool ram_bulk_stage;
8d820d6f
JQ
167 /* How many times we have dirty too many pages */
168 int dirty_rate_high_cnt;
5a987738
JQ
169 /* How many times we have synchronized the bitmap */
170 uint64_t bitmap_sync_count;
f664da80
JQ
171 /* these variables are used for bitmap sync */
172 /* last time we did a full bitmap_sync */
173 int64_t time_last_bitmap_sync;
eac74159 174 /* bytes transferred at start_time */
c4bdf0cf 175 uint64_t bytes_xfer_prev;
a66cd90c 176 /* number of dirty pages since start_time */
68908ed6 177 uint64_t num_dirty_pages_period;
b5833fde
JQ
178 /* xbzrle misses since the beginning of the period */
179 uint64_t xbzrle_cache_miss_prev;
36040d9c
JQ
180 /* number of iterations at the beginning of period */
181 uint64_t iterations_prev;
f7ccd61b
JQ
182 /* Accounting fields */
183 /* number of zero pages. It used to be pages filled by the same char. */
184 uint64_t zero_pages;
b4d1c6e7
JQ
185 /* number of normal transferred pages */
186 uint64_t norm_pages;
23b28c3c
JQ
187 /* Iterations since start */
188 uint64_t iterations;
f36ada95
JQ
189 /* xbzrle transmitted bytes. Notice that this is with
190 * compression, they can't be calculated from the pages */
07ed50a2 191 uint64_t xbzrle_bytes;
f36ada95
JQ
192 /* xbzrle transmmited pages */
193 uint64_t xbzrle_pages;
544c36f1
JQ
194 /* xbzrle number of cache miss */
195 uint64_t xbzrle_cache_miss;
b07016b6
JQ
196 /* xbzrle miss rate */
197 double xbzrle_cache_miss_rate;
180f61f7
JQ
198 /* xbzrle number of overflows */
199 uint64_t xbzrle_overflows;
0d8ec885
JQ
200 /* number of dirty bits in the bitmap */
201 uint64_t migration_dirty_pages;
2f4fde93
JQ
202 /* total number of bytes transferred */
203 uint64_t bytes_transferred;
47ad8619
JQ
204 /* number of dirtied pages in the last second */
205 uint64_t dirty_pages_rate;
96506894
JQ
206 /* Count of requests incoming from destination */
207 uint64_t postcopy_requests;
108cfae0
JQ
208 /* protects modification of the bitmap */
209 QemuMutex bitmap_mutex;
68a098f3
JQ
210 /* The RAMBlock used in the last src_page_requests */
211 RAMBlock *last_req_rb;
ec481c6c
JQ
212 /* Queue of outstanding page requests from the destination */
213 QemuMutex src_page_req_mutex;
214 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests;
6f37bb8b
JQ
215};
216typedef struct RAMState RAMState;
217
218static RAMState ram_state;
219
56e93d26
JQ
220uint64_t dup_mig_pages_transferred(void)
221{
f7ccd61b 222 return ram_state.zero_pages;
56e93d26
JQ
223}
224
56e93d26
JQ
225uint64_t norm_mig_pages_transferred(void)
226{
b4d1c6e7 227 return ram_state.norm_pages;
56e93d26
JQ
228}
229
230uint64_t xbzrle_mig_bytes_transferred(void)
231{
07ed50a2 232 return ram_state.xbzrle_bytes;
56e93d26
JQ
233}
234
235uint64_t xbzrle_mig_pages_transferred(void)
236{
f36ada95 237 return ram_state.xbzrle_pages;
56e93d26
JQ
238}
239
240uint64_t xbzrle_mig_pages_cache_miss(void)
241{
544c36f1 242 return ram_state.xbzrle_cache_miss;
56e93d26
JQ
243}
244
245double xbzrle_mig_cache_miss_rate(void)
246{
b07016b6 247 return ram_state.xbzrle_cache_miss_rate;
56e93d26
JQ
248}
249
250uint64_t xbzrle_mig_pages_overflow(void)
251{
180f61f7 252 return ram_state.xbzrle_overflows;
56e93d26
JQ
253}
254
9edabd4d 255uint64_t ram_bytes_transferred(void)
0d8ec885 256{
9edabd4d 257 return ram_state.bytes_transferred;
0d8ec885
JQ
258}
259
9edabd4d 260uint64_t ram_bytes_remaining(void)
2f4fde93 261{
9edabd4d 262 return ram_state.migration_dirty_pages * TARGET_PAGE_SIZE;
2f4fde93
JQ
263}
264
42d219d3
JQ
265uint64_t ram_dirty_sync_count(void)
266{
267 return ram_state.bitmap_sync_count;
268}
269
47ad8619
JQ
270uint64_t ram_dirty_pages_rate(void)
271{
272 return ram_state.dirty_pages_rate;
273}
274
96506894
JQ
275uint64_t ram_postcopy_requests(void)
276{
277 return ram_state.postcopy_requests;
278}
279
b8fb8cb7
DDAG
280/* used by the search for pages to send */
281struct PageSearchStatus {
282 /* Current block being searched */
283 RAMBlock *block;
a935e30f
JQ
284 /* Current page to search from */
285 unsigned long page;
b8fb8cb7
DDAG
286 /* Set once we wrap around */
287 bool complete_round;
288};
289typedef struct PageSearchStatus PageSearchStatus;
290
56e93d26 291struct CompressParam {
56e93d26 292 bool done;
90e56fb4 293 bool quit;
56e93d26
JQ
294 QEMUFile *file;
295 QemuMutex mutex;
296 QemuCond cond;
297 RAMBlock *block;
298 ram_addr_t offset;
299};
300typedef struct CompressParam CompressParam;
301
302struct DecompressParam {
73a8912b 303 bool done;
90e56fb4 304 bool quit;
56e93d26
JQ
305 QemuMutex mutex;
306 QemuCond cond;
307 void *des;
d341d9f3 308 uint8_t *compbuf;
56e93d26
JQ
309 int len;
310};
311typedef struct DecompressParam DecompressParam;
312
313static CompressParam *comp_param;
314static QemuThread *compress_threads;
315/* comp_done_cond is used to wake up the migration thread when
316 * one of the compression threads has finished the compression.
317 * comp_done_lock is used to co-work with comp_done_cond.
318 */
0d9f9a5c
LL
319static QemuMutex comp_done_lock;
320static QemuCond comp_done_cond;
56e93d26
JQ
321/* The empty QEMUFileOps will be used by file in CompressParam */
322static const QEMUFileOps empty_ops = { };
323
56e93d26
JQ
324static DecompressParam *decomp_param;
325static QemuThread *decompress_threads;
73a8912b
LL
326static QemuMutex decomp_done_lock;
327static QemuCond decomp_done_cond;
56e93d26 328
a7a9a88f
LL
329static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
330 ram_addr_t offset);
56e93d26
JQ
331
332static void *do_data_compress(void *opaque)
333{
334 CompressParam *param = opaque;
a7a9a88f
LL
335 RAMBlock *block;
336 ram_addr_t offset;
56e93d26 337
a7a9a88f 338 qemu_mutex_lock(&param->mutex);
90e56fb4 339 while (!param->quit) {
a7a9a88f
LL
340 if (param->block) {
341 block = param->block;
342 offset = param->offset;
343 param->block = NULL;
344 qemu_mutex_unlock(&param->mutex);
345
346 do_compress_ram_page(param->file, block, offset);
347
0d9f9a5c 348 qemu_mutex_lock(&comp_done_lock);
a7a9a88f 349 param->done = true;
0d9f9a5c
LL
350 qemu_cond_signal(&comp_done_cond);
351 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
352
353 qemu_mutex_lock(&param->mutex);
354 } else {
56e93d26
JQ
355 qemu_cond_wait(&param->cond, &param->mutex);
356 }
56e93d26 357 }
a7a9a88f 358 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
359
360 return NULL;
361}
362
363static inline void terminate_compression_threads(void)
364{
365 int idx, thread_count;
366
367 thread_count = migrate_compress_threads();
3d0684b2 368
56e93d26
JQ
369 for (idx = 0; idx < thread_count; idx++) {
370 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 371 comp_param[idx].quit = true;
56e93d26
JQ
372 qemu_cond_signal(&comp_param[idx].cond);
373 qemu_mutex_unlock(&comp_param[idx].mutex);
374 }
375}
376
377void migrate_compress_threads_join(void)
378{
379 int i, thread_count;
380
381 if (!migrate_use_compression()) {
382 return;
383 }
384 terminate_compression_threads();
385 thread_count = migrate_compress_threads();
386 for (i = 0; i < thread_count; i++) {
387 qemu_thread_join(compress_threads + i);
388 qemu_fclose(comp_param[i].file);
389 qemu_mutex_destroy(&comp_param[i].mutex);
390 qemu_cond_destroy(&comp_param[i].cond);
391 }
0d9f9a5c
LL
392 qemu_mutex_destroy(&comp_done_lock);
393 qemu_cond_destroy(&comp_done_cond);
56e93d26
JQ
394 g_free(compress_threads);
395 g_free(comp_param);
56e93d26
JQ
396 compress_threads = NULL;
397 comp_param = NULL;
56e93d26
JQ
398}
399
400void migrate_compress_threads_create(void)
401{
402 int i, thread_count;
403
404 if (!migrate_use_compression()) {
405 return;
406 }
56e93d26
JQ
407 thread_count = migrate_compress_threads();
408 compress_threads = g_new0(QemuThread, thread_count);
409 comp_param = g_new0(CompressParam, thread_count);
0d9f9a5c
LL
410 qemu_cond_init(&comp_done_cond);
411 qemu_mutex_init(&comp_done_lock);
56e93d26 412 for (i = 0; i < thread_count; i++) {
e110aa91
C
413 /* comp_param[i].file is just used as a dummy buffer to save data,
414 * set its ops to empty.
56e93d26
JQ
415 */
416 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
417 comp_param[i].done = true;
90e56fb4 418 comp_param[i].quit = false;
56e93d26
JQ
419 qemu_mutex_init(&comp_param[i].mutex);
420 qemu_cond_init(&comp_param[i].cond);
421 qemu_thread_create(compress_threads + i, "compress",
422 do_data_compress, comp_param + i,
423 QEMU_THREAD_JOINABLE);
424 }
425}
426
427/**
3d0684b2 428 * save_page_header: write page header to wire
56e93d26
JQ
429 *
430 * If this is the 1st block, it also writes the block identification
431 *
3d0684b2 432 * Returns the number of bytes written
56e93d26
JQ
433 *
434 * @f: QEMUFile where to send the data
435 * @block: block that contains the page we want to send
436 * @offset: offset inside the block for the page
437 * in the lower bits, it contains flags
438 */
24795694 439static size_t save_page_header(RAMState *rs, RAMBlock *block, ram_addr_t offset)
56e93d26 440{
9f5f380b 441 size_t size, len;
56e93d26 442
24795694
JQ
443 if (block == rs->last_sent_block) {
444 offset |= RAM_SAVE_FLAG_CONTINUE;
445 }
446 qemu_put_be64(rs->f, offset);
56e93d26
JQ
447 size = 8;
448
449 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
9f5f380b 450 len = strlen(block->idstr);
24795694
JQ
451 qemu_put_byte(rs->f, len);
452 qemu_put_buffer(rs->f, (uint8_t *)block->idstr, len);
9f5f380b 453 size += 1 + len;
24795694 454 rs->last_sent_block = block;
56e93d26
JQ
455 }
456 return size;
457}
458
3d0684b2
JQ
459/**
460 * mig_throttle_guest_down: throotle down the guest
461 *
462 * Reduce amount of guest cpu execution to hopefully slow down memory
463 * writes. If guest dirty memory rate is reduced below the rate at
464 * which we can transfer pages to the destination then we should be
465 * able to complete migration. Some workloads dirty memory way too
466 * fast and will not effectively converge, even with auto-converge.
070afca2
JH
467 */
468static void mig_throttle_guest_down(void)
469{
470 MigrationState *s = migrate_get_current();
2594f56d
DB
471 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
472 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
070afca2
JH
473
474 /* We have not started throttling yet. Let's start it. */
475 if (!cpu_throttle_active()) {
476 cpu_throttle_set(pct_initial);
477 } else {
478 /* Throttling already on, just increase the rate */
479 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
480 }
481}
482
3d0684b2
JQ
483/**
484 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
485 *
6f37bb8b 486 * @rs: current RAM state
3d0684b2
JQ
487 * @current_addr: address for the zero page
488 *
489 * Update the xbzrle cache to reflect a page that's been sent as all 0.
56e93d26
JQ
490 * The important thing is that a stale (not-yet-0'd) page be replaced
491 * by the new data.
492 * As a bonus, if the page wasn't in the cache it gets added so that
3d0684b2 493 * when a small write is made into the 0'd page it gets XBZRLE sent.
56e93d26 494 */
6f37bb8b 495static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
56e93d26 496{
6f37bb8b 497 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
56e93d26
JQ
498 return;
499 }
500
501 /* We don't care if this fails to allocate a new cache page
502 * as long as it updated an old one */
503 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
5a987738 504 rs->bitmap_sync_count);
56e93d26
JQ
505}
506
507#define ENCODING_FLAG_XBZRLE 0x1
508
509/**
510 * save_xbzrle_page: compress and send current page
511 *
512 * Returns: 1 means that we wrote the page
513 * 0 means that page is identical to the one already sent
514 * -1 means that xbzrle would be longer than normal
515 *
5a987738 516 * @rs: current RAM state
3d0684b2
JQ
517 * @current_data: pointer to the address of the page contents
518 * @current_addr: addr of the page
56e93d26
JQ
519 * @block: block that contains the page we want to send
520 * @offset: offset inside the block for the page
521 * @last_stage: if we are at the completion stage
56e93d26 522 */
204b88b8 523static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
56e93d26 524 ram_addr_t current_addr, RAMBlock *block,
072c2511 525 ram_addr_t offset, bool last_stage)
56e93d26
JQ
526{
527 int encoded_len = 0, bytes_xbzrle;
528 uint8_t *prev_cached_page;
529
5a987738 530 if (!cache_is_cached(XBZRLE.cache, current_addr, rs->bitmap_sync_count)) {
544c36f1 531 rs->xbzrle_cache_miss++;
56e93d26
JQ
532 if (!last_stage) {
533 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
5a987738 534 rs->bitmap_sync_count) == -1) {
56e93d26
JQ
535 return -1;
536 } else {
537 /* update *current_data when the page has been
538 inserted into cache */
539 *current_data = get_cached_data(XBZRLE.cache, current_addr);
540 }
541 }
542 return -1;
543 }
544
545 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
546
547 /* save current buffer into memory */
548 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
549
550 /* XBZRLE encoding (if there is no overflow) */
551 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
552 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
553 TARGET_PAGE_SIZE);
554 if (encoded_len == 0) {
55c4446b 555 trace_save_xbzrle_page_skipping();
56e93d26
JQ
556 return 0;
557 } else if (encoded_len == -1) {
55c4446b 558 trace_save_xbzrle_page_overflow();
180f61f7 559 rs->xbzrle_overflows++;
56e93d26
JQ
560 /* update data in the cache */
561 if (!last_stage) {
562 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
563 *current_data = prev_cached_page;
564 }
565 return -1;
566 }
567
568 /* we need to update the data in the cache, in order to get the same data */
569 if (!last_stage) {
570 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
571 }
572
573 /* Send XBZRLE based compressed page */
24795694 574 bytes_xbzrle = save_page_header(rs, block,
204b88b8
JQ
575 offset | RAM_SAVE_FLAG_XBZRLE);
576 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
577 qemu_put_be16(rs->f, encoded_len);
578 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
56e93d26 579 bytes_xbzrle += encoded_len + 1 + 2;
f36ada95 580 rs->xbzrle_pages++;
07ed50a2 581 rs->xbzrle_bytes += bytes_xbzrle;
072c2511 582 rs->bytes_transferred += bytes_xbzrle;
56e93d26
JQ
583
584 return 1;
585}
586
3d0684b2
JQ
587/**
588 * migration_bitmap_find_dirty: find the next dirty page from start
f3f491fc 589 *
3d0684b2
JQ
590 * Called with rcu_read_lock() to protect migration_bitmap
591 *
592 * Returns the byte offset within memory region of the start of a dirty page
593 *
6f37bb8b 594 * @rs: current RAM state
3d0684b2 595 * @rb: RAMBlock where to search for dirty pages
a935e30f 596 * @start: page where we start the search
f3f491fc 597 */
56e93d26 598static inline
a935e30f 599unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
f20e2865 600 unsigned long start)
56e93d26 601{
6b6712ef
JQ
602 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
603 unsigned long *bitmap = rb->bmap;
56e93d26
JQ
604 unsigned long next;
605
6b6712ef
JQ
606 if (rs->ram_bulk_stage && start > 0) {
607 next = start + 1;
56e93d26 608 } else {
6b6712ef 609 next = find_next_bit(bitmap, size, start);
56e93d26
JQ
610 }
611
6b6712ef 612 return next;
56e93d26
JQ
613}
614
06b10688 615static inline bool migration_bitmap_clear_dirty(RAMState *rs,
f20e2865
JQ
616 RAMBlock *rb,
617 unsigned long page)
a82d593b
DDAG
618{
619 bool ret;
a82d593b 620
6b6712ef 621 ret = test_and_clear_bit(page, rb->bmap);
a82d593b
DDAG
622
623 if (ret) {
0d8ec885 624 rs->migration_dirty_pages--;
a82d593b
DDAG
625 }
626 return ret;
627}
628
15440dd5
JQ
629static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
630 ram_addr_t start, ram_addr_t length)
56e93d26 631{
0d8ec885 632 rs->migration_dirty_pages +=
6b6712ef 633 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
0d8ec885 634 &rs->num_dirty_pages_period);
56e93d26
JQ
635}
636
3d0684b2
JQ
637/**
638 * ram_pagesize_summary: calculate all the pagesizes of a VM
639 *
640 * Returns a summary bitmap of the page sizes of all RAMBlocks
641 *
642 * For VMs with just normal pages this is equivalent to the host page
643 * size. If it's got some huge pages then it's the OR of all the
644 * different page sizes.
e8ca1db2
DDAG
645 */
646uint64_t ram_pagesize_summary(void)
647{
648 RAMBlock *block;
649 uint64_t summary = 0;
650
651 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
652 summary |= block->page_size;
653 }
654
655 return summary;
656}
657
8d820d6f 658static void migration_bitmap_sync(RAMState *rs)
56e93d26
JQ
659{
660 RAMBlock *block;
56e93d26 661 int64_t end_time;
c4bdf0cf 662 uint64_t bytes_xfer_now;
56e93d26 663
5a987738 664 rs->bitmap_sync_count++;
56e93d26 665
eac74159
JQ
666 if (!rs->bytes_xfer_prev) {
667 rs->bytes_xfer_prev = ram_bytes_transferred();
56e93d26
JQ
668 }
669
f664da80
JQ
670 if (!rs->time_last_bitmap_sync) {
671 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
56e93d26
JQ
672 }
673
674 trace_migration_bitmap_sync_start();
9c1f8f44 675 memory_global_dirty_log_sync();
56e93d26 676
108cfae0 677 qemu_mutex_lock(&rs->bitmap_mutex);
56e93d26
JQ
678 rcu_read_lock();
679 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
15440dd5 680 migration_bitmap_sync_range(rs, block, 0, block->used_length);
56e93d26
JQ
681 }
682 rcu_read_unlock();
108cfae0 683 qemu_mutex_unlock(&rs->bitmap_mutex);
56e93d26 684
a66cd90c 685 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1ffb5dfd 686
56e93d26
JQ
687 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
688
689 /* more than 1 second = 1000 millisecons */
f664da80 690 if (end_time > rs->time_last_bitmap_sync + 1000) {
56e93d26
JQ
691 if (migrate_auto_converge()) {
692 /* The following detection logic can be refined later. For now:
693 Check to see if the dirtied bytes is 50% more than the approx.
694 amount of bytes that just got transferred since the last time we
070afca2
JH
695 were in this routine. If that happens twice, start or increase
696 throttling */
56e93d26 697 bytes_xfer_now = ram_bytes_transferred();
070afca2 698
47ad8619 699 if (rs->dirty_pages_rate &&
a66cd90c 700 (rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
eac74159 701 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
8d820d6f 702 (rs->dirty_rate_high_cnt++ >= 2)) {
56e93d26 703 trace_migration_throttle();
8d820d6f 704 rs->dirty_rate_high_cnt = 0;
070afca2 705 mig_throttle_guest_down();
56e93d26 706 }
eac74159 707 rs->bytes_xfer_prev = bytes_xfer_now;
56e93d26 708 }
070afca2 709
56e93d26 710 if (migrate_use_xbzrle()) {
23b28c3c 711 if (rs->iterations_prev != rs->iterations) {
b07016b6 712 rs->xbzrle_cache_miss_rate =
544c36f1 713 (double)(rs->xbzrle_cache_miss -
b5833fde 714 rs->xbzrle_cache_miss_prev) /
23b28c3c 715 (rs->iterations - rs->iterations_prev);
56e93d26 716 }
23b28c3c 717 rs->iterations_prev = rs->iterations;
544c36f1 718 rs->xbzrle_cache_miss_prev = rs->xbzrle_cache_miss;
56e93d26 719 }
47ad8619 720 rs->dirty_pages_rate = rs->num_dirty_pages_period * 1000
f664da80 721 / (end_time - rs->time_last_bitmap_sync);
f664da80 722 rs->time_last_bitmap_sync = end_time;
a66cd90c 723 rs->num_dirty_pages_period = 0;
56e93d26 724 }
4addcd4f 725 if (migrate_use_events()) {
5a987738 726 qapi_event_send_migration_pass(rs->bitmap_sync_count, NULL);
4addcd4f 727 }
56e93d26
JQ
728}
729
730/**
3d0684b2 731 * save_zero_page: send the zero page to the stream
56e93d26 732 *
3d0684b2 733 * Returns the number of pages written.
56e93d26 734 *
f7ccd61b 735 * @rs: current RAM state
56e93d26
JQ
736 * @block: block that contains the page we want to send
737 * @offset: offset inside the block for the page
738 * @p: pointer to the page
56e93d26 739 */
ce25d337
JQ
740static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
741 uint8_t *p)
56e93d26
JQ
742{
743 int pages = -1;
744
745 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
f7ccd61b 746 rs->zero_pages++;
072c2511 747 rs->bytes_transferred +=
24795694 748 save_page_header(rs, block, offset | RAM_SAVE_FLAG_COMPRESS);
ce25d337 749 qemu_put_byte(rs->f, 0);
072c2511 750 rs->bytes_transferred += 1;
56e93d26
JQ
751 pages = 1;
752 }
753
754 return pages;
755}
756
5727309d 757static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
53f09a10 758{
5727309d 759 if (!migrate_release_ram() || !migration_in_postcopy()) {
53f09a10
PB
760 return;
761 }
762
aaa2064c 763 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
53f09a10
PB
764}
765
56e93d26 766/**
3d0684b2 767 * ram_save_page: send the given page to the stream
56e93d26 768 *
3d0684b2 769 * Returns the number of pages written.
3fd3c4b3
DDAG
770 * < 0 - error
771 * >=0 - Number of pages written - this might legally be 0
772 * if xbzrle noticed the page was the same.
56e93d26 773 *
6f37bb8b 774 * @rs: current RAM state
56e93d26
JQ
775 * @block: block that contains the page we want to send
776 * @offset: offset inside the block for the page
777 * @last_stage: if we are at the completion stage
56e93d26 778 */
a0a8aa14 779static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
56e93d26
JQ
780{
781 int pages = -1;
782 uint64_t bytes_xmit;
783 ram_addr_t current_addr;
56e93d26
JQ
784 uint8_t *p;
785 int ret;
786 bool send_async = true;
a08f6890 787 RAMBlock *block = pss->block;
a935e30f 788 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
56e93d26 789
2f68e399 790 p = block->host + offset;
56e93d26
JQ
791
792 /* In doubt sent page as normal */
793 bytes_xmit = 0;
ce25d337 794 ret = ram_control_save_page(rs->f, block->offset,
56e93d26
JQ
795 offset, TARGET_PAGE_SIZE, &bytes_xmit);
796 if (bytes_xmit) {
072c2511 797 rs->bytes_transferred += bytes_xmit;
56e93d26
JQ
798 pages = 1;
799 }
800
801 XBZRLE_cache_lock();
802
803 current_addr = block->offset + offset;
804
56e93d26
JQ
805 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
806 if (ret != RAM_SAVE_CONTROL_DELAYED) {
807 if (bytes_xmit > 0) {
b4d1c6e7 808 rs->norm_pages++;
56e93d26 809 } else if (bytes_xmit == 0) {
f7ccd61b 810 rs->zero_pages++;
56e93d26
JQ
811 }
812 }
813 } else {
ce25d337 814 pages = save_zero_page(rs, block, offset, p);
56e93d26
JQ
815 if (pages > 0) {
816 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
817 * page would be stale
818 */
6f37bb8b 819 xbzrle_cache_zero_page(rs, current_addr);
a935e30f 820 ram_release_pages(block->idstr, offset, pages);
6f37bb8b 821 } else if (!rs->ram_bulk_stage &&
5727309d 822 !migration_in_postcopy() && migrate_use_xbzrle()) {
204b88b8 823 pages = save_xbzrle_page(rs, &p, current_addr, block,
072c2511 824 offset, last_stage);
56e93d26
JQ
825 if (!last_stage) {
826 /* Can't send this cached data async, since the cache page
827 * might get updated before it gets to the wire
828 */
829 send_async = false;
830 }
831 }
832 }
833
834 /* XBZRLE overflow or normal page */
835 if (pages == -1) {
24795694
JQ
836 rs->bytes_transferred += save_page_header(rs, block,
837 offset | RAM_SAVE_FLAG_PAGE);
56e93d26 838 if (send_async) {
ce25d337 839 qemu_put_buffer_async(rs->f, p, TARGET_PAGE_SIZE,
53f09a10 840 migrate_release_ram() &
5727309d 841 migration_in_postcopy());
56e93d26 842 } else {
ce25d337 843 qemu_put_buffer(rs->f, p, TARGET_PAGE_SIZE);
56e93d26 844 }
072c2511 845 rs->bytes_transferred += TARGET_PAGE_SIZE;
56e93d26 846 pages = 1;
b4d1c6e7 847 rs->norm_pages++;
56e93d26
JQ
848 }
849
850 XBZRLE_cache_unlock();
851
852 return pages;
853}
854
a7a9a88f
LL
855static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
856 ram_addr_t offset)
56e93d26 857{
24795694 858 RAMState *rs = &ram_state;
56e93d26 859 int bytes_sent, blen;
a7a9a88f 860 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
56e93d26 861
24795694 862 bytes_sent = save_page_header(rs, block, offset |
56e93d26 863 RAM_SAVE_FLAG_COMPRESS_PAGE);
a7a9a88f 864 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE,
56e93d26 865 migrate_compress_level());
b3be2896
LL
866 if (blen < 0) {
867 bytes_sent = 0;
868 qemu_file_set_error(migrate_get_current()->to_dst_file, blen);
869 error_report("compressed data failed!");
870 } else {
871 bytes_sent += blen;
5727309d 872 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
b3be2896 873 }
56e93d26
JQ
874
875 return bytes_sent;
876}
877
ce25d337 878static void flush_compressed_data(RAMState *rs)
56e93d26
JQ
879{
880 int idx, len, thread_count;
881
882 if (!migrate_use_compression()) {
883 return;
884 }
885 thread_count = migrate_compress_threads();
a7a9a88f 886
0d9f9a5c 887 qemu_mutex_lock(&comp_done_lock);
56e93d26 888 for (idx = 0; idx < thread_count; idx++) {
a7a9a88f 889 while (!comp_param[idx].done) {
0d9f9a5c 890 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26 891 }
a7a9a88f 892 }
0d9f9a5c 893 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
894
895 for (idx = 0; idx < thread_count; idx++) {
896 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 897 if (!comp_param[idx].quit) {
ce25d337 898 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2f4fde93 899 rs->bytes_transferred += len;
56e93d26 900 }
a7a9a88f 901 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26
JQ
902 }
903}
904
905static inline void set_compress_params(CompressParam *param, RAMBlock *block,
906 ram_addr_t offset)
907{
908 param->block = block;
909 param->offset = offset;
910}
911
ce25d337
JQ
912static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
913 ram_addr_t offset)
56e93d26
JQ
914{
915 int idx, thread_count, bytes_xmit = -1, pages = -1;
916
917 thread_count = migrate_compress_threads();
0d9f9a5c 918 qemu_mutex_lock(&comp_done_lock);
56e93d26
JQ
919 while (true) {
920 for (idx = 0; idx < thread_count; idx++) {
921 if (comp_param[idx].done) {
a7a9a88f 922 comp_param[idx].done = false;
ce25d337 923 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
a7a9a88f 924 qemu_mutex_lock(&comp_param[idx].mutex);
56e93d26 925 set_compress_params(&comp_param[idx], block, offset);
a7a9a88f
LL
926 qemu_cond_signal(&comp_param[idx].cond);
927 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26 928 pages = 1;
b4d1c6e7 929 rs->norm_pages++;
072c2511 930 rs->bytes_transferred += bytes_xmit;
56e93d26
JQ
931 break;
932 }
933 }
934 if (pages > 0) {
935 break;
936 } else {
0d9f9a5c 937 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26
JQ
938 }
939 }
0d9f9a5c 940 qemu_mutex_unlock(&comp_done_lock);
56e93d26
JQ
941
942 return pages;
943}
944
945/**
946 * ram_save_compressed_page: compress the given page and send it to the stream
947 *
3d0684b2 948 * Returns the number of pages written.
56e93d26 949 *
6f37bb8b 950 * @rs: current RAM state
56e93d26
JQ
951 * @block: block that contains the page we want to send
952 * @offset: offset inside the block for the page
953 * @last_stage: if we are at the completion stage
56e93d26 954 */
a0a8aa14
JQ
955static int ram_save_compressed_page(RAMState *rs, PageSearchStatus *pss,
956 bool last_stage)
56e93d26
JQ
957{
958 int pages = -1;
fc50438e 959 uint64_t bytes_xmit = 0;
56e93d26 960 uint8_t *p;
fc50438e 961 int ret, blen;
a08f6890 962 RAMBlock *block = pss->block;
a935e30f 963 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
56e93d26 964
2f68e399 965 p = block->host + offset;
56e93d26 966
ce25d337 967 ret = ram_control_save_page(rs->f, block->offset,
56e93d26
JQ
968 offset, TARGET_PAGE_SIZE, &bytes_xmit);
969 if (bytes_xmit) {
072c2511 970 rs->bytes_transferred += bytes_xmit;
56e93d26
JQ
971 pages = 1;
972 }
56e93d26
JQ
973 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
974 if (ret != RAM_SAVE_CONTROL_DELAYED) {
975 if (bytes_xmit > 0) {
b4d1c6e7 976 rs->norm_pages++;
56e93d26 977 } else if (bytes_xmit == 0) {
f7ccd61b 978 rs->zero_pages++;
56e93d26
JQ
979 }
980 }
981 } else {
982 /* When starting the process of a new block, the first page of
983 * the block should be sent out before other pages in the same
984 * block, and all the pages in last block should have been sent
985 * out, keeping this order is important, because the 'cont' flag
986 * is used to avoid resending the block name.
987 */
6f37bb8b 988 if (block != rs->last_sent_block) {
ce25d337
JQ
989 flush_compressed_data(rs);
990 pages = save_zero_page(rs, block, offset, p);
56e93d26 991 if (pages == -1) {
fc50438e 992 /* Make sure the first page is sent out before other pages */
24795694 993 bytes_xmit = save_page_header(rs, block, offset |
fc50438e 994 RAM_SAVE_FLAG_COMPRESS_PAGE);
ce25d337 995 blen = qemu_put_compression_data(rs->f, p, TARGET_PAGE_SIZE,
fc50438e
LL
996 migrate_compress_level());
997 if (blen > 0) {
072c2511 998 rs->bytes_transferred += bytes_xmit + blen;
b4d1c6e7 999 rs->norm_pages++;
b3be2896 1000 pages = 1;
fc50438e 1001 } else {
ce25d337 1002 qemu_file_set_error(rs->f, blen);
fc50438e 1003 error_report("compressed data failed!");
b3be2896 1004 }
56e93d26 1005 }
53f09a10 1006 if (pages > 0) {
a935e30f 1007 ram_release_pages(block->idstr, offset, pages);
53f09a10 1008 }
56e93d26 1009 } else {
ce25d337 1010 pages = save_zero_page(rs, block, offset, p);
56e93d26 1011 if (pages == -1) {
ce25d337 1012 pages = compress_page_with_multi_thread(rs, block, offset);
53f09a10 1013 } else {
a935e30f 1014 ram_release_pages(block->idstr, offset, pages);
56e93d26
JQ
1015 }
1016 }
1017 }
1018
1019 return pages;
1020}
1021
3d0684b2
JQ
1022/**
1023 * find_dirty_block: find the next dirty page and update any state
1024 * associated with the search process.
b9e60928 1025 *
3d0684b2 1026 * Returns if a page is found
b9e60928 1027 *
6f37bb8b 1028 * @rs: current RAM state
3d0684b2
JQ
1029 * @pss: data about the state of the current dirty page scan
1030 * @again: set to false if the search has scanned the whole of RAM
b9e60928 1031 */
f20e2865 1032static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
b9e60928 1033{
f20e2865 1034 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
6f37bb8b 1035 if (pss->complete_round && pss->block == rs->last_seen_block &&
a935e30f 1036 pss->page >= rs->last_page) {
b9e60928
DDAG
1037 /*
1038 * We've been once around the RAM and haven't found anything.
1039 * Give up.
1040 */
1041 *again = false;
1042 return false;
1043 }
a935e30f 1044 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
b9e60928 1045 /* Didn't find anything in this RAM Block */
a935e30f 1046 pss->page = 0;
b9e60928
DDAG
1047 pss->block = QLIST_NEXT_RCU(pss->block, next);
1048 if (!pss->block) {
1049 /* Hit the end of the list */
1050 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1051 /* Flag that we've looped */
1052 pss->complete_round = true;
6f37bb8b 1053 rs->ram_bulk_stage = false;
b9e60928
DDAG
1054 if (migrate_use_xbzrle()) {
1055 /* If xbzrle is on, stop using the data compression at this
1056 * point. In theory, xbzrle can do better than compression.
1057 */
ce25d337 1058 flush_compressed_data(rs);
b9e60928
DDAG
1059 }
1060 }
1061 /* Didn't find anything this time, but try again on the new block */
1062 *again = true;
1063 return false;
1064 } else {
1065 /* Can go around again, but... */
1066 *again = true;
1067 /* We've found something so probably don't need to */
1068 return true;
1069 }
1070}
1071
3d0684b2
JQ
1072/**
1073 * unqueue_page: gets a page of the queue
1074 *
a82d593b 1075 * Helper for 'get_queued_page' - gets a page off the queue
a82d593b 1076 *
3d0684b2
JQ
1077 * Returns the block of the page (or NULL if none available)
1078 *
ec481c6c 1079 * @rs: current RAM state
3d0684b2 1080 * @offset: used to return the offset within the RAMBlock
a82d593b 1081 */
f20e2865 1082static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
a82d593b
DDAG
1083{
1084 RAMBlock *block = NULL;
1085
ec481c6c
JQ
1086 qemu_mutex_lock(&rs->src_page_req_mutex);
1087 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
1088 struct RAMSrcPageRequest *entry =
1089 QSIMPLEQ_FIRST(&rs->src_page_requests);
a82d593b
DDAG
1090 block = entry->rb;
1091 *offset = entry->offset;
a82d593b
DDAG
1092
1093 if (entry->len > TARGET_PAGE_SIZE) {
1094 entry->len -= TARGET_PAGE_SIZE;
1095 entry->offset += TARGET_PAGE_SIZE;
1096 } else {
1097 memory_region_unref(block->mr);
ec481c6c 1098 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
a82d593b
DDAG
1099 g_free(entry);
1100 }
1101 }
ec481c6c 1102 qemu_mutex_unlock(&rs->src_page_req_mutex);
a82d593b
DDAG
1103
1104 return block;
1105}
1106
3d0684b2
JQ
1107/**
1108 * get_queued_page: unqueue a page from the postocpy requests
1109 *
1110 * Skips pages that are already sent (!dirty)
a82d593b 1111 *
3d0684b2 1112 * Returns if a queued page is found
a82d593b 1113 *
6f37bb8b 1114 * @rs: current RAM state
3d0684b2 1115 * @pss: data about the state of the current dirty page scan
a82d593b 1116 */
f20e2865 1117static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
a82d593b
DDAG
1118{
1119 RAMBlock *block;
1120 ram_addr_t offset;
1121 bool dirty;
1122
1123 do {
f20e2865 1124 block = unqueue_page(rs, &offset);
a82d593b
DDAG
1125 /*
1126 * We're sending this page, and since it's postcopy nothing else
1127 * will dirty it, and we must make sure it doesn't get sent again
1128 * even if this queue request was received after the background
1129 * search already sent it.
1130 */
1131 if (block) {
f20e2865
JQ
1132 unsigned long page;
1133
6b6712ef
JQ
1134 page = offset >> TARGET_PAGE_BITS;
1135 dirty = test_bit(page, block->bmap);
a82d593b 1136 if (!dirty) {
06b10688 1137 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
6b6712ef 1138 page, test_bit(page, block->unsentmap));
a82d593b 1139 } else {
f20e2865 1140 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
a82d593b
DDAG
1141 }
1142 }
1143
1144 } while (block && !dirty);
1145
1146 if (block) {
1147 /*
1148 * As soon as we start servicing pages out of order, then we have
1149 * to kill the bulk stage, since the bulk stage assumes
1150 * in (migration_bitmap_find_and_reset_dirty) that every page is
1151 * dirty, that's no longer true.
1152 */
6f37bb8b 1153 rs->ram_bulk_stage = false;
a82d593b
DDAG
1154
1155 /*
1156 * We want the background search to continue from the queued page
1157 * since the guest is likely to want other pages near to the page
1158 * it just requested.
1159 */
1160 pss->block = block;
a935e30f 1161 pss->page = offset >> TARGET_PAGE_BITS;
a82d593b
DDAG
1162 }
1163
1164 return !!block;
1165}
1166
6c595cde 1167/**
5e58f968
JQ
1168 * migration_page_queue_free: drop any remaining pages in the ram
1169 * request queue
6c595cde 1170 *
3d0684b2
JQ
1171 * It should be empty at the end anyway, but in error cases there may
1172 * be some left. in case that there is any page left, we drop it.
1173 *
6c595cde 1174 */
ec481c6c 1175void migration_page_queue_free(void)
6c595cde 1176{
ec481c6c
JQ
1177 struct RAMSrcPageRequest *mspr, *next_mspr;
1178 RAMState *rs = &ram_state;
6c595cde
DDAG
1179 /* This queue generally should be empty - but in the case of a failed
1180 * migration might have some droppings in.
1181 */
1182 rcu_read_lock();
ec481c6c 1183 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
6c595cde 1184 memory_region_unref(mspr->rb->mr);
ec481c6c 1185 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
6c595cde
DDAG
1186 g_free(mspr);
1187 }
1188 rcu_read_unlock();
1189}
1190
1191/**
3d0684b2
JQ
1192 * ram_save_queue_pages: queue the page for transmission
1193 *
1194 * A request from postcopy destination for example.
1195 *
1196 * Returns zero on success or negative on error
1197 *
3d0684b2
JQ
1198 * @rbname: Name of the RAMBLock of the request. NULL means the
1199 * same that last one.
1200 * @start: starting address from the start of the RAMBlock
1201 * @len: length (in bytes) to send
6c595cde 1202 */
96506894 1203int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
6c595cde
DDAG
1204{
1205 RAMBlock *ramblock;
68a098f3 1206 RAMState *rs = &ram_state;
6c595cde 1207
96506894 1208 rs->postcopy_requests++;
6c595cde
DDAG
1209 rcu_read_lock();
1210 if (!rbname) {
1211 /* Reuse last RAMBlock */
68a098f3 1212 ramblock = rs->last_req_rb;
6c595cde
DDAG
1213
1214 if (!ramblock) {
1215 /*
1216 * Shouldn't happen, we can't reuse the last RAMBlock if
1217 * it's the 1st request.
1218 */
1219 error_report("ram_save_queue_pages no previous block");
1220 goto err;
1221 }
1222 } else {
1223 ramblock = qemu_ram_block_by_name(rbname);
1224
1225 if (!ramblock) {
1226 /* We shouldn't be asked for a non-existent RAMBlock */
1227 error_report("ram_save_queue_pages no block '%s'", rbname);
1228 goto err;
1229 }
68a098f3 1230 rs->last_req_rb = ramblock;
6c595cde
DDAG
1231 }
1232 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1233 if (start+len > ramblock->used_length) {
9458ad6b
JQ
1234 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1235 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
6c595cde
DDAG
1236 __func__, start, len, ramblock->used_length);
1237 goto err;
1238 }
1239
ec481c6c
JQ
1240 struct RAMSrcPageRequest *new_entry =
1241 g_malloc0(sizeof(struct RAMSrcPageRequest));
6c595cde
DDAG
1242 new_entry->rb = ramblock;
1243 new_entry->offset = start;
1244 new_entry->len = len;
1245
1246 memory_region_ref(ramblock->mr);
ec481c6c
JQ
1247 qemu_mutex_lock(&rs->src_page_req_mutex);
1248 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
1249 qemu_mutex_unlock(&rs->src_page_req_mutex);
6c595cde
DDAG
1250 rcu_read_unlock();
1251
1252 return 0;
1253
1254err:
1255 rcu_read_unlock();
1256 return -1;
1257}
1258
a82d593b 1259/**
3d0684b2 1260 * ram_save_target_page: save one target page
a82d593b 1261 *
3d0684b2 1262 * Returns the number of pages written
a82d593b 1263 *
6f37bb8b 1264 * @rs: current RAM state
3d0684b2 1265 * @ms: current migration state
3d0684b2 1266 * @pss: data about the page we want to send
a82d593b 1267 * @last_stage: if we are at the completion stage
a82d593b 1268 */
a0a8aa14 1269static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 1270 bool last_stage)
a82d593b
DDAG
1271{
1272 int res = 0;
1273
1274 /* Check the pages is dirty and if it is send it */
f20e2865 1275 if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
6d358d94
JQ
1276 /*
1277 * If xbzrle is on, stop using the data compression after first
1278 * round of migration even if compression is enabled. In theory,
1279 * xbzrle can do better than compression.
1280 */
6b6712ef
JQ
1281 if (migrate_use_compression() &&
1282 (rs->ram_bulk_stage || !migrate_use_xbzrle())) {
a0a8aa14 1283 res = ram_save_compressed_page(rs, pss, last_stage);
a82d593b 1284 } else {
a0a8aa14 1285 res = ram_save_page(rs, pss, last_stage);
a82d593b
DDAG
1286 }
1287
1288 if (res < 0) {
1289 return res;
1290 }
6b6712ef
JQ
1291 if (pss->block->unsentmap) {
1292 clear_bit(pss->page, pss->block->unsentmap);
a82d593b
DDAG
1293 }
1294 }
1295
1296 return res;
1297}
1298
1299/**
3d0684b2 1300 * ram_save_host_page: save a whole host page
a82d593b 1301 *
3d0684b2
JQ
1302 * Starting at *offset send pages up to the end of the current host
1303 * page. It's valid for the initial offset to point into the middle of
1304 * a host page in which case the remainder of the hostpage is sent.
1305 * Only dirty target pages are sent. Note that the host page size may
1306 * be a huge page for this block.
a82d593b 1307 *
3d0684b2
JQ
1308 * Returns the number of pages written or negative on error
1309 *
6f37bb8b 1310 * @rs: current RAM state
3d0684b2 1311 * @ms: current migration state
3d0684b2 1312 * @pss: data about the page we want to send
a82d593b 1313 * @last_stage: if we are at the completion stage
a82d593b 1314 */
a0a8aa14 1315static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 1316 bool last_stage)
a82d593b
DDAG
1317{
1318 int tmppages, pages = 0;
a935e30f
JQ
1319 size_t pagesize_bits =
1320 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
4c011c37 1321
a82d593b 1322 do {
f20e2865 1323 tmppages = ram_save_target_page(rs, pss, last_stage);
a82d593b
DDAG
1324 if (tmppages < 0) {
1325 return tmppages;
1326 }
1327
1328 pages += tmppages;
a935e30f 1329 pss->page++;
a935e30f 1330 } while (pss->page & (pagesize_bits - 1));
a82d593b
DDAG
1331
1332 /* The offset we leave with is the last one we looked at */
a935e30f 1333 pss->page--;
a82d593b
DDAG
1334 return pages;
1335}
6c595cde 1336
56e93d26 1337/**
3d0684b2 1338 * ram_find_and_save_block: finds a dirty page and sends it to f
56e93d26
JQ
1339 *
1340 * Called within an RCU critical section.
1341 *
3d0684b2 1342 * Returns the number of pages written where zero means no dirty pages
56e93d26 1343 *
6f37bb8b 1344 * @rs: current RAM state
56e93d26 1345 * @last_stage: if we are at the completion stage
a82d593b
DDAG
1346 *
1347 * On systems where host-page-size > target-page-size it will send all the
1348 * pages in a host page that are dirty.
56e93d26
JQ
1349 */
1350
ce25d337 1351static int ram_find_and_save_block(RAMState *rs, bool last_stage)
56e93d26 1352{
b8fb8cb7 1353 PageSearchStatus pss;
56e93d26 1354 int pages = 0;
b9e60928 1355 bool again, found;
56e93d26 1356
0827b9e9
AA
1357 /* No dirty page as there is zero RAM */
1358 if (!ram_bytes_total()) {
1359 return pages;
1360 }
1361
6f37bb8b 1362 pss.block = rs->last_seen_block;
a935e30f 1363 pss.page = rs->last_page;
b8fb8cb7
DDAG
1364 pss.complete_round = false;
1365
1366 if (!pss.block) {
1367 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
1368 }
56e93d26 1369
b9e60928 1370 do {
a82d593b 1371 again = true;
f20e2865 1372 found = get_queued_page(rs, &pss);
b9e60928 1373
a82d593b
DDAG
1374 if (!found) {
1375 /* priority queue empty, so just search for something dirty */
f20e2865 1376 found = find_dirty_block(rs, &pss, &again);
a82d593b 1377 }
f3f491fc 1378
a82d593b 1379 if (found) {
f20e2865 1380 pages = ram_save_host_page(rs, &pss, last_stage);
56e93d26 1381 }
b9e60928 1382 } while (!pages && again);
56e93d26 1383
6f37bb8b 1384 rs->last_seen_block = pss.block;
a935e30f 1385 rs->last_page = pss.page;
56e93d26
JQ
1386
1387 return pages;
1388}
1389
1390void acct_update_position(QEMUFile *f, size_t size, bool zero)
1391{
1392 uint64_t pages = size / TARGET_PAGE_SIZE;
f7ccd61b
JQ
1393 RAMState *rs = &ram_state;
1394
56e93d26 1395 if (zero) {
f7ccd61b 1396 rs->zero_pages += pages;
56e93d26 1397 } else {
b4d1c6e7 1398 rs->norm_pages += pages;
2f4fde93 1399 rs->bytes_transferred += size;
56e93d26
JQ
1400 qemu_update_position(f, size);
1401 }
1402}
1403
56e93d26
JQ
1404uint64_t ram_bytes_total(void)
1405{
1406 RAMBlock *block;
1407 uint64_t total = 0;
1408
1409 rcu_read_lock();
1410 QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
1411 total += block->used_length;
1412 rcu_read_unlock();
1413 return total;
1414}
1415
1416void free_xbzrle_decoded_buf(void)
1417{
1418 g_free(xbzrle_decoded_buf);
1419 xbzrle_decoded_buf = NULL;
1420}
1421
6ad2a215 1422static void ram_migration_cleanup(void *opaque)
56e93d26 1423{
6b6712ef 1424 RAMBlock *block;
eb859c53 1425
2ff64038
LZ
1426 /* caller have hold iothread lock or is in a bh, so there is
1427 * no writing race against this migration_bitmap
1428 */
6b6712ef
JQ
1429 memory_global_dirty_log_stop();
1430
1431 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1432 g_free(block->bmap);
1433 block->bmap = NULL;
1434 g_free(block->unsentmap);
1435 block->unsentmap = NULL;
56e93d26
JQ
1436 }
1437
1438 XBZRLE_cache_lock();
1439 if (XBZRLE.cache) {
1440 cache_fini(XBZRLE.cache);
1441 g_free(XBZRLE.encoded_buf);
1442 g_free(XBZRLE.current_buf);
adb65dec 1443 g_free(ZERO_TARGET_PAGE);
56e93d26
JQ
1444 XBZRLE.cache = NULL;
1445 XBZRLE.encoded_buf = NULL;
1446 XBZRLE.current_buf = NULL;
1447 }
1448 XBZRLE_cache_unlock();
1449}
1450
6f37bb8b 1451static void ram_state_reset(RAMState *rs)
56e93d26 1452{
6f37bb8b
JQ
1453 rs->last_seen_block = NULL;
1454 rs->last_sent_block = NULL;
269ace29 1455 rs->last_page = 0;
6f37bb8b
JQ
1456 rs->last_version = ram_list.version;
1457 rs->ram_bulk_stage = true;
56e93d26
JQ
1458}
1459
1460#define MAX_WAIT 50 /* ms, half buffered_file limit */
1461
4f2e4252
DDAG
1462/*
1463 * 'expected' is the value you expect the bitmap mostly to be full
1464 * of; it won't bother printing lines that are all this value.
1465 * If 'todump' is null the migration bitmap is dumped.
1466 */
6b6712ef
JQ
1467void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
1468 unsigned long pages)
4f2e4252 1469{
4f2e4252
DDAG
1470 int64_t cur;
1471 int64_t linelen = 128;
1472 char linebuf[129];
1473
6b6712ef 1474 for (cur = 0; cur < pages; cur += linelen) {
4f2e4252
DDAG
1475 int64_t curb;
1476 bool found = false;
1477 /*
1478 * Last line; catch the case where the line length
1479 * is longer than remaining ram
1480 */
6b6712ef
JQ
1481 if (cur + linelen > pages) {
1482 linelen = pages - cur;
4f2e4252
DDAG
1483 }
1484 for (curb = 0; curb < linelen; curb++) {
1485 bool thisbit = test_bit(cur + curb, todump);
1486 linebuf[curb] = thisbit ? '1' : '.';
1487 found = found || (thisbit != expected);
1488 }
1489 if (found) {
1490 linebuf[curb] = '\0';
1491 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
1492 }
1493 }
1494}
1495
e0b266f0
DDAG
1496/* **** functions for postcopy ***** */
1497
ced1c616
PB
1498void ram_postcopy_migrated_memory_release(MigrationState *ms)
1499{
1500 struct RAMBlock *block;
ced1c616
PB
1501
1502 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
6b6712ef
JQ
1503 unsigned long *bitmap = block->bmap;
1504 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
1505 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
ced1c616
PB
1506
1507 while (run_start < range) {
1508 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
aaa2064c 1509 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
ced1c616
PB
1510 (run_end - run_start) << TARGET_PAGE_BITS);
1511 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
1512 }
1513 }
1514}
1515
3d0684b2
JQ
1516/**
1517 * postcopy_send_discard_bm_ram: discard a RAMBlock
1518 *
1519 * Returns zero on success
1520 *
e0b266f0
DDAG
1521 * Callback from postcopy_each_ram_send_discard for each RAMBlock
1522 * Note: At this point the 'unsentmap' is the processed bitmap combined
1523 * with the dirtymap; so a '1' means it's either dirty or unsent.
3d0684b2
JQ
1524 *
1525 * @ms: current migration state
1526 * @pds: state for postcopy
1527 * @start: RAMBlock starting page
1528 * @length: RAMBlock size
e0b266f0
DDAG
1529 */
1530static int postcopy_send_discard_bm_ram(MigrationState *ms,
1531 PostcopyDiscardState *pds,
6b6712ef 1532 RAMBlock *block)
e0b266f0 1533{
6b6712ef 1534 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
e0b266f0 1535 unsigned long current;
6b6712ef 1536 unsigned long *unsentmap = block->unsentmap;
e0b266f0 1537
6b6712ef 1538 for (current = 0; current < end; ) {
e0b266f0
DDAG
1539 unsigned long one = find_next_bit(unsentmap, end, current);
1540
1541 if (one <= end) {
1542 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
1543 unsigned long discard_length;
1544
1545 if (zero >= end) {
1546 discard_length = end - one;
1547 } else {
1548 discard_length = zero - one;
1549 }
d688c62d
DDAG
1550 if (discard_length) {
1551 postcopy_discard_send_range(ms, pds, one, discard_length);
1552 }
e0b266f0
DDAG
1553 current = one + discard_length;
1554 } else {
1555 current = one;
1556 }
1557 }
1558
1559 return 0;
1560}
1561
3d0684b2
JQ
1562/**
1563 * postcopy_each_ram_send_discard: discard all RAMBlocks
1564 *
1565 * Returns 0 for success or negative for error
1566 *
e0b266f0
DDAG
1567 * Utility for the outgoing postcopy code.
1568 * Calls postcopy_send_discard_bm_ram for each RAMBlock
1569 * passing it bitmap indexes and name.
e0b266f0
DDAG
1570 * (qemu_ram_foreach_block ends up passing unscaled lengths
1571 * which would mean postcopy code would have to deal with target page)
3d0684b2
JQ
1572 *
1573 * @ms: current migration state
e0b266f0
DDAG
1574 */
1575static int postcopy_each_ram_send_discard(MigrationState *ms)
1576{
1577 struct RAMBlock *block;
1578 int ret;
1579
1580 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
6b6712ef
JQ
1581 PostcopyDiscardState *pds =
1582 postcopy_discard_send_init(ms, block->idstr);
e0b266f0
DDAG
1583
1584 /*
1585 * Postcopy sends chunks of bitmap over the wire, but it
1586 * just needs indexes at this point, avoids it having
1587 * target page specific code.
1588 */
6b6712ef 1589 ret = postcopy_send_discard_bm_ram(ms, pds, block);
e0b266f0
DDAG
1590 postcopy_discard_send_finish(ms, pds);
1591 if (ret) {
1592 return ret;
1593 }
1594 }
1595
1596 return 0;
1597}
1598
3d0684b2
JQ
1599/**
1600 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
1601 *
1602 * Helper for postcopy_chunk_hostpages; it's called twice to
1603 * canonicalize the two bitmaps, that are similar, but one is
1604 * inverted.
99e314eb 1605 *
3d0684b2
JQ
1606 * Postcopy requires that all target pages in a hostpage are dirty or
1607 * clean, not a mix. This function canonicalizes the bitmaps.
99e314eb 1608 *
3d0684b2
JQ
1609 * @ms: current migration state
1610 * @unsent_pass: if true we need to canonicalize partially unsent host pages
1611 * otherwise we need to canonicalize partially dirty host pages
1612 * @block: block that contains the page we want to canonicalize
1613 * @pds: state for postcopy
99e314eb
DDAG
1614 */
1615static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
1616 RAMBlock *block,
1617 PostcopyDiscardState *pds)
1618{
0d8ec885 1619 RAMState *rs = &ram_state;
6b6712ef
JQ
1620 unsigned long *bitmap = block->bmap;
1621 unsigned long *unsentmap = block->unsentmap;
29c59172 1622 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
6b6712ef 1623 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
99e314eb
DDAG
1624 unsigned long run_start;
1625
29c59172
DDAG
1626 if (block->page_size == TARGET_PAGE_SIZE) {
1627 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
1628 return;
1629 }
1630
99e314eb
DDAG
1631 if (unsent_pass) {
1632 /* Find a sent page */
6b6712ef 1633 run_start = find_next_zero_bit(unsentmap, pages, 0);
99e314eb
DDAG
1634 } else {
1635 /* Find a dirty page */
6b6712ef 1636 run_start = find_next_bit(bitmap, pages, 0);
99e314eb
DDAG
1637 }
1638
6b6712ef 1639 while (run_start < pages) {
99e314eb
DDAG
1640 bool do_fixup = false;
1641 unsigned long fixup_start_addr;
1642 unsigned long host_offset;
1643
1644 /*
1645 * If the start of this run of pages is in the middle of a host
1646 * page, then we need to fixup this host page.
1647 */
1648 host_offset = run_start % host_ratio;
1649 if (host_offset) {
1650 do_fixup = true;
1651 run_start -= host_offset;
1652 fixup_start_addr = run_start;
1653 /* For the next pass */
1654 run_start = run_start + host_ratio;
1655 } else {
1656 /* Find the end of this run */
1657 unsigned long run_end;
1658 if (unsent_pass) {
6b6712ef 1659 run_end = find_next_bit(unsentmap, pages, run_start + 1);
99e314eb 1660 } else {
6b6712ef 1661 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
99e314eb
DDAG
1662 }
1663 /*
1664 * If the end isn't at the start of a host page, then the
1665 * run doesn't finish at the end of a host page
1666 * and we need to discard.
1667 */
1668 host_offset = run_end % host_ratio;
1669 if (host_offset) {
1670 do_fixup = true;
1671 fixup_start_addr = run_end - host_offset;
1672 /*
1673 * This host page has gone, the next loop iteration starts
1674 * from after the fixup
1675 */
1676 run_start = fixup_start_addr + host_ratio;
1677 } else {
1678 /*
1679 * No discards on this iteration, next loop starts from
1680 * next sent/dirty page
1681 */
1682 run_start = run_end + 1;
1683 }
1684 }
1685
1686 if (do_fixup) {
1687 unsigned long page;
1688
1689 /* Tell the destination to discard this page */
1690 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
1691 /* For the unsent_pass we:
1692 * discard partially sent pages
1693 * For the !unsent_pass (dirty) we:
1694 * discard partially dirty pages that were sent
1695 * (any partially sent pages were already discarded
1696 * by the previous unsent_pass)
1697 */
1698 postcopy_discard_send_range(ms, pds, fixup_start_addr,
1699 host_ratio);
1700 }
1701
1702 /* Clean up the bitmap */
1703 for (page = fixup_start_addr;
1704 page < fixup_start_addr + host_ratio; page++) {
1705 /* All pages in this host page are now not sent */
1706 set_bit(page, unsentmap);
1707
1708 /*
1709 * Remark them as dirty, updating the count for any pages
1710 * that weren't previously dirty.
1711 */
0d8ec885 1712 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
99e314eb
DDAG
1713 }
1714 }
1715
1716 if (unsent_pass) {
1717 /* Find the next sent page for the next iteration */
6b6712ef 1718 run_start = find_next_zero_bit(unsentmap, pages, run_start);
99e314eb
DDAG
1719 } else {
1720 /* Find the next dirty page for the next iteration */
6b6712ef 1721 run_start = find_next_bit(bitmap, pages, run_start);
99e314eb
DDAG
1722 }
1723 }
1724}
1725
3d0684b2
JQ
1726/**
1727 * postcopy_chuck_hostpages: discrad any partially sent host page
1728 *
99e314eb
DDAG
1729 * Utility for the outgoing postcopy code.
1730 *
1731 * Discard any partially sent host-page size chunks, mark any partially
29c59172
DDAG
1732 * dirty host-page size chunks as all dirty. In this case the host-page
1733 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
99e314eb 1734 *
3d0684b2
JQ
1735 * Returns zero on success
1736 *
1737 * @ms: current migration state
6b6712ef 1738 * @block: block we want to work with
99e314eb 1739 */
6b6712ef 1740static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
99e314eb 1741{
6b6712ef
JQ
1742 PostcopyDiscardState *pds =
1743 postcopy_discard_send_init(ms, block->idstr);
99e314eb 1744
6b6712ef
JQ
1745 /* First pass: Discard all partially sent host pages */
1746 postcopy_chunk_hostpages_pass(ms, true, block, pds);
1747 /*
1748 * Second pass: Ensure that all partially dirty host pages are made
1749 * fully dirty.
1750 */
1751 postcopy_chunk_hostpages_pass(ms, false, block, pds);
99e314eb 1752
6b6712ef 1753 postcopy_discard_send_finish(ms, pds);
99e314eb
DDAG
1754 return 0;
1755}
1756
3d0684b2
JQ
1757/**
1758 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
1759 *
1760 * Returns zero on success
1761 *
e0b266f0
DDAG
1762 * Transmit the set of pages to be discarded after precopy to the target
1763 * these are pages that:
1764 * a) Have been previously transmitted but are now dirty again
1765 * b) Pages that have never been transmitted, this ensures that
1766 * any pages on the destination that have been mapped by background
1767 * tasks get discarded (transparent huge pages is the specific concern)
1768 * Hopefully this is pretty sparse
3d0684b2
JQ
1769 *
1770 * @ms: current migration state
e0b266f0
DDAG
1771 */
1772int ram_postcopy_send_discard_bitmap(MigrationState *ms)
1773{
eb859c53 1774 RAMState *rs = &ram_state;
6b6712ef 1775 RAMBlock *block;
e0b266f0 1776 int ret;
e0b266f0
DDAG
1777
1778 rcu_read_lock();
1779
1780 /* This should be our last sync, the src is now paused */
eb859c53 1781 migration_bitmap_sync(rs);
e0b266f0 1782
6b6712ef
JQ
1783 /* Easiest way to make sure we don't resume in the middle of a host-page */
1784 rs->last_seen_block = NULL;
1785 rs->last_sent_block = NULL;
1786 rs->last_page = 0;
e0b266f0 1787
6b6712ef
JQ
1788 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1789 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
1790 unsigned long *bitmap = block->bmap;
1791 unsigned long *unsentmap = block->unsentmap;
1792
1793 if (!unsentmap) {
1794 /* We don't have a safe way to resize the sentmap, so
1795 * if the bitmap was resized it will be NULL at this
1796 * point.
1797 */
1798 error_report("migration ram resized during precopy phase");
1799 rcu_read_unlock();
1800 return -EINVAL;
1801 }
1802 /* Deal with TPS != HPS and huge pages */
1803 ret = postcopy_chunk_hostpages(ms, block);
1804 if (ret) {
1805 rcu_read_unlock();
1806 return ret;
1807 }
e0b266f0 1808
6b6712ef
JQ
1809 /*
1810 * Update the unsentmap to be unsentmap = unsentmap | dirty
1811 */
1812 bitmap_or(unsentmap, unsentmap, bitmap, pages);
e0b266f0 1813#ifdef DEBUG_POSTCOPY
6b6712ef 1814 ram_debug_dump_bitmap(unsentmap, true, pages);
e0b266f0 1815#endif
6b6712ef
JQ
1816 }
1817 trace_ram_postcopy_send_discard_bitmap();
e0b266f0
DDAG
1818
1819 ret = postcopy_each_ram_send_discard(ms);
1820 rcu_read_unlock();
1821
1822 return ret;
1823}
1824
3d0684b2
JQ
1825/**
1826 * ram_discard_range: discard dirtied pages at the beginning of postcopy
e0b266f0 1827 *
3d0684b2 1828 * Returns zero on success
e0b266f0 1829 *
36449157
JQ
1830 * @rbname: name of the RAMBlock of the request. NULL means the
1831 * same that last one.
3d0684b2
JQ
1832 * @start: RAMBlock starting page
1833 * @length: RAMBlock size
e0b266f0 1834 */
aaa2064c 1835int ram_discard_range(const char *rbname, uint64_t start, size_t length)
e0b266f0
DDAG
1836{
1837 int ret = -1;
1838
36449157 1839 trace_ram_discard_range(rbname, start, length);
d3a5038c 1840
e0b266f0 1841 rcu_read_lock();
36449157 1842 RAMBlock *rb = qemu_ram_block_by_name(rbname);
e0b266f0
DDAG
1843
1844 if (!rb) {
36449157 1845 error_report("ram_discard_range: Failed to find block '%s'", rbname);
e0b266f0
DDAG
1846 goto err;
1847 }
1848
d3a5038c 1849 ret = ram_block_discard_range(rb, start, length);
e0b266f0
DDAG
1850
1851err:
1852 rcu_read_unlock();
1853
1854 return ret;
1855}
1856
ceb4d168 1857static int ram_state_init(RAMState *rs)
56e93d26 1858{
ceb4d168 1859 memset(rs, 0, sizeof(*rs));
108cfae0 1860 qemu_mutex_init(&rs->bitmap_mutex);
ec481c6c
JQ
1861 qemu_mutex_init(&rs->src_page_req_mutex);
1862 QSIMPLEQ_INIT(&rs->src_page_requests);
56e93d26
JQ
1863
1864 if (migrate_use_xbzrle()) {
1865 XBZRLE_cache_lock();
adb65dec 1866 ZERO_TARGET_PAGE = g_malloc0(TARGET_PAGE_SIZE);
56e93d26
JQ
1867 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
1868 TARGET_PAGE_SIZE,
1869 TARGET_PAGE_SIZE);
1870 if (!XBZRLE.cache) {
1871 XBZRLE_cache_unlock();
1872 error_report("Error creating cache");
1873 return -1;
1874 }
1875 XBZRLE_cache_unlock();
1876
1877 /* We prefer not to abort if there is no memory */
1878 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
1879 if (!XBZRLE.encoded_buf) {
1880 error_report("Error allocating encoded_buf");
1881 return -1;
1882 }
1883
1884 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
1885 if (!XBZRLE.current_buf) {
1886 error_report("Error allocating current_buf");
1887 g_free(XBZRLE.encoded_buf);
1888 XBZRLE.encoded_buf = NULL;
1889 return -1;
1890 }
56e93d26
JQ
1891 }
1892
49877834
PB
1893 /* For memory_global_dirty_log_start below. */
1894 qemu_mutex_lock_iothread();
1895
56e93d26
JQ
1896 qemu_mutex_lock_ramlist();
1897 rcu_read_lock();
6f37bb8b 1898 ram_state_reset(rs);
56e93d26 1899
0827b9e9
AA
1900 /* Skip setting bitmap if there is no RAM */
1901 if (ram_bytes_total()) {
6b6712ef
JQ
1902 RAMBlock *block;
1903
1904 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1905 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
0827b9e9 1906
6b6712ef
JQ
1907 block->bmap = bitmap_new(pages);
1908 bitmap_set(block->bmap, 0, pages);
1909 if (migrate_postcopy_ram()) {
1910 block->unsentmap = bitmap_new(pages);
1911 bitmap_set(block->unsentmap, 0, pages);
1912 }
0827b9e9 1913 }
f3f491fc
DDAG
1914 }
1915
56e93d26
JQ
1916 /*
1917 * Count the total number of pages used by ram blocks not including any
1918 * gaps due to alignment or unplugs.
1919 */
0d8ec885 1920 rs->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
56e93d26
JQ
1921
1922 memory_global_dirty_log_start();
8d820d6f 1923 migration_bitmap_sync(rs);
56e93d26 1924 qemu_mutex_unlock_ramlist();
49877834 1925 qemu_mutex_unlock_iothread();
a91246c9
HZ
1926 rcu_read_unlock();
1927
1928 return 0;
1929}
1930
3d0684b2
JQ
1931/*
1932 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
a91246c9
HZ
1933 * long-running RCU critical section. When rcu-reclaims in the code
1934 * start to become numerous it will be necessary to reduce the
1935 * granularity of these critical sections.
1936 */
1937
3d0684b2
JQ
1938/**
1939 * ram_save_setup: Setup RAM for migration
1940 *
1941 * Returns zero to indicate success and negative for error
1942 *
1943 * @f: QEMUFile where to send the data
1944 * @opaque: RAMState pointer
1945 */
a91246c9
HZ
1946static int ram_save_setup(QEMUFile *f, void *opaque)
1947{
6f37bb8b 1948 RAMState *rs = opaque;
a91246c9
HZ
1949 RAMBlock *block;
1950
1951 /* migration has already setup the bitmap, reuse it. */
1952 if (!migration_in_colo_state()) {
ceb4d168 1953 if (ram_state_init(rs) < 0) {
a91246c9
HZ
1954 return -1;
1955 }
1956 }
204b88b8 1957 rs->f = f;
a91246c9
HZ
1958
1959 rcu_read_lock();
56e93d26
JQ
1960
1961 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
1962
1963 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1964 qemu_put_byte(f, strlen(block->idstr));
1965 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
1966 qemu_put_be64(f, block->used_length);
ef08fb38
DDAG
1967 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
1968 qemu_put_be64(f, block->page_size);
1969 }
56e93d26
JQ
1970 }
1971
1972 rcu_read_unlock();
1973
1974 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
1975 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
1976
1977 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1978
1979 return 0;
1980}
1981
3d0684b2
JQ
1982/**
1983 * ram_save_iterate: iterative stage for migration
1984 *
1985 * Returns zero to indicate success and negative for error
1986 *
1987 * @f: QEMUFile where to send the data
1988 * @opaque: RAMState pointer
1989 */
56e93d26
JQ
1990static int ram_save_iterate(QEMUFile *f, void *opaque)
1991{
6f37bb8b 1992 RAMState *rs = opaque;
56e93d26
JQ
1993 int ret;
1994 int i;
1995 int64_t t0;
5c90308f 1996 int done = 0;
56e93d26
JQ
1997
1998 rcu_read_lock();
6f37bb8b
JQ
1999 if (ram_list.version != rs->last_version) {
2000 ram_state_reset(rs);
56e93d26
JQ
2001 }
2002
2003 /* Read version before ram_list.blocks */
2004 smp_rmb();
2005
2006 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
2007
2008 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2009 i = 0;
2010 while ((ret = qemu_file_rate_limit(f)) == 0) {
2011 int pages;
2012
ce25d337 2013 pages = ram_find_and_save_block(rs, false);
56e93d26
JQ
2014 /* no more pages to sent */
2015 if (pages == 0) {
5c90308f 2016 done = 1;
56e93d26
JQ
2017 break;
2018 }
23b28c3c 2019 rs->iterations++;
070afca2 2020
56e93d26
JQ
2021 /* we want to check in the 1st loop, just in case it was the 1st time
2022 and we had to sync the dirty bitmap.
2023 qemu_get_clock_ns() is a bit expensive, so we only check each some
2024 iterations
2025 */
2026 if ((i & 63) == 0) {
2027 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
2028 if (t1 > MAX_WAIT) {
55c4446b 2029 trace_ram_save_iterate_big_wait(t1, i);
56e93d26
JQ
2030 break;
2031 }
2032 }
2033 i++;
2034 }
ce25d337 2035 flush_compressed_data(rs);
56e93d26
JQ
2036 rcu_read_unlock();
2037
2038 /*
2039 * Must occur before EOS (or any QEMUFile operation)
2040 * because of RDMA protocol.
2041 */
2042 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
2043
2044 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2f4fde93 2045 rs->bytes_transferred += 8;
56e93d26
JQ
2046
2047 ret = qemu_file_get_error(f);
2048 if (ret < 0) {
2049 return ret;
2050 }
2051
5c90308f 2052 return done;
56e93d26
JQ
2053}
2054
3d0684b2
JQ
2055/**
2056 * ram_save_complete: function called to send the remaining amount of ram
2057 *
2058 * Returns zero to indicate success
2059 *
2060 * Called with iothread lock
2061 *
2062 * @f: QEMUFile where to send the data
2063 * @opaque: RAMState pointer
2064 */
56e93d26
JQ
2065static int ram_save_complete(QEMUFile *f, void *opaque)
2066{
6f37bb8b
JQ
2067 RAMState *rs = opaque;
2068
56e93d26
JQ
2069 rcu_read_lock();
2070
5727309d 2071 if (!migration_in_postcopy()) {
8d820d6f 2072 migration_bitmap_sync(rs);
663e6c1d 2073 }
56e93d26
JQ
2074
2075 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
2076
2077 /* try transferring iterative blocks of memory */
2078
2079 /* flush all remaining blocks regardless of rate limiting */
2080 while (true) {
2081 int pages;
2082
ce25d337 2083 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
56e93d26
JQ
2084 /* no more blocks to sent */
2085 if (pages == 0) {
2086 break;
2087 }
2088 }
2089
ce25d337 2090 flush_compressed_data(rs);
56e93d26 2091 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
56e93d26
JQ
2092
2093 rcu_read_unlock();
d09a6fde 2094
56e93d26
JQ
2095 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2096
2097 return 0;
2098}
2099
c31b098f
DDAG
2100static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
2101 uint64_t *non_postcopiable_pending,
2102 uint64_t *postcopiable_pending)
56e93d26 2103{
8d820d6f 2104 RAMState *rs = opaque;
56e93d26
JQ
2105 uint64_t remaining_size;
2106
9edabd4d 2107 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 2108
5727309d 2109 if (!migration_in_postcopy() &&
663e6c1d 2110 remaining_size < max_size) {
56e93d26
JQ
2111 qemu_mutex_lock_iothread();
2112 rcu_read_lock();
8d820d6f 2113 migration_bitmap_sync(rs);
56e93d26
JQ
2114 rcu_read_unlock();
2115 qemu_mutex_unlock_iothread();
9edabd4d 2116 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 2117 }
c31b098f
DDAG
2118
2119 /* We can do postcopy, and all the data is postcopiable */
2120 *postcopiable_pending += remaining_size;
56e93d26
JQ
2121}
2122
2123static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
2124{
2125 unsigned int xh_len;
2126 int xh_flags;
063e760a 2127 uint8_t *loaded_data;
56e93d26
JQ
2128
2129 if (!xbzrle_decoded_buf) {
2130 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2131 }
063e760a 2132 loaded_data = xbzrle_decoded_buf;
56e93d26
JQ
2133
2134 /* extract RLE header */
2135 xh_flags = qemu_get_byte(f);
2136 xh_len = qemu_get_be16(f);
2137
2138 if (xh_flags != ENCODING_FLAG_XBZRLE) {
2139 error_report("Failed to load XBZRLE page - wrong compression!");
2140 return -1;
2141 }
2142
2143 if (xh_len > TARGET_PAGE_SIZE) {
2144 error_report("Failed to load XBZRLE page - len overflow!");
2145 return -1;
2146 }
2147 /* load data and decode */
063e760a 2148 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
56e93d26
JQ
2149
2150 /* decode RLE */
063e760a 2151 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
56e93d26
JQ
2152 TARGET_PAGE_SIZE) == -1) {
2153 error_report("Failed to load XBZRLE page - decode error!");
2154 return -1;
2155 }
2156
2157 return 0;
2158}
2159
3d0684b2
JQ
2160/**
2161 * ram_block_from_stream: read a RAMBlock id from the migration stream
2162 *
2163 * Must be called from within a rcu critical section.
2164 *
56e93d26 2165 * Returns a pointer from within the RCU-protected ram_list.
a7180877 2166 *
3d0684b2
JQ
2167 * @f: QEMUFile where to read the data from
2168 * @flags: Page flags (mostly to see if it's a continuation of previous block)
a7180877 2169 */
3d0684b2 2170static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
56e93d26
JQ
2171{
2172 static RAMBlock *block = NULL;
2173 char id[256];
2174 uint8_t len;
2175
2176 if (flags & RAM_SAVE_FLAG_CONTINUE) {
4c4bad48 2177 if (!block) {
56e93d26
JQ
2178 error_report("Ack, bad migration stream!");
2179 return NULL;
2180 }
4c4bad48 2181 return block;
56e93d26
JQ
2182 }
2183
2184 len = qemu_get_byte(f);
2185 qemu_get_buffer(f, (uint8_t *)id, len);
2186 id[len] = 0;
2187
e3dd7493 2188 block = qemu_ram_block_by_name(id);
4c4bad48
HZ
2189 if (!block) {
2190 error_report("Can't find block %s", id);
2191 return NULL;
56e93d26
JQ
2192 }
2193
4c4bad48
HZ
2194 return block;
2195}
2196
2197static inline void *host_from_ram_block_offset(RAMBlock *block,
2198 ram_addr_t offset)
2199{
2200 if (!offset_in_ramblock(block, offset)) {
2201 return NULL;
2202 }
2203
2204 return block->host + offset;
56e93d26
JQ
2205}
2206
3d0684b2
JQ
2207/**
2208 * ram_handle_compressed: handle the zero page case
2209 *
56e93d26
JQ
2210 * If a page (or a whole RDMA chunk) has been
2211 * determined to be zero, then zap it.
3d0684b2
JQ
2212 *
2213 * @host: host address for the zero page
2214 * @ch: what the page is filled from. We only support zero
2215 * @size: size of the zero page
56e93d26
JQ
2216 */
2217void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
2218{
2219 if (ch != 0 || !is_zero_range(host, size)) {
2220 memset(host, ch, size);
2221 }
2222}
2223
2224static void *do_data_decompress(void *opaque)
2225{
2226 DecompressParam *param = opaque;
2227 unsigned long pagesize;
33d151f4
LL
2228 uint8_t *des;
2229 int len;
56e93d26 2230
33d151f4 2231 qemu_mutex_lock(&param->mutex);
90e56fb4 2232 while (!param->quit) {
33d151f4
LL
2233 if (param->des) {
2234 des = param->des;
2235 len = param->len;
2236 param->des = 0;
2237 qemu_mutex_unlock(&param->mutex);
2238
56e93d26 2239 pagesize = TARGET_PAGE_SIZE;
73a8912b
LL
2240 /* uncompress() will return failed in some case, especially
2241 * when the page is dirted when doing the compression, it's
2242 * not a problem because the dirty page will be retransferred
2243 * and uncompress() won't break the data in other pages.
2244 */
33d151f4
LL
2245 uncompress((Bytef *)des, &pagesize,
2246 (const Bytef *)param->compbuf, len);
73a8912b 2247
33d151f4
LL
2248 qemu_mutex_lock(&decomp_done_lock);
2249 param->done = true;
2250 qemu_cond_signal(&decomp_done_cond);
2251 qemu_mutex_unlock(&decomp_done_lock);
2252
2253 qemu_mutex_lock(&param->mutex);
2254 } else {
2255 qemu_cond_wait(&param->cond, &param->mutex);
2256 }
56e93d26 2257 }
33d151f4 2258 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
2259
2260 return NULL;
2261}
2262
5533b2e9
LL
2263static void wait_for_decompress_done(void)
2264{
2265 int idx, thread_count;
2266
2267 if (!migrate_use_compression()) {
2268 return;
2269 }
2270
2271 thread_count = migrate_decompress_threads();
2272 qemu_mutex_lock(&decomp_done_lock);
2273 for (idx = 0; idx < thread_count; idx++) {
2274 while (!decomp_param[idx].done) {
2275 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2276 }
2277 }
2278 qemu_mutex_unlock(&decomp_done_lock);
2279}
2280
56e93d26
JQ
2281void migrate_decompress_threads_create(void)
2282{
2283 int i, thread_count;
2284
2285 thread_count = migrate_decompress_threads();
2286 decompress_threads = g_new0(QemuThread, thread_count);
2287 decomp_param = g_new0(DecompressParam, thread_count);
73a8912b
LL
2288 qemu_mutex_init(&decomp_done_lock);
2289 qemu_cond_init(&decomp_done_cond);
56e93d26
JQ
2290 for (i = 0; i < thread_count; i++) {
2291 qemu_mutex_init(&decomp_param[i].mutex);
2292 qemu_cond_init(&decomp_param[i].cond);
2293 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
73a8912b 2294 decomp_param[i].done = true;
90e56fb4 2295 decomp_param[i].quit = false;
56e93d26
JQ
2296 qemu_thread_create(decompress_threads + i, "decompress",
2297 do_data_decompress, decomp_param + i,
2298 QEMU_THREAD_JOINABLE);
2299 }
2300}
2301
2302void migrate_decompress_threads_join(void)
2303{
2304 int i, thread_count;
2305
56e93d26
JQ
2306 thread_count = migrate_decompress_threads();
2307 for (i = 0; i < thread_count; i++) {
2308 qemu_mutex_lock(&decomp_param[i].mutex);
90e56fb4 2309 decomp_param[i].quit = true;
56e93d26
JQ
2310 qemu_cond_signal(&decomp_param[i].cond);
2311 qemu_mutex_unlock(&decomp_param[i].mutex);
2312 }
2313 for (i = 0; i < thread_count; i++) {
2314 qemu_thread_join(decompress_threads + i);
2315 qemu_mutex_destroy(&decomp_param[i].mutex);
2316 qemu_cond_destroy(&decomp_param[i].cond);
2317 g_free(decomp_param[i].compbuf);
2318 }
2319 g_free(decompress_threads);
2320 g_free(decomp_param);
56e93d26
JQ
2321 decompress_threads = NULL;
2322 decomp_param = NULL;
56e93d26
JQ
2323}
2324
c1bc6626 2325static void decompress_data_with_multi_threads(QEMUFile *f,
56e93d26
JQ
2326 void *host, int len)
2327{
2328 int idx, thread_count;
2329
2330 thread_count = migrate_decompress_threads();
73a8912b 2331 qemu_mutex_lock(&decomp_done_lock);
56e93d26
JQ
2332 while (true) {
2333 for (idx = 0; idx < thread_count; idx++) {
73a8912b 2334 if (decomp_param[idx].done) {
33d151f4
LL
2335 decomp_param[idx].done = false;
2336 qemu_mutex_lock(&decomp_param[idx].mutex);
c1bc6626 2337 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
56e93d26
JQ
2338 decomp_param[idx].des = host;
2339 decomp_param[idx].len = len;
33d151f4
LL
2340 qemu_cond_signal(&decomp_param[idx].cond);
2341 qemu_mutex_unlock(&decomp_param[idx].mutex);
56e93d26
JQ
2342 break;
2343 }
2344 }
2345 if (idx < thread_count) {
2346 break;
73a8912b
LL
2347 } else {
2348 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
56e93d26
JQ
2349 }
2350 }
73a8912b 2351 qemu_mutex_unlock(&decomp_done_lock);
56e93d26
JQ
2352}
2353
3d0684b2
JQ
2354/**
2355 * ram_postcopy_incoming_init: allocate postcopy data structures
2356 *
2357 * Returns 0 for success and negative if there was one error
2358 *
2359 * @mis: current migration incoming state
2360 *
2361 * Allocate data structures etc needed by incoming migration with
2362 * postcopy-ram. postcopy-ram's similarly names
2363 * postcopy_ram_incoming_init does the work.
1caddf8a
DDAG
2364 */
2365int ram_postcopy_incoming_init(MigrationIncomingState *mis)
2366{
b8c48993 2367 unsigned long ram_pages = last_ram_page();
1caddf8a
DDAG
2368
2369 return postcopy_ram_incoming_init(mis, ram_pages);
2370}
2371
3d0684b2
JQ
2372/**
2373 * ram_load_postcopy: load a page in postcopy case
2374 *
2375 * Returns 0 for success or -errno in case of error
2376 *
a7180877
DDAG
2377 * Called in postcopy mode by ram_load().
2378 * rcu_read_lock is taken prior to this being called.
3d0684b2
JQ
2379 *
2380 * @f: QEMUFile where to send the data
a7180877
DDAG
2381 */
2382static int ram_load_postcopy(QEMUFile *f)
2383{
2384 int flags = 0, ret = 0;
2385 bool place_needed = false;
28abd200 2386 bool matching_page_sizes = false;
a7180877
DDAG
2387 MigrationIncomingState *mis = migration_incoming_get_current();
2388 /* Temporary page that is later 'placed' */
2389 void *postcopy_host_page = postcopy_get_tmp_page(mis);
c53b7ddc 2390 void *last_host = NULL;
a3b6ff6d 2391 bool all_zero = false;
a7180877
DDAG
2392
2393 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2394 ram_addr_t addr;
2395 void *host = NULL;
2396 void *page_buffer = NULL;
2397 void *place_source = NULL;
df9ff5e1 2398 RAMBlock *block = NULL;
a7180877 2399 uint8_t ch;
a7180877
DDAG
2400
2401 addr = qemu_get_be64(f);
2402 flags = addr & ~TARGET_PAGE_MASK;
2403 addr &= TARGET_PAGE_MASK;
2404
2405 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
2406 place_needed = false;
2407 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE)) {
df9ff5e1 2408 block = ram_block_from_stream(f, flags);
4c4bad48
HZ
2409
2410 host = host_from_ram_block_offset(block, addr);
a7180877
DDAG
2411 if (!host) {
2412 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2413 ret = -EINVAL;
2414 break;
2415 }
28abd200 2416 matching_page_sizes = block->page_size == TARGET_PAGE_SIZE;
a7180877 2417 /*
28abd200
DDAG
2418 * Postcopy requires that we place whole host pages atomically;
2419 * these may be huge pages for RAMBlocks that are backed by
2420 * hugetlbfs.
a7180877
DDAG
2421 * To make it atomic, the data is read into a temporary page
2422 * that's moved into place later.
2423 * The migration protocol uses, possibly smaller, target-pages
2424 * however the source ensures it always sends all the components
2425 * of a host page in order.
2426 */
2427 page_buffer = postcopy_host_page +
28abd200 2428 ((uintptr_t)host & (block->page_size - 1));
a7180877 2429 /* If all TP are zero then we can optimise the place */
28abd200 2430 if (!((uintptr_t)host & (block->page_size - 1))) {
a7180877 2431 all_zero = true;
c53b7ddc
DDAG
2432 } else {
2433 /* not the 1st TP within the HP */
2434 if (host != (last_host + TARGET_PAGE_SIZE)) {
9af9e0fe 2435 error_report("Non-sequential target page %p/%p",
c53b7ddc
DDAG
2436 host, last_host);
2437 ret = -EINVAL;
2438 break;
2439 }
a7180877
DDAG
2440 }
2441
c53b7ddc 2442
a7180877
DDAG
2443 /*
2444 * If it's the last part of a host page then we place the host
2445 * page
2446 */
2447 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
28abd200 2448 (block->page_size - 1)) == 0;
a7180877
DDAG
2449 place_source = postcopy_host_page;
2450 }
c53b7ddc 2451 last_host = host;
a7180877
DDAG
2452
2453 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2454 case RAM_SAVE_FLAG_COMPRESS:
2455 ch = qemu_get_byte(f);
2456 memset(page_buffer, ch, TARGET_PAGE_SIZE);
2457 if (ch) {
2458 all_zero = false;
2459 }
2460 break;
2461
2462 case RAM_SAVE_FLAG_PAGE:
2463 all_zero = false;
2464 if (!place_needed || !matching_page_sizes) {
2465 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
2466 } else {
2467 /* Avoids the qemu_file copy during postcopy, which is
2468 * going to do a copy later; can only do it when we
2469 * do this read in one go (matching page sizes)
2470 */
2471 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
2472 TARGET_PAGE_SIZE);
2473 }
2474 break;
2475 case RAM_SAVE_FLAG_EOS:
2476 /* normal exit */
2477 break;
2478 default:
2479 error_report("Unknown combination of migration flags: %#x"
2480 " (postcopy mode)", flags);
2481 ret = -EINVAL;
2482 }
2483
2484 if (place_needed) {
2485 /* This gets called at the last target page in the host page */
df9ff5e1
DDAG
2486 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
2487
a7180877 2488 if (all_zero) {
df9ff5e1
DDAG
2489 ret = postcopy_place_page_zero(mis, place_dest,
2490 block->page_size);
a7180877 2491 } else {
df9ff5e1
DDAG
2492 ret = postcopy_place_page(mis, place_dest,
2493 place_source, block->page_size);
a7180877
DDAG
2494 }
2495 }
2496 if (!ret) {
2497 ret = qemu_file_get_error(f);
2498 }
2499 }
2500
2501 return ret;
2502}
2503
56e93d26
JQ
2504static int ram_load(QEMUFile *f, void *opaque, int version_id)
2505{
2506 int flags = 0, ret = 0;
2507 static uint64_t seq_iter;
2508 int len = 0;
a7180877
DDAG
2509 /*
2510 * If system is running in postcopy mode, page inserts to host memory must
2511 * be atomic
2512 */
2513 bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING;
ef08fb38
DDAG
2514 /* ADVISE is earlier, it shows the source has the postcopy capability on */
2515 bool postcopy_advised = postcopy_state_get() >= POSTCOPY_INCOMING_ADVISE;
56e93d26
JQ
2516
2517 seq_iter++;
2518
2519 if (version_id != 4) {
2520 ret = -EINVAL;
2521 }
2522
2523 /* This RCU critical section can be very long running.
2524 * When RCU reclaims in the code start to become numerous,
2525 * it will be necessary to reduce the granularity of this
2526 * critical section.
2527 */
2528 rcu_read_lock();
a7180877
DDAG
2529
2530 if (postcopy_running) {
2531 ret = ram_load_postcopy(f);
2532 }
2533
2534 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
56e93d26 2535 ram_addr_t addr, total_ram_bytes;
a776aa15 2536 void *host = NULL;
56e93d26
JQ
2537 uint8_t ch;
2538
2539 addr = qemu_get_be64(f);
2540 flags = addr & ~TARGET_PAGE_MASK;
2541 addr &= TARGET_PAGE_MASK;
2542
a776aa15
DDAG
2543 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE |
2544 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4c4bad48
HZ
2545 RAMBlock *block = ram_block_from_stream(f, flags);
2546
2547 host = host_from_ram_block_offset(block, addr);
a776aa15
DDAG
2548 if (!host) {
2549 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2550 ret = -EINVAL;
2551 break;
2552 }
2553 }
2554
56e93d26
JQ
2555 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2556 case RAM_SAVE_FLAG_MEM_SIZE:
2557 /* Synchronize RAM block list */
2558 total_ram_bytes = addr;
2559 while (!ret && total_ram_bytes) {
2560 RAMBlock *block;
56e93d26
JQ
2561 char id[256];
2562 ram_addr_t length;
2563
2564 len = qemu_get_byte(f);
2565 qemu_get_buffer(f, (uint8_t *)id, len);
2566 id[len] = 0;
2567 length = qemu_get_be64(f);
2568
e3dd7493
DDAG
2569 block = qemu_ram_block_by_name(id);
2570 if (block) {
2571 if (length != block->used_length) {
2572 Error *local_err = NULL;
56e93d26 2573
fa53a0e5 2574 ret = qemu_ram_resize(block, length,
e3dd7493
DDAG
2575 &local_err);
2576 if (local_err) {
2577 error_report_err(local_err);
56e93d26 2578 }
56e93d26 2579 }
ef08fb38
DDAG
2580 /* For postcopy we need to check hugepage sizes match */
2581 if (postcopy_advised &&
2582 block->page_size != qemu_host_page_size) {
2583 uint64_t remote_page_size = qemu_get_be64(f);
2584 if (remote_page_size != block->page_size) {
2585 error_report("Mismatched RAM page size %s "
2586 "(local) %zd != %" PRId64,
2587 id, block->page_size,
2588 remote_page_size);
2589 ret = -EINVAL;
2590 }
2591 }
e3dd7493
DDAG
2592 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
2593 block->idstr);
2594 } else {
56e93d26
JQ
2595 error_report("Unknown ramblock \"%s\", cannot "
2596 "accept migration", id);
2597 ret = -EINVAL;
2598 }
2599
2600 total_ram_bytes -= length;
2601 }
2602 break;
a776aa15 2603
56e93d26 2604 case RAM_SAVE_FLAG_COMPRESS:
56e93d26
JQ
2605 ch = qemu_get_byte(f);
2606 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
2607 break;
a776aa15 2608
56e93d26 2609 case RAM_SAVE_FLAG_PAGE:
56e93d26
JQ
2610 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
2611 break;
56e93d26 2612
a776aa15 2613 case RAM_SAVE_FLAG_COMPRESS_PAGE:
56e93d26
JQ
2614 len = qemu_get_be32(f);
2615 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
2616 error_report("Invalid compressed data length: %d", len);
2617 ret = -EINVAL;
2618 break;
2619 }
c1bc6626 2620 decompress_data_with_multi_threads(f, host, len);
56e93d26 2621 break;
a776aa15 2622
56e93d26 2623 case RAM_SAVE_FLAG_XBZRLE:
56e93d26
JQ
2624 if (load_xbzrle(f, addr, host) < 0) {
2625 error_report("Failed to decompress XBZRLE page at "
2626 RAM_ADDR_FMT, addr);
2627 ret = -EINVAL;
2628 break;
2629 }
2630 break;
2631 case RAM_SAVE_FLAG_EOS:
2632 /* normal exit */
2633 break;
2634 default:
2635 if (flags & RAM_SAVE_FLAG_HOOK) {
632e3a5c 2636 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
56e93d26
JQ
2637 } else {
2638 error_report("Unknown combination of migration flags: %#x",
2639 flags);
2640 ret = -EINVAL;
2641 }
2642 }
2643 if (!ret) {
2644 ret = qemu_file_get_error(f);
2645 }
2646 }
2647
5533b2e9 2648 wait_for_decompress_done();
56e93d26 2649 rcu_read_unlock();
55c4446b 2650 trace_ram_load_complete(ret, seq_iter);
56e93d26
JQ
2651 return ret;
2652}
2653
2654static SaveVMHandlers savevm_ram_handlers = {
2655 .save_live_setup = ram_save_setup,
2656 .save_live_iterate = ram_save_iterate,
763c906b 2657 .save_live_complete_postcopy = ram_save_complete,
a3e06c3d 2658 .save_live_complete_precopy = ram_save_complete,
56e93d26
JQ
2659 .save_live_pending = ram_save_pending,
2660 .load_state = ram_load,
6ad2a215 2661 .cleanup = ram_migration_cleanup,
56e93d26
JQ
2662};
2663
2664void ram_mig_init(void)
2665{
2666 qemu_mutex_init(&XBZRLE.lock);
6f37bb8b 2667 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
56e93d26 2668}