]> git.proxmox.com Git - mirror_qemu.git/blame - migration/ram.c
migration/colo: Optimize COLO primary node start code path
[mirror_qemu.git] / migration / ram.c
CommitLineData
56e93d26
JQ
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
76cc7b58
JQ
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
56e93d26
JQ
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
e688df6b 28
1393a485 29#include "qemu/osdep.h"
f348b6d1 30#include "qemu/cutils.h"
56e93d26
JQ
31#include "qemu/bitops.h"
32#include "qemu/bitmap.h"
7205c9ec 33#include "qemu/main-loop.h"
709e3fe8 34#include "xbzrle.h"
7b1e1a22 35#include "ram.h"
6666c96a 36#include "migration.h"
f2a8f0a6 37#include "migration/register.h"
7b1e1a22 38#include "migration/misc.h"
08a0aee1 39#include "qemu-file.h"
be07b0ac 40#include "postcopy-ram.h"
53d37d36 41#include "page_cache.h"
56e93d26 42#include "qemu/error-report.h"
e688df6b 43#include "qapi/error.h"
ab7cbb0b 44#include "qapi/qapi-types-migration.h"
9af23989 45#include "qapi/qapi-events-migration.h"
8acabf69 46#include "qapi/qmp/qerror.h"
56e93d26 47#include "trace.h"
56e93d26 48#include "exec/ram_addr.h"
f9494614 49#include "exec/target_page.h"
56e93d26 50#include "qemu/rcu_queue.h"
a91246c9 51#include "migration/colo.h"
53d37d36 52#include "block.h"
b0c3cf94 53#include "sysemu/cpu-throttle.h"
edd090c7 54#include "savevm.h"
b9ee2f7d 55#include "qemu/iov.h"
d32ca5ad 56#include "multifd.h"
278e2f55
AG
57#include "sysemu/runstate.h"
58
e5fdf920
LS
59#include "hw/boards.h" /* for machine_dump_guest_core() */
60
278e2f55
AG
61#if defined(__linux__)
62#include "qemu/userfaultfd.h"
63#endif /* defined(__linux__) */
56e93d26 64
56e93d26
JQ
65/***********************************************************/
66/* ram save/restore */
67
bb890ed5
JQ
68/* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
69 * worked for pages that where filled with the same char. We switched
70 * it to only search for the zero value. And to avoid confusion with
71 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
72 */
73
56e93d26 74#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
bb890ed5 75#define RAM_SAVE_FLAG_ZERO 0x02
56e93d26
JQ
76#define RAM_SAVE_FLAG_MEM_SIZE 0x04
77#define RAM_SAVE_FLAG_PAGE 0x08
78#define RAM_SAVE_FLAG_EOS 0x10
79#define RAM_SAVE_FLAG_CONTINUE 0x20
80#define RAM_SAVE_FLAG_XBZRLE 0x40
81/* 0x80 is reserved in migration.h start with 0x100 next */
82#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
83
56e93d26
JQ
84static inline bool is_zero_range(uint8_t *p, uint64_t size)
85{
a1febc49 86 return buffer_is_zero(p, size);
56e93d26
JQ
87}
88
9360447d
JQ
89XBZRLECacheStats xbzrle_counters;
90
56e93d26
JQ
91/* struct contains XBZRLE cache and a static page
92 used by the compression */
93static struct {
94 /* buffer used for XBZRLE encoding */
95 uint8_t *encoded_buf;
96 /* buffer for storing page content */
97 uint8_t *current_buf;
98 /* Cache for XBZRLE, Protected by lock. */
99 PageCache *cache;
100 QemuMutex lock;
c00e0928
JQ
101 /* it will store a page full of zeros */
102 uint8_t *zero_target_page;
f265e0e4
JQ
103 /* buffer used for XBZRLE decoding */
104 uint8_t *decoded_buf;
56e93d26
JQ
105} XBZRLE;
106
56e93d26
JQ
107static void XBZRLE_cache_lock(void)
108{
f4c51a6b 109 if (migrate_use_xbzrle()) {
56e93d26 110 qemu_mutex_lock(&XBZRLE.lock);
f4c51a6b 111 }
56e93d26
JQ
112}
113
114static void XBZRLE_cache_unlock(void)
115{
f4c51a6b 116 if (migrate_use_xbzrle()) {
56e93d26 117 qemu_mutex_unlock(&XBZRLE.lock);
f4c51a6b 118 }
56e93d26
JQ
119}
120
3d0684b2
JQ
121/**
122 * xbzrle_cache_resize: resize the xbzrle cache
123 *
cbde7be9 124 * This function is called from migrate_params_apply in main
3d0684b2
JQ
125 * thread, possibly while a migration is in progress. A running
126 * migration may be using the cache and might finish during this call,
127 * hence changes to the cache are protected by XBZRLE.lock().
128 *
c9dede2d 129 * Returns 0 for success or -1 for error
3d0684b2
JQ
130 *
131 * @new_size: new cache size
8acabf69 132 * @errp: set *errp if the check failed, with reason
56e93d26 133 */
8b9407a0 134int xbzrle_cache_resize(uint64_t new_size, Error **errp)
56e93d26
JQ
135{
136 PageCache *new_cache;
c9dede2d 137 int64_t ret = 0;
56e93d26 138
8acabf69
JQ
139 /* Check for truncation */
140 if (new_size != (size_t)new_size) {
141 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
142 "exceeding address space");
143 return -1;
144 }
145
2a313e5c
JQ
146 if (new_size == migrate_xbzrle_cache_size()) {
147 /* nothing to do */
c9dede2d 148 return 0;
2a313e5c
JQ
149 }
150
56e93d26
JQ
151 XBZRLE_cache_lock();
152
153 if (XBZRLE.cache != NULL) {
80f8dfde 154 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
56e93d26 155 if (!new_cache) {
56e93d26
JQ
156 ret = -1;
157 goto out;
158 }
159
160 cache_fini(XBZRLE.cache);
161 XBZRLE.cache = new_cache;
162 }
56e93d26
JQ
163out:
164 XBZRLE_cache_unlock();
165 return ret;
166}
167
3ded54b1 168bool ramblock_is_ignored(RAMBlock *block)
fbd162e6
YK
169{
170 return !qemu_ram_is_migratable(block) ||
171 (migrate_ignore_shared() && qemu_ram_is_shared(block));
172}
173
343f632c
DDAG
174#undef RAMBLOCK_FOREACH
175
fbd162e6
YK
176int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
177{
178 RAMBlock *block;
179 int ret = 0;
180
89ac5a1d
DDAG
181 RCU_READ_LOCK_GUARD();
182
fbd162e6
YK
183 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
184 ret = func(block, opaque);
185 if (ret) {
186 break;
187 }
188 }
fbd162e6
YK
189 return ret;
190}
191
f9494614
AP
192static void ramblock_recv_map_init(void)
193{
194 RAMBlock *rb;
195
fbd162e6 196 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
197 assert(!rb->receivedmap);
198 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
199 }
200}
201
202int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
203{
204 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
205 rb->receivedmap);
206}
207
1cba9f6e
DDAG
208bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
209{
210 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
211}
212
f9494614
AP
213void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
214{
215 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
216}
217
218void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
219 size_t nr)
220{
221 bitmap_set_atomic(rb->receivedmap,
222 ramblock_recv_bitmap_offset(host_addr, rb),
223 nr);
224}
225
a335debb
PX
226#define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
227
228/*
229 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
230 *
231 * Returns >0 if success with sent bytes, or <0 if error.
232 */
233int64_t ramblock_recv_bitmap_send(QEMUFile *file,
234 const char *block_name)
235{
236 RAMBlock *block = qemu_ram_block_by_name(block_name);
237 unsigned long *le_bitmap, nbits;
238 uint64_t size;
239
240 if (!block) {
241 error_report("%s: invalid block name: %s", __func__, block_name);
242 return -1;
243 }
244
898ba906 245 nbits = block->postcopy_length >> TARGET_PAGE_BITS;
a335debb
PX
246
247 /*
248 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
249 * machines we may need 4 more bytes for padding (see below
250 * comment). So extend it a bit before hand.
251 */
252 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
253
254 /*
255 * Always use little endian when sending the bitmap. This is
256 * required that when source and destination VMs are not using the
3a4452d8 257 * same endianness. (Note: big endian won't work.)
a335debb
PX
258 */
259 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
260
261 /* Size of the bitmap, in bytes */
a725ef9f 262 size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
263
264 /*
265 * size is always aligned to 8 bytes for 64bit machines, but it
266 * may not be true for 32bit machines. We need this padding to
267 * make sure the migration can survive even between 32bit and
268 * 64bit machines.
269 */
270 size = ROUND_UP(size, 8);
271
272 qemu_put_be64(file, size);
273 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
274 /*
275 * Mark as an end, in case the middle part is screwed up due to
3a4452d8 276 * some "mysterious" reason.
a335debb
PX
277 */
278 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
279 qemu_fflush(file);
280
bf269906 281 g_free(le_bitmap);
a335debb
PX
282
283 if (qemu_file_get_error(file)) {
284 return qemu_file_get_error(file);
285 }
286
287 return size + sizeof(size);
288}
289
ec481c6c
JQ
290/*
291 * An outstanding page request, on the source, having been received
292 * and queued
293 */
294struct RAMSrcPageRequest {
295 RAMBlock *rb;
296 hwaddr offset;
297 hwaddr len;
298
299 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
300};
301
6f37bb8b
JQ
302/* State of RAM for migration */
303struct RAMState {
204b88b8
JQ
304 /* QEMUFile used for this migration */
305 QEMUFile *f;
278e2f55
AG
306 /* UFFD file descriptor, used in 'write-tracking' migration */
307 int uffdio_fd;
6f37bb8b
JQ
308 /* Last block that we have visited searching for dirty pages */
309 RAMBlock *last_seen_block;
310 /* Last block from where we have sent data */
311 RAMBlock *last_sent_block;
269ace29
JQ
312 /* Last dirty target page we have sent */
313 ram_addr_t last_page;
6f37bb8b
JQ
314 /* last ram version we have seen */
315 uint32_t last_version;
8d820d6f
JQ
316 /* How many times we have dirty too many pages */
317 int dirty_rate_high_cnt;
f664da80
JQ
318 /* these variables are used for bitmap sync */
319 /* last time we did a full bitmap_sync */
320 int64_t time_last_bitmap_sync;
eac74159 321 /* bytes transferred at start_time */
c4bdf0cf 322 uint64_t bytes_xfer_prev;
a66cd90c 323 /* number of dirty pages since start_time */
68908ed6 324 uint64_t num_dirty_pages_period;
b5833fde
JQ
325 /* xbzrle misses since the beginning of the period */
326 uint64_t xbzrle_cache_miss_prev;
e460a4b1
WW
327 /* Amount of xbzrle pages since the beginning of the period */
328 uint64_t xbzrle_pages_prev;
329 /* Amount of xbzrle encoded bytes since the beginning of the period */
330 uint64_t xbzrle_bytes_prev;
1a373522
DH
331 /* Start using XBZRLE (e.g., after the first round). */
332 bool xbzrle_enabled;
76e03000
XG
333
334 /* compression statistics since the beginning of the period */
335 /* amount of count that no free thread to compress data */
336 uint64_t compress_thread_busy_prev;
337 /* amount bytes after compression */
338 uint64_t compressed_size_prev;
339 /* amount of compressed pages */
340 uint64_t compress_pages_prev;
341
be8b02ed
XG
342 /* total handled target pages at the beginning of period */
343 uint64_t target_page_count_prev;
344 /* total handled target pages since start */
345 uint64_t target_page_count;
9360447d 346 /* number of dirty bits in the bitmap */
2dfaf12e 347 uint64_t migration_dirty_pages;
386a907b 348 /* Protects modification of the bitmap and migration dirty pages */
108cfae0 349 QemuMutex bitmap_mutex;
68a098f3
JQ
350 /* The RAMBlock used in the last src_page_requests */
351 RAMBlock *last_req_rb;
ec481c6c
JQ
352 /* Queue of outstanding page requests from the destination */
353 QemuMutex src_page_req_mutex;
b58deb34 354 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
6f37bb8b
JQ
355};
356typedef struct RAMState RAMState;
357
53518d94 358static RAMState *ram_state;
6f37bb8b 359
bd227060
WW
360static NotifierWithReturnList precopy_notifier_list;
361
362void precopy_infrastructure_init(void)
363{
364 notifier_with_return_list_init(&precopy_notifier_list);
365}
366
367void precopy_add_notifier(NotifierWithReturn *n)
368{
369 notifier_with_return_list_add(&precopy_notifier_list, n);
370}
371
372void precopy_remove_notifier(NotifierWithReturn *n)
373{
374 notifier_with_return_remove(n);
375}
376
377int precopy_notify(PrecopyNotifyReason reason, Error **errp)
378{
379 PrecopyNotifyData pnd;
380 pnd.reason = reason;
381 pnd.errp = errp;
382
383 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
384}
385
9edabd4d 386uint64_t ram_bytes_remaining(void)
2f4fde93 387{
bae416e5
DDAG
388 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
389 0;
2f4fde93
JQ
390}
391
9360447d 392MigrationStats ram_counters;
96506894 393
b8fb8cb7
DDAG
394/* used by the search for pages to send */
395struct PageSearchStatus {
396 /* Current block being searched */
397 RAMBlock *block;
a935e30f
JQ
398 /* Current page to search from */
399 unsigned long page;
b8fb8cb7
DDAG
400 /* Set once we wrap around */
401 bool complete_round;
402};
403typedef struct PageSearchStatus PageSearchStatus;
404
76e03000
XG
405CompressionStats compression_counters;
406
56e93d26 407struct CompressParam {
56e93d26 408 bool done;
90e56fb4 409 bool quit;
5e5fdcff 410 bool zero_page;
56e93d26
JQ
411 QEMUFile *file;
412 QemuMutex mutex;
413 QemuCond cond;
414 RAMBlock *block;
415 ram_addr_t offset;
34ab9e97
XG
416
417 /* internally used fields */
dcaf446e 418 z_stream stream;
34ab9e97 419 uint8_t *originbuf;
56e93d26
JQ
420};
421typedef struct CompressParam CompressParam;
422
423struct DecompressParam {
73a8912b 424 bool done;
90e56fb4 425 bool quit;
56e93d26
JQ
426 QemuMutex mutex;
427 QemuCond cond;
428 void *des;
d341d9f3 429 uint8_t *compbuf;
56e93d26 430 int len;
797ca154 431 z_stream stream;
56e93d26
JQ
432};
433typedef struct DecompressParam DecompressParam;
434
435static CompressParam *comp_param;
436static QemuThread *compress_threads;
437/* comp_done_cond is used to wake up the migration thread when
438 * one of the compression threads has finished the compression.
439 * comp_done_lock is used to co-work with comp_done_cond.
440 */
0d9f9a5c
LL
441static QemuMutex comp_done_lock;
442static QemuCond comp_done_cond;
56e93d26
JQ
443/* The empty QEMUFileOps will be used by file in CompressParam */
444static const QEMUFileOps empty_ops = { };
445
34ab9e97 446static QEMUFile *decomp_file;
56e93d26
JQ
447static DecompressParam *decomp_param;
448static QemuThread *decompress_threads;
73a8912b
LL
449static QemuMutex decomp_done_lock;
450static QemuCond decomp_done_cond;
56e93d26 451
5e5fdcff 452static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 453 ram_addr_t offset, uint8_t *source_buf);
56e93d26
JQ
454
455static void *do_data_compress(void *opaque)
456{
457 CompressParam *param = opaque;
a7a9a88f
LL
458 RAMBlock *block;
459 ram_addr_t offset;
5e5fdcff 460 bool zero_page;
56e93d26 461
a7a9a88f 462 qemu_mutex_lock(&param->mutex);
90e56fb4 463 while (!param->quit) {
a7a9a88f
LL
464 if (param->block) {
465 block = param->block;
466 offset = param->offset;
467 param->block = NULL;
468 qemu_mutex_unlock(&param->mutex);
469
5e5fdcff
XG
470 zero_page = do_compress_ram_page(param->file, &param->stream,
471 block, offset, param->originbuf);
a7a9a88f 472
0d9f9a5c 473 qemu_mutex_lock(&comp_done_lock);
a7a9a88f 474 param->done = true;
5e5fdcff 475 param->zero_page = zero_page;
0d9f9a5c
LL
476 qemu_cond_signal(&comp_done_cond);
477 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
478
479 qemu_mutex_lock(&param->mutex);
480 } else {
56e93d26
JQ
481 qemu_cond_wait(&param->cond, &param->mutex);
482 }
56e93d26 483 }
a7a9a88f 484 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
485
486 return NULL;
487}
488
f0afa331 489static void compress_threads_save_cleanup(void)
56e93d26
JQ
490{
491 int i, thread_count;
492
05306935 493 if (!migrate_use_compression() || !comp_param) {
56e93d26
JQ
494 return;
495 }
05306935 496
56e93d26
JQ
497 thread_count = migrate_compress_threads();
498 for (i = 0; i < thread_count; i++) {
dcaf446e
XG
499 /*
500 * we use it as a indicator which shows if the thread is
501 * properly init'd or not
502 */
503 if (!comp_param[i].file) {
504 break;
505 }
05306935
FL
506
507 qemu_mutex_lock(&comp_param[i].mutex);
508 comp_param[i].quit = true;
509 qemu_cond_signal(&comp_param[i].cond);
510 qemu_mutex_unlock(&comp_param[i].mutex);
511
56e93d26 512 qemu_thread_join(compress_threads + i);
56e93d26
JQ
513 qemu_mutex_destroy(&comp_param[i].mutex);
514 qemu_cond_destroy(&comp_param[i].cond);
dcaf446e 515 deflateEnd(&comp_param[i].stream);
34ab9e97 516 g_free(comp_param[i].originbuf);
dcaf446e
XG
517 qemu_fclose(comp_param[i].file);
518 comp_param[i].file = NULL;
56e93d26 519 }
0d9f9a5c
LL
520 qemu_mutex_destroy(&comp_done_lock);
521 qemu_cond_destroy(&comp_done_cond);
56e93d26
JQ
522 g_free(compress_threads);
523 g_free(comp_param);
56e93d26
JQ
524 compress_threads = NULL;
525 comp_param = NULL;
56e93d26
JQ
526}
527
dcaf446e 528static int compress_threads_save_setup(void)
56e93d26
JQ
529{
530 int i, thread_count;
531
532 if (!migrate_use_compression()) {
dcaf446e 533 return 0;
56e93d26 534 }
56e93d26
JQ
535 thread_count = migrate_compress_threads();
536 compress_threads = g_new0(QemuThread, thread_count);
537 comp_param = g_new0(CompressParam, thread_count);
0d9f9a5c
LL
538 qemu_cond_init(&comp_done_cond);
539 qemu_mutex_init(&comp_done_lock);
56e93d26 540 for (i = 0; i < thread_count; i++) {
34ab9e97
XG
541 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
542 if (!comp_param[i].originbuf) {
543 goto exit;
544 }
545
dcaf446e
XG
546 if (deflateInit(&comp_param[i].stream,
547 migrate_compress_level()) != Z_OK) {
34ab9e97 548 g_free(comp_param[i].originbuf);
dcaf446e
XG
549 goto exit;
550 }
551
e110aa91
C
552 /* comp_param[i].file is just used as a dummy buffer to save data,
553 * set its ops to empty.
56e93d26 554 */
c6ad5be7 555 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops, false);
56e93d26 556 comp_param[i].done = true;
90e56fb4 557 comp_param[i].quit = false;
56e93d26
JQ
558 qemu_mutex_init(&comp_param[i].mutex);
559 qemu_cond_init(&comp_param[i].cond);
560 qemu_thread_create(compress_threads + i, "compress",
561 do_data_compress, comp_param + i,
562 QEMU_THREAD_JOINABLE);
563 }
dcaf446e
XG
564 return 0;
565
566exit:
567 compress_threads_save_cleanup();
568 return -1;
56e93d26
JQ
569}
570
571/**
3d0684b2 572 * save_page_header: write page header to wire
56e93d26
JQ
573 *
574 * If this is the 1st block, it also writes the block identification
575 *
3d0684b2 576 * Returns the number of bytes written
56e93d26
JQ
577 *
578 * @f: QEMUFile where to send the data
579 * @block: block that contains the page we want to send
580 * @offset: offset inside the block for the page
581 * in the lower bits, it contains flags
582 */
2bf3aa85
JQ
583static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
584 ram_addr_t offset)
56e93d26 585{
9f5f380b 586 size_t size, len;
56e93d26 587
24795694
JQ
588 if (block == rs->last_sent_block) {
589 offset |= RAM_SAVE_FLAG_CONTINUE;
590 }
2bf3aa85 591 qemu_put_be64(f, offset);
56e93d26
JQ
592 size = 8;
593
594 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
9f5f380b 595 len = strlen(block->idstr);
2bf3aa85
JQ
596 qemu_put_byte(f, len);
597 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
9f5f380b 598 size += 1 + len;
24795694 599 rs->last_sent_block = block;
56e93d26
JQ
600 }
601 return size;
602}
603
3d0684b2 604/**
179a8080 605 * mig_throttle_guest_down: throttle down the guest
3d0684b2
JQ
606 *
607 * Reduce amount of guest cpu execution to hopefully slow down memory
608 * writes. If guest dirty memory rate is reduced below the rate at
609 * which we can transfer pages to the destination then we should be
610 * able to complete migration. Some workloads dirty memory way too
611 * fast and will not effectively converge, even with auto-converge.
070afca2 612 */
cbbf8182
KZ
613static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
614 uint64_t bytes_dirty_threshold)
070afca2
JH
615{
616 MigrationState *s = migrate_get_current();
2594f56d 617 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
cbbf8182
KZ
618 uint64_t pct_increment = s->parameters.cpu_throttle_increment;
619 bool pct_tailslow = s->parameters.cpu_throttle_tailslow;
4cbc9c7f 620 int pct_max = s->parameters.max_cpu_throttle;
070afca2 621
cbbf8182
KZ
622 uint64_t throttle_now = cpu_throttle_get_percentage();
623 uint64_t cpu_now, cpu_ideal, throttle_inc;
624
070afca2
JH
625 /* We have not started throttling yet. Let's start it. */
626 if (!cpu_throttle_active()) {
627 cpu_throttle_set(pct_initial);
628 } else {
629 /* Throttling already on, just increase the rate */
cbbf8182
KZ
630 if (!pct_tailslow) {
631 throttle_inc = pct_increment;
632 } else {
633 /* Compute the ideal CPU percentage used by Guest, which may
634 * make the dirty rate match the dirty rate threshold. */
635 cpu_now = 100 - throttle_now;
636 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
637 bytes_dirty_period);
638 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
639 }
640 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
070afca2
JH
641 }
642}
643
91fe9a8d
RL
644void mig_throttle_counter_reset(void)
645{
646 RAMState *rs = ram_state;
647
648 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
649 rs->num_dirty_pages_period = 0;
650 rs->bytes_xfer_prev = ram_counters.transferred;
651}
652
3d0684b2
JQ
653/**
654 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
655 *
6f37bb8b 656 * @rs: current RAM state
3d0684b2
JQ
657 * @current_addr: address for the zero page
658 *
659 * Update the xbzrle cache to reflect a page that's been sent as all 0.
56e93d26
JQ
660 * The important thing is that a stale (not-yet-0'd) page be replaced
661 * by the new data.
662 * As a bonus, if the page wasn't in the cache it gets added so that
3d0684b2 663 * when a small write is made into the 0'd page it gets XBZRLE sent.
56e93d26 664 */
6f37bb8b 665static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
56e93d26 666{
1a373522 667 if (!rs->xbzrle_enabled) {
56e93d26
JQ
668 return;
669 }
670
671 /* We don't care if this fails to allocate a new cache page
672 * as long as it updated an old one */
c00e0928 673 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
9360447d 674 ram_counters.dirty_sync_count);
56e93d26
JQ
675}
676
677#define ENCODING_FLAG_XBZRLE 0x1
678
679/**
680 * save_xbzrle_page: compress and send current page
681 *
682 * Returns: 1 means that we wrote the page
683 * 0 means that page is identical to the one already sent
684 * -1 means that xbzrle would be longer than normal
685 *
5a987738 686 * @rs: current RAM state
3d0684b2
JQ
687 * @current_data: pointer to the address of the page contents
688 * @current_addr: addr of the page
56e93d26
JQ
689 * @block: block that contains the page we want to send
690 * @offset: offset inside the block for the page
691 * @last_stage: if we are at the completion stage
56e93d26 692 */
204b88b8 693static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
56e93d26 694 ram_addr_t current_addr, RAMBlock *block,
072c2511 695 ram_addr_t offset, bool last_stage)
56e93d26
JQ
696{
697 int encoded_len = 0, bytes_xbzrle;
698 uint8_t *prev_cached_page;
699
9360447d
JQ
700 if (!cache_is_cached(XBZRLE.cache, current_addr,
701 ram_counters.dirty_sync_count)) {
702 xbzrle_counters.cache_miss++;
56e93d26
JQ
703 if (!last_stage) {
704 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
9360447d 705 ram_counters.dirty_sync_count) == -1) {
56e93d26
JQ
706 return -1;
707 } else {
708 /* update *current_data when the page has been
709 inserted into cache */
710 *current_data = get_cached_data(XBZRLE.cache, current_addr);
711 }
712 }
713 return -1;
714 }
715
e460a4b1
WW
716 /*
717 * Reaching here means the page has hit the xbzrle cache, no matter what
718 * encoding result it is (normal encoding, overflow or skipping the page),
3a4452d8 719 * count the page as encoded. This is used to calculate the encoding rate.
e460a4b1
WW
720 *
721 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
722 * 2nd page turns out to be skipped (i.e. no new bytes written to the
723 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
724 * skipped page included. In this way, the encoding rate can tell if the
725 * guest page is good for xbzrle encoding.
726 */
727 xbzrle_counters.pages++;
56e93d26
JQ
728 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
729
730 /* save current buffer into memory */
731 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
732
733 /* XBZRLE encoding (if there is no overflow) */
734 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
735 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
736 TARGET_PAGE_SIZE);
ca353803
WY
737
738 /*
739 * Update the cache contents, so that it corresponds to the data
740 * sent, in all cases except where we skip the page.
741 */
742 if (!last_stage && encoded_len != 0) {
743 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
744 /*
745 * In the case where we couldn't compress, ensure that the caller
746 * sends the data from the cache, since the guest might have
747 * changed the RAM since we copied it.
748 */
749 *current_data = prev_cached_page;
750 }
751
56e93d26 752 if (encoded_len == 0) {
55c4446b 753 trace_save_xbzrle_page_skipping();
56e93d26
JQ
754 return 0;
755 } else if (encoded_len == -1) {
55c4446b 756 trace_save_xbzrle_page_overflow();
9360447d 757 xbzrle_counters.overflow++;
e460a4b1 758 xbzrle_counters.bytes += TARGET_PAGE_SIZE;
56e93d26
JQ
759 return -1;
760 }
761
56e93d26 762 /* Send XBZRLE based compressed page */
2bf3aa85 763 bytes_xbzrle = save_page_header(rs, rs->f, block,
204b88b8
JQ
764 offset | RAM_SAVE_FLAG_XBZRLE);
765 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
766 qemu_put_be16(rs->f, encoded_len);
767 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
56e93d26 768 bytes_xbzrle += encoded_len + 1 + 2;
e460a4b1
WW
769 /*
770 * Like compressed_size (please see update_compress_thread_counts),
771 * the xbzrle encoded bytes don't count the 8 byte header with
772 * RAM_SAVE_FLAG_CONTINUE.
773 */
774 xbzrle_counters.bytes += bytes_xbzrle - 8;
9360447d 775 ram_counters.transferred += bytes_xbzrle;
56e93d26
JQ
776
777 return 1;
778}
779
3d0684b2
JQ
780/**
781 * migration_bitmap_find_dirty: find the next dirty page from start
f3f491fc 782 *
a5f7b1a6 783 * Returns the page offset within memory region of the start of a dirty page
3d0684b2 784 *
6f37bb8b 785 * @rs: current RAM state
3d0684b2 786 * @rb: RAMBlock where to search for dirty pages
a935e30f 787 * @start: page where we start the search
f3f491fc 788 */
56e93d26 789static inline
a935e30f 790unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
f20e2865 791 unsigned long start)
56e93d26 792{
6b6712ef
JQ
793 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
794 unsigned long *bitmap = rb->bmap;
56e93d26 795
fbd162e6 796 if (ramblock_is_ignored(rb)) {
b895de50
CLG
797 return size;
798 }
799
1a373522 800 return find_next_bit(bitmap, size, start);
56e93d26
JQ
801}
802
1230a25f 803static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
3143577d
WW
804 unsigned long page)
805{
806 uint8_t shift;
807 hwaddr size, start;
808
809 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
810 return;
811 }
812
813 shift = rb->clear_bmap_shift;
814 /*
815 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
816 * can make things easier sometimes since then start address
817 * of the small chunk will always be 64 pages aligned so the
818 * bitmap will always be aligned to unsigned long. We should
819 * even be able to remove this restriction but I'm simply
820 * keeping it.
821 */
822 assert(shift >= 6);
823
824 size = 1ULL << (TARGET_PAGE_BITS + shift);
7648297d 825 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
3143577d
WW
826 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
827 memory_region_clear_dirty_bitmap(rb->mr, start, size);
828}
829
830static void
1230a25f 831migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
3143577d
WW
832 unsigned long start,
833 unsigned long npages)
834{
835 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
836 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
837 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
838
839 /*
840 * Clear pages from start to start + npages - 1, so the end boundary is
841 * exclusive.
842 */
843 for (i = chunk_start; i < chunk_end; i += chunk_pages) {
1230a25f 844 migration_clear_memory_region_dirty_bitmap(rb, i);
3143577d
WW
845 }
846}
847
a6a83cef
RL
848/*
849 * colo_bitmap_find_diry:find contiguous dirty pages from start
850 *
851 * Returns the page offset within memory region of the start of the contiguout
852 * dirty page
853 *
854 * @rs: current RAM state
855 * @rb: RAMBlock where to search for dirty pages
856 * @start: page where we start the search
857 * @num: the number of contiguous dirty pages
858 */
859static inline
860unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
861 unsigned long start, unsigned long *num)
862{
863 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
864 unsigned long *bitmap = rb->bmap;
865 unsigned long first, next;
866
867 *num = 0;
868
869 if (ramblock_is_ignored(rb)) {
870 return size;
871 }
872
873 first = find_next_bit(bitmap, size, start);
874 if (first >= size) {
875 return first;
876 }
877 next = find_next_zero_bit(bitmap, size, first + 1);
878 assert(next >= first);
879 *num = next - first;
880 return first;
881}
882
06b10688 883static inline bool migration_bitmap_clear_dirty(RAMState *rs,
f20e2865
JQ
884 RAMBlock *rb,
885 unsigned long page)
a82d593b
DDAG
886{
887 bool ret;
a82d593b 888
002cad6b
PX
889 /*
890 * Clear dirty bitmap if needed. This _must_ be called before we
891 * send any of the page in the chunk because we need to make sure
892 * we can capture further page content changes when we sync dirty
893 * log the next time. So as long as we are going to send any of
894 * the page in the chunk we clear the remote dirty bitmap for all.
895 * Clearing it earlier won't be a problem, but too late will.
896 */
1230a25f 897 migration_clear_memory_region_dirty_bitmap(rb, page);
002cad6b 898
6b6712ef 899 ret = test_and_clear_bit(page, rb->bmap);
a82d593b 900 if (ret) {
0d8ec885 901 rs->migration_dirty_pages--;
a82d593b 902 }
386a907b 903
a82d593b
DDAG
904 return ret;
905}
906
be39b4cd
DH
907static void dirty_bitmap_clear_section(MemoryRegionSection *section,
908 void *opaque)
909{
910 const hwaddr offset = section->offset_within_region;
911 const hwaddr size = int128_get64(section->size);
912 const unsigned long start = offset >> TARGET_PAGE_BITS;
913 const unsigned long npages = size >> TARGET_PAGE_BITS;
914 RAMBlock *rb = section->mr->ram_block;
915 uint64_t *cleared_bits = opaque;
916
917 /*
918 * We don't grab ram_state->bitmap_mutex because we expect to run
919 * only when starting migration or during postcopy recovery where
920 * we don't have concurrent access.
921 */
922 if (!migration_in_postcopy() && !migrate_background_snapshot()) {
923 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
924 }
925 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
926 bitmap_clear(rb->bmap, start, npages);
927}
928
929/*
930 * Exclude all dirty pages from migration that fall into a discarded range as
931 * managed by a RamDiscardManager responsible for the mapped memory region of
932 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
933 *
934 * Discarded pages ("logically unplugged") have undefined content and must
935 * not get migrated, because even reading these pages for migration might
936 * result in undesired behavior.
937 *
938 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
939 *
940 * Note: The result is only stable while migrating (precopy/postcopy).
941 */
942static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
943{
944 uint64_t cleared_bits = 0;
945
946 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
947 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
948 MemoryRegionSection section = {
949 .mr = rb->mr,
950 .offset_within_region = 0,
951 .size = int128_make64(qemu_ram_get_used_length(rb)),
952 };
953
954 ram_discard_manager_replay_discarded(rdm, &section,
955 dirty_bitmap_clear_section,
956 &cleared_bits);
957 }
958 return cleared_bits;
959}
960
9470c5e0
DH
961/*
962 * Check if a host-page aligned page falls into a discarded range as managed by
963 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
964 *
965 * Note: The result is only stable while migrating (precopy/postcopy).
966 */
967bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
968{
969 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
970 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
971 MemoryRegionSection section = {
972 .mr = rb->mr,
973 .offset_within_region = start,
974 .size = int128_make64(qemu_ram_pagesize(rb)),
975 };
976
977 return !ram_discard_manager_is_populated(rdm, &section);
978 }
979 return false;
980}
981
267691b6 982/* Called with RCU critical section */
7a3e9571 983static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
56e93d26 984{
fb613580
KZ
985 uint64_t new_dirty_pages =
986 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
987
988 rs->migration_dirty_pages += new_dirty_pages;
989 rs->num_dirty_pages_period += new_dirty_pages;
56e93d26
JQ
990}
991
3d0684b2
JQ
992/**
993 * ram_pagesize_summary: calculate all the pagesizes of a VM
994 *
995 * Returns a summary bitmap of the page sizes of all RAMBlocks
996 *
997 * For VMs with just normal pages this is equivalent to the host page
998 * size. If it's got some huge pages then it's the OR of all the
999 * different page sizes.
e8ca1db2
DDAG
1000 */
1001uint64_t ram_pagesize_summary(void)
1002{
1003 RAMBlock *block;
1004 uint64_t summary = 0;
1005
fbd162e6 1006 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
e8ca1db2
DDAG
1007 summary |= block->page_size;
1008 }
1009
1010 return summary;
1011}
1012
aecbfe9c
XG
1013uint64_t ram_get_total_transferred_pages(void)
1014{
1015 return ram_counters.normal + ram_counters.duplicate +
1016 compression_counters.pages + xbzrle_counters.pages;
1017}
1018
b734035b
XG
1019static void migration_update_rates(RAMState *rs, int64_t end_time)
1020{
be8b02ed 1021 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
76e03000 1022 double compressed_size;
b734035b
XG
1023
1024 /* calculate period counters */
1025 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1026 / (end_time - rs->time_last_bitmap_sync);
1027
be8b02ed 1028 if (!page_count) {
b734035b
XG
1029 return;
1030 }
1031
1032 if (migrate_use_xbzrle()) {
e460a4b1
WW
1033 double encoded_size, unencoded_size;
1034
b734035b 1035 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
be8b02ed 1036 rs->xbzrle_cache_miss_prev) / page_count;
b734035b 1037 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
e460a4b1
WW
1038 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
1039 TARGET_PAGE_SIZE;
1040 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
92271402 1041 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
e460a4b1 1042 xbzrle_counters.encoding_rate = 0;
e460a4b1
WW
1043 } else {
1044 xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
1045 }
1046 rs->xbzrle_pages_prev = xbzrle_counters.pages;
1047 rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
b734035b 1048 }
76e03000
XG
1049
1050 if (migrate_use_compression()) {
1051 compression_counters.busy_rate = (double)(compression_counters.busy -
1052 rs->compress_thread_busy_prev) / page_count;
1053 rs->compress_thread_busy_prev = compression_counters.busy;
1054
1055 compressed_size = compression_counters.compressed_size -
1056 rs->compressed_size_prev;
1057 if (compressed_size) {
1058 double uncompressed_size = (compression_counters.pages -
1059 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1060
1061 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1062 compression_counters.compression_rate =
1063 uncompressed_size / compressed_size;
1064
1065 rs->compress_pages_prev = compression_counters.pages;
1066 rs->compressed_size_prev = compression_counters.compressed_size;
1067 }
1068 }
b734035b
XG
1069}
1070
dc14a470
KZ
1071static void migration_trigger_throttle(RAMState *rs)
1072{
1073 MigrationState *s = migrate_get_current();
1074 uint64_t threshold = s->parameters.throttle_trigger_threshold;
1075
1076 uint64_t bytes_xfer_period = ram_counters.transferred - rs->bytes_xfer_prev;
1077 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1078 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1079
1080 /* During block migration the auto-converge logic incorrectly detects
1081 * that ram migration makes no progress. Avoid this by disabling the
1082 * throttling logic during the bulk phase of block migration. */
1083 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1084 /* The following detection logic can be refined later. For now:
1085 Check to see if the ratio between dirtied bytes and the approx.
1086 amount of bytes that just got transferred since the last time
1087 we were in this routine reaches the threshold. If that happens
1088 twice, start or increase throttling. */
1089
1090 if ((bytes_dirty_period > bytes_dirty_threshold) &&
1091 (++rs->dirty_rate_high_cnt >= 2)) {
1092 trace_migration_throttle();
1093 rs->dirty_rate_high_cnt = 0;
cbbf8182
KZ
1094 mig_throttle_guest_down(bytes_dirty_period,
1095 bytes_dirty_threshold);
dc14a470
KZ
1096 }
1097 }
1098}
1099
8d820d6f 1100static void migration_bitmap_sync(RAMState *rs)
56e93d26
JQ
1101{
1102 RAMBlock *block;
56e93d26 1103 int64_t end_time;
56e93d26 1104
9360447d 1105 ram_counters.dirty_sync_count++;
56e93d26 1106
f664da80
JQ
1107 if (!rs->time_last_bitmap_sync) {
1108 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
56e93d26
JQ
1109 }
1110
1111 trace_migration_bitmap_sync_start();
9c1f8f44 1112 memory_global_dirty_log_sync();
56e93d26 1113
108cfae0 1114 qemu_mutex_lock(&rs->bitmap_mutex);
89ac5a1d
DDAG
1115 WITH_RCU_READ_LOCK_GUARD() {
1116 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1117 ramblock_sync_dirty_bitmap(rs, block);
1118 }
1119 ram_counters.remaining = ram_bytes_remaining();
56e93d26 1120 }
108cfae0 1121 qemu_mutex_unlock(&rs->bitmap_mutex);
56e93d26 1122
9458a9a1 1123 memory_global_after_dirty_log_sync();
a66cd90c 1124 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1ffb5dfd 1125
56e93d26
JQ
1126 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1127
1128 /* more than 1 second = 1000 millisecons */
f664da80 1129 if (end_time > rs->time_last_bitmap_sync + 1000) {
dc14a470 1130 migration_trigger_throttle(rs);
070afca2 1131
b734035b
XG
1132 migration_update_rates(rs, end_time);
1133
be8b02ed 1134 rs->target_page_count_prev = rs->target_page_count;
d693c6f1
FF
1135
1136 /* reset period counters */
f664da80 1137 rs->time_last_bitmap_sync = end_time;
a66cd90c 1138 rs->num_dirty_pages_period = 0;
dc14a470 1139 rs->bytes_xfer_prev = ram_counters.transferred;
56e93d26 1140 }
4addcd4f 1141 if (migrate_use_events()) {
3ab72385 1142 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
4addcd4f 1143 }
56e93d26
JQ
1144}
1145
bd227060
WW
1146static void migration_bitmap_sync_precopy(RAMState *rs)
1147{
1148 Error *local_err = NULL;
1149
1150 /*
1151 * The current notifier usage is just an optimization to migration, so we
1152 * don't stop the normal migration process in the error case.
1153 */
1154 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1155 error_report_err(local_err);
b4a1733c 1156 local_err = NULL;
bd227060
WW
1157 }
1158
1159 migration_bitmap_sync(rs);
1160
1161 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1162 error_report_err(local_err);
1163 }
1164}
1165
6c97ec5f
XG
1166/**
1167 * save_zero_page_to_file: send the zero page to the file
1168 *
1169 * Returns the size of data written to the file, 0 means the page is not
1170 * a zero page
1171 *
1172 * @rs: current RAM state
1173 * @file: the file where the data is saved
1174 * @block: block that contains the page we want to send
1175 * @offset: offset inside the block for the page
1176 */
1177static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1178 RAMBlock *block, ram_addr_t offset)
1179{
1180 uint8_t *p = block->host + offset;
1181 int len = 0;
1182
1183 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1184 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1185 qemu_put_byte(file, 0);
1186 len += 1;
1187 }
1188 return len;
1189}
1190
56e93d26 1191/**
3d0684b2 1192 * save_zero_page: send the zero page to the stream
56e93d26 1193 *
3d0684b2 1194 * Returns the number of pages written.
56e93d26 1195 *
f7ccd61b 1196 * @rs: current RAM state
56e93d26
JQ
1197 * @block: block that contains the page we want to send
1198 * @offset: offset inside the block for the page
56e93d26 1199 */
7faccdc3 1200static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
56e93d26 1201{
6c97ec5f 1202 int len = save_zero_page_to_file(rs, rs->f, block, offset);
56e93d26 1203
6c97ec5f 1204 if (len) {
9360447d 1205 ram_counters.duplicate++;
6c97ec5f
XG
1206 ram_counters.transferred += len;
1207 return 1;
56e93d26 1208 }
6c97ec5f 1209 return -1;
56e93d26
JQ
1210}
1211
5727309d 1212static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
53f09a10 1213{
5727309d 1214 if (!migrate_release_ram() || !migration_in_postcopy()) {
53f09a10
PB
1215 return;
1216 }
1217
8bba004c 1218 ram_discard_range(rbname, offset, ((ram_addr_t)pages) << TARGET_PAGE_BITS);
53f09a10
PB
1219}
1220
059ff0fb
XG
1221/*
1222 * @pages: the number of pages written by the control path,
1223 * < 0 - error
1224 * > 0 - number of pages written
1225 *
1226 * Return true if the pages has been saved, otherwise false is returned.
1227 */
1228static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1229 int *pages)
1230{
1231 uint64_t bytes_xmit = 0;
1232 int ret;
1233
1234 *pages = -1;
1235 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1236 &bytes_xmit);
1237 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1238 return false;
1239 }
1240
1241 if (bytes_xmit) {
1242 ram_counters.transferred += bytes_xmit;
1243 *pages = 1;
1244 }
1245
1246 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1247 return true;
1248 }
1249
1250 if (bytes_xmit > 0) {
1251 ram_counters.normal++;
1252 } else if (bytes_xmit == 0) {
1253 ram_counters.duplicate++;
1254 }
1255
1256 return true;
1257}
1258
65dacaa0
XG
1259/*
1260 * directly send the page to the stream
1261 *
1262 * Returns the number of pages written.
1263 *
1264 * @rs: current RAM state
1265 * @block: block that contains the page we want to send
1266 * @offset: offset inside the block for the page
1267 * @buf: the page to be sent
1268 * @async: send to page asyncly
1269 */
1270static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1271 uint8_t *buf, bool async)
1272{
1273 ram_counters.transferred += save_page_header(rs, rs->f, block,
1274 offset | RAM_SAVE_FLAG_PAGE);
1275 if (async) {
1276 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1277 migrate_release_ram() &
1278 migration_in_postcopy());
1279 } else {
1280 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1281 }
1282 ram_counters.transferred += TARGET_PAGE_SIZE;
1283 ram_counters.normal++;
1284 return 1;
1285}
1286
56e93d26 1287/**
3d0684b2 1288 * ram_save_page: send the given page to the stream
56e93d26 1289 *
3d0684b2 1290 * Returns the number of pages written.
3fd3c4b3
DDAG
1291 * < 0 - error
1292 * >=0 - Number of pages written - this might legally be 0
1293 * if xbzrle noticed the page was the same.
56e93d26 1294 *
6f37bb8b 1295 * @rs: current RAM state
56e93d26
JQ
1296 * @block: block that contains the page we want to send
1297 * @offset: offset inside the block for the page
1298 * @last_stage: if we are at the completion stage
56e93d26 1299 */
a0a8aa14 1300static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
56e93d26
JQ
1301{
1302 int pages = -1;
56e93d26 1303 uint8_t *p;
56e93d26 1304 bool send_async = true;
a08f6890 1305 RAMBlock *block = pss->block;
8bba004c 1306 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
059ff0fb 1307 ram_addr_t current_addr = block->offset + offset;
56e93d26 1308
2f68e399 1309 p = block->host + offset;
1db9d8e5 1310 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
56e93d26 1311
56e93d26 1312 XBZRLE_cache_lock();
1a373522 1313 if (rs->xbzrle_enabled && !migration_in_postcopy()) {
059ff0fb
XG
1314 pages = save_xbzrle_page(rs, &p, current_addr, block,
1315 offset, last_stage);
1316 if (!last_stage) {
1317 /* Can't send this cached data async, since the cache page
1318 * might get updated before it gets to the wire
56e93d26 1319 */
059ff0fb 1320 send_async = false;
56e93d26
JQ
1321 }
1322 }
1323
1324 /* XBZRLE overflow or normal page */
1325 if (pages == -1) {
65dacaa0 1326 pages = save_normal_page(rs, block, offset, p, send_async);
56e93d26
JQ
1327 }
1328
1329 XBZRLE_cache_unlock();
1330
1331 return pages;
1332}
1333
b9ee2f7d
JQ
1334static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
1335 ram_addr_t offset)
1336{
67a4c891 1337 if (multifd_queue_page(rs->f, block, offset) < 0) {
713f762a
IR
1338 return -1;
1339 }
b9ee2f7d
JQ
1340 ram_counters.normal++;
1341
1342 return 1;
1343}
1344
5e5fdcff 1345static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 1346 ram_addr_t offset, uint8_t *source_buf)
56e93d26 1347{
53518d94 1348 RAMState *rs = ram_state;
a7a9a88f 1349 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
5e5fdcff 1350 bool zero_page = false;
6ef3771c 1351 int ret;
56e93d26 1352
5e5fdcff
XG
1353 if (save_zero_page_to_file(rs, f, block, offset)) {
1354 zero_page = true;
1355 goto exit;
1356 }
1357
6ef3771c 1358 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
34ab9e97
XG
1359
1360 /*
1361 * copy it to a internal buffer to avoid it being modified by VM
1362 * so that we can catch up the error during compression and
1363 * decompression
1364 */
1365 memcpy(source_buf, p, TARGET_PAGE_SIZE);
6ef3771c
XG
1366 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
1367 if (ret < 0) {
1368 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
b3be2896 1369 error_report("compressed data failed!");
5e5fdcff 1370 return false;
b3be2896 1371 }
56e93d26 1372
5e5fdcff 1373exit:
6ef3771c 1374 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
5e5fdcff
XG
1375 return zero_page;
1376}
1377
1378static void
1379update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
1380{
76e03000
XG
1381 ram_counters.transferred += bytes_xmit;
1382
5e5fdcff
XG
1383 if (param->zero_page) {
1384 ram_counters.duplicate++;
76e03000 1385 return;
5e5fdcff 1386 }
76e03000
XG
1387
1388 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
1389 compression_counters.compressed_size += bytes_xmit - 8;
1390 compression_counters.pages++;
56e93d26
JQ
1391}
1392
32b05495
XG
1393static bool save_page_use_compression(RAMState *rs);
1394
ce25d337 1395static void flush_compressed_data(RAMState *rs)
56e93d26
JQ
1396{
1397 int idx, len, thread_count;
1398
32b05495 1399 if (!save_page_use_compression(rs)) {
56e93d26
JQ
1400 return;
1401 }
1402 thread_count = migrate_compress_threads();
a7a9a88f 1403
0d9f9a5c 1404 qemu_mutex_lock(&comp_done_lock);
56e93d26 1405 for (idx = 0; idx < thread_count; idx++) {
a7a9a88f 1406 while (!comp_param[idx].done) {
0d9f9a5c 1407 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26 1408 }
a7a9a88f 1409 }
0d9f9a5c 1410 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
1411
1412 for (idx = 0; idx < thread_count; idx++) {
1413 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 1414 if (!comp_param[idx].quit) {
ce25d337 1415 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
5e5fdcff
XG
1416 /*
1417 * it's safe to fetch zero_page without holding comp_done_lock
1418 * as there is no further request submitted to the thread,
1419 * i.e, the thread should be waiting for a request at this point.
1420 */
1421 update_compress_thread_counts(&comp_param[idx], len);
56e93d26 1422 }
a7a9a88f 1423 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26
JQ
1424 }
1425}
1426
1427static inline void set_compress_params(CompressParam *param, RAMBlock *block,
1428 ram_addr_t offset)
1429{
1430 param->block = block;
1431 param->offset = offset;
1432}
1433
ce25d337
JQ
1434static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
1435 ram_addr_t offset)
56e93d26
JQ
1436{
1437 int idx, thread_count, bytes_xmit = -1, pages = -1;
1d58872a 1438 bool wait = migrate_compress_wait_thread();
56e93d26
JQ
1439
1440 thread_count = migrate_compress_threads();
0d9f9a5c 1441 qemu_mutex_lock(&comp_done_lock);
1d58872a
XG
1442retry:
1443 for (idx = 0; idx < thread_count; idx++) {
1444 if (comp_param[idx].done) {
1445 comp_param[idx].done = false;
1446 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1447 qemu_mutex_lock(&comp_param[idx].mutex);
1448 set_compress_params(&comp_param[idx], block, offset);
1449 qemu_cond_signal(&comp_param[idx].cond);
1450 qemu_mutex_unlock(&comp_param[idx].mutex);
1451 pages = 1;
5e5fdcff 1452 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
56e93d26 1453 break;
56e93d26
JQ
1454 }
1455 }
1d58872a
XG
1456
1457 /*
1458 * wait for the free thread if the user specifies 'compress-wait-thread',
1459 * otherwise we will post the page out in the main thread as normal page.
1460 */
1461 if (pages < 0 && wait) {
1462 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1463 goto retry;
1464 }
0d9f9a5c 1465 qemu_mutex_unlock(&comp_done_lock);
56e93d26
JQ
1466
1467 return pages;
1468}
1469
3d0684b2
JQ
1470/**
1471 * find_dirty_block: find the next dirty page and update any state
1472 * associated with the search process.
b9e60928 1473 *
a5f7b1a6 1474 * Returns true if a page is found
b9e60928 1475 *
6f37bb8b 1476 * @rs: current RAM state
3d0684b2
JQ
1477 * @pss: data about the state of the current dirty page scan
1478 * @again: set to false if the search has scanned the whole of RAM
b9e60928 1479 */
f20e2865 1480static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
b9e60928 1481{
f20e2865 1482 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
6f37bb8b 1483 if (pss->complete_round && pss->block == rs->last_seen_block &&
a935e30f 1484 pss->page >= rs->last_page) {
b9e60928
DDAG
1485 /*
1486 * We've been once around the RAM and haven't found anything.
1487 * Give up.
1488 */
1489 *again = false;
1490 return false;
1491 }
542147f4
DH
1492 if (!offset_in_ramblock(pss->block,
1493 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
b9e60928 1494 /* Didn't find anything in this RAM Block */
a935e30f 1495 pss->page = 0;
b9e60928
DDAG
1496 pss->block = QLIST_NEXT_RCU(pss->block, next);
1497 if (!pss->block) {
48df9d80
XG
1498 /*
1499 * If memory migration starts over, we will meet a dirtied page
1500 * which may still exists in compression threads's ring, so we
1501 * should flush the compressed data to make sure the new page
1502 * is not overwritten by the old one in the destination.
1503 *
1504 * Also If xbzrle is on, stop using the data compression at this
1505 * point. In theory, xbzrle can do better than compression.
1506 */
1507 flush_compressed_data(rs);
1508
b9e60928
DDAG
1509 /* Hit the end of the list */
1510 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1511 /* Flag that we've looped */
1512 pss->complete_round = true;
1a373522
DH
1513 /* After the first round, enable XBZRLE. */
1514 if (migrate_use_xbzrle()) {
1515 rs->xbzrle_enabled = true;
1516 }
b9e60928
DDAG
1517 }
1518 /* Didn't find anything this time, but try again on the new block */
1519 *again = true;
1520 return false;
1521 } else {
1522 /* Can go around again, but... */
1523 *again = true;
1524 /* We've found something so probably don't need to */
1525 return true;
1526 }
1527}
1528
3d0684b2
JQ
1529/**
1530 * unqueue_page: gets a page of the queue
1531 *
a82d593b 1532 * Helper for 'get_queued_page' - gets a page off the queue
a82d593b 1533 *
3d0684b2
JQ
1534 * Returns the block of the page (or NULL if none available)
1535 *
ec481c6c 1536 * @rs: current RAM state
3d0684b2 1537 * @offset: used to return the offset within the RAMBlock
a82d593b 1538 */
f20e2865 1539static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
a82d593b
DDAG
1540{
1541 RAMBlock *block = NULL;
1542
ae526e32
XG
1543 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
1544 return NULL;
1545 }
1546
6e8a355d 1547 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
ec481c6c
JQ
1548 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
1549 struct RAMSrcPageRequest *entry =
1550 QSIMPLEQ_FIRST(&rs->src_page_requests);
a82d593b
DDAG
1551 block = entry->rb;
1552 *offset = entry->offset;
a82d593b
DDAG
1553
1554 if (entry->len > TARGET_PAGE_SIZE) {
1555 entry->len -= TARGET_PAGE_SIZE;
1556 entry->offset += TARGET_PAGE_SIZE;
1557 } else {
1558 memory_region_unref(block->mr);
ec481c6c 1559 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
a82d593b 1560 g_free(entry);
e03a34f8 1561 migration_consume_urgent_request();
a82d593b
DDAG
1562 }
1563 }
a82d593b
DDAG
1564
1565 return block;
1566}
1567
278e2f55
AG
1568#if defined(__linux__)
1569/**
1570 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1571 * is found, return RAM block pointer and page offset
1572 *
1573 * Returns pointer to the RAMBlock containing faulting page,
1574 * NULL if no write faults are pending
1575 *
1576 * @rs: current RAM state
1577 * @offset: page offset from the beginning of the block
1578 */
1579static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1580{
1581 struct uffd_msg uffd_msg;
1582 void *page_address;
82ea3e3b 1583 RAMBlock *block;
278e2f55
AG
1584 int res;
1585
1586 if (!migrate_background_snapshot()) {
1587 return NULL;
1588 }
1589
1590 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1591 if (res <= 0) {
1592 return NULL;
1593 }
1594
1595 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
82ea3e3b
AG
1596 block = qemu_ram_block_from_host(page_address, false, offset);
1597 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1598 return block;
278e2f55
AG
1599}
1600
1601/**
1602 * ram_save_release_protection: release UFFD write protection after
1603 * a range of pages has been saved
1604 *
1605 * @rs: current RAM state
1606 * @pss: page-search-status structure
1607 * @start_page: index of the first page in the range relative to pss->block
1608 *
1609 * Returns 0 on success, negative value in case of an error
1610*/
1611static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1612 unsigned long start_page)
1613{
1614 int res = 0;
1615
1616 /* Check if page is from UFFD-managed region. */
1617 if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1618 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1619 uint64_t run_length = (pss->page - start_page + 1) << TARGET_PAGE_BITS;
1620
1621 /* Flush async buffers before un-protect. */
1622 qemu_fflush(rs->f);
1623 /* Un-protect memory range. */
1624 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1625 false, false);
1626 }
1627
1628 return res;
1629}
1630
1631/* ram_write_tracking_available: check if kernel supports required UFFD features
1632 *
1633 * Returns true if supports, false otherwise
1634 */
1635bool ram_write_tracking_available(void)
1636{
1637 uint64_t uffd_features;
1638 int res;
1639
1640 res = uffd_query_features(&uffd_features);
1641 return (res == 0 &&
1642 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1643}
1644
1645/* ram_write_tracking_compatible: check if guest configuration is
1646 * compatible with 'write-tracking'
1647 *
1648 * Returns true if compatible, false otherwise
1649 */
1650bool ram_write_tracking_compatible(void)
1651{
1652 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1653 int uffd_fd;
82ea3e3b 1654 RAMBlock *block;
278e2f55
AG
1655 bool ret = false;
1656
1657 /* Open UFFD file descriptor */
1658 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1659 if (uffd_fd < 0) {
1660 return false;
1661 }
1662
1663 RCU_READ_LOCK_GUARD();
1664
82ea3e3b 1665 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
278e2f55
AG
1666 uint64_t uffd_ioctls;
1667
1668 /* Nothing to do with read-only and MMIO-writable regions */
82ea3e3b 1669 if (block->mr->readonly || block->mr->rom_device) {
278e2f55
AG
1670 continue;
1671 }
1672 /* Try to register block memory via UFFD-IO to track writes */
82ea3e3b 1673 if (uffd_register_memory(uffd_fd, block->host, block->max_length,
278e2f55
AG
1674 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1675 goto out;
1676 }
1677 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1678 goto out;
1679 }
1680 }
1681 ret = true;
1682
1683out:
1684 uffd_close_fd(uffd_fd);
1685 return ret;
1686}
1687
f7b9dcfb
DH
1688static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1689 ram_addr_t size)
1690{
1691 /*
1692 * We read one byte of each page; this will preallocate page tables if
1693 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1694 * where no page was populated yet. This might require adaption when
1695 * supporting other mappings, like shmem.
1696 */
1697 for (; offset < size; offset += block->page_size) {
1698 char tmp = *((char *)block->host + offset);
1699
1700 /* Don't optimize the read out */
1701 asm volatile("" : "+r" (tmp));
1702 }
1703}
1704
6fee3a1f
DH
1705static inline int populate_read_section(MemoryRegionSection *section,
1706 void *opaque)
1707{
1708 const hwaddr size = int128_get64(section->size);
1709 hwaddr offset = section->offset_within_region;
1710 RAMBlock *block = section->mr->ram_block;
1711
1712 populate_read_range(block, offset, size);
1713 return 0;
1714}
1715
eeccb99c 1716/*
f7b9dcfb
DH
1717 * ram_block_populate_read: preallocate page tables and populate pages in the
1718 * RAM block by reading a byte of each page.
eeccb99c
AG
1719 *
1720 * Since it's solely used for userfault_fd WP feature, here we just
1721 * hardcode page size to qemu_real_host_page_size.
1722 *
82ea3e3b 1723 * @block: RAM block to populate
eeccb99c 1724 */
6fee3a1f 1725static void ram_block_populate_read(RAMBlock *rb)
eeccb99c 1726{
6fee3a1f
DH
1727 /*
1728 * Skip populating all pages that fall into a discarded range as managed by
1729 * a RamDiscardManager responsible for the mapped memory region of the
1730 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1731 * must not get populated automatically. We don't have to track
1732 * modifications via userfaultfd WP reliably, because these pages will
1733 * not be part of the migration stream either way -- see
1734 * ramblock_dirty_bitmap_exclude_discarded_pages().
1735 *
1736 * Note: The result is only stable while migrating (precopy/postcopy).
1737 */
1738 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1739 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1740 MemoryRegionSection section = {
1741 .mr = rb->mr,
1742 .offset_within_region = 0,
1743 .size = rb->mr->size,
1744 };
1745
1746 ram_discard_manager_replay_populated(rdm, &section,
1747 populate_read_section, NULL);
1748 } else {
1749 populate_read_range(rb, 0, rb->used_length);
1750 }
eeccb99c
AG
1751}
1752
1753/*
1754 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1755 */
1756void ram_write_tracking_prepare(void)
1757{
82ea3e3b 1758 RAMBlock *block;
eeccb99c
AG
1759
1760 RCU_READ_LOCK_GUARD();
1761
82ea3e3b 1762 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
eeccb99c 1763 /* Nothing to do with read-only and MMIO-writable regions */
82ea3e3b 1764 if (block->mr->readonly || block->mr->rom_device) {
eeccb99c
AG
1765 continue;
1766 }
1767
1768 /*
1769 * Populate pages of the RAM block before enabling userfault_fd
1770 * write protection.
1771 *
1772 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1773 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1774 * pages with pte_none() entries in page table.
1775 */
f7b9dcfb 1776 ram_block_populate_read(block);
eeccb99c
AG
1777 }
1778}
1779
278e2f55
AG
1780/*
1781 * ram_write_tracking_start: start UFFD-WP memory tracking
1782 *
1783 * Returns 0 for success or negative value in case of error
1784 */
1785int ram_write_tracking_start(void)
1786{
1787 int uffd_fd;
1788 RAMState *rs = ram_state;
82ea3e3b 1789 RAMBlock *block;
278e2f55
AG
1790
1791 /* Open UFFD file descriptor */
1792 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1793 if (uffd_fd < 0) {
1794 return uffd_fd;
1795 }
1796 rs->uffdio_fd = uffd_fd;
1797
1798 RCU_READ_LOCK_GUARD();
1799
82ea3e3b 1800 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
278e2f55 1801 /* Nothing to do with read-only and MMIO-writable regions */
82ea3e3b 1802 if (block->mr->readonly || block->mr->rom_device) {
278e2f55
AG
1803 continue;
1804 }
1805
1806 /* Register block memory with UFFD to track writes */
82ea3e3b
AG
1807 if (uffd_register_memory(rs->uffdio_fd, block->host,
1808 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
278e2f55
AG
1809 goto fail;
1810 }
1811 /* Apply UFFD write protection to the block memory range */
82ea3e3b
AG
1812 if (uffd_change_protection(rs->uffdio_fd, block->host,
1813 block->max_length, true, false)) {
278e2f55
AG
1814 goto fail;
1815 }
82ea3e3b
AG
1816 block->flags |= RAM_UF_WRITEPROTECT;
1817 memory_region_ref(block->mr);
278e2f55 1818
82ea3e3b
AG
1819 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1820 block->host, block->max_length);
278e2f55
AG
1821 }
1822
1823 return 0;
1824
1825fail:
1826 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1827
82ea3e3b
AG
1828 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1829 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
278e2f55
AG
1830 continue;
1831 }
1832 /*
1833 * In case some memory block failed to be write-protected
1834 * remove protection and unregister all succeeded RAM blocks
1835 */
82ea3e3b
AG
1836 uffd_change_protection(rs->uffdio_fd, block->host, block->max_length,
1837 false, false);
1838 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
278e2f55 1839 /* Cleanup flags and remove reference */
82ea3e3b
AG
1840 block->flags &= ~RAM_UF_WRITEPROTECT;
1841 memory_region_unref(block->mr);
278e2f55
AG
1842 }
1843
1844 uffd_close_fd(uffd_fd);
1845 rs->uffdio_fd = -1;
1846 return -1;
1847}
1848
1849/**
1850 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1851 */
1852void ram_write_tracking_stop(void)
1853{
1854 RAMState *rs = ram_state;
82ea3e3b 1855 RAMBlock *block;
278e2f55
AG
1856
1857 RCU_READ_LOCK_GUARD();
1858
82ea3e3b
AG
1859 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1860 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
278e2f55
AG
1861 continue;
1862 }
1863 /* Remove protection and unregister all affected RAM blocks */
82ea3e3b
AG
1864 uffd_change_protection(rs->uffdio_fd, block->host, block->max_length,
1865 false, false);
1866 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
278e2f55 1867
82ea3e3b
AG
1868 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1869 block->host, block->max_length);
278e2f55
AG
1870
1871 /* Cleanup flags and remove reference */
82ea3e3b
AG
1872 block->flags &= ~RAM_UF_WRITEPROTECT;
1873 memory_region_unref(block->mr);
278e2f55
AG
1874 }
1875
1876 /* Finally close UFFD file descriptor */
1877 uffd_close_fd(rs->uffdio_fd);
1878 rs->uffdio_fd = -1;
1879}
1880
1881#else
1882/* No target OS support, stubs just fail or ignore */
1883
1884static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1885{
1886 (void) rs;
1887 (void) offset;
1888
1889 return NULL;
1890}
1891
1892static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1893 unsigned long start_page)
1894{
1895 (void) rs;
1896 (void) pss;
1897 (void) start_page;
1898
1899 return 0;
1900}
1901
1902bool ram_write_tracking_available(void)
1903{
1904 return false;
1905}
1906
1907bool ram_write_tracking_compatible(void)
1908{
1909 assert(0);
1910 return false;
1911}
1912
1913int ram_write_tracking_start(void)
1914{
1915 assert(0);
1916 return -1;
1917}
1918
1919void ram_write_tracking_stop(void)
1920{
1921 assert(0);
1922}
1923#endif /* defined(__linux__) */
1924
3d0684b2 1925/**
ff1543af 1926 * get_queued_page: unqueue a page from the postcopy requests
3d0684b2
JQ
1927 *
1928 * Skips pages that are already sent (!dirty)
a82d593b 1929 *
a5f7b1a6 1930 * Returns true if a queued page is found
a82d593b 1931 *
6f37bb8b 1932 * @rs: current RAM state
3d0684b2 1933 * @pss: data about the state of the current dirty page scan
a82d593b 1934 */
f20e2865 1935static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
a82d593b
DDAG
1936{
1937 RAMBlock *block;
1938 ram_addr_t offset;
1939 bool dirty;
1940
1941 do {
f20e2865 1942 block = unqueue_page(rs, &offset);
a82d593b
DDAG
1943 /*
1944 * We're sending this page, and since it's postcopy nothing else
1945 * will dirty it, and we must make sure it doesn't get sent again
1946 * even if this queue request was received after the background
1947 * search already sent it.
1948 */
1949 if (block) {
f20e2865
JQ
1950 unsigned long page;
1951
6b6712ef
JQ
1952 page = offset >> TARGET_PAGE_BITS;
1953 dirty = test_bit(page, block->bmap);
a82d593b 1954 if (!dirty) {
06b10688 1955 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
64737606 1956 page);
a82d593b 1957 } else {
f20e2865 1958 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
a82d593b
DDAG
1959 }
1960 }
1961
1962 } while (block && !dirty);
1963
278e2f55
AG
1964 if (!block) {
1965 /*
1966 * Poll write faults too if background snapshot is enabled; that's
1967 * when we have vcpus got blocked by the write protected pages.
1968 */
1969 block = poll_fault_page(rs, &offset);
1970 }
1971
a82d593b 1972 if (block) {
a82d593b
DDAG
1973 /*
1974 * We want the background search to continue from the queued page
1975 * since the guest is likely to want other pages near to the page
1976 * it just requested.
1977 */
1978 pss->block = block;
a935e30f 1979 pss->page = offset >> TARGET_PAGE_BITS;
422314e7
WY
1980
1981 /*
1982 * This unqueued page would break the "one round" check, even is
1983 * really rare.
1984 */
1985 pss->complete_round = false;
a82d593b
DDAG
1986 }
1987
1988 return !!block;
1989}
1990
6c595cde 1991/**
5e58f968
JQ
1992 * migration_page_queue_free: drop any remaining pages in the ram
1993 * request queue
6c595cde 1994 *
3d0684b2
JQ
1995 * It should be empty at the end anyway, but in error cases there may
1996 * be some left. in case that there is any page left, we drop it.
1997 *
6c595cde 1998 */
83c13382 1999static void migration_page_queue_free(RAMState *rs)
6c595cde 2000{
ec481c6c 2001 struct RAMSrcPageRequest *mspr, *next_mspr;
6c595cde
DDAG
2002 /* This queue generally should be empty - but in the case of a failed
2003 * migration might have some droppings in.
2004 */
89ac5a1d 2005 RCU_READ_LOCK_GUARD();
ec481c6c 2006 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
6c595cde 2007 memory_region_unref(mspr->rb->mr);
ec481c6c 2008 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
6c595cde
DDAG
2009 g_free(mspr);
2010 }
6c595cde
DDAG
2011}
2012
2013/**
3d0684b2
JQ
2014 * ram_save_queue_pages: queue the page for transmission
2015 *
2016 * A request from postcopy destination for example.
2017 *
2018 * Returns zero on success or negative on error
2019 *
3d0684b2
JQ
2020 * @rbname: Name of the RAMBLock of the request. NULL means the
2021 * same that last one.
2022 * @start: starting address from the start of the RAMBlock
2023 * @len: length (in bytes) to send
6c595cde 2024 */
96506894 2025int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
6c595cde
DDAG
2026{
2027 RAMBlock *ramblock;
53518d94 2028 RAMState *rs = ram_state;
6c595cde 2029
9360447d 2030 ram_counters.postcopy_requests++;
89ac5a1d
DDAG
2031 RCU_READ_LOCK_GUARD();
2032
6c595cde
DDAG
2033 if (!rbname) {
2034 /* Reuse last RAMBlock */
68a098f3 2035 ramblock = rs->last_req_rb;
6c595cde
DDAG
2036
2037 if (!ramblock) {
2038 /*
2039 * Shouldn't happen, we can't reuse the last RAMBlock if
2040 * it's the 1st request.
2041 */
2042 error_report("ram_save_queue_pages no previous block");
03acb4e9 2043 return -1;
6c595cde
DDAG
2044 }
2045 } else {
2046 ramblock = qemu_ram_block_by_name(rbname);
2047
2048 if (!ramblock) {
2049 /* We shouldn't be asked for a non-existent RAMBlock */
2050 error_report("ram_save_queue_pages no block '%s'", rbname);
03acb4e9 2051 return -1;
6c595cde 2052 }
68a098f3 2053 rs->last_req_rb = ramblock;
6c595cde
DDAG
2054 }
2055 trace_ram_save_queue_pages(ramblock->idstr, start, len);
542147f4 2056 if (!offset_in_ramblock(ramblock, start + len - 1)) {
9458ad6b
JQ
2057 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2058 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
6c595cde 2059 __func__, start, len, ramblock->used_length);
03acb4e9 2060 return -1;
6c595cde
DDAG
2061 }
2062
ec481c6c
JQ
2063 struct RAMSrcPageRequest *new_entry =
2064 g_malloc0(sizeof(struct RAMSrcPageRequest));
6c595cde
DDAG
2065 new_entry->rb = ramblock;
2066 new_entry->offset = start;
2067 new_entry->len = len;
2068
2069 memory_region_ref(ramblock->mr);
ec481c6c
JQ
2070 qemu_mutex_lock(&rs->src_page_req_mutex);
2071 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
e03a34f8 2072 migration_make_urgent_request();
ec481c6c 2073 qemu_mutex_unlock(&rs->src_page_req_mutex);
6c595cde
DDAG
2074
2075 return 0;
6c595cde
DDAG
2076}
2077
d7400a34
XG
2078static bool save_page_use_compression(RAMState *rs)
2079{
2080 if (!migrate_use_compression()) {
2081 return false;
2082 }
2083
2084 /*
1a373522
DH
2085 * If xbzrle is enabled (e.g., after first round of migration), stop
2086 * using the data compression. In theory, xbzrle can do better than
2087 * compression.
d7400a34 2088 */
1a373522
DH
2089 if (rs->xbzrle_enabled) {
2090 return false;
d7400a34
XG
2091 }
2092
1a373522 2093 return true;
d7400a34
XG
2094}
2095
5e5fdcff
XG
2096/*
2097 * try to compress the page before posting it out, return true if the page
2098 * has been properly handled by compression, otherwise needs other
2099 * paths to handle it
2100 */
2101static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2102{
2103 if (!save_page_use_compression(rs)) {
2104 return false;
2105 }
2106
2107 /*
2108 * When starting the process of a new block, the first page of
2109 * the block should be sent out before other pages in the same
2110 * block, and all the pages in last block should have been sent
2111 * out, keeping this order is important, because the 'cont' flag
2112 * is used to avoid resending the block name.
2113 *
2114 * We post the fist page as normal page as compression will take
2115 * much CPU resource.
2116 */
2117 if (block != rs->last_sent_block) {
2118 flush_compressed_data(rs);
2119 return false;
2120 }
2121
2122 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2123 return true;
2124 }
2125
76e03000 2126 compression_counters.busy++;
5e5fdcff
XG
2127 return false;
2128}
2129
a82d593b 2130/**
3d0684b2 2131 * ram_save_target_page: save one target page
a82d593b 2132 *
3d0684b2 2133 * Returns the number of pages written
a82d593b 2134 *
6f37bb8b 2135 * @rs: current RAM state
3d0684b2 2136 * @pss: data about the page we want to send
a82d593b 2137 * @last_stage: if we are at the completion stage
a82d593b 2138 */
a0a8aa14 2139static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2140 bool last_stage)
a82d593b 2141{
a8ec91f9 2142 RAMBlock *block = pss->block;
8bba004c 2143 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
a8ec91f9
XG
2144 int res;
2145
2146 if (control_save_page(rs, block, offset, &res)) {
2147 return res;
2148 }
2149
5e5fdcff
XG
2150 if (save_compress_page(rs, block, offset)) {
2151 return 1;
d7400a34
XG
2152 }
2153
2154 res = save_zero_page(rs, block, offset);
2155 if (res > 0) {
2156 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2157 * page would be stale
2158 */
2159 if (!save_page_use_compression(rs)) {
2160 XBZRLE_cache_lock();
2161 xbzrle_cache_zero_page(rs, block->offset + offset);
2162 XBZRLE_cache_unlock();
2163 }
2164 ram_release_pages(block->idstr, offset, res);
2165 return res;
2166 }
2167
da3f56cb 2168 /*
c6b3a2e0
WY
2169 * Do not use multifd for:
2170 * 1. Compression as the first page in the new block should be posted out
2171 * before sending the compressed page
2172 * 2. In postcopy as one whole host page should be placed
da3f56cb 2173 */
c6b3a2e0
WY
2174 if (!save_page_use_compression(rs) && migrate_use_multifd()
2175 && !migration_in_postcopy()) {
b9ee2f7d 2176 return ram_save_multifd_page(rs, block, offset);
a82d593b
DDAG
2177 }
2178
1faa5665 2179 return ram_save_page(rs, pss, last_stage);
a82d593b
DDAG
2180}
2181
2182/**
3d0684b2 2183 * ram_save_host_page: save a whole host page
a82d593b 2184 *
3d0684b2
JQ
2185 * Starting at *offset send pages up to the end of the current host
2186 * page. It's valid for the initial offset to point into the middle of
2187 * a host page in which case the remainder of the hostpage is sent.
2188 * Only dirty target pages are sent. Note that the host page size may
2189 * be a huge page for this block.
1eb3fc0a
DDAG
2190 * The saving stops at the boundary of the used_length of the block
2191 * if the RAMBlock isn't a multiple of the host page size.
a82d593b 2192 *
3d0684b2
JQ
2193 * Returns the number of pages written or negative on error
2194 *
6f37bb8b 2195 * @rs: current RAM state
3d0684b2 2196 * @ms: current migration state
3d0684b2 2197 * @pss: data about the page we want to send
a82d593b 2198 * @last_stage: if we are at the completion stage
a82d593b 2199 */
a0a8aa14 2200static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2201 bool last_stage)
a82d593b
DDAG
2202{
2203 int tmppages, pages = 0;
a935e30f
JQ
2204 size_t pagesize_bits =
2205 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
ba1b7c81
KJ
2206 unsigned long hostpage_boundary =
2207 QEMU_ALIGN_UP(pss->page + 1, pagesize_bits);
278e2f55
AG
2208 unsigned long start_page = pss->page;
2209 int res;
4c011c37 2210
fbd162e6 2211 if (ramblock_is_ignored(pss->block)) {
b895de50
CLG
2212 error_report("block %s should not be migrated !", pss->block->idstr);
2213 return 0;
2214 }
2215
a82d593b 2216 do {
1faa5665 2217 /* Check the pages is dirty and if it is send it */
ba1b7c81
KJ
2218 if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2219 tmppages = ram_save_target_page(rs, pss, last_stage);
2220 if (tmppages < 0) {
2221 return tmppages;
2222 }
a82d593b 2223
ba1b7c81
KJ
2224 pages += tmppages;
2225 /*
2226 * Allow rate limiting to happen in the middle of huge pages if
2227 * something is sent in the current iteration.
2228 */
2229 if (pagesize_bits > 1 && tmppages > 0) {
2230 migration_rate_limit();
2231 }
23feba90 2232 }
ba1b7c81
KJ
2233 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2234 } while ((pss->page < hostpage_boundary) &&
8bba004c
AR
2235 offset_in_ramblock(pss->block,
2236 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS));
ba1b7c81
KJ
2237 /* The offset we leave with is the min boundary of host page and block */
2238 pss->page = MIN(pss->page, hostpage_boundary) - 1;
278e2f55
AG
2239
2240 res = ram_save_release_protection(rs, pss, start_page);
2241 return (res < 0 ? res : pages);
a82d593b 2242}
6c595cde 2243
56e93d26 2244/**
3d0684b2 2245 * ram_find_and_save_block: finds a dirty page and sends it to f
56e93d26
JQ
2246 *
2247 * Called within an RCU critical section.
2248 *
e8f3735f
XG
2249 * Returns the number of pages written where zero means no dirty pages,
2250 * or negative on error
56e93d26 2251 *
6f37bb8b 2252 * @rs: current RAM state
56e93d26 2253 * @last_stage: if we are at the completion stage
a82d593b
DDAG
2254 *
2255 * On systems where host-page-size > target-page-size it will send all the
2256 * pages in a host page that are dirty.
56e93d26
JQ
2257 */
2258
ce25d337 2259static int ram_find_and_save_block(RAMState *rs, bool last_stage)
56e93d26 2260{
b8fb8cb7 2261 PageSearchStatus pss;
56e93d26 2262 int pages = 0;
b9e60928 2263 bool again, found;
56e93d26 2264
0827b9e9
AA
2265 /* No dirty page as there is zero RAM */
2266 if (!ram_bytes_total()) {
2267 return pages;
2268 }
2269
6f37bb8b 2270 pss.block = rs->last_seen_block;
a935e30f 2271 pss.page = rs->last_page;
b8fb8cb7
DDAG
2272 pss.complete_round = false;
2273
2274 if (!pss.block) {
2275 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2276 }
56e93d26 2277
b9e60928 2278 do {
a82d593b 2279 again = true;
f20e2865 2280 found = get_queued_page(rs, &pss);
b9e60928 2281
a82d593b
DDAG
2282 if (!found) {
2283 /* priority queue empty, so just search for something dirty */
f20e2865 2284 found = find_dirty_block(rs, &pss, &again);
a82d593b 2285 }
f3f491fc 2286
a82d593b 2287 if (found) {
f20e2865 2288 pages = ram_save_host_page(rs, &pss, last_stage);
56e93d26 2289 }
b9e60928 2290 } while (!pages && again);
56e93d26 2291
6f37bb8b 2292 rs->last_seen_block = pss.block;
a935e30f 2293 rs->last_page = pss.page;
56e93d26
JQ
2294
2295 return pages;
2296}
2297
2298void acct_update_position(QEMUFile *f, size_t size, bool zero)
2299{
2300 uint64_t pages = size / TARGET_PAGE_SIZE;
f7ccd61b 2301
56e93d26 2302 if (zero) {
9360447d 2303 ram_counters.duplicate += pages;
56e93d26 2304 } else {
9360447d
JQ
2305 ram_counters.normal += pages;
2306 ram_counters.transferred += size;
56e93d26
JQ
2307 qemu_update_position(f, size);
2308 }
2309}
2310
fbd162e6 2311static uint64_t ram_bytes_total_common(bool count_ignored)
56e93d26
JQ
2312{
2313 RAMBlock *block;
2314 uint64_t total = 0;
2315
89ac5a1d
DDAG
2316 RCU_READ_LOCK_GUARD();
2317
fbd162e6
YK
2318 if (count_ignored) {
2319 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2320 total += block->used_length;
2321 }
2322 } else {
2323 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2324 total += block->used_length;
2325 }
99e15582 2326 }
56e93d26
JQ
2327 return total;
2328}
2329
fbd162e6
YK
2330uint64_t ram_bytes_total(void)
2331{
2332 return ram_bytes_total_common(false);
2333}
2334
f265e0e4 2335static void xbzrle_load_setup(void)
56e93d26 2336{
f265e0e4 2337 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
56e93d26
JQ
2338}
2339
f265e0e4
JQ
2340static void xbzrle_load_cleanup(void)
2341{
2342 g_free(XBZRLE.decoded_buf);
2343 XBZRLE.decoded_buf = NULL;
2344}
2345
7d7c96be
PX
2346static void ram_state_cleanup(RAMState **rsp)
2347{
b9ccaf6d
DDAG
2348 if (*rsp) {
2349 migration_page_queue_free(*rsp);
2350 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2351 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2352 g_free(*rsp);
2353 *rsp = NULL;
2354 }
7d7c96be
PX
2355}
2356
84593a08
PX
2357static void xbzrle_cleanup(void)
2358{
2359 XBZRLE_cache_lock();
2360 if (XBZRLE.cache) {
2361 cache_fini(XBZRLE.cache);
2362 g_free(XBZRLE.encoded_buf);
2363 g_free(XBZRLE.current_buf);
2364 g_free(XBZRLE.zero_target_page);
2365 XBZRLE.cache = NULL;
2366 XBZRLE.encoded_buf = NULL;
2367 XBZRLE.current_buf = NULL;
2368 XBZRLE.zero_target_page = NULL;
2369 }
2370 XBZRLE_cache_unlock();
2371}
2372
f265e0e4 2373static void ram_save_cleanup(void *opaque)
56e93d26 2374{
53518d94 2375 RAMState **rsp = opaque;
6b6712ef 2376 RAMBlock *block;
eb859c53 2377
278e2f55
AG
2378 /* We don't use dirty log with background snapshots */
2379 if (!migrate_background_snapshot()) {
2380 /* caller have hold iothread lock or is in a bh, so there is
2381 * no writing race against the migration bitmap
2382 */
63b41db4
HH
2383 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2384 /*
2385 * do not stop dirty log without starting it, since
2386 * memory_global_dirty_log_stop will assert that
2387 * memory_global_dirty_log_start/stop used in pairs
2388 */
2389 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2390 }
278e2f55 2391 }
6b6712ef 2392
fbd162e6 2393 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
002cad6b
PX
2394 g_free(block->clear_bmap);
2395 block->clear_bmap = NULL;
6b6712ef
JQ
2396 g_free(block->bmap);
2397 block->bmap = NULL;
56e93d26
JQ
2398 }
2399
84593a08 2400 xbzrle_cleanup();
f0afa331 2401 compress_threads_save_cleanup();
7d7c96be 2402 ram_state_cleanup(rsp);
56e93d26
JQ
2403}
2404
6f37bb8b 2405static void ram_state_reset(RAMState *rs)
56e93d26 2406{
6f37bb8b
JQ
2407 rs->last_seen_block = NULL;
2408 rs->last_sent_block = NULL;
269ace29 2409 rs->last_page = 0;
6f37bb8b 2410 rs->last_version = ram_list.version;
1a373522 2411 rs->xbzrle_enabled = false;
56e93d26
JQ
2412}
2413
2414#define MAX_WAIT 50 /* ms, half buffered_file limit */
2415
4f2e4252
DDAG
2416/*
2417 * 'expected' is the value you expect the bitmap mostly to be full
2418 * of; it won't bother printing lines that are all this value.
2419 * If 'todump' is null the migration bitmap is dumped.
2420 */
6b6712ef
JQ
2421void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2422 unsigned long pages)
4f2e4252 2423{
4f2e4252
DDAG
2424 int64_t cur;
2425 int64_t linelen = 128;
2426 char linebuf[129];
2427
6b6712ef 2428 for (cur = 0; cur < pages; cur += linelen) {
4f2e4252
DDAG
2429 int64_t curb;
2430 bool found = false;
2431 /*
2432 * Last line; catch the case where the line length
2433 * is longer than remaining ram
2434 */
6b6712ef
JQ
2435 if (cur + linelen > pages) {
2436 linelen = pages - cur;
4f2e4252
DDAG
2437 }
2438 for (curb = 0; curb < linelen; curb++) {
2439 bool thisbit = test_bit(cur + curb, todump);
2440 linebuf[curb] = thisbit ? '1' : '.';
2441 found = found || (thisbit != expected);
2442 }
2443 if (found) {
2444 linebuf[curb] = '\0';
2445 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2446 }
2447 }
2448}
2449
e0b266f0
DDAG
2450/* **** functions for postcopy ***** */
2451
ced1c616
PB
2452void ram_postcopy_migrated_memory_release(MigrationState *ms)
2453{
2454 struct RAMBlock *block;
ced1c616 2455
fbd162e6 2456 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2457 unsigned long *bitmap = block->bmap;
2458 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2459 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
ced1c616
PB
2460
2461 while (run_start < range) {
2462 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
8bba004c
AR
2463 ram_discard_range(block->idstr,
2464 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2465 ((ram_addr_t)(run_end - run_start))
2466 << TARGET_PAGE_BITS);
ced1c616
PB
2467 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2468 }
2469 }
2470}
2471
3d0684b2
JQ
2472/**
2473 * postcopy_send_discard_bm_ram: discard a RAMBlock
2474 *
2475 * Returns zero on success
2476 *
e0b266f0 2477 * Callback from postcopy_each_ram_send_discard for each RAMBlock
3d0684b2
JQ
2478 *
2479 * @ms: current migration state
89dab31b 2480 * @block: RAMBlock to discard
e0b266f0 2481 */
810cf2bb 2482static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
e0b266f0 2483{
6b6712ef 2484 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
e0b266f0 2485 unsigned long current;
1e7cf8c3 2486 unsigned long *bitmap = block->bmap;
e0b266f0 2487
6b6712ef 2488 for (current = 0; current < end; ) {
1e7cf8c3 2489 unsigned long one = find_next_bit(bitmap, end, current);
33a5cb62 2490 unsigned long zero, discard_length;
e0b266f0 2491
33a5cb62
WY
2492 if (one >= end) {
2493 break;
2494 }
e0b266f0 2495
1e7cf8c3 2496 zero = find_next_zero_bit(bitmap, end, one + 1);
33a5cb62
WY
2497
2498 if (zero >= end) {
2499 discard_length = end - one;
e0b266f0 2500 } else {
33a5cb62
WY
2501 discard_length = zero - one;
2502 }
810cf2bb 2503 postcopy_discard_send_range(ms, one, discard_length);
33a5cb62 2504 current = one + discard_length;
e0b266f0
DDAG
2505 }
2506
2507 return 0;
2508}
2509
3d0684b2
JQ
2510/**
2511 * postcopy_each_ram_send_discard: discard all RAMBlocks
2512 *
2513 * Returns 0 for success or negative for error
2514 *
e0b266f0
DDAG
2515 * Utility for the outgoing postcopy code.
2516 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2517 * passing it bitmap indexes and name.
e0b266f0
DDAG
2518 * (qemu_ram_foreach_block ends up passing unscaled lengths
2519 * which would mean postcopy code would have to deal with target page)
3d0684b2
JQ
2520 *
2521 * @ms: current migration state
e0b266f0
DDAG
2522 */
2523static int postcopy_each_ram_send_discard(MigrationState *ms)
2524{
2525 struct RAMBlock *block;
2526 int ret;
2527
fbd162e6 2528 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
810cf2bb 2529 postcopy_discard_send_init(ms, block->idstr);
e0b266f0
DDAG
2530
2531 /*
2532 * Postcopy sends chunks of bitmap over the wire, but it
2533 * just needs indexes at this point, avoids it having
2534 * target page specific code.
2535 */
810cf2bb
WY
2536 ret = postcopy_send_discard_bm_ram(ms, block);
2537 postcopy_discard_send_finish(ms);
e0b266f0
DDAG
2538 if (ret) {
2539 return ret;
2540 }
2541 }
2542
2543 return 0;
2544}
2545
3d0684b2 2546/**
8324ef86 2547 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
3d0684b2
JQ
2548 *
2549 * Helper for postcopy_chunk_hostpages; it's called twice to
2550 * canonicalize the two bitmaps, that are similar, but one is
2551 * inverted.
99e314eb 2552 *
3d0684b2
JQ
2553 * Postcopy requires that all target pages in a hostpage are dirty or
2554 * clean, not a mix. This function canonicalizes the bitmaps.
99e314eb 2555 *
3d0684b2 2556 * @ms: current migration state
3d0684b2 2557 * @block: block that contains the page we want to canonicalize
99e314eb 2558 */
1e7cf8c3 2559static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
99e314eb 2560{
53518d94 2561 RAMState *rs = ram_state;
6b6712ef 2562 unsigned long *bitmap = block->bmap;
29c59172 2563 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
6b6712ef 2564 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
99e314eb
DDAG
2565 unsigned long run_start;
2566
29c59172
DDAG
2567 if (block->page_size == TARGET_PAGE_SIZE) {
2568 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2569 return;
2570 }
2571
1e7cf8c3
WY
2572 /* Find a dirty page */
2573 run_start = find_next_bit(bitmap, pages, 0);
99e314eb 2574
6b6712ef 2575 while (run_start < pages) {
99e314eb
DDAG
2576
2577 /*
2578 * If the start of this run of pages is in the middle of a host
2579 * page, then we need to fixup this host page.
2580 */
9dec3cc3 2581 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
99e314eb 2582 /* Find the end of this run */
1e7cf8c3 2583 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
99e314eb
DDAG
2584 /*
2585 * If the end isn't at the start of a host page, then the
2586 * run doesn't finish at the end of a host page
2587 * and we need to discard.
2588 */
99e314eb
DDAG
2589 }
2590
9dec3cc3 2591 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
99e314eb 2592 unsigned long page;
dad45ab2
WY
2593 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2594 host_ratio);
2595 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
99e314eb 2596
99e314eb
DDAG
2597 /* Clean up the bitmap */
2598 for (page = fixup_start_addr;
2599 page < fixup_start_addr + host_ratio; page++) {
99e314eb
DDAG
2600 /*
2601 * Remark them as dirty, updating the count for any pages
2602 * that weren't previously dirty.
2603 */
0d8ec885 2604 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
99e314eb
DDAG
2605 }
2606 }
2607
1e7cf8c3
WY
2608 /* Find the next dirty page for the next iteration */
2609 run_start = find_next_bit(bitmap, pages, run_start);
99e314eb
DDAG
2610 }
2611}
2612
3d0684b2 2613/**
89dab31b 2614 * postcopy_chunk_hostpages: discard any partially sent host page
3d0684b2 2615 *
99e314eb
DDAG
2616 * Utility for the outgoing postcopy code.
2617 *
2618 * Discard any partially sent host-page size chunks, mark any partially
29c59172
DDAG
2619 * dirty host-page size chunks as all dirty. In this case the host-page
2620 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
99e314eb 2621 *
3d0684b2
JQ
2622 * Returns zero on success
2623 *
2624 * @ms: current migration state
6b6712ef 2625 * @block: block we want to work with
99e314eb 2626 */
6b6712ef 2627static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
99e314eb 2628{
810cf2bb 2629 postcopy_discard_send_init(ms, block->idstr);
99e314eb 2630
6b6712ef 2631 /*
1e7cf8c3 2632 * Ensure that all partially dirty host pages are made fully dirty.
6b6712ef 2633 */
1e7cf8c3 2634 postcopy_chunk_hostpages_pass(ms, block);
99e314eb 2635
810cf2bb 2636 postcopy_discard_send_finish(ms);
99e314eb
DDAG
2637 return 0;
2638}
2639
3d0684b2
JQ
2640/**
2641 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2642 *
2643 * Returns zero on success
2644 *
e0b266f0
DDAG
2645 * Transmit the set of pages to be discarded after precopy to the target
2646 * these are pages that:
2647 * a) Have been previously transmitted but are now dirty again
2648 * b) Pages that have never been transmitted, this ensures that
2649 * any pages on the destination that have been mapped by background
2650 * tasks get discarded (transparent huge pages is the specific concern)
2651 * Hopefully this is pretty sparse
3d0684b2
JQ
2652 *
2653 * @ms: current migration state
e0b266f0
DDAG
2654 */
2655int ram_postcopy_send_discard_bitmap(MigrationState *ms)
2656{
53518d94 2657 RAMState *rs = ram_state;
6b6712ef 2658 RAMBlock *block;
e0b266f0 2659 int ret;
e0b266f0 2660
89ac5a1d 2661 RCU_READ_LOCK_GUARD();
e0b266f0
DDAG
2662
2663 /* This should be our last sync, the src is now paused */
eb859c53 2664 migration_bitmap_sync(rs);
e0b266f0 2665
6b6712ef
JQ
2666 /* Easiest way to make sure we don't resume in the middle of a host-page */
2667 rs->last_seen_block = NULL;
2668 rs->last_sent_block = NULL;
2669 rs->last_page = 0;
e0b266f0 2670
fbd162e6 2671 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2672 /* Deal with TPS != HPS and huge pages */
2673 ret = postcopy_chunk_hostpages(ms, block);
2674 if (ret) {
6b6712ef
JQ
2675 return ret;
2676 }
e0b266f0 2677
e0b266f0 2678#ifdef DEBUG_POSTCOPY
1e7cf8c3
WY
2679 ram_debug_dump_bitmap(block->bmap, true,
2680 block->used_length >> TARGET_PAGE_BITS);
e0b266f0 2681#endif
6b6712ef
JQ
2682 }
2683 trace_ram_postcopy_send_discard_bitmap();
e0b266f0 2684
b3ac2b94 2685 return postcopy_each_ram_send_discard(ms);
e0b266f0
DDAG
2686}
2687
3d0684b2
JQ
2688/**
2689 * ram_discard_range: discard dirtied pages at the beginning of postcopy
e0b266f0 2690 *
3d0684b2 2691 * Returns zero on success
e0b266f0 2692 *
36449157
JQ
2693 * @rbname: name of the RAMBlock of the request. NULL means the
2694 * same that last one.
3d0684b2
JQ
2695 * @start: RAMBlock starting page
2696 * @length: RAMBlock size
e0b266f0 2697 */
aaa2064c 2698int ram_discard_range(const char *rbname, uint64_t start, size_t length)
e0b266f0 2699{
36449157 2700 trace_ram_discard_range(rbname, start, length);
d3a5038c 2701
89ac5a1d 2702 RCU_READ_LOCK_GUARD();
36449157 2703 RAMBlock *rb = qemu_ram_block_by_name(rbname);
e0b266f0
DDAG
2704
2705 if (!rb) {
36449157 2706 error_report("ram_discard_range: Failed to find block '%s'", rbname);
03acb4e9 2707 return -1;
e0b266f0
DDAG
2708 }
2709
814bb08f
PX
2710 /*
2711 * On source VM, we don't need to update the received bitmap since
2712 * we don't even have one.
2713 */
2714 if (rb->receivedmap) {
2715 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2716 length >> qemu_target_page_bits());
2717 }
2718
03acb4e9 2719 return ram_block_discard_range(rb, start, length);
e0b266f0
DDAG
2720}
2721
84593a08
PX
2722/*
2723 * For every allocation, we will try not to crash the VM if the
2724 * allocation failed.
2725 */
2726static int xbzrle_init(void)
2727{
2728 Error *local_err = NULL;
2729
2730 if (!migrate_use_xbzrle()) {
2731 return 0;
2732 }
2733
2734 XBZRLE_cache_lock();
2735
2736 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2737 if (!XBZRLE.zero_target_page) {
2738 error_report("%s: Error allocating zero page", __func__);
2739 goto err_out;
2740 }
2741
2742 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2743 TARGET_PAGE_SIZE, &local_err);
2744 if (!XBZRLE.cache) {
2745 error_report_err(local_err);
2746 goto free_zero_page;
2747 }
2748
2749 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2750 if (!XBZRLE.encoded_buf) {
2751 error_report("%s: Error allocating encoded_buf", __func__);
2752 goto free_cache;
2753 }
2754
2755 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2756 if (!XBZRLE.current_buf) {
2757 error_report("%s: Error allocating current_buf", __func__);
2758 goto free_encoded_buf;
2759 }
2760
2761 /* We are all good */
2762 XBZRLE_cache_unlock();
2763 return 0;
2764
2765free_encoded_buf:
2766 g_free(XBZRLE.encoded_buf);
2767 XBZRLE.encoded_buf = NULL;
2768free_cache:
2769 cache_fini(XBZRLE.cache);
2770 XBZRLE.cache = NULL;
2771free_zero_page:
2772 g_free(XBZRLE.zero_target_page);
2773 XBZRLE.zero_target_page = NULL;
2774err_out:
2775 XBZRLE_cache_unlock();
2776 return -ENOMEM;
2777}
2778
53518d94 2779static int ram_state_init(RAMState **rsp)
56e93d26 2780{
7d00ee6a
PX
2781 *rsp = g_try_new0(RAMState, 1);
2782
2783 if (!*rsp) {
2784 error_report("%s: Init ramstate fail", __func__);
2785 return -1;
2786 }
53518d94
JQ
2787
2788 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2789 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2790 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
56e93d26 2791
7d00ee6a 2792 /*
40c4d4a8
IR
2793 * Count the total number of pages used by ram blocks not including any
2794 * gaps due to alignment or unplugs.
03158519 2795 * This must match with the initial values of dirty bitmap.
7d00ee6a 2796 */
40c4d4a8 2797 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
7d00ee6a
PX
2798 ram_state_reset(*rsp);
2799
2800 return 0;
2801}
2802
d6eff5d7 2803static void ram_list_init_bitmaps(void)
7d00ee6a 2804{
002cad6b 2805 MigrationState *ms = migrate_get_current();
d6eff5d7
PX
2806 RAMBlock *block;
2807 unsigned long pages;
002cad6b 2808 uint8_t shift;
56e93d26 2809
0827b9e9
AA
2810 /* Skip setting bitmap if there is no RAM */
2811 if (ram_bytes_total()) {
002cad6b
PX
2812 shift = ms->clear_bitmap_shift;
2813 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2814 error_report("clear_bitmap_shift (%u) too big, using "
2815 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2816 shift = CLEAR_BITMAP_SHIFT_MAX;
2817 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2818 error_report("clear_bitmap_shift (%u) too small, using "
2819 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2820 shift = CLEAR_BITMAP_SHIFT_MIN;
2821 }
2822
fbd162e6 2823 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
d6eff5d7 2824 pages = block->max_length >> TARGET_PAGE_BITS;
03158519
WY
2825 /*
2826 * The initial dirty bitmap for migration must be set with all
2827 * ones to make sure we'll migrate every guest RAM page to
2828 * destination.
40c4d4a8
IR
2829 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2830 * new migration after a failed migration, ram_list.
2831 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2832 * guest memory.
03158519 2833 */
6b6712ef 2834 block->bmap = bitmap_new(pages);
40c4d4a8 2835 bitmap_set(block->bmap, 0, pages);
002cad6b
PX
2836 block->clear_bmap_shift = shift;
2837 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
0827b9e9 2838 }
f3f491fc 2839 }
d6eff5d7
PX
2840}
2841
be39b4cd
DH
2842static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2843{
2844 unsigned long pages;
2845 RAMBlock *rb;
2846
2847 RCU_READ_LOCK_GUARD();
2848
2849 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2850 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2851 rs->migration_dirty_pages -= pages;
2852 }
2853}
2854
d6eff5d7
PX
2855static void ram_init_bitmaps(RAMState *rs)
2856{
2857 /* For memory_global_dirty_log_start below. */
2858 qemu_mutex_lock_iothread();
2859 qemu_mutex_lock_ramlist();
f3f491fc 2860
89ac5a1d
DDAG
2861 WITH_RCU_READ_LOCK_GUARD() {
2862 ram_list_init_bitmaps();
278e2f55
AG
2863 /* We don't use dirty log with background snapshots */
2864 if (!migrate_background_snapshot()) {
63b41db4 2865 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
278e2f55
AG
2866 migration_bitmap_sync_precopy(rs);
2867 }
89ac5a1d 2868 }
56e93d26 2869 qemu_mutex_unlock_ramlist();
49877834 2870 qemu_mutex_unlock_iothread();
be39b4cd
DH
2871
2872 /*
2873 * After an eventual first bitmap sync, fixup the initial bitmap
2874 * containing all 1s to exclude any discarded pages from migration.
2875 */
2876 migration_bitmap_clear_discarded_pages(rs);
d6eff5d7
PX
2877}
2878
2879static int ram_init_all(RAMState **rsp)
2880{
2881 if (ram_state_init(rsp)) {
2882 return -1;
2883 }
2884
2885 if (xbzrle_init()) {
2886 ram_state_cleanup(rsp);
2887 return -1;
2888 }
2889
2890 ram_init_bitmaps(*rsp);
a91246c9
HZ
2891
2892 return 0;
2893}
2894
08614f34
PX
2895static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2896{
2897 RAMBlock *block;
2898 uint64_t pages = 0;
2899
2900 /*
2901 * Postcopy is not using xbzrle/compression, so no need for that.
2902 * Also, since source are already halted, we don't need to care
2903 * about dirty page logging as well.
2904 */
2905
fbd162e6 2906 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
08614f34
PX
2907 pages += bitmap_count_one(block->bmap,
2908 block->used_length >> TARGET_PAGE_BITS);
2909 }
2910
2911 /* This may not be aligned with current bitmaps. Recalculate. */
2912 rs->migration_dirty_pages = pages;
2913
1a373522 2914 ram_state_reset(rs);
08614f34
PX
2915
2916 /* Update RAMState cache of output QEMUFile */
2917 rs->f = out;
2918
2919 trace_ram_state_resume_prepare(pages);
2920}
2921
6bcb05fc
WW
2922/*
2923 * This function clears bits of the free pages reported by the caller from the
2924 * migration dirty bitmap. @addr is the host address corresponding to the
2925 * start of the continuous guest free pages, and @len is the total bytes of
2926 * those pages.
2927 */
2928void qemu_guest_free_page_hint(void *addr, size_t len)
2929{
2930 RAMBlock *block;
2931 ram_addr_t offset;
2932 size_t used_len, start, npages;
2933 MigrationState *s = migrate_get_current();
2934
2935 /* This function is currently expected to be used during live migration */
2936 if (!migration_is_setup_or_active(s->state)) {
2937 return;
2938 }
2939
2940 for (; len > 0; len -= used_len, addr += used_len) {
2941 block = qemu_ram_block_from_host(addr, false, &offset);
2942 if (unlikely(!block || offset >= block->used_length)) {
2943 /*
2944 * The implementation might not support RAMBlock resize during
2945 * live migration, but it could happen in theory with future
2946 * updates. So we add a check here to capture that case.
2947 */
2948 error_report_once("%s unexpected error", __func__);
2949 return;
2950 }
2951
2952 if (len <= block->used_length - offset) {
2953 used_len = len;
2954 } else {
2955 used_len = block->used_length - offset;
2956 }
2957
2958 start = offset >> TARGET_PAGE_BITS;
2959 npages = used_len >> TARGET_PAGE_BITS;
2960
2961 qemu_mutex_lock(&ram_state->bitmap_mutex);
3143577d
WW
2962 /*
2963 * The skipped free pages are equavalent to be sent from clear_bmap's
2964 * perspective, so clear the bits from the memory region bitmap which
2965 * are initially set. Otherwise those skipped pages will be sent in
2966 * the next round after syncing from the memory region bitmap.
2967 */
1230a25f 2968 migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
6bcb05fc
WW
2969 ram_state->migration_dirty_pages -=
2970 bitmap_count_one_with_offset(block->bmap, start, npages);
2971 bitmap_clear(block->bmap, start, npages);
2972 qemu_mutex_unlock(&ram_state->bitmap_mutex);
2973 }
2974}
2975
3d0684b2
JQ
2976/*
2977 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
a91246c9
HZ
2978 * long-running RCU critical section. When rcu-reclaims in the code
2979 * start to become numerous it will be necessary to reduce the
2980 * granularity of these critical sections.
2981 */
2982
3d0684b2
JQ
2983/**
2984 * ram_save_setup: Setup RAM for migration
2985 *
2986 * Returns zero to indicate success and negative for error
2987 *
2988 * @f: QEMUFile where to send the data
2989 * @opaque: RAMState pointer
2990 */
a91246c9
HZ
2991static int ram_save_setup(QEMUFile *f, void *opaque)
2992{
53518d94 2993 RAMState **rsp = opaque;
a91246c9
HZ
2994 RAMBlock *block;
2995
dcaf446e
XG
2996 if (compress_threads_save_setup()) {
2997 return -1;
2998 }
2999
a91246c9
HZ
3000 /* migration has already setup the bitmap, reuse it. */
3001 if (!migration_in_colo_state()) {
7d00ee6a 3002 if (ram_init_all(rsp) != 0) {
dcaf446e 3003 compress_threads_save_cleanup();
a91246c9 3004 return -1;
53518d94 3005 }
a91246c9 3006 }
53518d94 3007 (*rsp)->f = f;
a91246c9 3008
0e6ebd48
DDAG
3009 WITH_RCU_READ_LOCK_GUARD() {
3010 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
56e93d26 3011
0e6ebd48
DDAG
3012 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3013 qemu_put_byte(f, strlen(block->idstr));
3014 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3015 qemu_put_be64(f, block->used_length);
3016 if (migrate_postcopy_ram() && block->page_size !=
3017 qemu_host_page_size) {
3018 qemu_put_be64(f, block->page_size);
3019 }
3020 if (migrate_ignore_shared()) {
3021 qemu_put_be64(f, block->mr->addr);
3022 }
fbd162e6 3023 }
56e93d26
JQ
3024 }
3025
56e93d26
JQ
3026 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3027 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3028
99f2c6fb 3029 multifd_send_sync_main(f);
56e93d26 3030 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3031 qemu_fflush(f);
56e93d26
JQ
3032
3033 return 0;
3034}
3035
3d0684b2
JQ
3036/**
3037 * ram_save_iterate: iterative stage for migration
3038 *
3039 * Returns zero to indicate success and negative for error
3040 *
3041 * @f: QEMUFile where to send the data
3042 * @opaque: RAMState pointer
3043 */
56e93d26
JQ
3044static int ram_save_iterate(QEMUFile *f, void *opaque)
3045{
53518d94
JQ
3046 RAMState **temp = opaque;
3047 RAMState *rs = *temp;
3d4095b2 3048 int ret = 0;
56e93d26
JQ
3049 int i;
3050 int64_t t0;
5c90308f 3051 int done = 0;
56e93d26 3052
b2557345
PL
3053 if (blk_mig_bulk_active()) {
3054 /* Avoid transferring ram during bulk phase of block migration as
3055 * the bulk phase will usually take a long time and transferring
3056 * ram updates during that time is pointless. */
3057 goto out;
3058 }
3059
63268c49
PX
3060 /*
3061 * We'll take this lock a little bit long, but it's okay for two reasons.
3062 * Firstly, the only possible other thread to take it is who calls
3063 * qemu_guest_free_page_hint(), which should be rare; secondly, see
3064 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3065 * guarantees that we'll at least released it in a regular basis.
3066 */
3067 qemu_mutex_lock(&rs->bitmap_mutex);
89ac5a1d
DDAG
3068 WITH_RCU_READ_LOCK_GUARD() {
3069 if (ram_list.version != rs->last_version) {
3070 ram_state_reset(rs);
3071 }
56e93d26 3072
89ac5a1d
DDAG
3073 /* Read version before ram_list.blocks */
3074 smp_rmb();
56e93d26 3075
89ac5a1d 3076 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
56e93d26 3077
89ac5a1d
DDAG
3078 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3079 i = 0;
3080 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3081 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3082 int pages;
e03a34f8 3083
89ac5a1d
DDAG
3084 if (qemu_file_get_error(f)) {
3085 break;
3086 }
e8f3735f 3087
89ac5a1d
DDAG
3088 pages = ram_find_and_save_block(rs, false);
3089 /* no more pages to sent */
3090 if (pages == 0) {
3091 done = 1;
3092 break;
3093 }
e8f3735f 3094
89ac5a1d
DDAG
3095 if (pages < 0) {
3096 qemu_file_set_error(f, pages);
56e93d26
JQ
3097 break;
3098 }
89ac5a1d
DDAG
3099
3100 rs->target_page_count += pages;
3101
644acf99
WY
3102 /*
3103 * During postcopy, it is necessary to make sure one whole host
3104 * page is sent in one chunk.
3105 */
3106 if (migrate_postcopy_ram()) {
3107 flush_compressed_data(rs);
3108 }
3109
89ac5a1d
DDAG
3110 /*
3111 * we want to check in the 1st loop, just in case it was the 1st
3112 * time and we had to sync the dirty bitmap.
3113 * qemu_clock_get_ns() is a bit expensive, so we only check each
3114 * some iterations
3115 */
3116 if ((i & 63) == 0) {
3117 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3118 1000000;
3119 if (t1 > MAX_WAIT) {
3120 trace_ram_save_iterate_big_wait(t1, i);
3121 break;
3122 }
3123 }
3124 i++;
56e93d26 3125 }
56e93d26 3126 }
63268c49 3127 qemu_mutex_unlock(&rs->bitmap_mutex);
56e93d26
JQ
3128
3129 /*
3130 * Must occur before EOS (or any QEMUFile operation)
3131 * because of RDMA protocol.
3132 */
3133 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3134
b2557345 3135out:
b69a0227
JQ
3136 if (ret >= 0
3137 && migration_is_setup_or_active(migrate_get_current()->state)) {
99f2c6fb 3138 multifd_send_sync_main(rs->f);
3d4095b2
JQ
3139 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3140 qemu_fflush(f);
3141 ram_counters.transferred += 8;
56e93d26 3142
3d4095b2
JQ
3143 ret = qemu_file_get_error(f);
3144 }
56e93d26
JQ
3145 if (ret < 0) {
3146 return ret;
3147 }
3148
5c90308f 3149 return done;
56e93d26
JQ
3150}
3151
3d0684b2
JQ
3152/**
3153 * ram_save_complete: function called to send the remaining amount of ram
3154 *
e8f3735f 3155 * Returns zero to indicate success or negative on error
3d0684b2
JQ
3156 *
3157 * Called with iothread lock
3158 *
3159 * @f: QEMUFile where to send the data
3160 * @opaque: RAMState pointer
3161 */
56e93d26
JQ
3162static int ram_save_complete(QEMUFile *f, void *opaque)
3163{
53518d94
JQ
3164 RAMState **temp = opaque;
3165 RAMState *rs = *temp;
e8f3735f 3166 int ret = 0;
6f37bb8b 3167
89ac5a1d
DDAG
3168 WITH_RCU_READ_LOCK_GUARD() {
3169 if (!migration_in_postcopy()) {
3170 migration_bitmap_sync_precopy(rs);
3171 }
56e93d26 3172
89ac5a1d 3173 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
56e93d26 3174
89ac5a1d 3175 /* try transferring iterative blocks of memory */
56e93d26 3176
89ac5a1d
DDAG
3177 /* flush all remaining blocks regardless of rate limiting */
3178 while (true) {
3179 int pages;
56e93d26 3180
89ac5a1d
DDAG
3181 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3182 /* no more blocks to sent */
3183 if (pages == 0) {
3184 break;
3185 }
3186 if (pages < 0) {
3187 ret = pages;
3188 break;
3189 }
e8f3735f 3190 }
56e93d26 3191
89ac5a1d
DDAG
3192 flush_compressed_data(rs);
3193 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3194 }
d09a6fde 3195
3d4095b2 3196 if (ret >= 0) {
99f2c6fb 3197 multifd_send_sync_main(rs->f);
3d4095b2
JQ
3198 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3199 qemu_fflush(f);
3200 }
56e93d26 3201
e8f3735f 3202 return ret;
56e93d26
JQ
3203}
3204
c31b098f 3205static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
47995026
VSO
3206 uint64_t *res_precopy_only,
3207 uint64_t *res_compatible,
3208 uint64_t *res_postcopy_only)
56e93d26 3209{
53518d94
JQ
3210 RAMState **temp = opaque;
3211 RAMState *rs = *temp;
56e93d26
JQ
3212 uint64_t remaining_size;
3213
9edabd4d 3214 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3215
5727309d 3216 if (!migration_in_postcopy() &&
663e6c1d 3217 remaining_size < max_size) {
56e93d26 3218 qemu_mutex_lock_iothread();
89ac5a1d
DDAG
3219 WITH_RCU_READ_LOCK_GUARD() {
3220 migration_bitmap_sync_precopy(rs);
3221 }
56e93d26 3222 qemu_mutex_unlock_iothread();
9edabd4d 3223 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3224 }
c31b098f 3225
86e1167e
VSO
3226 if (migrate_postcopy_ram()) {
3227 /* We can do postcopy, and all the data is postcopiable */
47995026 3228 *res_compatible += remaining_size;
86e1167e 3229 } else {
47995026 3230 *res_precopy_only += remaining_size;
86e1167e 3231 }
56e93d26
JQ
3232}
3233
3234static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3235{
3236 unsigned int xh_len;
3237 int xh_flags;
063e760a 3238 uint8_t *loaded_data;
56e93d26 3239
56e93d26
JQ
3240 /* extract RLE header */
3241 xh_flags = qemu_get_byte(f);
3242 xh_len = qemu_get_be16(f);
3243
3244 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3245 error_report("Failed to load XBZRLE page - wrong compression!");
3246 return -1;
3247 }
3248
3249 if (xh_len > TARGET_PAGE_SIZE) {
3250 error_report("Failed to load XBZRLE page - len overflow!");
3251 return -1;
3252 }
f265e0e4 3253 loaded_data = XBZRLE.decoded_buf;
56e93d26 3254 /* load data and decode */
f265e0e4 3255 /* it can change loaded_data to point to an internal buffer */
063e760a 3256 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
56e93d26
JQ
3257
3258 /* decode RLE */
063e760a 3259 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
56e93d26
JQ
3260 TARGET_PAGE_SIZE) == -1) {
3261 error_report("Failed to load XBZRLE page - decode error!");
3262 return -1;
3263 }
3264
3265 return 0;
3266}
3267
3d0684b2
JQ
3268/**
3269 * ram_block_from_stream: read a RAMBlock id from the migration stream
3270 *
3271 * Must be called from within a rcu critical section.
3272 *
56e93d26 3273 * Returns a pointer from within the RCU-protected ram_list.
a7180877 3274 *
3d0684b2
JQ
3275 * @f: QEMUFile where to read the data from
3276 * @flags: Page flags (mostly to see if it's a continuation of previous block)
a7180877 3277 */
3d0684b2 3278static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
56e93d26 3279{
49324e93 3280 static RAMBlock *block;
56e93d26
JQ
3281 char id[256];
3282 uint8_t len;
3283
3284 if (flags & RAM_SAVE_FLAG_CONTINUE) {
4c4bad48 3285 if (!block) {
56e93d26
JQ
3286 error_report("Ack, bad migration stream!");
3287 return NULL;
3288 }
4c4bad48 3289 return block;
56e93d26
JQ
3290 }
3291
3292 len = qemu_get_byte(f);
3293 qemu_get_buffer(f, (uint8_t *)id, len);
3294 id[len] = 0;
3295
e3dd7493 3296 block = qemu_ram_block_by_name(id);
4c4bad48
HZ
3297 if (!block) {
3298 error_report("Can't find block %s", id);
3299 return NULL;
56e93d26
JQ
3300 }
3301
fbd162e6 3302 if (ramblock_is_ignored(block)) {
b895de50
CLG
3303 error_report("block %s should not be migrated !", id);
3304 return NULL;
3305 }
3306
4c4bad48
HZ
3307 return block;
3308}
3309
3310static inline void *host_from_ram_block_offset(RAMBlock *block,
3311 ram_addr_t offset)
3312{
3313 if (!offset_in_ramblock(block, offset)) {
3314 return NULL;
3315 }
3316
3317 return block->host + offset;
56e93d26
JQ
3318}
3319
6a23f639
DH
3320static void *host_page_from_ram_block_offset(RAMBlock *block,
3321 ram_addr_t offset)
3322{
3323 /* Note: Explicitly no check against offset_in_ramblock(). */
3324 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3325 block->page_size);
3326}
3327
3328static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3329 ram_addr_t offset)
3330{
3331 return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3332}
3333
13af18f2 3334static inline void *colo_cache_from_block_offset(RAMBlock *block,
8af66371 3335 ram_addr_t offset, bool record_bitmap)
13af18f2
ZC
3336{
3337 if (!offset_in_ramblock(block, offset)) {
3338 return NULL;
3339 }
3340 if (!block->colo_cache) {
3341 error_report("%s: colo_cache is NULL in block :%s",
3342 __func__, block->idstr);
3343 return NULL;
3344 }
7d9acafa
ZC
3345
3346 /*
3347 * During colo checkpoint, we need bitmap of these migrated pages.
3348 * It help us to decide which pages in ram cache should be flushed
3349 * into VM's RAM later.
3350 */
8af66371
HZ
3351 if (record_bitmap &&
3352 !test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
7d9acafa
ZC
3353 ram_state->migration_dirty_pages++;
3354 }
13af18f2
ZC
3355 return block->colo_cache + offset;
3356}
3357
3d0684b2
JQ
3358/**
3359 * ram_handle_compressed: handle the zero page case
3360 *
56e93d26
JQ
3361 * If a page (or a whole RDMA chunk) has been
3362 * determined to be zero, then zap it.
3d0684b2
JQ
3363 *
3364 * @host: host address for the zero page
3365 * @ch: what the page is filled from. We only support zero
3366 * @size: size of the zero page
56e93d26
JQ
3367 */
3368void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3369{
3370 if (ch != 0 || !is_zero_range(host, size)) {
3371 memset(host, ch, size);
3372 }
3373}
3374
797ca154
XG
3375/* return the size after decompression, or negative value on error */
3376static int
3377qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3378 const uint8_t *source, size_t source_len)
3379{
3380 int err;
3381
3382 err = inflateReset(stream);
3383 if (err != Z_OK) {
3384 return -1;
3385 }
3386
3387 stream->avail_in = source_len;
3388 stream->next_in = (uint8_t *)source;
3389 stream->avail_out = dest_len;
3390 stream->next_out = dest;
3391
3392 err = inflate(stream, Z_NO_FLUSH);
3393 if (err != Z_STREAM_END) {
3394 return -1;
3395 }
3396
3397 return stream->total_out;
3398}
3399
56e93d26
JQ
3400static void *do_data_decompress(void *opaque)
3401{
3402 DecompressParam *param = opaque;
3403 unsigned long pagesize;
33d151f4 3404 uint8_t *des;
34ab9e97 3405 int len, ret;
56e93d26 3406
33d151f4 3407 qemu_mutex_lock(&param->mutex);
90e56fb4 3408 while (!param->quit) {
33d151f4
LL
3409 if (param->des) {
3410 des = param->des;
3411 len = param->len;
3412 param->des = 0;
3413 qemu_mutex_unlock(&param->mutex);
3414
56e93d26 3415 pagesize = TARGET_PAGE_SIZE;
34ab9e97
XG
3416
3417 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3418 param->compbuf, len);
f548222c 3419 if (ret < 0 && migrate_get_current()->decompress_error_check) {
34ab9e97
XG
3420 error_report("decompress data failed");
3421 qemu_file_set_error(decomp_file, ret);
3422 }
73a8912b 3423
33d151f4
LL
3424 qemu_mutex_lock(&decomp_done_lock);
3425 param->done = true;
3426 qemu_cond_signal(&decomp_done_cond);
3427 qemu_mutex_unlock(&decomp_done_lock);
3428
3429 qemu_mutex_lock(&param->mutex);
3430 } else {
3431 qemu_cond_wait(&param->cond, &param->mutex);
3432 }
56e93d26 3433 }
33d151f4 3434 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
3435
3436 return NULL;
3437}
3438
34ab9e97 3439static int wait_for_decompress_done(void)
5533b2e9
LL
3440{
3441 int idx, thread_count;
3442
3443 if (!migrate_use_compression()) {
34ab9e97 3444 return 0;
5533b2e9
LL
3445 }
3446
3447 thread_count = migrate_decompress_threads();
3448 qemu_mutex_lock(&decomp_done_lock);
3449 for (idx = 0; idx < thread_count; idx++) {
3450 while (!decomp_param[idx].done) {
3451 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3452 }
3453 }
3454 qemu_mutex_unlock(&decomp_done_lock);
34ab9e97 3455 return qemu_file_get_error(decomp_file);
5533b2e9
LL
3456}
3457
f0afa331 3458static void compress_threads_load_cleanup(void)
56e93d26
JQ
3459{
3460 int i, thread_count;
3461
3416ab5b
JQ
3462 if (!migrate_use_compression()) {
3463 return;
3464 }
56e93d26
JQ
3465 thread_count = migrate_decompress_threads();
3466 for (i = 0; i < thread_count; i++) {
797ca154
XG
3467 /*
3468 * we use it as a indicator which shows if the thread is
3469 * properly init'd or not
3470 */
3471 if (!decomp_param[i].compbuf) {
3472 break;
3473 }
3474
56e93d26 3475 qemu_mutex_lock(&decomp_param[i].mutex);
90e56fb4 3476 decomp_param[i].quit = true;
56e93d26
JQ
3477 qemu_cond_signal(&decomp_param[i].cond);
3478 qemu_mutex_unlock(&decomp_param[i].mutex);
3479 }
3480 for (i = 0; i < thread_count; i++) {
797ca154
XG
3481 if (!decomp_param[i].compbuf) {
3482 break;
3483 }
3484
56e93d26
JQ
3485 qemu_thread_join(decompress_threads + i);
3486 qemu_mutex_destroy(&decomp_param[i].mutex);
3487 qemu_cond_destroy(&decomp_param[i].cond);
797ca154 3488 inflateEnd(&decomp_param[i].stream);
56e93d26 3489 g_free(decomp_param[i].compbuf);
797ca154 3490 decomp_param[i].compbuf = NULL;
56e93d26
JQ
3491 }
3492 g_free(decompress_threads);
3493 g_free(decomp_param);
56e93d26
JQ
3494 decompress_threads = NULL;
3495 decomp_param = NULL;
34ab9e97 3496 decomp_file = NULL;
56e93d26
JQ
3497}
3498
34ab9e97 3499static int compress_threads_load_setup(QEMUFile *f)
797ca154
XG
3500{
3501 int i, thread_count;
3502
3503 if (!migrate_use_compression()) {
3504 return 0;
3505 }
3506
3507 thread_count = migrate_decompress_threads();
3508 decompress_threads = g_new0(QemuThread, thread_count);
3509 decomp_param = g_new0(DecompressParam, thread_count);
3510 qemu_mutex_init(&decomp_done_lock);
3511 qemu_cond_init(&decomp_done_cond);
34ab9e97 3512 decomp_file = f;
797ca154
XG
3513 for (i = 0; i < thread_count; i++) {
3514 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3515 goto exit;
3516 }
3517
3518 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3519 qemu_mutex_init(&decomp_param[i].mutex);
3520 qemu_cond_init(&decomp_param[i].cond);
3521 decomp_param[i].done = true;
3522 decomp_param[i].quit = false;
3523 qemu_thread_create(decompress_threads + i, "decompress",
3524 do_data_decompress, decomp_param + i,
3525 QEMU_THREAD_JOINABLE);
3526 }
3527 return 0;
3528exit:
3529 compress_threads_load_cleanup();
3530 return -1;
3531}
3532
c1bc6626 3533static void decompress_data_with_multi_threads(QEMUFile *f,
56e93d26
JQ
3534 void *host, int len)
3535{
3536 int idx, thread_count;
3537
3538 thread_count = migrate_decompress_threads();
37396950 3539 QEMU_LOCK_GUARD(&decomp_done_lock);
56e93d26
JQ
3540 while (true) {
3541 for (idx = 0; idx < thread_count; idx++) {
73a8912b 3542 if (decomp_param[idx].done) {
33d151f4
LL
3543 decomp_param[idx].done = false;
3544 qemu_mutex_lock(&decomp_param[idx].mutex);
c1bc6626 3545 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
56e93d26
JQ
3546 decomp_param[idx].des = host;
3547 decomp_param[idx].len = len;
33d151f4
LL
3548 qemu_cond_signal(&decomp_param[idx].cond);
3549 qemu_mutex_unlock(&decomp_param[idx].mutex);
56e93d26
JQ
3550 break;
3551 }
3552 }
3553 if (idx < thread_count) {
3554 break;
73a8912b
LL
3555 } else {
3556 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
56e93d26
JQ
3557 }
3558 }
3559}
3560
b70cb3b4
RL
3561static void colo_init_ram_state(void)
3562{
3563 ram_state_init(&ram_state);
b70cb3b4
RL
3564}
3565
13af18f2
ZC
3566/*
3567 * colo cache: this is for secondary VM, we cache the whole
3568 * memory of the secondary VM, it is need to hold the global lock
3569 * to call this helper.
3570 */
3571int colo_init_ram_cache(void)
3572{
3573 RAMBlock *block;
3574
44901b5a
PB
3575 WITH_RCU_READ_LOCK_GUARD() {
3576 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3577 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
8dbe22c6 3578 NULL, false, false);
44901b5a
PB
3579 if (!block->colo_cache) {
3580 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3581 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3582 block->used_length);
3583 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3584 if (block->colo_cache) {
3585 qemu_anon_ram_free(block->colo_cache, block->used_length);
3586 block->colo_cache = NULL;
3587 }
89ac5a1d 3588 }
44901b5a 3589 return -errno;
89ac5a1d 3590 }
e5fdf920
LS
3591 if (!machine_dump_guest_core(current_machine)) {
3592 qemu_madvise(block->colo_cache, block->used_length,
3593 QEMU_MADV_DONTDUMP);
3594 }
13af18f2 3595 }
13af18f2 3596 }
44901b5a 3597
7d9acafa
ZC
3598 /*
3599 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3600 * with to decide which page in cache should be flushed into SVM's RAM. Here
3601 * we use the same name 'ram_bitmap' as for migration.
3602 */
3603 if (ram_bytes_total()) {
3604 RAMBlock *block;
3605
fbd162e6 3606 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa 3607 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
7d9acafa 3608 block->bmap = bitmap_new(pages);
7d9acafa
ZC
3609 }
3610 }
7d9acafa 3611
b70cb3b4 3612 colo_init_ram_state();
13af18f2 3613 return 0;
13af18f2
ZC
3614}
3615
0393031a
HZ
3616/* TODO: duplicated with ram_init_bitmaps */
3617void colo_incoming_start_dirty_log(void)
3618{
3619 RAMBlock *block = NULL;
3620 /* For memory_global_dirty_log_start below. */
3621 qemu_mutex_lock_iothread();
3622 qemu_mutex_lock_ramlist();
3623
3624 memory_global_dirty_log_sync();
3625 WITH_RCU_READ_LOCK_GUARD() {
3626 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3627 ramblock_sync_dirty_bitmap(ram_state, block);
3628 /* Discard this dirty bitmap record */
3629 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3630 }
63b41db4 3631 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
0393031a
HZ
3632 }
3633 ram_state->migration_dirty_pages = 0;
3634 qemu_mutex_unlock_ramlist();
3635 qemu_mutex_unlock_iothread();
3636}
3637
13af18f2
ZC
3638/* It is need to hold the global lock to call this helper */
3639void colo_release_ram_cache(void)
3640{
3641 RAMBlock *block;
3642
63b41db4 3643 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
fbd162e6 3644 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
3645 g_free(block->bmap);
3646 block->bmap = NULL;
3647 }
3648
89ac5a1d
DDAG
3649 WITH_RCU_READ_LOCK_GUARD() {
3650 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3651 if (block->colo_cache) {
3652 qemu_anon_ram_free(block->colo_cache, block->used_length);
3653 block->colo_cache = NULL;
3654 }
13af18f2
ZC
3655 }
3656 }
0393031a 3657 ram_state_cleanup(&ram_state);
13af18f2
ZC
3658}
3659
f265e0e4
JQ
3660/**
3661 * ram_load_setup: Setup RAM for migration incoming side
3662 *
3663 * Returns zero to indicate success and negative for error
3664 *
3665 * @f: QEMUFile where to receive the data
3666 * @opaque: RAMState pointer
3667 */
3668static int ram_load_setup(QEMUFile *f, void *opaque)
3669{
34ab9e97 3670 if (compress_threads_load_setup(f)) {
797ca154
XG
3671 return -1;
3672 }
3673
f265e0e4 3674 xbzrle_load_setup();
f9494614 3675 ramblock_recv_map_init();
13af18f2 3676
f265e0e4
JQ
3677 return 0;
3678}
3679
3680static int ram_load_cleanup(void *opaque)
3681{
f9494614 3682 RAMBlock *rb;
56eb90af 3683
fbd162e6 3684 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
bd108a44 3685 qemu_ram_block_writeback(rb);
56eb90af
JH
3686 }
3687
f265e0e4 3688 xbzrle_load_cleanup();
f0afa331 3689 compress_threads_load_cleanup();
f9494614 3690
fbd162e6 3691 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
3692 g_free(rb->receivedmap);
3693 rb->receivedmap = NULL;
3694 }
13af18f2 3695
f265e0e4
JQ
3696 return 0;
3697}
3698
3d0684b2
JQ
3699/**
3700 * ram_postcopy_incoming_init: allocate postcopy data structures
3701 *
3702 * Returns 0 for success and negative if there was one error
3703 *
3704 * @mis: current migration incoming state
3705 *
3706 * Allocate data structures etc needed by incoming migration with
3707 * postcopy-ram. postcopy-ram's similarly names
3708 * postcopy_ram_incoming_init does the work.
1caddf8a
DDAG
3709 */
3710int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3711{
c136180c 3712 return postcopy_ram_incoming_init(mis);
1caddf8a
DDAG
3713}
3714
3d0684b2
JQ
3715/**
3716 * ram_load_postcopy: load a page in postcopy case
3717 *
3718 * Returns 0 for success or -errno in case of error
3719 *
a7180877
DDAG
3720 * Called in postcopy mode by ram_load().
3721 * rcu_read_lock is taken prior to this being called.
3d0684b2
JQ
3722 *
3723 * @f: QEMUFile where to send the data
a7180877
DDAG
3724 */
3725static int ram_load_postcopy(QEMUFile *f)
3726{
3727 int flags = 0, ret = 0;
3728 bool place_needed = false;
1aa83678 3729 bool matches_target_page_size = false;
a7180877
DDAG
3730 MigrationIncomingState *mis = migration_incoming_get_current();
3731 /* Temporary page that is later 'placed' */
3414322a 3732 void *postcopy_host_page = mis->postcopy_tmp_page;
6a23f639 3733 void *host_page = NULL;
ddf35bdf 3734 bool all_zero = true;
4cbb3c63 3735 int target_pages = 0;
a7180877
DDAG
3736
3737 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3738 ram_addr_t addr;
a7180877
DDAG
3739 void *page_buffer = NULL;
3740 void *place_source = NULL;
df9ff5e1 3741 RAMBlock *block = NULL;
a7180877 3742 uint8_t ch;
644acf99 3743 int len;
a7180877
DDAG
3744
3745 addr = qemu_get_be64(f);
7a9ddfbf
PX
3746
3747 /*
3748 * If qemu file error, we should stop here, and then "addr"
3749 * may be invalid
3750 */
3751 ret = qemu_file_get_error(f);
3752 if (ret) {
3753 break;
3754 }
3755
a7180877
DDAG
3756 flags = addr & ~TARGET_PAGE_MASK;
3757 addr &= TARGET_PAGE_MASK;
3758
3759 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
644acf99
WY
3760 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3761 RAM_SAVE_FLAG_COMPRESS_PAGE)) {
df9ff5e1 3762 block = ram_block_from_stream(f, flags);
6a23f639
DH
3763 if (!block) {
3764 ret = -EINVAL;
3765 break;
3766 }
4c4bad48 3767
898ba906
DH
3768 /*
3769 * Relying on used_length is racy and can result in false positives.
3770 * We might place pages beyond used_length in case RAM was shrunk
3771 * while in postcopy, which is fine - trying to place via
3772 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3773 */
3774 if (!block->host || addr >= block->postcopy_length) {
a7180877
DDAG
3775 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3776 ret = -EINVAL;
3777 break;
3778 }
4cbb3c63 3779 target_pages++;
1aa83678 3780 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
a7180877 3781 /*
28abd200
DDAG
3782 * Postcopy requires that we place whole host pages atomically;
3783 * these may be huge pages for RAMBlocks that are backed by
3784 * hugetlbfs.
a7180877
DDAG
3785 * To make it atomic, the data is read into a temporary page
3786 * that's moved into place later.
3787 * The migration protocol uses, possibly smaller, target-pages
3788 * however the source ensures it always sends all the components
91ba442f 3789 * of a host page in one chunk.
a7180877
DDAG
3790 */
3791 page_buffer = postcopy_host_page +
6a23f639
DH
3792 host_page_offset_from_ram_block_offset(block, addr);
3793 /* If all TP are zero then we can optimise the place */
e5e73b0f 3794 if (target_pages == 1) {
6a23f639
DH
3795 host_page = host_page_from_ram_block_offset(block, addr);
3796 } else if (host_page != host_page_from_ram_block_offset(block,
3797 addr)) {
c53b7ddc 3798 /* not the 1st TP within the HP */
6a23f639
DH
3799 error_report("Non-same host page %p/%p", host_page,
3800 host_page_from_ram_block_offset(block, addr));
3801 ret = -EINVAL;
3802 break;
a7180877
DDAG
3803 }
3804
3805 /*
3806 * If it's the last part of a host page then we place the host
3807 * page
3808 */
4cbb3c63
WY
3809 if (target_pages == (block->page_size / TARGET_PAGE_SIZE)) {
3810 place_needed = true;
4cbb3c63 3811 }
a7180877
DDAG
3812 place_source = postcopy_host_page;
3813 }
3814
3815 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
bb890ed5 3816 case RAM_SAVE_FLAG_ZERO:
a7180877 3817 ch = qemu_get_byte(f);
2e36bc1b
WY
3818 /*
3819 * Can skip to set page_buffer when
3820 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3821 */
3822 if (ch || !matches_target_page_size) {
3823 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3824 }
a7180877
DDAG
3825 if (ch) {
3826 all_zero = false;
3827 }
3828 break;
3829
3830 case RAM_SAVE_FLAG_PAGE:
3831 all_zero = false;
1aa83678
PX
3832 if (!matches_target_page_size) {
3833 /* For huge pages, we always use temporary buffer */
a7180877
DDAG
3834 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3835 } else {
1aa83678
PX
3836 /*
3837 * For small pages that matches target page size, we
3838 * avoid the qemu_file copy. Instead we directly use
3839 * the buffer of QEMUFile to place the page. Note: we
3840 * cannot do any QEMUFile operation before using that
3841 * buffer to make sure the buffer is valid when
3842 * placing the page.
a7180877
DDAG
3843 */
3844 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3845 TARGET_PAGE_SIZE);
3846 }
3847 break;
644acf99
WY
3848 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3849 all_zero = false;
3850 len = qemu_get_be32(f);
3851 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3852 error_report("Invalid compressed data length: %d", len);
3853 ret = -EINVAL;
3854 break;
3855 }
3856 decompress_data_with_multi_threads(f, page_buffer, len);
3857 break;
3858
a7180877
DDAG
3859 case RAM_SAVE_FLAG_EOS:
3860 /* normal exit */
6df264ac 3861 multifd_recv_sync_main();
a7180877
DDAG
3862 break;
3863 default:
29fccade 3864 error_report("Unknown combination of migration flags: 0x%x"
a7180877
DDAG
3865 " (postcopy mode)", flags);
3866 ret = -EINVAL;
7a9ddfbf
PX
3867 break;
3868 }
3869
644acf99
WY
3870 /* Got the whole host page, wait for decompress before placing. */
3871 if (place_needed) {
3872 ret |= wait_for_decompress_done();
3873 }
3874
7a9ddfbf
PX
3875 /* Detect for any possible file errors */
3876 if (!ret && qemu_file_get_error(f)) {
3877 ret = qemu_file_get_error(f);
a7180877
DDAG
3878 }
3879
7a9ddfbf 3880 if (!ret && place_needed) {
a7180877 3881 if (all_zero) {
6a23f639 3882 ret = postcopy_place_page_zero(mis, host_page, block);
a7180877 3883 } else {
6a23f639
DH
3884 ret = postcopy_place_page(mis, host_page, place_source,
3885 block);
a7180877 3886 }
ddf35bdf
DH
3887 place_needed = false;
3888 target_pages = 0;
3889 /* Assume we have a zero page until we detect something different */
3890 all_zero = true;
a7180877 3891 }
a7180877
DDAG
3892 }
3893
3894 return ret;
3895}
3896
acab30b8
DHB
3897static bool postcopy_is_advised(void)
3898{
3899 PostcopyState ps = postcopy_state_get();
3900 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
3901}
3902
3903static bool postcopy_is_running(void)
3904{
3905 PostcopyState ps = postcopy_state_get();
3906 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3907}
3908
e6f4aa18
ZC
3909/*
3910 * Flush content of RAM cache into SVM's memory.
3911 * Only flush the pages that be dirtied by PVM or SVM or both.
3912 */
24fa16f8 3913void colo_flush_ram_cache(void)
e6f4aa18
ZC
3914{
3915 RAMBlock *block = NULL;
3916 void *dst_host;
3917 void *src_host;
3918 unsigned long offset = 0;
3919
d1955d22 3920 memory_global_dirty_log_sync();
89ac5a1d
DDAG
3921 WITH_RCU_READ_LOCK_GUARD() {
3922 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3923 ramblock_sync_dirty_bitmap(ram_state, block);
3924 }
d1955d22 3925 }
d1955d22 3926
e6f4aa18 3927 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
89ac5a1d
DDAG
3928 WITH_RCU_READ_LOCK_GUARD() {
3929 block = QLIST_FIRST_RCU(&ram_list.blocks);
e6f4aa18 3930
89ac5a1d 3931 while (block) {
a6a83cef 3932 unsigned long num = 0;
e6f4aa18 3933
a6a83cef 3934 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
542147f4
DH
3935 if (!offset_in_ramblock(block,
3936 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
89ac5a1d 3937 offset = 0;
a6a83cef 3938 num = 0;
89ac5a1d
DDAG
3939 block = QLIST_NEXT_RCU(block, next);
3940 } else {
a6a83cef
RL
3941 unsigned long i = 0;
3942
3943 for (i = 0; i < num; i++) {
3944 migration_bitmap_clear_dirty(ram_state, block, offset + i);
3945 }
8bba004c
AR
3946 dst_host = block->host
3947 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3948 src_host = block->colo_cache
3949 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
a6a83cef
RL
3950 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3951 offset += num;
89ac5a1d 3952 }
e6f4aa18
ZC
3953 }
3954 }
e6f4aa18
ZC
3955 trace_colo_flush_ram_cache_end();
3956}
3957
10da4a36
WY
3958/**
3959 * ram_load_precopy: load pages in precopy case
3960 *
3961 * Returns 0 for success or -errno in case of error
3962 *
3963 * Called in precopy mode by ram_load().
3964 * rcu_read_lock is taken prior to this being called.
3965 *
3966 * @f: QEMUFile where to send the data
3967 */
3968static int ram_load_precopy(QEMUFile *f)
56e93d26 3969{
e65cec5e 3970 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
ef08fb38 3971 /* ADVISE is earlier, it shows the source has the postcopy capability on */
acab30b8 3972 bool postcopy_advised = postcopy_is_advised();
edc60127
JQ
3973 if (!migrate_use_compression()) {
3974 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3975 }
a7180877 3976
10da4a36 3977 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
56e93d26 3978 ram_addr_t addr, total_ram_bytes;
0393031a 3979 void *host = NULL, *host_bak = NULL;
56e93d26
JQ
3980 uint8_t ch;
3981
e65cec5e
YK
3982 /*
3983 * Yield periodically to let main loop run, but an iteration of
3984 * the main loop is expensive, so do it each some iterations
3985 */
3986 if ((i & 32767) == 0 && qemu_in_coroutine()) {
3987 aio_co_schedule(qemu_get_current_aio_context(),
3988 qemu_coroutine_self());
3989 qemu_coroutine_yield();
3990 }
3991 i++;
3992
56e93d26
JQ
3993 addr = qemu_get_be64(f);
3994 flags = addr & ~TARGET_PAGE_MASK;
3995 addr &= TARGET_PAGE_MASK;
3996
edc60127
JQ
3997 if (flags & invalid_flags) {
3998 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3999 error_report("Received an unexpected compressed page");
4000 }
4001
4002 ret = -EINVAL;
4003 break;
4004 }
4005
bb890ed5 4006 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
a776aa15 4007 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4c4bad48
HZ
4008 RAMBlock *block = ram_block_from_stream(f, flags);
4009
0393031a 4010 host = host_from_ram_block_offset(block, addr);
13af18f2 4011 /*
0393031a
HZ
4012 * After going into COLO stage, we should not load the page
4013 * into SVM's memory directly, we put them into colo_cache firstly.
4014 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
4015 * Previously, we copied all these memory in preparing stage of COLO
4016 * while we need to stop VM, which is a time-consuming process.
4017 * Here we optimize it by a trick, back-up every page while in
4018 * migration process while COLO is enabled, though it affects the
4019 * speed of the migration, but it obviously reduce the downtime of
4020 * back-up all SVM'S memory in COLO preparing stage.
13af18f2 4021 */
0393031a
HZ
4022 if (migration_incoming_colo_enabled()) {
4023 if (migration_incoming_in_colo_state()) {
4024 /* In COLO stage, put all pages into cache temporarily */
8af66371 4025 host = colo_cache_from_block_offset(block, addr, true);
0393031a
HZ
4026 } else {
4027 /*
4028 * In migration stage but before COLO stage,
4029 * Put all pages into both cache and SVM's memory.
4030 */
8af66371 4031 host_bak = colo_cache_from_block_offset(block, addr, false);
0393031a 4032 }
13af18f2 4033 }
a776aa15
DDAG
4034 if (!host) {
4035 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4036 ret = -EINVAL;
4037 break;
4038 }
13af18f2
ZC
4039 if (!migration_incoming_in_colo_state()) {
4040 ramblock_recv_bitmap_set(block, host);
4041 }
4042
1db9d8e5 4043 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
a776aa15
DDAG
4044 }
4045
56e93d26
JQ
4046 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4047 case RAM_SAVE_FLAG_MEM_SIZE:
4048 /* Synchronize RAM block list */
4049 total_ram_bytes = addr;
4050 while (!ret && total_ram_bytes) {
4051 RAMBlock *block;
56e93d26
JQ
4052 char id[256];
4053 ram_addr_t length;
4054
4055 len = qemu_get_byte(f);
4056 qemu_get_buffer(f, (uint8_t *)id, len);
4057 id[len] = 0;
4058 length = qemu_get_be64(f);
4059
e3dd7493 4060 block = qemu_ram_block_by_name(id);
b895de50
CLG
4061 if (block && !qemu_ram_is_migratable(block)) {
4062 error_report("block %s should not be migrated !", id);
4063 ret = -EINVAL;
4064 } else if (block) {
e3dd7493
DDAG
4065 if (length != block->used_length) {
4066 Error *local_err = NULL;
56e93d26 4067
fa53a0e5 4068 ret = qemu_ram_resize(block, length,
e3dd7493
DDAG
4069 &local_err);
4070 if (local_err) {
4071 error_report_err(local_err);
56e93d26 4072 }
56e93d26 4073 }
ef08fb38 4074 /* For postcopy we need to check hugepage sizes match */
e846b746 4075 if (postcopy_advised && migrate_postcopy_ram() &&
ef08fb38
DDAG
4076 block->page_size != qemu_host_page_size) {
4077 uint64_t remote_page_size = qemu_get_be64(f);
4078 if (remote_page_size != block->page_size) {
4079 error_report("Mismatched RAM page size %s "
4080 "(local) %zd != %" PRId64,
4081 id, block->page_size,
4082 remote_page_size);
4083 ret = -EINVAL;
4084 }
4085 }
fbd162e6
YK
4086 if (migrate_ignore_shared()) {
4087 hwaddr addr = qemu_get_be64(f);
fbd162e6
YK
4088 if (ramblock_is_ignored(block) &&
4089 block->mr->addr != addr) {
4090 error_report("Mismatched GPAs for block %s "
4091 "%" PRId64 "!= %" PRId64,
4092 id, (uint64_t)addr,
4093 (uint64_t)block->mr->addr);
4094 ret = -EINVAL;
4095 }
4096 }
e3dd7493
DDAG
4097 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4098 block->idstr);
4099 } else {
56e93d26
JQ
4100 error_report("Unknown ramblock \"%s\", cannot "
4101 "accept migration", id);
4102 ret = -EINVAL;
4103 }
4104
4105 total_ram_bytes -= length;
4106 }
4107 break;
a776aa15 4108
bb890ed5 4109 case RAM_SAVE_FLAG_ZERO:
56e93d26
JQ
4110 ch = qemu_get_byte(f);
4111 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4112 break;
a776aa15 4113
56e93d26 4114 case RAM_SAVE_FLAG_PAGE:
56e93d26
JQ
4115 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4116 break;
56e93d26 4117
a776aa15 4118 case RAM_SAVE_FLAG_COMPRESS_PAGE:
56e93d26
JQ
4119 len = qemu_get_be32(f);
4120 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4121 error_report("Invalid compressed data length: %d", len);
4122 ret = -EINVAL;
4123 break;
4124 }
c1bc6626 4125 decompress_data_with_multi_threads(f, host, len);
56e93d26 4126 break;
a776aa15 4127
56e93d26 4128 case RAM_SAVE_FLAG_XBZRLE:
56e93d26
JQ
4129 if (load_xbzrle(f, addr, host) < 0) {
4130 error_report("Failed to decompress XBZRLE page at "
4131 RAM_ADDR_FMT, addr);
4132 ret = -EINVAL;
4133 break;
4134 }
4135 break;
4136 case RAM_SAVE_FLAG_EOS:
4137 /* normal exit */
6df264ac 4138 multifd_recv_sync_main();
56e93d26
JQ
4139 break;
4140 default:
4141 if (flags & RAM_SAVE_FLAG_HOOK) {
632e3a5c 4142 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
56e93d26 4143 } else {
29fccade 4144 error_report("Unknown combination of migration flags: 0x%x",
56e93d26
JQ
4145 flags);
4146 ret = -EINVAL;
4147 }
4148 }
4149 if (!ret) {
4150 ret = qemu_file_get_error(f);
4151 }
0393031a
HZ
4152 if (!ret && host_bak) {
4153 memcpy(host_bak, host, TARGET_PAGE_SIZE);
4154 }
56e93d26
JQ
4155 }
4156
ca1a6b70 4157 ret |= wait_for_decompress_done();
10da4a36
WY
4158 return ret;
4159}
4160
4161static int ram_load(QEMUFile *f, void *opaque, int version_id)
4162{
4163 int ret = 0;
4164 static uint64_t seq_iter;
4165 /*
4166 * If system is running in postcopy mode, page inserts to host memory must
4167 * be atomic
4168 */
4169 bool postcopy_running = postcopy_is_running();
4170
4171 seq_iter++;
4172
4173 if (version_id != 4) {
4174 return -EINVAL;
4175 }
4176
4177 /*
4178 * This RCU critical section can be very long running.
4179 * When RCU reclaims in the code start to become numerous,
4180 * it will be necessary to reduce the granularity of this
4181 * critical section.
4182 */
89ac5a1d
DDAG
4183 WITH_RCU_READ_LOCK_GUARD() {
4184 if (postcopy_running) {
4185 ret = ram_load_postcopy(f);
4186 } else {
4187 ret = ram_load_precopy(f);
4188 }
10da4a36 4189 }
55c4446b 4190 trace_ram_load_complete(ret, seq_iter);
e6f4aa18 4191
56e93d26
JQ
4192 return ret;
4193}
4194
c6467627
VSO
4195static bool ram_has_postcopy(void *opaque)
4196{
469dd51b 4197 RAMBlock *rb;
fbd162e6 4198 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
469dd51b
JH
4199 if (ramblock_is_pmem(rb)) {
4200 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4201 "is not supported now!", rb->idstr, rb->host);
4202 return false;
4203 }
4204 }
4205
c6467627
VSO
4206 return migrate_postcopy_ram();
4207}
4208
edd090c7
PX
4209/* Sync all the dirty bitmap with destination VM. */
4210static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4211{
4212 RAMBlock *block;
4213 QEMUFile *file = s->to_dst_file;
4214 int ramblock_count = 0;
4215
4216 trace_ram_dirty_bitmap_sync_start();
4217
fbd162e6 4218 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
edd090c7
PX
4219 qemu_savevm_send_recv_bitmap(file, block->idstr);
4220 trace_ram_dirty_bitmap_request(block->idstr);
4221 ramblock_count++;
4222 }
4223
4224 trace_ram_dirty_bitmap_sync_wait();
4225
4226 /* Wait until all the ramblocks' dirty bitmap synced */
4227 while (ramblock_count--) {
4228 qemu_sem_wait(&s->rp_state.rp_sem);
4229 }
4230
4231 trace_ram_dirty_bitmap_sync_complete();
4232
4233 return 0;
4234}
4235
4236static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4237{
4238 qemu_sem_post(&s->rp_state.rp_sem);
4239}
4240
a335debb
PX
4241/*
4242 * Read the received bitmap, revert it as the initial dirty bitmap.
4243 * This is only used when the postcopy migration is paused but wants
4244 * to resume from a middle point.
4245 */
4246int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4247{
4248 int ret = -EINVAL;
43044ac0 4249 /* from_dst_file is always valid because we're within rp_thread */
a335debb
PX
4250 QEMUFile *file = s->rp_state.from_dst_file;
4251 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
a725ef9f 4252 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
4253 uint64_t size, end_mark;
4254
4255 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4256
4257 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4258 error_report("%s: incorrect state %s", __func__,
4259 MigrationStatus_str(s->state));
4260 return -EINVAL;
4261 }
4262
4263 /*
4264 * Note: see comments in ramblock_recv_bitmap_send() on why we
3a4452d8 4265 * need the endianness conversion, and the paddings.
a335debb
PX
4266 */
4267 local_size = ROUND_UP(local_size, 8);
4268
4269 /* Add paddings */
4270 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4271
4272 size = qemu_get_be64(file);
4273
4274 /* The size of the bitmap should match with our ramblock */
4275 if (size != local_size) {
4276 error_report("%s: ramblock '%s' bitmap size mismatch "
4277 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4278 block->idstr, size, local_size);
4279 ret = -EINVAL;
4280 goto out;
4281 }
4282
4283 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4284 end_mark = qemu_get_be64(file);
4285
4286 ret = qemu_file_get_error(file);
4287 if (ret || size != local_size) {
4288 error_report("%s: read bitmap failed for ramblock '%s': %d"
4289 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4290 __func__, block->idstr, ret, local_size, size);
4291 ret = -EIO;
4292 goto out;
4293 }
4294
4295 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
af3bbbe9 4296 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64,
a335debb
PX
4297 __func__, block->idstr, end_mark);
4298 ret = -EINVAL;
4299 goto out;
4300 }
4301
4302 /*
3a4452d8 4303 * Endianness conversion. We are during postcopy (though paused).
a335debb
PX
4304 * The dirty bitmap won't change. We can directly modify it.
4305 */
4306 bitmap_from_le(block->bmap, le_bitmap, nbits);
4307
4308 /*
4309 * What we received is "received bitmap". Revert it as the initial
4310 * dirty bitmap for this ramblock.
4311 */
4312 bitmap_complement(block->bmap, block->bmap, nbits);
4313
be39b4cd
DH
4314 /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4315 ramblock_dirty_bitmap_clear_discarded_pages(block);
4316
4317 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
a335debb
PX
4318 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4319
edd090c7
PX
4320 /*
4321 * We succeeded to sync bitmap for current ramblock. If this is
4322 * the last one to sync, we need to notify the main send thread.
4323 */
4324 ram_dirty_bitmap_reload_notify(s);
4325
a335debb
PX
4326 ret = 0;
4327out:
bf269906 4328 g_free(le_bitmap);
a335debb
PX
4329 return ret;
4330}
4331
edd090c7
PX
4332static int ram_resume_prepare(MigrationState *s, void *opaque)
4333{
4334 RAMState *rs = *(RAMState **)opaque;
08614f34 4335 int ret;
edd090c7 4336
08614f34
PX
4337 ret = ram_dirty_bitmap_sync_all(s, rs);
4338 if (ret) {
4339 return ret;
4340 }
4341
4342 ram_state_resume_prepare(rs, s->to_dst_file);
4343
4344 return 0;
edd090c7
PX
4345}
4346
56e93d26 4347static SaveVMHandlers savevm_ram_handlers = {
9907e842 4348 .save_setup = ram_save_setup,
56e93d26 4349 .save_live_iterate = ram_save_iterate,
763c906b 4350 .save_live_complete_postcopy = ram_save_complete,
a3e06c3d 4351 .save_live_complete_precopy = ram_save_complete,
c6467627 4352 .has_postcopy = ram_has_postcopy,
56e93d26
JQ
4353 .save_live_pending = ram_save_pending,
4354 .load_state = ram_load,
f265e0e4
JQ
4355 .save_cleanup = ram_save_cleanup,
4356 .load_setup = ram_load_setup,
4357 .load_cleanup = ram_load_cleanup,
edd090c7 4358 .resume_prepare = ram_resume_prepare,
56e93d26
JQ
4359};
4360
c7c0e724
DH
4361static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4362 size_t old_size, size_t new_size)
4363{
cc61c703 4364 PostcopyState ps = postcopy_state_get();
c7c0e724
DH
4365 ram_addr_t offset;
4366 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4367 Error *err = NULL;
4368
4369 if (ramblock_is_ignored(rb)) {
4370 return;
4371 }
4372
4373 if (!migration_is_idle()) {
4374 /*
4375 * Precopy code on the source cannot deal with the size of RAM blocks
4376 * changing at random points in time - especially after sending the
4377 * RAM block sizes in the migration stream, they must no longer change.
4378 * Abort and indicate a proper reason.
4379 */
4380 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
458fecca 4381 migration_cancel(err);
c7c0e724 4382 error_free(err);
c7c0e724 4383 }
cc61c703
DH
4384
4385 switch (ps) {
4386 case POSTCOPY_INCOMING_ADVISE:
4387 /*
4388 * Update what ram_postcopy_incoming_init()->init_range() does at the
4389 * time postcopy was advised. Syncing RAM blocks with the source will
4390 * result in RAM resizes.
4391 */
4392 if (old_size < new_size) {
4393 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4394 error_report("RAM block '%s' discard of resized RAM failed",
4395 rb->idstr);
4396 }
4397 }
898ba906 4398 rb->postcopy_length = new_size;
cc61c703
DH
4399 break;
4400 case POSTCOPY_INCOMING_NONE:
4401 case POSTCOPY_INCOMING_RUNNING:
4402 case POSTCOPY_INCOMING_END:
4403 /*
4404 * Once our guest is running, postcopy does no longer care about
4405 * resizes. When growing, the new memory was not available on the
4406 * source, no handler needed.
4407 */
4408 break;
4409 default:
4410 error_report("RAM block '%s' resized during postcopy state: %d",
4411 rb->idstr, ps);
4412 exit(-1);
4413 }
c7c0e724
DH
4414}
4415
4416static RAMBlockNotifier ram_mig_ram_notifier = {
4417 .ram_block_resized = ram_mig_ram_block_resized,
4418};
4419
56e93d26
JQ
4420void ram_mig_init(void)
4421{
4422 qemu_mutex_init(&XBZRLE.lock);
ce62df53 4423 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
c7c0e724 4424 ram_block_notifier_add(&ram_mig_ram_notifier);
56e93d26 4425}