]> git.proxmox.com Git - mirror_qemu.git/blame - migration/ram.c
Move dirty page search state into separate structure
[mirror_qemu.git] / migration / ram.c
CommitLineData
56e93d26
JQ
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
76cc7b58
JQ
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
56e93d26
JQ
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28#include <stdint.h>
56e93d26 29#include <zlib.h>
56e93d26
JQ
30#include "qemu/bitops.h"
31#include "qemu/bitmap.h"
7205c9ec
JQ
32#include "qemu/timer.h"
33#include "qemu/main-loop.h"
56e93d26
JQ
34#include "migration/migration.h"
35#include "exec/address-spaces.h"
36#include "migration/page_cache.h"
56e93d26 37#include "qemu/error-report.h"
56e93d26 38#include "trace.h"
56e93d26 39#include "exec/ram_addr.h"
56e93d26
JQ
40#include "qemu/rcu_queue.h"
41
42#ifdef DEBUG_MIGRATION_RAM
43#define DPRINTF(fmt, ...) \
44 do { fprintf(stdout, "migration_ram: " fmt, ## __VA_ARGS__); } while (0)
45#else
46#define DPRINTF(fmt, ...) \
47 do { } while (0)
48#endif
49
50static bool mig_throttle_on;
51static int dirty_rate_high_cnt;
52static void check_guest_throttling(void);
53
54static uint64_t bitmap_sync_count;
55
56/***********************************************************/
57/* ram save/restore */
58
59#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
60#define RAM_SAVE_FLAG_COMPRESS 0x02
61#define RAM_SAVE_FLAG_MEM_SIZE 0x04
62#define RAM_SAVE_FLAG_PAGE 0x08
63#define RAM_SAVE_FLAG_EOS 0x10
64#define RAM_SAVE_FLAG_CONTINUE 0x20
65#define RAM_SAVE_FLAG_XBZRLE 0x40
66/* 0x80 is reserved in migration.h start with 0x100 next */
67#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
68
69static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
70
71static inline bool is_zero_range(uint8_t *p, uint64_t size)
72{
73 return buffer_find_nonzero_offset(p, size) == size;
74}
75
76/* struct contains XBZRLE cache and a static page
77 used by the compression */
78static struct {
79 /* buffer used for XBZRLE encoding */
80 uint8_t *encoded_buf;
81 /* buffer for storing page content */
82 uint8_t *current_buf;
83 /* Cache for XBZRLE, Protected by lock. */
84 PageCache *cache;
85 QemuMutex lock;
86} XBZRLE;
87
88/* buffer used for XBZRLE decoding */
89static uint8_t *xbzrle_decoded_buf;
90
91static void XBZRLE_cache_lock(void)
92{
93 if (migrate_use_xbzrle())
94 qemu_mutex_lock(&XBZRLE.lock);
95}
96
97static void XBZRLE_cache_unlock(void)
98{
99 if (migrate_use_xbzrle())
100 qemu_mutex_unlock(&XBZRLE.lock);
101}
102
103/*
104 * called from qmp_migrate_set_cache_size in main thread, possibly while
105 * a migration is in progress.
106 * A running migration maybe using the cache and might finish during this
107 * call, hence changes to the cache are protected by XBZRLE.lock().
108 */
109int64_t xbzrle_cache_resize(int64_t new_size)
110{
111 PageCache *new_cache;
112 int64_t ret;
113
114 if (new_size < TARGET_PAGE_SIZE) {
115 return -1;
116 }
117
118 XBZRLE_cache_lock();
119
120 if (XBZRLE.cache != NULL) {
121 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
122 goto out_new_size;
123 }
124 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
125 TARGET_PAGE_SIZE);
126 if (!new_cache) {
127 error_report("Error creating cache");
128 ret = -1;
129 goto out;
130 }
131
132 cache_fini(XBZRLE.cache);
133 XBZRLE.cache = new_cache;
134 }
135
136out_new_size:
137 ret = pow2floor(new_size);
138out:
139 XBZRLE_cache_unlock();
140 return ret;
141}
142
143/* accounting for migration statistics */
144typedef struct AccountingInfo {
145 uint64_t dup_pages;
146 uint64_t skipped_pages;
147 uint64_t norm_pages;
148 uint64_t iterations;
149 uint64_t xbzrle_bytes;
150 uint64_t xbzrle_pages;
151 uint64_t xbzrle_cache_miss;
152 double xbzrle_cache_miss_rate;
153 uint64_t xbzrle_overflows;
154} AccountingInfo;
155
156static AccountingInfo acct_info;
157
158static void acct_clear(void)
159{
160 memset(&acct_info, 0, sizeof(acct_info));
161}
162
163uint64_t dup_mig_bytes_transferred(void)
164{
165 return acct_info.dup_pages * TARGET_PAGE_SIZE;
166}
167
168uint64_t dup_mig_pages_transferred(void)
169{
170 return acct_info.dup_pages;
171}
172
173uint64_t skipped_mig_bytes_transferred(void)
174{
175 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
176}
177
178uint64_t skipped_mig_pages_transferred(void)
179{
180 return acct_info.skipped_pages;
181}
182
183uint64_t norm_mig_bytes_transferred(void)
184{
185 return acct_info.norm_pages * TARGET_PAGE_SIZE;
186}
187
188uint64_t norm_mig_pages_transferred(void)
189{
190 return acct_info.norm_pages;
191}
192
193uint64_t xbzrle_mig_bytes_transferred(void)
194{
195 return acct_info.xbzrle_bytes;
196}
197
198uint64_t xbzrle_mig_pages_transferred(void)
199{
200 return acct_info.xbzrle_pages;
201}
202
203uint64_t xbzrle_mig_pages_cache_miss(void)
204{
205 return acct_info.xbzrle_cache_miss;
206}
207
208double xbzrle_mig_cache_miss_rate(void)
209{
210 return acct_info.xbzrle_cache_miss_rate;
211}
212
213uint64_t xbzrle_mig_pages_overflow(void)
214{
215 return acct_info.xbzrle_overflows;
216}
217
218/* This is the last block that we have visited serching for dirty pages
219 */
220static RAMBlock *last_seen_block;
221/* This is the last block from where we have sent data */
222static RAMBlock *last_sent_block;
223static ram_addr_t last_offset;
224static unsigned long *migration_bitmap;
dd631697 225static QemuMutex migration_bitmap_mutex;
56e93d26
JQ
226static uint64_t migration_dirty_pages;
227static uint32_t last_version;
228static bool ram_bulk_stage;
229
b8fb8cb7
DDAG
230/* used by the search for pages to send */
231struct PageSearchStatus {
232 /* Current block being searched */
233 RAMBlock *block;
234 /* Current offset to search from */
235 ram_addr_t offset;
236 /* Set once we wrap around */
237 bool complete_round;
238};
239typedef struct PageSearchStatus PageSearchStatus;
240
56e93d26
JQ
241struct CompressParam {
242 bool start;
243 bool done;
244 QEMUFile *file;
245 QemuMutex mutex;
246 QemuCond cond;
247 RAMBlock *block;
248 ram_addr_t offset;
249};
250typedef struct CompressParam CompressParam;
251
252struct DecompressParam {
253 bool start;
254 QemuMutex mutex;
255 QemuCond cond;
256 void *des;
257 uint8 *compbuf;
258 int len;
259};
260typedef struct DecompressParam DecompressParam;
261
262static CompressParam *comp_param;
263static QemuThread *compress_threads;
264/* comp_done_cond is used to wake up the migration thread when
265 * one of the compression threads has finished the compression.
266 * comp_done_lock is used to co-work with comp_done_cond.
267 */
268static QemuMutex *comp_done_lock;
269static QemuCond *comp_done_cond;
270/* The empty QEMUFileOps will be used by file in CompressParam */
271static const QEMUFileOps empty_ops = { };
272
273static bool compression_switch;
274static bool quit_comp_thread;
275static bool quit_decomp_thread;
276static DecompressParam *decomp_param;
277static QemuThread *decompress_threads;
278static uint8_t *compressed_data_buf;
279
280static int do_compress_ram_page(CompressParam *param);
281
282static void *do_data_compress(void *opaque)
283{
284 CompressParam *param = opaque;
285
286 while (!quit_comp_thread) {
287 qemu_mutex_lock(&param->mutex);
288 /* Re-check the quit_comp_thread in case of
289 * terminate_compression_threads is called just before
290 * qemu_mutex_lock(&param->mutex) and after
291 * while(!quit_comp_thread), re-check it here can make
292 * sure the compression thread terminate as expected.
293 */
294 while (!param->start && !quit_comp_thread) {
295 qemu_cond_wait(&param->cond, &param->mutex);
296 }
297 if (!quit_comp_thread) {
298 do_compress_ram_page(param);
299 }
300 param->start = false;
301 qemu_mutex_unlock(&param->mutex);
302
303 qemu_mutex_lock(comp_done_lock);
304 param->done = true;
305 qemu_cond_signal(comp_done_cond);
306 qemu_mutex_unlock(comp_done_lock);
307 }
308
309 return NULL;
310}
311
312static inline void terminate_compression_threads(void)
313{
314 int idx, thread_count;
315
316 thread_count = migrate_compress_threads();
317 quit_comp_thread = true;
318 for (idx = 0; idx < thread_count; idx++) {
319 qemu_mutex_lock(&comp_param[idx].mutex);
320 qemu_cond_signal(&comp_param[idx].cond);
321 qemu_mutex_unlock(&comp_param[idx].mutex);
322 }
323}
324
325void migrate_compress_threads_join(void)
326{
327 int i, thread_count;
328
329 if (!migrate_use_compression()) {
330 return;
331 }
332 terminate_compression_threads();
333 thread_count = migrate_compress_threads();
334 for (i = 0; i < thread_count; i++) {
335 qemu_thread_join(compress_threads + i);
336 qemu_fclose(comp_param[i].file);
337 qemu_mutex_destroy(&comp_param[i].mutex);
338 qemu_cond_destroy(&comp_param[i].cond);
339 }
340 qemu_mutex_destroy(comp_done_lock);
341 qemu_cond_destroy(comp_done_cond);
342 g_free(compress_threads);
343 g_free(comp_param);
344 g_free(comp_done_cond);
345 g_free(comp_done_lock);
346 compress_threads = NULL;
347 comp_param = NULL;
348 comp_done_cond = NULL;
349 comp_done_lock = NULL;
350}
351
352void migrate_compress_threads_create(void)
353{
354 int i, thread_count;
355
356 if (!migrate_use_compression()) {
357 return;
358 }
359 quit_comp_thread = false;
360 compression_switch = true;
361 thread_count = migrate_compress_threads();
362 compress_threads = g_new0(QemuThread, thread_count);
363 comp_param = g_new0(CompressParam, thread_count);
364 comp_done_cond = g_new0(QemuCond, 1);
365 comp_done_lock = g_new0(QemuMutex, 1);
366 qemu_cond_init(comp_done_cond);
367 qemu_mutex_init(comp_done_lock);
368 for (i = 0; i < thread_count; i++) {
369 /* com_param[i].file is just used as a dummy buffer to save data, set
370 * it's ops to empty.
371 */
372 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
373 comp_param[i].done = true;
374 qemu_mutex_init(&comp_param[i].mutex);
375 qemu_cond_init(&comp_param[i].cond);
376 qemu_thread_create(compress_threads + i, "compress",
377 do_data_compress, comp_param + i,
378 QEMU_THREAD_JOINABLE);
379 }
380}
381
382/**
383 * save_page_header: Write page header to wire
384 *
385 * If this is the 1st block, it also writes the block identification
386 *
387 * Returns: Number of bytes written
388 *
389 * @f: QEMUFile where to send the data
390 * @block: block that contains the page we want to send
391 * @offset: offset inside the block for the page
392 * in the lower bits, it contains flags
393 */
394static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset)
395{
9f5f380b 396 size_t size, len;
56e93d26
JQ
397
398 qemu_put_be64(f, offset);
399 size = 8;
400
401 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
9f5f380b
LL
402 len = strlen(block->idstr);
403 qemu_put_byte(f, len);
404 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
405 size += 1 + len;
56e93d26
JQ
406 }
407 return size;
408}
409
410/* Update the xbzrle cache to reflect a page that's been sent as all 0.
411 * The important thing is that a stale (not-yet-0'd) page be replaced
412 * by the new data.
413 * As a bonus, if the page wasn't in the cache it gets added so that
414 * when a small write is made into the 0'd page it gets XBZRLE sent
415 */
416static void xbzrle_cache_zero_page(ram_addr_t current_addr)
417{
418 if (ram_bulk_stage || !migrate_use_xbzrle()) {
419 return;
420 }
421
422 /* We don't care if this fails to allocate a new cache page
423 * as long as it updated an old one */
424 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
425 bitmap_sync_count);
426}
427
428#define ENCODING_FLAG_XBZRLE 0x1
429
430/**
431 * save_xbzrle_page: compress and send current page
432 *
433 * Returns: 1 means that we wrote the page
434 * 0 means that page is identical to the one already sent
435 * -1 means that xbzrle would be longer than normal
436 *
437 * @f: QEMUFile where to send the data
438 * @current_data:
439 * @current_addr:
440 * @block: block that contains the page we want to send
441 * @offset: offset inside the block for the page
442 * @last_stage: if we are at the completion stage
443 * @bytes_transferred: increase it with the number of transferred bytes
444 */
445static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
446 ram_addr_t current_addr, RAMBlock *block,
447 ram_addr_t offset, bool last_stage,
448 uint64_t *bytes_transferred)
449{
450 int encoded_len = 0, bytes_xbzrle;
451 uint8_t *prev_cached_page;
452
453 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
454 acct_info.xbzrle_cache_miss++;
455 if (!last_stage) {
456 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
457 bitmap_sync_count) == -1) {
458 return -1;
459 } else {
460 /* update *current_data when the page has been
461 inserted into cache */
462 *current_data = get_cached_data(XBZRLE.cache, current_addr);
463 }
464 }
465 return -1;
466 }
467
468 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
469
470 /* save current buffer into memory */
471 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
472
473 /* XBZRLE encoding (if there is no overflow) */
474 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
475 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
476 TARGET_PAGE_SIZE);
477 if (encoded_len == 0) {
478 DPRINTF("Skipping unmodified page\n");
479 return 0;
480 } else if (encoded_len == -1) {
481 DPRINTF("Overflow\n");
482 acct_info.xbzrle_overflows++;
483 /* update data in the cache */
484 if (!last_stage) {
485 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
486 *current_data = prev_cached_page;
487 }
488 return -1;
489 }
490
491 /* we need to update the data in the cache, in order to get the same data */
492 if (!last_stage) {
493 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
494 }
495
496 /* Send XBZRLE based compressed page */
497 bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE);
498 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
499 qemu_put_be16(f, encoded_len);
500 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
501 bytes_xbzrle += encoded_len + 1 + 2;
502 acct_info.xbzrle_pages++;
503 acct_info.xbzrle_bytes += bytes_xbzrle;
504 *bytes_transferred += bytes_xbzrle;
505
506 return 1;
507}
508
2ff64038 509/* Called with rcu_read_lock() to protect migration_bitmap */
56e93d26 510static inline
2f68e399 511ram_addr_t migration_bitmap_find_and_reset_dirty(RAMBlock *rb,
56e93d26
JQ
512 ram_addr_t start)
513{
2f68e399 514 unsigned long base = rb->offset >> TARGET_PAGE_BITS;
56e93d26 515 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
2f68e399
DDAG
516 uint64_t rb_size = rb->used_length;
517 unsigned long size = base + (rb_size >> TARGET_PAGE_BITS);
2ff64038 518 unsigned long *bitmap;
56e93d26
JQ
519
520 unsigned long next;
521
2ff64038 522 bitmap = atomic_rcu_read(&migration_bitmap);
56e93d26
JQ
523 if (ram_bulk_stage && nr > base) {
524 next = nr + 1;
525 } else {
2ff64038 526 next = find_next_bit(bitmap, size, nr);
56e93d26
JQ
527 }
528
529 if (next < size) {
2ff64038 530 clear_bit(next, bitmap);
56e93d26
JQ
531 migration_dirty_pages--;
532 }
533 return (next - base) << TARGET_PAGE_BITS;
534}
535
2ff64038 536/* Called with rcu_read_lock() to protect migration_bitmap */
56e93d26
JQ
537static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
538{
2ff64038
LZ
539 unsigned long *bitmap;
540 bitmap = atomic_rcu_read(&migration_bitmap);
56e93d26 541 migration_dirty_pages +=
2ff64038 542 cpu_physical_memory_sync_dirty_bitmap(bitmap, start, length);
56e93d26
JQ
543}
544
56e93d26
JQ
545/* Fix me: there are too many global variables used in migration process. */
546static int64_t start_time;
547static int64_t bytes_xfer_prev;
548static int64_t num_dirty_pages_period;
549static uint64_t xbzrle_cache_miss_prev;
550static uint64_t iterations_prev;
551
552static void migration_bitmap_sync_init(void)
553{
554 start_time = 0;
555 bytes_xfer_prev = 0;
556 num_dirty_pages_period = 0;
557 xbzrle_cache_miss_prev = 0;
558 iterations_prev = 0;
559}
560
561/* Called with iothread lock held, to protect ram_list.dirty_memory[] */
562static void migration_bitmap_sync(void)
563{
564 RAMBlock *block;
565 uint64_t num_dirty_pages_init = migration_dirty_pages;
566 MigrationState *s = migrate_get_current();
567 int64_t end_time;
568 int64_t bytes_xfer_now;
569
570 bitmap_sync_count++;
571
572 if (!bytes_xfer_prev) {
573 bytes_xfer_prev = ram_bytes_transferred();
574 }
575
576 if (!start_time) {
577 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
578 }
579
580 trace_migration_bitmap_sync_start();
581 address_space_sync_dirty_bitmap(&address_space_memory);
582
dd631697 583 qemu_mutex_lock(&migration_bitmap_mutex);
56e93d26
JQ
584 rcu_read_lock();
585 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2f68e399 586 migration_bitmap_sync_range(block->offset, block->used_length);
56e93d26
JQ
587 }
588 rcu_read_unlock();
dd631697 589 qemu_mutex_unlock(&migration_bitmap_mutex);
56e93d26
JQ
590
591 trace_migration_bitmap_sync_end(migration_dirty_pages
592 - num_dirty_pages_init);
593 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
594 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
595
596 /* more than 1 second = 1000 millisecons */
597 if (end_time > start_time + 1000) {
598 if (migrate_auto_converge()) {
599 /* The following detection logic can be refined later. For now:
600 Check to see if the dirtied bytes is 50% more than the approx.
601 amount of bytes that just got transferred since the last time we
602 were in this routine. If that happens >N times (for now N==4)
603 we turn on the throttle down logic */
604 bytes_xfer_now = ram_bytes_transferred();
605 if (s->dirty_pages_rate &&
606 (num_dirty_pages_period * TARGET_PAGE_SIZE >
607 (bytes_xfer_now - bytes_xfer_prev)/2) &&
608 (dirty_rate_high_cnt++ > 4)) {
609 trace_migration_throttle();
610 mig_throttle_on = true;
611 dirty_rate_high_cnt = 0;
612 }
613 bytes_xfer_prev = bytes_xfer_now;
614 } else {
615 mig_throttle_on = false;
616 }
617 if (migrate_use_xbzrle()) {
618 if (iterations_prev != acct_info.iterations) {
619 acct_info.xbzrle_cache_miss_rate =
620 (double)(acct_info.xbzrle_cache_miss -
621 xbzrle_cache_miss_prev) /
622 (acct_info.iterations - iterations_prev);
623 }
624 iterations_prev = acct_info.iterations;
625 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
626 }
627 s->dirty_pages_rate = num_dirty_pages_period * 1000
628 / (end_time - start_time);
629 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
630 start_time = end_time;
631 num_dirty_pages_period = 0;
632 }
633 s->dirty_sync_count = bitmap_sync_count;
634}
635
636/**
637 * save_zero_page: Send the zero page to the stream
638 *
639 * Returns: Number of pages written.
640 *
641 * @f: QEMUFile where to send the data
642 * @block: block that contains the page we want to send
643 * @offset: offset inside the block for the page
644 * @p: pointer to the page
645 * @bytes_transferred: increase it with the number of transferred bytes
646 */
647static int save_zero_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
648 uint8_t *p, uint64_t *bytes_transferred)
649{
650 int pages = -1;
651
652 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
653 acct_info.dup_pages++;
654 *bytes_transferred += save_page_header(f, block,
655 offset | RAM_SAVE_FLAG_COMPRESS);
656 qemu_put_byte(f, 0);
657 *bytes_transferred += 1;
658 pages = 1;
659 }
660
661 return pages;
662}
663
664/**
665 * ram_save_page: Send the given page to the stream
666 *
667 * Returns: Number of pages written.
668 *
669 * @f: QEMUFile where to send the data
670 * @block: block that contains the page we want to send
671 * @offset: offset inside the block for the page
672 * @last_stage: if we are at the completion stage
673 * @bytes_transferred: increase it with the number of transferred bytes
674 */
675static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset,
676 bool last_stage, uint64_t *bytes_transferred)
677{
678 int pages = -1;
679 uint64_t bytes_xmit;
680 ram_addr_t current_addr;
56e93d26
JQ
681 uint8_t *p;
682 int ret;
683 bool send_async = true;
684
2f68e399 685 p = block->host + offset;
56e93d26
JQ
686
687 /* In doubt sent page as normal */
688 bytes_xmit = 0;
689 ret = ram_control_save_page(f, block->offset,
690 offset, TARGET_PAGE_SIZE, &bytes_xmit);
691 if (bytes_xmit) {
692 *bytes_transferred += bytes_xmit;
693 pages = 1;
694 }
695
696 XBZRLE_cache_lock();
697
698 current_addr = block->offset + offset;
699
700 if (block == last_sent_block) {
701 offset |= RAM_SAVE_FLAG_CONTINUE;
702 }
703 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
704 if (ret != RAM_SAVE_CONTROL_DELAYED) {
705 if (bytes_xmit > 0) {
706 acct_info.norm_pages++;
707 } else if (bytes_xmit == 0) {
708 acct_info.dup_pages++;
709 }
710 }
711 } else {
712 pages = save_zero_page(f, block, offset, p, bytes_transferred);
713 if (pages > 0) {
714 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
715 * page would be stale
716 */
717 xbzrle_cache_zero_page(current_addr);
718 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
719 pages = save_xbzrle_page(f, &p, current_addr, block,
720 offset, last_stage, bytes_transferred);
721 if (!last_stage) {
722 /* Can't send this cached data async, since the cache page
723 * might get updated before it gets to the wire
724 */
725 send_async = false;
726 }
727 }
728 }
729
730 /* XBZRLE overflow or normal page */
731 if (pages == -1) {
732 *bytes_transferred += save_page_header(f, block,
733 offset | RAM_SAVE_FLAG_PAGE);
734 if (send_async) {
735 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
736 } else {
737 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
738 }
739 *bytes_transferred += TARGET_PAGE_SIZE;
740 pages = 1;
741 acct_info.norm_pages++;
742 }
743
744 XBZRLE_cache_unlock();
745
746 return pages;
747}
748
749static int do_compress_ram_page(CompressParam *param)
750{
751 int bytes_sent, blen;
752 uint8_t *p;
753 RAMBlock *block = param->block;
754 ram_addr_t offset = param->offset;
755
2f68e399 756 p = block->host + (offset & TARGET_PAGE_MASK);
56e93d26
JQ
757
758 bytes_sent = save_page_header(param->file, block, offset |
759 RAM_SAVE_FLAG_COMPRESS_PAGE);
760 blen = qemu_put_compression_data(param->file, p, TARGET_PAGE_SIZE,
761 migrate_compress_level());
762 bytes_sent += blen;
763
764 return bytes_sent;
765}
766
767static inline void start_compression(CompressParam *param)
768{
769 param->done = false;
770 qemu_mutex_lock(&param->mutex);
771 param->start = true;
772 qemu_cond_signal(&param->cond);
773 qemu_mutex_unlock(&param->mutex);
774}
775
776static inline void start_decompression(DecompressParam *param)
777{
778 qemu_mutex_lock(&param->mutex);
779 param->start = true;
780 qemu_cond_signal(&param->cond);
781 qemu_mutex_unlock(&param->mutex);
782}
783
784static uint64_t bytes_transferred;
785
786static void flush_compressed_data(QEMUFile *f)
787{
788 int idx, len, thread_count;
789
790 if (!migrate_use_compression()) {
791 return;
792 }
793 thread_count = migrate_compress_threads();
794 for (idx = 0; idx < thread_count; idx++) {
795 if (!comp_param[idx].done) {
796 qemu_mutex_lock(comp_done_lock);
797 while (!comp_param[idx].done && !quit_comp_thread) {
798 qemu_cond_wait(comp_done_cond, comp_done_lock);
799 }
800 qemu_mutex_unlock(comp_done_lock);
801 }
802 if (!quit_comp_thread) {
803 len = qemu_put_qemu_file(f, comp_param[idx].file);
804 bytes_transferred += len;
805 }
806 }
807}
808
809static inline void set_compress_params(CompressParam *param, RAMBlock *block,
810 ram_addr_t offset)
811{
812 param->block = block;
813 param->offset = offset;
814}
815
816static int compress_page_with_multi_thread(QEMUFile *f, RAMBlock *block,
817 ram_addr_t offset,
818 uint64_t *bytes_transferred)
819{
820 int idx, thread_count, bytes_xmit = -1, pages = -1;
821
822 thread_count = migrate_compress_threads();
823 qemu_mutex_lock(comp_done_lock);
824 while (true) {
825 for (idx = 0; idx < thread_count; idx++) {
826 if (comp_param[idx].done) {
827 bytes_xmit = qemu_put_qemu_file(f, comp_param[idx].file);
828 set_compress_params(&comp_param[idx], block, offset);
829 start_compression(&comp_param[idx]);
830 pages = 1;
831 acct_info.norm_pages++;
832 *bytes_transferred += bytes_xmit;
833 break;
834 }
835 }
836 if (pages > 0) {
837 break;
838 } else {
839 qemu_cond_wait(comp_done_cond, comp_done_lock);
840 }
841 }
842 qemu_mutex_unlock(comp_done_lock);
843
844 return pages;
845}
846
847/**
848 * ram_save_compressed_page: compress the given page and send it to the stream
849 *
850 * Returns: Number of pages written.
851 *
852 * @f: QEMUFile where to send the data
853 * @block: block that contains the page we want to send
854 * @offset: offset inside the block for the page
855 * @last_stage: if we are at the completion stage
856 * @bytes_transferred: increase it with the number of transferred bytes
857 */
858static int ram_save_compressed_page(QEMUFile *f, RAMBlock *block,
859 ram_addr_t offset, bool last_stage,
860 uint64_t *bytes_transferred)
861{
862 int pages = -1;
863 uint64_t bytes_xmit;
56e93d26
JQ
864 uint8_t *p;
865 int ret;
866
2f68e399 867 p = block->host + offset;
56e93d26
JQ
868
869 bytes_xmit = 0;
870 ret = ram_control_save_page(f, block->offset,
871 offset, TARGET_PAGE_SIZE, &bytes_xmit);
872 if (bytes_xmit) {
873 *bytes_transferred += bytes_xmit;
874 pages = 1;
875 }
876 if (block == last_sent_block) {
877 offset |= RAM_SAVE_FLAG_CONTINUE;
878 }
879 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
880 if (ret != RAM_SAVE_CONTROL_DELAYED) {
881 if (bytes_xmit > 0) {
882 acct_info.norm_pages++;
883 } else if (bytes_xmit == 0) {
884 acct_info.dup_pages++;
885 }
886 }
887 } else {
888 /* When starting the process of a new block, the first page of
889 * the block should be sent out before other pages in the same
890 * block, and all the pages in last block should have been sent
891 * out, keeping this order is important, because the 'cont' flag
892 * is used to avoid resending the block name.
893 */
894 if (block != last_sent_block) {
895 flush_compressed_data(f);
896 pages = save_zero_page(f, block, offset, p, bytes_transferred);
897 if (pages == -1) {
898 set_compress_params(&comp_param[0], block, offset);
899 /* Use the qemu thread to compress the data to make sure the
900 * first page is sent out before other pages
901 */
902 bytes_xmit = do_compress_ram_page(&comp_param[0]);
903 acct_info.norm_pages++;
904 qemu_put_qemu_file(f, comp_param[0].file);
905 *bytes_transferred += bytes_xmit;
906 pages = 1;
907 }
908 } else {
909 pages = save_zero_page(f, block, offset, p, bytes_transferred);
910 if (pages == -1) {
911 pages = compress_page_with_multi_thread(f, block, offset,
912 bytes_transferred);
913 }
914 }
915 }
916
917 return pages;
918}
919
920/**
921 * ram_find_and_save_block: Finds a dirty page and sends it to f
922 *
923 * Called within an RCU critical section.
924 *
925 * Returns: The number of pages written
926 * 0 means no dirty pages
927 *
928 * @f: QEMUFile where to send the data
929 * @last_stage: if we are at the completion stage
930 * @bytes_transferred: increase it with the number of transferred bytes
931 */
932
933static int ram_find_and_save_block(QEMUFile *f, bool last_stage,
934 uint64_t *bytes_transferred)
935{
b8fb8cb7 936 PageSearchStatus pss;
56e93d26 937 int pages = 0;
56e93d26 938
b8fb8cb7
DDAG
939 pss.block = last_seen_block;
940 pss.offset = last_offset;
941 pss.complete_round = false;
942
943 if (!pss.block) {
944 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
945 }
56e93d26
JQ
946
947 while (true) {
b8fb8cb7
DDAG
948 pss.offset = migration_bitmap_find_and_reset_dirty(pss.block,
949 pss.offset);
950 if (pss.complete_round && pss.block == last_seen_block &&
951 pss.offset >= last_offset) {
56e93d26
JQ
952 break;
953 }
b8fb8cb7
DDAG
954 if (pss.offset >= pss.block->used_length) {
955 pss.offset = 0;
956 pss.block = QLIST_NEXT_RCU(pss.block, next);
957 if (!pss.block) {
958 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
959 pss.complete_round = true;
56e93d26
JQ
960 ram_bulk_stage = false;
961 if (migrate_use_xbzrle()) {
962 /* If xbzrle is on, stop using the data compression at this
963 * point. In theory, xbzrle can do better than compression.
964 */
965 flush_compressed_data(f);
966 compression_switch = false;
967 }
968 }
969 } else {
970 if (compression_switch && migrate_use_compression()) {
b8fb8cb7
DDAG
971 pages = ram_save_compressed_page(f, pss.block, pss.offset,
972 last_stage,
56e93d26
JQ
973 bytes_transferred);
974 } else {
b8fb8cb7 975 pages = ram_save_page(f, pss.block, pss.offset, last_stage,
56e93d26
JQ
976 bytes_transferred);
977 }
978
979 /* if page is unmodified, continue to the next */
980 if (pages > 0) {
b8fb8cb7 981 last_sent_block = pss.block;
56e93d26
JQ
982 break;
983 }
984 }
985 }
986
b8fb8cb7
DDAG
987 last_seen_block = pss.block;
988 last_offset = pss.offset;
56e93d26
JQ
989
990 return pages;
991}
992
993void acct_update_position(QEMUFile *f, size_t size, bool zero)
994{
995 uint64_t pages = size / TARGET_PAGE_SIZE;
996 if (zero) {
997 acct_info.dup_pages += pages;
998 } else {
999 acct_info.norm_pages += pages;
1000 bytes_transferred += size;
1001 qemu_update_position(f, size);
1002 }
1003}
1004
1005static ram_addr_t ram_save_remaining(void)
1006{
1007 return migration_dirty_pages;
1008}
1009
1010uint64_t ram_bytes_remaining(void)
1011{
1012 return ram_save_remaining() * TARGET_PAGE_SIZE;
1013}
1014
1015uint64_t ram_bytes_transferred(void)
1016{
1017 return bytes_transferred;
1018}
1019
1020uint64_t ram_bytes_total(void)
1021{
1022 RAMBlock *block;
1023 uint64_t total = 0;
1024
1025 rcu_read_lock();
1026 QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
1027 total += block->used_length;
1028 rcu_read_unlock();
1029 return total;
1030}
1031
1032void free_xbzrle_decoded_buf(void)
1033{
1034 g_free(xbzrle_decoded_buf);
1035 xbzrle_decoded_buf = NULL;
1036}
1037
1038static void migration_end(void)
1039{
2ff64038
LZ
1040 /* caller have hold iothread lock or is in a bh, so there is
1041 * no writing race against this migration_bitmap
1042 */
1043 unsigned long *bitmap = migration_bitmap;
1044 atomic_rcu_set(&migration_bitmap, NULL);
1045 if (bitmap) {
56e93d26 1046 memory_global_dirty_log_stop();
2ff64038
LZ
1047 synchronize_rcu();
1048 g_free(bitmap);
56e93d26
JQ
1049 }
1050
1051 XBZRLE_cache_lock();
1052 if (XBZRLE.cache) {
1053 cache_fini(XBZRLE.cache);
1054 g_free(XBZRLE.encoded_buf);
1055 g_free(XBZRLE.current_buf);
1056 XBZRLE.cache = NULL;
1057 XBZRLE.encoded_buf = NULL;
1058 XBZRLE.current_buf = NULL;
1059 }
1060 XBZRLE_cache_unlock();
1061}
1062
1063static void ram_migration_cancel(void *opaque)
1064{
1065 migration_end();
1066}
1067
1068static void reset_ram_globals(void)
1069{
1070 last_seen_block = NULL;
1071 last_sent_block = NULL;
1072 last_offset = 0;
1073 last_version = ram_list.version;
1074 ram_bulk_stage = true;
1075}
1076
1077#define MAX_WAIT 50 /* ms, half buffered_file limit */
1078
dd631697
LZ
1079void migration_bitmap_extend(ram_addr_t old, ram_addr_t new)
1080{
1081 /* called in qemu main thread, so there is
1082 * no writing race against this migration_bitmap
1083 */
1084 if (migration_bitmap) {
1085 unsigned long *old_bitmap = migration_bitmap, *bitmap;
1086 bitmap = bitmap_new(new);
1087
1088 /* prevent migration_bitmap content from being set bit
1089 * by migration_bitmap_sync_range() at the same time.
1090 * it is safe to migration if migration_bitmap is cleared bit
1091 * at the same time.
1092 */
1093 qemu_mutex_lock(&migration_bitmap_mutex);
1094 bitmap_copy(bitmap, old_bitmap, old);
1095 bitmap_set(bitmap, old, new - old);
1096 atomic_rcu_set(&migration_bitmap, bitmap);
1097 qemu_mutex_unlock(&migration_bitmap_mutex);
1098 migration_dirty_pages += new - old;
1099 synchronize_rcu();
1100 g_free(old_bitmap);
1101 }
1102}
56e93d26
JQ
1103
1104/* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
1105 * long-running RCU critical section. When rcu-reclaims in the code
1106 * start to become numerous it will be necessary to reduce the
1107 * granularity of these critical sections.
1108 */
1109
1110static int ram_save_setup(QEMUFile *f, void *opaque)
1111{
1112 RAMBlock *block;
1113 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
1114
1115 mig_throttle_on = false;
1116 dirty_rate_high_cnt = 0;
1117 bitmap_sync_count = 0;
1118 migration_bitmap_sync_init();
dd631697 1119 qemu_mutex_init(&migration_bitmap_mutex);
56e93d26
JQ
1120
1121 if (migrate_use_xbzrle()) {
1122 XBZRLE_cache_lock();
1123 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
1124 TARGET_PAGE_SIZE,
1125 TARGET_PAGE_SIZE);
1126 if (!XBZRLE.cache) {
1127 XBZRLE_cache_unlock();
1128 error_report("Error creating cache");
1129 return -1;
1130 }
1131 XBZRLE_cache_unlock();
1132
1133 /* We prefer not to abort if there is no memory */
1134 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
1135 if (!XBZRLE.encoded_buf) {
1136 error_report("Error allocating encoded_buf");
1137 return -1;
1138 }
1139
1140 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
1141 if (!XBZRLE.current_buf) {
1142 error_report("Error allocating current_buf");
1143 g_free(XBZRLE.encoded_buf);
1144 XBZRLE.encoded_buf = NULL;
1145 return -1;
1146 }
1147
1148 acct_clear();
1149 }
1150
1151 /* iothread lock needed for ram_list.dirty_memory[] */
1152 qemu_mutex_lock_iothread();
1153 qemu_mutex_lock_ramlist();
1154 rcu_read_lock();
1155 bytes_transferred = 0;
1156 reset_ram_globals();
1157
1158 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1159 migration_bitmap = bitmap_new(ram_bitmap_pages);
1160 bitmap_set(migration_bitmap, 0, ram_bitmap_pages);
1161
1162 /*
1163 * Count the total number of pages used by ram blocks not including any
1164 * gaps due to alignment or unplugs.
1165 */
1166 migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
1167
1168 memory_global_dirty_log_start();
1169 migration_bitmap_sync();
1170 qemu_mutex_unlock_ramlist();
1171 qemu_mutex_unlock_iothread();
1172
1173 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
1174
1175 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1176 qemu_put_byte(f, strlen(block->idstr));
1177 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
1178 qemu_put_be64(f, block->used_length);
1179 }
1180
1181 rcu_read_unlock();
1182
1183 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
1184 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
1185
1186 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1187
1188 return 0;
1189}
1190
1191static int ram_save_iterate(QEMUFile *f, void *opaque)
1192{
1193 int ret;
1194 int i;
1195 int64_t t0;
1196 int pages_sent = 0;
1197
1198 rcu_read_lock();
1199 if (ram_list.version != last_version) {
1200 reset_ram_globals();
1201 }
1202
1203 /* Read version before ram_list.blocks */
1204 smp_rmb();
1205
1206 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
1207
1208 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1209 i = 0;
1210 while ((ret = qemu_file_rate_limit(f)) == 0) {
1211 int pages;
1212
1213 pages = ram_find_and_save_block(f, false, &bytes_transferred);
1214 /* no more pages to sent */
1215 if (pages == 0) {
1216 break;
1217 }
1218 pages_sent += pages;
1219 acct_info.iterations++;
1220 check_guest_throttling();
1221 /* we want to check in the 1st loop, just in case it was the 1st time
1222 and we had to sync the dirty bitmap.
1223 qemu_get_clock_ns() is a bit expensive, so we only check each some
1224 iterations
1225 */
1226 if ((i & 63) == 0) {
1227 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
1228 if (t1 > MAX_WAIT) {
1229 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
1230 t1, i);
1231 break;
1232 }
1233 }
1234 i++;
1235 }
1236 flush_compressed_data(f);
1237 rcu_read_unlock();
1238
1239 /*
1240 * Must occur before EOS (or any QEMUFile operation)
1241 * because of RDMA protocol.
1242 */
1243 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
1244
1245 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1246 bytes_transferred += 8;
1247
1248 ret = qemu_file_get_error(f);
1249 if (ret < 0) {
1250 return ret;
1251 }
1252
1253 return pages_sent;
1254}
1255
1256/* Called with iothread lock */
1257static int ram_save_complete(QEMUFile *f, void *opaque)
1258{
1259 rcu_read_lock();
1260
1261 migration_bitmap_sync();
1262
1263 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
1264
1265 /* try transferring iterative blocks of memory */
1266
1267 /* flush all remaining blocks regardless of rate limiting */
1268 while (true) {
1269 int pages;
1270
1271 pages = ram_find_and_save_block(f, true, &bytes_transferred);
1272 /* no more blocks to sent */
1273 if (pages == 0) {
1274 break;
1275 }
1276 }
1277
1278 flush_compressed_data(f);
1279 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
56e93d26
JQ
1280
1281 rcu_read_unlock();
d09a6fde
PB
1282
1283 migration_end();
56e93d26
JQ
1284 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1285
1286 return 0;
1287}
1288
1289static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
1290{
1291 uint64_t remaining_size;
1292
1293 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
1294
1295 if (remaining_size < max_size) {
1296 qemu_mutex_lock_iothread();
1297 rcu_read_lock();
1298 migration_bitmap_sync();
1299 rcu_read_unlock();
1300 qemu_mutex_unlock_iothread();
1301 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
1302 }
1303 return remaining_size;
1304}
1305
1306static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
1307{
1308 unsigned int xh_len;
1309 int xh_flags;
1310
1311 if (!xbzrle_decoded_buf) {
1312 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
1313 }
1314
1315 /* extract RLE header */
1316 xh_flags = qemu_get_byte(f);
1317 xh_len = qemu_get_be16(f);
1318
1319 if (xh_flags != ENCODING_FLAG_XBZRLE) {
1320 error_report("Failed to load XBZRLE page - wrong compression!");
1321 return -1;
1322 }
1323
1324 if (xh_len > TARGET_PAGE_SIZE) {
1325 error_report("Failed to load XBZRLE page - len overflow!");
1326 return -1;
1327 }
1328 /* load data and decode */
1329 qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
1330
1331 /* decode RLE */
1332 if (xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
1333 TARGET_PAGE_SIZE) == -1) {
1334 error_report("Failed to load XBZRLE page - decode error!");
1335 return -1;
1336 }
1337
1338 return 0;
1339}
1340
1341/* Must be called from within a rcu critical section.
1342 * Returns a pointer from within the RCU-protected ram_list.
1343 */
1344static inline void *host_from_stream_offset(QEMUFile *f,
1345 ram_addr_t offset,
1346 int flags)
1347{
1348 static RAMBlock *block = NULL;
1349 char id[256];
1350 uint8_t len;
1351
1352 if (flags & RAM_SAVE_FLAG_CONTINUE) {
1353 if (!block || block->max_length <= offset) {
1354 error_report("Ack, bad migration stream!");
1355 return NULL;
1356 }
1357
2f68e399 1358 return block->host + offset;
56e93d26
JQ
1359 }
1360
1361 len = qemu_get_byte(f);
1362 qemu_get_buffer(f, (uint8_t *)id, len);
1363 id[len] = 0;
1364
1365 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1366 if (!strncmp(id, block->idstr, sizeof(id)) &&
1367 block->max_length > offset) {
2f68e399 1368 return block->host + offset;
56e93d26
JQ
1369 }
1370 }
1371
1372 error_report("Can't find block %s!", id);
1373 return NULL;
1374}
1375
1376/*
1377 * If a page (or a whole RDMA chunk) has been
1378 * determined to be zero, then zap it.
1379 */
1380void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
1381{
1382 if (ch != 0 || !is_zero_range(host, size)) {
1383 memset(host, ch, size);
1384 }
1385}
1386
1387static void *do_data_decompress(void *opaque)
1388{
1389 DecompressParam *param = opaque;
1390 unsigned long pagesize;
1391
1392 while (!quit_decomp_thread) {
1393 qemu_mutex_lock(&param->mutex);
1394 while (!param->start && !quit_decomp_thread) {
1395 qemu_cond_wait(&param->cond, &param->mutex);
1396 pagesize = TARGET_PAGE_SIZE;
1397 if (!quit_decomp_thread) {
1398 /* uncompress() will return failed in some case, especially
1399 * when the page is dirted when doing the compression, it's
1400 * not a problem because the dirty page will be retransferred
1401 * and uncompress() won't break the data in other pages.
1402 */
1403 uncompress((Bytef *)param->des, &pagesize,
1404 (const Bytef *)param->compbuf, param->len);
1405 }
1406 param->start = false;
1407 }
1408 qemu_mutex_unlock(&param->mutex);
1409 }
1410
1411 return NULL;
1412}
1413
1414void migrate_decompress_threads_create(void)
1415{
1416 int i, thread_count;
1417
1418 thread_count = migrate_decompress_threads();
1419 decompress_threads = g_new0(QemuThread, thread_count);
1420 decomp_param = g_new0(DecompressParam, thread_count);
1421 compressed_data_buf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
1422 quit_decomp_thread = false;
1423 for (i = 0; i < thread_count; i++) {
1424 qemu_mutex_init(&decomp_param[i].mutex);
1425 qemu_cond_init(&decomp_param[i].cond);
1426 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
1427 qemu_thread_create(decompress_threads + i, "decompress",
1428 do_data_decompress, decomp_param + i,
1429 QEMU_THREAD_JOINABLE);
1430 }
1431}
1432
1433void migrate_decompress_threads_join(void)
1434{
1435 int i, thread_count;
1436
1437 quit_decomp_thread = true;
1438 thread_count = migrate_decompress_threads();
1439 for (i = 0; i < thread_count; i++) {
1440 qemu_mutex_lock(&decomp_param[i].mutex);
1441 qemu_cond_signal(&decomp_param[i].cond);
1442 qemu_mutex_unlock(&decomp_param[i].mutex);
1443 }
1444 for (i = 0; i < thread_count; i++) {
1445 qemu_thread_join(decompress_threads + i);
1446 qemu_mutex_destroy(&decomp_param[i].mutex);
1447 qemu_cond_destroy(&decomp_param[i].cond);
1448 g_free(decomp_param[i].compbuf);
1449 }
1450 g_free(decompress_threads);
1451 g_free(decomp_param);
1452 g_free(compressed_data_buf);
1453 decompress_threads = NULL;
1454 decomp_param = NULL;
1455 compressed_data_buf = NULL;
1456}
1457
1458static void decompress_data_with_multi_threads(uint8_t *compbuf,
1459 void *host, int len)
1460{
1461 int idx, thread_count;
1462
1463 thread_count = migrate_decompress_threads();
1464 while (true) {
1465 for (idx = 0; idx < thread_count; idx++) {
1466 if (!decomp_param[idx].start) {
1467 memcpy(decomp_param[idx].compbuf, compbuf, len);
1468 decomp_param[idx].des = host;
1469 decomp_param[idx].len = len;
1470 start_decompression(&decomp_param[idx]);
1471 break;
1472 }
1473 }
1474 if (idx < thread_count) {
1475 break;
1476 }
1477 }
1478}
1479
1480static int ram_load(QEMUFile *f, void *opaque, int version_id)
1481{
1482 int flags = 0, ret = 0;
1483 static uint64_t seq_iter;
1484 int len = 0;
1485
1486 seq_iter++;
1487
1488 if (version_id != 4) {
1489 ret = -EINVAL;
1490 }
1491
1492 /* This RCU critical section can be very long running.
1493 * When RCU reclaims in the code start to become numerous,
1494 * it will be necessary to reduce the granularity of this
1495 * critical section.
1496 */
1497 rcu_read_lock();
1498 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
1499 ram_addr_t addr, total_ram_bytes;
1500 void *host;
1501 uint8_t ch;
1502
1503 addr = qemu_get_be64(f);
1504 flags = addr & ~TARGET_PAGE_MASK;
1505 addr &= TARGET_PAGE_MASK;
1506
1507 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
1508 case RAM_SAVE_FLAG_MEM_SIZE:
1509 /* Synchronize RAM block list */
1510 total_ram_bytes = addr;
1511 while (!ret && total_ram_bytes) {
1512 RAMBlock *block;
56e93d26
JQ
1513 char id[256];
1514 ram_addr_t length;
1515
1516 len = qemu_get_byte(f);
1517 qemu_get_buffer(f, (uint8_t *)id, len);
1518 id[len] = 0;
1519 length = qemu_get_be64(f);
1520
1521 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1522 if (!strncmp(id, block->idstr, sizeof(id))) {
1523 if (length != block->used_length) {
1524 Error *local_err = NULL;
1525
1526 ret = qemu_ram_resize(block->offset, length, &local_err);
1527 if (local_err) {
1528 error_report_err(local_err);
1529 }
1530 }
632e3a5c
DDAG
1531 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
1532 block->idstr);
56e93d26
JQ
1533 break;
1534 }
1535 }
1536
1537 if (!block) {
1538 error_report("Unknown ramblock \"%s\", cannot "
1539 "accept migration", id);
1540 ret = -EINVAL;
1541 }
1542
1543 total_ram_bytes -= length;
1544 }
1545 break;
1546 case RAM_SAVE_FLAG_COMPRESS:
1547 host = host_from_stream_offset(f, addr, flags);
1548 if (!host) {
1549 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1550 ret = -EINVAL;
1551 break;
1552 }
1553 ch = qemu_get_byte(f);
1554 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
1555 break;
1556 case RAM_SAVE_FLAG_PAGE:
1557 host = host_from_stream_offset(f, addr, flags);
1558 if (!host) {
1559 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1560 ret = -EINVAL;
1561 break;
1562 }
1563 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
1564 break;
1565 case RAM_SAVE_FLAG_COMPRESS_PAGE:
1566 host = host_from_stream_offset(f, addr, flags);
1567 if (!host) {
1568 error_report("Invalid RAM offset " RAM_ADDR_FMT, addr);
1569 ret = -EINVAL;
1570 break;
1571 }
1572
1573 len = qemu_get_be32(f);
1574 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
1575 error_report("Invalid compressed data length: %d", len);
1576 ret = -EINVAL;
1577 break;
1578 }
1579 qemu_get_buffer(f, compressed_data_buf, len);
1580 decompress_data_with_multi_threads(compressed_data_buf, host, len);
1581 break;
1582 case RAM_SAVE_FLAG_XBZRLE:
1583 host = host_from_stream_offset(f, addr, flags);
1584 if (!host) {
1585 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1586 ret = -EINVAL;
1587 break;
1588 }
1589 if (load_xbzrle(f, addr, host) < 0) {
1590 error_report("Failed to decompress XBZRLE page at "
1591 RAM_ADDR_FMT, addr);
1592 ret = -EINVAL;
1593 break;
1594 }
1595 break;
1596 case RAM_SAVE_FLAG_EOS:
1597 /* normal exit */
1598 break;
1599 default:
1600 if (flags & RAM_SAVE_FLAG_HOOK) {
632e3a5c 1601 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
56e93d26
JQ
1602 } else {
1603 error_report("Unknown combination of migration flags: %#x",
1604 flags);
1605 ret = -EINVAL;
1606 }
1607 }
1608 if (!ret) {
1609 ret = qemu_file_get_error(f);
1610 }
1611 }
1612
1613 rcu_read_unlock();
1614 DPRINTF("Completed load of VM with exit code %d seq iteration "
1615 "%" PRIu64 "\n", ret, seq_iter);
1616 return ret;
1617}
1618
1619static SaveVMHandlers savevm_ram_handlers = {
1620 .save_live_setup = ram_save_setup,
1621 .save_live_iterate = ram_save_iterate,
1622 .save_live_complete = ram_save_complete,
1623 .save_live_pending = ram_save_pending,
1624 .load_state = ram_load,
1625 .cancel = ram_migration_cancel,
1626};
1627
1628void ram_mig_init(void)
1629{
1630 qemu_mutex_init(&XBZRLE.lock);
1631 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
1632}
1633/* Stub function that's gets run on the vcpu when its brought out of the
1634 VM to run inside qemu via async_run_on_cpu()*/
1635
1636static void mig_sleep_cpu(void *opq)
1637{
1638 qemu_mutex_unlock_iothread();
1639 g_usleep(30*1000);
1640 qemu_mutex_lock_iothread();
1641}
1642
1643/* To reduce the dirty rate explicitly disallow the VCPUs from spending
1644 much time in the VM. The migration thread will try to catchup.
1645 Workload will experience a performance drop.
1646*/
1647static void mig_throttle_guest_down(void)
1648{
1649 CPUState *cpu;
1650
1651 qemu_mutex_lock_iothread();
1652 CPU_FOREACH(cpu) {
1653 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1654 }
1655 qemu_mutex_unlock_iothread();
1656}
1657
1658static void check_guest_throttling(void)
1659{
1660 static int64_t t0;
1661 int64_t t1;
1662
1663 if (!mig_throttle_on) {
1664 return;
1665 }
1666
1667 if (!t0) {
1668 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1669 return;
1670 }
1671
1672 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1673
1674 /* If it has been more than 40 ms since the last time the guest
1675 * was throttled then do it again.
1676 */
1677 if (40 < (t1-t0)/1000000) {
1678 mig_throttle_guest_down();
1679 t0 = t1;
1680 }
1681}