]> git.proxmox.com Git - mirror_qemu.git/blame - migration/ram.c
numa: Make all callbacks of ram block notifiers optional
[mirror_qemu.git] / migration / ram.c
CommitLineData
56e93d26
JQ
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
76cc7b58
JQ
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
56e93d26
JQ
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
e688df6b 28
1393a485 29#include "qemu/osdep.h"
f348b6d1 30#include "qemu/cutils.h"
56e93d26
JQ
31#include "qemu/bitops.h"
32#include "qemu/bitmap.h"
7205c9ec 33#include "qemu/main-loop.h"
709e3fe8 34#include "xbzrle.h"
7b1e1a22 35#include "ram.h"
6666c96a 36#include "migration.h"
f2a8f0a6 37#include "migration/register.h"
7b1e1a22 38#include "migration/misc.h"
08a0aee1 39#include "qemu-file.h"
be07b0ac 40#include "postcopy-ram.h"
53d37d36 41#include "page_cache.h"
56e93d26 42#include "qemu/error-report.h"
e688df6b 43#include "qapi/error.h"
ab7cbb0b 44#include "qapi/qapi-types-migration.h"
9af23989 45#include "qapi/qapi-events-migration.h"
8acabf69 46#include "qapi/qmp/qerror.h"
56e93d26 47#include "trace.h"
56e93d26 48#include "exec/ram_addr.h"
f9494614 49#include "exec/target_page.h"
56e93d26 50#include "qemu/rcu_queue.h"
a91246c9 51#include "migration/colo.h"
53d37d36 52#include "block.h"
b0c3cf94 53#include "sysemu/cpu-throttle.h"
edd090c7 54#include "savevm.h"
b9ee2f7d 55#include "qemu/iov.h"
d32ca5ad 56#include "multifd.h"
278e2f55
AG
57#include "sysemu/runstate.h"
58
59#if defined(__linux__)
60#include "qemu/userfaultfd.h"
61#endif /* defined(__linux__) */
56e93d26 62
56e93d26
JQ
63/***********************************************************/
64/* ram save/restore */
65
bb890ed5
JQ
66/* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
67 * worked for pages that where filled with the same char. We switched
68 * it to only search for the zero value. And to avoid confusion with
69 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
70 */
71
56e93d26 72#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
bb890ed5 73#define RAM_SAVE_FLAG_ZERO 0x02
56e93d26
JQ
74#define RAM_SAVE_FLAG_MEM_SIZE 0x04
75#define RAM_SAVE_FLAG_PAGE 0x08
76#define RAM_SAVE_FLAG_EOS 0x10
77#define RAM_SAVE_FLAG_CONTINUE 0x20
78#define RAM_SAVE_FLAG_XBZRLE 0x40
79/* 0x80 is reserved in migration.h start with 0x100 next */
80#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
81
56e93d26
JQ
82static inline bool is_zero_range(uint8_t *p, uint64_t size)
83{
a1febc49 84 return buffer_is_zero(p, size);
56e93d26
JQ
85}
86
9360447d
JQ
87XBZRLECacheStats xbzrle_counters;
88
56e93d26
JQ
89/* struct contains XBZRLE cache and a static page
90 used by the compression */
91static struct {
92 /* buffer used for XBZRLE encoding */
93 uint8_t *encoded_buf;
94 /* buffer for storing page content */
95 uint8_t *current_buf;
96 /* Cache for XBZRLE, Protected by lock. */
97 PageCache *cache;
98 QemuMutex lock;
c00e0928
JQ
99 /* it will store a page full of zeros */
100 uint8_t *zero_target_page;
f265e0e4
JQ
101 /* buffer used for XBZRLE decoding */
102 uint8_t *decoded_buf;
56e93d26
JQ
103} XBZRLE;
104
56e93d26
JQ
105static void XBZRLE_cache_lock(void)
106{
f4c51a6b 107 if (migrate_use_xbzrle()) {
56e93d26 108 qemu_mutex_lock(&XBZRLE.lock);
f4c51a6b 109 }
56e93d26
JQ
110}
111
112static void XBZRLE_cache_unlock(void)
113{
f4c51a6b 114 if (migrate_use_xbzrle()) {
56e93d26 115 qemu_mutex_unlock(&XBZRLE.lock);
f4c51a6b 116 }
56e93d26
JQ
117}
118
3d0684b2
JQ
119/**
120 * xbzrle_cache_resize: resize the xbzrle cache
121 *
cbde7be9 122 * This function is called from migrate_params_apply in main
3d0684b2
JQ
123 * thread, possibly while a migration is in progress. A running
124 * migration may be using the cache and might finish during this call,
125 * hence changes to the cache are protected by XBZRLE.lock().
126 *
c9dede2d 127 * Returns 0 for success or -1 for error
3d0684b2
JQ
128 *
129 * @new_size: new cache size
8acabf69 130 * @errp: set *errp if the check failed, with reason
56e93d26 131 */
8b9407a0 132int xbzrle_cache_resize(uint64_t new_size, Error **errp)
56e93d26
JQ
133{
134 PageCache *new_cache;
c9dede2d 135 int64_t ret = 0;
56e93d26 136
8acabf69
JQ
137 /* Check for truncation */
138 if (new_size != (size_t)new_size) {
139 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
140 "exceeding address space");
141 return -1;
142 }
143
2a313e5c
JQ
144 if (new_size == migrate_xbzrle_cache_size()) {
145 /* nothing to do */
c9dede2d 146 return 0;
2a313e5c
JQ
147 }
148
56e93d26
JQ
149 XBZRLE_cache_lock();
150
151 if (XBZRLE.cache != NULL) {
80f8dfde 152 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
56e93d26 153 if (!new_cache) {
56e93d26
JQ
154 ret = -1;
155 goto out;
156 }
157
158 cache_fini(XBZRLE.cache);
159 XBZRLE.cache = new_cache;
160 }
56e93d26
JQ
161out:
162 XBZRLE_cache_unlock();
163 return ret;
164}
165
3ded54b1 166bool ramblock_is_ignored(RAMBlock *block)
fbd162e6
YK
167{
168 return !qemu_ram_is_migratable(block) ||
169 (migrate_ignore_shared() && qemu_ram_is_shared(block));
170}
171
343f632c
DDAG
172#undef RAMBLOCK_FOREACH
173
fbd162e6
YK
174int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
175{
176 RAMBlock *block;
177 int ret = 0;
178
89ac5a1d
DDAG
179 RCU_READ_LOCK_GUARD();
180
fbd162e6
YK
181 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
182 ret = func(block, opaque);
183 if (ret) {
184 break;
185 }
186 }
fbd162e6
YK
187 return ret;
188}
189
f9494614
AP
190static void ramblock_recv_map_init(void)
191{
192 RAMBlock *rb;
193
fbd162e6 194 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
195 assert(!rb->receivedmap);
196 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
197 }
198}
199
200int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
201{
202 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
203 rb->receivedmap);
204}
205
1cba9f6e
DDAG
206bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
207{
208 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
209}
210
f9494614
AP
211void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
212{
213 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
214}
215
216void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
217 size_t nr)
218{
219 bitmap_set_atomic(rb->receivedmap,
220 ramblock_recv_bitmap_offset(host_addr, rb),
221 nr);
222}
223
a335debb
PX
224#define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
225
226/*
227 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
228 *
229 * Returns >0 if success with sent bytes, or <0 if error.
230 */
231int64_t ramblock_recv_bitmap_send(QEMUFile *file,
232 const char *block_name)
233{
234 RAMBlock *block = qemu_ram_block_by_name(block_name);
235 unsigned long *le_bitmap, nbits;
236 uint64_t size;
237
238 if (!block) {
239 error_report("%s: invalid block name: %s", __func__, block_name);
240 return -1;
241 }
242
243 nbits = block->used_length >> TARGET_PAGE_BITS;
244
245 /*
246 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
247 * machines we may need 4 more bytes for padding (see below
248 * comment). So extend it a bit before hand.
249 */
250 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
251
252 /*
253 * Always use little endian when sending the bitmap. This is
254 * required that when source and destination VMs are not using the
3a4452d8 255 * same endianness. (Note: big endian won't work.)
a335debb
PX
256 */
257 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
258
259 /* Size of the bitmap, in bytes */
a725ef9f 260 size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
261
262 /*
263 * size is always aligned to 8 bytes for 64bit machines, but it
264 * may not be true for 32bit machines. We need this padding to
265 * make sure the migration can survive even between 32bit and
266 * 64bit machines.
267 */
268 size = ROUND_UP(size, 8);
269
270 qemu_put_be64(file, size);
271 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
272 /*
273 * Mark as an end, in case the middle part is screwed up due to
3a4452d8 274 * some "mysterious" reason.
a335debb
PX
275 */
276 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
277 qemu_fflush(file);
278
bf269906 279 g_free(le_bitmap);
a335debb
PX
280
281 if (qemu_file_get_error(file)) {
282 return qemu_file_get_error(file);
283 }
284
285 return size + sizeof(size);
286}
287
ec481c6c
JQ
288/*
289 * An outstanding page request, on the source, having been received
290 * and queued
291 */
292struct RAMSrcPageRequest {
293 RAMBlock *rb;
294 hwaddr offset;
295 hwaddr len;
296
297 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
298};
299
6f37bb8b
JQ
300/* State of RAM for migration */
301struct RAMState {
204b88b8
JQ
302 /* QEMUFile used for this migration */
303 QEMUFile *f;
278e2f55
AG
304 /* UFFD file descriptor, used in 'write-tracking' migration */
305 int uffdio_fd;
6f37bb8b
JQ
306 /* Last block that we have visited searching for dirty pages */
307 RAMBlock *last_seen_block;
308 /* Last block from where we have sent data */
309 RAMBlock *last_sent_block;
269ace29
JQ
310 /* Last dirty target page we have sent */
311 ram_addr_t last_page;
6f37bb8b
JQ
312 /* last ram version we have seen */
313 uint32_t last_version;
8d820d6f
JQ
314 /* How many times we have dirty too many pages */
315 int dirty_rate_high_cnt;
f664da80
JQ
316 /* these variables are used for bitmap sync */
317 /* last time we did a full bitmap_sync */
318 int64_t time_last_bitmap_sync;
eac74159 319 /* bytes transferred at start_time */
c4bdf0cf 320 uint64_t bytes_xfer_prev;
a66cd90c 321 /* number of dirty pages since start_time */
68908ed6 322 uint64_t num_dirty_pages_period;
b5833fde
JQ
323 /* xbzrle misses since the beginning of the period */
324 uint64_t xbzrle_cache_miss_prev;
e460a4b1
WW
325 /* Amount of xbzrle pages since the beginning of the period */
326 uint64_t xbzrle_pages_prev;
327 /* Amount of xbzrle encoded bytes since the beginning of the period */
328 uint64_t xbzrle_bytes_prev;
1a373522
DH
329 /* Start using XBZRLE (e.g., after the first round). */
330 bool xbzrle_enabled;
76e03000
XG
331
332 /* compression statistics since the beginning of the period */
333 /* amount of count that no free thread to compress data */
334 uint64_t compress_thread_busy_prev;
335 /* amount bytes after compression */
336 uint64_t compressed_size_prev;
337 /* amount of compressed pages */
338 uint64_t compress_pages_prev;
339
be8b02ed
XG
340 /* total handled target pages at the beginning of period */
341 uint64_t target_page_count_prev;
342 /* total handled target pages since start */
343 uint64_t target_page_count;
9360447d 344 /* number of dirty bits in the bitmap */
2dfaf12e 345 uint64_t migration_dirty_pages;
386a907b 346 /* Protects modification of the bitmap and migration dirty pages */
108cfae0 347 QemuMutex bitmap_mutex;
68a098f3
JQ
348 /* The RAMBlock used in the last src_page_requests */
349 RAMBlock *last_req_rb;
ec481c6c
JQ
350 /* Queue of outstanding page requests from the destination */
351 QemuMutex src_page_req_mutex;
b58deb34 352 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
6f37bb8b
JQ
353};
354typedef struct RAMState RAMState;
355
53518d94 356static RAMState *ram_state;
6f37bb8b 357
bd227060
WW
358static NotifierWithReturnList precopy_notifier_list;
359
360void precopy_infrastructure_init(void)
361{
362 notifier_with_return_list_init(&precopy_notifier_list);
363}
364
365void precopy_add_notifier(NotifierWithReturn *n)
366{
367 notifier_with_return_list_add(&precopy_notifier_list, n);
368}
369
370void precopy_remove_notifier(NotifierWithReturn *n)
371{
372 notifier_with_return_remove(n);
373}
374
375int precopy_notify(PrecopyNotifyReason reason, Error **errp)
376{
377 PrecopyNotifyData pnd;
378 pnd.reason = reason;
379 pnd.errp = errp;
380
381 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
382}
383
9edabd4d 384uint64_t ram_bytes_remaining(void)
2f4fde93 385{
bae416e5
DDAG
386 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
387 0;
2f4fde93
JQ
388}
389
9360447d 390MigrationStats ram_counters;
96506894 391
b8fb8cb7
DDAG
392/* used by the search for pages to send */
393struct PageSearchStatus {
394 /* Current block being searched */
395 RAMBlock *block;
a935e30f
JQ
396 /* Current page to search from */
397 unsigned long page;
b8fb8cb7
DDAG
398 /* Set once we wrap around */
399 bool complete_round;
400};
401typedef struct PageSearchStatus PageSearchStatus;
402
76e03000
XG
403CompressionStats compression_counters;
404
56e93d26 405struct CompressParam {
56e93d26 406 bool done;
90e56fb4 407 bool quit;
5e5fdcff 408 bool zero_page;
56e93d26
JQ
409 QEMUFile *file;
410 QemuMutex mutex;
411 QemuCond cond;
412 RAMBlock *block;
413 ram_addr_t offset;
34ab9e97
XG
414
415 /* internally used fields */
dcaf446e 416 z_stream stream;
34ab9e97 417 uint8_t *originbuf;
56e93d26
JQ
418};
419typedef struct CompressParam CompressParam;
420
421struct DecompressParam {
73a8912b 422 bool done;
90e56fb4 423 bool quit;
56e93d26
JQ
424 QemuMutex mutex;
425 QemuCond cond;
426 void *des;
d341d9f3 427 uint8_t *compbuf;
56e93d26 428 int len;
797ca154 429 z_stream stream;
56e93d26
JQ
430};
431typedef struct DecompressParam DecompressParam;
432
433static CompressParam *comp_param;
434static QemuThread *compress_threads;
435/* comp_done_cond is used to wake up the migration thread when
436 * one of the compression threads has finished the compression.
437 * comp_done_lock is used to co-work with comp_done_cond.
438 */
0d9f9a5c
LL
439static QemuMutex comp_done_lock;
440static QemuCond comp_done_cond;
56e93d26
JQ
441/* The empty QEMUFileOps will be used by file in CompressParam */
442static const QEMUFileOps empty_ops = { };
443
34ab9e97 444static QEMUFile *decomp_file;
56e93d26
JQ
445static DecompressParam *decomp_param;
446static QemuThread *decompress_threads;
73a8912b
LL
447static QemuMutex decomp_done_lock;
448static QemuCond decomp_done_cond;
56e93d26 449
5e5fdcff 450static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 451 ram_addr_t offset, uint8_t *source_buf);
56e93d26
JQ
452
453static void *do_data_compress(void *opaque)
454{
455 CompressParam *param = opaque;
a7a9a88f
LL
456 RAMBlock *block;
457 ram_addr_t offset;
5e5fdcff 458 bool zero_page;
56e93d26 459
a7a9a88f 460 qemu_mutex_lock(&param->mutex);
90e56fb4 461 while (!param->quit) {
a7a9a88f
LL
462 if (param->block) {
463 block = param->block;
464 offset = param->offset;
465 param->block = NULL;
466 qemu_mutex_unlock(&param->mutex);
467
5e5fdcff
XG
468 zero_page = do_compress_ram_page(param->file, &param->stream,
469 block, offset, param->originbuf);
a7a9a88f 470
0d9f9a5c 471 qemu_mutex_lock(&comp_done_lock);
a7a9a88f 472 param->done = true;
5e5fdcff 473 param->zero_page = zero_page;
0d9f9a5c
LL
474 qemu_cond_signal(&comp_done_cond);
475 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
476
477 qemu_mutex_lock(&param->mutex);
478 } else {
56e93d26
JQ
479 qemu_cond_wait(&param->cond, &param->mutex);
480 }
56e93d26 481 }
a7a9a88f 482 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
483
484 return NULL;
485}
486
f0afa331 487static void compress_threads_save_cleanup(void)
56e93d26
JQ
488{
489 int i, thread_count;
490
05306935 491 if (!migrate_use_compression() || !comp_param) {
56e93d26
JQ
492 return;
493 }
05306935 494
56e93d26
JQ
495 thread_count = migrate_compress_threads();
496 for (i = 0; i < thread_count; i++) {
dcaf446e
XG
497 /*
498 * we use it as a indicator which shows if the thread is
499 * properly init'd or not
500 */
501 if (!comp_param[i].file) {
502 break;
503 }
05306935
FL
504
505 qemu_mutex_lock(&comp_param[i].mutex);
506 comp_param[i].quit = true;
507 qemu_cond_signal(&comp_param[i].cond);
508 qemu_mutex_unlock(&comp_param[i].mutex);
509
56e93d26 510 qemu_thread_join(compress_threads + i);
56e93d26
JQ
511 qemu_mutex_destroy(&comp_param[i].mutex);
512 qemu_cond_destroy(&comp_param[i].cond);
dcaf446e 513 deflateEnd(&comp_param[i].stream);
34ab9e97 514 g_free(comp_param[i].originbuf);
dcaf446e
XG
515 qemu_fclose(comp_param[i].file);
516 comp_param[i].file = NULL;
56e93d26 517 }
0d9f9a5c
LL
518 qemu_mutex_destroy(&comp_done_lock);
519 qemu_cond_destroy(&comp_done_cond);
56e93d26
JQ
520 g_free(compress_threads);
521 g_free(comp_param);
56e93d26
JQ
522 compress_threads = NULL;
523 comp_param = NULL;
56e93d26
JQ
524}
525
dcaf446e 526static int compress_threads_save_setup(void)
56e93d26
JQ
527{
528 int i, thread_count;
529
530 if (!migrate_use_compression()) {
dcaf446e 531 return 0;
56e93d26 532 }
56e93d26
JQ
533 thread_count = migrate_compress_threads();
534 compress_threads = g_new0(QemuThread, thread_count);
535 comp_param = g_new0(CompressParam, thread_count);
0d9f9a5c
LL
536 qemu_cond_init(&comp_done_cond);
537 qemu_mutex_init(&comp_done_lock);
56e93d26 538 for (i = 0; i < thread_count; i++) {
34ab9e97
XG
539 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
540 if (!comp_param[i].originbuf) {
541 goto exit;
542 }
543
dcaf446e
XG
544 if (deflateInit(&comp_param[i].stream,
545 migrate_compress_level()) != Z_OK) {
34ab9e97 546 g_free(comp_param[i].originbuf);
dcaf446e
XG
547 goto exit;
548 }
549
e110aa91
C
550 /* comp_param[i].file is just used as a dummy buffer to save data,
551 * set its ops to empty.
56e93d26
JQ
552 */
553 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
554 comp_param[i].done = true;
90e56fb4 555 comp_param[i].quit = false;
56e93d26
JQ
556 qemu_mutex_init(&comp_param[i].mutex);
557 qemu_cond_init(&comp_param[i].cond);
558 qemu_thread_create(compress_threads + i, "compress",
559 do_data_compress, comp_param + i,
560 QEMU_THREAD_JOINABLE);
561 }
dcaf446e
XG
562 return 0;
563
564exit:
565 compress_threads_save_cleanup();
566 return -1;
56e93d26
JQ
567}
568
569/**
3d0684b2 570 * save_page_header: write page header to wire
56e93d26
JQ
571 *
572 * If this is the 1st block, it also writes the block identification
573 *
3d0684b2 574 * Returns the number of bytes written
56e93d26
JQ
575 *
576 * @f: QEMUFile where to send the data
577 * @block: block that contains the page we want to send
578 * @offset: offset inside the block for the page
579 * in the lower bits, it contains flags
580 */
2bf3aa85
JQ
581static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
582 ram_addr_t offset)
56e93d26 583{
9f5f380b 584 size_t size, len;
56e93d26 585
24795694
JQ
586 if (block == rs->last_sent_block) {
587 offset |= RAM_SAVE_FLAG_CONTINUE;
588 }
2bf3aa85 589 qemu_put_be64(f, offset);
56e93d26
JQ
590 size = 8;
591
592 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
9f5f380b 593 len = strlen(block->idstr);
2bf3aa85
JQ
594 qemu_put_byte(f, len);
595 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
9f5f380b 596 size += 1 + len;
24795694 597 rs->last_sent_block = block;
56e93d26
JQ
598 }
599 return size;
600}
601
3d0684b2
JQ
602/**
603 * mig_throttle_guest_down: throotle down the guest
604 *
605 * Reduce amount of guest cpu execution to hopefully slow down memory
606 * writes. If guest dirty memory rate is reduced below the rate at
607 * which we can transfer pages to the destination then we should be
608 * able to complete migration. Some workloads dirty memory way too
609 * fast and will not effectively converge, even with auto-converge.
070afca2 610 */
cbbf8182
KZ
611static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
612 uint64_t bytes_dirty_threshold)
070afca2
JH
613{
614 MigrationState *s = migrate_get_current();
2594f56d 615 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
cbbf8182
KZ
616 uint64_t pct_increment = s->parameters.cpu_throttle_increment;
617 bool pct_tailslow = s->parameters.cpu_throttle_tailslow;
4cbc9c7f 618 int pct_max = s->parameters.max_cpu_throttle;
070afca2 619
cbbf8182
KZ
620 uint64_t throttle_now = cpu_throttle_get_percentage();
621 uint64_t cpu_now, cpu_ideal, throttle_inc;
622
070afca2
JH
623 /* We have not started throttling yet. Let's start it. */
624 if (!cpu_throttle_active()) {
625 cpu_throttle_set(pct_initial);
626 } else {
627 /* Throttling already on, just increase the rate */
cbbf8182
KZ
628 if (!pct_tailslow) {
629 throttle_inc = pct_increment;
630 } else {
631 /* Compute the ideal CPU percentage used by Guest, which may
632 * make the dirty rate match the dirty rate threshold. */
633 cpu_now = 100 - throttle_now;
634 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
635 bytes_dirty_period);
636 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
637 }
638 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
070afca2
JH
639 }
640}
641
3d0684b2
JQ
642/**
643 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
644 *
6f37bb8b 645 * @rs: current RAM state
3d0684b2
JQ
646 * @current_addr: address for the zero page
647 *
648 * Update the xbzrle cache to reflect a page that's been sent as all 0.
56e93d26
JQ
649 * The important thing is that a stale (not-yet-0'd) page be replaced
650 * by the new data.
651 * As a bonus, if the page wasn't in the cache it gets added so that
3d0684b2 652 * when a small write is made into the 0'd page it gets XBZRLE sent.
56e93d26 653 */
6f37bb8b 654static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
56e93d26 655{
1a373522 656 if (!rs->xbzrle_enabled) {
56e93d26
JQ
657 return;
658 }
659
660 /* We don't care if this fails to allocate a new cache page
661 * as long as it updated an old one */
c00e0928 662 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
9360447d 663 ram_counters.dirty_sync_count);
56e93d26
JQ
664}
665
666#define ENCODING_FLAG_XBZRLE 0x1
667
668/**
669 * save_xbzrle_page: compress and send current page
670 *
671 * Returns: 1 means that we wrote the page
672 * 0 means that page is identical to the one already sent
673 * -1 means that xbzrle would be longer than normal
674 *
5a987738 675 * @rs: current RAM state
3d0684b2
JQ
676 * @current_data: pointer to the address of the page contents
677 * @current_addr: addr of the page
56e93d26
JQ
678 * @block: block that contains the page we want to send
679 * @offset: offset inside the block for the page
680 * @last_stage: if we are at the completion stage
56e93d26 681 */
204b88b8 682static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
56e93d26 683 ram_addr_t current_addr, RAMBlock *block,
072c2511 684 ram_addr_t offset, bool last_stage)
56e93d26
JQ
685{
686 int encoded_len = 0, bytes_xbzrle;
687 uint8_t *prev_cached_page;
688
9360447d
JQ
689 if (!cache_is_cached(XBZRLE.cache, current_addr,
690 ram_counters.dirty_sync_count)) {
691 xbzrle_counters.cache_miss++;
56e93d26
JQ
692 if (!last_stage) {
693 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
9360447d 694 ram_counters.dirty_sync_count) == -1) {
56e93d26
JQ
695 return -1;
696 } else {
697 /* update *current_data when the page has been
698 inserted into cache */
699 *current_data = get_cached_data(XBZRLE.cache, current_addr);
700 }
701 }
702 return -1;
703 }
704
e460a4b1
WW
705 /*
706 * Reaching here means the page has hit the xbzrle cache, no matter what
707 * encoding result it is (normal encoding, overflow or skipping the page),
3a4452d8 708 * count the page as encoded. This is used to calculate the encoding rate.
e460a4b1
WW
709 *
710 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
711 * 2nd page turns out to be skipped (i.e. no new bytes written to the
712 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
713 * skipped page included. In this way, the encoding rate can tell if the
714 * guest page is good for xbzrle encoding.
715 */
716 xbzrle_counters.pages++;
56e93d26
JQ
717 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
718
719 /* save current buffer into memory */
720 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
721
722 /* XBZRLE encoding (if there is no overflow) */
723 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
724 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
725 TARGET_PAGE_SIZE);
ca353803
WY
726
727 /*
728 * Update the cache contents, so that it corresponds to the data
729 * sent, in all cases except where we skip the page.
730 */
731 if (!last_stage && encoded_len != 0) {
732 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
733 /*
734 * In the case where we couldn't compress, ensure that the caller
735 * sends the data from the cache, since the guest might have
736 * changed the RAM since we copied it.
737 */
738 *current_data = prev_cached_page;
739 }
740
56e93d26 741 if (encoded_len == 0) {
55c4446b 742 trace_save_xbzrle_page_skipping();
56e93d26
JQ
743 return 0;
744 } else if (encoded_len == -1) {
55c4446b 745 trace_save_xbzrle_page_overflow();
9360447d 746 xbzrle_counters.overflow++;
e460a4b1 747 xbzrle_counters.bytes += TARGET_PAGE_SIZE;
56e93d26
JQ
748 return -1;
749 }
750
56e93d26 751 /* Send XBZRLE based compressed page */
2bf3aa85 752 bytes_xbzrle = save_page_header(rs, rs->f, block,
204b88b8
JQ
753 offset | RAM_SAVE_FLAG_XBZRLE);
754 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
755 qemu_put_be16(rs->f, encoded_len);
756 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
56e93d26 757 bytes_xbzrle += encoded_len + 1 + 2;
e460a4b1
WW
758 /*
759 * Like compressed_size (please see update_compress_thread_counts),
760 * the xbzrle encoded bytes don't count the 8 byte header with
761 * RAM_SAVE_FLAG_CONTINUE.
762 */
763 xbzrle_counters.bytes += bytes_xbzrle - 8;
9360447d 764 ram_counters.transferred += bytes_xbzrle;
56e93d26
JQ
765
766 return 1;
767}
768
3d0684b2
JQ
769/**
770 * migration_bitmap_find_dirty: find the next dirty page from start
f3f491fc 771 *
a5f7b1a6 772 * Returns the page offset within memory region of the start of a dirty page
3d0684b2 773 *
6f37bb8b 774 * @rs: current RAM state
3d0684b2 775 * @rb: RAMBlock where to search for dirty pages
a935e30f 776 * @start: page where we start the search
f3f491fc 777 */
56e93d26 778static inline
a935e30f 779unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
f20e2865 780 unsigned long start)
56e93d26 781{
6b6712ef
JQ
782 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
783 unsigned long *bitmap = rb->bmap;
56e93d26 784
fbd162e6 785 if (ramblock_is_ignored(rb)) {
b895de50
CLG
786 return size;
787 }
788
1a373522 789 return find_next_bit(bitmap, size, start);
56e93d26
JQ
790}
791
06b10688 792static inline bool migration_bitmap_clear_dirty(RAMState *rs,
f20e2865
JQ
793 RAMBlock *rb,
794 unsigned long page)
a82d593b
DDAG
795{
796 bool ret;
a82d593b 797
37396950 798 QEMU_LOCK_GUARD(&rs->bitmap_mutex);
002cad6b
PX
799
800 /*
801 * Clear dirty bitmap if needed. This _must_ be called before we
802 * send any of the page in the chunk because we need to make sure
803 * we can capture further page content changes when we sync dirty
804 * log the next time. So as long as we are going to send any of
805 * the page in the chunk we clear the remote dirty bitmap for all.
806 * Clearing it earlier won't be a problem, but too late will.
807 */
808 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
809 uint8_t shift = rb->clear_bmap_shift;
810 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
8bba004c 811 hwaddr start = (((ram_addr_t)page) << TARGET_PAGE_BITS) & (-size);
002cad6b
PX
812
813 /*
814 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
815 * can make things easier sometimes since then start address
816 * of the small chunk will always be 64 pages aligned so the
817 * bitmap will always be aligned to unsigned long. We should
818 * even be able to remove this restriction but I'm simply
819 * keeping it.
820 */
821 assert(shift >= 6);
822 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
823 memory_region_clear_dirty_bitmap(rb->mr, start, size);
824 }
825
6b6712ef 826 ret = test_and_clear_bit(page, rb->bmap);
a82d593b
DDAG
827
828 if (ret) {
0d8ec885 829 rs->migration_dirty_pages--;
a82d593b 830 }
386a907b 831
a82d593b
DDAG
832 return ret;
833}
834
267691b6 835/* Called with RCU critical section */
7a3e9571 836static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
56e93d26 837{
fb613580
KZ
838 uint64_t new_dirty_pages =
839 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
840
841 rs->migration_dirty_pages += new_dirty_pages;
842 rs->num_dirty_pages_period += new_dirty_pages;
56e93d26
JQ
843}
844
3d0684b2
JQ
845/**
846 * ram_pagesize_summary: calculate all the pagesizes of a VM
847 *
848 * Returns a summary bitmap of the page sizes of all RAMBlocks
849 *
850 * For VMs with just normal pages this is equivalent to the host page
851 * size. If it's got some huge pages then it's the OR of all the
852 * different page sizes.
e8ca1db2
DDAG
853 */
854uint64_t ram_pagesize_summary(void)
855{
856 RAMBlock *block;
857 uint64_t summary = 0;
858
fbd162e6 859 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
e8ca1db2
DDAG
860 summary |= block->page_size;
861 }
862
863 return summary;
864}
865
aecbfe9c
XG
866uint64_t ram_get_total_transferred_pages(void)
867{
868 return ram_counters.normal + ram_counters.duplicate +
869 compression_counters.pages + xbzrle_counters.pages;
870}
871
b734035b
XG
872static void migration_update_rates(RAMState *rs, int64_t end_time)
873{
be8b02ed 874 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
76e03000 875 double compressed_size;
b734035b
XG
876
877 /* calculate period counters */
878 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
879 / (end_time - rs->time_last_bitmap_sync);
880
be8b02ed 881 if (!page_count) {
b734035b
XG
882 return;
883 }
884
885 if (migrate_use_xbzrle()) {
e460a4b1
WW
886 double encoded_size, unencoded_size;
887
b734035b 888 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
be8b02ed 889 rs->xbzrle_cache_miss_prev) / page_count;
b734035b 890 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
e460a4b1
WW
891 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
892 TARGET_PAGE_SIZE;
893 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
92271402 894 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
e460a4b1 895 xbzrle_counters.encoding_rate = 0;
e460a4b1
WW
896 } else {
897 xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
898 }
899 rs->xbzrle_pages_prev = xbzrle_counters.pages;
900 rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
b734035b 901 }
76e03000
XG
902
903 if (migrate_use_compression()) {
904 compression_counters.busy_rate = (double)(compression_counters.busy -
905 rs->compress_thread_busy_prev) / page_count;
906 rs->compress_thread_busy_prev = compression_counters.busy;
907
908 compressed_size = compression_counters.compressed_size -
909 rs->compressed_size_prev;
910 if (compressed_size) {
911 double uncompressed_size = (compression_counters.pages -
912 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
913
914 /* Compression-Ratio = Uncompressed-size / Compressed-size */
915 compression_counters.compression_rate =
916 uncompressed_size / compressed_size;
917
918 rs->compress_pages_prev = compression_counters.pages;
919 rs->compressed_size_prev = compression_counters.compressed_size;
920 }
921 }
b734035b
XG
922}
923
dc14a470
KZ
924static void migration_trigger_throttle(RAMState *rs)
925{
926 MigrationState *s = migrate_get_current();
927 uint64_t threshold = s->parameters.throttle_trigger_threshold;
928
929 uint64_t bytes_xfer_period = ram_counters.transferred - rs->bytes_xfer_prev;
930 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
931 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
932
933 /* During block migration the auto-converge logic incorrectly detects
934 * that ram migration makes no progress. Avoid this by disabling the
935 * throttling logic during the bulk phase of block migration. */
936 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
937 /* The following detection logic can be refined later. For now:
938 Check to see if the ratio between dirtied bytes and the approx.
939 amount of bytes that just got transferred since the last time
940 we were in this routine reaches the threshold. If that happens
941 twice, start or increase throttling. */
942
943 if ((bytes_dirty_period > bytes_dirty_threshold) &&
944 (++rs->dirty_rate_high_cnt >= 2)) {
945 trace_migration_throttle();
946 rs->dirty_rate_high_cnt = 0;
cbbf8182
KZ
947 mig_throttle_guest_down(bytes_dirty_period,
948 bytes_dirty_threshold);
dc14a470
KZ
949 }
950 }
951}
952
8d820d6f 953static void migration_bitmap_sync(RAMState *rs)
56e93d26
JQ
954{
955 RAMBlock *block;
56e93d26 956 int64_t end_time;
56e93d26 957
9360447d 958 ram_counters.dirty_sync_count++;
56e93d26 959
f664da80
JQ
960 if (!rs->time_last_bitmap_sync) {
961 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
56e93d26
JQ
962 }
963
964 trace_migration_bitmap_sync_start();
9c1f8f44 965 memory_global_dirty_log_sync();
56e93d26 966
108cfae0 967 qemu_mutex_lock(&rs->bitmap_mutex);
89ac5a1d
DDAG
968 WITH_RCU_READ_LOCK_GUARD() {
969 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
970 ramblock_sync_dirty_bitmap(rs, block);
971 }
972 ram_counters.remaining = ram_bytes_remaining();
56e93d26 973 }
108cfae0 974 qemu_mutex_unlock(&rs->bitmap_mutex);
56e93d26 975
9458a9a1 976 memory_global_after_dirty_log_sync();
a66cd90c 977 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1ffb5dfd 978
56e93d26
JQ
979 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
980
981 /* more than 1 second = 1000 millisecons */
f664da80 982 if (end_time > rs->time_last_bitmap_sync + 1000) {
dc14a470 983 migration_trigger_throttle(rs);
070afca2 984
b734035b
XG
985 migration_update_rates(rs, end_time);
986
be8b02ed 987 rs->target_page_count_prev = rs->target_page_count;
d693c6f1
FF
988
989 /* reset period counters */
f664da80 990 rs->time_last_bitmap_sync = end_time;
a66cd90c 991 rs->num_dirty_pages_period = 0;
dc14a470 992 rs->bytes_xfer_prev = ram_counters.transferred;
56e93d26 993 }
4addcd4f 994 if (migrate_use_events()) {
3ab72385 995 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
4addcd4f 996 }
56e93d26
JQ
997}
998
bd227060
WW
999static void migration_bitmap_sync_precopy(RAMState *rs)
1000{
1001 Error *local_err = NULL;
1002
1003 /*
1004 * The current notifier usage is just an optimization to migration, so we
1005 * don't stop the normal migration process in the error case.
1006 */
1007 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1008 error_report_err(local_err);
b4a1733c 1009 local_err = NULL;
bd227060
WW
1010 }
1011
1012 migration_bitmap_sync(rs);
1013
1014 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1015 error_report_err(local_err);
1016 }
1017}
1018
6c97ec5f
XG
1019/**
1020 * save_zero_page_to_file: send the zero page to the file
1021 *
1022 * Returns the size of data written to the file, 0 means the page is not
1023 * a zero page
1024 *
1025 * @rs: current RAM state
1026 * @file: the file where the data is saved
1027 * @block: block that contains the page we want to send
1028 * @offset: offset inside the block for the page
1029 */
1030static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1031 RAMBlock *block, ram_addr_t offset)
1032{
1033 uint8_t *p = block->host + offset;
1034 int len = 0;
1035
1036 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1037 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1038 qemu_put_byte(file, 0);
1039 len += 1;
1040 }
1041 return len;
1042}
1043
56e93d26 1044/**
3d0684b2 1045 * save_zero_page: send the zero page to the stream
56e93d26 1046 *
3d0684b2 1047 * Returns the number of pages written.
56e93d26 1048 *
f7ccd61b 1049 * @rs: current RAM state
56e93d26
JQ
1050 * @block: block that contains the page we want to send
1051 * @offset: offset inside the block for the page
56e93d26 1052 */
7faccdc3 1053static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
56e93d26 1054{
6c97ec5f 1055 int len = save_zero_page_to_file(rs, rs->f, block, offset);
56e93d26 1056
6c97ec5f 1057 if (len) {
9360447d 1058 ram_counters.duplicate++;
6c97ec5f
XG
1059 ram_counters.transferred += len;
1060 return 1;
56e93d26 1061 }
6c97ec5f 1062 return -1;
56e93d26
JQ
1063}
1064
5727309d 1065static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
53f09a10 1066{
5727309d 1067 if (!migrate_release_ram() || !migration_in_postcopy()) {
53f09a10
PB
1068 return;
1069 }
1070
8bba004c 1071 ram_discard_range(rbname, offset, ((ram_addr_t)pages) << TARGET_PAGE_BITS);
53f09a10
PB
1072}
1073
059ff0fb
XG
1074/*
1075 * @pages: the number of pages written by the control path,
1076 * < 0 - error
1077 * > 0 - number of pages written
1078 *
1079 * Return true if the pages has been saved, otherwise false is returned.
1080 */
1081static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1082 int *pages)
1083{
1084 uint64_t bytes_xmit = 0;
1085 int ret;
1086
1087 *pages = -1;
1088 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1089 &bytes_xmit);
1090 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1091 return false;
1092 }
1093
1094 if (bytes_xmit) {
1095 ram_counters.transferred += bytes_xmit;
1096 *pages = 1;
1097 }
1098
1099 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1100 return true;
1101 }
1102
1103 if (bytes_xmit > 0) {
1104 ram_counters.normal++;
1105 } else if (bytes_xmit == 0) {
1106 ram_counters.duplicate++;
1107 }
1108
1109 return true;
1110}
1111
65dacaa0
XG
1112/*
1113 * directly send the page to the stream
1114 *
1115 * Returns the number of pages written.
1116 *
1117 * @rs: current RAM state
1118 * @block: block that contains the page we want to send
1119 * @offset: offset inside the block for the page
1120 * @buf: the page to be sent
1121 * @async: send to page asyncly
1122 */
1123static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1124 uint8_t *buf, bool async)
1125{
1126 ram_counters.transferred += save_page_header(rs, rs->f, block,
1127 offset | RAM_SAVE_FLAG_PAGE);
1128 if (async) {
1129 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1130 migrate_release_ram() &
1131 migration_in_postcopy());
1132 } else {
1133 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1134 }
1135 ram_counters.transferred += TARGET_PAGE_SIZE;
1136 ram_counters.normal++;
1137 return 1;
1138}
1139
56e93d26 1140/**
3d0684b2 1141 * ram_save_page: send the given page to the stream
56e93d26 1142 *
3d0684b2 1143 * Returns the number of pages written.
3fd3c4b3
DDAG
1144 * < 0 - error
1145 * >=0 - Number of pages written - this might legally be 0
1146 * if xbzrle noticed the page was the same.
56e93d26 1147 *
6f37bb8b 1148 * @rs: current RAM state
56e93d26
JQ
1149 * @block: block that contains the page we want to send
1150 * @offset: offset inside the block for the page
1151 * @last_stage: if we are at the completion stage
56e93d26 1152 */
a0a8aa14 1153static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
56e93d26
JQ
1154{
1155 int pages = -1;
56e93d26 1156 uint8_t *p;
56e93d26 1157 bool send_async = true;
a08f6890 1158 RAMBlock *block = pss->block;
8bba004c 1159 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
059ff0fb 1160 ram_addr_t current_addr = block->offset + offset;
56e93d26 1161
2f68e399 1162 p = block->host + offset;
1db9d8e5 1163 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
56e93d26 1164
56e93d26 1165 XBZRLE_cache_lock();
1a373522 1166 if (rs->xbzrle_enabled && !migration_in_postcopy()) {
059ff0fb
XG
1167 pages = save_xbzrle_page(rs, &p, current_addr, block,
1168 offset, last_stage);
1169 if (!last_stage) {
1170 /* Can't send this cached data async, since the cache page
1171 * might get updated before it gets to the wire
56e93d26 1172 */
059ff0fb 1173 send_async = false;
56e93d26
JQ
1174 }
1175 }
1176
1177 /* XBZRLE overflow or normal page */
1178 if (pages == -1) {
65dacaa0 1179 pages = save_normal_page(rs, block, offset, p, send_async);
56e93d26
JQ
1180 }
1181
1182 XBZRLE_cache_unlock();
1183
1184 return pages;
1185}
1186
b9ee2f7d
JQ
1187static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
1188 ram_addr_t offset)
1189{
67a4c891 1190 if (multifd_queue_page(rs->f, block, offset) < 0) {
713f762a
IR
1191 return -1;
1192 }
b9ee2f7d
JQ
1193 ram_counters.normal++;
1194
1195 return 1;
1196}
1197
5e5fdcff 1198static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 1199 ram_addr_t offset, uint8_t *source_buf)
56e93d26 1200{
53518d94 1201 RAMState *rs = ram_state;
a7a9a88f 1202 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
5e5fdcff 1203 bool zero_page = false;
6ef3771c 1204 int ret;
56e93d26 1205
5e5fdcff
XG
1206 if (save_zero_page_to_file(rs, f, block, offset)) {
1207 zero_page = true;
1208 goto exit;
1209 }
1210
6ef3771c 1211 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
34ab9e97
XG
1212
1213 /*
1214 * copy it to a internal buffer to avoid it being modified by VM
1215 * so that we can catch up the error during compression and
1216 * decompression
1217 */
1218 memcpy(source_buf, p, TARGET_PAGE_SIZE);
6ef3771c
XG
1219 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
1220 if (ret < 0) {
1221 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
b3be2896 1222 error_report("compressed data failed!");
5e5fdcff 1223 return false;
b3be2896 1224 }
56e93d26 1225
5e5fdcff 1226exit:
6ef3771c 1227 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
5e5fdcff
XG
1228 return zero_page;
1229}
1230
1231static void
1232update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
1233{
76e03000
XG
1234 ram_counters.transferred += bytes_xmit;
1235
5e5fdcff
XG
1236 if (param->zero_page) {
1237 ram_counters.duplicate++;
76e03000 1238 return;
5e5fdcff 1239 }
76e03000
XG
1240
1241 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
1242 compression_counters.compressed_size += bytes_xmit - 8;
1243 compression_counters.pages++;
56e93d26
JQ
1244}
1245
32b05495
XG
1246static bool save_page_use_compression(RAMState *rs);
1247
ce25d337 1248static void flush_compressed_data(RAMState *rs)
56e93d26
JQ
1249{
1250 int idx, len, thread_count;
1251
32b05495 1252 if (!save_page_use_compression(rs)) {
56e93d26
JQ
1253 return;
1254 }
1255 thread_count = migrate_compress_threads();
a7a9a88f 1256
0d9f9a5c 1257 qemu_mutex_lock(&comp_done_lock);
56e93d26 1258 for (idx = 0; idx < thread_count; idx++) {
a7a9a88f 1259 while (!comp_param[idx].done) {
0d9f9a5c 1260 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26 1261 }
a7a9a88f 1262 }
0d9f9a5c 1263 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
1264
1265 for (idx = 0; idx < thread_count; idx++) {
1266 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 1267 if (!comp_param[idx].quit) {
ce25d337 1268 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
5e5fdcff
XG
1269 /*
1270 * it's safe to fetch zero_page without holding comp_done_lock
1271 * as there is no further request submitted to the thread,
1272 * i.e, the thread should be waiting for a request at this point.
1273 */
1274 update_compress_thread_counts(&comp_param[idx], len);
56e93d26 1275 }
a7a9a88f 1276 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26
JQ
1277 }
1278}
1279
1280static inline void set_compress_params(CompressParam *param, RAMBlock *block,
1281 ram_addr_t offset)
1282{
1283 param->block = block;
1284 param->offset = offset;
1285}
1286
ce25d337
JQ
1287static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
1288 ram_addr_t offset)
56e93d26
JQ
1289{
1290 int idx, thread_count, bytes_xmit = -1, pages = -1;
1d58872a 1291 bool wait = migrate_compress_wait_thread();
56e93d26
JQ
1292
1293 thread_count = migrate_compress_threads();
0d9f9a5c 1294 qemu_mutex_lock(&comp_done_lock);
1d58872a
XG
1295retry:
1296 for (idx = 0; idx < thread_count; idx++) {
1297 if (comp_param[idx].done) {
1298 comp_param[idx].done = false;
1299 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1300 qemu_mutex_lock(&comp_param[idx].mutex);
1301 set_compress_params(&comp_param[idx], block, offset);
1302 qemu_cond_signal(&comp_param[idx].cond);
1303 qemu_mutex_unlock(&comp_param[idx].mutex);
1304 pages = 1;
5e5fdcff 1305 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
56e93d26 1306 break;
56e93d26
JQ
1307 }
1308 }
1d58872a
XG
1309
1310 /*
1311 * wait for the free thread if the user specifies 'compress-wait-thread',
1312 * otherwise we will post the page out in the main thread as normal page.
1313 */
1314 if (pages < 0 && wait) {
1315 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1316 goto retry;
1317 }
0d9f9a5c 1318 qemu_mutex_unlock(&comp_done_lock);
56e93d26
JQ
1319
1320 return pages;
1321}
1322
3d0684b2
JQ
1323/**
1324 * find_dirty_block: find the next dirty page and update any state
1325 * associated with the search process.
b9e60928 1326 *
a5f7b1a6 1327 * Returns true if a page is found
b9e60928 1328 *
6f37bb8b 1329 * @rs: current RAM state
3d0684b2
JQ
1330 * @pss: data about the state of the current dirty page scan
1331 * @again: set to false if the search has scanned the whole of RAM
b9e60928 1332 */
f20e2865 1333static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
b9e60928 1334{
f20e2865 1335 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
6f37bb8b 1336 if (pss->complete_round && pss->block == rs->last_seen_block &&
a935e30f 1337 pss->page >= rs->last_page) {
b9e60928
DDAG
1338 /*
1339 * We've been once around the RAM and haven't found anything.
1340 * Give up.
1341 */
1342 *again = false;
1343 return false;
1344 }
8bba004c
AR
1345 if ((((ram_addr_t)pss->page) << TARGET_PAGE_BITS)
1346 >= pss->block->used_length) {
b9e60928 1347 /* Didn't find anything in this RAM Block */
a935e30f 1348 pss->page = 0;
b9e60928
DDAG
1349 pss->block = QLIST_NEXT_RCU(pss->block, next);
1350 if (!pss->block) {
48df9d80
XG
1351 /*
1352 * If memory migration starts over, we will meet a dirtied page
1353 * which may still exists in compression threads's ring, so we
1354 * should flush the compressed data to make sure the new page
1355 * is not overwritten by the old one in the destination.
1356 *
1357 * Also If xbzrle is on, stop using the data compression at this
1358 * point. In theory, xbzrle can do better than compression.
1359 */
1360 flush_compressed_data(rs);
1361
b9e60928
DDAG
1362 /* Hit the end of the list */
1363 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1364 /* Flag that we've looped */
1365 pss->complete_round = true;
1a373522
DH
1366 /* After the first round, enable XBZRLE. */
1367 if (migrate_use_xbzrle()) {
1368 rs->xbzrle_enabled = true;
1369 }
b9e60928
DDAG
1370 }
1371 /* Didn't find anything this time, but try again on the new block */
1372 *again = true;
1373 return false;
1374 } else {
1375 /* Can go around again, but... */
1376 *again = true;
1377 /* We've found something so probably don't need to */
1378 return true;
1379 }
1380}
1381
3d0684b2
JQ
1382/**
1383 * unqueue_page: gets a page of the queue
1384 *
a82d593b 1385 * Helper for 'get_queued_page' - gets a page off the queue
a82d593b 1386 *
3d0684b2
JQ
1387 * Returns the block of the page (or NULL if none available)
1388 *
ec481c6c 1389 * @rs: current RAM state
3d0684b2 1390 * @offset: used to return the offset within the RAMBlock
a82d593b 1391 */
f20e2865 1392static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
a82d593b
DDAG
1393{
1394 RAMBlock *block = NULL;
1395
ae526e32
XG
1396 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
1397 return NULL;
1398 }
1399
6e8a355d 1400 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
ec481c6c
JQ
1401 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
1402 struct RAMSrcPageRequest *entry =
1403 QSIMPLEQ_FIRST(&rs->src_page_requests);
a82d593b
DDAG
1404 block = entry->rb;
1405 *offset = entry->offset;
a82d593b
DDAG
1406
1407 if (entry->len > TARGET_PAGE_SIZE) {
1408 entry->len -= TARGET_PAGE_SIZE;
1409 entry->offset += TARGET_PAGE_SIZE;
1410 } else {
1411 memory_region_unref(block->mr);
ec481c6c 1412 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
a82d593b 1413 g_free(entry);
e03a34f8 1414 migration_consume_urgent_request();
a82d593b
DDAG
1415 }
1416 }
a82d593b
DDAG
1417
1418 return block;
1419}
1420
278e2f55
AG
1421#if defined(__linux__)
1422/**
1423 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1424 * is found, return RAM block pointer and page offset
1425 *
1426 * Returns pointer to the RAMBlock containing faulting page,
1427 * NULL if no write faults are pending
1428 *
1429 * @rs: current RAM state
1430 * @offset: page offset from the beginning of the block
1431 */
1432static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1433{
1434 struct uffd_msg uffd_msg;
1435 void *page_address;
82ea3e3b 1436 RAMBlock *block;
278e2f55
AG
1437 int res;
1438
1439 if (!migrate_background_snapshot()) {
1440 return NULL;
1441 }
1442
1443 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1444 if (res <= 0) {
1445 return NULL;
1446 }
1447
1448 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
82ea3e3b
AG
1449 block = qemu_ram_block_from_host(page_address, false, offset);
1450 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1451 return block;
278e2f55
AG
1452}
1453
1454/**
1455 * ram_save_release_protection: release UFFD write protection after
1456 * a range of pages has been saved
1457 *
1458 * @rs: current RAM state
1459 * @pss: page-search-status structure
1460 * @start_page: index of the first page in the range relative to pss->block
1461 *
1462 * Returns 0 on success, negative value in case of an error
1463*/
1464static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1465 unsigned long start_page)
1466{
1467 int res = 0;
1468
1469 /* Check if page is from UFFD-managed region. */
1470 if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1471 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1472 uint64_t run_length = (pss->page - start_page + 1) << TARGET_PAGE_BITS;
1473
1474 /* Flush async buffers before un-protect. */
1475 qemu_fflush(rs->f);
1476 /* Un-protect memory range. */
1477 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1478 false, false);
1479 }
1480
1481 return res;
1482}
1483
1484/* ram_write_tracking_available: check if kernel supports required UFFD features
1485 *
1486 * Returns true if supports, false otherwise
1487 */
1488bool ram_write_tracking_available(void)
1489{
1490 uint64_t uffd_features;
1491 int res;
1492
1493 res = uffd_query_features(&uffd_features);
1494 return (res == 0 &&
1495 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1496}
1497
1498/* ram_write_tracking_compatible: check if guest configuration is
1499 * compatible with 'write-tracking'
1500 *
1501 * Returns true if compatible, false otherwise
1502 */
1503bool ram_write_tracking_compatible(void)
1504{
1505 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1506 int uffd_fd;
82ea3e3b 1507 RAMBlock *block;
278e2f55
AG
1508 bool ret = false;
1509
1510 /* Open UFFD file descriptor */
1511 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1512 if (uffd_fd < 0) {
1513 return false;
1514 }
1515
1516 RCU_READ_LOCK_GUARD();
1517
82ea3e3b 1518 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
278e2f55
AG
1519 uint64_t uffd_ioctls;
1520
1521 /* Nothing to do with read-only and MMIO-writable regions */
82ea3e3b 1522 if (block->mr->readonly || block->mr->rom_device) {
278e2f55
AG
1523 continue;
1524 }
1525 /* Try to register block memory via UFFD-IO to track writes */
82ea3e3b 1526 if (uffd_register_memory(uffd_fd, block->host, block->max_length,
278e2f55
AG
1527 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1528 goto out;
1529 }
1530 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1531 goto out;
1532 }
1533 }
1534 ret = true;
1535
1536out:
1537 uffd_close_fd(uffd_fd);
1538 return ret;
1539}
1540
eeccb99c
AG
1541/*
1542 * ram_block_populate_pages: populate memory in the RAM block by reading
1543 * an integer from the beginning of each page.
1544 *
1545 * Since it's solely used for userfault_fd WP feature, here we just
1546 * hardcode page size to qemu_real_host_page_size.
1547 *
82ea3e3b 1548 * @block: RAM block to populate
eeccb99c 1549 */
82ea3e3b 1550static void ram_block_populate_pages(RAMBlock *block)
eeccb99c 1551{
82ea3e3b 1552 char *ptr = (char *) block->host;
eeccb99c 1553
82ea3e3b 1554 for (ram_addr_t offset = 0; offset < block->used_length;
eeccb99c
AG
1555 offset += qemu_real_host_page_size) {
1556 char tmp = *(ptr + offset);
1557
1558 /* Don't optimize the read out */
1559 asm volatile("" : "+r" (tmp));
1560 }
1561}
1562
1563/*
1564 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1565 */
1566void ram_write_tracking_prepare(void)
1567{
82ea3e3b 1568 RAMBlock *block;
eeccb99c
AG
1569
1570 RCU_READ_LOCK_GUARD();
1571
82ea3e3b 1572 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
eeccb99c 1573 /* Nothing to do with read-only and MMIO-writable regions */
82ea3e3b 1574 if (block->mr->readonly || block->mr->rom_device) {
eeccb99c
AG
1575 continue;
1576 }
1577
1578 /*
1579 * Populate pages of the RAM block before enabling userfault_fd
1580 * write protection.
1581 *
1582 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1583 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1584 * pages with pte_none() entries in page table.
1585 */
82ea3e3b 1586 ram_block_populate_pages(block);
eeccb99c
AG
1587 }
1588}
1589
278e2f55
AG
1590/*
1591 * ram_write_tracking_start: start UFFD-WP memory tracking
1592 *
1593 * Returns 0 for success or negative value in case of error
1594 */
1595int ram_write_tracking_start(void)
1596{
1597 int uffd_fd;
1598 RAMState *rs = ram_state;
82ea3e3b 1599 RAMBlock *block;
278e2f55
AG
1600
1601 /* Open UFFD file descriptor */
1602 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1603 if (uffd_fd < 0) {
1604 return uffd_fd;
1605 }
1606 rs->uffdio_fd = uffd_fd;
1607
1608 RCU_READ_LOCK_GUARD();
1609
82ea3e3b 1610 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
278e2f55 1611 /* Nothing to do with read-only and MMIO-writable regions */
82ea3e3b 1612 if (block->mr->readonly || block->mr->rom_device) {
278e2f55
AG
1613 continue;
1614 }
1615
1616 /* Register block memory with UFFD to track writes */
82ea3e3b
AG
1617 if (uffd_register_memory(rs->uffdio_fd, block->host,
1618 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
278e2f55
AG
1619 goto fail;
1620 }
1621 /* Apply UFFD write protection to the block memory range */
82ea3e3b
AG
1622 if (uffd_change_protection(rs->uffdio_fd, block->host,
1623 block->max_length, true, false)) {
278e2f55
AG
1624 goto fail;
1625 }
82ea3e3b
AG
1626 block->flags |= RAM_UF_WRITEPROTECT;
1627 memory_region_ref(block->mr);
278e2f55 1628
82ea3e3b
AG
1629 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1630 block->host, block->max_length);
278e2f55
AG
1631 }
1632
1633 return 0;
1634
1635fail:
1636 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1637
82ea3e3b
AG
1638 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1639 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
278e2f55
AG
1640 continue;
1641 }
1642 /*
1643 * In case some memory block failed to be write-protected
1644 * remove protection and unregister all succeeded RAM blocks
1645 */
82ea3e3b
AG
1646 uffd_change_protection(rs->uffdio_fd, block->host, block->max_length,
1647 false, false);
1648 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
278e2f55 1649 /* Cleanup flags and remove reference */
82ea3e3b
AG
1650 block->flags &= ~RAM_UF_WRITEPROTECT;
1651 memory_region_unref(block->mr);
278e2f55
AG
1652 }
1653
1654 uffd_close_fd(uffd_fd);
1655 rs->uffdio_fd = -1;
1656 return -1;
1657}
1658
1659/**
1660 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1661 */
1662void ram_write_tracking_stop(void)
1663{
1664 RAMState *rs = ram_state;
82ea3e3b 1665 RAMBlock *block;
278e2f55
AG
1666
1667 RCU_READ_LOCK_GUARD();
1668
82ea3e3b
AG
1669 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1670 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
278e2f55
AG
1671 continue;
1672 }
1673 /* Remove protection and unregister all affected RAM blocks */
82ea3e3b
AG
1674 uffd_change_protection(rs->uffdio_fd, block->host, block->max_length,
1675 false, false);
1676 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
278e2f55 1677
82ea3e3b
AG
1678 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1679 block->host, block->max_length);
278e2f55
AG
1680
1681 /* Cleanup flags and remove reference */
82ea3e3b
AG
1682 block->flags &= ~RAM_UF_WRITEPROTECT;
1683 memory_region_unref(block->mr);
278e2f55
AG
1684 }
1685
1686 /* Finally close UFFD file descriptor */
1687 uffd_close_fd(rs->uffdio_fd);
1688 rs->uffdio_fd = -1;
1689}
1690
1691#else
1692/* No target OS support, stubs just fail or ignore */
1693
1694static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1695{
1696 (void) rs;
1697 (void) offset;
1698
1699 return NULL;
1700}
1701
1702static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1703 unsigned long start_page)
1704{
1705 (void) rs;
1706 (void) pss;
1707 (void) start_page;
1708
1709 return 0;
1710}
1711
1712bool ram_write_tracking_available(void)
1713{
1714 return false;
1715}
1716
1717bool ram_write_tracking_compatible(void)
1718{
1719 assert(0);
1720 return false;
1721}
1722
1723int ram_write_tracking_start(void)
1724{
1725 assert(0);
1726 return -1;
1727}
1728
1729void ram_write_tracking_stop(void)
1730{
1731 assert(0);
1732}
1733#endif /* defined(__linux__) */
1734
3d0684b2 1735/**
ff1543af 1736 * get_queued_page: unqueue a page from the postcopy requests
3d0684b2
JQ
1737 *
1738 * Skips pages that are already sent (!dirty)
a82d593b 1739 *
a5f7b1a6 1740 * Returns true if a queued page is found
a82d593b 1741 *
6f37bb8b 1742 * @rs: current RAM state
3d0684b2 1743 * @pss: data about the state of the current dirty page scan
a82d593b 1744 */
f20e2865 1745static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
a82d593b
DDAG
1746{
1747 RAMBlock *block;
1748 ram_addr_t offset;
1749 bool dirty;
1750
1751 do {
f20e2865 1752 block = unqueue_page(rs, &offset);
a82d593b
DDAG
1753 /*
1754 * We're sending this page, and since it's postcopy nothing else
1755 * will dirty it, and we must make sure it doesn't get sent again
1756 * even if this queue request was received after the background
1757 * search already sent it.
1758 */
1759 if (block) {
f20e2865
JQ
1760 unsigned long page;
1761
6b6712ef
JQ
1762 page = offset >> TARGET_PAGE_BITS;
1763 dirty = test_bit(page, block->bmap);
a82d593b 1764 if (!dirty) {
06b10688 1765 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
64737606 1766 page);
a82d593b 1767 } else {
f20e2865 1768 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
a82d593b
DDAG
1769 }
1770 }
1771
1772 } while (block && !dirty);
1773
278e2f55
AG
1774 if (!block) {
1775 /*
1776 * Poll write faults too if background snapshot is enabled; that's
1777 * when we have vcpus got blocked by the write protected pages.
1778 */
1779 block = poll_fault_page(rs, &offset);
1780 }
1781
a82d593b 1782 if (block) {
a82d593b
DDAG
1783 /*
1784 * We want the background search to continue from the queued page
1785 * since the guest is likely to want other pages near to the page
1786 * it just requested.
1787 */
1788 pss->block = block;
a935e30f 1789 pss->page = offset >> TARGET_PAGE_BITS;
422314e7
WY
1790
1791 /*
1792 * This unqueued page would break the "one round" check, even is
1793 * really rare.
1794 */
1795 pss->complete_round = false;
a82d593b
DDAG
1796 }
1797
1798 return !!block;
1799}
1800
6c595cde 1801/**
5e58f968
JQ
1802 * migration_page_queue_free: drop any remaining pages in the ram
1803 * request queue
6c595cde 1804 *
3d0684b2
JQ
1805 * It should be empty at the end anyway, but in error cases there may
1806 * be some left. in case that there is any page left, we drop it.
1807 *
6c595cde 1808 */
83c13382 1809static void migration_page_queue_free(RAMState *rs)
6c595cde 1810{
ec481c6c 1811 struct RAMSrcPageRequest *mspr, *next_mspr;
6c595cde
DDAG
1812 /* This queue generally should be empty - but in the case of a failed
1813 * migration might have some droppings in.
1814 */
89ac5a1d 1815 RCU_READ_LOCK_GUARD();
ec481c6c 1816 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
6c595cde 1817 memory_region_unref(mspr->rb->mr);
ec481c6c 1818 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
6c595cde
DDAG
1819 g_free(mspr);
1820 }
6c595cde
DDAG
1821}
1822
1823/**
3d0684b2
JQ
1824 * ram_save_queue_pages: queue the page for transmission
1825 *
1826 * A request from postcopy destination for example.
1827 *
1828 * Returns zero on success or negative on error
1829 *
3d0684b2
JQ
1830 * @rbname: Name of the RAMBLock of the request. NULL means the
1831 * same that last one.
1832 * @start: starting address from the start of the RAMBlock
1833 * @len: length (in bytes) to send
6c595cde 1834 */
96506894 1835int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
6c595cde
DDAG
1836{
1837 RAMBlock *ramblock;
53518d94 1838 RAMState *rs = ram_state;
6c595cde 1839
9360447d 1840 ram_counters.postcopy_requests++;
89ac5a1d
DDAG
1841 RCU_READ_LOCK_GUARD();
1842
6c595cde
DDAG
1843 if (!rbname) {
1844 /* Reuse last RAMBlock */
68a098f3 1845 ramblock = rs->last_req_rb;
6c595cde
DDAG
1846
1847 if (!ramblock) {
1848 /*
1849 * Shouldn't happen, we can't reuse the last RAMBlock if
1850 * it's the 1st request.
1851 */
1852 error_report("ram_save_queue_pages no previous block");
03acb4e9 1853 return -1;
6c595cde
DDAG
1854 }
1855 } else {
1856 ramblock = qemu_ram_block_by_name(rbname);
1857
1858 if (!ramblock) {
1859 /* We shouldn't be asked for a non-existent RAMBlock */
1860 error_report("ram_save_queue_pages no block '%s'", rbname);
03acb4e9 1861 return -1;
6c595cde 1862 }
68a098f3 1863 rs->last_req_rb = ramblock;
6c595cde
DDAG
1864 }
1865 trace_ram_save_queue_pages(ramblock->idstr, start, len);
395cb450 1866 if (start + len > ramblock->used_length) {
9458ad6b
JQ
1867 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1868 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
6c595cde 1869 __func__, start, len, ramblock->used_length);
03acb4e9 1870 return -1;
6c595cde
DDAG
1871 }
1872
ec481c6c
JQ
1873 struct RAMSrcPageRequest *new_entry =
1874 g_malloc0(sizeof(struct RAMSrcPageRequest));
6c595cde
DDAG
1875 new_entry->rb = ramblock;
1876 new_entry->offset = start;
1877 new_entry->len = len;
1878
1879 memory_region_ref(ramblock->mr);
ec481c6c
JQ
1880 qemu_mutex_lock(&rs->src_page_req_mutex);
1881 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
e03a34f8 1882 migration_make_urgent_request();
ec481c6c 1883 qemu_mutex_unlock(&rs->src_page_req_mutex);
6c595cde
DDAG
1884
1885 return 0;
6c595cde
DDAG
1886}
1887
d7400a34
XG
1888static bool save_page_use_compression(RAMState *rs)
1889{
1890 if (!migrate_use_compression()) {
1891 return false;
1892 }
1893
1894 /*
1a373522
DH
1895 * If xbzrle is enabled (e.g., after first round of migration), stop
1896 * using the data compression. In theory, xbzrle can do better than
1897 * compression.
d7400a34 1898 */
1a373522
DH
1899 if (rs->xbzrle_enabled) {
1900 return false;
d7400a34
XG
1901 }
1902
1a373522 1903 return true;
d7400a34
XG
1904}
1905
5e5fdcff
XG
1906/*
1907 * try to compress the page before posting it out, return true if the page
1908 * has been properly handled by compression, otherwise needs other
1909 * paths to handle it
1910 */
1911static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1912{
1913 if (!save_page_use_compression(rs)) {
1914 return false;
1915 }
1916
1917 /*
1918 * When starting the process of a new block, the first page of
1919 * the block should be sent out before other pages in the same
1920 * block, and all the pages in last block should have been sent
1921 * out, keeping this order is important, because the 'cont' flag
1922 * is used to avoid resending the block name.
1923 *
1924 * We post the fist page as normal page as compression will take
1925 * much CPU resource.
1926 */
1927 if (block != rs->last_sent_block) {
1928 flush_compressed_data(rs);
1929 return false;
1930 }
1931
1932 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
1933 return true;
1934 }
1935
76e03000 1936 compression_counters.busy++;
5e5fdcff
XG
1937 return false;
1938}
1939
a82d593b 1940/**
3d0684b2 1941 * ram_save_target_page: save one target page
a82d593b 1942 *
3d0684b2 1943 * Returns the number of pages written
a82d593b 1944 *
6f37bb8b 1945 * @rs: current RAM state
3d0684b2 1946 * @pss: data about the page we want to send
a82d593b 1947 * @last_stage: if we are at the completion stage
a82d593b 1948 */
a0a8aa14 1949static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 1950 bool last_stage)
a82d593b 1951{
a8ec91f9 1952 RAMBlock *block = pss->block;
8bba004c 1953 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
a8ec91f9
XG
1954 int res;
1955
1956 if (control_save_page(rs, block, offset, &res)) {
1957 return res;
1958 }
1959
5e5fdcff
XG
1960 if (save_compress_page(rs, block, offset)) {
1961 return 1;
d7400a34
XG
1962 }
1963
1964 res = save_zero_page(rs, block, offset);
1965 if (res > 0) {
1966 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
1967 * page would be stale
1968 */
1969 if (!save_page_use_compression(rs)) {
1970 XBZRLE_cache_lock();
1971 xbzrle_cache_zero_page(rs, block->offset + offset);
1972 XBZRLE_cache_unlock();
1973 }
1974 ram_release_pages(block->idstr, offset, res);
1975 return res;
1976 }
1977
da3f56cb 1978 /*
c6b3a2e0
WY
1979 * Do not use multifd for:
1980 * 1. Compression as the first page in the new block should be posted out
1981 * before sending the compressed page
1982 * 2. In postcopy as one whole host page should be placed
da3f56cb 1983 */
c6b3a2e0
WY
1984 if (!save_page_use_compression(rs) && migrate_use_multifd()
1985 && !migration_in_postcopy()) {
b9ee2f7d 1986 return ram_save_multifd_page(rs, block, offset);
a82d593b
DDAG
1987 }
1988
1faa5665 1989 return ram_save_page(rs, pss, last_stage);
a82d593b
DDAG
1990}
1991
1992/**
3d0684b2 1993 * ram_save_host_page: save a whole host page
a82d593b 1994 *
3d0684b2
JQ
1995 * Starting at *offset send pages up to the end of the current host
1996 * page. It's valid for the initial offset to point into the middle of
1997 * a host page in which case the remainder of the hostpage is sent.
1998 * Only dirty target pages are sent. Note that the host page size may
1999 * be a huge page for this block.
1eb3fc0a
DDAG
2000 * The saving stops at the boundary of the used_length of the block
2001 * if the RAMBlock isn't a multiple of the host page size.
a82d593b 2002 *
3d0684b2
JQ
2003 * Returns the number of pages written or negative on error
2004 *
6f37bb8b 2005 * @rs: current RAM state
3d0684b2 2006 * @ms: current migration state
3d0684b2 2007 * @pss: data about the page we want to send
a82d593b 2008 * @last_stage: if we are at the completion stage
a82d593b 2009 */
a0a8aa14 2010static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2011 bool last_stage)
a82d593b
DDAG
2012{
2013 int tmppages, pages = 0;
a935e30f
JQ
2014 size_t pagesize_bits =
2015 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
ba1b7c81
KJ
2016 unsigned long hostpage_boundary =
2017 QEMU_ALIGN_UP(pss->page + 1, pagesize_bits);
278e2f55
AG
2018 unsigned long start_page = pss->page;
2019 int res;
4c011c37 2020
fbd162e6 2021 if (ramblock_is_ignored(pss->block)) {
b895de50
CLG
2022 error_report("block %s should not be migrated !", pss->block->idstr);
2023 return 0;
2024 }
2025
a82d593b 2026 do {
1faa5665 2027 /* Check the pages is dirty and if it is send it */
ba1b7c81
KJ
2028 if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2029 tmppages = ram_save_target_page(rs, pss, last_stage);
2030 if (tmppages < 0) {
2031 return tmppages;
2032 }
a82d593b 2033
ba1b7c81
KJ
2034 pages += tmppages;
2035 /*
2036 * Allow rate limiting to happen in the middle of huge pages if
2037 * something is sent in the current iteration.
2038 */
2039 if (pagesize_bits > 1 && tmppages > 0) {
2040 migration_rate_limit();
2041 }
23feba90 2042 }
ba1b7c81
KJ
2043 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2044 } while ((pss->page < hostpage_boundary) &&
8bba004c
AR
2045 offset_in_ramblock(pss->block,
2046 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS));
ba1b7c81
KJ
2047 /* The offset we leave with is the min boundary of host page and block */
2048 pss->page = MIN(pss->page, hostpage_boundary) - 1;
278e2f55
AG
2049
2050 res = ram_save_release_protection(rs, pss, start_page);
2051 return (res < 0 ? res : pages);
a82d593b 2052}
6c595cde 2053
56e93d26 2054/**
3d0684b2 2055 * ram_find_and_save_block: finds a dirty page and sends it to f
56e93d26
JQ
2056 *
2057 * Called within an RCU critical section.
2058 *
e8f3735f
XG
2059 * Returns the number of pages written where zero means no dirty pages,
2060 * or negative on error
56e93d26 2061 *
6f37bb8b 2062 * @rs: current RAM state
56e93d26 2063 * @last_stage: if we are at the completion stage
a82d593b
DDAG
2064 *
2065 * On systems where host-page-size > target-page-size it will send all the
2066 * pages in a host page that are dirty.
56e93d26
JQ
2067 */
2068
ce25d337 2069static int ram_find_and_save_block(RAMState *rs, bool last_stage)
56e93d26 2070{
b8fb8cb7 2071 PageSearchStatus pss;
56e93d26 2072 int pages = 0;
b9e60928 2073 bool again, found;
56e93d26 2074
0827b9e9
AA
2075 /* No dirty page as there is zero RAM */
2076 if (!ram_bytes_total()) {
2077 return pages;
2078 }
2079
6f37bb8b 2080 pss.block = rs->last_seen_block;
a935e30f 2081 pss.page = rs->last_page;
b8fb8cb7
DDAG
2082 pss.complete_round = false;
2083
2084 if (!pss.block) {
2085 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2086 }
56e93d26 2087
b9e60928 2088 do {
a82d593b 2089 again = true;
f20e2865 2090 found = get_queued_page(rs, &pss);
b9e60928 2091
a82d593b
DDAG
2092 if (!found) {
2093 /* priority queue empty, so just search for something dirty */
f20e2865 2094 found = find_dirty_block(rs, &pss, &again);
a82d593b 2095 }
f3f491fc 2096
a82d593b 2097 if (found) {
f20e2865 2098 pages = ram_save_host_page(rs, &pss, last_stage);
56e93d26 2099 }
b9e60928 2100 } while (!pages && again);
56e93d26 2101
6f37bb8b 2102 rs->last_seen_block = pss.block;
a935e30f 2103 rs->last_page = pss.page;
56e93d26
JQ
2104
2105 return pages;
2106}
2107
2108void acct_update_position(QEMUFile *f, size_t size, bool zero)
2109{
2110 uint64_t pages = size / TARGET_PAGE_SIZE;
f7ccd61b 2111
56e93d26 2112 if (zero) {
9360447d 2113 ram_counters.duplicate += pages;
56e93d26 2114 } else {
9360447d
JQ
2115 ram_counters.normal += pages;
2116 ram_counters.transferred += size;
56e93d26
JQ
2117 qemu_update_position(f, size);
2118 }
2119}
2120
fbd162e6 2121static uint64_t ram_bytes_total_common(bool count_ignored)
56e93d26
JQ
2122{
2123 RAMBlock *block;
2124 uint64_t total = 0;
2125
89ac5a1d
DDAG
2126 RCU_READ_LOCK_GUARD();
2127
fbd162e6
YK
2128 if (count_ignored) {
2129 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2130 total += block->used_length;
2131 }
2132 } else {
2133 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2134 total += block->used_length;
2135 }
99e15582 2136 }
56e93d26
JQ
2137 return total;
2138}
2139
fbd162e6
YK
2140uint64_t ram_bytes_total(void)
2141{
2142 return ram_bytes_total_common(false);
2143}
2144
f265e0e4 2145static void xbzrle_load_setup(void)
56e93d26 2146{
f265e0e4 2147 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
56e93d26
JQ
2148}
2149
f265e0e4
JQ
2150static void xbzrle_load_cleanup(void)
2151{
2152 g_free(XBZRLE.decoded_buf);
2153 XBZRLE.decoded_buf = NULL;
2154}
2155
7d7c96be
PX
2156static void ram_state_cleanup(RAMState **rsp)
2157{
b9ccaf6d
DDAG
2158 if (*rsp) {
2159 migration_page_queue_free(*rsp);
2160 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2161 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2162 g_free(*rsp);
2163 *rsp = NULL;
2164 }
7d7c96be
PX
2165}
2166
84593a08
PX
2167static void xbzrle_cleanup(void)
2168{
2169 XBZRLE_cache_lock();
2170 if (XBZRLE.cache) {
2171 cache_fini(XBZRLE.cache);
2172 g_free(XBZRLE.encoded_buf);
2173 g_free(XBZRLE.current_buf);
2174 g_free(XBZRLE.zero_target_page);
2175 XBZRLE.cache = NULL;
2176 XBZRLE.encoded_buf = NULL;
2177 XBZRLE.current_buf = NULL;
2178 XBZRLE.zero_target_page = NULL;
2179 }
2180 XBZRLE_cache_unlock();
2181}
2182
f265e0e4 2183static void ram_save_cleanup(void *opaque)
56e93d26 2184{
53518d94 2185 RAMState **rsp = opaque;
6b6712ef 2186 RAMBlock *block;
eb859c53 2187
278e2f55
AG
2188 /* We don't use dirty log with background snapshots */
2189 if (!migrate_background_snapshot()) {
2190 /* caller have hold iothread lock or is in a bh, so there is
2191 * no writing race against the migration bitmap
2192 */
2193 memory_global_dirty_log_stop();
2194 }
6b6712ef 2195
fbd162e6 2196 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
002cad6b
PX
2197 g_free(block->clear_bmap);
2198 block->clear_bmap = NULL;
6b6712ef
JQ
2199 g_free(block->bmap);
2200 block->bmap = NULL;
56e93d26
JQ
2201 }
2202
84593a08 2203 xbzrle_cleanup();
f0afa331 2204 compress_threads_save_cleanup();
7d7c96be 2205 ram_state_cleanup(rsp);
56e93d26
JQ
2206}
2207
6f37bb8b 2208static void ram_state_reset(RAMState *rs)
56e93d26 2209{
6f37bb8b
JQ
2210 rs->last_seen_block = NULL;
2211 rs->last_sent_block = NULL;
269ace29 2212 rs->last_page = 0;
6f37bb8b 2213 rs->last_version = ram_list.version;
1a373522 2214 rs->xbzrle_enabled = false;
56e93d26
JQ
2215}
2216
2217#define MAX_WAIT 50 /* ms, half buffered_file limit */
2218
4f2e4252
DDAG
2219/*
2220 * 'expected' is the value you expect the bitmap mostly to be full
2221 * of; it won't bother printing lines that are all this value.
2222 * If 'todump' is null the migration bitmap is dumped.
2223 */
6b6712ef
JQ
2224void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2225 unsigned long pages)
4f2e4252 2226{
4f2e4252
DDAG
2227 int64_t cur;
2228 int64_t linelen = 128;
2229 char linebuf[129];
2230
6b6712ef 2231 for (cur = 0; cur < pages; cur += linelen) {
4f2e4252
DDAG
2232 int64_t curb;
2233 bool found = false;
2234 /*
2235 * Last line; catch the case where the line length
2236 * is longer than remaining ram
2237 */
6b6712ef
JQ
2238 if (cur + linelen > pages) {
2239 linelen = pages - cur;
4f2e4252
DDAG
2240 }
2241 for (curb = 0; curb < linelen; curb++) {
2242 bool thisbit = test_bit(cur + curb, todump);
2243 linebuf[curb] = thisbit ? '1' : '.';
2244 found = found || (thisbit != expected);
2245 }
2246 if (found) {
2247 linebuf[curb] = '\0';
2248 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2249 }
2250 }
2251}
2252
e0b266f0
DDAG
2253/* **** functions for postcopy ***** */
2254
ced1c616
PB
2255void ram_postcopy_migrated_memory_release(MigrationState *ms)
2256{
2257 struct RAMBlock *block;
ced1c616 2258
fbd162e6 2259 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2260 unsigned long *bitmap = block->bmap;
2261 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2262 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
ced1c616
PB
2263
2264 while (run_start < range) {
2265 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
8bba004c
AR
2266 ram_discard_range(block->idstr,
2267 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2268 ((ram_addr_t)(run_end - run_start))
2269 << TARGET_PAGE_BITS);
ced1c616
PB
2270 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2271 }
2272 }
2273}
2274
3d0684b2
JQ
2275/**
2276 * postcopy_send_discard_bm_ram: discard a RAMBlock
2277 *
2278 * Returns zero on success
2279 *
e0b266f0 2280 * Callback from postcopy_each_ram_send_discard for each RAMBlock
3d0684b2
JQ
2281 *
2282 * @ms: current migration state
89dab31b 2283 * @block: RAMBlock to discard
e0b266f0 2284 */
810cf2bb 2285static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
e0b266f0 2286{
6b6712ef 2287 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
e0b266f0 2288 unsigned long current;
1e7cf8c3 2289 unsigned long *bitmap = block->bmap;
e0b266f0 2290
6b6712ef 2291 for (current = 0; current < end; ) {
1e7cf8c3 2292 unsigned long one = find_next_bit(bitmap, end, current);
33a5cb62 2293 unsigned long zero, discard_length;
e0b266f0 2294
33a5cb62
WY
2295 if (one >= end) {
2296 break;
2297 }
e0b266f0 2298
1e7cf8c3 2299 zero = find_next_zero_bit(bitmap, end, one + 1);
33a5cb62
WY
2300
2301 if (zero >= end) {
2302 discard_length = end - one;
e0b266f0 2303 } else {
33a5cb62
WY
2304 discard_length = zero - one;
2305 }
810cf2bb 2306 postcopy_discard_send_range(ms, one, discard_length);
33a5cb62 2307 current = one + discard_length;
e0b266f0
DDAG
2308 }
2309
2310 return 0;
2311}
2312
3d0684b2
JQ
2313/**
2314 * postcopy_each_ram_send_discard: discard all RAMBlocks
2315 *
2316 * Returns 0 for success or negative for error
2317 *
e0b266f0
DDAG
2318 * Utility for the outgoing postcopy code.
2319 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2320 * passing it bitmap indexes and name.
e0b266f0
DDAG
2321 * (qemu_ram_foreach_block ends up passing unscaled lengths
2322 * which would mean postcopy code would have to deal with target page)
3d0684b2
JQ
2323 *
2324 * @ms: current migration state
e0b266f0
DDAG
2325 */
2326static int postcopy_each_ram_send_discard(MigrationState *ms)
2327{
2328 struct RAMBlock *block;
2329 int ret;
2330
fbd162e6 2331 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
810cf2bb 2332 postcopy_discard_send_init(ms, block->idstr);
e0b266f0
DDAG
2333
2334 /*
2335 * Postcopy sends chunks of bitmap over the wire, but it
2336 * just needs indexes at this point, avoids it having
2337 * target page specific code.
2338 */
810cf2bb
WY
2339 ret = postcopy_send_discard_bm_ram(ms, block);
2340 postcopy_discard_send_finish(ms);
e0b266f0
DDAG
2341 if (ret) {
2342 return ret;
2343 }
2344 }
2345
2346 return 0;
2347}
2348
3d0684b2 2349/**
8324ef86 2350 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
3d0684b2
JQ
2351 *
2352 * Helper for postcopy_chunk_hostpages; it's called twice to
2353 * canonicalize the two bitmaps, that are similar, but one is
2354 * inverted.
99e314eb 2355 *
3d0684b2
JQ
2356 * Postcopy requires that all target pages in a hostpage are dirty or
2357 * clean, not a mix. This function canonicalizes the bitmaps.
99e314eb 2358 *
3d0684b2 2359 * @ms: current migration state
3d0684b2 2360 * @block: block that contains the page we want to canonicalize
99e314eb 2361 */
1e7cf8c3 2362static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
99e314eb 2363{
53518d94 2364 RAMState *rs = ram_state;
6b6712ef 2365 unsigned long *bitmap = block->bmap;
29c59172 2366 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
6b6712ef 2367 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
99e314eb
DDAG
2368 unsigned long run_start;
2369
29c59172
DDAG
2370 if (block->page_size == TARGET_PAGE_SIZE) {
2371 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2372 return;
2373 }
2374
1e7cf8c3
WY
2375 /* Find a dirty page */
2376 run_start = find_next_bit(bitmap, pages, 0);
99e314eb 2377
6b6712ef 2378 while (run_start < pages) {
99e314eb
DDAG
2379
2380 /*
2381 * If the start of this run of pages is in the middle of a host
2382 * page, then we need to fixup this host page.
2383 */
9dec3cc3 2384 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
99e314eb 2385 /* Find the end of this run */
1e7cf8c3 2386 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
99e314eb
DDAG
2387 /*
2388 * If the end isn't at the start of a host page, then the
2389 * run doesn't finish at the end of a host page
2390 * and we need to discard.
2391 */
99e314eb
DDAG
2392 }
2393
9dec3cc3 2394 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
99e314eb 2395 unsigned long page;
dad45ab2
WY
2396 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2397 host_ratio);
2398 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
99e314eb 2399
99e314eb
DDAG
2400 /* Clean up the bitmap */
2401 for (page = fixup_start_addr;
2402 page < fixup_start_addr + host_ratio; page++) {
99e314eb
DDAG
2403 /*
2404 * Remark them as dirty, updating the count for any pages
2405 * that weren't previously dirty.
2406 */
0d8ec885 2407 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
99e314eb
DDAG
2408 }
2409 }
2410
1e7cf8c3
WY
2411 /* Find the next dirty page for the next iteration */
2412 run_start = find_next_bit(bitmap, pages, run_start);
99e314eb
DDAG
2413 }
2414}
2415
3d0684b2 2416/**
89dab31b 2417 * postcopy_chunk_hostpages: discard any partially sent host page
3d0684b2 2418 *
99e314eb
DDAG
2419 * Utility for the outgoing postcopy code.
2420 *
2421 * Discard any partially sent host-page size chunks, mark any partially
29c59172
DDAG
2422 * dirty host-page size chunks as all dirty. In this case the host-page
2423 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
99e314eb 2424 *
3d0684b2
JQ
2425 * Returns zero on success
2426 *
2427 * @ms: current migration state
6b6712ef 2428 * @block: block we want to work with
99e314eb 2429 */
6b6712ef 2430static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
99e314eb 2431{
810cf2bb 2432 postcopy_discard_send_init(ms, block->idstr);
99e314eb 2433
6b6712ef 2434 /*
1e7cf8c3 2435 * Ensure that all partially dirty host pages are made fully dirty.
6b6712ef 2436 */
1e7cf8c3 2437 postcopy_chunk_hostpages_pass(ms, block);
99e314eb 2438
810cf2bb 2439 postcopy_discard_send_finish(ms);
99e314eb
DDAG
2440 return 0;
2441}
2442
3d0684b2
JQ
2443/**
2444 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2445 *
2446 * Returns zero on success
2447 *
e0b266f0
DDAG
2448 * Transmit the set of pages to be discarded after precopy to the target
2449 * these are pages that:
2450 * a) Have been previously transmitted but are now dirty again
2451 * b) Pages that have never been transmitted, this ensures that
2452 * any pages on the destination that have been mapped by background
2453 * tasks get discarded (transparent huge pages is the specific concern)
2454 * Hopefully this is pretty sparse
3d0684b2
JQ
2455 *
2456 * @ms: current migration state
e0b266f0
DDAG
2457 */
2458int ram_postcopy_send_discard_bitmap(MigrationState *ms)
2459{
53518d94 2460 RAMState *rs = ram_state;
6b6712ef 2461 RAMBlock *block;
e0b266f0 2462 int ret;
e0b266f0 2463
89ac5a1d 2464 RCU_READ_LOCK_GUARD();
e0b266f0
DDAG
2465
2466 /* This should be our last sync, the src is now paused */
eb859c53 2467 migration_bitmap_sync(rs);
e0b266f0 2468
6b6712ef
JQ
2469 /* Easiest way to make sure we don't resume in the middle of a host-page */
2470 rs->last_seen_block = NULL;
2471 rs->last_sent_block = NULL;
2472 rs->last_page = 0;
e0b266f0 2473
fbd162e6 2474 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2475 /* Deal with TPS != HPS and huge pages */
2476 ret = postcopy_chunk_hostpages(ms, block);
2477 if (ret) {
6b6712ef
JQ
2478 return ret;
2479 }
e0b266f0 2480
e0b266f0 2481#ifdef DEBUG_POSTCOPY
1e7cf8c3
WY
2482 ram_debug_dump_bitmap(block->bmap, true,
2483 block->used_length >> TARGET_PAGE_BITS);
e0b266f0 2484#endif
6b6712ef
JQ
2485 }
2486 trace_ram_postcopy_send_discard_bitmap();
e0b266f0 2487
b3ac2b94 2488 return postcopy_each_ram_send_discard(ms);
e0b266f0
DDAG
2489}
2490
3d0684b2
JQ
2491/**
2492 * ram_discard_range: discard dirtied pages at the beginning of postcopy
e0b266f0 2493 *
3d0684b2 2494 * Returns zero on success
e0b266f0 2495 *
36449157
JQ
2496 * @rbname: name of the RAMBlock of the request. NULL means the
2497 * same that last one.
3d0684b2
JQ
2498 * @start: RAMBlock starting page
2499 * @length: RAMBlock size
e0b266f0 2500 */
aaa2064c 2501int ram_discard_range(const char *rbname, uint64_t start, size_t length)
e0b266f0 2502{
36449157 2503 trace_ram_discard_range(rbname, start, length);
d3a5038c 2504
89ac5a1d 2505 RCU_READ_LOCK_GUARD();
36449157 2506 RAMBlock *rb = qemu_ram_block_by_name(rbname);
e0b266f0
DDAG
2507
2508 if (!rb) {
36449157 2509 error_report("ram_discard_range: Failed to find block '%s'", rbname);
03acb4e9 2510 return -1;
e0b266f0
DDAG
2511 }
2512
814bb08f
PX
2513 /*
2514 * On source VM, we don't need to update the received bitmap since
2515 * we don't even have one.
2516 */
2517 if (rb->receivedmap) {
2518 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2519 length >> qemu_target_page_bits());
2520 }
2521
03acb4e9 2522 return ram_block_discard_range(rb, start, length);
e0b266f0
DDAG
2523}
2524
84593a08
PX
2525/*
2526 * For every allocation, we will try not to crash the VM if the
2527 * allocation failed.
2528 */
2529static int xbzrle_init(void)
2530{
2531 Error *local_err = NULL;
2532
2533 if (!migrate_use_xbzrle()) {
2534 return 0;
2535 }
2536
2537 XBZRLE_cache_lock();
2538
2539 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2540 if (!XBZRLE.zero_target_page) {
2541 error_report("%s: Error allocating zero page", __func__);
2542 goto err_out;
2543 }
2544
2545 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2546 TARGET_PAGE_SIZE, &local_err);
2547 if (!XBZRLE.cache) {
2548 error_report_err(local_err);
2549 goto free_zero_page;
2550 }
2551
2552 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2553 if (!XBZRLE.encoded_buf) {
2554 error_report("%s: Error allocating encoded_buf", __func__);
2555 goto free_cache;
2556 }
2557
2558 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2559 if (!XBZRLE.current_buf) {
2560 error_report("%s: Error allocating current_buf", __func__);
2561 goto free_encoded_buf;
2562 }
2563
2564 /* We are all good */
2565 XBZRLE_cache_unlock();
2566 return 0;
2567
2568free_encoded_buf:
2569 g_free(XBZRLE.encoded_buf);
2570 XBZRLE.encoded_buf = NULL;
2571free_cache:
2572 cache_fini(XBZRLE.cache);
2573 XBZRLE.cache = NULL;
2574free_zero_page:
2575 g_free(XBZRLE.zero_target_page);
2576 XBZRLE.zero_target_page = NULL;
2577err_out:
2578 XBZRLE_cache_unlock();
2579 return -ENOMEM;
2580}
2581
53518d94 2582static int ram_state_init(RAMState **rsp)
56e93d26 2583{
7d00ee6a
PX
2584 *rsp = g_try_new0(RAMState, 1);
2585
2586 if (!*rsp) {
2587 error_report("%s: Init ramstate fail", __func__);
2588 return -1;
2589 }
53518d94
JQ
2590
2591 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2592 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2593 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
56e93d26 2594
7d00ee6a 2595 /*
40c4d4a8
IR
2596 * Count the total number of pages used by ram blocks not including any
2597 * gaps due to alignment or unplugs.
03158519 2598 * This must match with the initial values of dirty bitmap.
7d00ee6a 2599 */
40c4d4a8 2600 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
7d00ee6a
PX
2601 ram_state_reset(*rsp);
2602
2603 return 0;
2604}
2605
d6eff5d7 2606static void ram_list_init_bitmaps(void)
7d00ee6a 2607{
002cad6b 2608 MigrationState *ms = migrate_get_current();
d6eff5d7
PX
2609 RAMBlock *block;
2610 unsigned long pages;
002cad6b 2611 uint8_t shift;
56e93d26 2612
0827b9e9
AA
2613 /* Skip setting bitmap if there is no RAM */
2614 if (ram_bytes_total()) {
002cad6b
PX
2615 shift = ms->clear_bitmap_shift;
2616 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2617 error_report("clear_bitmap_shift (%u) too big, using "
2618 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2619 shift = CLEAR_BITMAP_SHIFT_MAX;
2620 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2621 error_report("clear_bitmap_shift (%u) too small, using "
2622 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2623 shift = CLEAR_BITMAP_SHIFT_MIN;
2624 }
2625
fbd162e6 2626 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
d6eff5d7 2627 pages = block->max_length >> TARGET_PAGE_BITS;
03158519
WY
2628 /*
2629 * The initial dirty bitmap for migration must be set with all
2630 * ones to make sure we'll migrate every guest RAM page to
2631 * destination.
40c4d4a8
IR
2632 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2633 * new migration after a failed migration, ram_list.
2634 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2635 * guest memory.
03158519 2636 */
6b6712ef 2637 block->bmap = bitmap_new(pages);
40c4d4a8 2638 bitmap_set(block->bmap, 0, pages);
002cad6b
PX
2639 block->clear_bmap_shift = shift;
2640 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
0827b9e9 2641 }
f3f491fc 2642 }
d6eff5d7
PX
2643}
2644
2645static void ram_init_bitmaps(RAMState *rs)
2646{
2647 /* For memory_global_dirty_log_start below. */
2648 qemu_mutex_lock_iothread();
2649 qemu_mutex_lock_ramlist();
f3f491fc 2650
89ac5a1d
DDAG
2651 WITH_RCU_READ_LOCK_GUARD() {
2652 ram_list_init_bitmaps();
278e2f55
AG
2653 /* We don't use dirty log with background snapshots */
2654 if (!migrate_background_snapshot()) {
2655 memory_global_dirty_log_start();
2656 migration_bitmap_sync_precopy(rs);
2657 }
89ac5a1d 2658 }
56e93d26 2659 qemu_mutex_unlock_ramlist();
49877834 2660 qemu_mutex_unlock_iothread();
d6eff5d7
PX
2661}
2662
2663static int ram_init_all(RAMState **rsp)
2664{
2665 if (ram_state_init(rsp)) {
2666 return -1;
2667 }
2668
2669 if (xbzrle_init()) {
2670 ram_state_cleanup(rsp);
2671 return -1;
2672 }
2673
2674 ram_init_bitmaps(*rsp);
a91246c9
HZ
2675
2676 return 0;
2677}
2678
08614f34
PX
2679static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2680{
2681 RAMBlock *block;
2682 uint64_t pages = 0;
2683
2684 /*
2685 * Postcopy is not using xbzrle/compression, so no need for that.
2686 * Also, since source are already halted, we don't need to care
2687 * about dirty page logging as well.
2688 */
2689
fbd162e6 2690 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
08614f34
PX
2691 pages += bitmap_count_one(block->bmap,
2692 block->used_length >> TARGET_PAGE_BITS);
2693 }
2694
2695 /* This may not be aligned with current bitmaps. Recalculate. */
2696 rs->migration_dirty_pages = pages;
2697
1a373522 2698 ram_state_reset(rs);
08614f34
PX
2699
2700 /* Update RAMState cache of output QEMUFile */
2701 rs->f = out;
2702
2703 trace_ram_state_resume_prepare(pages);
2704}
2705
6bcb05fc
WW
2706/*
2707 * This function clears bits of the free pages reported by the caller from the
2708 * migration dirty bitmap. @addr is the host address corresponding to the
2709 * start of the continuous guest free pages, and @len is the total bytes of
2710 * those pages.
2711 */
2712void qemu_guest_free_page_hint(void *addr, size_t len)
2713{
2714 RAMBlock *block;
2715 ram_addr_t offset;
2716 size_t used_len, start, npages;
2717 MigrationState *s = migrate_get_current();
2718
2719 /* This function is currently expected to be used during live migration */
2720 if (!migration_is_setup_or_active(s->state)) {
2721 return;
2722 }
2723
2724 for (; len > 0; len -= used_len, addr += used_len) {
2725 block = qemu_ram_block_from_host(addr, false, &offset);
2726 if (unlikely(!block || offset >= block->used_length)) {
2727 /*
2728 * The implementation might not support RAMBlock resize during
2729 * live migration, but it could happen in theory with future
2730 * updates. So we add a check here to capture that case.
2731 */
2732 error_report_once("%s unexpected error", __func__);
2733 return;
2734 }
2735
2736 if (len <= block->used_length - offset) {
2737 used_len = len;
2738 } else {
2739 used_len = block->used_length - offset;
2740 }
2741
2742 start = offset >> TARGET_PAGE_BITS;
2743 npages = used_len >> TARGET_PAGE_BITS;
2744
2745 qemu_mutex_lock(&ram_state->bitmap_mutex);
2746 ram_state->migration_dirty_pages -=
2747 bitmap_count_one_with_offset(block->bmap, start, npages);
2748 bitmap_clear(block->bmap, start, npages);
2749 qemu_mutex_unlock(&ram_state->bitmap_mutex);
2750 }
2751}
2752
3d0684b2
JQ
2753/*
2754 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
a91246c9
HZ
2755 * long-running RCU critical section. When rcu-reclaims in the code
2756 * start to become numerous it will be necessary to reduce the
2757 * granularity of these critical sections.
2758 */
2759
3d0684b2
JQ
2760/**
2761 * ram_save_setup: Setup RAM for migration
2762 *
2763 * Returns zero to indicate success and negative for error
2764 *
2765 * @f: QEMUFile where to send the data
2766 * @opaque: RAMState pointer
2767 */
a91246c9
HZ
2768static int ram_save_setup(QEMUFile *f, void *opaque)
2769{
53518d94 2770 RAMState **rsp = opaque;
a91246c9
HZ
2771 RAMBlock *block;
2772
dcaf446e
XG
2773 if (compress_threads_save_setup()) {
2774 return -1;
2775 }
2776
a91246c9
HZ
2777 /* migration has already setup the bitmap, reuse it. */
2778 if (!migration_in_colo_state()) {
7d00ee6a 2779 if (ram_init_all(rsp) != 0) {
dcaf446e 2780 compress_threads_save_cleanup();
a91246c9 2781 return -1;
53518d94 2782 }
a91246c9 2783 }
53518d94 2784 (*rsp)->f = f;
a91246c9 2785
0e6ebd48
DDAG
2786 WITH_RCU_READ_LOCK_GUARD() {
2787 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
56e93d26 2788
0e6ebd48
DDAG
2789 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2790 qemu_put_byte(f, strlen(block->idstr));
2791 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
2792 qemu_put_be64(f, block->used_length);
2793 if (migrate_postcopy_ram() && block->page_size !=
2794 qemu_host_page_size) {
2795 qemu_put_be64(f, block->page_size);
2796 }
2797 if (migrate_ignore_shared()) {
2798 qemu_put_be64(f, block->mr->addr);
2799 }
fbd162e6 2800 }
56e93d26
JQ
2801 }
2802
56e93d26
JQ
2803 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
2804 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
2805
99f2c6fb 2806 multifd_send_sync_main(f);
56e93d26 2807 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 2808 qemu_fflush(f);
56e93d26
JQ
2809
2810 return 0;
2811}
2812
3d0684b2
JQ
2813/**
2814 * ram_save_iterate: iterative stage for migration
2815 *
2816 * Returns zero to indicate success and negative for error
2817 *
2818 * @f: QEMUFile where to send the data
2819 * @opaque: RAMState pointer
2820 */
56e93d26
JQ
2821static int ram_save_iterate(QEMUFile *f, void *opaque)
2822{
53518d94
JQ
2823 RAMState **temp = opaque;
2824 RAMState *rs = *temp;
3d4095b2 2825 int ret = 0;
56e93d26
JQ
2826 int i;
2827 int64_t t0;
5c90308f 2828 int done = 0;
56e93d26 2829
b2557345
PL
2830 if (blk_mig_bulk_active()) {
2831 /* Avoid transferring ram during bulk phase of block migration as
2832 * the bulk phase will usually take a long time and transferring
2833 * ram updates during that time is pointless. */
2834 goto out;
2835 }
2836
89ac5a1d
DDAG
2837 WITH_RCU_READ_LOCK_GUARD() {
2838 if (ram_list.version != rs->last_version) {
2839 ram_state_reset(rs);
2840 }
56e93d26 2841
89ac5a1d
DDAG
2842 /* Read version before ram_list.blocks */
2843 smp_rmb();
56e93d26 2844
89ac5a1d 2845 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
56e93d26 2846
89ac5a1d
DDAG
2847 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2848 i = 0;
2849 while ((ret = qemu_file_rate_limit(f)) == 0 ||
2850 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2851 int pages;
e03a34f8 2852
89ac5a1d
DDAG
2853 if (qemu_file_get_error(f)) {
2854 break;
2855 }
e8f3735f 2856
89ac5a1d
DDAG
2857 pages = ram_find_and_save_block(rs, false);
2858 /* no more pages to sent */
2859 if (pages == 0) {
2860 done = 1;
2861 break;
2862 }
e8f3735f 2863
89ac5a1d
DDAG
2864 if (pages < 0) {
2865 qemu_file_set_error(f, pages);
56e93d26
JQ
2866 break;
2867 }
89ac5a1d
DDAG
2868
2869 rs->target_page_count += pages;
2870
644acf99
WY
2871 /*
2872 * During postcopy, it is necessary to make sure one whole host
2873 * page is sent in one chunk.
2874 */
2875 if (migrate_postcopy_ram()) {
2876 flush_compressed_data(rs);
2877 }
2878
89ac5a1d
DDAG
2879 /*
2880 * we want to check in the 1st loop, just in case it was the 1st
2881 * time and we had to sync the dirty bitmap.
2882 * qemu_clock_get_ns() is a bit expensive, so we only check each
2883 * some iterations
2884 */
2885 if ((i & 63) == 0) {
2886 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
2887 1000000;
2888 if (t1 > MAX_WAIT) {
2889 trace_ram_save_iterate_big_wait(t1, i);
2890 break;
2891 }
2892 }
2893 i++;
56e93d26 2894 }
56e93d26 2895 }
56e93d26
JQ
2896
2897 /*
2898 * Must occur before EOS (or any QEMUFile operation)
2899 * because of RDMA protocol.
2900 */
2901 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
2902
b2557345 2903out:
b69a0227
JQ
2904 if (ret >= 0
2905 && migration_is_setup_or_active(migrate_get_current()->state)) {
99f2c6fb 2906 multifd_send_sync_main(rs->f);
3d4095b2
JQ
2907 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2908 qemu_fflush(f);
2909 ram_counters.transferred += 8;
56e93d26 2910
3d4095b2
JQ
2911 ret = qemu_file_get_error(f);
2912 }
56e93d26
JQ
2913 if (ret < 0) {
2914 return ret;
2915 }
2916
5c90308f 2917 return done;
56e93d26
JQ
2918}
2919
3d0684b2
JQ
2920/**
2921 * ram_save_complete: function called to send the remaining amount of ram
2922 *
e8f3735f 2923 * Returns zero to indicate success or negative on error
3d0684b2
JQ
2924 *
2925 * Called with iothread lock
2926 *
2927 * @f: QEMUFile where to send the data
2928 * @opaque: RAMState pointer
2929 */
56e93d26
JQ
2930static int ram_save_complete(QEMUFile *f, void *opaque)
2931{
53518d94
JQ
2932 RAMState **temp = opaque;
2933 RAMState *rs = *temp;
e8f3735f 2934 int ret = 0;
6f37bb8b 2935
89ac5a1d
DDAG
2936 WITH_RCU_READ_LOCK_GUARD() {
2937 if (!migration_in_postcopy()) {
2938 migration_bitmap_sync_precopy(rs);
2939 }
56e93d26 2940
89ac5a1d 2941 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
56e93d26 2942
89ac5a1d 2943 /* try transferring iterative blocks of memory */
56e93d26 2944
89ac5a1d
DDAG
2945 /* flush all remaining blocks regardless of rate limiting */
2946 while (true) {
2947 int pages;
56e93d26 2948
89ac5a1d
DDAG
2949 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
2950 /* no more blocks to sent */
2951 if (pages == 0) {
2952 break;
2953 }
2954 if (pages < 0) {
2955 ret = pages;
2956 break;
2957 }
e8f3735f 2958 }
56e93d26 2959
89ac5a1d
DDAG
2960 flush_compressed_data(rs);
2961 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
2962 }
d09a6fde 2963
3d4095b2 2964 if (ret >= 0) {
99f2c6fb 2965 multifd_send_sync_main(rs->f);
3d4095b2
JQ
2966 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2967 qemu_fflush(f);
2968 }
56e93d26 2969
e8f3735f 2970 return ret;
56e93d26
JQ
2971}
2972
c31b098f 2973static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
47995026
VSO
2974 uint64_t *res_precopy_only,
2975 uint64_t *res_compatible,
2976 uint64_t *res_postcopy_only)
56e93d26 2977{
53518d94
JQ
2978 RAMState **temp = opaque;
2979 RAMState *rs = *temp;
56e93d26
JQ
2980 uint64_t remaining_size;
2981
9edabd4d 2982 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 2983
5727309d 2984 if (!migration_in_postcopy() &&
663e6c1d 2985 remaining_size < max_size) {
56e93d26 2986 qemu_mutex_lock_iothread();
89ac5a1d
DDAG
2987 WITH_RCU_READ_LOCK_GUARD() {
2988 migration_bitmap_sync_precopy(rs);
2989 }
56e93d26 2990 qemu_mutex_unlock_iothread();
9edabd4d 2991 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 2992 }
c31b098f 2993
86e1167e
VSO
2994 if (migrate_postcopy_ram()) {
2995 /* We can do postcopy, and all the data is postcopiable */
47995026 2996 *res_compatible += remaining_size;
86e1167e 2997 } else {
47995026 2998 *res_precopy_only += remaining_size;
86e1167e 2999 }
56e93d26
JQ
3000}
3001
3002static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3003{
3004 unsigned int xh_len;
3005 int xh_flags;
063e760a 3006 uint8_t *loaded_data;
56e93d26 3007
56e93d26
JQ
3008 /* extract RLE header */
3009 xh_flags = qemu_get_byte(f);
3010 xh_len = qemu_get_be16(f);
3011
3012 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3013 error_report("Failed to load XBZRLE page - wrong compression!");
3014 return -1;
3015 }
3016
3017 if (xh_len > TARGET_PAGE_SIZE) {
3018 error_report("Failed to load XBZRLE page - len overflow!");
3019 return -1;
3020 }
f265e0e4 3021 loaded_data = XBZRLE.decoded_buf;
56e93d26 3022 /* load data and decode */
f265e0e4 3023 /* it can change loaded_data to point to an internal buffer */
063e760a 3024 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
56e93d26
JQ
3025
3026 /* decode RLE */
063e760a 3027 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
56e93d26
JQ
3028 TARGET_PAGE_SIZE) == -1) {
3029 error_report("Failed to load XBZRLE page - decode error!");
3030 return -1;
3031 }
3032
3033 return 0;
3034}
3035
3d0684b2
JQ
3036/**
3037 * ram_block_from_stream: read a RAMBlock id from the migration stream
3038 *
3039 * Must be called from within a rcu critical section.
3040 *
56e93d26 3041 * Returns a pointer from within the RCU-protected ram_list.
a7180877 3042 *
3d0684b2
JQ
3043 * @f: QEMUFile where to read the data from
3044 * @flags: Page flags (mostly to see if it's a continuation of previous block)
a7180877 3045 */
3d0684b2 3046static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
56e93d26 3047{
49324e93 3048 static RAMBlock *block;
56e93d26
JQ
3049 char id[256];
3050 uint8_t len;
3051
3052 if (flags & RAM_SAVE_FLAG_CONTINUE) {
4c4bad48 3053 if (!block) {
56e93d26
JQ
3054 error_report("Ack, bad migration stream!");
3055 return NULL;
3056 }
4c4bad48 3057 return block;
56e93d26
JQ
3058 }
3059
3060 len = qemu_get_byte(f);
3061 qemu_get_buffer(f, (uint8_t *)id, len);
3062 id[len] = 0;
3063
e3dd7493 3064 block = qemu_ram_block_by_name(id);
4c4bad48
HZ
3065 if (!block) {
3066 error_report("Can't find block %s", id);
3067 return NULL;
56e93d26
JQ
3068 }
3069
fbd162e6 3070 if (ramblock_is_ignored(block)) {
b895de50
CLG
3071 error_report("block %s should not be migrated !", id);
3072 return NULL;
3073 }
3074
4c4bad48
HZ
3075 return block;
3076}
3077
3078static inline void *host_from_ram_block_offset(RAMBlock *block,
3079 ram_addr_t offset)
3080{
3081 if (!offset_in_ramblock(block, offset)) {
3082 return NULL;
3083 }
3084
3085 return block->host + offset;
56e93d26
JQ
3086}
3087
13af18f2 3088static inline void *colo_cache_from_block_offset(RAMBlock *block,
8af66371 3089 ram_addr_t offset, bool record_bitmap)
13af18f2
ZC
3090{
3091 if (!offset_in_ramblock(block, offset)) {
3092 return NULL;
3093 }
3094 if (!block->colo_cache) {
3095 error_report("%s: colo_cache is NULL in block :%s",
3096 __func__, block->idstr);
3097 return NULL;
3098 }
7d9acafa
ZC
3099
3100 /*
3101 * During colo checkpoint, we need bitmap of these migrated pages.
3102 * It help us to decide which pages in ram cache should be flushed
3103 * into VM's RAM later.
3104 */
8af66371
HZ
3105 if (record_bitmap &&
3106 !test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
7d9acafa
ZC
3107 ram_state->migration_dirty_pages++;
3108 }
13af18f2
ZC
3109 return block->colo_cache + offset;
3110}
3111
3d0684b2
JQ
3112/**
3113 * ram_handle_compressed: handle the zero page case
3114 *
56e93d26
JQ
3115 * If a page (or a whole RDMA chunk) has been
3116 * determined to be zero, then zap it.
3d0684b2
JQ
3117 *
3118 * @host: host address for the zero page
3119 * @ch: what the page is filled from. We only support zero
3120 * @size: size of the zero page
56e93d26
JQ
3121 */
3122void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3123{
3124 if (ch != 0 || !is_zero_range(host, size)) {
3125 memset(host, ch, size);
3126 }
3127}
3128
797ca154
XG
3129/* return the size after decompression, or negative value on error */
3130static int
3131qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3132 const uint8_t *source, size_t source_len)
3133{
3134 int err;
3135
3136 err = inflateReset(stream);
3137 if (err != Z_OK) {
3138 return -1;
3139 }
3140
3141 stream->avail_in = source_len;
3142 stream->next_in = (uint8_t *)source;
3143 stream->avail_out = dest_len;
3144 stream->next_out = dest;
3145
3146 err = inflate(stream, Z_NO_FLUSH);
3147 if (err != Z_STREAM_END) {
3148 return -1;
3149 }
3150
3151 return stream->total_out;
3152}
3153
56e93d26
JQ
3154static void *do_data_decompress(void *opaque)
3155{
3156 DecompressParam *param = opaque;
3157 unsigned long pagesize;
33d151f4 3158 uint8_t *des;
34ab9e97 3159 int len, ret;
56e93d26 3160
33d151f4 3161 qemu_mutex_lock(&param->mutex);
90e56fb4 3162 while (!param->quit) {
33d151f4
LL
3163 if (param->des) {
3164 des = param->des;
3165 len = param->len;
3166 param->des = 0;
3167 qemu_mutex_unlock(&param->mutex);
3168
56e93d26 3169 pagesize = TARGET_PAGE_SIZE;
34ab9e97
XG
3170
3171 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3172 param->compbuf, len);
f548222c 3173 if (ret < 0 && migrate_get_current()->decompress_error_check) {
34ab9e97
XG
3174 error_report("decompress data failed");
3175 qemu_file_set_error(decomp_file, ret);
3176 }
73a8912b 3177
33d151f4
LL
3178 qemu_mutex_lock(&decomp_done_lock);
3179 param->done = true;
3180 qemu_cond_signal(&decomp_done_cond);
3181 qemu_mutex_unlock(&decomp_done_lock);
3182
3183 qemu_mutex_lock(&param->mutex);
3184 } else {
3185 qemu_cond_wait(&param->cond, &param->mutex);
3186 }
56e93d26 3187 }
33d151f4 3188 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
3189
3190 return NULL;
3191}
3192
34ab9e97 3193static int wait_for_decompress_done(void)
5533b2e9
LL
3194{
3195 int idx, thread_count;
3196
3197 if (!migrate_use_compression()) {
34ab9e97 3198 return 0;
5533b2e9
LL
3199 }
3200
3201 thread_count = migrate_decompress_threads();
3202 qemu_mutex_lock(&decomp_done_lock);
3203 for (idx = 0; idx < thread_count; idx++) {
3204 while (!decomp_param[idx].done) {
3205 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3206 }
3207 }
3208 qemu_mutex_unlock(&decomp_done_lock);
34ab9e97 3209 return qemu_file_get_error(decomp_file);
5533b2e9
LL
3210}
3211
f0afa331 3212static void compress_threads_load_cleanup(void)
56e93d26
JQ
3213{
3214 int i, thread_count;
3215
3416ab5b
JQ
3216 if (!migrate_use_compression()) {
3217 return;
3218 }
56e93d26
JQ
3219 thread_count = migrate_decompress_threads();
3220 for (i = 0; i < thread_count; i++) {
797ca154
XG
3221 /*
3222 * we use it as a indicator which shows if the thread is
3223 * properly init'd or not
3224 */
3225 if (!decomp_param[i].compbuf) {
3226 break;
3227 }
3228
56e93d26 3229 qemu_mutex_lock(&decomp_param[i].mutex);
90e56fb4 3230 decomp_param[i].quit = true;
56e93d26
JQ
3231 qemu_cond_signal(&decomp_param[i].cond);
3232 qemu_mutex_unlock(&decomp_param[i].mutex);
3233 }
3234 for (i = 0; i < thread_count; i++) {
797ca154
XG
3235 if (!decomp_param[i].compbuf) {
3236 break;
3237 }
3238
56e93d26
JQ
3239 qemu_thread_join(decompress_threads + i);
3240 qemu_mutex_destroy(&decomp_param[i].mutex);
3241 qemu_cond_destroy(&decomp_param[i].cond);
797ca154 3242 inflateEnd(&decomp_param[i].stream);
56e93d26 3243 g_free(decomp_param[i].compbuf);
797ca154 3244 decomp_param[i].compbuf = NULL;
56e93d26
JQ
3245 }
3246 g_free(decompress_threads);
3247 g_free(decomp_param);
56e93d26
JQ
3248 decompress_threads = NULL;
3249 decomp_param = NULL;
34ab9e97 3250 decomp_file = NULL;
56e93d26
JQ
3251}
3252
34ab9e97 3253static int compress_threads_load_setup(QEMUFile *f)
797ca154
XG
3254{
3255 int i, thread_count;
3256
3257 if (!migrate_use_compression()) {
3258 return 0;
3259 }
3260
3261 thread_count = migrate_decompress_threads();
3262 decompress_threads = g_new0(QemuThread, thread_count);
3263 decomp_param = g_new0(DecompressParam, thread_count);
3264 qemu_mutex_init(&decomp_done_lock);
3265 qemu_cond_init(&decomp_done_cond);
34ab9e97 3266 decomp_file = f;
797ca154
XG
3267 for (i = 0; i < thread_count; i++) {
3268 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3269 goto exit;
3270 }
3271
3272 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3273 qemu_mutex_init(&decomp_param[i].mutex);
3274 qemu_cond_init(&decomp_param[i].cond);
3275 decomp_param[i].done = true;
3276 decomp_param[i].quit = false;
3277 qemu_thread_create(decompress_threads + i, "decompress",
3278 do_data_decompress, decomp_param + i,
3279 QEMU_THREAD_JOINABLE);
3280 }
3281 return 0;
3282exit:
3283 compress_threads_load_cleanup();
3284 return -1;
3285}
3286
c1bc6626 3287static void decompress_data_with_multi_threads(QEMUFile *f,
56e93d26
JQ
3288 void *host, int len)
3289{
3290 int idx, thread_count;
3291
3292 thread_count = migrate_decompress_threads();
37396950 3293 QEMU_LOCK_GUARD(&decomp_done_lock);
56e93d26
JQ
3294 while (true) {
3295 for (idx = 0; idx < thread_count; idx++) {
73a8912b 3296 if (decomp_param[idx].done) {
33d151f4
LL
3297 decomp_param[idx].done = false;
3298 qemu_mutex_lock(&decomp_param[idx].mutex);
c1bc6626 3299 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
56e93d26
JQ
3300 decomp_param[idx].des = host;
3301 decomp_param[idx].len = len;
33d151f4
LL
3302 qemu_cond_signal(&decomp_param[idx].cond);
3303 qemu_mutex_unlock(&decomp_param[idx].mutex);
56e93d26
JQ
3304 break;
3305 }
3306 }
3307 if (idx < thread_count) {
3308 break;
73a8912b
LL
3309 } else {
3310 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
56e93d26
JQ
3311 }
3312 }
3313}
3314
b70cb3b4
RL
3315static void colo_init_ram_state(void)
3316{
3317 ram_state_init(&ram_state);
b70cb3b4
RL
3318}
3319
13af18f2
ZC
3320/*
3321 * colo cache: this is for secondary VM, we cache the whole
3322 * memory of the secondary VM, it is need to hold the global lock
3323 * to call this helper.
3324 */
3325int colo_init_ram_cache(void)
3326{
3327 RAMBlock *block;
3328
44901b5a
PB
3329 WITH_RCU_READ_LOCK_GUARD() {
3330 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3331 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3332 NULL,
3333 false);
3334 if (!block->colo_cache) {
3335 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3336 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3337 block->used_length);
3338 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3339 if (block->colo_cache) {
3340 qemu_anon_ram_free(block->colo_cache, block->used_length);
3341 block->colo_cache = NULL;
3342 }
89ac5a1d 3343 }
44901b5a 3344 return -errno;
89ac5a1d 3345 }
13af18f2 3346 }
13af18f2 3347 }
44901b5a 3348
7d9acafa
ZC
3349 /*
3350 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3351 * with to decide which page in cache should be flushed into SVM's RAM. Here
3352 * we use the same name 'ram_bitmap' as for migration.
3353 */
3354 if (ram_bytes_total()) {
3355 RAMBlock *block;
3356
fbd162e6 3357 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa 3358 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
7d9acafa 3359 block->bmap = bitmap_new(pages);
7d9acafa
ZC
3360 }
3361 }
7d9acafa 3362
b70cb3b4 3363 colo_init_ram_state();
13af18f2 3364 return 0;
13af18f2
ZC
3365}
3366
0393031a
HZ
3367/* TODO: duplicated with ram_init_bitmaps */
3368void colo_incoming_start_dirty_log(void)
3369{
3370 RAMBlock *block = NULL;
3371 /* For memory_global_dirty_log_start below. */
3372 qemu_mutex_lock_iothread();
3373 qemu_mutex_lock_ramlist();
3374
3375 memory_global_dirty_log_sync();
3376 WITH_RCU_READ_LOCK_GUARD() {
3377 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3378 ramblock_sync_dirty_bitmap(ram_state, block);
3379 /* Discard this dirty bitmap record */
3380 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3381 }
3382 memory_global_dirty_log_start();
3383 }
3384 ram_state->migration_dirty_pages = 0;
3385 qemu_mutex_unlock_ramlist();
3386 qemu_mutex_unlock_iothread();
3387}
3388
13af18f2
ZC
3389/* It is need to hold the global lock to call this helper */
3390void colo_release_ram_cache(void)
3391{
3392 RAMBlock *block;
3393
d1955d22 3394 memory_global_dirty_log_stop();
fbd162e6 3395 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
3396 g_free(block->bmap);
3397 block->bmap = NULL;
3398 }
3399
89ac5a1d
DDAG
3400 WITH_RCU_READ_LOCK_GUARD() {
3401 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3402 if (block->colo_cache) {
3403 qemu_anon_ram_free(block->colo_cache, block->used_length);
3404 block->colo_cache = NULL;
3405 }
13af18f2
ZC
3406 }
3407 }
0393031a 3408 ram_state_cleanup(&ram_state);
13af18f2
ZC
3409}
3410
f265e0e4
JQ
3411/**
3412 * ram_load_setup: Setup RAM for migration incoming side
3413 *
3414 * Returns zero to indicate success and negative for error
3415 *
3416 * @f: QEMUFile where to receive the data
3417 * @opaque: RAMState pointer
3418 */
3419static int ram_load_setup(QEMUFile *f, void *opaque)
3420{
34ab9e97 3421 if (compress_threads_load_setup(f)) {
797ca154
XG
3422 return -1;
3423 }
3424
f265e0e4 3425 xbzrle_load_setup();
f9494614 3426 ramblock_recv_map_init();
13af18f2 3427
f265e0e4
JQ
3428 return 0;
3429}
3430
3431static int ram_load_cleanup(void *opaque)
3432{
f9494614 3433 RAMBlock *rb;
56eb90af 3434
fbd162e6 3435 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
bd108a44 3436 qemu_ram_block_writeback(rb);
56eb90af
JH
3437 }
3438
f265e0e4 3439 xbzrle_load_cleanup();
f0afa331 3440 compress_threads_load_cleanup();
f9494614 3441
fbd162e6 3442 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
3443 g_free(rb->receivedmap);
3444 rb->receivedmap = NULL;
3445 }
13af18f2 3446
f265e0e4
JQ
3447 return 0;
3448}
3449
3d0684b2
JQ
3450/**
3451 * ram_postcopy_incoming_init: allocate postcopy data structures
3452 *
3453 * Returns 0 for success and negative if there was one error
3454 *
3455 * @mis: current migration incoming state
3456 *
3457 * Allocate data structures etc needed by incoming migration with
3458 * postcopy-ram. postcopy-ram's similarly names
3459 * postcopy_ram_incoming_init does the work.
1caddf8a
DDAG
3460 */
3461int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3462{
c136180c 3463 return postcopy_ram_incoming_init(mis);
1caddf8a
DDAG
3464}
3465
3d0684b2
JQ
3466/**
3467 * ram_load_postcopy: load a page in postcopy case
3468 *
3469 * Returns 0 for success or -errno in case of error
3470 *
a7180877
DDAG
3471 * Called in postcopy mode by ram_load().
3472 * rcu_read_lock is taken prior to this being called.
3d0684b2
JQ
3473 *
3474 * @f: QEMUFile where to send the data
a7180877
DDAG
3475 */
3476static int ram_load_postcopy(QEMUFile *f)
3477{
3478 int flags = 0, ret = 0;
3479 bool place_needed = false;
1aa83678 3480 bool matches_target_page_size = false;
a7180877
DDAG
3481 MigrationIncomingState *mis = migration_incoming_get_current();
3482 /* Temporary page that is later 'placed' */
3414322a 3483 void *postcopy_host_page = mis->postcopy_tmp_page;
91ba442f 3484 void *this_host = NULL;
ddf35bdf 3485 bool all_zero = true;
4cbb3c63 3486 int target_pages = 0;
a7180877
DDAG
3487
3488 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3489 ram_addr_t addr;
3490 void *host = NULL;
3491 void *page_buffer = NULL;
3492 void *place_source = NULL;
df9ff5e1 3493 RAMBlock *block = NULL;
a7180877 3494 uint8_t ch;
644acf99 3495 int len;
a7180877
DDAG
3496
3497 addr = qemu_get_be64(f);
7a9ddfbf
PX
3498
3499 /*
3500 * If qemu file error, we should stop here, and then "addr"
3501 * may be invalid
3502 */
3503 ret = qemu_file_get_error(f);
3504 if (ret) {
3505 break;
3506 }
3507
a7180877
DDAG
3508 flags = addr & ~TARGET_PAGE_MASK;
3509 addr &= TARGET_PAGE_MASK;
3510
3511 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
644acf99
WY
3512 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3513 RAM_SAVE_FLAG_COMPRESS_PAGE)) {
df9ff5e1 3514 block = ram_block_from_stream(f, flags);
4c4bad48
HZ
3515
3516 host = host_from_ram_block_offset(block, addr);
a7180877
DDAG
3517 if (!host) {
3518 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3519 ret = -EINVAL;
3520 break;
3521 }
4cbb3c63 3522 target_pages++;
1aa83678 3523 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
a7180877 3524 /*
28abd200
DDAG
3525 * Postcopy requires that we place whole host pages atomically;
3526 * these may be huge pages for RAMBlocks that are backed by
3527 * hugetlbfs.
a7180877
DDAG
3528 * To make it atomic, the data is read into a temporary page
3529 * that's moved into place later.
3530 * The migration protocol uses, possibly smaller, target-pages
3531 * however the source ensures it always sends all the components
91ba442f 3532 * of a host page in one chunk.
a7180877
DDAG
3533 */
3534 page_buffer = postcopy_host_page +
28abd200 3535 ((uintptr_t)host & (block->page_size - 1));
e5e73b0f 3536 if (target_pages == 1) {
91ba442f
WY
3537 this_host = (void *)QEMU_ALIGN_DOWN((uintptr_t)host,
3538 block->page_size);
c53b7ddc
DDAG
3539 } else {
3540 /* not the 1st TP within the HP */
91ba442f
WY
3541 if (QEMU_ALIGN_DOWN((uintptr_t)host, block->page_size) !=
3542 (uintptr_t)this_host) {
3543 error_report("Non-same host page %p/%p",
3544 host, this_host);
c53b7ddc
DDAG
3545 ret = -EINVAL;
3546 break;
3547 }
a7180877
DDAG
3548 }
3549
3550 /*
3551 * If it's the last part of a host page then we place the host
3552 * page
3553 */
4cbb3c63
WY
3554 if (target_pages == (block->page_size / TARGET_PAGE_SIZE)) {
3555 place_needed = true;
4cbb3c63 3556 }
a7180877
DDAG
3557 place_source = postcopy_host_page;
3558 }
3559
3560 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
bb890ed5 3561 case RAM_SAVE_FLAG_ZERO:
a7180877 3562 ch = qemu_get_byte(f);
2e36bc1b
WY
3563 /*
3564 * Can skip to set page_buffer when
3565 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3566 */
3567 if (ch || !matches_target_page_size) {
3568 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3569 }
a7180877
DDAG
3570 if (ch) {
3571 all_zero = false;
3572 }
3573 break;
3574
3575 case RAM_SAVE_FLAG_PAGE:
3576 all_zero = false;
1aa83678
PX
3577 if (!matches_target_page_size) {
3578 /* For huge pages, we always use temporary buffer */
a7180877
DDAG
3579 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3580 } else {
1aa83678
PX
3581 /*
3582 * For small pages that matches target page size, we
3583 * avoid the qemu_file copy. Instead we directly use
3584 * the buffer of QEMUFile to place the page. Note: we
3585 * cannot do any QEMUFile operation before using that
3586 * buffer to make sure the buffer is valid when
3587 * placing the page.
a7180877
DDAG
3588 */
3589 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3590 TARGET_PAGE_SIZE);
3591 }
3592 break;
644acf99
WY
3593 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3594 all_zero = false;
3595 len = qemu_get_be32(f);
3596 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3597 error_report("Invalid compressed data length: %d", len);
3598 ret = -EINVAL;
3599 break;
3600 }
3601 decompress_data_with_multi_threads(f, page_buffer, len);
3602 break;
3603
a7180877
DDAG
3604 case RAM_SAVE_FLAG_EOS:
3605 /* normal exit */
6df264ac 3606 multifd_recv_sync_main();
a7180877
DDAG
3607 break;
3608 default:
29fccade 3609 error_report("Unknown combination of migration flags: 0x%x"
a7180877
DDAG
3610 " (postcopy mode)", flags);
3611 ret = -EINVAL;
7a9ddfbf
PX
3612 break;
3613 }
3614
644acf99
WY
3615 /* Got the whole host page, wait for decompress before placing. */
3616 if (place_needed) {
3617 ret |= wait_for_decompress_done();
3618 }
3619
7a9ddfbf
PX
3620 /* Detect for any possible file errors */
3621 if (!ret && qemu_file_get_error(f)) {
3622 ret = qemu_file_get_error(f);
a7180877
DDAG
3623 }
3624
7a9ddfbf 3625 if (!ret && place_needed) {
a7180877 3626 /* This gets called at the last target page in the host page */
91ba442f
WY
3627 void *place_dest = (void *)QEMU_ALIGN_DOWN((uintptr_t)host,
3628 block->page_size);
df9ff5e1 3629
a7180877 3630 if (all_zero) {
df9ff5e1 3631 ret = postcopy_place_page_zero(mis, place_dest,
8be4620b 3632 block);
a7180877 3633 } else {
df9ff5e1 3634 ret = postcopy_place_page(mis, place_dest,
8be4620b 3635 place_source, block);
a7180877 3636 }
ddf35bdf
DH
3637 place_needed = false;
3638 target_pages = 0;
3639 /* Assume we have a zero page until we detect something different */
3640 all_zero = true;
a7180877 3641 }
a7180877
DDAG
3642 }
3643
3644 return ret;
3645}
3646
acab30b8
DHB
3647static bool postcopy_is_advised(void)
3648{
3649 PostcopyState ps = postcopy_state_get();
3650 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
3651}
3652
3653static bool postcopy_is_running(void)
3654{
3655 PostcopyState ps = postcopy_state_get();
3656 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3657}
3658
e6f4aa18
ZC
3659/*
3660 * Flush content of RAM cache into SVM's memory.
3661 * Only flush the pages that be dirtied by PVM or SVM or both.
3662 */
24fa16f8 3663void colo_flush_ram_cache(void)
e6f4aa18
ZC
3664{
3665 RAMBlock *block = NULL;
3666 void *dst_host;
3667 void *src_host;
3668 unsigned long offset = 0;
3669
d1955d22 3670 memory_global_dirty_log_sync();
89ac5a1d
DDAG
3671 WITH_RCU_READ_LOCK_GUARD() {
3672 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3673 ramblock_sync_dirty_bitmap(ram_state, block);
3674 }
d1955d22 3675 }
d1955d22 3676
e6f4aa18 3677 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
89ac5a1d
DDAG
3678 WITH_RCU_READ_LOCK_GUARD() {
3679 block = QLIST_FIRST_RCU(&ram_list.blocks);
e6f4aa18 3680
89ac5a1d
DDAG
3681 while (block) {
3682 offset = migration_bitmap_find_dirty(ram_state, block, offset);
e6f4aa18 3683
8bba004c
AR
3684 if (((ram_addr_t)offset) << TARGET_PAGE_BITS
3685 >= block->used_length) {
89ac5a1d
DDAG
3686 offset = 0;
3687 block = QLIST_NEXT_RCU(block, next);
3688 } else {
3689 migration_bitmap_clear_dirty(ram_state, block, offset);
8bba004c
AR
3690 dst_host = block->host
3691 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3692 src_host = block->colo_cache
3693 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
89ac5a1d
DDAG
3694 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
3695 }
e6f4aa18
ZC
3696 }
3697 }
e6f4aa18
ZC
3698 trace_colo_flush_ram_cache_end();
3699}
3700
10da4a36
WY
3701/**
3702 * ram_load_precopy: load pages in precopy case
3703 *
3704 * Returns 0 for success or -errno in case of error
3705 *
3706 * Called in precopy mode by ram_load().
3707 * rcu_read_lock is taken prior to this being called.
3708 *
3709 * @f: QEMUFile where to send the data
3710 */
3711static int ram_load_precopy(QEMUFile *f)
56e93d26 3712{
e65cec5e 3713 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
ef08fb38 3714 /* ADVISE is earlier, it shows the source has the postcopy capability on */
acab30b8 3715 bool postcopy_advised = postcopy_is_advised();
edc60127
JQ
3716 if (!migrate_use_compression()) {
3717 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3718 }
a7180877 3719
10da4a36 3720 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
56e93d26 3721 ram_addr_t addr, total_ram_bytes;
0393031a 3722 void *host = NULL, *host_bak = NULL;
56e93d26
JQ
3723 uint8_t ch;
3724
e65cec5e
YK
3725 /*
3726 * Yield periodically to let main loop run, but an iteration of
3727 * the main loop is expensive, so do it each some iterations
3728 */
3729 if ((i & 32767) == 0 && qemu_in_coroutine()) {
3730 aio_co_schedule(qemu_get_current_aio_context(),
3731 qemu_coroutine_self());
3732 qemu_coroutine_yield();
3733 }
3734 i++;
3735
56e93d26
JQ
3736 addr = qemu_get_be64(f);
3737 flags = addr & ~TARGET_PAGE_MASK;
3738 addr &= TARGET_PAGE_MASK;
3739
edc60127
JQ
3740 if (flags & invalid_flags) {
3741 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3742 error_report("Received an unexpected compressed page");
3743 }
3744
3745 ret = -EINVAL;
3746 break;
3747 }
3748
bb890ed5 3749 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
a776aa15 3750 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4c4bad48
HZ
3751 RAMBlock *block = ram_block_from_stream(f, flags);
3752
0393031a 3753 host = host_from_ram_block_offset(block, addr);
13af18f2 3754 /*
0393031a
HZ
3755 * After going into COLO stage, we should not load the page
3756 * into SVM's memory directly, we put them into colo_cache firstly.
3757 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
3758 * Previously, we copied all these memory in preparing stage of COLO
3759 * while we need to stop VM, which is a time-consuming process.
3760 * Here we optimize it by a trick, back-up every page while in
3761 * migration process while COLO is enabled, though it affects the
3762 * speed of the migration, but it obviously reduce the downtime of
3763 * back-up all SVM'S memory in COLO preparing stage.
13af18f2 3764 */
0393031a
HZ
3765 if (migration_incoming_colo_enabled()) {
3766 if (migration_incoming_in_colo_state()) {
3767 /* In COLO stage, put all pages into cache temporarily */
8af66371 3768 host = colo_cache_from_block_offset(block, addr, true);
0393031a
HZ
3769 } else {
3770 /*
3771 * In migration stage but before COLO stage,
3772 * Put all pages into both cache and SVM's memory.
3773 */
8af66371 3774 host_bak = colo_cache_from_block_offset(block, addr, false);
0393031a 3775 }
13af18f2 3776 }
a776aa15
DDAG
3777 if (!host) {
3778 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3779 ret = -EINVAL;
3780 break;
3781 }
13af18f2
ZC
3782 if (!migration_incoming_in_colo_state()) {
3783 ramblock_recv_bitmap_set(block, host);
3784 }
3785
1db9d8e5 3786 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
a776aa15
DDAG
3787 }
3788
56e93d26
JQ
3789 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3790 case RAM_SAVE_FLAG_MEM_SIZE:
3791 /* Synchronize RAM block list */
3792 total_ram_bytes = addr;
3793 while (!ret && total_ram_bytes) {
3794 RAMBlock *block;
56e93d26
JQ
3795 char id[256];
3796 ram_addr_t length;
3797
3798 len = qemu_get_byte(f);
3799 qemu_get_buffer(f, (uint8_t *)id, len);
3800 id[len] = 0;
3801 length = qemu_get_be64(f);
3802
e3dd7493 3803 block = qemu_ram_block_by_name(id);
b895de50
CLG
3804 if (block && !qemu_ram_is_migratable(block)) {
3805 error_report("block %s should not be migrated !", id);
3806 ret = -EINVAL;
3807 } else if (block) {
e3dd7493
DDAG
3808 if (length != block->used_length) {
3809 Error *local_err = NULL;
56e93d26 3810
fa53a0e5 3811 ret = qemu_ram_resize(block, length,
e3dd7493
DDAG
3812 &local_err);
3813 if (local_err) {
3814 error_report_err(local_err);
56e93d26 3815 }
56e93d26 3816 }
ef08fb38 3817 /* For postcopy we need to check hugepage sizes match */
e846b746 3818 if (postcopy_advised && migrate_postcopy_ram() &&
ef08fb38
DDAG
3819 block->page_size != qemu_host_page_size) {
3820 uint64_t remote_page_size = qemu_get_be64(f);
3821 if (remote_page_size != block->page_size) {
3822 error_report("Mismatched RAM page size %s "
3823 "(local) %zd != %" PRId64,
3824 id, block->page_size,
3825 remote_page_size);
3826 ret = -EINVAL;
3827 }
3828 }
fbd162e6
YK
3829 if (migrate_ignore_shared()) {
3830 hwaddr addr = qemu_get_be64(f);
fbd162e6
YK
3831 if (ramblock_is_ignored(block) &&
3832 block->mr->addr != addr) {
3833 error_report("Mismatched GPAs for block %s "
3834 "%" PRId64 "!= %" PRId64,
3835 id, (uint64_t)addr,
3836 (uint64_t)block->mr->addr);
3837 ret = -EINVAL;
3838 }
3839 }
e3dd7493
DDAG
3840 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
3841 block->idstr);
3842 } else {
56e93d26
JQ
3843 error_report("Unknown ramblock \"%s\", cannot "
3844 "accept migration", id);
3845 ret = -EINVAL;
3846 }
3847
3848 total_ram_bytes -= length;
3849 }
3850 break;
a776aa15 3851
bb890ed5 3852 case RAM_SAVE_FLAG_ZERO:
56e93d26
JQ
3853 ch = qemu_get_byte(f);
3854 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
3855 break;
a776aa15 3856
56e93d26 3857 case RAM_SAVE_FLAG_PAGE:
56e93d26
JQ
3858 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
3859 break;
56e93d26 3860
a776aa15 3861 case RAM_SAVE_FLAG_COMPRESS_PAGE:
56e93d26
JQ
3862 len = qemu_get_be32(f);
3863 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3864 error_report("Invalid compressed data length: %d", len);
3865 ret = -EINVAL;
3866 break;
3867 }
c1bc6626 3868 decompress_data_with_multi_threads(f, host, len);
56e93d26 3869 break;
a776aa15 3870
56e93d26 3871 case RAM_SAVE_FLAG_XBZRLE:
56e93d26
JQ
3872 if (load_xbzrle(f, addr, host) < 0) {
3873 error_report("Failed to decompress XBZRLE page at "
3874 RAM_ADDR_FMT, addr);
3875 ret = -EINVAL;
3876 break;
3877 }
3878 break;
3879 case RAM_SAVE_FLAG_EOS:
3880 /* normal exit */
6df264ac 3881 multifd_recv_sync_main();
56e93d26
JQ
3882 break;
3883 default:
3884 if (flags & RAM_SAVE_FLAG_HOOK) {
632e3a5c 3885 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
56e93d26 3886 } else {
29fccade 3887 error_report("Unknown combination of migration flags: 0x%x",
56e93d26
JQ
3888 flags);
3889 ret = -EINVAL;
3890 }
3891 }
3892 if (!ret) {
3893 ret = qemu_file_get_error(f);
3894 }
0393031a
HZ
3895 if (!ret && host_bak) {
3896 memcpy(host_bak, host, TARGET_PAGE_SIZE);
3897 }
56e93d26
JQ
3898 }
3899
ca1a6b70 3900 ret |= wait_for_decompress_done();
10da4a36
WY
3901 return ret;
3902}
3903
3904static int ram_load(QEMUFile *f, void *opaque, int version_id)
3905{
3906 int ret = 0;
3907 static uint64_t seq_iter;
3908 /*
3909 * If system is running in postcopy mode, page inserts to host memory must
3910 * be atomic
3911 */
3912 bool postcopy_running = postcopy_is_running();
3913
3914 seq_iter++;
3915
3916 if (version_id != 4) {
3917 return -EINVAL;
3918 }
3919
3920 /*
3921 * This RCU critical section can be very long running.
3922 * When RCU reclaims in the code start to become numerous,
3923 * it will be necessary to reduce the granularity of this
3924 * critical section.
3925 */
89ac5a1d
DDAG
3926 WITH_RCU_READ_LOCK_GUARD() {
3927 if (postcopy_running) {
3928 ret = ram_load_postcopy(f);
3929 } else {
3930 ret = ram_load_precopy(f);
3931 }
10da4a36 3932 }
55c4446b 3933 trace_ram_load_complete(ret, seq_iter);
e6f4aa18 3934
56e93d26
JQ
3935 return ret;
3936}
3937
c6467627
VSO
3938static bool ram_has_postcopy(void *opaque)
3939{
469dd51b 3940 RAMBlock *rb;
fbd162e6 3941 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
469dd51b
JH
3942 if (ramblock_is_pmem(rb)) {
3943 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
3944 "is not supported now!", rb->idstr, rb->host);
3945 return false;
3946 }
3947 }
3948
c6467627
VSO
3949 return migrate_postcopy_ram();
3950}
3951
edd090c7
PX
3952/* Sync all the dirty bitmap with destination VM. */
3953static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
3954{
3955 RAMBlock *block;
3956 QEMUFile *file = s->to_dst_file;
3957 int ramblock_count = 0;
3958
3959 trace_ram_dirty_bitmap_sync_start();
3960
fbd162e6 3961 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
edd090c7
PX
3962 qemu_savevm_send_recv_bitmap(file, block->idstr);
3963 trace_ram_dirty_bitmap_request(block->idstr);
3964 ramblock_count++;
3965 }
3966
3967 trace_ram_dirty_bitmap_sync_wait();
3968
3969 /* Wait until all the ramblocks' dirty bitmap synced */
3970 while (ramblock_count--) {
3971 qemu_sem_wait(&s->rp_state.rp_sem);
3972 }
3973
3974 trace_ram_dirty_bitmap_sync_complete();
3975
3976 return 0;
3977}
3978
3979static void ram_dirty_bitmap_reload_notify(MigrationState *s)
3980{
3981 qemu_sem_post(&s->rp_state.rp_sem);
3982}
3983
a335debb
PX
3984/*
3985 * Read the received bitmap, revert it as the initial dirty bitmap.
3986 * This is only used when the postcopy migration is paused but wants
3987 * to resume from a middle point.
3988 */
3989int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
3990{
3991 int ret = -EINVAL;
3992 QEMUFile *file = s->rp_state.from_dst_file;
3993 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
a725ef9f 3994 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
3995 uint64_t size, end_mark;
3996
3997 trace_ram_dirty_bitmap_reload_begin(block->idstr);
3998
3999 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4000 error_report("%s: incorrect state %s", __func__,
4001 MigrationStatus_str(s->state));
4002 return -EINVAL;
4003 }
4004
4005 /*
4006 * Note: see comments in ramblock_recv_bitmap_send() on why we
3a4452d8 4007 * need the endianness conversion, and the paddings.
a335debb
PX
4008 */
4009 local_size = ROUND_UP(local_size, 8);
4010
4011 /* Add paddings */
4012 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4013
4014 size = qemu_get_be64(file);
4015
4016 /* The size of the bitmap should match with our ramblock */
4017 if (size != local_size) {
4018 error_report("%s: ramblock '%s' bitmap size mismatch "
4019 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4020 block->idstr, size, local_size);
4021 ret = -EINVAL;
4022 goto out;
4023 }
4024
4025 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4026 end_mark = qemu_get_be64(file);
4027
4028 ret = qemu_file_get_error(file);
4029 if (ret || size != local_size) {
4030 error_report("%s: read bitmap failed for ramblock '%s': %d"
4031 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4032 __func__, block->idstr, ret, local_size, size);
4033 ret = -EIO;
4034 goto out;
4035 }
4036
4037 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
af3bbbe9 4038 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64,
a335debb
PX
4039 __func__, block->idstr, end_mark);
4040 ret = -EINVAL;
4041 goto out;
4042 }
4043
4044 /*
3a4452d8 4045 * Endianness conversion. We are during postcopy (though paused).
a335debb
PX
4046 * The dirty bitmap won't change. We can directly modify it.
4047 */
4048 bitmap_from_le(block->bmap, le_bitmap, nbits);
4049
4050 /*
4051 * What we received is "received bitmap". Revert it as the initial
4052 * dirty bitmap for this ramblock.
4053 */
4054 bitmap_complement(block->bmap, block->bmap, nbits);
4055
4056 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4057
edd090c7
PX
4058 /*
4059 * We succeeded to sync bitmap for current ramblock. If this is
4060 * the last one to sync, we need to notify the main send thread.
4061 */
4062 ram_dirty_bitmap_reload_notify(s);
4063
a335debb
PX
4064 ret = 0;
4065out:
bf269906 4066 g_free(le_bitmap);
a335debb
PX
4067 return ret;
4068}
4069
edd090c7
PX
4070static int ram_resume_prepare(MigrationState *s, void *opaque)
4071{
4072 RAMState *rs = *(RAMState **)opaque;
08614f34 4073 int ret;
edd090c7 4074
08614f34
PX
4075 ret = ram_dirty_bitmap_sync_all(s, rs);
4076 if (ret) {
4077 return ret;
4078 }
4079
4080 ram_state_resume_prepare(rs, s->to_dst_file);
4081
4082 return 0;
edd090c7
PX
4083}
4084
56e93d26 4085static SaveVMHandlers savevm_ram_handlers = {
9907e842 4086 .save_setup = ram_save_setup,
56e93d26 4087 .save_live_iterate = ram_save_iterate,
763c906b 4088 .save_live_complete_postcopy = ram_save_complete,
a3e06c3d 4089 .save_live_complete_precopy = ram_save_complete,
c6467627 4090 .has_postcopy = ram_has_postcopy,
56e93d26
JQ
4091 .save_live_pending = ram_save_pending,
4092 .load_state = ram_load,
f265e0e4
JQ
4093 .save_cleanup = ram_save_cleanup,
4094 .load_setup = ram_load_setup,
4095 .load_cleanup = ram_load_cleanup,
edd090c7 4096 .resume_prepare = ram_resume_prepare,
56e93d26
JQ
4097};
4098
4099void ram_mig_init(void)
4100{
4101 qemu_mutex_init(&XBZRLE.lock);
ce62df53 4102 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
56e93d26 4103}