]> git.proxmox.com Git - mirror_qemu.git/blame - migration/ram.c
postcopy: Transmit and compare individual page sizes
[mirror_qemu.git] / migration / ram.c
CommitLineData
56e93d26
JQ
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
76cc7b58
JQ
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
56e93d26
JQ
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
1393a485 28#include "qemu/osdep.h"
33c11879
PB
29#include "qemu-common.h"
30#include "cpu.h"
56e93d26 31#include <zlib.h>
4addcd4f 32#include "qapi-event.h"
f348b6d1 33#include "qemu/cutils.h"
56e93d26
JQ
34#include "qemu/bitops.h"
35#include "qemu/bitmap.h"
7205c9ec
JQ
36#include "qemu/timer.h"
37#include "qemu/main-loop.h"
56e93d26 38#include "migration/migration.h"
e0b266f0 39#include "migration/postcopy-ram.h"
56e93d26
JQ
40#include "exec/address-spaces.h"
41#include "migration/page_cache.h"
56e93d26 42#include "qemu/error-report.h"
56e93d26 43#include "trace.h"
56e93d26 44#include "exec/ram_addr.h"
56e93d26 45#include "qemu/rcu_queue.h"
a91246c9 46#include "migration/colo.h"
56e93d26 47
56e93d26 48static int dirty_rate_high_cnt;
56e93d26
JQ
49
50static uint64_t bitmap_sync_count;
51
52/***********************************************************/
53/* ram save/restore */
54
55#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
56#define RAM_SAVE_FLAG_COMPRESS 0x02
57#define RAM_SAVE_FLAG_MEM_SIZE 0x04
58#define RAM_SAVE_FLAG_PAGE 0x08
59#define RAM_SAVE_FLAG_EOS 0x10
60#define RAM_SAVE_FLAG_CONTINUE 0x20
61#define RAM_SAVE_FLAG_XBZRLE 0x40
62/* 0x80 is reserved in migration.h start with 0x100 next */
63#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
64
adb65dec 65static uint8_t *ZERO_TARGET_PAGE;
56e93d26
JQ
66
67static inline bool is_zero_range(uint8_t *p, uint64_t size)
68{
a1febc49 69 return buffer_is_zero(p, size);
56e93d26
JQ
70}
71
72/* struct contains XBZRLE cache and a static page
73 used by the compression */
74static struct {
75 /* buffer used for XBZRLE encoding */
76 uint8_t *encoded_buf;
77 /* buffer for storing page content */
78 uint8_t *current_buf;
79 /* Cache for XBZRLE, Protected by lock. */
80 PageCache *cache;
81 QemuMutex lock;
82} XBZRLE;
83
84/* buffer used for XBZRLE decoding */
85static uint8_t *xbzrle_decoded_buf;
86
87static void XBZRLE_cache_lock(void)
88{
89 if (migrate_use_xbzrle())
90 qemu_mutex_lock(&XBZRLE.lock);
91}
92
93static void XBZRLE_cache_unlock(void)
94{
95 if (migrate_use_xbzrle())
96 qemu_mutex_unlock(&XBZRLE.lock);
97}
98
99/*
100 * called from qmp_migrate_set_cache_size in main thread, possibly while
101 * a migration is in progress.
102 * A running migration maybe using the cache and might finish during this
103 * call, hence changes to the cache are protected by XBZRLE.lock().
104 */
105int64_t xbzrle_cache_resize(int64_t new_size)
106{
107 PageCache *new_cache;
108 int64_t ret;
109
110 if (new_size < TARGET_PAGE_SIZE) {
111 return -1;
112 }
113
114 XBZRLE_cache_lock();
115
116 if (XBZRLE.cache != NULL) {
117 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
118 goto out_new_size;
119 }
120 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
121 TARGET_PAGE_SIZE);
122 if (!new_cache) {
123 error_report("Error creating cache");
124 ret = -1;
125 goto out;
126 }
127
128 cache_fini(XBZRLE.cache);
129 XBZRLE.cache = new_cache;
130 }
131
132out_new_size:
133 ret = pow2floor(new_size);
134out:
135 XBZRLE_cache_unlock();
136 return ret;
137}
138
139/* accounting for migration statistics */
140typedef struct AccountingInfo {
141 uint64_t dup_pages;
142 uint64_t skipped_pages;
143 uint64_t norm_pages;
144 uint64_t iterations;
145 uint64_t xbzrle_bytes;
146 uint64_t xbzrle_pages;
147 uint64_t xbzrle_cache_miss;
148 double xbzrle_cache_miss_rate;
149 uint64_t xbzrle_overflows;
150} AccountingInfo;
151
152static AccountingInfo acct_info;
153
154static void acct_clear(void)
155{
156 memset(&acct_info, 0, sizeof(acct_info));
157}
158
159uint64_t dup_mig_bytes_transferred(void)
160{
161 return acct_info.dup_pages * TARGET_PAGE_SIZE;
162}
163
164uint64_t dup_mig_pages_transferred(void)
165{
166 return acct_info.dup_pages;
167}
168
169uint64_t skipped_mig_bytes_transferred(void)
170{
171 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
172}
173
174uint64_t skipped_mig_pages_transferred(void)
175{
176 return acct_info.skipped_pages;
177}
178
179uint64_t norm_mig_bytes_transferred(void)
180{
181 return acct_info.norm_pages * TARGET_PAGE_SIZE;
182}
183
184uint64_t norm_mig_pages_transferred(void)
185{
186 return acct_info.norm_pages;
187}
188
189uint64_t xbzrle_mig_bytes_transferred(void)
190{
191 return acct_info.xbzrle_bytes;
192}
193
194uint64_t xbzrle_mig_pages_transferred(void)
195{
196 return acct_info.xbzrle_pages;
197}
198
199uint64_t xbzrle_mig_pages_cache_miss(void)
200{
201 return acct_info.xbzrle_cache_miss;
202}
203
204double xbzrle_mig_cache_miss_rate(void)
205{
206 return acct_info.xbzrle_cache_miss_rate;
207}
208
209uint64_t xbzrle_mig_pages_overflow(void)
210{
211 return acct_info.xbzrle_overflows;
212}
213
214/* This is the last block that we have visited serching for dirty pages
215 */
216static RAMBlock *last_seen_block;
217/* This is the last block from where we have sent data */
218static RAMBlock *last_sent_block;
219static ram_addr_t last_offset;
dd631697 220static QemuMutex migration_bitmap_mutex;
56e93d26
JQ
221static uint64_t migration_dirty_pages;
222static uint32_t last_version;
223static bool ram_bulk_stage;
224
b8fb8cb7
DDAG
225/* used by the search for pages to send */
226struct PageSearchStatus {
227 /* Current block being searched */
228 RAMBlock *block;
229 /* Current offset to search from */
230 ram_addr_t offset;
231 /* Set once we wrap around */
232 bool complete_round;
233};
234typedef struct PageSearchStatus PageSearchStatus;
235
60be6340
DL
236static struct BitmapRcu {
237 struct rcu_head rcu;
f3f491fc 238 /* Main migration bitmap */
60be6340 239 unsigned long *bmap;
f3f491fc
DDAG
240 /* bitmap of pages that haven't been sent even once
241 * only maintained and used in postcopy at the moment
242 * where it's used to send the dirtymap at the start
243 * of the postcopy phase
244 */
245 unsigned long *unsentmap;
60be6340
DL
246} *migration_bitmap_rcu;
247
56e93d26 248struct CompressParam {
56e93d26 249 bool done;
90e56fb4 250 bool quit;
56e93d26
JQ
251 QEMUFile *file;
252 QemuMutex mutex;
253 QemuCond cond;
254 RAMBlock *block;
255 ram_addr_t offset;
256};
257typedef struct CompressParam CompressParam;
258
259struct DecompressParam {
73a8912b 260 bool done;
90e56fb4 261 bool quit;
56e93d26
JQ
262 QemuMutex mutex;
263 QemuCond cond;
264 void *des;
d341d9f3 265 uint8_t *compbuf;
56e93d26
JQ
266 int len;
267};
268typedef struct DecompressParam DecompressParam;
269
270static CompressParam *comp_param;
271static QemuThread *compress_threads;
272/* comp_done_cond is used to wake up the migration thread when
273 * one of the compression threads has finished the compression.
274 * comp_done_lock is used to co-work with comp_done_cond.
275 */
0d9f9a5c
LL
276static QemuMutex comp_done_lock;
277static QemuCond comp_done_cond;
56e93d26
JQ
278/* The empty QEMUFileOps will be used by file in CompressParam */
279static const QEMUFileOps empty_ops = { };
280
281static bool compression_switch;
56e93d26
JQ
282static DecompressParam *decomp_param;
283static QemuThread *decompress_threads;
73a8912b
LL
284static QemuMutex decomp_done_lock;
285static QemuCond decomp_done_cond;
56e93d26 286
a7a9a88f
LL
287static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
288 ram_addr_t offset);
56e93d26
JQ
289
290static void *do_data_compress(void *opaque)
291{
292 CompressParam *param = opaque;
a7a9a88f
LL
293 RAMBlock *block;
294 ram_addr_t offset;
56e93d26 295
a7a9a88f 296 qemu_mutex_lock(&param->mutex);
90e56fb4 297 while (!param->quit) {
a7a9a88f
LL
298 if (param->block) {
299 block = param->block;
300 offset = param->offset;
301 param->block = NULL;
302 qemu_mutex_unlock(&param->mutex);
303
304 do_compress_ram_page(param->file, block, offset);
305
0d9f9a5c 306 qemu_mutex_lock(&comp_done_lock);
a7a9a88f 307 param->done = true;
0d9f9a5c
LL
308 qemu_cond_signal(&comp_done_cond);
309 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
310
311 qemu_mutex_lock(&param->mutex);
312 } else {
56e93d26
JQ
313 qemu_cond_wait(&param->cond, &param->mutex);
314 }
56e93d26 315 }
a7a9a88f 316 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
317
318 return NULL;
319}
320
321static inline void terminate_compression_threads(void)
322{
323 int idx, thread_count;
324
325 thread_count = migrate_compress_threads();
56e93d26
JQ
326 for (idx = 0; idx < thread_count; idx++) {
327 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 328 comp_param[idx].quit = true;
56e93d26
JQ
329 qemu_cond_signal(&comp_param[idx].cond);
330 qemu_mutex_unlock(&comp_param[idx].mutex);
331 }
332}
333
334void migrate_compress_threads_join(void)
335{
336 int i, thread_count;
337
338 if (!migrate_use_compression()) {
339 return;
340 }
341 terminate_compression_threads();
342 thread_count = migrate_compress_threads();
343 for (i = 0; i < thread_count; i++) {
344 qemu_thread_join(compress_threads + i);
345 qemu_fclose(comp_param[i].file);
346 qemu_mutex_destroy(&comp_param[i].mutex);
347 qemu_cond_destroy(&comp_param[i].cond);
348 }
0d9f9a5c
LL
349 qemu_mutex_destroy(&comp_done_lock);
350 qemu_cond_destroy(&comp_done_cond);
56e93d26
JQ
351 g_free(compress_threads);
352 g_free(comp_param);
56e93d26
JQ
353 compress_threads = NULL;
354 comp_param = NULL;
56e93d26
JQ
355}
356
357void migrate_compress_threads_create(void)
358{
359 int i, thread_count;
360
361 if (!migrate_use_compression()) {
362 return;
363 }
56e93d26
JQ
364 compression_switch = true;
365 thread_count = migrate_compress_threads();
366 compress_threads = g_new0(QemuThread, thread_count);
367 comp_param = g_new0(CompressParam, thread_count);
0d9f9a5c
LL
368 qemu_cond_init(&comp_done_cond);
369 qemu_mutex_init(&comp_done_lock);
56e93d26 370 for (i = 0; i < thread_count; i++) {
e110aa91
C
371 /* comp_param[i].file is just used as a dummy buffer to save data,
372 * set its ops to empty.
56e93d26
JQ
373 */
374 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
375 comp_param[i].done = true;
90e56fb4 376 comp_param[i].quit = false;
56e93d26
JQ
377 qemu_mutex_init(&comp_param[i].mutex);
378 qemu_cond_init(&comp_param[i].cond);
379 qemu_thread_create(compress_threads + i, "compress",
380 do_data_compress, comp_param + i,
381 QEMU_THREAD_JOINABLE);
382 }
383}
384
385/**
386 * save_page_header: Write page header to wire
387 *
388 * If this is the 1st block, it also writes the block identification
389 *
390 * Returns: Number of bytes written
391 *
392 * @f: QEMUFile where to send the data
393 * @block: block that contains the page we want to send
394 * @offset: offset inside the block for the page
395 * in the lower bits, it contains flags
396 */
397static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset)
398{
9f5f380b 399 size_t size, len;
56e93d26
JQ
400
401 qemu_put_be64(f, offset);
402 size = 8;
403
404 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
9f5f380b
LL
405 len = strlen(block->idstr);
406 qemu_put_byte(f, len);
407 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
408 size += 1 + len;
56e93d26
JQ
409 }
410 return size;
411}
412
070afca2
JH
413/* Reduce amount of guest cpu execution to hopefully slow down memory writes.
414 * If guest dirty memory rate is reduced below the rate at which we can
415 * transfer pages to the destination then we should be able to complete
416 * migration. Some workloads dirty memory way too fast and will not effectively
417 * converge, even with auto-converge.
418 */
419static void mig_throttle_guest_down(void)
420{
421 MigrationState *s = migrate_get_current();
2594f56d
DB
422 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
423 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
070afca2
JH
424
425 /* We have not started throttling yet. Let's start it. */
426 if (!cpu_throttle_active()) {
427 cpu_throttle_set(pct_initial);
428 } else {
429 /* Throttling already on, just increase the rate */
430 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
431 }
432}
433
56e93d26
JQ
434/* Update the xbzrle cache to reflect a page that's been sent as all 0.
435 * The important thing is that a stale (not-yet-0'd) page be replaced
436 * by the new data.
437 * As a bonus, if the page wasn't in the cache it gets added so that
438 * when a small write is made into the 0'd page it gets XBZRLE sent
439 */
440static void xbzrle_cache_zero_page(ram_addr_t current_addr)
441{
442 if (ram_bulk_stage || !migrate_use_xbzrle()) {
443 return;
444 }
445
446 /* We don't care if this fails to allocate a new cache page
447 * as long as it updated an old one */
448 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
449 bitmap_sync_count);
450}
451
452#define ENCODING_FLAG_XBZRLE 0x1
453
454/**
455 * save_xbzrle_page: compress and send current page
456 *
457 * Returns: 1 means that we wrote the page
458 * 0 means that page is identical to the one already sent
459 * -1 means that xbzrle would be longer than normal
460 *
461 * @f: QEMUFile where to send the data
462 * @current_data:
463 * @current_addr:
464 * @block: block that contains the page we want to send
465 * @offset: offset inside the block for the page
466 * @last_stage: if we are at the completion stage
467 * @bytes_transferred: increase it with the number of transferred bytes
468 */
469static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
470 ram_addr_t current_addr, RAMBlock *block,
471 ram_addr_t offset, bool last_stage,
472 uint64_t *bytes_transferred)
473{
474 int encoded_len = 0, bytes_xbzrle;
475 uint8_t *prev_cached_page;
476
477 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
478 acct_info.xbzrle_cache_miss++;
479 if (!last_stage) {
480 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
481 bitmap_sync_count) == -1) {
482 return -1;
483 } else {
484 /* update *current_data when the page has been
485 inserted into cache */
486 *current_data = get_cached_data(XBZRLE.cache, current_addr);
487 }
488 }
489 return -1;
490 }
491
492 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
493
494 /* save current buffer into memory */
495 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
496
497 /* XBZRLE encoding (if there is no overflow) */
498 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
499 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
500 TARGET_PAGE_SIZE);
501 if (encoded_len == 0) {
55c4446b 502 trace_save_xbzrle_page_skipping();
56e93d26
JQ
503 return 0;
504 } else if (encoded_len == -1) {
55c4446b 505 trace_save_xbzrle_page_overflow();
56e93d26
JQ
506 acct_info.xbzrle_overflows++;
507 /* update data in the cache */
508 if (!last_stage) {
509 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
510 *current_data = prev_cached_page;
511 }
512 return -1;
513 }
514
515 /* we need to update the data in the cache, in order to get the same data */
516 if (!last_stage) {
517 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
518 }
519
520 /* Send XBZRLE based compressed page */
521 bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE);
522 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
523 qemu_put_be16(f, encoded_len);
524 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
525 bytes_xbzrle += encoded_len + 1 + 2;
526 acct_info.xbzrle_pages++;
527 acct_info.xbzrle_bytes += bytes_xbzrle;
528 *bytes_transferred += bytes_xbzrle;
529
530 return 1;
531}
532
f3f491fc
DDAG
533/* Called with rcu_read_lock() to protect migration_bitmap
534 * rb: The RAMBlock to search for dirty pages in
535 * start: Start address (typically so we can continue from previous page)
536 * ram_addr_abs: Pointer into which to store the address of the dirty page
537 * within the global ram_addr space
538 *
539 * Returns: byte offset within memory region of the start of a dirty page
540 */
56e93d26 541static inline
a82d593b
DDAG
542ram_addr_t migration_bitmap_find_dirty(RAMBlock *rb,
543 ram_addr_t start,
544 ram_addr_t *ram_addr_abs)
56e93d26 545{
2f68e399 546 unsigned long base = rb->offset >> TARGET_PAGE_BITS;
56e93d26 547 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
2f68e399
DDAG
548 uint64_t rb_size = rb->used_length;
549 unsigned long size = base + (rb_size >> TARGET_PAGE_BITS);
2ff64038 550 unsigned long *bitmap;
56e93d26
JQ
551
552 unsigned long next;
553
60be6340 554 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
56e93d26
JQ
555 if (ram_bulk_stage && nr > base) {
556 next = nr + 1;
557 } else {
2ff64038 558 next = find_next_bit(bitmap, size, nr);
56e93d26
JQ
559 }
560
f3f491fc 561 *ram_addr_abs = next << TARGET_PAGE_BITS;
56e93d26
JQ
562 return (next - base) << TARGET_PAGE_BITS;
563}
564
a82d593b
DDAG
565static inline bool migration_bitmap_clear_dirty(ram_addr_t addr)
566{
567 bool ret;
568 int nr = addr >> TARGET_PAGE_BITS;
569 unsigned long *bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
570
571 ret = test_and_clear_bit(nr, bitmap);
572
573 if (ret) {
574 migration_dirty_pages--;
575 }
576 return ret;
577}
578
56e93d26
JQ
579static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
580{
2ff64038 581 unsigned long *bitmap;
60be6340 582 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
56e93d26 583 migration_dirty_pages +=
2ff64038 584 cpu_physical_memory_sync_dirty_bitmap(bitmap, start, length);
56e93d26
JQ
585}
586
56e93d26
JQ
587/* Fix me: there are too many global variables used in migration process. */
588static int64_t start_time;
589static int64_t bytes_xfer_prev;
590static int64_t num_dirty_pages_period;
591static uint64_t xbzrle_cache_miss_prev;
592static uint64_t iterations_prev;
593
594static void migration_bitmap_sync_init(void)
595{
596 start_time = 0;
597 bytes_xfer_prev = 0;
598 num_dirty_pages_period = 0;
599 xbzrle_cache_miss_prev = 0;
600 iterations_prev = 0;
601}
602
e8ca1db2
DDAG
603/* Returns a summary bitmap of the page sizes of all RAMBlocks;
604 * for VMs with just normal pages this is equivalent to the
605 * host page size. If it's got some huge pages then it's the OR
606 * of all the different page sizes.
607 */
608uint64_t ram_pagesize_summary(void)
609{
610 RAMBlock *block;
611 uint64_t summary = 0;
612
613 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
614 summary |= block->page_size;
615 }
616
617 return summary;
618}
619
56e93d26
JQ
620static void migration_bitmap_sync(void)
621{
622 RAMBlock *block;
623 uint64_t num_dirty_pages_init = migration_dirty_pages;
624 MigrationState *s = migrate_get_current();
625 int64_t end_time;
626 int64_t bytes_xfer_now;
627
628 bitmap_sync_count++;
629
630 if (!bytes_xfer_prev) {
631 bytes_xfer_prev = ram_bytes_transferred();
632 }
633
634 if (!start_time) {
635 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
636 }
637
638 trace_migration_bitmap_sync_start();
9c1f8f44 639 memory_global_dirty_log_sync();
56e93d26 640
dd631697 641 qemu_mutex_lock(&migration_bitmap_mutex);
56e93d26
JQ
642 rcu_read_lock();
643 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2f68e399 644 migration_bitmap_sync_range(block->offset, block->used_length);
56e93d26
JQ
645 }
646 rcu_read_unlock();
dd631697 647 qemu_mutex_unlock(&migration_bitmap_mutex);
56e93d26
JQ
648
649 trace_migration_bitmap_sync_end(migration_dirty_pages
650 - num_dirty_pages_init);
651 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
652 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
653
654 /* more than 1 second = 1000 millisecons */
655 if (end_time > start_time + 1000) {
656 if (migrate_auto_converge()) {
657 /* The following detection logic can be refined later. For now:
658 Check to see if the dirtied bytes is 50% more than the approx.
659 amount of bytes that just got transferred since the last time we
070afca2
JH
660 were in this routine. If that happens twice, start or increase
661 throttling */
56e93d26 662 bytes_xfer_now = ram_bytes_transferred();
070afca2 663
56e93d26
JQ
664 if (s->dirty_pages_rate &&
665 (num_dirty_pages_period * TARGET_PAGE_SIZE >
666 (bytes_xfer_now - bytes_xfer_prev)/2) &&
070afca2 667 (dirty_rate_high_cnt++ >= 2)) {
56e93d26 668 trace_migration_throttle();
56e93d26 669 dirty_rate_high_cnt = 0;
070afca2 670 mig_throttle_guest_down();
56e93d26
JQ
671 }
672 bytes_xfer_prev = bytes_xfer_now;
56e93d26 673 }
070afca2 674
56e93d26
JQ
675 if (migrate_use_xbzrle()) {
676 if (iterations_prev != acct_info.iterations) {
677 acct_info.xbzrle_cache_miss_rate =
678 (double)(acct_info.xbzrle_cache_miss -
679 xbzrle_cache_miss_prev) /
680 (acct_info.iterations - iterations_prev);
681 }
682 iterations_prev = acct_info.iterations;
683 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
684 }
685 s->dirty_pages_rate = num_dirty_pages_period * 1000
686 / (end_time - start_time);
687 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
688 start_time = end_time;
689 num_dirty_pages_period = 0;
690 }
691 s->dirty_sync_count = bitmap_sync_count;
4addcd4f
DDAG
692 if (migrate_use_events()) {
693 qapi_event_send_migration_pass(bitmap_sync_count, NULL);
694 }
56e93d26
JQ
695}
696
697/**
698 * save_zero_page: Send the zero page to the stream
699 *
700 * Returns: Number of pages written.
701 *
702 * @f: QEMUFile where to send the data
703 * @block: block that contains the page we want to send
704 * @offset: offset inside the block for the page
705 * @p: pointer to the page
706 * @bytes_transferred: increase it with the number of transferred bytes
707 */
708static int save_zero_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
709 uint8_t *p, uint64_t *bytes_transferred)
710{
711 int pages = -1;
712
713 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
714 acct_info.dup_pages++;
715 *bytes_transferred += save_page_header(f, block,
716 offset | RAM_SAVE_FLAG_COMPRESS);
717 qemu_put_byte(f, 0);
718 *bytes_transferred += 1;
719 pages = 1;
720 }
721
722 return pages;
723}
724
53f09a10
PB
725static void ram_release_pages(MigrationState *ms, const char *block_name,
726 uint64_t offset, int pages)
727{
728 if (!migrate_release_ram() || !migration_in_postcopy(ms)) {
729 return;
730 }
731
732 ram_discard_range(NULL, block_name, offset, pages << TARGET_PAGE_BITS);
733}
734
56e93d26
JQ
735/**
736 * ram_save_page: Send the given page to the stream
737 *
738 * Returns: Number of pages written.
3fd3c4b3
DDAG
739 * < 0 - error
740 * >=0 - Number of pages written - this might legally be 0
741 * if xbzrle noticed the page was the same.
56e93d26 742 *
9eb14766 743 * @ms: The current migration state.
56e93d26
JQ
744 * @f: QEMUFile where to send the data
745 * @block: block that contains the page we want to send
746 * @offset: offset inside the block for the page
747 * @last_stage: if we are at the completion stage
748 * @bytes_transferred: increase it with the number of transferred bytes
749 */
9eb14766 750static int ram_save_page(MigrationState *ms, QEMUFile *f, PageSearchStatus *pss,
56e93d26
JQ
751 bool last_stage, uint64_t *bytes_transferred)
752{
753 int pages = -1;
754 uint64_t bytes_xmit;
755 ram_addr_t current_addr;
56e93d26
JQ
756 uint8_t *p;
757 int ret;
758 bool send_async = true;
a08f6890
HZ
759 RAMBlock *block = pss->block;
760 ram_addr_t offset = pss->offset;
56e93d26 761
2f68e399 762 p = block->host + offset;
56e93d26
JQ
763
764 /* In doubt sent page as normal */
765 bytes_xmit = 0;
766 ret = ram_control_save_page(f, block->offset,
767 offset, TARGET_PAGE_SIZE, &bytes_xmit);
768 if (bytes_xmit) {
769 *bytes_transferred += bytes_xmit;
770 pages = 1;
771 }
772
773 XBZRLE_cache_lock();
774
775 current_addr = block->offset + offset;
776
777 if (block == last_sent_block) {
778 offset |= RAM_SAVE_FLAG_CONTINUE;
779 }
780 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
781 if (ret != RAM_SAVE_CONTROL_DELAYED) {
782 if (bytes_xmit > 0) {
783 acct_info.norm_pages++;
784 } else if (bytes_xmit == 0) {
785 acct_info.dup_pages++;
786 }
787 }
788 } else {
789 pages = save_zero_page(f, block, offset, p, bytes_transferred);
790 if (pages > 0) {
791 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
792 * page would be stale
793 */
794 xbzrle_cache_zero_page(current_addr);
53f09a10 795 ram_release_pages(ms, block->idstr, pss->offset, pages);
2ebeaec0 796 } else if (!ram_bulk_stage &&
9eb14766 797 !migration_in_postcopy(ms) && migrate_use_xbzrle()) {
56e93d26
JQ
798 pages = save_xbzrle_page(f, &p, current_addr, block,
799 offset, last_stage, bytes_transferred);
800 if (!last_stage) {
801 /* Can't send this cached data async, since the cache page
802 * might get updated before it gets to the wire
803 */
804 send_async = false;
805 }
806 }
807 }
808
809 /* XBZRLE overflow or normal page */
810 if (pages == -1) {
811 *bytes_transferred += save_page_header(f, block,
812 offset | RAM_SAVE_FLAG_PAGE);
813 if (send_async) {
53f09a10
PB
814 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE,
815 migrate_release_ram() &
816 migration_in_postcopy(ms));
56e93d26
JQ
817 } else {
818 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
819 }
820 *bytes_transferred += TARGET_PAGE_SIZE;
821 pages = 1;
822 acct_info.norm_pages++;
823 }
824
825 XBZRLE_cache_unlock();
826
827 return pages;
828}
829
a7a9a88f
LL
830static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
831 ram_addr_t offset)
56e93d26
JQ
832{
833 int bytes_sent, blen;
a7a9a88f 834 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
56e93d26 835
a7a9a88f 836 bytes_sent = save_page_header(f, block, offset |
56e93d26 837 RAM_SAVE_FLAG_COMPRESS_PAGE);
a7a9a88f 838 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE,
56e93d26 839 migrate_compress_level());
b3be2896
LL
840 if (blen < 0) {
841 bytes_sent = 0;
842 qemu_file_set_error(migrate_get_current()->to_dst_file, blen);
843 error_report("compressed data failed!");
844 } else {
845 bytes_sent += blen;
53f09a10
PB
846 ram_release_pages(migrate_get_current(), block->idstr,
847 offset & TARGET_PAGE_MASK, 1);
b3be2896 848 }
56e93d26
JQ
849
850 return bytes_sent;
851}
852
56e93d26
JQ
853static uint64_t bytes_transferred;
854
855static void flush_compressed_data(QEMUFile *f)
856{
857 int idx, len, thread_count;
858
859 if (!migrate_use_compression()) {
860 return;
861 }
862 thread_count = migrate_compress_threads();
a7a9a88f 863
0d9f9a5c 864 qemu_mutex_lock(&comp_done_lock);
56e93d26 865 for (idx = 0; idx < thread_count; idx++) {
a7a9a88f 866 while (!comp_param[idx].done) {
0d9f9a5c 867 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26 868 }
a7a9a88f 869 }
0d9f9a5c 870 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
871
872 for (idx = 0; idx < thread_count; idx++) {
873 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 874 if (!comp_param[idx].quit) {
56e93d26
JQ
875 len = qemu_put_qemu_file(f, comp_param[idx].file);
876 bytes_transferred += len;
877 }
a7a9a88f 878 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26
JQ
879 }
880}
881
882static inline void set_compress_params(CompressParam *param, RAMBlock *block,
883 ram_addr_t offset)
884{
885 param->block = block;
886 param->offset = offset;
887}
888
889static int compress_page_with_multi_thread(QEMUFile *f, RAMBlock *block,
890 ram_addr_t offset,
891 uint64_t *bytes_transferred)
892{
893 int idx, thread_count, bytes_xmit = -1, pages = -1;
894
895 thread_count = migrate_compress_threads();
0d9f9a5c 896 qemu_mutex_lock(&comp_done_lock);
56e93d26
JQ
897 while (true) {
898 for (idx = 0; idx < thread_count; idx++) {
899 if (comp_param[idx].done) {
a7a9a88f 900 comp_param[idx].done = false;
56e93d26 901 bytes_xmit = qemu_put_qemu_file(f, comp_param[idx].file);
a7a9a88f 902 qemu_mutex_lock(&comp_param[idx].mutex);
56e93d26 903 set_compress_params(&comp_param[idx], block, offset);
a7a9a88f
LL
904 qemu_cond_signal(&comp_param[idx].cond);
905 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26
JQ
906 pages = 1;
907 acct_info.norm_pages++;
908 *bytes_transferred += bytes_xmit;
909 break;
910 }
911 }
912 if (pages > 0) {
913 break;
914 } else {
0d9f9a5c 915 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26
JQ
916 }
917 }
0d9f9a5c 918 qemu_mutex_unlock(&comp_done_lock);
56e93d26
JQ
919
920 return pages;
921}
922
923/**
924 * ram_save_compressed_page: compress the given page and send it to the stream
925 *
926 * Returns: Number of pages written.
927 *
9eb14766 928 * @ms: The current migration state.
56e93d26
JQ
929 * @f: QEMUFile where to send the data
930 * @block: block that contains the page we want to send
931 * @offset: offset inside the block for the page
932 * @last_stage: if we are at the completion stage
933 * @bytes_transferred: increase it with the number of transferred bytes
934 */
9eb14766
PB
935static int ram_save_compressed_page(MigrationState *ms, QEMUFile *f,
936 PageSearchStatus *pss, bool last_stage,
56e93d26
JQ
937 uint64_t *bytes_transferred)
938{
939 int pages = -1;
fc50438e 940 uint64_t bytes_xmit = 0;
56e93d26 941 uint8_t *p;
fc50438e 942 int ret, blen;
a08f6890
HZ
943 RAMBlock *block = pss->block;
944 ram_addr_t offset = pss->offset;
56e93d26 945
2f68e399 946 p = block->host + offset;
56e93d26 947
56e93d26
JQ
948 ret = ram_control_save_page(f, block->offset,
949 offset, TARGET_PAGE_SIZE, &bytes_xmit);
950 if (bytes_xmit) {
951 *bytes_transferred += bytes_xmit;
952 pages = 1;
953 }
56e93d26
JQ
954 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
955 if (ret != RAM_SAVE_CONTROL_DELAYED) {
956 if (bytes_xmit > 0) {
957 acct_info.norm_pages++;
958 } else if (bytes_xmit == 0) {
959 acct_info.dup_pages++;
960 }
961 }
962 } else {
963 /* When starting the process of a new block, the first page of
964 * the block should be sent out before other pages in the same
965 * block, and all the pages in last block should have been sent
966 * out, keeping this order is important, because the 'cont' flag
967 * is used to avoid resending the block name.
968 */
969 if (block != last_sent_block) {
970 flush_compressed_data(f);
971 pages = save_zero_page(f, block, offset, p, bytes_transferred);
972 if (pages == -1) {
fc50438e
LL
973 /* Make sure the first page is sent out before other pages */
974 bytes_xmit = save_page_header(f, block, offset |
975 RAM_SAVE_FLAG_COMPRESS_PAGE);
976 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE,
977 migrate_compress_level());
978 if (blen > 0) {
979 *bytes_transferred += bytes_xmit + blen;
b3be2896 980 acct_info.norm_pages++;
b3be2896 981 pages = 1;
fc50438e
LL
982 } else {
983 qemu_file_set_error(f, blen);
984 error_report("compressed data failed!");
b3be2896 985 }
56e93d26 986 }
53f09a10
PB
987 if (pages > 0) {
988 ram_release_pages(ms, block->idstr, pss->offset, pages);
989 }
56e93d26 990 } else {
fc50438e 991 offset |= RAM_SAVE_FLAG_CONTINUE;
56e93d26
JQ
992 pages = save_zero_page(f, block, offset, p, bytes_transferred);
993 if (pages == -1) {
994 pages = compress_page_with_multi_thread(f, block, offset,
995 bytes_transferred);
53f09a10
PB
996 } else {
997 ram_release_pages(ms, block->idstr, pss->offset, pages);
56e93d26
JQ
998 }
999 }
1000 }
1001
1002 return pages;
1003}
1004
b9e60928
DDAG
1005/*
1006 * Find the next dirty page and update any state associated with
1007 * the search process.
1008 *
1009 * Returns: True if a page is found
1010 *
1011 * @f: Current migration stream.
1012 * @pss: Data about the state of the current dirty page scan.
1013 * @*again: Set to false if the search has scanned the whole of RAM
e0b266f0
DDAG
1014 * *ram_addr_abs: Pointer into which to store the address of the dirty page
1015 * within the global ram_addr space
b9e60928
DDAG
1016 */
1017static bool find_dirty_block(QEMUFile *f, PageSearchStatus *pss,
f3f491fc 1018 bool *again, ram_addr_t *ram_addr_abs)
b9e60928 1019{
a82d593b
DDAG
1020 pss->offset = migration_bitmap_find_dirty(pss->block, pss->offset,
1021 ram_addr_abs);
b9e60928
DDAG
1022 if (pss->complete_round && pss->block == last_seen_block &&
1023 pss->offset >= last_offset) {
1024 /*
1025 * We've been once around the RAM and haven't found anything.
1026 * Give up.
1027 */
1028 *again = false;
1029 return false;
1030 }
1031 if (pss->offset >= pss->block->used_length) {
1032 /* Didn't find anything in this RAM Block */
1033 pss->offset = 0;
1034 pss->block = QLIST_NEXT_RCU(pss->block, next);
1035 if (!pss->block) {
1036 /* Hit the end of the list */
1037 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1038 /* Flag that we've looped */
1039 pss->complete_round = true;
1040 ram_bulk_stage = false;
1041 if (migrate_use_xbzrle()) {
1042 /* If xbzrle is on, stop using the data compression at this
1043 * point. In theory, xbzrle can do better than compression.
1044 */
1045 flush_compressed_data(f);
1046 compression_switch = false;
1047 }
1048 }
1049 /* Didn't find anything this time, but try again on the new block */
1050 *again = true;
1051 return false;
1052 } else {
1053 /* Can go around again, but... */
1054 *again = true;
1055 /* We've found something so probably don't need to */
1056 return true;
1057 }
1058}
1059
a82d593b
DDAG
1060/*
1061 * Helper for 'get_queued_page' - gets a page off the queue
1062 * ms: MigrationState in
1063 * *offset: Used to return the offset within the RAMBlock
1064 * ram_addr_abs: global offset in the dirty/sent bitmaps
1065 *
1066 * Returns: block (or NULL if none available)
1067 */
1068static RAMBlock *unqueue_page(MigrationState *ms, ram_addr_t *offset,
1069 ram_addr_t *ram_addr_abs)
1070{
1071 RAMBlock *block = NULL;
1072
1073 qemu_mutex_lock(&ms->src_page_req_mutex);
1074 if (!QSIMPLEQ_EMPTY(&ms->src_page_requests)) {
1075 struct MigrationSrcPageRequest *entry =
1076 QSIMPLEQ_FIRST(&ms->src_page_requests);
1077 block = entry->rb;
1078 *offset = entry->offset;
1079 *ram_addr_abs = (entry->offset + entry->rb->offset) &
1080 TARGET_PAGE_MASK;
1081
1082 if (entry->len > TARGET_PAGE_SIZE) {
1083 entry->len -= TARGET_PAGE_SIZE;
1084 entry->offset += TARGET_PAGE_SIZE;
1085 } else {
1086 memory_region_unref(block->mr);
1087 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req);
1088 g_free(entry);
1089 }
1090 }
1091 qemu_mutex_unlock(&ms->src_page_req_mutex);
1092
1093 return block;
1094}
1095
1096/*
1097 * Unqueue a page from the queue fed by postcopy page requests; skips pages
1098 * that are already sent (!dirty)
1099 *
1100 * ms: MigrationState in
1101 * pss: PageSearchStatus structure updated with found block/offset
1102 * ram_addr_abs: global offset in the dirty/sent bitmaps
1103 *
1104 * Returns: true if a queued page is found
1105 */
1106static bool get_queued_page(MigrationState *ms, PageSearchStatus *pss,
1107 ram_addr_t *ram_addr_abs)
1108{
1109 RAMBlock *block;
1110 ram_addr_t offset;
1111 bool dirty;
1112
1113 do {
1114 block = unqueue_page(ms, &offset, ram_addr_abs);
1115 /*
1116 * We're sending this page, and since it's postcopy nothing else
1117 * will dirty it, and we must make sure it doesn't get sent again
1118 * even if this queue request was received after the background
1119 * search already sent it.
1120 */
1121 if (block) {
1122 unsigned long *bitmap;
1123 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1124 dirty = test_bit(*ram_addr_abs >> TARGET_PAGE_BITS, bitmap);
1125 if (!dirty) {
1126 trace_get_queued_page_not_dirty(
1127 block->idstr, (uint64_t)offset,
1128 (uint64_t)*ram_addr_abs,
1129 test_bit(*ram_addr_abs >> TARGET_PAGE_BITS,
1130 atomic_rcu_read(&migration_bitmap_rcu)->unsentmap));
1131 } else {
1132 trace_get_queued_page(block->idstr,
1133 (uint64_t)offset,
1134 (uint64_t)*ram_addr_abs);
1135 }
1136 }
1137
1138 } while (block && !dirty);
1139
1140 if (block) {
1141 /*
1142 * As soon as we start servicing pages out of order, then we have
1143 * to kill the bulk stage, since the bulk stage assumes
1144 * in (migration_bitmap_find_and_reset_dirty) that every page is
1145 * dirty, that's no longer true.
1146 */
1147 ram_bulk_stage = false;
1148
1149 /*
1150 * We want the background search to continue from the queued page
1151 * since the guest is likely to want other pages near to the page
1152 * it just requested.
1153 */
1154 pss->block = block;
1155 pss->offset = offset;
1156 }
1157
1158 return !!block;
1159}
1160
6c595cde
DDAG
1161/**
1162 * flush_page_queue: Flush any remaining pages in the ram request queue
1163 * it should be empty at the end anyway, but in error cases there may be
1164 * some left.
1165 *
1166 * ms: MigrationState
1167 */
1168void flush_page_queue(MigrationState *ms)
1169{
1170 struct MigrationSrcPageRequest *mspr, *next_mspr;
1171 /* This queue generally should be empty - but in the case of a failed
1172 * migration might have some droppings in.
1173 */
1174 rcu_read_lock();
1175 QSIMPLEQ_FOREACH_SAFE(mspr, &ms->src_page_requests, next_req, next_mspr) {
1176 memory_region_unref(mspr->rb->mr);
1177 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req);
1178 g_free(mspr);
1179 }
1180 rcu_read_unlock();
1181}
1182
1183/**
1184 * Queue the pages for transmission, e.g. a request from postcopy destination
1185 * ms: MigrationStatus in which the queue is held
1186 * rbname: The RAMBlock the request is for - may be NULL (to mean reuse last)
1187 * start: Offset from the start of the RAMBlock
1188 * len: Length (in bytes) to send
1189 * Return: 0 on success
1190 */
1191int ram_save_queue_pages(MigrationState *ms, const char *rbname,
1192 ram_addr_t start, ram_addr_t len)
1193{
1194 RAMBlock *ramblock;
1195
d3bf5418 1196 ms->postcopy_requests++;
6c595cde
DDAG
1197 rcu_read_lock();
1198 if (!rbname) {
1199 /* Reuse last RAMBlock */
1200 ramblock = ms->last_req_rb;
1201
1202 if (!ramblock) {
1203 /*
1204 * Shouldn't happen, we can't reuse the last RAMBlock if
1205 * it's the 1st request.
1206 */
1207 error_report("ram_save_queue_pages no previous block");
1208 goto err;
1209 }
1210 } else {
1211 ramblock = qemu_ram_block_by_name(rbname);
1212
1213 if (!ramblock) {
1214 /* We shouldn't be asked for a non-existent RAMBlock */
1215 error_report("ram_save_queue_pages no block '%s'", rbname);
1216 goto err;
1217 }
1218 ms->last_req_rb = ramblock;
1219 }
1220 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1221 if (start+len > ramblock->used_length) {
9458ad6b
JQ
1222 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1223 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
6c595cde
DDAG
1224 __func__, start, len, ramblock->used_length);
1225 goto err;
1226 }
1227
1228 struct MigrationSrcPageRequest *new_entry =
1229 g_malloc0(sizeof(struct MigrationSrcPageRequest));
1230 new_entry->rb = ramblock;
1231 new_entry->offset = start;
1232 new_entry->len = len;
1233
1234 memory_region_ref(ramblock->mr);
1235 qemu_mutex_lock(&ms->src_page_req_mutex);
1236 QSIMPLEQ_INSERT_TAIL(&ms->src_page_requests, new_entry, next_req);
1237 qemu_mutex_unlock(&ms->src_page_req_mutex);
1238 rcu_read_unlock();
1239
1240 return 0;
1241
1242err:
1243 rcu_read_unlock();
1244 return -1;
1245}
1246
a82d593b
DDAG
1247/**
1248 * ram_save_target_page: Save one target page
1249 *
1250 *
1251 * @f: QEMUFile where to send the data
1252 * @block: pointer to block that contains the page we want to send
1253 * @offset: offset inside the block for the page;
1254 * @last_stage: if we are at the completion stage
1255 * @bytes_transferred: increase it with the number of transferred bytes
1256 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space
1257 *
1258 * Returns: Number of pages written.
1259 */
1260static int ram_save_target_page(MigrationState *ms, QEMUFile *f,
a08f6890 1261 PageSearchStatus *pss,
a82d593b
DDAG
1262 bool last_stage,
1263 uint64_t *bytes_transferred,
1264 ram_addr_t dirty_ram_abs)
1265{
1266 int res = 0;
1267
1268 /* Check the pages is dirty and if it is send it */
1269 if (migration_bitmap_clear_dirty(dirty_ram_abs)) {
1270 unsigned long *unsentmap;
1271 if (compression_switch && migrate_use_compression()) {
9eb14766 1272 res = ram_save_compressed_page(ms, f, pss,
a82d593b
DDAG
1273 last_stage,
1274 bytes_transferred);
1275 } else {
9eb14766 1276 res = ram_save_page(ms, f, pss, last_stage,
a82d593b
DDAG
1277 bytes_transferred);
1278 }
1279
1280 if (res < 0) {
1281 return res;
1282 }
1283 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1284 if (unsentmap) {
1285 clear_bit(dirty_ram_abs >> TARGET_PAGE_BITS, unsentmap);
1286 }
3fd3c4b3
DDAG
1287 /* Only update last_sent_block if a block was actually sent; xbzrle
1288 * might have decided the page was identical so didn't bother writing
1289 * to the stream.
1290 */
1291 if (res > 0) {
a08f6890 1292 last_sent_block = pss->block;
3fd3c4b3 1293 }
a82d593b
DDAG
1294 }
1295
1296 return res;
1297}
1298
1299/**
cb8d4c8f 1300 * ram_save_host_page: Starting at *offset send pages up to the end
a82d593b
DDAG
1301 * of the current host page. It's valid for the initial
1302 * offset to point into the middle of a host page
1303 * in which case the remainder of the hostpage is sent.
1304 * Only dirty target pages are sent.
1305 *
1306 * Returns: Number of pages written.
1307 *
1308 * @f: QEMUFile where to send the data
1309 * @block: pointer to block that contains the page we want to send
1310 * @offset: offset inside the block for the page; updated to last target page
1311 * sent
1312 * @last_stage: if we are at the completion stage
1313 * @bytes_transferred: increase it with the number of transferred bytes
1314 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space
1315 */
a08f6890
HZ
1316static int ram_save_host_page(MigrationState *ms, QEMUFile *f,
1317 PageSearchStatus *pss,
1318 bool last_stage,
a82d593b
DDAG
1319 uint64_t *bytes_transferred,
1320 ram_addr_t dirty_ram_abs)
1321{
1322 int tmppages, pages = 0;
1323 do {
a08f6890 1324 tmppages = ram_save_target_page(ms, f, pss, last_stage,
a82d593b
DDAG
1325 bytes_transferred, dirty_ram_abs);
1326 if (tmppages < 0) {
1327 return tmppages;
1328 }
1329
1330 pages += tmppages;
a08f6890 1331 pss->offset += TARGET_PAGE_SIZE;
a82d593b 1332 dirty_ram_abs += TARGET_PAGE_SIZE;
a08f6890 1333 } while (pss->offset & (qemu_host_page_size - 1));
a82d593b
DDAG
1334
1335 /* The offset we leave with is the last one we looked at */
a08f6890 1336 pss->offset -= TARGET_PAGE_SIZE;
a82d593b
DDAG
1337 return pages;
1338}
6c595cde 1339
56e93d26
JQ
1340/**
1341 * ram_find_and_save_block: Finds a dirty page and sends it to f
1342 *
1343 * Called within an RCU critical section.
1344 *
1345 * Returns: The number of pages written
1346 * 0 means no dirty pages
1347 *
1348 * @f: QEMUFile where to send the data
1349 * @last_stage: if we are at the completion stage
1350 * @bytes_transferred: increase it with the number of transferred bytes
a82d593b
DDAG
1351 *
1352 * On systems where host-page-size > target-page-size it will send all the
1353 * pages in a host page that are dirty.
56e93d26
JQ
1354 */
1355
1356static int ram_find_and_save_block(QEMUFile *f, bool last_stage,
1357 uint64_t *bytes_transferred)
1358{
b8fb8cb7 1359 PageSearchStatus pss;
a82d593b 1360 MigrationState *ms = migrate_get_current();
56e93d26 1361 int pages = 0;
b9e60928 1362 bool again, found;
f3f491fc
DDAG
1363 ram_addr_t dirty_ram_abs; /* Address of the start of the dirty page in
1364 ram_addr_t space */
56e93d26 1365
0827b9e9
AA
1366 /* No dirty page as there is zero RAM */
1367 if (!ram_bytes_total()) {
1368 return pages;
1369 }
1370
b8fb8cb7
DDAG
1371 pss.block = last_seen_block;
1372 pss.offset = last_offset;
1373 pss.complete_round = false;
1374
1375 if (!pss.block) {
1376 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
1377 }
56e93d26 1378
b9e60928 1379 do {
a82d593b
DDAG
1380 again = true;
1381 found = get_queued_page(ms, &pss, &dirty_ram_abs);
b9e60928 1382
a82d593b
DDAG
1383 if (!found) {
1384 /* priority queue empty, so just search for something dirty */
1385 found = find_dirty_block(f, &pss, &again, &dirty_ram_abs);
1386 }
f3f491fc 1387
a82d593b 1388 if (found) {
a08f6890 1389 pages = ram_save_host_page(ms, f, &pss,
a82d593b
DDAG
1390 last_stage, bytes_transferred,
1391 dirty_ram_abs);
56e93d26 1392 }
b9e60928 1393 } while (!pages && again);
56e93d26 1394
b8fb8cb7
DDAG
1395 last_seen_block = pss.block;
1396 last_offset = pss.offset;
56e93d26
JQ
1397
1398 return pages;
1399}
1400
1401void acct_update_position(QEMUFile *f, size_t size, bool zero)
1402{
1403 uint64_t pages = size / TARGET_PAGE_SIZE;
1404 if (zero) {
1405 acct_info.dup_pages += pages;
1406 } else {
1407 acct_info.norm_pages += pages;
1408 bytes_transferred += size;
1409 qemu_update_position(f, size);
1410 }
1411}
1412
1413static ram_addr_t ram_save_remaining(void)
1414{
1415 return migration_dirty_pages;
1416}
1417
1418uint64_t ram_bytes_remaining(void)
1419{
1420 return ram_save_remaining() * TARGET_PAGE_SIZE;
1421}
1422
1423uint64_t ram_bytes_transferred(void)
1424{
1425 return bytes_transferred;
1426}
1427
1428uint64_t ram_bytes_total(void)
1429{
1430 RAMBlock *block;
1431 uint64_t total = 0;
1432
1433 rcu_read_lock();
1434 QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
1435 total += block->used_length;
1436 rcu_read_unlock();
1437 return total;
1438}
1439
1440void free_xbzrle_decoded_buf(void)
1441{
1442 g_free(xbzrle_decoded_buf);
1443 xbzrle_decoded_buf = NULL;
1444}
1445
60be6340
DL
1446static void migration_bitmap_free(struct BitmapRcu *bmap)
1447{
1448 g_free(bmap->bmap);
f3f491fc 1449 g_free(bmap->unsentmap);
60be6340
DL
1450 g_free(bmap);
1451}
1452
6ad2a215 1453static void ram_migration_cleanup(void *opaque)
56e93d26 1454{
2ff64038
LZ
1455 /* caller have hold iothread lock or is in a bh, so there is
1456 * no writing race against this migration_bitmap
1457 */
60be6340
DL
1458 struct BitmapRcu *bitmap = migration_bitmap_rcu;
1459 atomic_rcu_set(&migration_bitmap_rcu, NULL);
2ff64038 1460 if (bitmap) {
56e93d26 1461 memory_global_dirty_log_stop();
60be6340 1462 call_rcu(bitmap, migration_bitmap_free, rcu);
56e93d26
JQ
1463 }
1464
1465 XBZRLE_cache_lock();
1466 if (XBZRLE.cache) {
1467 cache_fini(XBZRLE.cache);
1468 g_free(XBZRLE.encoded_buf);
1469 g_free(XBZRLE.current_buf);
adb65dec 1470 g_free(ZERO_TARGET_PAGE);
56e93d26
JQ
1471 XBZRLE.cache = NULL;
1472 XBZRLE.encoded_buf = NULL;
1473 XBZRLE.current_buf = NULL;
1474 }
1475 XBZRLE_cache_unlock();
1476}
1477
56e93d26
JQ
1478static void reset_ram_globals(void)
1479{
1480 last_seen_block = NULL;
1481 last_sent_block = NULL;
1482 last_offset = 0;
1483 last_version = ram_list.version;
1484 ram_bulk_stage = true;
1485}
1486
1487#define MAX_WAIT 50 /* ms, half buffered_file limit */
1488
dd631697
LZ
1489void migration_bitmap_extend(ram_addr_t old, ram_addr_t new)
1490{
1491 /* called in qemu main thread, so there is
1492 * no writing race against this migration_bitmap
1493 */
60be6340
DL
1494 if (migration_bitmap_rcu) {
1495 struct BitmapRcu *old_bitmap = migration_bitmap_rcu, *bitmap;
1496 bitmap = g_new(struct BitmapRcu, 1);
1497 bitmap->bmap = bitmap_new(new);
dd631697
LZ
1498
1499 /* prevent migration_bitmap content from being set bit
1500 * by migration_bitmap_sync_range() at the same time.
1501 * it is safe to migration if migration_bitmap is cleared bit
1502 * at the same time.
1503 */
1504 qemu_mutex_lock(&migration_bitmap_mutex);
60be6340
DL
1505 bitmap_copy(bitmap->bmap, old_bitmap->bmap, old);
1506 bitmap_set(bitmap->bmap, old, new - old);
f3f491fc
DDAG
1507
1508 /* We don't have a way to safely extend the sentmap
1509 * with RCU; so mark it as missing, entry to postcopy
1510 * will fail.
1511 */
1512 bitmap->unsentmap = NULL;
1513
60be6340 1514 atomic_rcu_set(&migration_bitmap_rcu, bitmap);
dd631697
LZ
1515 qemu_mutex_unlock(&migration_bitmap_mutex);
1516 migration_dirty_pages += new - old;
60be6340 1517 call_rcu(old_bitmap, migration_bitmap_free, rcu);
dd631697
LZ
1518 }
1519}
56e93d26 1520
4f2e4252
DDAG
1521/*
1522 * 'expected' is the value you expect the bitmap mostly to be full
1523 * of; it won't bother printing lines that are all this value.
1524 * If 'todump' is null the migration bitmap is dumped.
1525 */
1526void ram_debug_dump_bitmap(unsigned long *todump, bool expected)
1527{
1528 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1529
1530 int64_t cur;
1531 int64_t linelen = 128;
1532 char linebuf[129];
1533
1534 if (!todump) {
1535 todump = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1536 }
1537
1538 for (cur = 0; cur < ram_pages; cur += linelen) {
1539 int64_t curb;
1540 bool found = false;
1541 /*
1542 * Last line; catch the case where the line length
1543 * is longer than remaining ram
1544 */
1545 if (cur + linelen > ram_pages) {
1546 linelen = ram_pages - cur;
1547 }
1548 for (curb = 0; curb < linelen; curb++) {
1549 bool thisbit = test_bit(cur + curb, todump);
1550 linebuf[curb] = thisbit ? '1' : '.';
1551 found = found || (thisbit != expected);
1552 }
1553 if (found) {
1554 linebuf[curb] = '\0';
1555 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
1556 }
1557 }
1558}
1559
e0b266f0
DDAG
1560/* **** functions for postcopy ***** */
1561
ced1c616
PB
1562void ram_postcopy_migrated_memory_release(MigrationState *ms)
1563{
1564 struct RAMBlock *block;
1565 unsigned long *bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1566
1567 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1568 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1569 unsigned long range = first + (block->used_length >> TARGET_PAGE_BITS);
1570 unsigned long run_start = find_next_zero_bit(bitmap, range, first);
1571
1572 while (run_start < range) {
1573 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
1574 ram_discard_range(NULL, block->idstr, run_start << TARGET_PAGE_BITS,
1575 (run_end - run_start) << TARGET_PAGE_BITS);
1576 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
1577 }
1578 }
1579}
1580
e0b266f0
DDAG
1581/*
1582 * Callback from postcopy_each_ram_send_discard for each RAMBlock
1583 * Note: At this point the 'unsentmap' is the processed bitmap combined
1584 * with the dirtymap; so a '1' means it's either dirty or unsent.
1585 * start,length: Indexes into the bitmap for the first bit
1586 * representing the named block and length in target-pages
1587 */
1588static int postcopy_send_discard_bm_ram(MigrationState *ms,
1589 PostcopyDiscardState *pds,
1590 unsigned long start,
1591 unsigned long length)
1592{
1593 unsigned long end = start + length; /* one after the end */
1594 unsigned long current;
1595 unsigned long *unsentmap;
1596
1597 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1598 for (current = start; current < end; ) {
1599 unsigned long one = find_next_bit(unsentmap, end, current);
1600
1601 if (one <= end) {
1602 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
1603 unsigned long discard_length;
1604
1605 if (zero >= end) {
1606 discard_length = end - one;
1607 } else {
1608 discard_length = zero - one;
1609 }
d688c62d
DDAG
1610 if (discard_length) {
1611 postcopy_discard_send_range(ms, pds, one, discard_length);
1612 }
e0b266f0
DDAG
1613 current = one + discard_length;
1614 } else {
1615 current = one;
1616 }
1617 }
1618
1619 return 0;
1620}
1621
1622/*
1623 * Utility for the outgoing postcopy code.
1624 * Calls postcopy_send_discard_bm_ram for each RAMBlock
1625 * passing it bitmap indexes and name.
1626 * Returns: 0 on success
1627 * (qemu_ram_foreach_block ends up passing unscaled lengths
1628 * which would mean postcopy code would have to deal with target page)
1629 */
1630static int postcopy_each_ram_send_discard(MigrationState *ms)
1631{
1632 struct RAMBlock *block;
1633 int ret;
1634
1635 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1636 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1637 PostcopyDiscardState *pds = postcopy_discard_send_init(ms,
1638 first,
1639 block->idstr);
1640
1641 /*
1642 * Postcopy sends chunks of bitmap over the wire, but it
1643 * just needs indexes at this point, avoids it having
1644 * target page specific code.
1645 */
1646 ret = postcopy_send_discard_bm_ram(ms, pds, first,
1647 block->used_length >> TARGET_PAGE_BITS);
1648 postcopy_discard_send_finish(ms, pds);
1649 if (ret) {
1650 return ret;
1651 }
1652 }
1653
1654 return 0;
1655}
1656
99e314eb
DDAG
1657/*
1658 * Helper for postcopy_chunk_hostpages; it's called twice to cleanup
1659 * the two bitmaps, that are similar, but one is inverted.
1660 *
1661 * We search for runs of target-pages that don't start or end on a
1662 * host page boundary;
1663 * unsent_pass=true: Cleans up partially unsent host pages by searching
1664 * the unsentmap
1665 * unsent_pass=false: Cleans up partially dirty host pages by searching
1666 * the main migration bitmap
1667 *
1668 */
1669static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
1670 RAMBlock *block,
1671 PostcopyDiscardState *pds)
1672{
1673 unsigned long *bitmap;
1674 unsigned long *unsentmap;
1675 unsigned int host_ratio = qemu_host_page_size / TARGET_PAGE_SIZE;
1676 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1677 unsigned long len = block->used_length >> TARGET_PAGE_BITS;
1678 unsigned long last = first + (len - 1);
1679 unsigned long run_start;
1680
1681 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1682 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1683
1684 if (unsent_pass) {
1685 /* Find a sent page */
1686 run_start = find_next_zero_bit(unsentmap, last + 1, first);
1687 } else {
1688 /* Find a dirty page */
1689 run_start = find_next_bit(bitmap, last + 1, first);
1690 }
1691
1692 while (run_start <= last) {
1693 bool do_fixup = false;
1694 unsigned long fixup_start_addr;
1695 unsigned long host_offset;
1696
1697 /*
1698 * If the start of this run of pages is in the middle of a host
1699 * page, then we need to fixup this host page.
1700 */
1701 host_offset = run_start % host_ratio;
1702 if (host_offset) {
1703 do_fixup = true;
1704 run_start -= host_offset;
1705 fixup_start_addr = run_start;
1706 /* For the next pass */
1707 run_start = run_start + host_ratio;
1708 } else {
1709 /* Find the end of this run */
1710 unsigned long run_end;
1711 if (unsent_pass) {
1712 run_end = find_next_bit(unsentmap, last + 1, run_start + 1);
1713 } else {
1714 run_end = find_next_zero_bit(bitmap, last + 1, run_start + 1);
1715 }
1716 /*
1717 * If the end isn't at the start of a host page, then the
1718 * run doesn't finish at the end of a host page
1719 * and we need to discard.
1720 */
1721 host_offset = run_end % host_ratio;
1722 if (host_offset) {
1723 do_fixup = true;
1724 fixup_start_addr = run_end - host_offset;
1725 /*
1726 * This host page has gone, the next loop iteration starts
1727 * from after the fixup
1728 */
1729 run_start = fixup_start_addr + host_ratio;
1730 } else {
1731 /*
1732 * No discards on this iteration, next loop starts from
1733 * next sent/dirty page
1734 */
1735 run_start = run_end + 1;
1736 }
1737 }
1738
1739 if (do_fixup) {
1740 unsigned long page;
1741
1742 /* Tell the destination to discard this page */
1743 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
1744 /* For the unsent_pass we:
1745 * discard partially sent pages
1746 * For the !unsent_pass (dirty) we:
1747 * discard partially dirty pages that were sent
1748 * (any partially sent pages were already discarded
1749 * by the previous unsent_pass)
1750 */
1751 postcopy_discard_send_range(ms, pds, fixup_start_addr,
1752 host_ratio);
1753 }
1754
1755 /* Clean up the bitmap */
1756 for (page = fixup_start_addr;
1757 page < fixup_start_addr + host_ratio; page++) {
1758 /* All pages in this host page are now not sent */
1759 set_bit(page, unsentmap);
1760
1761 /*
1762 * Remark them as dirty, updating the count for any pages
1763 * that weren't previously dirty.
1764 */
1765 migration_dirty_pages += !test_and_set_bit(page, bitmap);
1766 }
1767 }
1768
1769 if (unsent_pass) {
1770 /* Find the next sent page for the next iteration */
1771 run_start = find_next_zero_bit(unsentmap, last + 1,
1772 run_start);
1773 } else {
1774 /* Find the next dirty page for the next iteration */
1775 run_start = find_next_bit(bitmap, last + 1, run_start);
1776 }
1777 }
1778}
1779
1780/*
1781 * Utility for the outgoing postcopy code.
1782 *
1783 * Discard any partially sent host-page size chunks, mark any partially
1784 * dirty host-page size chunks as all dirty.
1785 *
1786 * Returns: 0 on success
1787 */
1788static int postcopy_chunk_hostpages(MigrationState *ms)
1789{
1790 struct RAMBlock *block;
1791
1792 if (qemu_host_page_size == TARGET_PAGE_SIZE) {
1793 /* Easy case - TPS==HPS - nothing to be done */
1794 return 0;
1795 }
1796
1797 /* Easiest way to make sure we don't resume in the middle of a host-page */
1798 last_seen_block = NULL;
1799 last_sent_block = NULL;
1800 last_offset = 0;
1801
1802 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1803 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1804
1805 PostcopyDiscardState *pds =
1806 postcopy_discard_send_init(ms, first, block->idstr);
1807
1808 /* First pass: Discard all partially sent host pages */
1809 postcopy_chunk_hostpages_pass(ms, true, block, pds);
1810 /*
1811 * Second pass: Ensure that all partially dirty host pages are made
1812 * fully dirty.
1813 */
1814 postcopy_chunk_hostpages_pass(ms, false, block, pds);
1815
1816 postcopy_discard_send_finish(ms, pds);
1817 } /* ram_list loop */
1818
1819 return 0;
1820}
1821
e0b266f0
DDAG
1822/*
1823 * Transmit the set of pages to be discarded after precopy to the target
1824 * these are pages that:
1825 * a) Have been previously transmitted but are now dirty again
1826 * b) Pages that have never been transmitted, this ensures that
1827 * any pages on the destination that have been mapped by background
1828 * tasks get discarded (transparent huge pages is the specific concern)
1829 * Hopefully this is pretty sparse
1830 */
1831int ram_postcopy_send_discard_bitmap(MigrationState *ms)
1832{
1833 int ret;
1834 unsigned long *bitmap, *unsentmap;
1835
1836 rcu_read_lock();
1837
1838 /* This should be our last sync, the src is now paused */
1839 migration_bitmap_sync();
1840
1841 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1842 if (!unsentmap) {
1843 /* We don't have a safe way to resize the sentmap, so
1844 * if the bitmap was resized it will be NULL at this
1845 * point.
1846 */
1847 error_report("migration ram resized during precopy phase");
1848 rcu_read_unlock();
1849 return -EINVAL;
1850 }
1851
99e314eb
DDAG
1852 /* Deal with TPS != HPS */
1853 ret = postcopy_chunk_hostpages(ms);
1854 if (ret) {
1855 rcu_read_unlock();
1856 return ret;
1857 }
1858
e0b266f0
DDAG
1859 /*
1860 * Update the unsentmap to be unsentmap = unsentmap | dirty
1861 */
1862 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1863 bitmap_or(unsentmap, unsentmap, bitmap,
1864 last_ram_offset() >> TARGET_PAGE_BITS);
1865
1866
1867 trace_ram_postcopy_send_discard_bitmap();
1868#ifdef DEBUG_POSTCOPY
1869 ram_debug_dump_bitmap(unsentmap, true);
1870#endif
1871
1872 ret = postcopy_each_ram_send_discard(ms);
1873 rcu_read_unlock();
1874
1875 return ret;
1876}
1877
1878/*
1879 * At the start of the postcopy phase of migration, any now-dirty
1880 * precopied pages are discarded.
1881 *
1882 * start, length describe a byte address range within the RAMBlock
1883 *
1884 * Returns 0 on success.
1885 */
1886int ram_discard_range(MigrationIncomingState *mis,
1887 const char *block_name,
1888 uint64_t start, size_t length)
1889{
1890 int ret = -1;
1891
1892 rcu_read_lock();
1893 RAMBlock *rb = qemu_ram_block_by_name(block_name);
1894
1895 if (!rb) {
1896 error_report("ram_discard_range: Failed to find block '%s'",
1897 block_name);
1898 goto err;
1899 }
1900
1901 uint8_t *host_startaddr = rb->host + start;
1902
1903 if ((uintptr_t)host_startaddr & (qemu_host_page_size - 1)) {
1904 error_report("ram_discard_range: Unaligned start address: %p",
1905 host_startaddr);
1906 goto err;
1907 }
1908
1909 if ((start + length) <= rb->used_length) {
1910 uint8_t *host_endaddr = host_startaddr + length;
1911 if ((uintptr_t)host_endaddr & (qemu_host_page_size - 1)) {
1912 error_report("ram_discard_range: Unaligned end address: %p",
1913 host_endaddr);
1914 goto err;
1915 }
1916 ret = postcopy_ram_discard_range(mis, host_startaddr, length);
1917 } else {
1918 error_report("ram_discard_range: Overrun block '%s' (%" PRIu64
9458ad6b 1919 "/%zx/" RAM_ADDR_FMT")",
e0b266f0
DDAG
1920 block_name, start, length, rb->used_length);
1921 }
1922
1923err:
1924 rcu_read_unlock();
1925
1926 return ret;
1927}
1928
a91246c9 1929static int ram_save_init_globals(void)
56e93d26 1930{
56e93d26
JQ
1931 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
1932
56e93d26
JQ
1933 dirty_rate_high_cnt = 0;
1934 bitmap_sync_count = 0;
1935 migration_bitmap_sync_init();
dd631697 1936 qemu_mutex_init(&migration_bitmap_mutex);
56e93d26
JQ
1937
1938 if (migrate_use_xbzrle()) {
1939 XBZRLE_cache_lock();
adb65dec 1940 ZERO_TARGET_PAGE = g_malloc0(TARGET_PAGE_SIZE);
56e93d26
JQ
1941 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
1942 TARGET_PAGE_SIZE,
1943 TARGET_PAGE_SIZE);
1944 if (!XBZRLE.cache) {
1945 XBZRLE_cache_unlock();
1946 error_report("Error creating cache");
1947 return -1;
1948 }
1949 XBZRLE_cache_unlock();
1950
1951 /* We prefer not to abort if there is no memory */
1952 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
1953 if (!XBZRLE.encoded_buf) {
1954 error_report("Error allocating encoded_buf");
1955 return -1;
1956 }
1957
1958 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
1959 if (!XBZRLE.current_buf) {
1960 error_report("Error allocating current_buf");
1961 g_free(XBZRLE.encoded_buf);
1962 XBZRLE.encoded_buf = NULL;
1963 return -1;
1964 }
1965
1966 acct_clear();
1967 }
1968
49877834
PB
1969 /* For memory_global_dirty_log_start below. */
1970 qemu_mutex_lock_iothread();
1971
56e93d26
JQ
1972 qemu_mutex_lock_ramlist();
1973 rcu_read_lock();
1974 bytes_transferred = 0;
1975 reset_ram_globals();
1976
f3f491fc 1977 migration_bitmap_rcu = g_new0(struct BitmapRcu, 1);
0827b9e9
AA
1978 /* Skip setting bitmap if there is no RAM */
1979 if (ram_bytes_total()) {
1980 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1981 migration_bitmap_rcu->bmap = bitmap_new(ram_bitmap_pages);
1982 bitmap_set(migration_bitmap_rcu->bmap, 0, ram_bitmap_pages);
1983
1984 if (migrate_postcopy_ram()) {
1985 migration_bitmap_rcu->unsentmap = bitmap_new(ram_bitmap_pages);
1986 bitmap_set(migration_bitmap_rcu->unsentmap, 0, ram_bitmap_pages);
1987 }
f3f491fc
DDAG
1988 }
1989
56e93d26
JQ
1990 /*
1991 * Count the total number of pages used by ram blocks not including any
1992 * gaps due to alignment or unplugs.
1993 */
1994 migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
1995
1996 memory_global_dirty_log_start();
1997 migration_bitmap_sync();
1998 qemu_mutex_unlock_ramlist();
49877834 1999 qemu_mutex_unlock_iothread();
a91246c9
HZ
2000 rcu_read_unlock();
2001
2002 return 0;
2003}
2004
2005/* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2006 * long-running RCU critical section. When rcu-reclaims in the code
2007 * start to become numerous it will be necessary to reduce the
2008 * granularity of these critical sections.
2009 */
2010
2011static int ram_save_setup(QEMUFile *f, void *opaque)
2012{
2013 RAMBlock *block;
2014
2015 /* migration has already setup the bitmap, reuse it. */
2016 if (!migration_in_colo_state()) {
2017 if (ram_save_init_globals() < 0) {
2018 return -1;
2019 }
2020 }
2021
2022 rcu_read_lock();
56e93d26
JQ
2023
2024 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
2025
2026 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2027 qemu_put_byte(f, strlen(block->idstr));
2028 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
2029 qemu_put_be64(f, block->used_length);
ef08fb38
DDAG
2030 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
2031 qemu_put_be64(f, block->page_size);
2032 }
56e93d26
JQ
2033 }
2034
2035 rcu_read_unlock();
2036
2037 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
2038 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
2039
2040 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2041
2042 return 0;
2043}
2044
2045static int ram_save_iterate(QEMUFile *f, void *opaque)
2046{
2047 int ret;
2048 int i;
2049 int64_t t0;
5c90308f 2050 int done = 0;
56e93d26
JQ
2051
2052 rcu_read_lock();
2053 if (ram_list.version != last_version) {
2054 reset_ram_globals();
2055 }
2056
2057 /* Read version before ram_list.blocks */
2058 smp_rmb();
2059
2060 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
2061
2062 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2063 i = 0;
2064 while ((ret = qemu_file_rate_limit(f)) == 0) {
2065 int pages;
2066
2067 pages = ram_find_and_save_block(f, false, &bytes_transferred);
2068 /* no more pages to sent */
2069 if (pages == 0) {
5c90308f 2070 done = 1;
56e93d26
JQ
2071 break;
2072 }
56e93d26 2073 acct_info.iterations++;
070afca2 2074
56e93d26
JQ
2075 /* we want to check in the 1st loop, just in case it was the 1st time
2076 and we had to sync the dirty bitmap.
2077 qemu_get_clock_ns() is a bit expensive, so we only check each some
2078 iterations
2079 */
2080 if ((i & 63) == 0) {
2081 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
2082 if (t1 > MAX_WAIT) {
55c4446b 2083 trace_ram_save_iterate_big_wait(t1, i);
56e93d26
JQ
2084 break;
2085 }
2086 }
2087 i++;
2088 }
2089 flush_compressed_data(f);
2090 rcu_read_unlock();
2091
2092 /*
2093 * Must occur before EOS (or any QEMUFile operation)
2094 * because of RDMA protocol.
2095 */
2096 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
2097
2098 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2099 bytes_transferred += 8;
2100
2101 ret = qemu_file_get_error(f);
2102 if (ret < 0) {
2103 return ret;
2104 }
2105
5c90308f 2106 return done;
56e93d26
JQ
2107}
2108
2109/* Called with iothread lock */
2110static int ram_save_complete(QEMUFile *f, void *opaque)
2111{
2112 rcu_read_lock();
2113
663e6c1d
DDAG
2114 if (!migration_in_postcopy(migrate_get_current())) {
2115 migration_bitmap_sync();
2116 }
56e93d26
JQ
2117
2118 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
2119
2120 /* try transferring iterative blocks of memory */
2121
2122 /* flush all remaining blocks regardless of rate limiting */
2123 while (true) {
2124 int pages;
2125
a91246c9
HZ
2126 pages = ram_find_and_save_block(f, !migration_in_colo_state(),
2127 &bytes_transferred);
56e93d26
JQ
2128 /* no more blocks to sent */
2129 if (pages == 0) {
2130 break;
2131 }
2132 }
2133
2134 flush_compressed_data(f);
2135 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
56e93d26
JQ
2136
2137 rcu_read_unlock();
d09a6fde 2138
56e93d26
JQ
2139 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2140
2141 return 0;
2142}
2143
c31b098f
DDAG
2144static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
2145 uint64_t *non_postcopiable_pending,
2146 uint64_t *postcopiable_pending)
56e93d26
JQ
2147{
2148 uint64_t remaining_size;
2149
2150 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
2151
663e6c1d
DDAG
2152 if (!migration_in_postcopy(migrate_get_current()) &&
2153 remaining_size < max_size) {
56e93d26
JQ
2154 qemu_mutex_lock_iothread();
2155 rcu_read_lock();
2156 migration_bitmap_sync();
2157 rcu_read_unlock();
2158 qemu_mutex_unlock_iothread();
2159 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
2160 }
c31b098f
DDAG
2161
2162 /* We can do postcopy, and all the data is postcopiable */
2163 *postcopiable_pending += remaining_size;
56e93d26
JQ
2164}
2165
2166static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
2167{
2168 unsigned int xh_len;
2169 int xh_flags;
063e760a 2170 uint8_t *loaded_data;
56e93d26
JQ
2171
2172 if (!xbzrle_decoded_buf) {
2173 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2174 }
063e760a 2175 loaded_data = xbzrle_decoded_buf;
56e93d26
JQ
2176
2177 /* extract RLE header */
2178 xh_flags = qemu_get_byte(f);
2179 xh_len = qemu_get_be16(f);
2180
2181 if (xh_flags != ENCODING_FLAG_XBZRLE) {
2182 error_report("Failed to load XBZRLE page - wrong compression!");
2183 return -1;
2184 }
2185
2186 if (xh_len > TARGET_PAGE_SIZE) {
2187 error_report("Failed to load XBZRLE page - len overflow!");
2188 return -1;
2189 }
2190 /* load data and decode */
063e760a 2191 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
56e93d26
JQ
2192
2193 /* decode RLE */
063e760a 2194 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
56e93d26
JQ
2195 TARGET_PAGE_SIZE) == -1) {
2196 error_report("Failed to load XBZRLE page - decode error!");
2197 return -1;
2198 }
2199
2200 return 0;
2201}
2202
2203/* Must be called from within a rcu critical section.
2204 * Returns a pointer from within the RCU-protected ram_list.
2205 */
a7180877 2206/*
4c4bad48 2207 * Read a RAMBlock ID from the stream f.
a7180877
DDAG
2208 *
2209 * f: Stream to read from
a7180877
DDAG
2210 * flags: Page flags (mostly to see if it's a continuation of previous block)
2211 */
4c4bad48
HZ
2212static inline RAMBlock *ram_block_from_stream(QEMUFile *f,
2213 int flags)
56e93d26
JQ
2214{
2215 static RAMBlock *block = NULL;
2216 char id[256];
2217 uint8_t len;
2218
2219 if (flags & RAM_SAVE_FLAG_CONTINUE) {
4c4bad48 2220 if (!block) {
56e93d26
JQ
2221 error_report("Ack, bad migration stream!");
2222 return NULL;
2223 }
4c4bad48 2224 return block;
56e93d26
JQ
2225 }
2226
2227 len = qemu_get_byte(f);
2228 qemu_get_buffer(f, (uint8_t *)id, len);
2229 id[len] = 0;
2230
e3dd7493 2231 block = qemu_ram_block_by_name(id);
4c4bad48
HZ
2232 if (!block) {
2233 error_report("Can't find block %s", id);
2234 return NULL;
56e93d26
JQ
2235 }
2236
4c4bad48
HZ
2237 return block;
2238}
2239
2240static inline void *host_from_ram_block_offset(RAMBlock *block,
2241 ram_addr_t offset)
2242{
2243 if (!offset_in_ramblock(block, offset)) {
2244 return NULL;
2245 }
2246
2247 return block->host + offset;
56e93d26
JQ
2248}
2249
2250/*
2251 * If a page (or a whole RDMA chunk) has been
2252 * determined to be zero, then zap it.
2253 */
2254void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
2255{
2256 if (ch != 0 || !is_zero_range(host, size)) {
2257 memset(host, ch, size);
2258 }
2259}
2260
2261static void *do_data_decompress(void *opaque)
2262{
2263 DecompressParam *param = opaque;
2264 unsigned long pagesize;
33d151f4
LL
2265 uint8_t *des;
2266 int len;
56e93d26 2267
33d151f4 2268 qemu_mutex_lock(&param->mutex);
90e56fb4 2269 while (!param->quit) {
33d151f4
LL
2270 if (param->des) {
2271 des = param->des;
2272 len = param->len;
2273 param->des = 0;
2274 qemu_mutex_unlock(&param->mutex);
2275
56e93d26 2276 pagesize = TARGET_PAGE_SIZE;
73a8912b
LL
2277 /* uncompress() will return failed in some case, especially
2278 * when the page is dirted when doing the compression, it's
2279 * not a problem because the dirty page will be retransferred
2280 * and uncompress() won't break the data in other pages.
2281 */
33d151f4
LL
2282 uncompress((Bytef *)des, &pagesize,
2283 (const Bytef *)param->compbuf, len);
73a8912b 2284
33d151f4
LL
2285 qemu_mutex_lock(&decomp_done_lock);
2286 param->done = true;
2287 qemu_cond_signal(&decomp_done_cond);
2288 qemu_mutex_unlock(&decomp_done_lock);
2289
2290 qemu_mutex_lock(&param->mutex);
2291 } else {
2292 qemu_cond_wait(&param->cond, &param->mutex);
2293 }
56e93d26 2294 }
33d151f4 2295 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
2296
2297 return NULL;
2298}
2299
5533b2e9
LL
2300static void wait_for_decompress_done(void)
2301{
2302 int idx, thread_count;
2303
2304 if (!migrate_use_compression()) {
2305 return;
2306 }
2307
2308 thread_count = migrate_decompress_threads();
2309 qemu_mutex_lock(&decomp_done_lock);
2310 for (idx = 0; idx < thread_count; idx++) {
2311 while (!decomp_param[idx].done) {
2312 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2313 }
2314 }
2315 qemu_mutex_unlock(&decomp_done_lock);
2316}
2317
56e93d26
JQ
2318void migrate_decompress_threads_create(void)
2319{
2320 int i, thread_count;
2321
2322 thread_count = migrate_decompress_threads();
2323 decompress_threads = g_new0(QemuThread, thread_count);
2324 decomp_param = g_new0(DecompressParam, thread_count);
73a8912b
LL
2325 qemu_mutex_init(&decomp_done_lock);
2326 qemu_cond_init(&decomp_done_cond);
56e93d26
JQ
2327 for (i = 0; i < thread_count; i++) {
2328 qemu_mutex_init(&decomp_param[i].mutex);
2329 qemu_cond_init(&decomp_param[i].cond);
2330 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
73a8912b 2331 decomp_param[i].done = true;
90e56fb4 2332 decomp_param[i].quit = false;
56e93d26
JQ
2333 qemu_thread_create(decompress_threads + i, "decompress",
2334 do_data_decompress, decomp_param + i,
2335 QEMU_THREAD_JOINABLE);
2336 }
2337}
2338
2339void migrate_decompress_threads_join(void)
2340{
2341 int i, thread_count;
2342
56e93d26
JQ
2343 thread_count = migrate_decompress_threads();
2344 for (i = 0; i < thread_count; i++) {
2345 qemu_mutex_lock(&decomp_param[i].mutex);
90e56fb4 2346 decomp_param[i].quit = true;
56e93d26
JQ
2347 qemu_cond_signal(&decomp_param[i].cond);
2348 qemu_mutex_unlock(&decomp_param[i].mutex);
2349 }
2350 for (i = 0; i < thread_count; i++) {
2351 qemu_thread_join(decompress_threads + i);
2352 qemu_mutex_destroy(&decomp_param[i].mutex);
2353 qemu_cond_destroy(&decomp_param[i].cond);
2354 g_free(decomp_param[i].compbuf);
2355 }
2356 g_free(decompress_threads);
2357 g_free(decomp_param);
56e93d26
JQ
2358 decompress_threads = NULL;
2359 decomp_param = NULL;
56e93d26
JQ
2360}
2361
c1bc6626 2362static void decompress_data_with_multi_threads(QEMUFile *f,
56e93d26
JQ
2363 void *host, int len)
2364{
2365 int idx, thread_count;
2366
2367 thread_count = migrate_decompress_threads();
73a8912b 2368 qemu_mutex_lock(&decomp_done_lock);
56e93d26
JQ
2369 while (true) {
2370 for (idx = 0; idx < thread_count; idx++) {
73a8912b 2371 if (decomp_param[idx].done) {
33d151f4
LL
2372 decomp_param[idx].done = false;
2373 qemu_mutex_lock(&decomp_param[idx].mutex);
c1bc6626 2374 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
56e93d26
JQ
2375 decomp_param[idx].des = host;
2376 decomp_param[idx].len = len;
33d151f4
LL
2377 qemu_cond_signal(&decomp_param[idx].cond);
2378 qemu_mutex_unlock(&decomp_param[idx].mutex);
56e93d26
JQ
2379 break;
2380 }
2381 }
2382 if (idx < thread_count) {
2383 break;
73a8912b
LL
2384 } else {
2385 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
56e93d26
JQ
2386 }
2387 }
73a8912b 2388 qemu_mutex_unlock(&decomp_done_lock);
56e93d26
JQ
2389}
2390
1caddf8a
DDAG
2391/*
2392 * Allocate data structures etc needed by incoming migration with postcopy-ram
2393 * postcopy-ram's similarly names postcopy_ram_incoming_init does the work
2394 */
2395int ram_postcopy_incoming_init(MigrationIncomingState *mis)
2396{
2397 size_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
2398
2399 return postcopy_ram_incoming_init(mis, ram_pages);
2400}
2401
a7180877
DDAG
2402/*
2403 * Called in postcopy mode by ram_load().
2404 * rcu_read_lock is taken prior to this being called.
2405 */
2406static int ram_load_postcopy(QEMUFile *f)
2407{
2408 int flags = 0, ret = 0;
2409 bool place_needed = false;
2410 bool matching_page_sizes = qemu_host_page_size == TARGET_PAGE_SIZE;
2411 MigrationIncomingState *mis = migration_incoming_get_current();
2412 /* Temporary page that is later 'placed' */
2413 void *postcopy_host_page = postcopy_get_tmp_page(mis);
c53b7ddc 2414 void *last_host = NULL;
a3b6ff6d 2415 bool all_zero = false;
a7180877
DDAG
2416
2417 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2418 ram_addr_t addr;
2419 void *host = NULL;
2420 void *page_buffer = NULL;
2421 void *place_source = NULL;
2422 uint8_t ch;
a7180877
DDAG
2423
2424 addr = qemu_get_be64(f);
2425 flags = addr & ~TARGET_PAGE_MASK;
2426 addr &= TARGET_PAGE_MASK;
2427
2428 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
2429 place_needed = false;
2430 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE)) {
4c4bad48
HZ
2431 RAMBlock *block = ram_block_from_stream(f, flags);
2432
2433 host = host_from_ram_block_offset(block, addr);
a7180877
DDAG
2434 if (!host) {
2435 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2436 ret = -EINVAL;
2437 break;
2438 }
a7180877
DDAG
2439 /*
2440 * Postcopy requires that we place whole host pages atomically.
2441 * To make it atomic, the data is read into a temporary page
2442 * that's moved into place later.
2443 * The migration protocol uses, possibly smaller, target-pages
2444 * however the source ensures it always sends all the components
2445 * of a host page in order.
2446 */
2447 page_buffer = postcopy_host_page +
2448 ((uintptr_t)host & ~qemu_host_page_mask);
2449 /* If all TP are zero then we can optimise the place */
2450 if (!((uintptr_t)host & ~qemu_host_page_mask)) {
2451 all_zero = true;
c53b7ddc
DDAG
2452 } else {
2453 /* not the 1st TP within the HP */
2454 if (host != (last_host + TARGET_PAGE_SIZE)) {
9af9e0fe 2455 error_report("Non-sequential target page %p/%p",
c53b7ddc
DDAG
2456 host, last_host);
2457 ret = -EINVAL;
2458 break;
2459 }
a7180877
DDAG
2460 }
2461
c53b7ddc 2462
a7180877
DDAG
2463 /*
2464 * If it's the last part of a host page then we place the host
2465 * page
2466 */
2467 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
2468 ~qemu_host_page_mask) == 0;
2469 place_source = postcopy_host_page;
2470 }
c53b7ddc 2471 last_host = host;
a7180877
DDAG
2472
2473 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2474 case RAM_SAVE_FLAG_COMPRESS:
2475 ch = qemu_get_byte(f);
2476 memset(page_buffer, ch, TARGET_PAGE_SIZE);
2477 if (ch) {
2478 all_zero = false;
2479 }
2480 break;
2481
2482 case RAM_SAVE_FLAG_PAGE:
2483 all_zero = false;
2484 if (!place_needed || !matching_page_sizes) {
2485 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
2486 } else {
2487 /* Avoids the qemu_file copy during postcopy, which is
2488 * going to do a copy later; can only do it when we
2489 * do this read in one go (matching page sizes)
2490 */
2491 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
2492 TARGET_PAGE_SIZE);
2493 }
2494 break;
2495 case RAM_SAVE_FLAG_EOS:
2496 /* normal exit */
2497 break;
2498 default:
2499 error_report("Unknown combination of migration flags: %#x"
2500 " (postcopy mode)", flags);
2501 ret = -EINVAL;
2502 }
2503
2504 if (place_needed) {
2505 /* This gets called at the last target page in the host page */
2506 if (all_zero) {
2507 ret = postcopy_place_page_zero(mis,
2508 host + TARGET_PAGE_SIZE -
2509 qemu_host_page_size);
2510 } else {
2511 ret = postcopy_place_page(mis, host + TARGET_PAGE_SIZE -
2512 qemu_host_page_size,
2513 place_source);
2514 }
2515 }
2516 if (!ret) {
2517 ret = qemu_file_get_error(f);
2518 }
2519 }
2520
2521 return ret;
2522}
2523
56e93d26
JQ
2524static int ram_load(QEMUFile *f, void *opaque, int version_id)
2525{
2526 int flags = 0, ret = 0;
2527 static uint64_t seq_iter;
2528 int len = 0;
a7180877
DDAG
2529 /*
2530 * If system is running in postcopy mode, page inserts to host memory must
2531 * be atomic
2532 */
2533 bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING;
ef08fb38
DDAG
2534 /* ADVISE is earlier, it shows the source has the postcopy capability on */
2535 bool postcopy_advised = postcopy_state_get() >= POSTCOPY_INCOMING_ADVISE;
56e93d26
JQ
2536
2537 seq_iter++;
2538
2539 if (version_id != 4) {
2540 ret = -EINVAL;
2541 }
2542
2543 /* This RCU critical section can be very long running.
2544 * When RCU reclaims in the code start to become numerous,
2545 * it will be necessary to reduce the granularity of this
2546 * critical section.
2547 */
2548 rcu_read_lock();
a7180877
DDAG
2549
2550 if (postcopy_running) {
2551 ret = ram_load_postcopy(f);
2552 }
2553
2554 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
56e93d26 2555 ram_addr_t addr, total_ram_bytes;
a776aa15 2556 void *host = NULL;
56e93d26
JQ
2557 uint8_t ch;
2558
2559 addr = qemu_get_be64(f);
2560 flags = addr & ~TARGET_PAGE_MASK;
2561 addr &= TARGET_PAGE_MASK;
2562
a776aa15
DDAG
2563 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE |
2564 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4c4bad48
HZ
2565 RAMBlock *block = ram_block_from_stream(f, flags);
2566
2567 host = host_from_ram_block_offset(block, addr);
a776aa15
DDAG
2568 if (!host) {
2569 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2570 ret = -EINVAL;
2571 break;
2572 }
2573 }
2574
56e93d26
JQ
2575 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2576 case RAM_SAVE_FLAG_MEM_SIZE:
2577 /* Synchronize RAM block list */
2578 total_ram_bytes = addr;
2579 while (!ret && total_ram_bytes) {
2580 RAMBlock *block;
56e93d26
JQ
2581 char id[256];
2582 ram_addr_t length;
2583
2584 len = qemu_get_byte(f);
2585 qemu_get_buffer(f, (uint8_t *)id, len);
2586 id[len] = 0;
2587 length = qemu_get_be64(f);
2588
e3dd7493
DDAG
2589 block = qemu_ram_block_by_name(id);
2590 if (block) {
2591 if (length != block->used_length) {
2592 Error *local_err = NULL;
56e93d26 2593
fa53a0e5 2594 ret = qemu_ram_resize(block, length,
e3dd7493
DDAG
2595 &local_err);
2596 if (local_err) {
2597 error_report_err(local_err);
56e93d26 2598 }
56e93d26 2599 }
ef08fb38
DDAG
2600 /* For postcopy we need to check hugepage sizes match */
2601 if (postcopy_advised &&
2602 block->page_size != qemu_host_page_size) {
2603 uint64_t remote_page_size = qemu_get_be64(f);
2604 if (remote_page_size != block->page_size) {
2605 error_report("Mismatched RAM page size %s "
2606 "(local) %zd != %" PRId64,
2607 id, block->page_size,
2608 remote_page_size);
2609 ret = -EINVAL;
2610 }
2611 }
e3dd7493
DDAG
2612 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
2613 block->idstr);
2614 } else {
56e93d26
JQ
2615 error_report("Unknown ramblock \"%s\", cannot "
2616 "accept migration", id);
2617 ret = -EINVAL;
2618 }
2619
2620 total_ram_bytes -= length;
2621 }
2622 break;
a776aa15 2623
56e93d26 2624 case RAM_SAVE_FLAG_COMPRESS:
56e93d26
JQ
2625 ch = qemu_get_byte(f);
2626 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
2627 break;
a776aa15 2628
56e93d26 2629 case RAM_SAVE_FLAG_PAGE:
56e93d26
JQ
2630 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
2631 break;
56e93d26 2632
a776aa15 2633 case RAM_SAVE_FLAG_COMPRESS_PAGE:
56e93d26
JQ
2634 len = qemu_get_be32(f);
2635 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
2636 error_report("Invalid compressed data length: %d", len);
2637 ret = -EINVAL;
2638 break;
2639 }
c1bc6626 2640 decompress_data_with_multi_threads(f, host, len);
56e93d26 2641 break;
a776aa15 2642
56e93d26 2643 case RAM_SAVE_FLAG_XBZRLE:
56e93d26
JQ
2644 if (load_xbzrle(f, addr, host) < 0) {
2645 error_report("Failed to decompress XBZRLE page at "
2646 RAM_ADDR_FMT, addr);
2647 ret = -EINVAL;
2648 break;
2649 }
2650 break;
2651 case RAM_SAVE_FLAG_EOS:
2652 /* normal exit */
2653 break;
2654 default:
2655 if (flags & RAM_SAVE_FLAG_HOOK) {
632e3a5c 2656 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
56e93d26
JQ
2657 } else {
2658 error_report("Unknown combination of migration flags: %#x",
2659 flags);
2660 ret = -EINVAL;
2661 }
2662 }
2663 if (!ret) {
2664 ret = qemu_file_get_error(f);
2665 }
2666 }
2667
5533b2e9 2668 wait_for_decompress_done();
56e93d26 2669 rcu_read_unlock();
55c4446b 2670 trace_ram_load_complete(ret, seq_iter);
56e93d26
JQ
2671 return ret;
2672}
2673
2674static SaveVMHandlers savevm_ram_handlers = {
2675 .save_live_setup = ram_save_setup,
2676 .save_live_iterate = ram_save_iterate,
763c906b 2677 .save_live_complete_postcopy = ram_save_complete,
a3e06c3d 2678 .save_live_complete_precopy = ram_save_complete,
56e93d26
JQ
2679 .save_live_pending = ram_save_pending,
2680 .load_state = ram_load,
6ad2a215 2681 .cleanup = ram_migration_cleanup,
56e93d26
JQ
2682};
2683
2684void ram_mig_init(void)
2685{
2686 qemu_mutex_init(&XBZRLE.lock);
2687 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
2688}