]> git.proxmox.com Git - mirror_qemu.git/blame - migration-rdma.c
rdma: proper getaddrinfo() handling
[mirror_qemu.git] / migration-rdma.c
CommitLineData
2da776db
MH
1/*
2 * RDMA protocol and interfaces
3 *
4 * Copyright IBM, Corp. 2010-2013
5 *
6 * Authors:
7 * Michael R. Hines <mrhines@us.ibm.com>
8 * Jiuxing Liu <jl@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or
11 * later. See the COPYING file in the top-level directory.
12 *
13 */
14#include "qemu-common.h"
15#include "migration/migration.h"
16#include "migration/qemu-file.h"
17#include "exec/cpu-common.h"
18#include "qemu/main-loop.h"
19#include "qemu/sockets.h"
20#include "qemu/bitmap.h"
21#include "block/coroutine.h"
22#include <stdio.h>
23#include <sys/types.h>
24#include <sys/socket.h>
25#include <netdb.h>
26#include <arpa/inet.h>
27#include <string.h>
28#include <rdma/rdma_cma.h>
29
8cd31adc 30//#define DEBUG_RDMA
2da776db
MH
31//#define DEBUG_RDMA_VERBOSE
32//#define DEBUG_RDMA_REALLY_VERBOSE
33
34#ifdef DEBUG_RDMA
35#define DPRINTF(fmt, ...) \
36 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
37#else
38#define DPRINTF(fmt, ...) \
39 do { } while (0)
40#endif
41
42#ifdef DEBUG_RDMA_VERBOSE
43#define DDPRINTF(fmt, ...) \
44 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
45#else
46#define DDPRINTF(fmt, ...) \
47 do { } while (0)
48#endif
49
50#ifdef DEBUG_RDMA_REALLY_VERBOSE
51#define DDDPRINTF(fmt, ...) \
52 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
53#else
54#define DDDPRINTF(fmt, ...) \
55 do { } while (0)
56#endif
57
58/*
59 * Print and error on both the Monitor and the Log file.
60 */
61#define ERROR(errp, fmt, ...) \
62 do { \
66988941 63 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
2da776db
MH
64 if (errp && (*(errp) == NULL)) { \
65 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
66 } \
67 } while (0)
68
69#define RDMA_RESOLVE_TIMEOUT_MS 10000
70
71/* Do not merge data if larger than this. */
72#define RDMA_MERGE_MAX (2 * 1024 * 1024)
73#define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
74
75#define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
76
77/*
78 * This is only for non-live state being migrated.
79 * Instead of RDMA_WRITE messages, we use RDMA_SEND
80 * messages for that state, which requires a different
81 * delivery design than main memory.
82 */
83#define RDMA_SEND_INCREMENT 32768
84
85/*
86 * Maximum size infiniband SEND message
87 */
88#define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
89#define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
90
91#define RDMA_CONTROL_VERSION_CURRENT 1
92/*
93 * Capabilities for negotiation.
94 */
95#define RDMA_CAPABILITY_PIN_ALL 0x01
96
97/*
98 * Add the other flags above to this list of known capabilities
99 * as they are introduced.
100 */
101static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
102
103#define CHECK_ERROR_STATE() \
104 do { \
105 if (rdma->error_state) { \
106 if (!rdma->error_reported) { \
107 fprintf(stderr, "RDMA is in an error state waiting migration" \
108 " to abort!\n"); \
109 rdma->error_reported = 1; \
110 } \
111 return rdma->error_state; \
112 } \
113 } while (0);
114
115/*
116 * A work request ID is 64-bits and we split up these bits
117 * into 3 parts:
118 *
119 * bits 0-15 : type of control message, 2^16
120 * bits 16-29: ram block index, 2^14
121 * bits 30-63: ram block chunk number, 2^34
122 *
123 * The last two bit ranges are only used for RDMA writes,
124 * in order to track their completion and potentially
125 * also track unregistration status of the message.
126 */
127#define RDMA_WRID_TYPE_SHIFT 0UL
128#define RDMA_WRID_BLOCK_SHIFT 16UL
129#define RDMA_WRID_CHUNK_SHIFT 30UL
130
131#define RDMA_WRID_TYPE_MASK \
132 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
133
134#define RDMA_WRID_BLOCK_MASK \
135 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
136
137#define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
138
139/*
140 * RDMA migration protocol:
141 * 1. RDMA Writes (data messages, i.e. RAM)
142 * 2. IB Send/Recv (control channel messages)
143 */
144enum {
145 RDMA_WRID_NONE = 0,
146 RDMA_WRID_RDMA_WRITE = 1,
147 RDMA_WRID_SEND_CONTROL = 2000,
148 RDMA_WRID_RECV_CONTROL = 4000,
149};
150
151const char *wrid_desc[] = {
152 [RDMA_WRID_NONE] = "NONE",
153 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
154 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
155 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
156};
157
158/*
159 * Work request IDs for IB SEND messages only (not RDMA writes).
160 * This is used by the migration protocol to transmit
161 * control messages (such as device state and registration commands)
162 *
163 * We could use more WRs, but we have enough for now.
164 */
165enum {
166 RDMA_WRID_READY = 0,
167 RDMA_WRID_DATA,
168 RDMA_WRID_CONTROL,
169 RDMA_WRID_MAX,
170};
171
172/*
173 * SEND/RECV IB Control Messages.
174 */
175enum {
176 RDMA_CONTROL_NONE = 0,
177 RDMA_CONTROL_ERROR,
178 RDMA_CONTROL_READY, /* ready to receive */
179 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
180 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
181 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
182 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
183 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
184 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
185 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
186 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
187 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
188};
189
190const char *control_desc[] = {
191 [RDMA_CONTROL_NONE] = "NONE",
192 [RDMA_CONTROL_ERROR] = "ERROR",
193 [RDMA_CONTROL_READY] = "READY",
194 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
195 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
196 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
197 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
198 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
199 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
200 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
201 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
202 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
203};
204
205/*
206 * Memory and MR structures used to represent an IB Send/Recv work request.
207 * This is *not* used for RDMA writes, only IB Send/Recv.
208 */
209typedef struct {
210 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
211 struct ibv_mr *control_mr; /* registration metadata */
212 size_t control_len; /* length of the message */
213 uint8_t *control_curr; /* start of unconsumed bytes */
214} RDMAWorkRequestData;
215
216/*
217 * Negotiate RDMA capabilities during connection-setup time.
218 */
219typedef struct {
220 uint32_t version;
221 uint32_t flags;
222} RDMACapabilities;
223
224static void caps_to_network(RDMACapabilities *cap)
225{
226 cap->version = htonl(cap->version);
227 cap->flags = htonl(cap->flags);
228}
229
230static void network_to_caps(RDMACapabilities *cap)
231{
232 cap->version = ntohl(cap->version);
233 cap->flags = ntohl(cap->flags);
234}
235
236/*
237 * Representation of a RAMBlock from an RDMA perspective.
238 * This is not transmitted, only local.
239 * This and subsequent structures cannot be linked lists
240 * because we're using a single IB message to transmit
241 * the information. It's small anyway, so a list is overkill.
242 */
243typedef struct RDMALocalBlock {
244 uint8_t *local_host_addr; /* local virtual address */
245 uint64_t remote_host_addr; /* remote virtual address */
246 uint64_t offset;
247 uint64_t length;
248 struct ibv_mr **pmr; /* MRs for chunk-level registration */
249 struct ibv_mr *mr; /* MR for non-chunk-level registration */
250 uint32_t *remote_keys; /* rkeys for chunk-level registration */
251 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
252 int index; /* which block are we */
253 bool is_ram_block;
254 int nb_chunks;
255 unsigned long *transit_bitmap;
256 unsigned long *unregister_bitmap;
257} RDMALocalBlock;
258
259/*
260 * Also represents a RAMblock, but only on the dest.
261 * This gets transmitted by the dest during connection-time
262 * to the source VM and then is used to populate the
263 * corresponding RDMALocalBlock with
264 * the information needed to perform the actual RDMA.
265 */
266typedef struct QEMU_PACKED RDMARemoteBlock {
267 uint64_t remote_host_addr;
268 uint64_t offset;
269 uint64_t length;
270 uint32_t remote_rkey;
271 uint32_t padding;
272} RDMARemoteBlock;
273
274static uint64_t htonll(uint64_t v)
275{
276 union { uint32_t lv[2]; uint64_t llv; } u;
277 u.lv[0] = htonl(v >> 32);
278 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
279 return u.llv;
280}
281
282static uint64_t ntohll(uint64_t v) {
283 union { uint32_t lv[2]; uint64_t llv; } u;
284 u.llv = v;
285 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
286}
287
288static void remote_block_to_network(RDMARemoteBlock *rb)
289{
290 rb->remote_host_addr = htonll(rb->remote_host_addr);
291 rb->offset = htonll(rb->offset);
292 rb->length = htonll(rb->length);
293 rb->remote_rkey = htonl(rb->remote_rkey);
294}
295
296static void network_to_remote_block(RDMARemoteBlock *rb)
297{
298 rb->remote_host_addr = ntohll(rb->remote_host_addr);
299 rb->offset = ntohll(rb->offset);
300 rb->length = ntohll(rb->length);
301 rb->remote_rkey = ntohl(rb->remote_rkey);
302}
303
304/*
305 * Virtual address of the above structures used for transmitting
306 * the RAMBlock descriptions at connection-time.
307 * This structure is *not* transmitted.
308 */
309typedef struct RDMALocalBlocks {
310 int nb_blocks;
311 bool init; /* main memory init complete */
312 RDMALocalBlock *block;
313} RDMALocalBlocks;
314
315/*
316 * Main data structure for RDMA state.
317 * While there is only one copy of this structure being allocated right now,
318 * this is the place where one would start if you wanted to consider
319 * having more than one RDMA connection open at the same time.
320 */
321typedef struct RDMAContext {
322 char *host;
323 int port;
324
1f22364b 325 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
2da776db
MH
326
327 /*
328 * This is used by *_exchange_send() to figure out whether or not
329 * the initial "READY" message has already been received or not.
330 * This is because other functions may potentially poll() and detect
331 * the READY message before send() does, in which case we need to
332 * know if it completed.
333 */
334 int control_ready_expected;
335
336 /* number of outstanding writes */
337 int nb_sent;
338
339 /* store info about current buffer so that we can
340 merge it with future sends */
341 uint64_t current_addr;
342 uint64_t current_length;
343 /* index of ram block the current buffer belongs to */
344 int current_index;
345 /* index of the chunk in the current ram block */
346 int current_chunk;
347
348 bool pin_all;
349
350 /*
351 * infiniband-specific variables for opening the device
352 * and maintaining connection state and so forth.
353 *
354 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
355 * cm_id->verbs, cm_id->channel, and cm_id->qp.
356 */
357 struct rdma_cm_id *cm_id; /* connection manager ID */
358 struct rdma_cm_id *listen_id;
359
360 struct ibv_context *verbs;
361 struct rdma_event_channel *channel;
362 struct ibv_qp *qp; /* queue pair */
363 struct ibv_comp_channel *comp_channel; /* completion channel */
364 struct ibv_pd *pd; /* protection domain */
365 struct ibv_cq *cq; /* completion queue */
366
367 /*
368 * If a previous write failed (perhaps because of a failed
369 * memory registration, then do not attempt any future work
370 * and remember the error state.
371 */
372 int error_state;
373 int error_reported;
374
375 /*
376 * Description of ram blocks used throughout the code.
377 */
378 RDMALocalBlocks local_ram_blocks;
379 RDMARemoteBlock *block;
380
381 /*
382 * Migration on *destination* started.
383 * Then use coroutine yield function.
384 * Source runs in a thread, so we don't care.
385 */
386 int migration_started_on_destination;
387
388 int total_registrations;
389 int total_writes;
390
391 int unregister_current, unregister_next;
392 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
393
394 GHashTable *blockmap;
395} RDMAContext;
396
397/*
398 * Interface to the rest of the migration call stack.
399 */
400typedef struct QEMUFileRDMA {
401 RDMAContext *rdma;
402 size_t len;
403 void *file;
404} QEMUFileRDMA;
405
406/*
407 * Main structure for IB Send/Recv control messages.
408 * This gets prepended at the beginning of every Send/Recv.
409 */
410typedef struct QEMU_PACKED {
411 uint32_t len; /* Total length of data portion */
412 uint32_t type; /* which control command to perform */
413 uint32_t repeat; /* number of commands in data portion of same type */
414 uint32_t padding;
415} RDMAControlHeader;
416
417static void control_to_network(RDMAControlHeader *control)
418{
419 control->type = htonl(control->type);
420 control->len = htonl(control->len);
421 control->repeat = htonl(control->repeat);
422}
423
424static void network_to_control(RDMAControlHeader *control)
425{
426 control->type = ntohl(control->type);
427 control->len = ntohl(control->len);
428 control->repeat = ntohl(control->repeat);
429}
430
431/*
432 * Register a single Chunk.
433 * Information sent by the source VM to inform the dest
434 * to register an single chunk of memory before we can perform
435 * the actual RDMA operation.
436 */
437typedef struct QEMU_PACKED {
438 union QEMU_PACKED {
439 uint64_t current_addr; /* offset into the ramblock of the chunk */
440 uint64_t chunk; /* chunk to lookup if unregistering */
441 } key;
442 uint32_t current_index; /* which ramblock the chunk belongs to */
443 uint32_t padding;
444 uint64_t chunks; /* how many sequential chunks to register */
445} RDMARegister;
446
447static void register_to_network(RDMARegister *reg)
448{
449 reg->key.current_addr = htonll(reg->key.current_addr);
450 reg->current_index = htonl(reg->current_index);
451 reg->chunks = htonll(reg->chunks);
452}
453
454static void network_to_register(RDMARegister *reg)
455{
456 reg->key.current_addr = ntohll(reg->key.current_addr);
457 reg->current_index = ntohl(reg->current_index);
458 reg->chunks = ntohll(reg->chunks);
459}
460
461typedef struct QEMU_PACKED {
462 uint32_t value; /* if zero, we will madvise() */
463 uint32_t block_idx; /* which ram block index */
464 uint64_t offset; /* where in the remote ramblock this chunk */
465 uint64_t length; /* length of the chunk */
466} RDMACompress;
467
468static void compress_to_network(RDMACompress *comp)
469{
470 comp->value = htonl(comp->value);
471 comp->block_idx = htonl(comp->block_idx);
472 comp->offset = htonll(comp->offset);
473 comp->length = htonll(comp->length);
474}
475
476static void network_to_compress(RDMACompress *comp)
477{
478 comp->value = ntohl(comp->value);
479 comp->block_idx = ntohl(comp->block_idx);
480 comp->offset = ntohll(comp->offset);
481 comp->length = ntohll(comp->length);
482}
483
484/*
485 * The result of the dest's memory registration produces an "rkey"
486 * which the source VM must reference in order to perform
487 * the RDMA operation.
488 */
489typedef struct QEMU_PACKED {
490 uint32_t rkey;
491 uint32_t padding;
492 uint64_t host_addr;
493} RDMARegisterResult;
494
495static void result_to_network(RDMARegisterResult *result)
496{
497 result->rkey = htonl(result->rkey);
498 result->host_addr = htonll(result->host_addr);
499};
500
501static void network_to_result(RDMARegisterResult *result)
502{
503 result->rkey = ntohl(result->rkey);
504 result->host_addr = ntohll(result->host_addr);
505};
506
507const char *print_wrid(int wrid);
508static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
509 uint8_t *data, RDMAControlHeader *resp,
510 int *resp_idx,
511 int (*callback)(RDMAContext *rdma));
512
513static inline uint64_t ram_chunk_index(uint8_t *start, uint8_t *host)
514{
515 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
516}
517
518static inline uint8_t *ram_chunk_start(RDMALocalBlock *rdma_ram_block,
519 uint64_t i)
520{
521 return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr)
522 + (i << RDMA_REG_CHUNK_SHIFT));
523}
524
525static inline uint8_t *ram_chunk_end(RDMALocalBlock *rdma_ram_block, uint64_t i)
526{
527 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
528 (1UL << RDMA_REG_CHUNK_SHIFT);
529
530 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
531 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
532 }
533
534 return result;
535}
536
537static int __qemu_rdma_add_block(RDMAContext *rdma, void *host_addr,
538 ram_addr_t block_offset, uint64_t length)
539{
540 RDMALocalBlocks *local = &rdma->local_ram_blocks;
541 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
542 (void *) block_offset);
543 RDMALocalBlock *old = local->block;
544
545 assert(block == NULL);
546
547 local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));
548
549 if (local->nb_blocks) {
550 int x;
551
552 for (x = 0; x < local->nb_blocks; x++) {
553 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
554 g_hash_table_insert(rdma->blockmap, (void *)old[x].offset,
555 &local->block[x]);
556 }
557 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
558 g_free(old);
559 }
560
561 block = &local->block[local->nb_blocks];
562
563 block->local_host_addr = host_addr;
564 block->offset = block_offset;
565 block->length = length;
566 block->index = local->nb_blocks;
567 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
568 block->transit_bitmap = bitmap_new(block->nb_chunks);
569 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
570 block->unregister_bitmap = bitmap_new(block->nb_chunks);
571 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
572 block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));
573
574 block->is_ram_block = local->init ? false : true;
575
576 g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);
577
578 DDPRINTF("Added Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
579 " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
580 local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
581 block->length, (uint64_t) (block->local_host_addr + block->length),
582 BITS_TO_LONGS(block->nb_chunks) *
583 sizeof(unsigned long) * 8, block->nb_chunks);
584
585 local->nb_blocks++;
586
587 return 0;
588}
589
590/*
591 * Memory regions need to be registered with the device and queue pairs setup
592 * in advanced before the migration starts. This tells us where the RAM blocks
593 * are so that we can register them individually.
594 */
595static void qemu_rdma_init_one_block(void *host_addr,
596 ram_addr_t block_offset, ram_addr_t length, void *opaque)
597{
598 __qemu_rdma_add_block(opaque, host_addr, block_offset, length);
599}
600
601/*
602 * Identify the RAMBlocks and their quantity. They will be references to
603 * identify chunk boundaries inside each RAMBlock and also be referenced
604 * during dynamic page registration.
605 */
606static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
607{
608 RDMALocalBlocks *local = &rdma->local_ram_blocks;
609
610 assert(rdma->blockmap == NULL);
611 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
612 memset(local, 0, sizeof *local);
613 qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
614 DPRINTF("Allocated %d local ram block structures\n", local->nb_blocks);
615 rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) *
616 rdma->local_ram_blocks.nb_blocks);
617 local->init = true;
618 return 0;
619}
620
621static int __qemu_rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset)
622{
623 RDMALocalBlocks *local = &rdma->local_ram_blocks;
624 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
625 (void *) block_offset);
626 RDMALocalBlock *old = local->block;
627 int x;
628
629 assert(block);
630
631 if (block->pmr) {
632 int j;
633
634 for (j = 0; j < block->nb_chunks; j++) {
635 if (!block->pmr[j]) {
636 continue;
637 }
638 ibv_dereg_mr(block->pmr[j]);
639 rdma->total_registrations--;
640 }
641 g_free(block->pmr);
642 block->pmr = NULL;
643 }
644
645 if (block->mr) {
646 ibv_dereg_mr(block->mr);
647 rdma->total_registrations--;
648 block->mr = NULL;
649 }
650
651 g_free(block->transit_bitmap);
652 block->transit_bitmap = NULL;
653
654 g_free(block->unregister_bitmap);
655 block->unregister_bitmap = NULL;
656
657 g_free(block->remote_keys);
658 block->remote_keys = NULL;
659
660 for (x = 0; x < local->nb_blocks; x++) {
661 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
662 }
663
664 if (local->nb_blocks > 1) {
665
666 local->block = g_malloc0(sizeof(RDMALocalBlock) *
667 (local->nb_blocks - 1));
668
669 if (block->index) {
670 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
671 }
672
673 if (block->index < (local->nb_blocks - 1)) {
674 memcpy(local->block + block->index, old + (block->index + 1),
675 sizeof(RDMALocalBlock) *
676 (local->nb_blocks - (block->index + 1)));
677 }
678 } else {
679 assert(block == local->block);
680 local->block = NULL;
681 }
682
683 DDPRINTF("Deleted Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
684 " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
685 local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
686 block->length, (uint64_t) (block->local_host_addr + block->length),
687 BITS_TO_LONGS(block->nb_chunks) *
688 sizeof(unsigned long) * 8, block->nb_chunks);
689
690 g_free(old);
691
692 local->nb_blocks--;
693
694 if (local->nb_blocks) {
695 for (x = 0; x < local->nb_blocks; x++) {
696 g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset,
697 &local->block[x]);
698 }
699 }
700
701 return 0;
702}
703
704/*
705 * Put in the log file which RDMA device was opened and the details
706 * associated with that device.
707 */
708static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
709{
710 printf("%s RDMA Device opened: kernel name %s "
711 "uverbs device name %s, "
712 "infiniband_verbs class device path %s,"
713 " infiniband class device path %s\n",
714 who,
715 verbs->device->name,
716 verbs->device->dev_name,
717 verbs->device->dev_path,
718 verbs->device->ibdev_path);
719}
720
721/*
722 * Put in the log file the RDMA gid addressing information,
723 * useful for folks who have trouble understanding the
724 * RDMA device hierarchy in the kernel.
725 */
726static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
727{
728 char sgid[33];
729 char dgid[33];
730 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
731 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
732 DPRINTF("%s Source GID: %s, Dest GID: %s\n", who, sgid, dgid);
733}
734
735/*
736 * Figure out which RDMA device corresponds to the requested IP hostname
737 * Also create the initial connection manager identifiers for opening
738 * the connection.
739 */
740static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
741{
742 int ret;
743 struct addrinfo *res;
744 char port_str[16];
745 struct rdma_cm_event *cm_event;
746 char ip[40] = "unknown";
6470215b 747 struct addrinfo *e;
2da776db
MH
748
749 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
66988941 750 ERROR(errp, "RDMA hostname has not been set");
2da776db
MH
751 return -1;
752 }
753
754 /* create CM channel */
755 rdma->channel = rdma_create_event_channel();
756 if (!rdma->channel) {
66988941 757 ERROR(errp, "could not create CM channel");
2da776db
MH
758 return -1;
759 }
760
761 /* create CM id */
762 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
763 if (ret) {
66988941 764 ERROR(errp, "could not create channel id");
2da776db
MH
765 goto err_resolve_create_id;
766 }
767
768 snprintf(port_str, 16, "%d", rdma->port);
769 port_str[15] = '\0';
770
771 ret = getaddrinfo(rdma->host, port_str, NULL, &res);
772 if (ret < 0) {
66988941 773 ERROR(errp, "could not getaddrinfo address %s", rdma->host);
2da776db
MH
774 goto err_resolve_get_addr;
775 }
776
6470215b
MH
777 for (e = res; e != NULL; e = e->ai_next) {
778 inet_ntop(e->ai_family,
779 &((struct sockaddr_in *) e->ai_addr)->sin_addr, ip, sizeof ip);
780 DPRINTF("Trying %s => %s\n", rdma->host, ip);
2da776db 781
6470215b
MH
782 /* resolve the first address */
783 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_addr,
784 RDMA_RESOLVE_TIMEOUT_MS);
785 if (!ret) {
786 goto route;
787 }
2da776db
MH
788 }
789
6470215b
MH
790 ERROR(errp, "could not resolve address %s", rdma->host);
791 goto err_resolve_get_addr;
792
793route:
2da776db
MH
794 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
795
796 ret = rdma_get_cm_event(rdma->channel, &cm_event);
797 if (ret) {
66988941 798 ERROR(errp, "could not perform event_addr_resolved");
2da776db
MH
799 goto err_resolve_get_addr;
800 }
801
802 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
66988941 803 ERROR(errp, "result not equal to event_addr_resolved %s",
2da776db
MH
804 rdma_event_str(cm_event->event));
805 perror("rdma_resolve_addr");
806 goto err_resolve_get_addr;
807 }
808 rdma_ack_cm_event(cm_event);
809
810 /* resolve route */
811 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
812 if (ret) {
66988941 813 ERROR(errp, "could not resolve rdma route");
2da776db
MH
814 goto err_resolve_get_addr;
815 }
816
817 ret = rdma_get_cm_event(rdma->channel, &cm_event);
818 if (ret) {
66988941 819 ERROR(errp, "could not perform event_route_resolved");
2da776db
MH
820 goto err_resolve_get_addr;
821 }
822 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
66988941 823 ERROR(errp, "result not equal to event_route_resolved: %s",
2da776db
MH
824 rdma_event_str(cm_event->event));
825 rdma_ack_cm_event(cm_event);
826 goto err_resolve_get_addr;
827 }
828 rdma_ack_cm_event(cm_event);
829 rdma->verbs = rdma->cm_id->verbs;
830 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
831 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
832 return 0;
833
834err_resolve_get_addr:
835 rdma_destroy_id(rdma->cm_id);
836 rdma->cm_id = NULL;
837err_resolve_create_id:
838 rdma_destroy_event_channel(rdma->channel);
839 rdma->channel = NULL;
840
841 return -1;
842}
843
844/*
845 * Create protection domain and completion queues
846 */
847static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
848{
849 /* allocate pd */
850 rdma->pd = ibv_alloc_pd(rdma->verbs);
851 if (!rdma->pd) {
852 fprintf(stderr, "failed to allocate protection domain\n");
853 return -1;
854 }
855
856 /* create completion channel */
857 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
858 if (!rdma->comp_channel) {
859 fprintf(stderr, "failed to allocate completion channel\n");
860 goto err_alloc_pd_cq;
861 }
862
863 /*
864 * Completion queue can be filled by both read and write work requests,
865 * so must reflect the sum of both possible queue sizes.
866 */
867 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
868 NULL, rdma->comp_channel, 0);
869 if (!rdma->cq) {
870 fprintf(stderr, "failed to allocate completion queue\n");
871 goto err_alloc_pd_cq;
872 }
873
874 return 0;
875
876err_alloc_pd_cq:
877 if (rdma->pd) {
878 ibv_dealloc_pd(rdma->pd);
879 }
880 if (rdma->comp_channel) {
881 ibv_destroy_comp_channel(rdma->comp_channel);
882 }
883 rdma->pd = NULL;
884 rdma->comp_channel = NULL;
885 return -1;
886
887}
888
889/*
890 * Create queue pairs.
891 */
892static int qemu_rdma_alloc_qp(RDMAContext *rdma)
893{
894 struct ibv_qp_init_attr attr = { 0 };
895 int ret;
896
897 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
898 attr.cap.max_recv_wr = 3;
899 attr.cap.max_send_sge = 1;
900 attr.cap.max_recv_sge = 1;
901 attr.send_cq = rdma->cq;
902 attr.recv_cq = rdma->cq;
903 attr.qp_type = IBV_QPT_RC;
904
905 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
906 if (ret) {
907 return -1;
908 }
909
910 rdma->qp = rdma->cm_id->qp;
911 return 0;
912}
913
914static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
915{
916 int i;
917 RDMALocalBlocks *local = &rdma->local_ram_blocks;
918
919 for (i = 0; i < local->nb_blocks; i++) {
920 local->block[i].mr =
921 ibv_reg_mr(rdma->pd,
922 local->block[i].local_host_addr,
923 local->block[i].length,
924 IBV_ACCESS_LOCAL_WRITE |
925 IBV_ACCESS_REMOTE_WRITE
926 );
927 if (!local->block[i].mr) {
928 perror("Failed to register local dest ram block!\n");
929 break;
930 }
931 rdma->total_registrations++;
932 }
933
934 if (i >= local->nb_blocks) {
935 return 0;
936 }
937
938 for (i--; i >= 0; i--) {
939 ibv_dereg_mr(local->block[i].mr);
940 rdma->total_registrations--;
941 }
942
943 return -1;
944
945}
946
947/*
948 * Find the ram block that corresponds to the page requested to be
949 * transmitted by QEMU.
950 *
951 * Once the block is found, also identify which 'chunk' within that
952 * block that the page belongs to.
953 *
954 * This search cannot fail or the migration will fail.
955 */
956static int qemu_rdma_search_ram_block(RDMAContext *rdma,
957 uint64_t block_offset,
958 uint64_t offset,
959 uint64_t length,
960 uint64_t *block_index,
961 uint64_t *chunk_index)
962{
963 uint64_t current_addr = block_offset + offset;
964 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
965 (void *) block_offset);
966 assert(block);
967 assert(current_addr >= block->offset);
968 assert((current_addr + length) <= (block->offset + block->length));
969
970 *block_index = block->index;
971 *chunk_index = ram_chunk_index(block->local_host_addr,
972 block->local_host_addr + (current_addr - block->offset));
973
974 return 0;
975}
976
977/*
978 * Register a chunk with IB. If the chunk was already registered
979 * previously, then skip.
980 *
981 * Also return the keys associated with the registration needed
982 * to perform the actual RDMA operation.
983 */
984static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
985 RDMALocalBlock *block, uint8_t *host_addr,
986 uint32_t *lkey, uint32_t *rkey, int chunk,
987 uint8_t *chunk_start, uint8_t *chunk_end)
988{
989 if (block->mr) {
990 if (lkey) {
991 *lkey = block->mr->lkey;
992 }
993 if (rkey) {
994 *rkey = block->mr->rkey;
995 }
996 return 0;
997 }
998
999 /* allocate memory to store chunk MRs */
1000 if (!block->pmr) {
1001 block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
1002 if (!block->pmr) {
1003 return -1;
1004 }
1005 }
1006
1007 /*
1008 * If 'rkey', then we're the destination, so grant access to the source.
1009 *
1010 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1011 */
1012 if (!block->pmr[chunk]) {
1013 uint64_t len = chunk_end - chunk_start;
1014
1015 DDPRINTF("Registering %" PRIu64 " bytes @ %p\n",
1016 len, chunk_start);
1017
1018 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1019 chunk_start, len,
1020 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1021 IBV_ACCESS_REMOTE_WRITE) : 0));
1022
1023 if (!block->pmr[chunk]) {
1024 perror("Failed to register chunk!");
1025 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1026 " start %" PRIu64 " end %" PRIu64 " host %" PRIu64
1027 " local %" PRIu64 " registrations: %d\n",
1028 block->index, chunk, (uint64_t) chunk_start,
1029 (uint64_t) chunk_end, (uint64_t) host_addr,
1030 (uint64_t) block->local_host_addr,
1031 rdma->total_registrations);
1032 return -1;
1033 }
1034 rdma->total_registrations++;
1035 }
1036
1037 if (lkey) {
1038 *lkey = block->pmr[chunk]->lkey;
1039 }
1040 if (rkey) {
1041 *rkey = block->pmr[chunk]->rkey;
1042 }
1043 return 0;
1044}
1045
1046/*
1047 * Register (at connection time) the memory used for control
1048 * channel messages.
1049 */
1050static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1051{
1052 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1053 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1054 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1055 if (rdma->wr_data[idx].control_mr) {
1056 rdma->total_registrations++;
1057 return 0;
1058 }
1059 fprintf(stderr, "qemu_rdma_reg_control failed!\n");
1060 return -1;
1061}
1062
1063const char *print_wrid(int wrid)
1064{
1065 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1066 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1067 }
1068 return wrid_desc[wrid];
1069}
1070
1071/*
1072 * RDMA requires memory registration (mlock/pinning), but this is not good for
1073 * overcommitment.
1074 *
1075 * In preparation for the future where LRU information or workload-specific
1076 * writable writable working set memory access behavior is available to QEMU
1077 * it would be nice to have in place the ability to UN-register/UN-pin
1078 * particular memory regions from the RDMA hardware when it is determine that
1079 * those regions of memory will likely not be accessed again in the near future.
1080 *
1081 * While we do not yet have such information right now, the following
1082 * compile-time option allows us to perform a non-optimized version of this
1083 * behavior.
1084 *
1085 * By uncommenting this option, you will cause *all* RDMA transfers to be
1086 * unregistered immediately after the transfer completes on both sides of the
1087 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1088 *
1089 * This will have a terrible impact on migration performance, so until future
1090 * workload information or LRU information is available, do not attempt to use
1091 * this feature except for basic testing.
1092 */
1093//#define RDMA_UNREGISTRATION_EXAMPLE
1094
1095/*
1096 * Perform a non-optimized memory unregistration after every transfer
1097 * for demonsration purposes, only if pin-all is not requested.
1098 *
1099 * Potential optimizations:
1100 * 1. Start a new thread to run this function continuously
1101 - for bit clearing
1102 - and for receipt of unregister messages
1103 * 2. Use an LRU.
1104 * 3. Use workload hints.
1105 */
1106static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1107{
1108 while (rdma->unregistrations[rdma->unregister_current]) {
1109 int ret;
1110 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1111 uint64_t chunk =
1112 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1113 uint64_t index =
1114 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1115 RDMALocalBlock *block =
1116 &(rdma->local_ram_blocks.block[index]);
1117 RDMARegister reg = { .current_index = index };
1118 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1119 };
1120 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1121 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1122 .repeat = 1,
1123 };
1124
1125 DDPRINTF("Processing unregister for chunk: %" PRIu64
1126 " at position %d\n", chunk, rdma->unregister_current);
1127
1128 rdma->unregistrations[rdma->unregister_current] = 0;
1129 rdma->unregister_current++;
1130
1131 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1132 rdma->unregister_current = 0;
1133 }
1134
1135
1136 /*
1137 * Unregistration is speculative (because migration is single-threaded
1138 * and we cannot break the protocol's inifinband message ordering).
1139 * Thus, if the memory is currently being used for transmission,
1140 * then abort the attempt to unregister and try again
1141 * later the next time a completion is received for this memory.
1142 */
1143 clear_bit(chunk, block->unregister_bitmap);
1144
1145 if (test_bit(chunk, block->transit_bitmap)) {
1146 DDPRINTF("Cannot unregister inflight chunk: %" PRIu64 "\n", chunk);
1147 continue;
1148 }
1149
1150 DDPRINTF("Sending unregister for chunk: %" PRIu64 "\n", chunk);
1151
1152 ret = ibv_dereg_mr(block->pmr[chunk]);
1153 block->pmr[chunk] = NULL;
1154 block->remote_keys[chunk] = 0;
1155
1156 if (ret != 0) {
1157 perror("unregistration chunk failed");
1158 return -ret;
1159 }
1160 rdma->total_registrations--;
1161
1162 reg.key.chunk = chunk;
1163 register_to_network(&reg);
1164 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1165 &resp, NULL, NULL);
1166 if (ret < 0) {
1167 return ret;
1168 }
1169
1170 DDPRINTF("Unregister for chunk: %" PRIu64 " complete.\n", chunk);
1171 }
1172
1173 return 0;
1174}
1175
1176static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1177 uint64_t chunk)
1178{
1179 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1180
1181 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1182 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1183
1184 return result;
1185}
1186
1187/*
1188 * Set bit for unregistration in the next iteration.
1189 * We cannot transmit right here, but will unpin later.
1190 */
1191static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1192 uint64_t chunk, uint64_t wr_id)
1193{
1194 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1195 fprintf(stderr, "rdma migration: queue is full!\n");
1196 } else {
1197 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1198
1199 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1200 DDPRINTF("Appending unregister chunk %" PRIu64
1201 " at position %d\n", chunk, rdma->unregister_next);
1202
1203 rdma->unregistrations[rdma->unregister_next++] =
1204 qemu_rdma_make_wrid(wr_id, index, chunk);
1205
1206 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1207 rdma->unregister_next = 0;
1208 }
1209 } else {
1210 DDPRINTF("Unregister chunk %" PRIu64 " already in queue.\n",
1211 chunk);
1212 }
1213 }
1214}
1215
1216/*
1217 * Consult the connection manager to see a work request
1218 * (of any kind) has completed.
1219 * Return the work request ID that completed.
1220 */
88571882
IY
1221static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1222 uint32_t *byte_len)
2da776db
MH
1223{
1224 int ret;
1225 struct ibv_wc wc;
1226 uint64_t wr_id;
1227
1228 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1229
1230 if (!ret) {
1231 *wr_id_out = RDMA_WRID_NONE;
1232 return 0;
1233 }
1234
1235 if (ret < 0) {
1236 fprintf(stderr, "ibv_poll_cq return %d!\n", ret);
1237 return ret;
1238 }
1239
1240 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1241
1242 if (wc.status != IBV_WC_SUCCESS) {
1243 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1244 wc.status, ibv_wc_status_str(wc.status));
1245 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1246
1247 return -1;
1248 }
1249
1250 if (rdma->control_ready_expected &&
1251 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1252 DDDPRINTF("completion %s #%" PRId64 " received (%" PRId64 ")"
1253 " left %d\n", wrid_desc[RDMA_WRID_RECV_CONTROL],
1254 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1255 rdma->control_ready_expected = 0;
1256 }
1257
1258 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1259 uint64_t chunk =
1260 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1261 uint64_t index =
1262 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1263 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1264
1265 DDDPRINTF("completions %s (%" PRId64 ") left %d, "
1266 "block %" PRIu64 ", chunk: %" PRIu64 " %p %p\n",
1267 print_wrid(wr_id), wr_id, rdma->nb_sent, index, chunk,
1268 block->local_host_addr, (void *)block->remote_host_addr);
1269
1270 clear_bit(chunk, block->transit_bitmap);
1271
1272 if (rdma->nb_sent > 0) {
1273 rdma->nb_sent--;
1274 }
1275
1276 if (!rdma->pin_all) {
1277 /*
1278 * FYI: If one wanted to signal a specific chunk to be unregistered
1279 * using LRU or workload-specific information, this is the function
1280 * you would call to do so. That chunk would then get asynchronously
1281 * unregistered later.
1282 */
1283#ifdef RDMA_UNREGISTRATION_EXAMPLE
1284 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1285#endif
1286 }
1287 } else {
1288 DDDPRINTF("other completion %s (%" PRId64 ") received left %d\n",
1289 print_wrid(wr_id), wr_id, rdma->nb_sent);
1290 }
1291
1292 *wr_id_out = wc.wr_id;
88571882
IY
1293 if (byte_len) {
1294 *byte_len = wc.byte_len;
1295 }
2da776db
MH
1296
1297 return 0;
1298}
1299
1300/*
1301 * Block until the next work request has completed.
1302 *
1303 * First poll to see if a work request has already completed,
1304 * otherwise block.
1305 *
1306 * If we encounter completed work requests for IDs other than
1307 * the one we're interested in, then that's generally an error.
1308 *
1309 * The only exception is actual RDMA Write completions. These
1310 * completions only need to be recorded, but do not actually
1311 * need further processing.
1312 */
88571882
IY
1313static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1314 uint32_t *byte_len)
2da776db
MH
1315{
1316 int num_cq_events = 0, ret = 0;
1317 struct ibv_cq *cq;
1318 void *cq_ctx;
1319 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1320
1321 if (ibv_req_notify_cq(rdma->cq, 0)) {
1322 return -1;
1323 }
1324 /* poll cq first */
1325 while (wr_id != wrid_requested) {
88571882 1326 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
2da776db
MH
1327 if (ret < 0) {
1328 return ret;
1329 }
1330
1331 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1332
1333 if (wr_id == RDMA_WRID_NONE) {
1334 break;
1335 }
1336 if (wr_id != wrid_requested) {
1337 DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1338 print_wrid(wrid_requested),
1339 wrid_requested, print_wrid(wr_id), wr_id);
1340 }
1341 }
1342
1343 if (wr_id == wrid_requested) {
1344 return 0;
1345 }
1346
1347 while (1) {
1348 /*
1349 * Coroutine doesn't start until process_incoming_migration()
1350 * so don't yield unless we know we're running inside of a coroutine.
1351 */
1352 if (rdma->migration_started_on_destination) {
1353 yield_until_fd_readable(rdma->comp_channel->fd);
1354 }
1355
1356 if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1357 perror("ibv_get_cq_event");
1358 goto err_block_for_wrid;
1359 }
1360
1361 num_cq_events++;
1362
1363 if (ibv_req_notify_cq(cq, 0)) {
1364 goto err_block_for_wrid;
1365 }
1366
1367 while (wr_id != wrid_requested) {
88571882 1368 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
2da776db
MH
1369 if (ret < 0) {
1370 goto err_block_for_wrid;
1371 }
1372
1373 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1374
1375 if (wr_id == RDMA_WRID_NONE) {
1376 break;
1377 }
1378 if (wr_id != wrid_requested) {
1379 DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1380 print_wrid(wrid_requested), wrid_requested,
1381 print_wrid(wr_id), wr_id);
1382 }
1383 }
1384
1385 if (wr_id == wrid_requested) {
1386 goto success_block_for_wrid;
1387 }
1388 }
1389
1390success_block_for_wrid:
1391 if (num_cq_events) {
1392 ibv_ack_cq_events(cq, num_cq_events);
1393 }
1394 return 0;
1395
1396err_block_for_wrid:
1397 if (num_cq_events) {
1398 ibv_ack_cq_events(cq, num_cq_events);
1399 }
1400 return ret;
1401}
1402
1403/*
1404 * Post a SEND message work request for the control channel
1405 * containing some data and block until the post completes.
1406 */
1407static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1408 RDMAControlHeader *head)
1409{
1410 int ret = 0;
1f22364b 1411 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
2da776db
MH
1412 struct ibv_send_wr *bad_wr;
1413 struct ibv_sge sge = {
1414 .addr = (uint64_t)(wr->control),
1415 .length = head->len + sizeof(RDMAControlHeader),
1416 .lkey = wr->control_mr->lkey,
1417 };
1418 struct ibv_send_wr send_wr = {
1419 .wr_id = RDMA_WRID_SEND_CONTROL,
1420 .opcode = IBV_WR_SEND,
1421 .send_flags = IBV_SEND_SIGNALED,
1422 .sg_list = &sge,
1423 .num_sge = 1,
1424 };
1425
1426 DDDPRINTF("CONTROL: sending %s..\n", control_desc[head->type]);
1427
1428 /*
1429 * We don't actually need to do a memcpy() in here if we used
1430 * the "sge" properly, but since we're only sending control messages
1431 * (not RAM in a performance-critical path), then its OK for now.
1432 *
1433 * The copy makes the RDMAControlHeader simpler to manipulate
1434 * for the time being.
1435 */
6f1484ed 1436 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
2da776db
MH
1437 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1438 control_to_network((void *) wr->control);
1439
1440 if (buf) {
1441 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1442 }
1443
1444
1445 if (ibv_post_send(rdma->qp, &send_wr, &bad_wr)) {
1446 return -1;
1447 }
1448
1449 if (ret < 0) {
1450 fprintf(stderr, "Failed to use post IB SEND for control!\n");
1451 return ret;
1452 }
1453
88571882 1454 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
2da776db
MH
1455 if (ret < 0) {
1456 fprintf(stderr, "rdma migration: send polling control error!\n");
1457 }
1458
1459 return ret;
1460}
1461
1462/*
1463 * Post a RECV work request in anticipation of some future receipt
1464 * of data on the control channel.
1465 */
1466static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1467{
1468 struct ibv_recv_wr *bad_wr;
1469 struct ibv_sge sge = {
1470 .addr = (uint64_t)(rdma->wr_data[idx].control),
1471 .length = RDMA_CONTROL_MAX_BUFFER,
1472 .lkey = rdma->wr_data[idx].control_mr->lkey,
1473 };
1474
1475 struct ibv_recv_wr recv_wr = {
1476 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1477 .sg_list = &sge,
1478 .num_sge = 1,
1479 };
1480
1481
1482 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1483 return -1;
1484 }
1485
1486 return 0;
1487}
1488
1489/*
1490 * Block and wait for a RECV control channel message to arrive.
1491 */
1492static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1493 RDMAControlHeader *head, int expecting, int idx)
1494{
88571882
IY
1495 uint32_t byte_len;
1496 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1497 &byte_len);
2da776db
MH
1498
1499 if (ret < 0) {
1500 fprintf(stderr, "rdma migration: recv polling control error!\n");
1501 return ret;
1502 }
1503
1504 network_to_control((void *) rdma->wr_data[idx].control);
1505 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1506
1507 DDDPRINTF("CONTROL: %s receiving...\n", control_desc[expecting]);
1508
1509 if (expecting == RDMA_CONTROL_NONE) {
1510 DDDPRINTF("Surprise: got %s (%d)\n",
1511 control_desc[head->type], head->type);
1512 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1513 fprintf(stderr, "Was expecting a %s (%d) control message"
1514 ", but got: %s (%d), length: %d\n",
1515 control_desc[expecting], expecting,
1516 control_desc[head->type], head->type, head->len);
1517 return -EIO;
1518 }
6f1484ed
IY
1519 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1520 fprintf(stderr, "too long length: %d\n", head->len);
1521 return -EINVAL;
1522 }
88571882
IY
1523 if (sizeof(*head) + head->len != byte_len) {
1524 fprintf(stderr, "Malformed length: %d byte_len %d\n",
1525 head->len, byte_len);
1526 return -EINVAL;
1527 }
2da776db
MH
1528
1529 return 0;
1530}
1531
1532/*
1533 * When a RECV work request has completed, the work request's
1534 * buffer is pointed at the header.
1535 *
1536 * This will advance the pointer to the data portion
1537 * of the control message of the work request's buffer that
1538 * was populated after the work request finished.
1539 */
1540static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1541 RDMAControlHeader *head)
1542{
1543 rdma->wr_data[idx].control_len = head->len;
1544 rdma->wr_data[idx].control_curr =
1545 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1546}
1547
1548/*
1549 * This is an 'atomic' high-level operation to deliver a single, unified
1550 * control-channel message.
1551 *
1552 * Additionally, if the user is expecting some kind of reply to this message,
1553 * they can request a 'resp' response message be filled in by posting an
1554 * additional work request on behalf of the user and waiting for an additional
1555 * completion.
1556 *
1557 * The extra (optional) response is used during registration to us from having
1558 * to perform an *additional* exchange of message just to provide a response by
1559 * instead piggy-backing on the acknowledgement.
1560 */
1561static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1562 uint8_t *data, RDMAControlHeader *resp,
1563 int *resp_idx,
1564 int (*callback)(RDMAContext *rdma))
1565{
1566 int ret = 0;
1567
1568 /*
1569 * Wait until the dest is ready before attempting to deliver the message
1570 * by waiting for a READY message.
1571 */
1572 if (rdma->control_ready_expected) {
1573 RDMAControlHeader resp;
1574 ret = qemu_rdma_exchange_get_response(rdma,
1575 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1576 if (ret < 0) {
1577 return ret;
1578 }
1579 }
1580
1581 /*
1582 * If the user is expecting a response, post a WR in anticipation of it.
1583 */
1584 if (resp) {
1585 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1586 if (ret) {
1587 fprintf(stderr, "rdma migration: error posting"
1588 " extra control recv for anticipated result!");
1589 return ret;
1590 }
1591 }
1592
1593 /*
1594 * Post a WR to replace the one we just consumed for the READY message.
1595 */
1596 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1597 if (ret) {
1598 fprintf(stderr, "rdma migration: error posting first control recv!");
1599 return ret;
1600 }
1601
1602 /*
1603 * Deliver the control message that was requested.
1604 */
1605 ret = qemu_rdma_post_send_control(rdma, data, head);
1606
1607 if (ret < 0) {
1608 fprintf(stderr, "Failed to send control buffer!\n");
1609 return ret;
1610 }
1611
1612 /*
1613 * If we're expecting a response, block and wait for it.
1614 */
1615 if (resp) {
1616 if (callback) {
1617 DDPRINTF("Issuing callback before receiving response...\n");
1618 ret = callback(rdma);
1619 if (ret < 0) {
1620 return ret;
1621 }
1622 }
1623
1624 DDPRINTF("Waiting for response %s\n", control_desc[resp->type]);
1625 ret = qemu_rdma_exchange_get_response(rdma, resp,
1626 resp->type, RDMA_WRID_DATA);
1627
1628 if (ret < 0) {
1629 return ret;
1630 }
1631
1632 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1633 if (resp_idx) {
1634 *resp_idx = RDMA_WRID_DATA;
1635 }
1636 DDPRINTF("Response %s received.\n", control_desc[resp->type]);
1637 }
1638
1639 rdma->control_ready_expected = 1;
1640
1641 return 0;
1642}
1643
1644/*
1645 * This is an 'atomic' high-level operation to receive a single, unified
1646 * control-channel message.
1647 */
1648static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1649 int expecting)
1650{
1651 RDMAControlHeader ready = {
1652 .len = 0,
1653 .type = RDMA_CONTROL_READY,
1654 .repeat = 1,
1655 };
1656 int ret;
1657
1658 /*
1659 * Inform the source that we're ready to receive a message.
1660 */
1661 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1662
1663 if (ret < 0) {
1664 fprintf(stderr, "Failed to send control buffer!\n");
1665 return ret;
1666 }
1667
1668 /*
1669 * Block and wait for the message.
1670 */
1671 ret = qemu_rdma_exchange_get_response(rdma, head,
1672 expecting, RDMA_WRID_READY);
1673
1674 if (ret < 0) {
1675 return ret;
1676 }
1677
1678 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1679
1680 /*
1681 * Post a new RECV work request to replace the one we just consumed.
1682 */
1683 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1684 if (ret) {
1685 fprintf(stderr, "rdma migration: error posting second control recv!");
1686 return ret;
1687 }
1688
1689 return 0;
1690}
1691
1692/*
1693 * Write an actual chunk of memory using RDMA.
1694 *
1695 * If we're using dynamic registration on the dest-side, we have to
1696 * send a registration command first.
1697 */
1698static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1699 int current_index, uint64_t current_addr,
1700 uint64_t length)
1701{
1702 struct ibv_sge sge;
1703 struct ibv_send_wr send_wr = { 0 };
1704 struct ibv_send_wr *bad_wr;
1705 int reg_result_idx, ret, count = 0;
1706 uint64_t chunk, chunks;
1707 uint8_t *chunk_start, *chunk_end;
1708 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1709 RDMARegister reg;
1710 RDMARegisterResult *reg_result;
1711 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1712 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1713 .type = RDMA_CONTROL_REGISTER_REQUEST,
1714 .repeat = 1,
1715 };
1716
1717retry:
1718 sge.addr = (uint64_t)(block->local_host_addr +
1719 (current_addr - block->offset));
1720 sge.length = length;
1721
1722 chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr);
1723 chunk_start = ram_chunk_start(block, chunk);
1724
1725 if (block->is_ram_block) {
1726 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1727
1728 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1729 chunks--;
1730 }
1731 } else {
1732 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1733
1734 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1735 chunks--;
1736 }
1737 }
1738
1739 DDPRINTF("Writing %" PRIu64 " chunks, (%" PRIu64 " MB)\n",
1740 chunks + 1, (chunks + 1) * (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1741
1742 chunk_end = ram_chunk_end(block, chunk + chunks);
1743
1744 if (!rdma->pin_all) {
1745#ifdef RDMA_UNREGISTRATION_EXAMPLE
1746 qemu_rdma_unregister_waiting(rdma);
1747#endif
1748 }
1749
1750 while (test_bit(chunk, block->transit_bitmap)) {
1751 (void)count;
1752 DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64
1753 " current %" PRIu64 " len %" PRIu64 " %d %d\n",
1754 count++, current_index, chunk,
1755 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1756
88571882 1757 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2da776db
MH
1758
1759 if (ret < 0) {
1760 fprintf(stderr, "Failed to Wait for previous write to complete "
1761 "block %d chunk %" PRIu64
1762 " current %" PRIu64 " len %" PRIu64 " %d\n",
1763 current_index, chunk, sge.addr, length, rdma->nb_sent);
1764 return ret;
1765 }
1766 }
1767
1768 if (!rdma->pin_all || !block->is_ram_block) {
1769 if (!block->remote_keys[chunk]) {
1770 /*
1771 * This chunk has not yet been registered, so first check to see
1772 * if the entire chunk is zero. If so, tell the other size to
1773 * memset() + madvise() the entire chunk without RDMA.
1774 */
1775
1776 if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length)
1777 && buffer_find_nonzero_offset((void *)sge.addr,
1778 length) == length) {
1779 RDMACompress comp = {
1780 .offset = current_addr,
1781 .value = 0,
1782 .block_idx = current_index,
1783 .length = length,
1784 };
1785
1786 head.len = sizeof(comp);
1787 head.type = RDMA_CONTROL_COMPRESS;
1788
1789 DDPRINTF("Entire chunk is zero, sending compress: %"
1790 PRIu64 " for %d "
1791 "bytes, index: %d, offset: %" PRId64 "...\n",
1792 chunk, sge.length, current_index, current_addr);
1793
1794 compress_to_network(&comp);
1795 ret = qemu_rdma_exchange_send(rdma, &head,
1796 (uint8_t *) &comp, NULL, NULL, NULL);
1797
1798 if (ret < 0) {
1799 return -EIO;
1800 }
1801
1802 acct_update_position(f, sge.length, true);
1803
1804 return 1;
1805 }
1806
1807 /*
1808 * Otherwise, tell other side to register.
1809 */
1810 reg.current_index = current_index;
1811 if (block->is_ram_block) {
1812 reg.key.current_addr = current_addr;
1813 } else {
1814 reg.key.chunk = chunk;
1815 }
1816 reg.chunks = chunks;
1817
1818 DDPRINTF("Sending registration request chunk %" PRIu64 " for %d "
1819 "bytes, index: %d, offset: %" PRId64 "...\n",
1820 chunk, sge.length, current_index, current_addr);
1821
1822 register_to_network(&reg);
1823 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1824 &resp, &reg_result_idx, NULL);
1825 if (ret < 0) {
1826 return ret;
1827 }
1828
1829 /* try to overlap this single registration with the one we sent. */
1830 if (qemu_rdma_register_and_get_keys(rdma, block,
1831 (uint8_t *) sge.addr,
1832 &sge.lkey, NULL, chunk,
1833 chunk_start, chunk_end)) {
1834 fprintf(stderr, "cannot get lkey!\n");
1835 return -EINVAL;
1836 }
1837
1838 reg_result = (RDMARegisterResult *)
1839 rdma->wr_data[reg_result_idx].control_curr;
1840
1841 network_to_result(reg_result);
1842
1843 DDPRINTF("Received registration result:"
1844 " my key: %x their key %x, chunk %" PRIu64 "\n",
1845 block->remote_keys[chunk], reg_result->rkey, chunk);
1846
1847 block->remote_keys[chunk] = reg_result->rkey;
1848 block->remote_host_addr = reg_result->host_addr;
1849 } else {
1850 /* already registered before */
1851 if (qemu_rdma_register_and_get_keys(rdma, block,
1852 (uint8_t *)sge.addr,
1853 &sge.lkey, NULL, chunk,
1854 chunk_start, chunk_end)) {
1855 fprintf(stderr, "cannot get lkey!\n");
1856 return -EINVAL;
1857 }
1858 }
1859
1860 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
1861 } else {
1862 send_wr.wr.rdma.rkey = block->remote_rkey;
1863
1864 if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr,
1865 &sge.lkey, NULL, chunk,
1866 chunk_start, chunk_end)) {
1867 fprintf(stderr, "cannot get lkey!\n");
1868 return -EINVAL;
1869 }
1870 }
1871
1872 /*
1873 * Encode the ram block index and chunk within this wrid.
1874 * We will use this information at the time of completion
1875 * to figure out which bitmap to check against and then which
1876 * chunk in the bitmap to look for.
1877 */
1878 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
1879 current_index, chunk);
1880
1881 send_wr.opcode = IBV_WR_RDMA_WRITE;
1882 send_wr.send_flags = IBV_SEND_SIGNALED;
1883 send_wr.sg_list = &sge;
1884 send_wr.num_sge = 1;
1885 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
1886 (current_addr - block->offset);
1887
1888 DDDPRINTF("Posting chunk: %" PRIu64 ", addr: %lx"
1889 " remote: %lx, bytes %" PRIu32 "\n",
1890 chunk, sge.addr, send_wr.wr.rdma.remote_addr,
1891 sge.length);
1892
1893 /*
1894 * ibv_post_send() does not return negative error numbers,
1895 * per the specification they are positive - no idea why.
1896 */
1897 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1898
1899 if (ret == ENOMEM) {
1900 DDPRINTF("send queue is full. wait a little....\n");
88571882 1901 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2da776db
MH
1902 if (ret < 0) {
1903 fprintf(stderr, "rdma migration: failed to make "
1904 "room in full send queue! %d\n", ret);
1905 return ret;
1906 }
1907
1908 goto retry;
1909
1910 } else if (ret > 0) {
1911 perror("rdma migration: post rdma write failed");
1912 return -ret;
1913 }
1914
1915 set_bit(chunk, block->transit_bitmap);
1916 acct_update_position(f, sge.length, false);
1917 rdma->total_writes++;
1918
1919 return 0;
1920}
1921
1922/*
1923 * Push out any unwritten RDMA operations.
1924 *
1925 * We support sending out multiple chunks at the same time.
1926 * Not all of them need to get signaled in the completion queue.
1927 */
1928static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
1929{
1930 int ret;
1931
1932 if (!rdma->current_length) {
1933 return 0;
1934 }
1935
1936 ret = qemu_rdma_write_one(f, rdma,
1937 rdma->current_index, rdma->current_addr, rdma->current_length);
1938
1939 if (ret < 0) {
1940 return ret;
1941 }
1942
1943 if (ret == 0) {
1944 rdma->nb_sent++;
1945 DDDPRINTF("sent total: %d\n", rdma->nb_sent);
1946 }
1947
1948 rdma->current_length = 0;
1949 rdma->current_addr = 0;
1950
1951 return 0;
1952}
1953
1954static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
1955 uint64_t offset, uint64_t len)
1956{
44b59494
IY
1957 RDMALocalBlock *block;
1958 uint8_t *host_addr;
1959 uint8_t *chunk_end;
1960
1961 if (rdma->current_index < 0) {
1962 return 0;
1963 }
1964
1965 if (rdma->current_chunk < 0) {
1966 return 0;
1967 }
1968
1969 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
1970 host_addr = block->local_host_addr + (offset - block->offset);
1971 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2da776db
MH
1972
1973 if (rdma->current_length == 0) {
1974 return 0;
1975 }
1976
1977 /*
1978 * Only merge into chunk sequentially.
1979 */
1980 if (offset != (rdma->current_addr + rdma->current_length)) {
1981 return 0;
1982 }
1983
2da776db
MH
1984 if (offset < block->offset) {
1985 return 0;
1986 }
1987
1988 if ((offset + len) > (block->offset + block->length)) {
1989 return 0;
1990 }
1991
2da776db
MH
1992 if ((host_addr + len) > chunk_end) {
1993 return 0;
1994 }
1995
1996 return 1;
1997}
1998
1999/*
2000 * We're not actually writing here, but doing three things:
2001 *
2002 * 1. Identify the chunk the buffer belongs to.
2003 * 2. If the chunk is full or the buffer doesn't belong to the current
2004 * chunk, then start a new chunk and flush() the old chunk.
2005 * 3. To keep the hardware busy, we also group chunks into batches
2006 * and only require that a batch gets acknowledged in the completion
2007 * qeueue instead of each individual chunk.
2008 */
2009static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2010 uint64_t block_offset, uint64_t offset,
2011 uint64_t len)
2012{
2013 uint64_t current_addr = block_offset + offset;
2014 uint64_t index = rdma->current_index;
2015 uint64_t chunk = rdma->current_chunk;
2016 int ret;
2017
2018 /* If we cannot merge it, we flush the current buffer first. */
2019 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2020 ret = qemu_rdma_write_flush(f, rdma);
2021 if (ret) {
2022 return ret;
2023 }
2024 rdma->current_length = 0;
2025 rdma->current_addr = current_addr;
2026
2027 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2028 offset, len, &index, &chunk);
2029 if (ret) {
2030 fprintf(stderr, "ram block search failed\n");
2031 return ret;
2032 }
2033 rdma->current_index = index;
2034 rdma->current_chunk = chunk;
2035 }
2036
2037 /* merge it */
2038 rdma->current_length += len;
2039
2040 /* flush it if buffer is too large */
2041 if (rdma->current_length >= RDMA_MERGE_MAX) {
2042 return qemu_rdma_write_flush(f, rdma);
2043 }
2044
2045 return 0;
2046}
2047
2048static void qemu_rdma_cleanup(RDMAContext *rdma)
2049{
2050 struct rdma_cm_event *cm_event;
2051 int ret, idx;
2052
2053 if (rdma->cm_id) {
2054 if (rdma->error_state) {
2055 RDMAControlHeader head = { .len = 0,
2056 .type = RDMA_CONTROL_ERROR,
2057 .repeat = 1,
2058 };
2059 fprintf(stderr, "Early error. Sending error.\n");
2060 qemu_rdma_post_send_control(rdma, NULL, &head);
2061 }
2062
2063 ret = rdma_disconnect(rdma->cm_id);
2064 if (!ret) {
2065 DDPRINTF("waiting for disconnect\n");
2066 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2067 if (!ret) {
2068 rdma_ack_cm_event(cm_event);
2069 }
2070 }
2071 DDPRINTF("Disconnected.\n");
2072 rdma->cm_id = NULL;
2073 }
2074
2075 g_free(rdma->block);
2076 rdma->block = NULL;
2077
1f22364b 2078 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2da776db
MH
2079 if (rdma->wr_data[idx].control_mr) {
2080 rdma->total_registrations--;
2081 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2082 }
2083 rdma->wr_data[idx].control_mr = NULL;
2084 }
2085
2086 if (rdma->local_ram_blocks.block) {
2087 while (rdma->local_ram_blocks.nb_blocks) {
2088 __qemu_rdma_delete_block(rdma,
2089 rdma->local_ram_blocks.block->offset);
2090 }
2091 }
2092
2093 if (rdma->qp) {
2094 ibv_destroy_qp(rdma->qp);
2095 rdma->qp = NULL;
2096 }
2097 if (rdma->cq) {
2098 ibv_destroy_cq(rdma->cq);
2099 rdma->cq = NULL;
2100 }
2101 if (rdma->comp_channel) {
2102 ibv_destroy_comp_channel(rdma->comp_channel);
2103 rdma->comp_channel = NULL;
2104 }
2105 if (rdma->pd) {
2106 ibv_dealloc_pd(rdma->pd);
2107 rdma->pd = NULL;
2108 }
2109 if (rdma->listen_id) {
2110 rdma_destroy_id(rdma->listen_id);
2111 rdma->listen_id = NULL;
2112 }
2113 if (rdma->cm_id) {
2114 rdma_destroy_id(rdma->cm_id);
2115 rdma->cm_id = NULL;
2116 }
2117 if (rdma->channel) {
2118 rdma_destroy_event_channel(rdma->channel);
2119 rdma->channel = NULL;
2120 }
e1d0fb37
IY
2121 g_free(rdma->host);
2122 rdma->host = NULL;
2da776db
MH
2123}
2124
2125
2126static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2127{
2128 int ret, idx;
2129 Error *local_err = NULL, **temp = &local_err;
2130
2131 /*
2132 * Will be validated against destination's actual capabilities
2133 * after the connect() completes.
2134 */
2135 rdma->pin_all = pin_all;
2136
2137 ret = qemu_rdma_resolve_host(rdma, temp);
2138 if (ret) {
2139 goto err_rdma_source_init;
2140 }
2141
2142 ret = qemu_rdma_alloc_pd_cq(rdma);
2143 if (ret) {
2144 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2145 " limits may be too low. Please check $ ulimit -a # and "
66988941 2146 "search for 'ulimit -l' in the output");
2da776db
MH
2147 goto err_rdma_source_init;
2148 }
2149
2150 ret = qemu_rdma_alloc_qp(rdma);
2151 if (ret) {
66988941 2152 ERROR(temp, "rdma migration: error allocating qp!");
2da776db
MH
2153 goto err_rdma_source_init;
2154 }
2155
2156 ret = qemu_rdma_init_ram_blocks(rdma);
2157 if (ret) {
66988941 2158 ERROR(temp, "rdma migration: error initializing ram blocks!");
2da776db
MH
2159 goto err_rdma_source_init;
2160 }
2161
1f22364b 2162 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2da776db
MH
2163 ret = qemu_rdma_reg_control(rdma, idx);
2164 if (ret) {
66988941 2165 ERROR(temp, "rdma migration: error registering %d control!",
2da776db
MH
2166 idx);
2167 goto err_rdma_source_init;
2168 }
2169 }
2170
2171 return 0;
2172
2173err_rdma_source_init:
2174 error_propagate(errp, local_err);
2175 qemu_rdma_cleanup(rdma);
2176 return -1;
2177}
2178
2179static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2180{
2181 RDMACapabilities cap = {
2182 .version = RDMA_CONTROL_VERSION_CURRENT,
2183 .flags = 0,
2184 };
2185 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2186 .retry_count = 5,
2187 .private_data = &cap,
2188 .private_data_len = sizeof(cap),
2189 };
2190 struct rdma_cm_event *cm_event;
2191 int ret;
2192
2193 /*
2194 * Only negotiate the capability with destination if the user
2195 * on the source first requested the capability.
2196 */
2197 if (rdma->pin_all) {
2198 DPRINTF("Server pin-all memory requested.\n");
2199 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2200 }
2201
2202 caps_to_network(&cap);
2203
2204 ret = rdma_connect(rdma->cm_id, &conn_param);
2205 if (ret) {
2206 perror("rdma_connect");
66988941 2207 ERROR(errp, "connecting to destination!");
2da776db
MH
2208 rdma_destroy_id(rdma->cm_id);
2209 rdma->cm_id = NULL;
2210 goto err_rdma_source_connect;
2211 }
2212
2213 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2214 if (ret) {
2215 perror("rdma_get_cm_event after rdma_connect");
66988941 2216 ERROR(errp, "connecting to destination!");
2da776db
MH
2217 rdma_ack_cm_event(cm_event);
2218 rdma_destroy_id(rdma->cm_id);
2219 rdma->cm_id = NULL;
2220 goto err_rdma_source_connect;
2221 }
2222
2223 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2224 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
66988941 2225 ERROR(errp, "connecting to destination!");
2da776db
MH
2226 rdma_ack_cm_event(cm_event);
2227 rdma_destroy_id(rdma->cm_id);
2228 rdma->cm_id = NULL;
2229 goto err_rdma_source_connect;
2230 }
2231
2232 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2233 network_to_caps(&cap);
2234
2235 /*
2236 * Verify that the *requested* capabilities are supported by the destination
2237 * and disable them otherwise.
2238 */
2239 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2240 ERROR(errp, "Server cannot support pinning all memory. "
66988941 2241 "Will register memory dynamically.");
2da776db
MH
2242 rdma->pin_all = false;
2243 }
2244
2245 DPRINTF("Pin all memory: %s\n", rdma->pin_all ? "enabled" : "disabled");
2246
2247 rdma_ack_cm_event(cm_event);
2248
87772639 2249 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2da776db 2250 if (ret) {
66988941 2251 ERROR(errp, "posting second control recv!");
2da776db
MH
2252 goto err_rdma_source_connect;
2253 }
2254
2255 rdma->control_ready_expected = 1;
2256 rdma->nb_sent = 0;
2257 return 0;
2258
2259err_rdma_source_connect:
2260 qemu_rdma_cleanup(rdma);
2261 return -1;
2262}
2263
2264static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2265{
2266 int ret = -EINVAL, idx;
2da776db
MH
2267 struct rdma_cm_id *listen_id;
2268 char ip[40] = "unknown";
b58c8552
MH
2269 struct addrinfo *res;
2270 char port_str[16];
2da776db 2271
1f22364b 2272 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2da776db
MH
2273 rdma->wr_data[idx].control_len = 0;
2274 rdma->wr_data[idx].control_curr = NULL;
2275 }
2276
2277 if (rdma->host == NULL) {
66988941 2278 ERROR(errp, "RDMA host is not set!");
2da776db
MH
2279 rdma->error_state = -EINVAL;
2280 return -1;
2281 }
2282 /* create CM channel */
2283 rdma->channel = rdma_create_event_channel();
2284 if (!rdma->channel) {
66988941 2285 ERROR(errp, "could not create rdma event channel");
2da776db
MH
2286 rdma->error_state = -EINVAL;
2287 return -1;
2288 }
2289
2290 /* create CM id */
2291 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2292 if (ret) {
66988941 2293 ERROR(errp, "could not create cm_id!");
2da776db
MH
2294 goto err_dest_init_create_listen_id;
2295 }
2296
b58c8552
MH
2297 snprintf(port_str, 16, "%d", rdma->port);
2298 port_str[15] = '\0';
2da776db
MH
2299
2300 if (rdma->host && strcmp("", rdma->host)) {
6470215b
MH
2301 struct addrinfo *e;
2302
b58c8552
MH
2303 ret = getaddrinfo(rdma->host, port_str, NULL, &res);
2304 if (ret < 0) {
66988941 2305 ERROR(errp, "could not getaddrinfo address %s", rdma->host);
2da776db
MH
2306 goto err_dest_init_bind_addr;
2307 }
b58c8552 2308
6470215b
MH
2309 for (e = res; e != NULL; e = e->ai_next) {
2310 inet_ntop(e->ai_family,
2311 &((struct sockaddr_in *) e->ai_addr)->sin_addr, ip, sizeof ip);
2312 DPRINTF("Trying %s => %s\n", rdma->host, ip);
2313 ret = rdma_bind_addr(listen_id, e->ai_addr);
2314 if (!ret) {
2315 goto listen;
2316 }
2317 }
b58c8552 2318
6470215b
MH
2319 ERROR(errp, "Error: could not rdma_bind_addr!");
2320 goto err_dest_init_bind_addr;
2da776db 2321 } else {
66988941 2322 ERROR(errp, "migration host and port not specified!");
b58c8552
MH
2323 ret = -EINVAL;
2324 goto err_dest_init_bind_addr;
2da776db 2325 }
6470215b 2326listen:
2da776db
MH
2327
2328 rdma->listen_id = listen_id;
2329 qemu_rdma_dump_gid("dest_init", listen_id);
2330 return 0;
2331
2332err_dest_init_bind_addr:
2333 rdma_destroy_id(listen_id);
2334err_dest_init_create_listen_id:
2335 rdma_destroy_event_channel(rdma->channel);
2336 rdma->channel = NULL;
2337 rdma->error_state = ret;
2338 return ret;
2339
2340}
2341
2342static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2343{
2344 RDMAContext *rdma = NULL;
2345 InetSocketAddress *addr;
2346
2347 if (host_port) {
2348 rdma = g_malloc0(sizeof(RDMAContext));
2349 memset(rdma, 0, sizeof(RDMAContext));
2350 rdma->current_index = -1;
2351 rdma->current_chunk = -1;
2352
2353 addr = inet_parse(host_port, NULL);
2354 if (addr != NULL) {
2355 rdma->port = atoi(addr->port);
2356 rdma->host = g_strdup(addr->host);
2357 } else {
2358 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2359 g_free(rdma);
2360 return NULL;
2361 }
2362 }
2363
2364 return rdma;
2365}
2366
2367/*
2368 * QEMUFile interface to the control channel.
2369 * SEND messages for control only.
2370 * pc.ram is handled with regular RDMA messages.
2371 */
2372static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2373 int64_t pos, int size)
2374{
2375 QEMUFileRDMA *r = opaque;
2376 QEMUFile *f = r->file;
2377 RDMAContext *rdma = r->rdma;
2378 size_t remaining = size;
2379 uint8_t * data = (void *) buf;
2380 int ret;
2381
2382 CHECK_ERROR_STATE();
2383
2384 /*
2385 * Push out any writes that
2386 * we're queued up for pc.ram.
2387 */
2388 ret = qemu_rdma_write_flush(f, rdma);
2389 if (ret < 0) {
2390 rdma->error_state = ret;
2391 return ret;
2392 }
2393
2394 while (remaining) {
2395 RDMAControlHeader head;
2396
2397 r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2398 remaining -= r->len;
2399
2400 head.len = r->len;
2401 head.type = RDMA_CONTROL_QEMU_FILE;
2402
2403 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2404
2405 if (ret < 0) {
2406 rdma->error_state = ret;
2407 return ret;
2408 }
2409
2410 data += r->len;
2411 }
2412
2413 return size;
2414}
2415
2416static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2417 int size, int idx)
2418{
2419 size_t len = 0;
2420
2421 if (rdma->wr_data[idx].control_len) {
2422 DDDPRINTF("RDMA %" PRId64 " of %d bytes already in buffer\n",
2423 rdma->wr_data[idx].control_len, size);
2424
2425 len = MIN(size, rdma->wr_data[idx].control_len);
2426 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2427 rdma->wr_data[idx].control_curr += len;
2428 rdma->wr_data[idx].control_len -= len;
2429 }
2430
2431 return len;
2432}
2433
2434/*
2435 * QEMUFile interface to the control channel.
2436 * RDMA links don't use bytestreams, so we have to
2437 * return bytes to QEMUFile opportunistically.
2438 */
2439static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2440 int64_t pos, int size)
2441{
2442 QEMUFileRDMA *r = opaque;
2443 RDMAContext *rdma = r->rdma;
2444 RDMAControlHeader head;
2445 int ret = 0;
2446
2447 CHECK_ERROR_STATE();
2448
2449 /*
2450 * First, we hold on to the last SEND message we
2451 * were given and dish out the bytes until we run
2452 * out of bytes.
2453 */
2454 r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2455 if (r->len) {
2456 return r->len;
2457 }
2458
2459 /*
2460 * Once we run out, we block and wait for another
2461 * SEND message to arrive.
2462 */
2463 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2464
2465 if (ret < 0) {
2466 rdma->error_state = ret;
2467 return ret;
2468 }
2469
2470 /*
2471 * SEND was received with new bytes, now try again.
2472 */
2473 return qemu_rdma_fill(r->rdma, buf, size, 0);
2474}
2475
2476/*
2477 * Block until all the outstanding chunks have been delivered by the hardware.
2478 */
2479static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2480{
2481 int ret;
2482
2483 if (qemu_rdma_write_flush(f, rdma) < 0) {
2484 return -EIO;
2485 }
2486
2487 while (rdma->nb_sent) {
88571882 2488 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2da776db
MH
2489 if (ret < 0) {
2490 fprintf(stderr, "rdma migration: complete polling error!\n");
2491 return -EIO;
2492 }
2493 }
2494
2495 qemu_rdma_unregister_waiting(rdma);
2496
2497 return 0;
2498}
2499
2500static int qemu_rdma_close(void *opaque)
2501{
2502 DPRINTF("Shutting down connection.\n");
2503 QEMUFileRDMA *r = opaque;
2504 if (r->rdma) {
2505 qemu_rdma_cleanup(r->rdma);
2506 g_free(r->rdma);
2507 }
2508 g_free(r);
2509 return 0;
2510}
2511
2512/*
2513 * Parameters:
2514 * @offset == 0 :
2515 * This means that 'block_offset' is a full virtual address that does not
2516 * belong to a RAMBlock of the virtual machine and instead
2517 * represents a private malloc'd memory area that the caller wishes to
2518 * transfer.
2519 *
2520 * @offset != 0 :
2521 * Offset is an offset to be added to block_offset and used
2522 * to also lookup the corresponding RAMBlock.
2523 *
2524 * @size > 0 :
2525 * Initiate an transfer this size.
2526 *
2527 * @size == 0 :
2528 * A 'hint' or 'advice' that means that we wish to speculatively
2529 * and asynchronously unregister this memory. In this case, there is no
52f35022 2530 * guarantee that the unregister will actually happen, for example,
2da776db
MH
2531 * if the memory is being actively transmitted. Additionally, the memory
2532 * may be re-registered at any future time if a write within the same
2533 * chunk was requested again, even if you attempted to unregister it
2534 * here.
2535 *
2536 * @size < 0 : TODO, not yet supported
2537 * Unregister the memory NOW. This means that the caller does not
2538 * expect there to be any future RDMA transfers and we just want to clean
2539 * things up. This is used in case the upper layer owns the memory and
2540 * cannot wait for qemu_fclose() to occur.
2541 *
2542 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2543 * sent. Usually, this will not be more than a few bytes of
2544 * the protocol because most transfers are sent asynchronously.
2545 */
2546static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2547 ram_addr_t block_offset, ram_addr_t offset,
2548 size_t size, int *bytes_sent)
2549{
2550 QEMUFileRDMA *rfile = opaque;
2551 RDMAContext *rdma = rfile->rdma;
2552 int ret;
2553
2554 CHECK_ERROR_STATE();
2555
2556 qemu_fflush(f);
2557
2558 if (size > 0) {
2559 /*
2560 * Add this page to the current 'chunk'. If the chunk
2561 * is full, or the page doen't belong to the current chunk,
2562 * an actual RDMA write will occur and a new chunk will be formed.
2563 */
2564 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2565 if (ret < 0) {
2566 fprintf(stderr, "rdma migration: write error! %d\n", ret);
2567 goto err;
2568 }
2569
2570 /*
2571 * We always return 1 bytes because the RDMA
2572 * protocol is completely asynchronous. We do not yet know
2573 * whether an identified chunk is zero or not because we're
2574 * waiting for other pages to potentially be merged with
2575 * the current chunk. So, we have to call qemu_update_position()
2576 * later on when the actual write occurs.
2577 */
2578 if (bytes_sent) {
2579 *bytes_sent = 1;
2580 }
2581 } else {
2582 uint64_t index, chunk;
2583
2584 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2585 if (size < 0) {
2586 ret = qemu_rdma_drain_cq(f, rdma);
2587 if (ret < 0) {
2588 fprintf(stderr, "rdma: failed to synchronously drain"
2589 " completion queue before unregistration.\n");
2590 goto err;
2591 }
2592 }
2593 */
2594
2595 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2596 offset, size, &index, &chunk);
2597
2598 if (ret) {
2599 fprintf(stderr, "ram block search failed\n");
2600 goto err;
2601 }
2602
2603 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2604
2605 /*
52f35022 2606 * TODO: Synchronous, guaranteed unregistration (should not occur during
2da776db
MH
2607 * fast-path). Otherwise, unregisters will process on the next call to
2608 * qemu_rdma_drain_cq()
2609 if (size < 0) {
2610 qemu_rdma_unregister_waiting(rdma);
2611 }
2612 */
2613 }
2614
2615 /*
2616 * Drain the Completion Queue if possible, but do not block,
2617 * just poll.
2618 *
2619 * If nothing to poll, the end of the iteration will do this
2620 * again to make sure we don't overflow the request queue.
2621 */
2622 while (1) {
2623 uint64_t wr_id, wr_id_in;
88571882 2624 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
2da776db
MH
2625 if (ret < 0) {
2626 fprintf(stderr, "rdma migration: polling error! %d\n", ret);
2627 goto err;
2628 }
2629
2630 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2631
2632 if (wr_id == RDMA_WRID_NONE) {
2633 break;
2634 }
2635 }
2636
2637 return RAM_SAVE_CONTROL_DELAYED;
2638err:
2639 rdma->error_state = ret;
2640 return ret;
2641}
2642
2643static int qemu_rdma_accept(RDMAContext *rdma)
2644{
2645 RDMACapabilities cap;
2646 struct rdma_conn_param conn_param = {
2647 .responder_resources = 2,
2648 .private_data = &cap,
2649 .private_data_len = sizeof(cap),
2650 };
2651 struct rdma_cm_event *cm_event;
2652 struct ibv_context *verbs;
2653 int ret = -EINVAL;
2654 int idx;
2655
2656 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2657 if (ret) {
2658 goto err_rdma_dest_wait;
2659 }
2660
2661 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2662 rdma_ack_cm_event(cm_event);
2663 goto err_rdma_dest_wait;
2664 }
2665
2666 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2667
2668 network_to_caps(&cap);
2669
2670 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2671 fprintf(stderr, "Unknown source RDMA version: %d, bailing...\n",
2672 cap.version);
2673 rdma_ack_cm_event(cm_event);
2674 goto err_rdma_dest_wait;
2675 }
2676
2677 /*
2678 * Respond with only the capabilities this version of QEMU knows about.
2679 */
2680 cap.flags &= known_capabilities;
2681
2682 /*
2683 * Enable the ones that we do know about.
2684 * Add other checks here as new ones are introduced.
2685 */
2686 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2687 rdma->pin_all = true;
2688 }
2689
2690 rdma->cm_id = cm_event->id;
2691 verbs = cm_event->id->verbs;
2692
2693 rdma_ack_cm_event(cm_event);
2694
2695 DPRINTF("Memory pin all: %s\n", rdma->pin_all ? "enabled" : "disabled");
2696
2697 caps_to_network(&cap);
2698
2699 DPRINTF("verbs context after listen: %p\n", verbs);
2700
2701 if (!rdma->verbs) {
2702 rdma->verbs = verbs;
2703 } else if (rdma->verbs != verbs) {
2704 fprintf(stderr, "ibv context not matching %p, %p!\n",
2705 rdma->verbs, verbs);
2706 goto err_rdma_dest_wait;
2707 }
2708
2709 qemu_rdma_dump_id("dest_init", verbs);
2710
2711 ret = qemu_rdma_alloc_pd_cq(rdma);
2712 if (ret) {
2713 fprintf(stderr, "rdma migration: error allocating pd and cq!\n");
2714 goto err_rdma_dest_wait;
2715 }
2716
2717 ret = qemu_rdma_alloc_qp(rdma);
2718 if (ret) {
2719 fprintf(stderr, "rdma migration: error allocating qp!\n");
2720 goto err_rdma_dest_wait;
2721 }
2722
2723 ret = qemu_rdma_init_ram_blocks(rdma);
2724 if (ret) {
2725 fprintf(stderr, "rdma migration: error initializing ram blocks!\n");
2726 goto err_rdma_dest_wait;
2727 }
2728
1f22364b 2729 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2da776db
MH
2730 ret = qemu_rdma_reg_control(rdma, idx);
2731 if (ret) {
2732 fprintf(stderr, "rdma: error registering %d control!\n", idx);
2733 goto err_rdma_dest_wait;
2734 }
2735 }
2736
2737 qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL);
2738
2739 ret = rdma_accept(rdma->cm_id, &conn_param);
2740 if (ret) {
2741 fprintf(stderr, "rdma_accept returns %d!\n", ret);
2742 goto err_rdma_dest_wait;
2743 }
2744
2745 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2746 if (ret) {
2747 fprintf(stderr, "rdma_accept get_cm_event failed %d!\n", ret);
2748 goto err_rdma_dest_wait;
2749 }
2750
2751 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2752 fprintf(stderr, "rdma_accept not event established!\n");
2753 rdma_ack_cm_event(cm_event);
2754 goto err_rdma_dest_wait;
2755 }
2756
2757 rdma_ack_cm_event(cm_event);
2758
87772639 2759 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2da776db
MH
2760 if (ret) {
2761 fprintf(stderr, "rdma migration: error posting second control recv!\n");
2762 goto err_rdma_dest_wait;
2763 }
2764
2765 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2766
2767 return 0;
2768
2769err_rdma_dest_wait:
2770 rdma->error_state = ret;
2771 qemu_rdma_cleanup(rdma);
2772 return ret;
2773}
2774
2775/*
2776 * During each iteration of the migration, we listen for instructions
2777 * by the source VM to perform dynamic page registrations before they
2778 * can perform RDMA operations.
2779 *
2780 * We respond with the 'rkey'.
2781 *
2782 * Keep doing this until the source tells us to stop.
2783 */
2784static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque,
2785 uint64_t flags)
2786{
2787 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2788 .type = RDMA_CONTROL_REGISTER_RESULT,
2789 .repeat = 0,
2790 };
2791 RDMAControlHeader unreg_resp = { .len = 0,
2792 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2793 .repeat = 0,
2794 };
2795 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2796 .repeat = 1 };
2797 QEMUFileRDMA *rfile = opaque;
2798 RDMAContext *rdma = rfile->rdma;
2799 RDMALocalBlocks *local = &rdma->local_ram_blocks;
2800 RDMAControlHeader head;
2801 RDMARegister *reg, *registers;
2802 RDMACompress *comp;
2803 RDMARegisterResult *reg_result;
2804 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2805 RDMALocalBlock *block;
2806 void *host_addr;
2807 int ret = 0;
2808 int idx = 0;
2809 int count = 0;
2810 int i = 0;
2811
2812 CHECK_ERROR_STATE();
2813
2814 do {
2815 DDDPRINTF("Waiting for next request %" PRIu64 "...\n", flags);
2816
2817 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2818
2819 if (ret < 0) {
2820 break;
2821 }
2822
2823 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2824 fprintf(stderr, "rdma: Too many requests in this message (%d)."
2825 "Bailing.\n", head.repeat);
2826 ret = -EIO;
2827 break;
2828 }
2829
2830 switch (head.type) {
2831 case RDMA_CONTROL_COMPRESS:
2832 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2833 network_to_compress(comp);
2834
2835 DDPRINTF("Zapping zero chunk: %" PRId64
2836 " bytes, index %d, offset %" PRId64 "\n",
2837 comp->length, comp->block_idx, comp->offset);
2838 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
2839
2840 host_addr = block->local_host_addr +
2841 (comp->offset - block->offset);
2842
2843 ram_handle_compressed(host_addr, comp->value, comp->length);
2844 break;
2845
2846 case RDMA_CONTROL_REGISTER_FINISHED:
2847 DDDPRINTF("Current registrations complete.\n");
2848 goto out;
2849
2850 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
2851 DPRINTF("Initial setup info requested.\n");
2852
2853 if (rdma->pin_all) {
2854 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
2855 if (ret) {
2856 fprintf(stderr, "rdma migration: error dest "
2857 "registering ram blocks!\n");
2858 goto out;
2859 }
2860 }
2861
2862 /*
2863 * Dest uses this to prepare to transmit the RAMBlock descriptions
2864 * to the source VM after connection setup.
2865 * Both sides use the "remote" structure to communicate and update
2866 * their "local" descriptions with what was sent.
2867 */
2868 for (i = 0; i < local->nb_blocks; i++) {
2869 rdma->block[i].remote_host_addr =
2870 (uint64_t)(local->block[i].local_host_addr);
2871
2872 if (rdma->pin_all) {
2873 rdma->block[i].remote_rkey = local->block[i].mr->rkey;
2874 }
2875
2876 rdma->block[i].offset = local->block[i].offset;
2877 rdma->block[i].length = local->block[i].length;
2878
2879 remote_block_to_network(&rdma->block[i]);
2880 }
2881
2882 blocks.len = rdma->local_ram_blocks.nb_blocks
2883 * sizeof(RDMARemoteBlock);
2884
2885
2886 ret = qemu_rdma_post_send_control(rdma,
2887 (uint8_t *) rdma->block, &blocks);
2888
2889 if (ret < 0) {
2890 fprintf(stderr, "rdma migration: error sending remote info!\n");
2891 goto out;
2892 }
2893
2894 break;
2895 case RDMA_CONTROL_REGISTER_REQUEST:
2896 DDPRINTF("There are %d registration requests\n", head.repeat);
2897
2898 reg_resp.repeat = head.repeat;
2899 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
2900
2901 for (count = 0; count < head.repeat; count++) {
2902 uint64_t chunk;
2903 uint8_t *chunk_start, *chunk_end;
2904
2905 reg = &registers[count];
2906 network_to_register(reg);
2907
2908 reg_result = &results[count];
2909
2910 DDPRINTF("Registration request (%d): index %d, current_addr %"
2911 PRIu64 " chunks: %" PRIu64 "\n", count,
2912 reg->current_index, reg->key.current_addr, reg->chunks);
2913
2914 block = &(rdma->local_ram_blocks.block[reg->current_index]);
2915 if (block->is_ram_block) {
2916 host_addr = (block->local_host_addr +
2917 (reg->key.current_addr - block->offset));
2918 chunk = ram_chunk_index(block->local_host_addr,
2919 (uint8_t *) host_addr);
2920 } else {
2921 chunk = reg->key.chunk;
2922 host_addr = block->local_host_addr +
2923 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
2924 }
2925 chunk_start = ram_chunk_start(block, chunk);
2926 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
2927 if (qemu_rdma_register_and_get_keys(rdma, block,
2928 (uint8_t *)host_addr, NULL, &reg_result->rkey,
2929 chunk, chunk_start, chunk_end)) {
2930 fprintf(stderr, "cannot get rkey!\n");
2931 ret = -EINVAL;
2932 goto out;
2933 }
2934
2935 reg_result->host_addr = (uint64_t) block->local_host_addr;
2936
2937 DDPRINTF("Registered rkey for this request: %x\n",
2938 reg_result->rkey);
2939
2940 result_to_network(reg_result);
2941 }
2942
2943 ret = qemu_rdma_post_send_control(rdma,
2944 (uint8_t *) results, &reg_resp);
2945
2946 if (ret < 0) {
2947 fprintf(stderr, "Failed to send control buffer!\n");
2948 goto out;
2949 }
2950 break;
2951 case RDMA_CONTROL_UNREGISTER_REQUEST:
2952 DDPRINTF("There are %d unregistration requests\n", head.repeat);
2953 unreg_resp.repeat = head.repeat;
2954 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
2955
2956 for (count = 0; count < head.repeat; count++) {
2957 reg = &registers[count];
2958 network_to_register(reg);
2959
2960 DDPRINTF("Unregistration request (%d): "
2961 " index %d, chunk %" PRIu64 "\n",
2962 count, reg->current_index, reg->key.chunk);
2963
2964 block = &(rdma->local_ram_blocks.block[reg->current_index]);
2965
2966 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
2967 block->pmr[reg->key.chunk] = NULL;
2968
2969 if (ret != 0) {
2970 perror("rdma unregistration chunk failed");
2971 ret = -ret;
2972 goto out;
2973 }
2974
2975 rdma->total_registrations--;
2976
2977 DDPRINTF("Unregistered chunk %" PRIu64 " successfully.\n",
2978 reg->key.chunk);
2979 }
2980
2981 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
2982
2983 if (ret < 0) {
2984 fprintf(stderr, "Failed to send control buffer!\n");
2985 goto out;
2986 }
2987 break;
2988 case RDMA_CONTROL_REGISTER_RESULT:
2989 fprintf(stderr, "Invalid RESULT message at dest.\n");
2990 ret = -EIO;
2991 goto out;
2992 default:
2993 fprintf(stderr, "Unknown control message %s\n",
2994 control_desc[head.type]);
2995 ret = -EIO;
2996 goto out;
2997 }
2998 } while (1);
2999out:
3000 if (ret < 0) {
3001 rdma->error_state = ret;
3002 }
3003 return ret;
3004}
3005
3006static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3007 uint64_t flags)
3008{
3009 QEMUFileRDMA *rfile = opaque;
3010 RDMAContext *rdma = rfile->rdma;
3011
3012 CHECK_ERROR_STATE();
3013
3014 DDDPRINTF("start section: %" PRIu64 "\n", flags);
3015 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3016 qemu_fflush(f);
3017
3018 return 0;
3019}
3020
3021/*
3022 * Inform dest that dynamic registrations are done for now.
3023 * First, flush writes, if any.
3024 */
3025static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3026 uint64_t flags)
3027{
3028 Error *local_err = NULL, **errp = &local_err;
3029 QEMUFileRDMA *rfile = opaque;
3030 RDMAContext *rdma = rfile->rdma;
3031 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3032 int ret = 0;
3033
3034 CHECK_ERROR_STATE();
3035
3036 qemu_fflush(f);
3037 ret = qemu_rdma_drain_cq(f, rdma);
3038
3039 if (ret < 0) {
3040 goto err;
3041 }
3042
3043 if (flags == RAM_CONTROL_SETUP) {
3044 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3045 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3046 int reg_result_idx, i, j, nb_remote_blocks;
3047
3048 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3049 DPRINTF("Sending registration setup for ram blocks...\n");
3050
3051 /*
3052 * Make sure that we parallelize the pinning on both sides.
3053 * For very large guests, doing this serially takes a really
3054 * long time, so we have to 'interleave' the pinning locally
3055 * with the control messages by performing the pinning on this
3056 * side before we receive the control response from the other
3057 * side that the pinning has completed.
3058 */
3059 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3060 &reg_result_idx, rdma->pin_all ?
3061 qemu_rdma_reg_whole_ram_blocks : NULL);
3062 if (ret < 0) {
66988941 3063 ERROR(errp, "receiving remote info!");
2da776db
MH
3064 return ret;
3065 }
3066
2da776db
MH
3067 nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock);
3068
3069 /*
3070 * The protocol uses two different sets of rkeys (mutually exclusive):
3071 * 1. One key to represent the virtual address of the entire ram block.
3072 * (dynamic chunk registration disabled - pin everything with one rkey.)
3073 * 2. One to represent individual chunks within a ram block.
3074 * (dynamic chunk registration enabled - pin individual chunks.)
3075 *
3076 * Once the capability is successfully negotiated, the destination transmits
3077 * the keys to use (or sends them later) including the virtual addresses
3078 * and then propagates the remote ram block descriptions to his local copy.
3079 */
3080
3081 if (local->nb_blocks != nb_remote_blocks) {
3082 ERROR(errp, "ram blocks mismatch #1! "
3083 "Your QEMU command line parameters are probably "
66988941 3084 "not identical on both the source and destination.");
2da776db
MH
3085 return -EINVAL;
3086 }
3087
885e8f98
IY
3088 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3089 memcpy(rdma->block,
3090 rdma->wr_data[reg_result_idx].control_curr, resp.len);
2da776db
MH
3091 for (i = 0; i < nb_remote_blocks; i++) {
3092 network_to_remote_block(&rdma->block[i]);
3093
3094 /* search local ram blocks */
3095 for (j = 0; j < local->nb_blocks; j++) {
3096 if (rdma->block[i].offset != local->block[j].offset) {
3097 continue;
3098 }
3099
3100 if (rdma->block[i].length != local->block[j].length) {
3101 ERROR(errp, "ram blocks mismatch #2! "
3102 "Your QEMU command line parameters are probably "
66988941 3103 "not identical on both the source and destination.");
2da776db
MH
3104 return -EINVAL;
3105 }
3106 local->block[j].remote_host_addr =
3107 rdma->block[i].remote_host_addr;
3108 local->block[j].remote_rkey = rdma->block[i].remote_rkey;
3109 break;
3110 }
3111
3112 if (j >= local->nb_blocks) {
3113 ERROR(errp, "ram blocks mismatch #3! "
3114 "Your QEMU command line parameters are probably "
66988941 3115 "not identical on both the source and destination.");
2da776db
MH
3116 return -EINVAL;
3117 }
3118 }
3119 }
3120
3121 DDDPRINTF("Sending registration finish %" PRIu64 "...\n", flags);
3122
3123 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3124 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3125
3126 if (ret < 0) {
3127 goto err;
3128 }
3129
3130 return 0;
3131err:
3132 rdma->error_state = ret;
3133 return ret;
3134}
3135
3136static int qemu_rdma_get_fd(void *opaque)
3137{
3138 QEMUFileRDMA *rfile = opaque;
3139 RDMAContext *rdma = rfile->rdma;
3140
3141 return rdma->comp_channel->fd;
3142}
3143
3144const QEMUFileOps rdma_read_ops = {
3145 .get_buffer = qemu_rdma_get_buffer,
3146 .get_fd = qemu_rdma_get_fd,
3147 .close = qemu_rdma_close,
3148 .hook_ram_load = qemu_rdma_registration_handle,
3149};
3150
3151const QEMUFileOps rdma_write_ops = {
3152 .put_buffer = qemu_rdma_put_buffer,
3153 .close = qemu_rdma_close,
3154 .before_ram_iterate = qemu_rdma_registration_start,
3155 .after_ram_iterate = qemu_rdma_registration_stop,
3156 .save_page = qemu_rdma_save_page,
3157};
3158
3159static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3160{
3161 QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA));
3162
3163 if (qemu_file_mode_is_not_valid(mode)) {
3164 return NULL;
3165 }
3166
3167 r->rdma = rdma;
3168
3169 if (mode[0] == 'w') {
3170 r->file = qemu_fopen_ops(r, &rdma_write_ops);
3171 } else {
3172 r->file = qemu_fopen_ops(r, &rdma_read_ops);
3173 }
3174
3175 return r->file;
3176}
3177
3178static void rdma_accept_incoming_migration(void *opaque)
3179{
3180 RDMAContext *rdma = opaque;
3181 int ret;
3182 QEMUFile *f;
3183 Error *local_err = NULL, **errp = &local_err;
3184
3185 DPRINTF("Accepting rdma connection...\n");
3186 ret = qemu_rdma_accept(rdma);
3187
3188 if (ret) {
66988941 3189 ERROR(errp, "RDMA Migration initialization failed!");
2da776db
MH
3190 return;
3191 }
3192
3193 DPRINTF("Accepted migration\n");
3194
3195 f = qemu_fopen_rdma(rdma, "rb");
3196 if (f == NULL) {
66988941 3197 ERROR(errp, "could not qemu_fopen_rdma!");
2da776db
MH
3198 qemu_rdma_cleanup(rdma);
3199 return;
3200 }
3201
3202 rdma->migration_started_on_destination = 1;
3203 process_incoming_migration(f);
3204}
3205
3206void rdma_start_incoming_migration(const char *host_port, Error **errp)
3207{
3208 int ret;
3209 RDMAContext *rdma;
3210 Error *local_err = NULL;
3211
3212 DPRINTF("Starting RDMA-based incoming migration\n");
3213 rdma = qemu_rdma_data_init(host_port, &local_err);
3214
3215 if (rdma == NULL) {
3216 goto err;
3217 }
3218
3219 ret = qemu_rdma_dest_init(rdma, &local_err);
3220
3221 if (ret) {
3222 goto err;
3223 }
3224
3225 DPRINTF("qemu_rdma_dest_init success\n");
3226
3227 ret = rdma_listen(rdma->listen_id, 5);
3228
3229 if (ret) {
66988941 3230 ERROR(errp, "listening on socket!");
2da776db
MH
3231 goto err;
3232 }
3233
3234 DPRINTF("rdma_listen success\n");
3235
3236 qemu_set_fd_handler2(rdma->channel->fd, NULL,
3237 rdma_accept_incoming_migration, NULL,
3238 (void *)(intptr_t) rdma);
3239 return;
3240err:
3241 error_propagate(errp, local_err);
3242 g_free(rdma);
3243}
3244
3245void rdma_start_outgoing_migration(void *opaque,
3246 const char *host_port, Error **errp)
3247{
3248 MigrationState *s = opaque;
3249 Error *local_err = NULL, **temp = &local_err;
3250 RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3251 int ret = 0;
3252
3253 if (rdma == NULL) {
66988941 3254 ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
2da776db
MH
3255 goto err;
3256 }
3257
3258 ret = qemu_rdma_source_init(rdma, &local_err,
3259 s->enabled_capabilities[MIGRATION_CAPABILITY_X_RDMA_PIN_ALL]);
3260
3261 if (ret) {
3262 goto err;
3263 }
3264
3265 DPRINTF("qemu_rdma_source_init success\n");
3266 ret = qemu_rdma_connect(rdma, &local_err);
3267
3268 if (ret) {
3269 goto err;
3270 }
3271
3272 DPRINTF("qemu_rdma_source_connect success\n");
3273
3274 s->file = qemu_fopen_rdma(rdma, "wb");
3275 migrate_fd_connect(s);
3276 return;
3277err:
3278 error_propagate(errp, local_err);
3279 g_free(rdma);
3280 migrate_fd_error(s);
3281}