]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/compaction.c
perf report: Show branch info in callchain entry for browser mode
[mirror_ubuntu-artful-kernel.git] / mm / compaction.c
CommitLineData
748446bb
MG
1/*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
698b1b30 10#include <linux/cpu.h>
748446bb
MG
11#include <linux/swap.h>
12#include <linux/migrate.h>
13#include <linux/compaction.h>
14#include <linux/mm_inline.h>
15#include <linux/backing-dev.h>
76ab0f53 16#include <linux/sysctl.h>
ed4a6d7f 17#include <linux/sysfs.h>
194159fb 18#include <linux/page-isolation.h>
b8c73fc2 19#include <linux/kasan.h>
698b1b30
VB
20#include <linux/kthread.h>
21#include <linux/freezer.h>
83358ece 22#include <linux/page_owner.h>
748446bb
MG
23#include "internal.h"
24
010fc29a
MK
25#ifdef CONFIG_COMPACTION
26static inline void count_compact_event(enum vm_event_item item)
27{
28 count_vm_event(item);
29}
30
31static inline void count_compact_events(enum vm_event_item item, long delta)
32{
33 count_vm_events(item, delta);
34}
35#else
36#define count_compact_event(item) do { } while (0)
37#define count_compact_events(item, delta) do { } while (0)
38#endif
39
ff9543fd
MN
40#if defined CONFIG_COMPACTION || defined CONFIG_CMA
41
b7aba698
MG
42#define CREATE_TRACE_POINTS
43#include <trace/events/compaction.h>
44
06b6640a
VB
45#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
46#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
47#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
48#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
49
748446bb
MG
50static unsigned long release_freepages(struct list_head *freelist)
51{
52 struct page *page, *next;
6bace090 53 unsigned long high_pfn = 0;
748446bb
MG
54
55 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 56 unsigned long pfn = page_to_pfn(page);
748446bb
MG
57 list_del(&page->lru);
58 __free_page(page);
6bace090
VB
59 if (pfn > high_pfn)
60 high_pfn = pfn;
748446bb
MG
61 }
62
6bace090 63 return high_pfn;
748446bb
MG
64}
65
ff9543fd
MN
66static void map_pages(struct list_head *list)
67{
66c64223
JK
68 unsigned int i, order, nr_pages;
69 struct page *page, *next;
70 LIST_HEAD(tmp_list);
71
72 list_for_each_entry_safe(page, next, list, lru) {
73 list_del(&page->lru);
74
75 order = page_private(page);
76 nr_pages = 1 << order;
66c64223 77
46f24fd8 78 post_alloc_hook(page, order, __GFP_MOVABLE);
66c64223
JK
79 if (order)
80 split_page(page, order);
ff9543fd 81
66c64223
JK
82 for (i = 0; i < nr_pages; i++) {
83 list_add(&page->lru, &tmp_list);
84 page++;
85 }
ff9543fd 86 }
66c64223
JK
87
88 list_splice(&tmp_list, list);
ff9543fd
MN
89}
90
47118af0
MN
91static inline bool migrate_async_suitable(int migratetype)
92{
93 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
94}
95
bb13ffeb 96#ifdef CONFIG_COMPACTION
24e2716f 97
bda807d4
MK
98int PageMovable(struct page *page)
99{
100 struct address_space *mapping;
101
102 VM_BUG_ON_PAGE(!PageLocked(page), page);
103 if (!__PageMovable(page))
104 return 0;
105
106 mapping = page_mapping(page);
107 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
108 return 1;
109
110 return 0;
111}
112EXPORT_SYMBOL(PageMovable);
113
114void __SetPageMovable(struct page *page, struct address_space *mapping)
115{
116 VM_BUG_ON_PAGE(!PageLocked(page), page);
117 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
118 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
119}
120EXPORT_SYMBOL(__SetPageMovable);
121
122void __ClearPageMovable(struct page *page)
123{
124 VM_BUG_ON_PAGE(!PageLocked(page), page);
125 VM_BUG_ON_PAGE(!PageMovable(page), page);
126 /*
127 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
128 * flag so that VM can catch up released page by driver after isolation.
129 * With it, VM migration doesn't try to put it back.
130 */
131 page->mapping = (void *)((unsigned long)page->mapping &
132 PAGE_MAPPING_MOVABLE);
133}
134EXPORT_SYMBOL(__ClearPageMovable);
135
24e2716f
JK
136/* Do not skip compaction more than 64 times */
137#define COMPACT_MAX_DEFER_SHIFT 6
138
139/*
140 * Compaction is deferred when compaction fails to result in a page
141 * allocation success. 1 << compact_defer_limit compactions are skipped up
142 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
143 */
144void defer_compaction(struct zone *zone, int order)
145{
146 zone->compact_considered = 0;
147 zone->compact_defer_shift++;
148
149 if (order < zone->compact_order_failed)
150 zone->compact_order_failed = order;
151
152 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
153 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
154
155 trace_mm_compaction_defer_compaction(zone, order);
156}
157
158/* Returns true if compaction should be skipped this time */
159bool compaction_deferred(struct zone *zone, int order)
160{
161 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
162
163 if (order < zone->compact_order_failed)
164 return false;
165
166 /* Avoid possible overflow */
167 if (++zone->compact_considered > defer_limit)
168 zone->compact_considered = defer_limit;
169
170 if (zone->compact_considered >= defer_limit)
171 return false;
172
173 trace_mm_compaction_deferred(zone, order);
174
175 return true;
176}
177
178/*
179 * Update defer tracking counters after successful compaction of given order,
180 * which means an allocation either succeeded (alloc_success == true) or is
181 * expected to succeed.
182 */
183void compaction_defer_reset(struct zone *zone, int order,
184 bool alloc_success)
185{
186 if (alloc_success) {
187 zone->compact_considered = 0;
188 zone->compact_defer_shift = 0;
189 }
190 if (order >= zone->compact_order_failed)
191 zone->compact_order_failed = order + 1;
192
193 trace_mm_compaction_defer_reset(zone, order);
194}
195
196/* Returns true if restarting compaction after many failures */
197bool compaction_restarting(struct zone *zone, int order)
198{
199 if (order < zone->compact_order_failed)
200 return false;
201
202 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
203 zone->compact_considered >= 1UL << zone->compact_defer_shift;
204}
205
bb13ffeb
MG
206/* Returns true if the pageblock should be scanned for pages to isolate. */
207static inline bool isolation_suitable(struct compact_control *cc,
208 struct page *page)
209{
210 if (cc->ignore_skip_hint)
211 return true;
212
213 return !get_pageblock_skip(page);
214}
215
02333641
VB
216static void reset_cached_positions(struct zone *zone)
217{
218 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
219 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 220 zone->compact_cached_free_pfn =
06b6640a 221 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
222}
223
bb13ffeb
MG
224/*
225 * This function is called to clear all cached information on pageblocks that
226 * should be skipped for page isolation when the migrate and free page scanner
227 * meet.
228 */
62997027 229static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb
MG
230{
231 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 232 unsigned long end_pfn = zone_end_pfn(zone);
bb13ffeb
MG
233 unsigned long pfn;
234
62997027 235 zone->compact_blockskip_flush = false;
bb13ffeb
MG
236
237 /* Walk the zone and mark every pageblock as suitable for isolation */
238 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
239 struct page *page;
240
241 cond_resched();
242
243 if (!pfn_valid(pfn))
244 continue;
245
246 page = pfn_to_page(pfn);
247 if (zone != page_zone(page))
248 continue;
249
250 clear_pageblock_skip(page);
251 }
02333641
VB
252
253 reset_cached_positions(zone);
bb13ffeb
MG
254}
255
62997027
MG
256void reset_isolation_suitable(pg_data_t *pgdat)
257{
258 int zoneid;
259
260 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
261 struct zone *zone = &pgdat->node_zones[zoneid];
262 if (!populated_zone(zone))
263 continue;
264
265 /* Only flush if a full compaction finished recently */
266 if (zone->compact_blockskip_flush)
267 __reset_isolation_suitable(zone);
268 }
269}
270
bb13ffeb
MG
271/*
272 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 273 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 274 */
c89511ab
MG
275static void update_pageblock_skip(struct compact_control *cc,
276 struct page *page, unsigned long nr_isolated,
edc2ca61 277 bool migrate_scanner)
bb13ffeb 278{
c89511ab 279 struct zone *zone = cc->zone;
35979ef3 280 unsigned long pfn;
6815bf3f
JK
281
282 if (cc->ignore_skip_hint)
283 return;
284
bb13ffeb
MG
285 if (!page)
286 return;
287
35979ef3
DR
288 if (nr_isolated)
289 return;
290
edc2ca61 291 set_pageblock_skip(page);
c89511ab 292
35979ef3
DR
293 pfn = page_to_pfn(page);
294
295 /* Update where async and sync compaction should restart */
296 if (migrate_scanner) {
35979ef3
DR
297 if (pfn > zone->compact_cached_migrate_pfn[0])
298 zone->compact_cached_migrate_pfn[0] = pfn;
e0b9daeb
DR
299 if (cc->mode != MIGRATE_ASYNC &&
300 pfn > zone->compact_cached_migrate_pfn[1])
35979ef3
DR
301 zone->compact_cached_migrate_pfn[1] = pfn;
302 } else {
35979ef3
DR
303 if (pfn < zone->compact_cached_free_pfn)
304 zone->compact_cached_free_pfn = pfn;
c89511ab 305 }
bb13ffeb
MG
306}
307#else
308static inline bool isolation_suitable(struct compact_control *cc,
309 struct page *page)
310{
311 return true;
312}
313
c89511ab
MG
314static void update_pageblock_skip(struct compact_control *cc,
315 struct page *page, unsigned long nr_isolated,
edc2ca61 316 bool migrate_scanner)
bb13ffeb
MG
317{
318}
319#endif /* CONFIG_COMPACTION */
320
8b44d279
VB
321/*
322 * Compaction requires the taking of some coarse locks that are potentially
323 * very heavily contended. For async compaction, back out if the lock cannot
324 * be taken immediately. For sync compaction, spin on the lock if needed.
325 *
326 * Returns true if the lock is held
327 * Returns false if the lock is not held and compaction should abort
328 */
329static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
330 struct compact_control *cc)
2a1402aa 331{
8b44d279
VB
332 if (cc->mode == MIGRATE_ASYNC) {
333 if (!spin_trylock_irqsave(lock, *flags)) {
c3486f53 334 cc->contended = true;
8b44d279
VB
335 return false;
336 }
337 } else {
338 spin_lock_irqsave(lock, *flags);
339 }
1f9efdef 340
8b44d279 341 return true;
2a1402aa
MG
342}
343
c67fe375
MG
344/*
345 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
346 * very heavily contended. The lock should be periodically unlocked to avoid
347 * having disabled IRQs for a long time, even when there is nobody waiting on
348 * the lock. It might also be that allowing the IRQs will result in
349 * need_resched() becoming true. If scheduling is needed, async compaction
350 * aborts. Sync compaction schedules.
351 * Either compaction type will also abort if a fatal signal is pending.
352 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 353 *
8b44d279
VB
354 * Returns true if compaction should abort due to fatal signal pending, or
355 * async compaction due to need_resched()
356 * Returns false when compaction can continue (sync compaction might have
357 * scheduled)
c67fe375 358 */
8b44d279
VB
359static bool compact_unlock_should_abort(spinlock_t *lock,
360 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 361{
8b44d279
VB
362 if (*locked) {
363 spin_unlock_irqrestore(lock, flags);
364 *locked = false;
365 }
1f9efdef 366
8b44d279 367 if (fatal_signal_pending(current)) {
c3486f53 368 cc->contended = true;
8b44d279
VB
369 return true;
370 }
c67fe375 371
8b44d279 372 if (need_resched()) {
e0b9daeb 373 if (cc->mode == MIGRATE_ASYNC) {
c3486f53 374 cc->contended = true;
8b44d279 375 return true;
c67fe375 376 }
c67fe375 377 cond_resched();
c67fe375
MG
378 }
379
8b44d279 380 return false;
c67fe375
MG
381}
382
be976572
VB
383/*
384 * Aside from avoiding lock contention, compaction also periodically checks
385 * need_resched() and either schedules in sync compaction or aborts async
8b44d279 386 * compaction. This is similar to what compact_unlock_should_abort() does, but
be976572
VB
387 * is used where no lock is concerned.
388 *
389 * Returns false when no scheduling was needed, or sync compaction scheduled.
390 * Returns true when async compaction should abort.
391 */
392static inline bool compact_should_abort(struct compact_control *cc)
393{
394 /* async compaction aborts if contended */
395 if (need_resched()) {
396 if (cc->mode == MIGRATE_ASYNC) {
c3486f53 397 cc->contended = true;
be976572
VB
398 return true;
399 }
400
401 cond_resched();
402 }
403
404 return false;
405}
406
85aa125f 407/*
9e4be470
JM
408 * Isolate free pages onto a private freelist. If @strict is true, will abort
409 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
410 * (even though it may still end up isolating some pages).
85aa125f 411 */
f40d1e42 412static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 413 unsigned long *start_pfn,
85aa125f
MN
414 unsigned long end_pfn,
415 struct list_head *freelist,
416 bool strict)
748446bb 417{
b7aba698 418 int nr_scanned = 0, total_isolated = 0;
bb13ffeb 419 struct page *cursor, *valid_page = NULL;
b8b2d825 420 unsigned long flags = 0;
f40d1e42 421 bool locked = false;
e14c720e 422 unsigned long blockpfn = *start_pfn;
66c64223 423 unsigned int order;
748446bb 424
748446bb
MG
425 cursor = pfn_to_page(blockpfn);
426
f40d1e42 427 /* Isolate free pages. */
748446bb 428 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
66c64223 429 int isolated;
748446bb
MG
430 struct page *page = cursor;
431
8b44d279
VB
432 /*
433 * Periodically drop the lock (if held) regardless of its
434 * contention, to give chance to IRQs. Abort if fatal signal
435 * pending or async compaction detects need_resched()
436 */
437 if (!(blockpfn % SWAP_CLUSTER_MAX)
438 && compact_unlock_should_abort(&cc->zone->lock, flags,
439 &locked, cc))
440 break;
441
b7aba698 442 nr_scanned++;
f40d1e42 443 if (!pfn_valid_within(blockpfn))
2af120bc
LA
444 goto isolate_fail;
445
bb13ffeb
MG
446 if (!valid_page)
447 valid_page = page;
9fcd6d2e
VB
448
449 /*
450 * For compound pages such as THP and hugetlbfs, we can save
451 * potentially a lot of iterations if we skip them at once.
452 * The check is racy, but we can consider only valid values
453 * and the only danger is skipping too much.
454 */
455 if (PageCompound(page)) {
456 unsigned int comp_order = compound_order(page);
457
458 if (likely(comp_order < MAX_ORDER)) {
459 blockpfn += (1UL << comp_order) - 1;
460 cursor += (1UL << comp_order) - 1;
461 }
462
463 goto isolate_fail;
464 }
465
f40d1e42 466 if (!PageBuddy(page))
2af120bc 467 goto isolate_fail;
f40d1e42
MG
468
469 /*
69b7189f
VB
470 * If we already hold the lock, we can skip some rechecking.
471 * Note that if we hold the lock now, checked_pageblock was
472 * already set in some previous iteration (or strict is true),
473 * so it is correct to skip the suitable migration target
474 * recheck as well.
f40d1e42 475 */
69b7189f
VB
476 if (!locked) {
477 /*
478 * The zone lock must be held to isolate freepages.
479 * Unfortunately this is a very coarse lock and can be
480 * heavily contended if there are parallel allocations
481 * or parallel compactions. For async compaction do not
482 * spin on the lock and we acquire the lock as late as
483 * possible.
484 */
8b44d279
VB
485 locked = compact_trylock_irqsave(&cc->zone->lock,
486 &flags, cc);
69b7189f
VB
487 if (!locked)
488 break;
f40d1e42 489
69b7189f
VB
490 /* Recheck this is a buddy page under lock */
491 if (!PageBuddy(page))
492 goto isolate_fail;
493 }
748446bb 494
66c64223
JK
495 /* Found a free page, will break it into order-0 pages */
496 order = page_order(page);
497 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
498 if (!isolated)
499 break;
66c64223 500 set_page_private(page, order);
a4f04f2c 501
748446bb 502 total_isolated += isolated;
a4f04f2c 503 cc->nr_freepages += isolated;
66c64223
JK
504 list_add_tail(&page->lru, freelist);
505
a4f04f2c
DR
506 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
507 blockpfn += isolated;
508 break;
748446bb 509 }
a4f04f2c
DR
510 /* Advance to the end of split page */
511 blockpfn += isolated - 1;
512 cursor += isolated - 1;
513 continue;
2af120bc
LA
514
515isolate_fail:
516 if (strict)
517 break;
518 else
519 continue;
520
748446bb
MG
521 }
522
a4f04f2c
DR
523 if (locked)
524 spin_unlock_irqrestore(&cc->zone->lock, flags);
525
9fcd6d2e
VB
526 /*
527 * There is a tiny chance that we have read bogus compound_order(),
528 * so be careful to not go outside of the pageblock.
529 */
530 if (unlikely(blockpfn > end_pfn))
531 blockpfn = end_pfn;
532
e34d85f0
JK
533 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
534 nr_scanned, total_isolated);
535
e14c720e
VB
536 /* Record how far we have got within the block */
537 *start_pfn = blockpfn;
538
f40d1e42
MG
539 /*
540 * If strict isolation is requested by CMA then check that all the
541 * pages requested were isolated. If there were any failures, 0 is
542 * returned and CMA will fail.
543 */
2af120bc 544 if (strict && blockpfn < end_pfn)
f40d1e42
MG
545 total_isolated = 0;
546
bb13ffeb
MG
547 /* Update the pageblock-skip if the whole pageblock was scanned */
548 if (blockpfn == end_pfn)
edc2ca61 549 update_pageblock_skip(cc, valid_page, total_isolated, false);
bb13ffeb 550
010fc29a 551 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
397487db 552 if (total_isolated)
010fc29a 553 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
554 return total_isolated;
555}
556
85aa125f
MN
557/**
558 * isolate_freepages_range() - isolate free pages.
559 * @start_pfn: The first PFN to start isolating.
560 * @end_pfn: The one-past-last PFN.
561 *
562 * Non-free pages, invalid PFNs, or zone boundaries within the
563 * [start_pfn, end_pfn) range are considered errors, cause function to
564 * undo its actions and return zero.
565 *
566 * Otherwise, function returns one-past-the-last PFN of isolated page
567 * (which may be greater then end_pfn if end fell in a middle of
568 * a free page).
569 */
ff9543fd 570unsigned long
bb13ffeb
MG
571isolate_freepages_range(struct compact_control *cc,
572 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 573{
e1409c32 574 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
575 LIST_HEAD(freelist);
576
7d49d886 577 pfn = start_pfn;
06b6640a 578 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
579 if (block_start_pfn < cc->zone->zone_start_pfn)
580 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 581 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
582
583 for (; pfn < end_pfn; pfn += isolated,
e1409c32 584 block_start_pfn = block_end_pfn,
7d49d886 585 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
586 /* Protect pfn from changing by isolate_freepages_block */
587 unsigned long isolate_start_pfn = pfn;
85aa125f 588
85aa125f
MN
589 block_end_pfn = min(block_end_pfn, end_pfn);
590
58420016
JK
591 /*
592 * pfn could pass the block_end_pfn if isolated freepage
593 * is more than pageblock order. In this case, we adjust
594 * scanning range to right one.
595 */
596 if (pfn >= block_end_pfn) {
06b6640a
VB
597 block_start_pfn = pageblock_start_pfn(pfn);
598 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
599 block_end_pfn = min(block_end_pfn, end_pfn);
600 }
601
e1409c32
JK
602 if (!pageblock_pfn_to_page(block_start_pfn,
603 block_end_pfn, cc->zone))
7d49d886
VB
604 break;
605
e14c720e
VB
606 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
607 block_end_pfn, &freelist, true);
85aa125f
MN
608
609 /*
610 * In strict mode, isolate_freepages_block() returns 0 if
611 * there are any holes in the block (ie. invalid PFNs or
612 * non-free pages).
613 */
614 if (!isolated)
615 break;
616
617 /*
618 * If we managed to isolate pages, it is always (1 << n) *
619 * pageblock_nr_pages for some non-negative n. (Max order
620 * page may span two pageblocks).
621 */
622 }
623
66c64223 624 /* __isolate_free_page() does not map the pages */
85aa125f
MN
625 map_pages(&freelist);
626
627 if (pfn < end_pfn) {
628 /* Loop terminated early, cleanup. */
629 release_freepages(&freelist);
630 return 0;
631 }
632
633 /* We don't use freelists for anything. */
634 return pfn;
635}
636
748446bb 637/* Update the number of anon and file isolated pages in the zone */
edc2ca61 638static void acct_isolated(struct zone *zone, struct compact_control *cc)
748446bb
MG
639{
640 struct page *page;
b9e84ac1 641 unsigned int count[2] = { 0, };
748446bb 642
edc2ca61
VB
643 if (list_empty(&cc->migratepages))
644 return;
645
b9e84ac1
MK
646 list_for_each_entry(page, &cc->migratepages, lru)
647 count[!!page_is_file_cache(page)]++;
748446bb 648
599d0c95
MG
649 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, count[0]);
650 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, count[1]);
748446bb
MG
651}
652
653/* Similar to reclaim, but different enough that they don't share logic */
654static bool too_many_isolated(struct zone *zone)
655{
bc693045 656 unsigned long active, inactive, isolated;
748446bb 657
599d0c95
MG
658 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
659 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
660 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
661 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
662 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
663 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
748446bb 664
bc693045 665 return isolated > (inactive + active) / 2;
748446bb
MG
666}
667
2fe86e00 668/**
edc2ca61
VB
669 * isolate_migratepages_block() - isolate all migrate-able pages within
670 * a single pageblock
2fe86e00 671 * @cc: Compaction control structure.
edc2ca61
VB
672 * @low_pfn: The first PFN to isolate
673 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
674 * @isolate_mode: Isolation mode to be used.
2fe86e00
MN
675 *
676 * Isolate all pages that can be migrated from the range specified by
edc2ca61
VB
677 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
678 * Returns zero if there is a fatal signal pending, otherwise PFN of the
679 * first page that was not scanned (which may be both less, equal to or more
680 * than end_pfn).
2fe86e00 681 *
edc2ca61
VB
682 * The pages are isolated on cc->migratepages list (not required to be empty),
683 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
684 * is neither read nor updated.
748446bb 685 */
edc2ca61
VB
686static unsigned long
687isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
688 unsigned long end_pfn, isolate_mode_t isolate_mode)
748446bb 689{
edc2ca61 690 struct zone *zone = cc->zone;
b7aba698 691 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 692 struct lruvec *lruvec;
b8b2d825 693 unsigned long flags = 0;
2a1402aa 694 bool locked = false;
bb13ffeb 695 struct page *page = NULL, *valid_page = NULL;
e34d85f0 696 unsigned long start_pfn = low_pfn;
fdd048e1
VB
697 bool skip_on_failure = false;
698 unsigned long next_skip_pfn = 0;
748446bb 699
748446bb
MG
700 /*
701 * Ensure that there are not too many pages isolated from the LRU
702 * list by either parallel reclaimers or compaction. If there are,
703 * delay for some time until fewer pages are isolated
704 */
705 while (unlikely(too_many_isolated(zone))) {
f9e35b3b 706 /* async migration should just abort */
e0b9daeb 707 if (cc->mode == MIGRATE_ASYNC)
2fe86e00 708 return 0;
f9e35b3b 709
748446bb
MG
710 congestion_wait(BLK_RW_ASYNC, HZ/10);
711
712 if (fatal_signal_pending(current))
2fe86e00 713 return 0;
748446bb
MG
714 }
715
be976572
VB
716 if (compact_should_abort(cc))
717 return 0;
aeef4b83 718
fdd048e1
VB
719 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
720 skip_on_failure = true;
721 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
722 }
723
748446bb 724 /* Time to isolate some pages for migration */
748446bb 725 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 726
fdd048e1
VB
727 if (skip_on_failure && low_pfn >= next_skip_pfn) {
728 /*
729 * We have isolated all migration candidates in the
730 * previous order-aligned block, and did not skip it due
731 * to failure. We should migrate the pages now and
732 * hopefully succeed compaction.
733 */
734 if (nr_isolated)
735 break;
736
737 /*
738 * We failed to isolate in the previous order-aligned
739 * block. Set the new boundary to the end of the
740 * current block. Note we can't simply increase
741 * next_skip_pfn by 1 << order, as low_pfn might have
742 * been incremented by a higher number due to skipping
743 * a compound or a high-order buddy page in the
744 * previous loop iteration.
745 */
746 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
747 }
748
8b44d279
VB
749 /*
750 * Periodically drop the lock (if held) regardless of its
751 * contention, to give chance to IRQs. Abort async compaction
752 * if contended.
753 */
754 if (!(low_pfn % SWAP_CLUSTER_MAX)
a52633d8 755 && compact_unlock_should_abort(zone_lru_lock(zone), flags,
8b44d279
VB
756 &locked, cc))
757 break;
c67fe375 758
748446bb 759 if (!pfn_valid_within(low_pfn))
fdd048e1 760 goto isolate_fail;
b7aba698 761 nr_scanned++;
748446bb 762
748446bb 763 page = pfn_to_page(low_pfn);
dc908600 764
bb13ffeb
MG
765 if (!valid_page)
766 valid_page = page;
767
6c14466c 768 /*
99c0fd5e
VB
769 * Skip if free. We read page order here without zone lock
770 * which is generally unsafe, but the race window is small and
771 * the worst thing that can happen is that we skip some
772 * potential isolation targets.
6c14466c 773 */
99c0fd5e
VB
774 if (PageBuddy(page)) {
775 unsigned long freepage_order = page_order_unsafe(page);
776
777 /*
778 * Without lock, we cannot be sure that what we got is
779 * a valid page order. Consider only values in the
780 * valid order range to prevent low_pfn overflow.
781 */
782 if (freepage_order > 0 && freepage_order < MAX_ORDER)
783 low_pfn += (1UL << freepage_order) - 1;
748446bb 784 continue;
99c0fd5e 785 }
748446bb 786
bc835011 787 /*
29c0dde8
VB
788 * Regardless of being on LRU, compound pages such as THP and
789 * hugetlbfs are not to be compacted. We can potentially save
790 * a lot of iterations if we skip them at once. The check is
791 * racy, but we can consider only valid values and the only
792 * danger is skipping too much.
bc835011 793 */
29c0dde8
VB
794 if (PageCompound(page)) {
795 unsigned int comp_order = compound_order(page);
796
797 if (likely(comp_order < MAX_ORDER))
798 low_pfn += (1UL << comp_order) - 1;
edc2ca61 799
fdd048e1 800 goto isolate_fail;
2a1402aa
MG
801 }
802
bda807d4
MK
803 /*
804 * Check may be lockless but that's ok as we recheck later.
805 * It's possible to migrate LRU and non-lru movable pages.
806 * Skip any other type of page
807 */
808 if (!PageLRU(page)) {
bda807d4
MK
809 /*
810 * __PageMovable can return false positive so we need
811 * to verify it under page_lock.
812 */
813 if (unlikely(__PageMovable(page)) &&
814 !PageIsolated(page)) {
815 if (locked) {
a52633d8 816 spin_unlock_irqrestore(zone_lru_lock(zone),
bda807d4
MK
817 flags);
818 locked = false;
819 }
820
821 if (isolate_movable_page(page, isolate_mode))
822 goto isolate_success;
823 }
824
fdd048e1 825 goto isolate_fail;
bda807d4 826 }
29c0dde8 827
119d6d59
DR
828 /*
829 * Migration will fail if an anonymous page is pinned in memory,
830 * so avoid taking lru_lock and isolating it unnecessarily in an
831 * admittedly racy check.
832 */
833 if (!page_mapping(page) &&
834 page_count(page) > page_mapcount(page))
fdd048e1 835 goto isolate_fail;
119d6d59 836
69b7189f
VB
837 /* If we already hold the lock, we can skip some rechecking */
838 if (!locked) {
a52633d8 839 locked = compact_trylock_irqsave(zone_lru_lock(zone),
8b44d279 840 &flags, cc);
69b7189f
VB
841 if (!locked)
842 break;
2a1402aa 843
29c0dde8 844 /* Recheck PageLRU and PageCompound under lock */
69b7189f 845 if (!PageLRU(page))
fdd048e1 846 goto isolate_fail;
29c0dde8
VB
847
848 /*
849 * Page become compound since the non-locked check,
850 * and it's on LRU. It can only be a THP so the order
851 * is safe to read and it's 0 for tail pages.
852 */
853 if (unlikely(PageCompound(page))) {
854 low_pfn += (1UL << compound_order(page)) - 1;
fdd048e1 855 goto isolate_fail;
69b7189f 856 }
bc835011
AA
857 }
858
599d0c95 859 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
fa9add64 860
748446bb 861 /* Try isolate the page */
edc2ca61 862 if (__isolate_lru_page(page, isolate_mode) != 0)
fdd048e1 863 goto isolate_fail;
748446bb 864
29c0dde8 865 VM_BUG_ON_PAGE(PageCompound(page), page);
bc835011 866
748446bb 867 /* Successfully isolated */
fa9add64 868 del_page_from_lru_list(page, lruvec, page_lru(page));
b6c75016
JK
869
870isolate_success:
fdd048e1 871 list_add(&page->lru, &cc->migratepages);
748446bb 872 cc->nr_migratepages++;
b7aba698 873 nr_isolated++;
748446bb 874
a34753d2
VB
875 /*
876 * Record where we could have freed pages by migration and not
877 * yet flushed them to buddy allocator.
878 * - this is the lowest page that was isolated and likely be
879 * then freed by migration.
880 */
881 if (!cc->last_migrated_pfn)
882 cc->last_migrated_pfn = low_pfn;
883
748446bb 884 /* Avoid isolating too much */
31b8384a
HD
885 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
886 ++low_pfn;
748446bb 887 break;
31b8384a 888 }
fdd048e1
VB
889
890 continue;
891isolate_fail:
892 if (!skip_on_failure)
893 continue;
894
895 /*
896 * We have isolated some pages, but then failed. Release them
897 * instead of migrating, as we cannot form the cc->order buddy
898 * page anyway.
899 */
900 if (nr_isolated) {
901 if (locked) {
a52633d8 902 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
fdd048e1
VB
903 locked = false;
904 }
905 acct_isolated(zone, cc);
906 putback_movable_pages(&cc->migratepages);
907 cc->nr_migratepages = 0;
908 cc->last_migrated_pfn = 0;
909 nr_isolated = 0;
910 }
911
912 if (low_pfn < next_skip_pfn) {
913 low_pfn = next_skip_pfn - 1;
914 /*
915 * The check near the loop beginning would have updated
916 * next_skip_pfn too, but this is a bit simpler.
917 */
918 next_skip_pfn += 1UL << cc->order;
919 }
748446bb
MG
920 }
921
99c0fd5e
VB
922 /*
923 * The PageBuddy() check could have potentially brought us outside
924 * the range to be scanned.
925 */
926 if (unlikely(low_pfn > end_pfn))
927 low_pfn = end_pfn;
928
c67fe375 929 if (locked)
a52633d8 930 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
748446bb 931
50b5b094
VB
932 /*
933 * Update the pageblock-skip information and cached scanner pfn,
934 * if the whole pageblock was scanned without isolating any page.
50b5b094 935 */
35979ef3 936 if (low_pfn == end_pfn)
edc2ca61 937 update_pageblock_skip(cc, valid_page, nr_isolated, true);
bb13ffeb 938
e34d85f0
JK
939 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
940 nr_scanned, nr_isolated);
b7aba698 941
010fc29a 942 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
397487db 943 if (nr_isolated)
010fc29a 944 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 945
2fe86e00
MN
946 return low_pfn;
947}
948
edc2ca61
VB
949/**
950 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
951 * @cc: Compaction control structure.
952 * @start_pfn: The first PFN to start isolating.
953 * @end_pfn: The one-past-last PFN.
954 *
955 * Returns zero if isolation fails fatally due to e.g. pending signal.
956 * Otherwise, function returns one-past-the-last PFN of isolated page
957 * (which may be greater than end_pfn if end fell in a middle of a THP page).
958 */
959unsigned long
960isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
961 unsigned long end_pfn)
962{
e1409c32 963 unsigned long pfn, block_start_pfn, block_end_pfn;
edc2ca61
VB
964
965 /* Scan block by block. First and last block may be incomplete */
966 pfn = start_pfn;
06b6640a 967 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
968 if (block_start_pfn < cc->zone->zone_start_pfn)
969 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 970 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
971
972 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 973 block_start_pfn = block_end_pfn,
edc2ca61
VB
974 block_end_pfn += pageblock_nr_pages) {
975
976 block_end_pfn = min(block_end_pfn, end_pfn);
977
e1409c32
JK
978 if (!pageblock_pfn_to_page(block_start_pfn,
979 block_end_pfn, cc->zone))
edc2ca61
VB
980 continue;
981
982 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
983 ISOLATE_UNEVICTABLE);
984
14af4a5e 985 if (!pfn)
edc2ca61 986 break;
6ea41c0c
JK
987
988 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
989 break;
edc2ca61
VB
990 }
991 acct_isolated(cc->zone, cc);
992
993 return pfn;
994}
995
ff9543fd
MN
996#endif /* CONFIG_COMPACTION || CONFIG_CMA */
997#ifdef CONFIG_COMPACTION
018e9a49
AM
998
999/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1000static bool suitable_migration_target(struct compact_control *cc,
1001 struct page *page)
018e9a49 1002{
9f7e3387
VB
1003 if (cc->ignore_block_suitable)
1004 return true;
1005
018e9a49
AM
1006 /* If the page is a large free page, then disallow migration */
1007 if (PageBuddy(page)) {
1008 /*
1009 * We are checking page_order without zone->lock taken. But
1010 * the only small danger is that we skip a potentially suitable
1011 * pageblock, so it's not worth to check order for valid range.
1012 */
1013 if (page_order_unsafe(page) >= pageblock_order)
1014 return false;
1015 }
1016
1017 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1018 if (migrate_async_suitable(get_pageblock_migratetype(page)))
1019 return true;
1020
1021 /* Otherwise skip the block */
1022 return false;
1023}
1024
f2849aa0
VB
1025/*
1026 * Test whether the free scanner has reached the same or lower pageblock than
1027 * the migration scanner, and compaction should thus terminate.
1028 */
1029static inline bool compact_scanners_met(struct compact_control *cc)
1030{
1031 return (cc->free_pfn >> pageblock_order)
1032 <= (cc->migrate_pfn >> pageblock_order);
1033}
1034
2fe86e00 1035/*
ff9543fd
MN
1036 * Based on information in the current compact_control, find blocks
1037 * suitable for isolating free pages from and then isolate them.
2fe86e00 1038 */
edc2ca61 1039static void isolate_freepages(struct compact_control *cc)
2fe86e00 1040{
edc2ca61 1041 struct zone *zone = cc->zone;
ff9543fd 1042 struct page *page;
c96b9e50 1043 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1044 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1045 unsigned long block_end_pfn; /* end of current pageblock */
1046 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1047 struct list_head *freelist = &cc->freepages;
2fe86e00 1048
ff9543fd
MN
1049 /*
1050 * Initialise the free scanner. The starting point is where we last
49e068f0 1051 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1052 * zone when isolating for the first time. For looping we also need
1053 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1054 * block_start_pfn -= pageblock_nr_pages in the for loop.
1055 * For ending point, take care when isolating in last pageblock of a
1056 * a zone which ends in the middle of a pageblock.
49e068f0
VB
1057 * The low boundary is the end of the pageblock the migration scanner
1058 * is using.
ff9543fd 1059 */
e14c720e 1060 isolate_start_pfn = cc->free_pfn;
06b6640a 1061 block_start_pfn = pageblock_start_pfn(cc->free_pfn);
c96b9e50
VB
1062 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1063 zone_end_pfn(zone));
06b6640a 1064 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
2fe86e00 1065
ff9543fd
MN
1066 /*
1067 * Isolate free pages until enough are available to migrate the
1068 * pages on cc->migratepages. We stop searching if the migrate
1069 * and free page scanners meet or enough free pages are isolated.
1070 */
f5f61a32 1071 for (; block_start_pfn >= low_pfn;
c96b9e50 1072 block_end_pfn = block_start_pfn,
e14c720e
VB
1073 block_start_pfn -= pageblock_nr_pages,
1074 isolate_start_pfn = block_start_pfn) {
f6ea3adb
DR
1075 /*
1076 * This can iterate a massively long zone without finding any
1077 * suitable migration targets, so periodically check if we need
be976572 1078 * to schedule, or even abort async compaction.
f6ea3adb 1079 */
be976572
VB
1080 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1081 && compact_should_abort(cc))
1082 break;
f6ea3adb 1083
7d49d886
VB
1084 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1085 zone);
1086 if (!page)
ff9543fd
MN
1087 continue;
1088
1089 /* Check the block is suitable for migration */
9f7e3387 1090 if (!suitable_migration_target(cc, page))
ff9543fd 1091 continue;
68e3e926 1092
bb13ffeb
MG
1093 /* If isolation recently failed, do not retry */
1094 if (!isolation_suitable(cc, page))
1095 continue;
1096
e14c720e 1097 /* Found a block suitable for isolating free pages from. */
a46cbf3b
DR
1098 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1099 freelist, false);
ff9543fd 1100
e14c720e 1101 /*
a46cbf3b
DR
1102 * If we isolated enough freepages, or aborted due to lock
1103 * contention, terminate.
e14c720e 1104 */
f5f61a32
VB
1105 if ((cc->nr_freepages >= cc->nr_migratepages)
1106 || cc->contended) {
a46cbf3b
DR
1107 if (isolate_start_pfn >= block_end_pfn) {
1108 /*
1109 * Restart at previous pageblock if more
1110 * freepages can be isolated next time.
1111 */
f5f61a32
VB
1112 isolate_start_pfn =
1113 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1114 }
be976572 1115 break;
a46cbf3b 1116 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1117 /*
a46cbf3b
DR
1118 * If isolation failed early, do not continue
1119 * needlessly.
f5f61a32 1120 */
a46cbf3b 1121 break;
f5f61a32 1122 }
ff9543fd
MN
1123 }
1124
66c64223 1125 /* __isolate_free_page() does not map the pages */
ff9543fd
MN
1126 map_pages(freelist);
1127
7ed695e0 1128 /*
f5f61a32
VB
1129 * Record where the free scanner will restart next time. Either we
1130 * broke from the loop and set isolate_start_pfn based on the last
1131 * call to isolate_freepages_block(), or we met the migration scanner
1132 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1133 */
f5f61a32 1134 cc->free_pfn = isolate_start_pfn;
748446bb
MG
1135}
1136
1137/*
1138 * This is a migrate-callback that "allocates" freepages by taking pages
1139 * from the isolated freelists in the block we are migrating to.
1140 */
1141static struct page *compaction_alloc(struct page *migratepage,
1142 unsigned long data,
1143 int **result)
1144{
1145 struct compact_control *cc = (struct compact_control *)data;
1146 struct page *freepage;
1147
be976572
VB
1148 /*
1149 * Isolate free pages if necessary, and if we are not aborting due to
1150 * contention.
1151 */
748446bb 1152 if (list_empty(&cc->freepages)) {
be976572 1153 if (!cc->contended)
edc2ca61 1154 isolate_freepages(cc);
748446bb
MG
1155
1156 if (list_empty(&cc->freepages))
1157 return NULL;
1158 }
1159
1160 freepage = list_entry(cc->freepages.next, struct page, lru);
1161 list_del(&freepage->lru);
1162 cc->nr_freepages--;
1163
1164 return freepage;
1165}
1166
1167/*
d53aea3d
DR
1168 * This is a migrate-callback that "frees" freepages back to the isolated
1169 * freelist. All pages on the freelist are from the same zone, so there is no
1170 * special handling needed for NUMA.
1171 */
1172static void compaction_free(struct page *page, unsigned long data)
1173{
1174 struct compact_control *cc = (struct compact_control *)data;
1175
1176 list_add(&page->lru, &cc->freepages);
1177 cc->nr_freepages++;
1178}
1179
ff9543fd
MN
1180/* possible outcome of isolate_migratepages */
1181typedef enum {
1182 ISOLATE_ABORT, /* Abort compaction now */
1183 ISOLATE_NONE, /* No pages isolated, continue scanning */
1184 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1185} isolate_migrate_t;
1186
5bbe3547
EM
1187/*
1188 * Allow userspace to control policy on scanning the unevictable LRU for
1189 * compactable pages.
1190 */
1191int sysctl_compact_unevictable_allowed __read_mostly = 1;
1192
ff9543fd 1193/*
edc2ca61
VB
1194 * Isolate all pages that can be migrated from the first suitable block,
1195 * starting at the block pointed to by the migrate scanner pfn within
1196 * compact_control.
ff9543fd
MN
1197 */
1198static isolate_migrate_t isolate_migratepages(struct zone *zone,
1199 struct compact_control *cc)
1200{
e1409c32
JK
1201 unsigned long block_start_pfn;
1202 unsigned long block_end_pfn;
1203 unsigned long low_pfn;
edc2ca61
VB
1204 struct page *page;
1205 const isolate_mode_t isolate_mode =
5bbe3547 1206 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 1207 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
ff9543fd 1208
edc2ca61
VB
1209 /*
1210 * Start at where we last stopped, or beginning of the zone as
1211 * initialized by compact_zone()
1212 */
1213 low_pfn = cc->migrate_pfn;
06b6640a 1214 block_start_pfn = pageblock_start_pfn(low_pfn);
e1409c32
JK
1215 if (block_start_pfn < zone->zone_start_pfn)
1216 block_start_pfn = zone->zone_start_pfn;
ff9543fd
MN
1217
1218 /* Only scan within a pageblock boundary */
06b6640a 1219 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1220
edc2ca61
VB
1221 /*
1222 * Iterate over whole pageblocks until we find the first suitable.
1223 * Do not cross the free scanner.
1224 */
e1409c32
JK
1225 for (; block_end_pfn <= cc->free_pfn;
1226 low_pfn = block_end_pfn,
1227 block_start_pfn = block_end_pfn,
1228 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1229
edc2ca61
VB
1230 /*
1231 * This can potentially iterate a massively long zone with
1232 * many pageblocks unsuitable, so periodically check if we
1233 * need to schedule, or even abort async compaction.
1234 */
1235 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1236 && compact_should_abort(cc))
1237 break;
ff9543fd 1238
e1409c32
JK
1239 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1240 zone);
7d49d886 1241 if (!page)
edc2ca61
VB
1242 continue;
1243
edc2ca61
VB
1244 /* If isolation recently failed, do not retry */
1245 if (!isolation_suitable(cc, page))
1246 continue;
1247
1248 /*
1249 * For async compaction, also only scan in MOVABLE blocks.
1250 * Async compaction is optimistic to see if the minimum amount
1251 * of work satisfies the allocation.
1252 */
1253 if (cc->mode == MIGRATE_ASYNC &&
1254 !migrate_async_suitable(get_pageblock_migratetype(page)))
1255 continue;
1256
1257 /* Perform the isolation */
e1409c32
JK
1258 low_pfn = isolate_migratepages_block(cc, low_pfn,
1259 block_end_pfn, isolate_mode);
edc2ca61 1260
ff59909a
HD
1261 if (!low_pfn || cc->contended) {
1262 acct_isolated(zone, cc);
edc2ca61 1263 return ISOLATE_ABORT;
ff59909a 1264 }
edc2ca61
VB
1265
1266 /*
1267 * Either we isolated something and proceed with migration. Or
1268 * we failed and compact_zone should decide if we should
1269 * continue or not.
1270 */
1271 break;
1272 }
1273
1274 acct_isolated(zone, cc);
f2849aa0
VB
1275 /* Record where migration scanner will be restarted. */
1276 cc->migrate_pfn = low_pfn;
ff9543fd 1277
edc2ca61 1278 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1279}
1280
21c527a3
YB
1281/*
1282 * order == -1 is expected when compacting via
1283 * /proc/sys/vm/compact_memory
1284 */
1285static inline bool is_via_compact_memory(int order)
1286{
1287 return order == -1;
1288}
1289
ea7ab982 1290static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
6d7ce559 1291 const int migratetype)
748446bb 1292{
8fb74b9f 1293 unsigned int order;
5a03b051 1294 unsigned long watermark;
56de7263 1295
be976572 1296 if (cc->contended || fatal_signal_pending(current))
2d1e1041 1297 return COMPACT_CONTENDED;
748446bb 1298
753341a4 1299 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 1300 if (compact_scanners_met(cc)) {
55b7c4c9 1301 /* Let the next compaction start anew. */
02333641 1302 reset_cached_positions(zone);
55b7c4c9 1303
62997027
MG
1304 /*
1305 * Mark that the PG_migrate_skip information should be cleared
accf6242 1306 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
1307 * flag itself as the decision to be clear should be directly
1308 * based on an allocation request.
1309 */
accf6242 1310 if (cc->direct_compaction)
62997027
MG
1311 zone->compact_blockskip_flush = true;
1312
c8f7de0b
MH
1313 if (cc->whole_zone)
1314 return COMPACT_COMPLETE;
1315 else
1316 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 1317 }
748446bb 1318
21c527a3 1319 if (is_via_compact_memory(cc->order))
56de7263
MG
1320 return COMPACT_CONTINUE;
1321
3957c776 1322 /* Compaction run is not finished if the watermark is not met */
f2b8228c 1323 watermark = zone->watermark[cc->alloc_flags & ALLOC_WMARK_MASK];
3957c776 1324
ebff3980
VB
1325 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1326 cc->alloc_flags))
3957c776
MH
1327 return COMPACT_CONTINUE;
1328
56de7263 1329 /* Direct compactor: Is a suitable page free? */
8fb74b9f
MG
1330 for (order = cc->order; order < MAX_ORDER; order++) {
1331 struct free_area *area = &zone->free_area[order];
2149cdae 1332 bool can_steal;
8fb74b9f
MG
1333
1334 /* Job done if page is free of the right migratetype */
6d7ce559 1335 if (!list_empty(&area->free_list[migratetype]))
cf378319 1336 return COMPACT_SUCCESS;
8fb74b9f 1337
2149cdae
JK
1338#ifdef CONFIG_CMA
1339 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1340 if (migratetype == MIGRATE_MOVABLE &&
1341 !list_empty(&area->free_list[MIGRATE_CMA]))
cf378319 1342 return COMPACT_SUCCESS;
2149cdae
JK
1343#endif
1344 /*
1345 * Job done if allocation would steal freepages from
1346 * other migratetype buddy lists.
1347 */
1348 if (find_suitable_fallback(area, order, migratetype,
1349 true, &can_steal) != -1)
cf378319 1350 return COMPACT_SUCCESS;
56de7263
MG
1351 }
1352
837d026d
JK
1353 return COMPACT_NO_SUITABLE_PAGE;
1354}
1355
ea7ab982
MH
1356static enum compact_result compact_finished(struct zone *zone,
1357 struct compact_control *cc,
1358 const int migratetype)
837d026d
JK
1359{
1360 int ret;
1361
1362 ret = __compact_finished(zone, cc, migratetype);
1363 trace_mm_compaction_finished(zone, cc->order, ret);
1364 if (ret == COMPACT_NO_SUITABLE_PAGE)
1365 ret = COMPACT_CONTINUE;
1366
1367 return ret;
748446bb
MG
1368}
1369
3e7d3449
MG
1370/*
1371 * compaction_suitable: Is this suitable to run compaction on this zone now?
1372 * Returns
1373 * COMPACT_SKIPPED - If there are too few free pages for compaction
cf378319 1374 * COMPACT_SUCCESS - If the allocation would succeed without compaction
3e7d3449
MG
1375 * COMPACT_CONTINUE - If compaction should run now
1376 */
ea7ab982 1377static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 1378 unsigned int alloc_flags,
86a294a8
MH
1379 int classzone_idx,
1380 unsigned long wmark_target)
3e7d3449 1381{
3e7d3449
MG
1382 unsigned long watermark;
1383
21c527a3 1384 if (is_via_compact_memory(order))
3957c776
MH
1385 return COMPACT_CONTINUE;
1386
f2b8228c 1387 watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
ebff3980
VB
1388 /*
1389 * If watermarks for high-order allocation are already met, there
1390 * should be no need for compaction at all.
1391 */
1392 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1393 alloc_flags))
cf378319 1394 return COMPACT_SUCCESS;
ebff3980 1395
3e7d3449 1396 /*
9861a62c 1397 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
1398 * isolate free pages for migration targets. This means that the
1399 * watermark and alloc_flags have to match, or be more pessimistic than
1400 * the check in __isolate_free_page(). We don't use the direct
1401 * compactor's alloc_flags, as they are not relevant for freepage
1402 * isolation. We however do use the direct compactor's classzone_idx to
1403 * skip over zones where lowmem reserves would prevent allocation even
1404 * if compaction succeeds.
8348faf9
VB
1405 * For costly orders, we require low watermark instead of min for
1406 * compaction to proceed to increase its chances.
984fdba6
VB
1407 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1408 * suitable migration targets
3e7d3449 1409 */
8348faf9
VB
1410 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1411 low_wmark_pages(zone) : min_wmark_pages(zone);
1412 watermark += compact_gap(order);
86a294a8 1413 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
984fdba6 1414 ALLOC_CMA, wmark_target))
3e7d3449
MG
1415 return COMPACT_SKIPPED;
1416
cc5c9f09
VB
1417 return COMPACT_CONTINUE;
1418}
1419
1420enum compact_result compaction_suitable(struct zone *zone, int order,
1421 unsigned int alloc_flags,
1422 int classzone_idx)
1423{
1424 enum compact_result ret;
1425 int fragindex;
1426
1427 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1428 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
1429 /*
1430 * fragmentation index determines if allocation failures are due to
1431 * low memory or external fragmentation
1432 *
ebff3980
VB
1433 * index of -1000 would imply allocations might succeed depending on
1434 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
1435 * index towards 0 implies failure is due to lack of memory
1436 * index towards 1000 implies failure is due to fragmentation
1437 *
20311420
VB
1438 * Only compact if a failure would be due to fragmentation. Also
1439 * ignore fragindex for non-costly orders where the alternative to
1440 * a successful reclaim/compaction is OOM. Fragindex and the
1441 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1442 * excessive compaction for costly orders, but it should not be at the
1443 * expense of system stability.
3e7d3449 1444 */
20311420 1445 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
cc5c9f09
VB
1446 fragindex = fragmentation_index(zone, order);
1447 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1448 ret = COMPACT_NOT_SUITABLE_ZONE;
1449 }
837d026d 1450
837d026d
JK
1451 trace_mm_compaction_suitable(zone, order, ret);
1452 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1453 ret = COMPACT_SKIPPED;
1454
1455 return ret;
1456}
1457
86a294a8
MH
1458bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1459 int alloc_flags)
1460{
1461 struct zone *zone;
1462 struct zoneref *z;
1463
1464 /*
1465 * Make sure at least one zone would pass __compaction_suitable if we continue
1466 * retrying the reclaim.
1467 */
1468 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1469 ac->nodemask) {
1470 unsigned long available;
1471 enum compact_result compact_result;
1472
1473 /*
1474 * Do not consider all the reclaimable memory because we do not
1475 * want to trash just for a single high order allocation which
1476 * is even not guaranteed to appear even if __compaction_suitable
1477 * is happy about the watermark check.
1478 */
5a1c84b4 1479 available = zone_reclaimable_pages(zone) / order;
86a294a8
MH
1480 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1481 compact_result = __compaction_suitable(zone, order, alloc_flags,
1482 ac_classzone_idx(ac), available);
cc5c9f09 1483 if (compact_result != COMPACT_SKIPPED)
86a294a8
MH
1484 return true;
1485 }
1486
1487 return false;
1488}
1489
ea7ab982 1490static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
748446bb 1491{
ea7ab982 1492 enum compact_result ret;
c89511ab 1493 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 1494 unsigned long end_pfn = zone_end_pfn(zone);
6d7ce559 1495 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
e0b9daeb 1496 const bool sync = cc->mode != MIGRATE_ASYNC;
748446bb 1497
ebff3980
VB
1498 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1499 cc->classzone_idx);
c46649de 1500 /* Compaction is likely to fail */
cf378319 1501 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
3e7d3449 1502 return ret;
c46649de
MH
1503
1504 /* huh, compaction_suitable is returning something unexpected */
1505 VM_BUG_ON(ret != COMPACT_CONTINUE);
3e7d3449 1506
d3132e4b
VB
1507 /*
1508 * Clear pageblock skip if there were failures recently and compaction
accf6242 1509 * is about to be retried after being deferred.
d3132e4b 1510 */
accf6242 1511 if (compaction_restarting(zone, cc->order))
d3132e4b
VB
1512 __reset_isolation_suitable(zone);
1513
c89511ab
MG
1514 /*
1515 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
1516 * information on where the scanners should start (unless we explicitly
1517 * want to compact the whole zone), but check that it is initialised
1518 * by ensuring the values are within zone boundaries.
c89511ab 1519 */
06ed2998 1520 if (cc->whole_zone) {
c89511ab 1521 cc->migrate_pfn = start_pfn;
06ed2998
VB
1522 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1523 } else {
1524 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1525 cc->free_pfn = zone->compact_cached_free_pfn;
1526 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1527 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1528 zone->compact_cached_free_pfn = cc->free_pfn;
1529 }
1530 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1531 cc->migrate_pfn = start_pfn;
1532 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1533 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1534 }
c8f7de0b 1535
06ed2998
VB
1536 if (cc->migrate_pfn == start_pfn)
1537 cc->whole_zone = true;
1538 }
c8f7de0b 1539
1a16718c 1540 cc->last_migrated_pfn = 0;
748446bb 1541
16c4a097
JK
1542 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1543 cc->free_pfn, end_pfn, sync);
0eb927c0 1544
748446bb
MG
1545 migrate_prep_local();
1546
6d7ce559
DR
1547 while ((ret = compact_finished(zone, cc, migratetype)) ==
1548 COMPACT_CONTINUE) {
9d502c1c 1549 int err;
748446bb 1550
f9e35b3b
MG
1551 switch (isolate_migratepages(zone, cc)) {
1552 case ISOLATE_ABORT:
2d1e1041 1553 ret = COMPACT_CONTENDED;
5733c7d1 1554 putback_movable_pages(&cc->migratepages);
e64c5237 1555 cc->nr_migratepages = 0;
f9e35b3b
MG
1556 goto out;
1557 case ISOLATE_NONE:
fdaf7f5c
VB
1558 /*
1559 * We haven't isolated and migrated anything, but
1560 * there might still be unflushed migrations from
1561 * previous cc->order aligned block.
1562 */
1563 goto check_drain;
f9e35b3b
MG
1564 case ISOLATE_SUCCESS:
1565 ;
1566 }
748446bb 1567
d53aea3d 1568 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 1569 compaction_free, (unsigned long)cc, cc->mode,
7b2a2d4a 1570 MR_COMPACTION);
748446bb 1571
f8c9301f
VB
1572 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1573 &cc->migratepages);
748446bb 1574
f8c9301f
VB
1575 /* All pages were either migrated or will be released */
1576 cc->nr_migratepages = 0;
9d502c1c 1577 if (err) {
5733c7d1 1578 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
1579 /*
1580 * migrate_pages() may return -ENOMEM when scanners meet
1581 * and we want compact_finished() to detect it
1582 */
f2849aa0 1583 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 1584 ret = COMPACT_CONTENDED;
4bf2bba3
DR
1585 goto out;
1586 }
fdd048e1
VB
1587 /*
1588 * We failed to migrate at least one page in the current
1589 * order-aligned block, so skip the rest of it.
1590 */
1591 if (cc->direct_compaction &&
1592 (cc->mode == MIGRATE_ASYNC)) {
1593 cc->migrate_pfn = block_end_pfn(
1594 cc->migrate_pfn - 1, cc->order);
1595 /* Draining pcplists is useless in this case */
1596 cc->last_migrated_pfn = 0;
1597
1598 }
748446bb 1599 }
fdaf7f5c 1600
fdaf7f5c
VB
1601check_drain:
1602 /*
1603 * Has the migration scanner moved away from the previous
1604 * cc->order aligned block where we migrated from? If yes,
1605 * flush the pages that were freed, so that they can merge and
1606 * compact_finished() can detect immediately if allocation
1607 * would succeed.
1608 */
1a16718c 1609 if (cc->order > 0 && cc->last_migrated_pfn) {
fdaf7f5c
VB
1610 int cpu;
1611 unsigned long current_block_start =
06b6640a 1612 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 1613
1a16718c 1614 if (cc->last_migrated_pfn < current_block_start) {
fdaf7f5c
VB
1615 cpu = get_cpu();
1616 lru_add_drain_cpu(cpu);
1617 drain_local_pages(zone);
1618 put_cpu();
1619 /* No more flushing until we migrate again */
1a16718c 1620 cc->last_migrated_pfn = 0;
fdaf7f5c
VB
1621 }
1622 }
1623
748446bb
MG
1624 }
1625
f9e35b3b 1626out:
6bace090
VB
1627 /*
1628 * Release free pages and update where the free scanner should restart,
1629 * so we don't leave any returned pages behind in the next attempt.
1630 */
1631 if (cc->nr_freepages > 0) {
1632 unsigned long free_pfn = release_freepages(&cc->freepages);
1633
1634 cc->nr_freepages = 0;
1635 VM_BUG_ON(free_pfn == 0);
1636 /* The cached pfn is always the first in a pageblock */
06b6640a 1637 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
1638 /*
1639 * Only go back, not forward. The cached pfn might have been
1640 * already reset to zone end in compact_finished()
1641 */
1642 if (free_pfn > zone->compact_cached_free_pfn)
1643 zone->compact_cached_free_pfn = free_pfn;
1644 }
748446bb 1645
16c4a097
JK
1646 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1647 cc->free_pfn, end_pfn, sync, ret);
0eb927c0 1648
748446bb
MG
1649 return ret;
1650}
76ab0f53 1651
ea7ab982 1652static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 1653 gfp_t gfp_mask, enum compact_priority prio,
c603844b 1654 unsigned int alloc_flags, int classzone_idx)
56de7263 1655{
ea7ab982 1656 enum compact_result ret;
56de7263
MG
1657 struct compact_control cc = {
1658 .nr_freepages = 0,
1659 .nr_migratepages = 0,
1660 .order = order,
6d7ce559 1661 .gfp_mask = gfp_mask,
56de7263 1662 .zone = zone,
a5508cd8
VB
1663 .mode = (prio == COMPACT_PRIO_ASYNC) ?
1664 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980
VB
1665 .alloc_flags = alloc_flags,
1666 .classzone_idx = classzone_idx,
accf6242 1667 .direct_compaction = true,
a8e025e5 1668 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
1669 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1670 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263
MG
1671 };
1672 INIT_LIST_HEAD(&cc.freepages);
1673 INIT_LIST_HEAD(&cc.migratepages);
1674
e64c5237
SL
1675 ret = compact_zone(zone, &cc);
1676
1677 VM_BUG_ON(!list_empty(&cc.freepages));
1678 VM_BUG_ON(!list_empty(&cc.migratepages));
1679
e64c5237 1680 return ret;
56de7263
MG
1681}
1682
5e771905
MG
1683int sysctl_extfrag_threshold = 500;
1684
56de7263
MG
1685/**
1686 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 1687 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
1688 * @order: The order of the current allocation
1689 * @alloc_flags: The allocation flags of the current allocation
1690 * @ac: The context of current allocation
e0b9daeb 1691 * @mode: The migration mode for async, sync light, or sync migration
56de7263
MG
1692 *
1693 * This is the main entry point for direct page compaction.
1694 */
ea7ab982 1695enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 1696 unsigned int alloc_flags, const struct alloc_context *ac,
c3486f53 1697 enum compact_priority prio)
56de7263 1698{
56de7263
MG
1699 int may_enter_fs = gfp_mask & __GFP_FS;
1700 int may_perform_io = gfp_mask & __GFP_IO;
56de7263
MG
1701 struct zoneref *z;
1702 struct zone *zone;
1d4746d3 1703 enum compact_result rc = COMPACT_SKIPPED;
56de7263 1704
4ffb6335 1705 /* Check if the GFP flags allow compaction */
b2b331f9 1706 if (!may_enter_fs || !may_perform_io)
53853e2d 1707 return COMPACT_SKIPPED;
56de7263 1708
a5508cd8 1709 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 1710
56de7263 1711 /* Compact each zone in the list */
1a6d53a1
VB
1712 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1713 ac->nodemask) {
ea7ab982 1714 enum compact_result status;
56de7263 1715
a8e025e5
VB
1716 if (prio > MIN_COMPACT_PRIORITY
1717 && compaction_deferred(zone, order)) {
1d4746d3 1718 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 1719 continue;
1d4746d3 1720 }
53853e2d 1721
a5508cd8 1722 status = compact_zone_order(zone, order, gfp_mask, prio,
c3486f53 1723 alloc_flags, ac_classzone_idx(ac));
56de7263
MG
1724 rc = max(status, rc);
1725
7ceb009a
VB
1726 /* The allocation should succeed, stop compacting */
1727 if (status == COMPACT_SUCCESS) {
53853e2d
VB
1728 /*
1729 * We think the allocation will succeed in this zone,
1730 * but it is not certain, hence the false. The caller
1731 * will repeat this with true if allocation indeed
1732 * succeeds in this zone.
1733 */
1734 compaction_defer_reset(zone, order, false);
1f9efdef 1735
c3486f53 1736 break;
1f9efdef
VB
1737 }
1738
a5508cd8 1739 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 1740 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
1741 /*
1742 * We think that allocation won't succeed in this zone
1743 * so we defer compaction there. If it ends up
1744 * succeeding after all, it will be reset.
1745 */
1746 defer_compaction(zone, order);
1f9efdef
VB
1747
1748 /*
1749 * We might have stopped compacting due to need_resched() in
1750 * async compaction, or due to a fatal signal detected. In that
c3486f53 1751 * case do not try further zones
1f9efdef 1752 */
c3486f53
VB
1753 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1754 || fatal_signal_pending(current))
1755 break;
56de7263
MG
1756 }
1757
1758 return rc;
1759}
1760
1761
76ab0f53 1762/* Compact all zones within a node */
791cae96 1763static void compact_node(int nid)
76ab0f53 1764{
791cae96 1765 pg_data_t *pgdat = NODE_DATA(nid);
76ab0f53 1766 int zoneid;
76ab0f53 1767 struct zone *zone;
791cae96
VB
1768 struct compact_control cc = {
1769 .order = -1,
1770 .mode = MIGRATE_SYNC,
1771 .ignore_skip_hint = true,
1772 .whole_zone = true,
1773 };
1774
76ab0f53 1775
76ab0f53 1776 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
1777
1778 zone = &pgdat->node_zones[zoneid];
1779 if (!populated_zone(zone))
1780 continue;
1781
791cae96
VB
1782 cc.nr_freepages = 0;
1783 cc.nr_migratepages = 0;
1784 cc.zone = zone;
1785 INIT_LIST_HEAD(&cc.freepages);
1786 INIT_LIST_HEAD(&cc.migratepages);
76ab0f53 1787
791cae96 1788 compact_zone(zone, &cc);
75469345 1789
791cae96
VB
1790 VM_BUG_ON(!list_empty(&cc.freepages));
1791 VM_BUG_ON(!list_empty(&cc.migratepages));
76ab0f53 1792 }
76ab0f53
MG
1793}
1794
1795/* Compact all nodes in the system */
7964c06d 1796static void compact_nodes(void)
76ab0f53
MG
1797{
1798 int nid;
1799
8575ec29
HD
1800 /* Flush pending updates to the LRU lists */
1801 lru_add_drain_all();
1802
76ab0f53
MG
1803 for_each_online_node(nid)
1804 compact_node(nid);
76ab0f53
MG
1805}
1806
1807/* The written value is actually unused, all memory is compacted */
1808int sysctl_compact_memory;
1809
fec4eb2c
YB
1810/*
1811 * This is the entry point for compacting all nodes via
1812 * /proc/sys/vm/compact_memory
1813 */
76ab0f53
MG
1814int sysctl_compaction_handler(struct ctl_table *table, int write,
1815 void __user *buffer, size_t *length, loff_t *ppos)
1816{
1817 if (write)
7964c06d 1818 compact_nodes();
76ab0f53
MG
1819
1820 return 0;
1821}
ed4a6d7f 1822
5e771905
MG
1823int sysctl_extfrag_handler(struct ctl_table *table, int write,
1824 void __user *buffer, size_t *length, loff_t *ppos)
1825{
1826 proc_dointvec_minmax(table, write, buffer, length, ppos);
1827
1828 return 0;
1829}
1830
ed4a6d7f 1831#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
74e77fb9 1832static ssize_t sysfs_compact_node(struct device *dev,
10fbcf4c 1833 struct device_attribute *attr,
ed4a6d7f
MG
1834 const char *buf, size_t count)
1835{
8575ec29
HD
1836 int nid = dev->id;
1837
1838 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1839 /* Flush pending updates to the LRU lists */
1840 lru_add_drain_all();
1841
1842 compact_node(nid);
1843 }
ed4a6d7f
MG
1844
1845 return count;
1846}
10fbcf4c 1847static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
ed4a6d7f
MG
1848
1849int compaction_register_node(struct node *node)
1850{
10fbcf4c 1851 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
1852}
1853
1854void compaction_unregister_node(struct node *node)
1855{
10fbcf4c 1856 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
1857}
1858#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 1859
698b1b30
VB
1860static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1861{
172400c6 1862 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
698b1b30
VB
1863}
1864
1865static bool kcompactd_node_suitable(pg_data_t *pgdat)
1866{
1867 int zoneid;
1868 struct zone *zone;
1869 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1870
6cd9dc3e 1871 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
698b1b30
VB
1872 zone = &pgdat->node_zones[zoneid];
1873
1874 if (!populated_zone(zone))
1875 continue;
1876
1877 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1878 classzone_idx) == COMPACT_CONTINUE)
1879 return true;
1880 }
1881
1882 return false;
1883}
1884
1885static void kcompactd_do_work(pg_data_t *pgdat)
1886{
1887 /*
1888 * With no special task, compact all zones so that a page of requested
1889 * order is allocatable.
1890 */
1891 int zoneid;
1892 struct zone *zone;
1893 struct compact_control cc = {
1894 .order = pgdat->kcompactd_max_order,
1895 .classzone_idx = pgdat->kcompactd_classzone_idx,
1896 .mode = MIGRATE_SYNC_LIGHT,
1897 .ignore_skip_hint = true,
1898
1899 };
698b1b30
VB
1900 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1901 cc.classzone_idx);
1902 count_vm_event(KCOMPACTD_WAKE);
1903
6cd9dc3e 1904 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
698b1b30
VB
1905 int status;
1906
1907 zone = &pgdat->node_zones[zoneid];
1908 if (!populated_zone(zone))
1909 continue;
1910
1911 if (compaction_deferred(zone, cc.order))
1912 continue;
1913
1914 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1915 COMPACT_CONTINUE)
1916 continue;
1917
1918 cc.nr_freepages = 0;
1919 cc.nr_migratepages = 0;
1920 cc.zone = zone;
1921 INIT_LIST_HEAD(&cc.freepages);
1922 INIT_LIST_HEAD(&cc.migratepages);
1923
172400c6
VB
1924 if (kthread_should_stop())
1925 return;
698b1b30
VB
1926 status = compact_zone(zone, &cc);
1927
7ceb009a 1928 if (status == COMPACT_SUCCESS) {
698b1b30 1929 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 1930 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
698b1b30
VB
1931 /*
1932 * We use sync migration mode here, so we defer like
1933 * sync direct compaction does.
1934 */
1935 defer_compaction(zone, cc.order);
1936 }
1937
1938 VM_BUG_ON(!list_empty(&cc.freepages));
1939 VM_BUG_ON(!list_empty(&cc.migratepages));
1940 }
1941
1942 /*
1943 * Regardless of success, we are done until woken up next. But remember
1944 * the requested order/classzone_idx in case it was higher/tighter than
1945 * our current ones
1946 */
1947 if (pgdat->kcompactd_max_order <= cc.order)
1948 pgdat->kcompactd_max_order = 0;
1949 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1950 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1951}
1952
1953void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1954{
1955 if (!order)
1956 return;
1957
1958 if (pgdat->kcompactd_max_order < order)
1959 pgdat->kcompactd_max_order = order;
1960
1961 if (pgdat->kcompactd_classzone_idx > classzone_idx)
1962 pgdat->kcompactd_classzone_idx = classzone_idx;
1963
1964 if (!waitqueue_active(&pgdat->kcompactd_wait))
1965 return;
1966
1967 if (!kcompactd_node_suitable(pgdat))
1968 return;
1969
1970 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1971 classzone_idx);
1972 wake_up_interruptible(&pgdat->kcompactd_wait);
1973}
1974
1975/*
1976 * The background compaction daemon, started as a kernel thread
1977 * from the init process.
1978 */
1979static int kcompactd(void *p)
1980{
1981 pg_data_t *pgdat = (pg_data_t*)p;
1982 struct task_struct *tsk = current;
1983
1984 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1985
1986 if (!cpumask_empty(cpumask))
1987 set_cpus_allowed_ptr(tsk, cpumask);
1988
1989 set_freezable();
1990
1991 pgdat->kcompactd_max_order = 0;
1992 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1993
1994 while (!kthread_should_stop()) {
1995 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1996 wait_event_freezable(pgdat->kcompactd_wait,
1997 kcompactd_work_requested(pgdat));
1998
1999 kcompactd_do_work(pgdat);
2000 }
2001
2002 return 0;
2003}
2004
2005/*
2006 * This kcompactd start function will be called by init and node-hot-add.
2007 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2008 */
2009int kcompactd_run(int nid)
2010{
2011 pg_data_t *pgdat = NODE_DATA(nid);
2012 int ret = 0;
2013
2014 if (pgdat->kcompactd)
2015 return 0;
2016
2017 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2018 if (IS_ERR(pgdat->kcompactd)) {
2019 pr_err("Failed to start kcompactd on node %d\n", nid);
2020 ret = PTR_ERR(pgdat->kcompactd);
2021 pgdat->kcompactd = NULL;
2022 }
2023 return ret;
2024}
2025
2026/*
2027 * Called by memory hotplug when all memory in a node is offlined. Caller must
2028 * hold mem_hotplug_begin/end().
2029 */
2030void kcompactd_stop(int nid)
2031{
2032 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2033
2034 if (kcompactd) {
2035 kthread_stop(kcompactd);
2036 NODE_DATA(nid)->kcompactd = NULL;
2037 }
2038}
2039
2040/*
2041 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2042 * not required for correctness. So if the last cpu in a node goes
2043 * away, we get changed to run anywhere: as the first one comes back,
2044 * restore their cpu bindings.
2045 */
2046static int cpu_callback(struct notifier_block *nfb, unsigned long action,
2047 void *hcpu)
2048{
2049 int nid;
2050
2051 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2052 for_each_node_state(nid, N_MEMORY) {
2053 pg_data_t *pgdat = NODE_DATA(nid);
2054 const struct cpumask *mask;
2055
2056 mask = cpumask_of_node(pgdat->node_id);
2057
2058 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2059 /* One of our CPUs online: restore mask */
2060 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2061 }
2062 }
2063 return NOTIFY_OK;
2064}
2065
2066static int __init kcompactd_init(void)
2067{
2068 int nid;
2069
2070 for_each_node_state(nid, N_MEMORY)
2071 kcompactd_run(nid);
2072 hotcpu_notifier(cpu_callback, 0);
2073 return 0;
2074}
2075subsys_initcall(kcompactd_init)
2076
ff9543fd 2077#endif /* CONFIG_COMPACTION */