]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/compaction.c
KVM: x86/speculation: Disable Fill buffer clear within guests
[mirror_ubuntu-jammy-kernel.git] / mm / compaction.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
748446bb
MG
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
698b1b30 11#include <linux/cpu.h>
748446bb
MG
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
174cd4b1 16#include <linux/sched/signal.h>
748446bb 17#include <linux/backing-dev.h>
76ab0f53 18#include <linux/sysctl.h>
ed4a6d7f 19#include <linux/sysfs.h>
194159fb 20#include <linux/page-isolation.h>
b8c73fc2 21#include <linux/kasan.h>
698b1b30
VB
22#include <linux/kthread.h>
23#include <linux/freezer.h>
83358ece 24#include <linux/page_owner.h>
eb414681 25#include <linux/psi.h>
748446bb
MG
26#include "internal.h"
27
010fc29a
MK
28#ifdef CONFIG_COMPACTION
29static inline void count_compact_event(enum vm_event_item item)
30{
31 count_vm_event(item);
32}
33
34static inline void count_compact_events(enum vm_event_item item, long delta)
35{
36 count_vm_events(item, delta);
37}
38#else
39#define count_compact_event(item) do { } while (0)
40#define count_compact_events(item, delta) do { } while (0)
41#endif
42
ff9543fd
MN
43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
b7aba698
MG
45#define CREATE_TRACE_POINTS
46#include <trace/events/compaction.h>
47
06b6640a
VB
48#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
facdaa91
NG
53/*
54 * Fragmentation score check interval for proactive compaction purposes.
55 */
d34c0a75 56static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
facdaa91
NG
57
58/*
59 * Page order with-respect-to which proactive compaction
60 * calculates external fragmentation, which is used as
61 * the "fragmentation score" of a node/zone.
62 */
63#if defined CONFIG_TRANSPARENT_HUGEPAGE
64#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
25788738 65#elif defined CONFIG_HUGETLBFS
facdaa91
NG
66#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
67#else
68#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
69#endif
70
748446bb
MG
71static unsigned long release_freepages(struct list_head *freelist)
72{
73 struct page *page, *next;
6bace090 74 unsigned long high_pfn = 0;
748446bb
MG
75
76 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 77 unsigned long pfn = page_to_pfn(page);
748446bb
MG
78 list_del(&page->lru);
79 __free_page(page);
6bace090
VB
80 if (pfn > high_pfn)
81 high_pfn = pfn;
748446bb
MG
82 }
83
6bace090 84 return high_pfn;
748446bb
MG
85}
86
4469ab98 87static void split_map_pages(struct list_head *list)
ff9543fd 88{
66c64223
JK
89 unsigned int i, order, nr_pages;
90 struct page *page, *next;
91 LIST_HEAD(tmp_list);
92
93 list_for_each_entry_safe(page, next, list, lru) {
94 list_del(&page->lru);
95
96 order = page_private(page);
97 nr_pages = 1 << order;
66c64223 98
46f24fd8 99 post_alloc_hook(page, order, __GFP_MOVABLE);
66c64223
JK
100 if (order)
101 split_page(page, order);
ff9543fd 102
66c64223
JK
103 for (i = 0; i < nr_pages; i++) {
104 list_add(&page->lru, &tmp_list);
105 page++;
106 }
ff9543fd 107 }
66c64223
JK
108
109 list_splice(&tmp_list, list);
ff9543fd
MN
110}
111
bb13ffeb 112#ifdef CONFIG_COMPACTION
24e2716f 113
bda807d4
MK
114int PageMovable(struct page *page)
115{
116 struct address_space *mapping;
117
118 VM_BUG_ON_PAGE(!PageLocked(page), page);
119 if (!__PageMovable(page))
120 return 0;
121
122 mapping = page_mapping(page);
123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 return 1;
125
126 return 0;
127}
128EXPORT_SYMBOL(PageMovable);
129
130void __SetPageMovable(struct page *page, struct address_space *mapping)
131{
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135}
136EXPORT_SYMBOL(__SetPageMovable);
137
138void __ClearPageMovable(struct page *page)
139{
bda807d4
MK
140 VM_BUG_ON_PAGE(!PageMovable(page), page);
141 /*
142 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143 * flag so that VM can catch up released page by driver after isolation.
144 * With it, VM migration doesn't try to put it back.
145 */
146 page->mapping = (void *)((unsigned long)page->mapping &
147 PAGE_MAPPING_MOVABLE);
148}
149EXPORT_SYMBOL(__ClearPageMovable);
150
24e2716f
JK
151/* Do not skip compaction more than 64 times */
152#define COMPACT_MAX_DEFER_SHIFT 6
153
154/*
155 * Compaction is deferred when compaction fails to result in a page
860b3272 156 * allocation success. 1 << compact_defer_shift, compactions are skipped up
24e2716f
JK
157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158 */
2271b016 159static void defer_compaction(struct zone *zone, int order)
24e2716f
JK
160{
161 zone->compact_considered = 0;
162 zone->compact_defer_shift++;
163
164 if (order < zone->compact_order_failed)
165 zone->compact_order_failed = order;
166
167 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169
170 trace_mm_compaction_defer_compaction(zone, order);
171}
172
173/* Returns true if compaction should be skipped this time */
2271b016 174static bool compaction_deferred(struct zone *zone, int order)
24e2716f
JK
175{
176 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177
178 if (order < zone->compact_order_failed)
179 return false;
180
181 /* Avoid possible overflow */
62b35fe0 182 if (++zone->compact_considered >= defer_limit) {
24e2716f 183 zone->compact_considered = defer_limit;
24e2716f 184 return false;
62b35fe0 185 }
24e2716f
JK
186
187 trace_mm_compaction_deferred(zone, order);
188
189 return true;
190}
191
192/*
193 * Update defer tracking counters after successful compaction of given order,
194 * which means an allocation either succeeded (alloc_success == true) or is
195 * expected to succeed.
196 */
197void compaction_defer_reset(struct zone *zone, int order,
198 bool alloc_success)
199{
200 if (alloc_success) {
201 zone->compact_considered = 0;
202 zone->compact_defer_shift = 0;
203 }
204 if (order >= zone->compact_order_failed)
205 zone->compact_order_failed = order + 1;
206
207 trace_mm_compaction_defer_reset(zone, order);
208}
209
210/* Returns true if restarting compaction after many failures */
2271b016 211static bool compaction_restarting(struct zone *zone, int order)
24e2716f
JK
212{
213 if (order < zone->compact_order_failed)
214 return false;
215
216 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217 zone->compact_considered >= 1UL << zone->compact_defer_shift;
218}
219
bb13ffeb
MG
220/* Returns true if the pageblock should be scanned for pages to isolate. */
221static inline bool isolation_suitable(struct compact_control *cc,
222 struct page *page)
223{
224 if (cc->ignore_skip_hint)
225 return true;
226
227 return !get_pageblock_skip(page);
228}
229
02333641
VB
230static void reset_cached_positions(struct zone *zone)
231{
232 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 234 zone->compact_cached_free_pfn =
06b6640a 235 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
236}
237
21dc7e02 238/*
2271b016 239 * Compound pages of >= pageblock_order should consistently be skipped until
b527cfe5
VB
240 * released. It is always pointless to compact pages of such order (if they are
241 * migratable), and the pageblocks they occupy cannot contain any free pages.
21dc7e02 242 */
b527cfe5 243static bool pageblock_skip_persistent(struct page *page)
21dc7e02 244{
b527cfe5 245 if (!PageCompound(page))
21dc7e02 246 return false;
b527cfe5
VB
247
248 page = compound_head(page);
249
250 if (compound_order(page) >= pageblock_order)
251 return true;
252
253 return false;
21dc7e02
DR
254}
255
e332f741
MG
256static bool
257__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258 bool check_target)
259{
260 struct page *page = pfn_to_online_page(pfn);
6b0868c8 261 struct page *block_page;
e332f741
MG
262 struct page *end_page;
263 unsigned long block_pfn;
264
265 if (!page)
266 return false;
267 if (zone != page_zone(page))
268 return false;
269 if (pageblock_skip_persistent(page))
270 return false;
271
272 /*
273 * If skip is already cleared do no further checking once the
274 * restart points have been set.
275 */
276 if (check_source && check_target && !get_pageblock_skip(page))
277 return true;
278
279 /*
280 * If clearing skip for the target scanner, do not select a
281 * non-movable pageblock as the starting point.
282 */
283 if (!check_source && check_target &&
284 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285 return false;
286
6b0868c8
MG
287 /* Ensure the start of the pageblock or zone is online and valid */
288 block_pfn = pageblock_start_pfn(pfn);
a2e9a5af
VB
289 block_pfn = max(block_pfn, zone->zone_start_pfn);
290 block_page = pfn_to_online_page(block_pfn);
6b0868c8
MG
291 if (block_page) {
292 page = block_page;
293 pfn = block_pfn;
294 }
295
296 /* Ensure the end of the pageblock or zone is online and valid */
a2e9a5af 297 block_pfn = pageblock_end_pfn(pfn) - 1;
6b0868c8
MG
298 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299 end_page = pfn_to_online_page(block_pfn);
300 if (!end_page)
301 return false;
302
e332f741
MG
303 /*
304 * Only clear the hint if a sample indicates there is either a
305 * free page or an LRU page in the block. One or other condition
306 * is necessary for the block to be a migration source/target.
307 */
e332f741 308 do {
859a85dd
MR
309 if (check_source && PageLRU(page)) {
310 clear_pageblock_skip(page);
311 return true;
312 }
e332f741 313
859a85dd
MR
314 if (check_target && PageBuddy(page)) {
315 clear_pageblock_skip(page);
316 return true;
e332f741
MG
317 }
318
319 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
320 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
a2e9a5af 321 } while (page <= end_page);
e332f741
MG
322
323 return false;
324}
325
bb13ffeb
MG
326/*
327 * This function is called to clear all cached information on pageblocks that
328 * should be skipped for page isolation when the migrate and free page scanner
329 * meet.
330 */
62997027 331static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb 332{
e332f741 333 unsigned long migrate_pfn = zone->zone_start_pfn;
6b0868c8 334 unsigned long free_pfn = zone_end_pfn(zone) - 1;
e332f741
MG
335 unsigned long reset_migrate = free_pfn;
336 unsigned long reset_free = migrate_pfn;
337 bool source_set = false;
338 bool free_set = false;
339
340 if (!zone->compact_blockskip_flush)
341 return;
bb13ffeb 342
62997027 343 zone->compact_blockskip_flush = false;
bb13ffeb 344
e332f741
MG
345 /*
346 * Walk the zone and update pageblock skip information. Source looks
347 * for PageLRU while target looks for PageBuddy. When the scanner
348 * is found, both PageBuddy and PageLRU are checked as the pageblock
349 * is suitable as both source and target.
350 */
351 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
352 free_pfn -= pageblock_nr_pages) {
bb13ffeb
MG
353 cond_resched();
354
e332f741
MG
355 /* Update the migrate PFN */
356 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
357 migrate_pfn < reset_migrate) {
358 source_set = true;
359 reset_migrate = migrate_pfn;
360 zone->compact_init_migrate_pfn = reset_migrate;
361 zone->compact_cached_migrate_pfn[0] = reset_migrate;
362 zone->compact_cached_migrate_pfn[1] = reset_migrate;
363 }
bb13ffeb 364
e332f741
MG
365 /* Update the free PFN */
366 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
367 free_pfn > reset_free) {
368 free_set = true;
369 reset_free = free_pfn;
370 zone->compact_init_free_pfn = reset_free;
371 zone->compact_cached_free_pfn = reset_free;
372 }
bb13ffeb 373 }
02333641 374
e332f741
MG
375 /* Leave no distance if no suitable block was reset */
376 if (reset_migrate >= reset_free) {
377 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
378 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
379 zone->compact_cached_free_pfn = free_pfn;
380 }
bb13ffeb
MG
381}
382
62997027
MG
383void reset_isolation_suitable(pg_data_t *pgdat)
384{
385 int zoneid;
386
387 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
388 struct zone *zone = &pgdat->node_zones[zoneid];
389 if (!populated_zone(zone))
390 continue;
391
392 /* Only flush if a full compaction finished recently */
393 if (zone->compact_blockskip_flush)
394 __reset_isolation_suitable(zone);
395 }
396}
397
e380bebe
MG
398/*
399 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
400 * locks are not required for read/writers. Returns true if it was already set.
401 */
402static bool test_and_set_skip(struct compact_control *cc, struct page *page,
403 unsigned long pfn)
404{
405 bool skip;
406
407 /* Do no update if skip hint is being ignored */
408 if (cc->ignore_skip_hint)
409 return false;
410
411 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
412 return false;
413
414 skip = get_pageblock_skip(page);
415 if (!skip && !cc->no_set_skip_hint)
416 set_pageblock_skip(page);
417
418 return skip;
419}
420
421static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
422{
423 struct zone *zone = cc->zone;
424
425 pfn = pageblock_end_pfn(pfn);
426
427 /* Set for isolation rather than compaction */
428 if (cc->no_set_skip_hint)
429 return;
430
431 if (pfn > zone->compact_cached_migrate_pfn[0])
432 zone->compact_cached_migrate_pfn[0] = pfn;
433 if (cc->mode != MIGRATE_ASYNC &&
434 pfn > zone->compact_cached_migrate_pfn[1])
435 zone->compact_cached_migrate_pfn[1] = pfn;
436}
437
bb13ffeb
MG
438/*
439 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 440 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 441 */
c89511ab 442static void update_pageblock_skip(struct compact_control *cc,
d097a6f6 443 struct page *page, unsigned long pfn)
bb13ffeb 444{
c89511ab 445 struct zone *zone = cc->zone;
6815bf3f 446
2583d671 447 if (cc->no_set_skip_hint)
6815bf3f
JK
448 return;
449
bb13ffeb
MG
450 if (!page)
451 return;
452
edc2ca61 453 set_pageblock_skip(page);
c89511ab 454
35979ef3 455 /* Update where async and sync compaction should restart */
e380bebe
MG
456 if (pfn < zone->compact_cached_free_pfn)
457 zone->compact_cached_free_pfn = pfn;
bb13ffeb
MG
458}
459#else
460static inline bool isolation_suitable(struct compact_control *cc,
461 struct page *page)
462{
463 return true;
464}
465
b527cfe5 466static inline bool pageblock_skip_persistent(struct page *page)
21dc7e02
DR
467{
468 return false;
469}
470
471static inline void update_pageblock_skip(struct compact_control *cc,
d097a6f6 472 struct page *page, unsigned long pfn)
bb13ffeb
MG
473{
474}
e380bebe
MG
475
476static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
477{
478}
479
480static bool test_and_set_skip(struct compact_control *cc, struct page *page,
481 unsigned long pfn)
482{
483 return false;
484}
bb13ffeb
MG
485#endif /* CONFIG_COMPACTION */
486
8b44d279
VB
487/*
488 * Compaction requires the taking of some coarse locks that are potentially
cb2dcaf0
MG
489 * very heavily contended. For async compaction, trylock and record if the
490 * lock is contended. The lock will still be acquired but compaction will
491 * abort when the current block is finished regardless of success rate.
492 * Sync compaction acquires the lock.
8b44d279 493 *
cb2dcaf0 494 * Always returns true which makes it easier to track lock state in callers.
8b44d279 495 */
cb2dcaf0 496static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
8b44d279 497 struct compact_control *cc)
77337ede 498 __acquires(lock)
2a1402aa 499{
cb2dcaf0
MG
500 /* Track if the lock is contended in async mode */
501 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
502 if (spin_trylock_irqsave(lock, *flags))
503 return true;
504
505 cc->contended = true;
8b44d279 506 }
1f9efdef 507
cb2dcaf0 508 spin_lock_irqsave(lock, *flags);
8b44d279 509 return true;
2a1402aa
MG
510}
511
c67fe375
MG
512/*
513 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
514 * very heavily contended. The lock should be periodically unlocked to avoid
515 * having disabled IRQs for a long time, even when there is nobody waiting on
516 * the lock. It might also be that allowing the IRQs will result in
517 * need_resched() becoming true. If scheduling is needed, async compaction
518 * aborts. Sync compaction schedules.
519 * Either compaction type will also abort if a fatal signal is pending.
520 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 521 *
8b44d279
VB
522 * Returns true if compaction should abort due to fatal signal pending, or
523 * async compaction due to need_resched()
524 * Returns false when compaction can continue (sync compaction might have
525 * scheduled)
c67fe375 526 */
8b44d279
VB
527static bool compact_unlock_should_abort(spinlock_t *lock,
528 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 529{
8b44d279
VB
530 if (*locked) {
531 spin_unlock_irqrestore(lock, flags);
532 *locked = false;
533 }
1f9efdef 534
8b44d279 535 if (fatal_signal_pending(current)) {
c3486f53 536 cc->contended = true;
8b44d279
VB
537 return true;
538 }
c67fe375 539
cf66f070 540 cond_resched();
be976572
VB
541
542 return false;
543}
544
85aa125f 545/*
9e4be470
JM
546 * Isolate free pages onto a private freelist. If @strict is true, will abort
547 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
548 * (even though it may still end up isolating some pages).
85aa125f 549 */
f40d1e42 550static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 551 unsigned long *start_pfn,
85aa125f
MN
552 unsigned long end_pfn,
553 struct list_head *freelist,
4fca9730 554 unsigned int stride,
85aa125f 555 bool strict)
748446bb 556{
b7aba698 557 int nr_scanned = 0, total_isolated = 0;
d097a6f6 558 struct page *cursor;
b8b2d825 559 unsigned long flags = 0;
f40d1e42 560 bool locked = false;
e14c720e 561 unsigned long blockpfn = *start_pfn;
66c64223 562 unsigned int order;
748446bb 563
4fca9730
MG
564 /* Strict mode is for isolation, speed is secondary */
565 if (strict)
566 stride = 1;
567
748446bb
MG
568 cursor = pfn_to_page(blockpfn);
569
f40d1e42 570 /* Isolate free pages. */
4fca9730 571 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
66c64223 572 int isolated;
748446bb
MG
573 struct page *page = cursor;
574
8b44d279
VB
575 /*
576 * Periodically drop the lock (if held) regardless of its
577 * contention, to give chance to IRQs. Abort if fatal signal
578 * pending or async compaction detects need_resched()
579 */
580 if (!(blockpfn % SWAP_CLUSTER_MAX)
581 && compact_unlock_should_abort(&cc->zone->lock, flags,
582 &locked, cc))
583 break;
584
b7aba698 585 nr_scanned++;
2af120bc 586
9fcd6d2e
VB
587 /*
588 * For compound pages such as THP and hugetlbfs, we can save
589 * potentially a lot of iterations if we skip them at once.
590 * The check is racy, but we can consider only valid values
591 * and the only danger is skipping too much.
592 */
593 if (PageCompound(page)) {
21dc7e02
DR
594 const unsigned int order = compound_order(page);
595
d3c85bad 596 if (likely(order < MAX_ORDER)) {
21dc7e02
DR
597 blockpfn += (1UL << order) - 1;
598 cursor += (1UL << order) - 1;
9fcd6d2e 599 }
9fcd6d2e
VB
600 goto isolate_fail;
601 }
602
f40d1e42 603 if (!PageBuddy(page))
2af120bc 604 goto isolate_fail;
f40d1e42
MG
605
606 /*
69b7189f
VB
607 * If we already hold the lock, we can skip some rechecking.
608 * Note that if we hold the lock now, checked_pageblock was
609 * already set in some previous iteration (or strict is true),
610 * so it is correct to skip the suitable migration target
611 * recheck as well.
f40d1e42 612 */
69b7189f 613 if (!locked) {
cb2dcaf0 614 locked = compact_lock_irqsave(&cc->zone->lock,
8b44d279 615 &flags, cc);
f40d1e42 616
69b7189f
VB
617 /* Recheck this is a buddy page under lock */
618 if (!PageBuddy(page))
619 goto isolate_fail;
620 }
748446bb 621
66c64223 622 /* Found a free page, will break it into order-0 pages */
ab130f91 623 order = buddy_order(page);
66c64223 624 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
625 if (!isolated)
626 break;
66c64223 627 set_page_private(page, order);
a4f04f2c 628
748446bb 629 total_isolated += isolated;
a4f04f2c 630 cc->nr_freepages += isolated;
66c64223
JK
631 list_add_tail(&page->lru, freelist);
632
a4f04f2c
DR
633 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
634 blockpfn += isolated;
635 break;
748446bb 636 }
a4f04f2c
DR
637 /* Advance to the end of split page */
638 blockpfn += isolated - 1;
639 cursor += isolated - 1;
640 continue;
2af120bc
LA
641
642isolate_fail:
643 if (strict)
644 break;
645 else
646 continue;
647
748446bb
MG
648 }
649
a4f04f2c
DR
650 if (locked)
651 spin_unlock_irqrestore(&cc->zone->lock, flags);
652
9fcd6d2e
VB
653 /*
654 * There is a tiny chance that we have read bogus compound_order(),
655 * so be careful to not go outside of the pageblock.
656 */
657 if (unlikely(blockpfn > end_pfn))
658 blockpfn = end_pfn;
659
e34d85f0
JK
660 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
661 nr_scanned, total_isolated);
662
e14c720e
VB
663 /* Record how far we have got within the block */
664 *start_pfn = blockpfn;
665
f40d1e42
MG
666 /*
667 * If strict isolation is requested by CMA then check that all the
668 * pages requested were isolated. If there were any failures, 0 is
669 * returned and CMA will fail.
670 */
2af120bc 671 if (strict && blockpfn < end_pfn)
f40d1e42
MG
672 total_isolated = 0;
673
7f354a54 674 cc->total_free_scanned += nr_scanned;
397487db 675 if (total_isolated)
010fc29a 676 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
677 return total_isolated;
678}
679
85aa125f
MN
680/**
681 * isolate_freepages_range() - isolate free pages.
e8b098fc 682 * @cc: Compaction control structure.
85aa125f
MN
683 * @start_pfn: The first PFN to start isolating.
684 * @end_pfn: The one-past-last PFN.
685 *
686 * Non-free pages, invalid PFNs, or zone boundaries within the
687 * [start_pfn, end_pfn) range are considered errors, cause function to
688 * undo its actions and return zero.
689 *
690 * Otherwise, function returns one-past-the-last PFN of isolated page
691 * (which may be greater then end_pfn if end fell in a middle of
692 * a free page).
693 */
ff9543fd 694unsigned long
bb13ffeb
MG
695isolate_freepages_range(struct compact_control *cc,
696 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 697{
e1409c32 698 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
699 LIST_HEAD(freelist);
700
7d49d886 701 pfn = start_pfn;
06b6640a 702 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
703 if (block_start_pfn < cc->zone->zone_start_pfn)
704 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 705 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
706
707 for (; pfn < end_pfn; pfn += isolated,
e1409c32 708 block_start_pfn = block_end_pfn,
7d49d886 709 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
710 /* Protect pfn from changing by isolate_freepages_block */
711 unsigned long isolate_start_pfn = pfn;
85aa125f 712
85aa125f
MN
713 block_end_pfn = min(block_end_pfn, end_pfn);
714
58420016
JK
715 /*
716 * pfn could pass the block_end_pfn if isolated freepage
717 * is more than pageblock order. In this case, we adjust
718 * scanning range to right one.
719 */
720 if (pfn >= block_end_pfn) {
06b6640a
VB
721 block_start_pfn = pageblock_start_pfn(pfn);
722 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
723 block_end_pfn = min(block_end_pfn, end_pfn);
724 }
725
e1409c32
JK
726 if (!pageblock_pfn_to_page(block_start_pfn,
727 block_end_pfn, cc->zone))
7d49d886
VB
728 break;
729
e14c720e 730 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
4fca9730 731 block_end_pfn, &freelist, 0, true);
85aa125f
MN
732
733 /*
734 * In strict mode, isolate_freepages_block() returns 0 if
735 * there are any holes in the block (ie. invalid PFNs or
736 * non-free pages).
737 */
738 if (!isolated)
739 break;
740
741 /*
742 * If we managed to isolate pages, it is always (1 << n) *
743 * pageblock_nr_pages for some non-negative n. (Max order
744 * page may span two pageblocks).
745 */
746 }
747
66c64223 748 /* __isolate_free_page() does not map the pages */
4469ab98 749 split_map_pages(&freelist);
85aa125f
MN
750
751 if (pfn < end_pfn) {
752 /* Loop terminated early, cleanup. */
753 release_freepages(&freelist);
754 return 0;
755 }
756
757 /* We don't use freelists for anything. */
758 return pfn;
759}
760
748446bb 761/* Similar to reclaim, but different enough that they don't share logic */
5f438eee 762static bool too_many_isolated(pg_data_t *pgdat)
748446bb 763{
bc693045 764 unsigned long active, inactive, isolated;
748446bb 765
5f438eee
AR
766 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
767 node_page_state(pgdat, NR_INACTIVE_ANON);
768 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
769 node_page_state(pgdat, NR_ACTIVE_ANON);
770 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
771 node_page_state(pgdat, NR_ISOLATED_ANON);
748446bb 772
bc693045 773 return isolated > (inactive + active) / 2;
748446bb
MG
774}
775
2fe86e00 776/**
edc2ca61
VB
777 * isolate_migratepages_block() - isolate all migrate-able pages within
778 * a single pageblock
2fe86e00 779 * @cc: Compaction control structure.
edc2ca61
VB
780 * @low_pfn: The first PFN to isolate
781 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
782 * @isolate_mode: Isolation mode to be used.
2fe86e00
MN
783 *
784 * Isolate all pages that can be migrated from the range specified by
edc2ca61 785 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
c2ad7a1f 786 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
369fa227 787 * -ENOMEM in case we could not allocate a page, or 0.
c2ad7a1f 788 * cc->migrate_pfn will contain the next pfn to scan.
2fe86e00 789 *
edc2ca61 790 * The pages are isolated on cc->migratepages list (not required to be empty),
c2ad7a1f 791 * and cc->nr_migratepages is updated accordingly.
748446bb 792 */
c2ad7a1f 793static int
edc2ca61
VB
794isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
795 unsigned long end_pfn, isolate_mode_t isolate_mode)
748446bb 796{
5f438eee 797 pg_data_t *pgdat = cc->zone->zone_pgdat;
b7aba698 798 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 799 struct lruvec *lruvec;
b8b2d825 800 unsigned long flags = 0;
6168d0da 801 struct lruvec *locked = NULL;
bb13ffeb 802 struct page *page = NULL, *valid_page = NULL;
e34d85f0 803 unsigned long start_pfn = low_pfn;
fdd048e1
VB
804 bool skip_on_failure = false;
805 unsigned long next_skip_pfn = 0;
e380bebe 806 bool skip_updated = false;
c2ad7a1f
OS
807 int ret = 0;
808
809 cc->migrate_pfn = low_pfn;
748446bb 810
748446bb
MG
811 /*
812 * Ensure that there are not too many pages isolated from the LRU
813 * list by either parallel reclaimers or compaction. If there are,
814 * delay for some time until fewer pages are isolated
815 */
5f438eee 816 while (unlikely(too_many_isolated(pgdat))) {
d20bdd57
ZY
817 /* stop isolation if there are still pages not migrated */
818 if (cc->nr_migratepages)
c2ad7a1f 819 return -EAGAIN;
d20bdd57 820
f9e35b3b 821 /* async migration should just abort */
e0b9daeb 822 if (cc->mode == MIGRATE_ASYNC)
c2ad7a1f 823 return -EAGAIN;
f9e35b3b 824
748446bb
MG
825 congestion_wait(BLK_RW_ASYNC, HZ/10);
826
827 if (fatal_signal_pending(current))
c2ad7a1f 828 return -EINTR;
748446bb
MG
829 }
830
cf66f070 831 cond_resched();
aeef4b83 832
fdd048e1
VB
833 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
834 skip_on_failure = true;
835 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
836 }
837
748446bb 838 /* Time to isolate some pages for migration */
748446bb 839 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 840
fdd048e1
VB
841 if (skip_on_failure && low_pfn >= next_skip_pfn) {
842 /*
843 * We have isolated all migration candidates in the
844 * previous order-aligned block, and did not skip it due
845 * to failure. We should migrate the pages now and
846 * hopefully succeed compaction.
847 */
848 if (nr_isolated)
849 break;
850
851 /*
852 * We failed to isolate in the previous order-aligned
853 * block. Set the new boundary to the end of the
854 * current block. Note we can't simply increase
855 * next_skip_pfn by 1 << order, as low_pfn might have
856 * been incremented by a higher number due to skipping
857 * a compound or a high-order buddy page in the
858 * previous loop iteration.
859 */
860 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
861 }
862
8b44d279
VB
863 /*
864 * Periodically drop the lock (if held) regardless of its
670105a2
MG
865 * contention, to give chance to IRQs. Abort completely if
866 * a fatal signal is pending.
8b44d279 867 */
6168d0da
AS
868 if (!(low_pfn % SWAP_CLUSTER_MAX)) {
869 if (locked) {
870 unlock_page_lruvec_irqrestore(locked, flags);
871 locked = NULL;
872 }
873
874 if (fatal_signal_pending(current)) {
875 cc->contended = true;
c2ad7a1f 876 ret = -EINTR;
6168d0da 877
6168d0da
AS
878 goto fatal_pending;
879 }
880
881 cond_resched();
670105a2 882 }
c67fe375 883
b7aba698 884 nr_scanned++;
748446bb 885
748446bb 886 page = pfn_to_page(low_pfn);
dc908600 887
e380bebe
MG
888 /*
889 * Check if the pageblock has already been marked skipped.
890 * Only the aligned PFN is checked as the caller isolates
891 * COMPACT_CLUSTER_MAX at a time so the second call must
892 * not falsely conclude that the block should be skipped.
893 */
894 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
895 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
896 low_pfn = end_pfn;
9df41314 897 page = NULL;
e380bebe
MG
898 goto isolate_abort;
899 }
bb13ffeb 900 valid_page = page;
e380bebe 901 }
bb13ffeb 902
369fa227 903 if (PageHuge(page) && cc->alloc_contig) {
ae37c7ff 904 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
369fa227
OS
905
906 /*
907 * Fail isolation in case isolate_or_dissolve_huge_page()
908 * reports an error. In case of -ENOMEM, abort right away.
909 */
910 if (ret < 0) {
911 /* Do not report -EBUSY down the chain */
912 if (ret == -EBUSY)
913 ret = 0;
914 low_pfn += (1UL << compound_order(page)) - 1;
915 goto isolate_fail;
916 }
917
ae37c7ff
OS
918 if (PageHuge(page)) {
919 /*
920 * Hugepage was successfully isolated and placed
921 * on the cc->migratepages list.
922 */
923 low_pfn += compound_nr(page) - 1;
924 goto isolate_success_no_list;
925 }
926
369fa227
OS
927 /*
928 * Ok, the hugepage was dissolved. Now these pages are
929 * Buddy and cannot be re-allocated because they are
930 * isolated. Fall-through as the check below handles
931 * Buddy pages.
932 */
933 }
934
6c14466c 935 /*
99c0fd5e
VB
936 * Skip if free. We read page order here without zone lock
937 * which is generally unsafe, but the race window is small and
938 * the worst thing that can happen is that we skip some
939 * potential isolation targets.
6c14466c 940 */
99c0fd5e 941 if (PageBuddy(page)) {
ab130f91 942 unsigned long freepage_order = buddy_order_unsafe(page);
99c0fd5e
VB
943
944 /*
945 * Without lock, we cannot be sure that what we got is
946 * a valid page order. Consider only values in the
947 * valid order range to prevent low_pfn overflow.
948 */
949 if (freepage_order > 0 && freepage_order < MAX_ORDER)
950 low_pfn += (1UL << freepage_order) - 1;
748446bb 951 continue;
99c0fd5e 952 }
748446bb 953
bc835011 954 /*
29c0dde8 955 * Regardless of being on LRU, compound pages such as THP and
1da2f328
RR
956 * hugetlbfs are not to be compacted unless we are attempting
957 * an allocation much larger than the huge page size (eg CMA).
958 * We can potentially save a lot of iterations if we skip them
959 * at once. The check is racy, but we can consider only valid
960 * values and the only danger is skipping too much.
bc835011 961 */
1da2f328 962 if (PageCompound(page) && !cc->alloc_contig) {
21dc7e02 963 const unsigned int order = compound_order(page);
edc2ca61 964
d3c85bad 965 if (likely(order < MAX_ORDER))
21dc7e02 966 low_pfn += (1UL << order) - 1;
fdd048e1 967 goto isolate_fail;
2a1402aa
MG
968 }
969
bda807d4
MK
970 /*
971 * Check may be lockless but that's ok as we recheck later.
972 * It's possible to migrate LRU and non-lru movable pages.
973 * Skip any other type of page
974 */
975 if (!PageLRU(page)) {
bda807d4
MK
976 /*
977 * __PageMovable can return false positive so we need
978 * to verify it under page_lock.
979 */
980 if (unlikely(__PageMovable(page)) &&
981 !PageIsolated(page)) {
982 if (locked) {
6168d0da
AS
983 unlock_page_lruvec_irqrestore(locked, flags);
984 locked = NULL;
bda807d4
MK
985 }
986
9e5bcd61 987 if (!isolate_movable_page(page, isolate_mode))
bda807d4
MK
988 goto isolate_success;
989 }
990
fdd048e1 991 goto isolate_fail;
bda807d4 992 }
29c0dde8 993
119d6d59
DR
994 /*
995 * Migration will fail if an anonymous page is pinned in memory,
996 * so avoid taking lru_lock and isolating it unnecessarily in an
997 * admittedly racy check.
998 */
999 if (!page_mapping(page) &&
1000 page_count(page) > page_mapcount(page))
fdd048e1 1001 goto isolate_fail;
119d6d59 1002
73e64c51
MH
1003 /*
1004 * Only allow to migrate anonymous pages in GFP_NOFS context
1005 * because those do not depend on fs locks.
1006 */
1007 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
1008 goto isolate_fail;
1009
9df41314
AS
1010 /*
1011 * Be careful not to clear PageLRU until after we're
1012 * sure the page is not being freed elsewhere -- the
1013 * page release code relies on it.
1014 */
1015 if (unlikely(!get_page_unless_zero(page)))
1016 goto isolate_fail;
1017
c2135f7c 1018 if (!__isolate_lru_page_prepare(page, isolate_mode))
9df41314
AS
1019 goto isolate_fail_put;
1020
1021 /* Try isolate the page */
1022 if (!TestClearPageLRU(page))
1023 goto isolate_fail_put;
1024
a984226f 1025 lruvec = mem_cgroup_page_lruvec(page);
6168d0da 1026
69b7189f 1027 /* If we already hold the lock, we can skip some rechecking */
6168d0da
AS
1028 if (lruvec != locked) {
1029 if (locked)
1030 unlock_page_lruvec_irqrestore(locked, flags);
1031
1032 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1033 locked = lruvec;
6168d0da
AS
1034
1035 lruvec_memcg_debug(lruvec, page);
e380bebe 1036
e380bebe
MG
1037 /* Try get exclusive access under lock */
1038 if (!skip_updated) {
1039 skip_updated = true;
1040 if (test_and_set_skip(cc, page, low_pfn))
1041 goto isolate_abort;
1042 }
2a1402aa 1043
29c0dde8
VB
1044 /*
1045 * Page become compound since the non-locked check,
1046 * and it's on LRU. It can only be a THP so the order
1047 * is safe to read and it's 0 for tail pages.
1048 */
1da2f328 1049 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
d8c6546b 1050 low_pfn += compound_nr(page) - 1;
9df41314
AS
1051 SetPageLRU(page);
1052 goto isolate_fail_put;
69b7189f 1053 }
d99fd5fe 1054 }
fa9add64 1055
1da2f328
RR
1056 /* The whole page is taken off the LRU; skip the tail pages. */
1057 if (PageCompound(page))
1058 low_pfn += compound_nr(page) - 1;
bc835011 1059
748446bb 1060 /* Successfully isolated */
46ae6b2c 1061 del_page_from_lru_list(page, lruvec);
1da2f328 1062 mod_node_page_state(page_pgdat(page),
9de4f22a 1063 NR_ISOLATED_ANON + page_is_file_lru(page),
6c357848 1064 thp_nr_pages(page));
b6c75016
JK
1065
1066isolate_success:
fdd048e1 1067 list_add(&page->lru, &cc->migratepages);
ae37c7ff 1068isolate_success_no_list:
38935861
ZY
1069 cc->nr_migratepages += compound_nr(page);
1070 nr_isolated += compound_nr(page);
748446bb 1071
804d3121
MG
1072 /*
1073 * Avoid isolating too much unless this block is being
cb2dcaf0
MG
1074 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1075 * or a lock is contended. For contention, isolate quickly to
1076 * potentially remove one source of contention.
804d3121 1077 */
38935861 1078 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
cb2dcaf0 1079 !cc->rescan && !cc->contended) {
31b8384a 1080 ++low_pfn;
748446bb 1081 break;
31b8384a 1082 }
fdd048e1
VB
1083
1084 continue;
9df41314
AS
1085
1086isolate_fail_put:
1087 /* Avoid potential deadlock in freeing page under lru_lock */
1088 if (locked) {
6168d0da
AS
1089 unlock_page_lruvec_irqrestore(locked, flags);
1090 locked = NULL;
9df41314
AS
1091 }
1092 put_page(page);
1093
fdd048e1 1094isolate_fail:
369fa227 1095 if (!skip_on_failure && ret != -ENOMEM)
fdd048e1
VB
1096 continue;
1097
1098 /*
1099 * We have isolated some pages, but then failed. Release them
1100 * instead of migrating, as we cannot form the cc->order buddy
1101 * page anyway.
1102 */
1103 if (nr_isolated) {
1104 if (locked) {
6168d0da
AS
1105 unlock_page_lruvec_irqrestore(locked, flags);
1106 locked = NULL;
fdd048e1 1107 }
fdd048e1
VB
1108 putback_movable_pages(&cc->migratepages);
1109 cc->nr_migratepages = 0;
fdd048e1
VB
1110 nr_isolated = 0;
1111 }
1112
1113 if (low_pfn < next_skip_pfn) {
1114 low_pfn = next_skip_pfn - 1;
1115 /*
1116 * The check near the loop beginning would have updated
1117 * next_skip_pfn too, but this is a bit simpler.
1118 */
1119 next_skip_pfn += 1UL << cc->order;
1120 }
369fa227
OS
1121
1122 if (ret == -ENOMEM)
1123 break;
748446bb
MG
1124 }
1125
99c0fd5e
VB
1126 /*
1127 * The PageBuddy() check could have potentially brought us outside
1128 * the range to be scanned.
1129 */
1130 if (unlikely(low_pfn > end_pfn))
1131 low_pfn = end_pfn;
1132
9df41314
AS
1133 page = NULL;
1134
e380bebe 1135isolate_abort:
c67fe375 1136 if (locked)
6168d0da 1137 unlock_page_lruvec_irqrestore(locked, flags);
9df41314
AS
1138 if (page) {
1139 SetPageLRU(page);
1140 put_page(page);
1141 }
748446bb 1142
50b5b094 1143 /*
804d3121
MG
1144 * Updated the cached scanner pfn once the pageblock has been scanned
1145 * Pages will either be migrated in which case there is no point
1146 * scanning in the near future or migration failed in which case the
1147 * failure reason may persist. The block is marked for skipping if
1148 * there were no pages isolated in the block or if the block is
1149 * rescanned twice in a row.
50b5b094 1150 */
804d3121 1151 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
e380bebe
MG
1152 if (valid_page && !skip_updated)
1153 set_pageblock_skip(valid_page);
1154 update_cached_migrate(cc, low_pfn);
1155 }
bb13ffeb 1156
e34d85f0
JK
1157 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1158 nr_scanned, nr_isolated);
b7aba698 1159
670105a2 1160fatal_pending:
7f354a54 1161 cc->total_migrate_scanned += nr_scanned;
397487db 1162 if (nr_isolated)
010fc29a 1163 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 1164
c2ad7a1f
OS
1165 cc->migrate_pfn = low_pfn;
1166
1167 return ret;
2fe86e00
MN
1168}
1169
edc2ca61
VB
1170/**
1171 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1172 * @cc: Compaction control structure.
1173 * @start_pfn: The first PFN to start isolating.
1174 * @end_pfn: The one-past-last PFN.
1175 *
369fa227
OS
1176 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1177 * in case we could not allocate a page, or 0.
edc2ca61 1178 */
c2ad7a1f 1179int
edc2ca61
VB
1180isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1181 unsigned long end_pfn)
1182{
e1409c32 1183 unsigned long pfn, block_start_pfn, block_end_pfn;
c2ad7a1f 1184 int ret = 0;
edc2ca61
VB
1185
1186 /* Scan block by block. First and last block may be incomplete */
1187 pfn = start_pfn;
06b6640a 1188 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
1189 if (block_start_pfn < cc->zone->zone_start_pfn)
1190 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 1191 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
1192
1193 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 1194 block_start_pfn = block_end_pfn,
edc2ca61
VB
1195 block_end_pfn += pageblock_nr_pages) {
1196
1197 block_end_pfn = min(block_end_pfn, end_pfn);
1198
e1409c32
JK
1199 if (!pageblock_pfn_to_page(block_start_pfn,
1200 block_end_pfn, cc->zone))
edc2ca61
VB
1201 continue;
1202
c2ad7a1f
OS
1203 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1204 ISOLATE_UNEVICTABLE);
edc2ca61 1205
c2ad7a1f 1206 if (ret)
edc2ca61 1207 break;
6ea41c0c 1208
38935861 1209 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
6ea41c0c 1210 break;
edc2ca61 1211 }
edc2ca61 1212
c2ad7a1f 1213 return ret;
edc2ca61
VB
1214}
1215
ff9543fd
MN
1216#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1217#ifdef CONFIG_COMPACTION
018e9a49 1218
b682debd
VB
1219static bool suitable_migration_source(struct compact_control *cc,
1220 struct page *page)
1221{
282722b0
VB
1222 int block_mt;
1223
9bebefd5
MG
1224 if (pageblock_skip_persistent(page))
1225 return false;
1226
282722b0 1227 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
b682debd
VB
1228 return true;
1229
282722b0
VB
1230 block_mt = get_pageblock_migratetype(page);
1231
1232 if (cc->migratetype == MIGRATE_MOVABLE)
1233 return is_migrate_movable(block_mt);
1234 else
1235 return block_mt == cc->migratetype;
b682debd
VB
1236}
1237
018e9a49 1238/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1239static bool suitable_migration_target(struct compact_control *cc,
1240 struct page *page)
018e9a49
AM
1241{
1242 /* If the page is a large free page, then disallow migration */
1243 if (PageBuddy(page)) {
1244 /*
1245 * We are checking page_order without zone->lock taken. But
1246 * the only small danger is that we skip a potentially suitable
1247 * pageblock, so it's not worth to check order for valid range.
1248 */
ab130f91 1249 if (buddy_order_unsafe(page) >= pageblock_order)
018e9a49
AM
1250 return false;
1251 }
1252
1ef36db2
YX
1253 if (cc->ignore_block_suitable)
1254 return true;
1255
018e9a49 1256 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
b682debd 1257 if (is_migrate_movable(get_pageblock_migratetype(page)))
018e9a49
AM
1258 return true;
1259
1260 /* Otherwise skip the block */
1261 return false;
1262}
1263
70b44595
MG
1264static inline unsigned int
1265freelist_scan_limit(struct compact_control *cc)
1266{
dd7ef7bd
QC
1267 unsigned short shift = BITS_PER_LONG - 1;
1268
1269 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
70b44595
MG
1270}
1271
f2849aa0
VB
1272/*
1273 * Test whether the free scanner has reached the same or lower pageblock than
1274 * the migration scanner, and compaction should thus terminate.
1275 */
1276static inline bool compact_scanners_met(struct compact_control *cc)
1277{
1278 return (cc->free_pfn >> pageblock_order)
1279 <= (cc->migrate_pfn >> pageblock_order);
1280}
1281
5a811889
MG
1282/*
1283 * Used when scanning for a suitable migration target which scans freelists
1284 * in reverse. Reorders the list such as the unscanned pages are scanned
1285 * first on the next iteration of the free scanner
1286 */
1287static void
1288move_freelist_head(struct list_head *freelist, struct page *freepage)
1289{
1290 LIST_HEAD(sublist);
1291
1292 if (!list_is_last(freelist, &freepage->lru)) {
1293 list_cut_before(&sublist, freelist, &freepage->lru);
d2155fe5 1294 list_splice_tail(&sublist, freelist);
5a811889
MG
1295 }
1296}
1297
1298/*
1299 * Similar to move_freelist_head except used by the migration scanner
1300 * when scanning forward. It's possible for these list operations to
1301 * move against each other if they search the free list exactly in
1302 * lockstep.
1303 */
70b44595
MG
1304static void
1305move_freelist_tail(struct list_head *freelist, struct page *freepage)
1306{
1307 LIST_HEAD(sublist);
1308
1309 if (!list_is_first(freelist, &freepage->lru)) {
1310 list_cut_position(&sublist, freelist, &freepage->lru);
d2155fe5 1311 list_splice_tail(&sublist, freelist);
70b44595
MG
1312 }
1313}
1314
5a811889
MG
1315static void
1316fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1317{
1318 unsigned long start_pfn, end_pfn;
6e2b7044 1319 struct page *page;
5a811889
MG
1320
1321 /* Do not search around if there are enough pages already */
1322 if (cc->nr_freepages >= cc->nr_migratepages)
1323 return;
1324
1325 /* Minimise scanning during async compaction */
1326 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1327 return;
1328
1329 /* Pageblock boundaries */
6e2b7044
VB
1330 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1331 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1332
1333 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1334 if (!page)
1335 return;
5a811889
MG
1336
1337 /* Scan before */
1338 if (start_pfn != pfn) {
4fca9730 1339 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
5a811889
MG
1340 if (cc->nr_freepages >= cc->nr_migratepages)
1341 return;
1342 }
1343
1344 /* Scan after */
1345 start_pfn = pfn + nr_isolated;
60fce36a 1346 if (start_pfn < end_pfn)
4fca9730 1347 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
5a811889
MG
1348
1349 /* Skip this pageblock in the future as it's full or nearly full */
1350 if (cc->nr_freepages < cc->nr_migratepages)
1351 set_pageblock_skip(page);
1352}
1353
dbe2d4e4
MG
1354/* Search orders in round-robin fashion */
1355static int next_search_order(struct compact_control *cc, int order)
1356{
1357 order--;
1358 if (order < 0)
1359 order = cc->order - 1;
1360
1361 /* Search wrapped around? */
1362 if (order == cc->search_order) {
1363 cc->search_order--;
1364 if (cc->search_order < 0)
1365 cc->search_order = cc->order - 1;
1366 return -1;
1367 }
1368
1369 return order;
1370}
1371
5a811889
MG
1372static unsigned long
1373fast_isolate_freepages(struct compact_control *cc)
1374{
b55ca526 1375 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
5a811889 1376 unsigned int nr_scanned = 0;
74e21484 1377 unsigned long low_pfn, min_pfn, highest = 0;
5a811889
MG
1378 unsigned long nr_isolated = 0;
1379 unsigned long distance;
1380 struct page *page = NULL;
1381 bool scan_start = false;
1382 int order;
1383
1384 /* Full compaction passes in a negative order */
1385 if (cc->order <= 0)
1386 return cc->free_pfn;
1387
1388 /*
1389 * If starting the scan, use a deeper search and use the highest
1390 * PFN found if a suitable one is not found.
1391 */
e332f741 1392 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
5a811889
MG
1393 limit = pageblock_nr_pages >> 1;
1394 scan_start = true;
1395 }
1396
1397 /*
1398 * Preferred point is in the top quarter of the scan space but take
1399 * a pfn from the top half if the search is problematic.
1400 */
1401 distance = (cc->free_pfn - cc->migrate_pfn);
1402 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1403 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1404
1405 if (WARN_ON_ONCE(min_pfn > low_pfn))
1406 low_pfn = min_pfn;
1407
dbe2d4e4
MG
1408 /*
1409 * Search starts from the last successful isolation order or the next
1410 * order to search after a previous failure
1411 */
1412 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1413
1414 for (order = cc->search_order;
1415 !page && order >= 0;
1416 order = next_search_order(cc, order)) {
5a811889
MG
1417 struct free_area *area = &cc->zone->free_area[order];
1418 struct list_head *freelist;
1419 struct page *freepage;
1420 unsigned long flags;
1421 unsigned int order_scanned = 0;
74e21484 1422 unsigned long high_pfn = 0;
5a811889
MG
1423
1424 if (!area->nr_free)
1425 continue;
1426
1427 spin_lock_irqsave(&cc->zone->lock, flags);
1428 freelist = &area->free_list[MIGRATE_MOVABLE];
1429 list_for_each_entry_reverse(freepage, freelist, lru) {
1430 unsigned long pfn;
1431
1432 order_scanned++;
1433 nr_scanned++;
1434 pfn = page_to_pfn(freepage);
1435
1436 if (pfn >= highest)
6e2b7044
VB
1437 highest = max(pageblock_start_pfn(pfn),
1438 cc->zone->zone_start_pfn);
5a811889
MG
1439
1440 if (pfn >= low_pfn) {
1441 cc->fast_search_fail = 0;
dbe2d4e4 1442 cc->search_order = order;
5a811889
MG
1443 page = freepage;
1444 break;
1445 }
1446
1447 if (pfn >= min_pfn && pfn > high_pfn) {
1448 high_pfn = pfn;
1449
1450 /* Shorten the scan if a candidate is found */
1451 limit >>= 1;
1452 }
1453
1454 if (order_scanned >= limit)
1455 break;
1456 }
1457
1458 /* Use a minimum pfn if a preferred one was not found */
1459 if (!page && high_pfn) {
1460 page = pfn_to_page(high_pfn);
1461
1462 /* Update freepage for the list reorder below */
1463 freepage = page;
1464 }
1465
1466 /* Reorder to so a future search skips recent pages */
1467 move_freelist_head(freelist, freepage);
1468
1469 /* Isolate the page if available */
1470 if (page) {
1471 if (__isolate_free_page(page, order)) {
1472 set_page_private(page, order);
1473 nr_isolated = 1 << order;
1474 cc->nr_freepages += nr_isolated;
1475 list_add_tail(&page->lru, &cc->freepages);
1476 count_compact_events(COMPACTISOLATED, nr_isolated);
1477 } else {
1478 /* If isolation fails, abort the search */
5b56d996 1479 order = cc->search_order + 1;
5a811889
MG
1480 page = NULL;
1481 }
1482 }
1483
1484 spin_unlock_irqrestore(&cc->zone->lock, flags);
1485
1486 /*
b55ca526 1487 * Smaller scan on next order so the total scan is related
5a811889
MG
1488 * to freelist_scan_limit.
1489 */
1490 if (order_scanned >= limit)
b55ca526 1491 limit = max(1U, limit >> 1);
5a811889
MG
1492 }
1493
1494 if (!page) {
1495 cc->fast_search_fail++;
1496 if (scan_start) {
1497 /*
1498 * Use the highest PFN found above min. If one was
f3867755 1499 * not found, be pessimistic for direct compaction
5a811889
MG
1500 * and use the min mark.
1501 */
1502 if (highest) {
1503 page = pfn_to_page(highest);
1504 cc->free_pfn = highest;
1505 } else {
e577c8b6 1506 if (cc->direct_compaction && pfn_valid(min_pfn)) {
73a6e474 1507 page = pageblock_pfn_to_page(min_pfn,
6e2b7044
VB
1508 min(pageblock_end_pfn(min_pfn),
1509 zone_end_pfn(cc->zone)),
73a6e474 1510 cc->zone);
5a811889
MG
1511 cc->free_pfn = min_pfn;
1512 }
1513 }
1514 }
1515 }
1516
d097a6f6
MG
1517 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1518 highest -= pageblock_nr_pages;
5a811889 1519 cc->zone->compact_cached_free_pfn = highest;
d097a6f6 1520 }
5a811889
MG
1521
1522 cc->total_free_scanned += nr_scanned;
1523 if (!page)
1524 return cc->free_pfn;
1525
1526 low_pfn = page_to_pfn(page);
1527 fast_isolate_around(cc, low_pfn, nr_isolated);
1528 return low_pfn;
1529}
1530
2fe86e00 1531/*
ff9543fd
MN
1532 * Based on information in the current compact_control, find blocks
1533 * suitable for isolating free pages from and then isolate them.
2fe86e00 1534 */
edc2ca61 1535static void isolate_freepages(struct compact_control *cc)
2fe86e00 1536{
edc2ca61 1537 struct zone *zone = cc->zone;
ff9543fd 1538 struct page *page;
c96b9e50 1539 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1540 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1541 unsigned long block_end_pfn; /* end of current pageblock */
1542 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1543 struct list_head *freelist = &cc->freepages;
4fca9730 1544 unsigned int stride;
2fe86e00 1545
5a811889
MG
1546 /* Try a small search of the free lists for a candidate */
1547 isolate_start_pfn = fast_isolate_freepages(cc);
1548 if (cc->nr_freepages)
1549 goto splitmap;
1550
ff9543fd
MN
1551 /*
1552 * Initialise the free scanner. The starting point is where we last
49e068f0 1553 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1554 * zone when isolating for the first time. For looping we also need
1555 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1556 * block_start_pfn -= pageblock_nr_pages in the for loop.
1557 * For ending point, take care when isolating in last pageblock of a
a1c1dbeb 1558 * zone which ends in the middle of a pageblock.
49e068f0
VB
1559 * The low boundary is the end of the pageblock the migration scanner
1560 * is using.
ff9543fd 1561 */
e14c720e 1562 isolate_start_pfn = cc->free_pfn;
5a811889 1563 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
c96b9e50
VB
1564 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1565 zone_end_pfn(zone));
06b6640a 1566 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
4fca9730 1567 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
2fe86e00 1568
ff9543fd
MN
1569 /*
1570 * Isolate free pages until enough are available to migrate the
1571 * pages on cc->migratepages. We stop searching if the migrate
1572 * and free page scanners meet or enough free pages are isolated.
1573 */
f5f61a32 1574 for (; block_start_pfn >= low_pfn;
c96b9e50 1575 block_end_pfn = block_start_pfn,
e14c720e
VB
1576 block_start_pfn -= pageblock_nr_pages,
1577 isolate_start_pfn = block_start_pfn) {
4fca9730
MG
1578 unsigned long nr_isolated;
1579
f6ea3adb
DR
1580 /*
1581 * This can iterate a massively long zone without finding any
cb810ad2 1582 * suitable migration targets, so periodically check resched.
f6ea3adb 1583 */
cb810ad2 1584 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1585 cond_resched();
f6ea3adb 1586
7d49d886
VB
1587 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1588 zone);
1589 if (!page)
ff9543fd
MN
1590 continue;
1591
1592 /* Check the block is suitable for migration */
9f7e3387 1593 if (!suitable_migration_target(cc, page))
ff9543fd 1594 continue;
68e3e926 1595
bb13ffeb
MG
1596 /* If isolation recently failed, do not retry */
1597 if (!isolation_suitable(cc, page))
1598 continue;
1599
e14c720e 1600 /* Found a block suitable for isolating free pages from. */
4fca9730
MG
1601 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1602 block_end_pfn, freelist, stride, false);
ff9543fd 1603
d097a6f6
MG
1604 /* Update the skip hint if the full pageblock was scanned */
1605 if (isolate_start_pfn == block_end_pfn)
1606 update_pageblock_skip(cc, page, block_start_pfn);
1607
cb2dcaf0
MG
1608 /* Are enough freepages isolated? */
1609 if (cc->nr_freepages >= cc->nr_migratepages) {
a46cbf3b
DR
1610 if (isolate_start_pfn >= block_end_pfn) {
1611 /*
1612 * Restart at previous pageblock if more
1613 * freepages can be isolated next time.
1614 */
f5f61a32
VB
1615 isolate_start_pfn =
1616 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1617 }
be976572 1618 break;
a46cbf3b 1619 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1620 /*
a46cbf3b
DR
1621 * If isolation failed early, do not continue
1622 * needlessly.
f5f61a32 1623 */
a46cbf3b 1624 break;
f5f61a32 1625 }
4fca9730
MG
1626
1627 /* Adjust stride depending on isolation */
1628 if (nr_isolated) {
1629 stride = 1;
1630 continue;
1631 }
1632 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
ff9543fd
MN
1633 }
1634
7ed695e0 1635 /*
f5f61a32
VB
1636 * Record where the free scanner will restart next time. Either we
1637 * broke from the loop and set isolate_start_pfn based on the last
1638 * call to isolate_freepages_block(), or we met the migration scanner
1639 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1640 */
f5f61a32 1641 cc->free_pfn = isolate_start_pfn;
5a811889
MG
1642
1643splitmap:
1644 /* __isolate_free_page() does not map the pages */
1645 split_map_pages(freelist);
748446bb
MG
1646}
1647
1648/*
1649 * This is a migrate-callback that "allocates" freepages by taking pages
1650 * from the isolated freelists in the block we are migrating to.
1651 */
1652static struct page *compaction_alloc(struct page *migratepage,
666feb21 1653 unsigned long data)
748446bb
MG
1654{
1655 struct compact_control *cc = (struct compact_control *)data;
1656 struct page *freepage;
1657
748446bb 1658 if (list_empty(&cc->freepages)) {
cb2dcaf0 1659 isolate_freepages(cc);
748446bb
MG
1660
1661 if (list_empty(&cc->freepages))
1662 return NULL;
1663 }
1664
1665 freepage = list_entry(cc->freepages.next, struct page, lru);
1666 list_del(&freepage->lru);
1667 cc->nr_freepages--;
1668
1669 return freepage;
1670}
1671
1672/*
d53aea3d
DR
1673 * This is a migrate-callback that "frees" freepages back to the isolated
1674 * freelist. All pages on the freelist are from the same zone, so there is no
1675 * special handling needed for NUMA.
1676 */
1677static void compaction_free(struct page *page, unsigned long data)
1678{
1679 struct compact_control *cc = (struct compact_control *)data;
1680
1681 list_add(&page->lru, &cc->freepages);
1682 cc->nr_freepages++;
1683}
1684
ff9543fd
MN
1685/* possible outcome of isolate_migratepages */
1686typedef enum {
1687 ISOLATE_ABORT, /* Abort compaction now */
1688 ISOLATE_NONE, /* No pages isolated, continue scanning */
1689 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1690} isolate_migrate_t;
1691
5bbe3547
EM
1692/*
1693 * Allow userspace to control policy on scanning the unevictable LRU for
1694 * compactable pages.
1695 */
6923aa0d
SAS
1696#ifdef CONFIG_PREEMPT_RT
1697int sysctl_compact_unevictable_allowed __read_mostly = 0;
1698#else
5bbe3547 1699int sysctl_compact_unevictable_allowed __read_mostly = 1;
6923aa0d 1700#endif
5bbe3547 1701
70b44595
MG
1702static inline void
1703update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1704{
1705 if (cc->fast_start_pfn == ULONG_MAX)
1706 return;
1707
1708 if (!cc->fast_start_pfn)
1709 cc->fast_start_pfn = pfn;
1710
1711 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1712}
1713
1714static inline unsigned long
1715reinit_migrate_pfn(struct compact_control *cc)
1716{
1717 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1718 return cc->migrate_pfn;
1719
1720 cc->migrate_pfn = cc->fast_start_pfn;
1721 cc->fast_start_pfn = ULONG_MAX;
1722
1723 return cc->migrate_pfn;
1724}
1725
1726/*
1727 * Briefly search the free lists for a migration source that already has
1728 * some free pages to reduce the number of pages that need migration
1729 * before a pageblock is free.
1730 */
1731static unsigned long fast_find_migrateblock(struct compact_control *cc)
1732{
1733 unsigned int limit = freelist_scan_limit(cc);
1734 unsigned int nr_scanned = 0;
1735 unsigned long distance;
1736 unsigned long pfn = cc->migrate_pfn;
1737 unsigned long high_pfn;
1738 int order;
15d28d0d 1739 bool found_block = false;
70b44595
MG
1740
1741 /* Skip hints are relied on to avoid repeats on the fast search */
1742 if (cc->ignore_skip_hint)
1743 return pfn;
1744
1745 /*
1746 * If the migrate_pfn is not at the start of a zone or the start
1747 * of a pageblock then assume this is a continuation of a previous
1748 * scan restarted due to COMPACT_CLUSTER_MAX.
1749 */
1750 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1751 return pfn;
1752
1753 /*
1754 * For smaller orders, just linearly scan as the number of pages
1755 * to migrate should be relatively small and does not necessarily
1756 * justify freeing up a large block for a small allocation.
1757 */
1758 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1759 return pfn;
1760
1761 /*
1762 * Only allow kcompactd and direct requests for movable pages to
1763 * quickly clear out a MOVABLE pageblock for allocation. This
1764 * reduces the risk that a large movable pageblock is freed for
1765 * an unmovable/reclaimable small allocation.
1766 */
1767 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1768 return pfn;
1769
1770 /*
1771 * When starting the migration scanner, pick any pageblock within the
1772 * first half of the search space. Otherwise try and pick a pageblock
1773 * within the first eighth to reduce the chances that a migration
1774 * target later becomes a source.
1775 */
1776 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1777 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1778 distance >>= 2;
1779 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1780
1781 for (order = cc->order - 1;
15d28d0d 1782 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
70b44595
MG
1783 order--) {
1784 struct free_area *area = &cc->zone->free_area[order];
1785 struct list_head *freelist;
1786 unsigned long flags;
1787 struct page *freepage;
1788
1789 if (!area->nr_free)
1790 continue;
1791
1792 spin_lock_irqsave(&cc->zone->lock, flags);
1793 freelist = &area->free_list[MIGRATE_MOVABLE];
1794 list_for_each_entry(freepage, freelist, lru) {
1795 unsigned long free_pfn;
1796
15d28d0d
WY
1797 if (nr_scanned++ >= limit) {
1798 move_freelist_tail(freelist, freepage);
1799 break;
1800 }
1801
70b44595
MG
1802 free_pfn = page_to_pfn(freepage);
1803 if (free_pfn < high_pfn) {
70b44595
MG
1804 /*
1805 * Avoid if skipped recently. Ideally it would
1806 * move to the tail but even safe iteration of
1807 * the list assumes an entry is deleted, not
1808 * reordered.
1809 */
15d28d0d 1810 if (get_pageblock_skip(freepage))
70b44595 1811 continue;
70b44595
MG
1812
1813 /* Reorder to so a future search skips recent pages */
1814 move_freelist_tail(freelist, freepage);
1815
e380bebe 1816 update_fast_start_pfn(cc, free_pfn);
70b44595
MG
1817 pfn = pageblock_start_pfn(free_pfn);
1818 cc->fast_search_fail = 0;
15d28d0d 1819 found_block = true;
70b44595
MG
1820 set_pageblock_skip(freepage);
1821 break;
1822 }
70b44595
MG
1823 }
1824 spin_unlock_irqrestore(&cc->zone->lock, flags);
1825 }
1826
1827 cc->total_migrate_scanned += nr_scanned;
1828
1829 /*
1830 * If fast scanning failed then use a cached entry for a page block
1831 * that had free pages as the basis for starting a linear scan.
1832 */
15d28d0d
WY
1833 if (!found_block) {
1834 cc->fast_search_fail++;
70b44595 1835 pfn = reinit_migrate_pfn(cc);
15d28d0d 1836 }
70b44595
MG
1837 return pfn;
1838}
1839
ff9543fd 1840/*
edc2ca61
VB
1841 * Isolate all pages that can be migrated from the first suitable block,
1842 * starting at the block pointed to by the migrate scanner pfn within
1843 * compact_control.
ff9543fd 1844 */
32aaf055 1845static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
ff9543fd 1846{
e1409c32
JK
1847 unsigned long block_start_pfn;
1848 unsigned long block_end_pfn;
1849 unsigned long low_pfn;
edc2ca61
VB
1850 struct page *page;
1851 const isolate_mode_t isolate_mode =
5bbe3547 1852 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 1853 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
70b44595 1854 bool fast_find_block;
ff9543fd 1855
edc2ca61
VB
1856 /*
1857 * Start at where we last stopped, or beginning of the zone as
70b44595
MG
1858 * initialized by compact_zone(). The first failure will use
1859 * the lowest PFN as the starting point for linear scanning.
edc2ca61 1860 */
70b44595 1861 low_pfn = fast_find_migrateblock(cc);
06b6640a 1862 block_start_pfn = pageblock_start_pfn(low_pfn);
32aaf055
PL
1863 if (block_start_pfn < cc->zone->zone_start_pfn)
1864 block_start_pfn = cc->zone->zone_start_pfn;
ff9543fd 1865
70b44595
MG
1866 /*
1867 * fast_find_migrateblock marks a pageblock skipped so to avoid
1868 * the isolation_suitable check below, check whether the fast
1869 * search was successful.
1870 */
1871 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1872
ff9543fd 1873 /* Only scan within a pageblock boundary */
06b6640a 1874 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1875
edc2ca61
VB
1876 /*
1877 * Iterate over whole pageblocks until we find the first suitable.
1878 * Do not cross the free scanner.
1879 */
e1409c32 1880 for (; block_end_pfn <= cc->free_pfn;
70b44595 1881 fast_find_block = false,
c2ad7a1f 1882 cc->migrate_pfn = low_pfn = block_end_pfn,
e1409c32
JK
1883 block_start_pfn = block_end_pfn,
1884 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1885
edc2ca61
VB
1886 /*
1887 * This can potentially iterate a massively long zone with
1888 * many pageblocks unsuitable, so periodically check if we
cb810ad2 1889 * need to schedule.
edc2ca61 1890 */
cb810ad2 1891 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1892 cond_resched();
ff9543fd 1893
32aaf055
PL
1894 page = pageblock_pfn_to_page(block_start_pfn,
1895 block_end_pfn, cc->zone);
7d49d886 1896 if (!page)
edc2ca61
VB
1897 continue;
1898
e380bebe
MG
1899 /*
1900 * If isolation recently failed, do not retry. Only check the
1901 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1902 * to be visited multiple times. Assume skip was checked
1903 * before making it "skip" so other compaction instances do
1904 * not scan the same block.
1905 */
1906 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1907 !fast_find_block && !isolation_suitable(cc, page))
edc2ca61
VB
1908 continue;
1909
1910 /*
9bebefd5
MG
1911 * For async compaction, also only scan in MOVABLE blocks
1912 * without huge pages. Async compaction is optimistic to see
1913 * if the minimum amount of work satisfies the allocation.
1914 * The cached PFN is updated as it's possible that all
1915 * remaining blocks between source and target are unsuitable
1916 * and the compaction scanners fail to meet.
edc2ca61 1917 */
9bebefd5
MG
1918 if (!suitable_migration_source(cc, page)) {
1919 update_cached_migrate(cc, block_end_pfn);
edc2ca61 1920 continue;
9bebefd5 1921 }
edc2ca61
VB
1922
1923 /* Perform the isolation */
c2ad7a1f
OS
1924 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1925 isolate_mode))
edc2ca61
VB
1926 return ISOLATE_ABORT;
1927
1928 /*
1929 * Either we isolated something and proceed with migration. Or
1930 * we failed and compact_zone should decide if we should
1931 * continue or not.
1932 */
1933 break;
1934 }
1935
edc2ca61 1936 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1937}
1938
21c527a3
YB
1939/*
1940 * order == -1 is expected when compacting via
1941 * /proc/sys/vm/compact_memory
1942 */
1943static inline bool is_via_compact_memory(int order)
1944{
1945 return order == -1;
1946}
1947
facdaa91
NG
1948static bool kswapd_is_running(pg_data_t *pgdat)
1949{
b03fbd4f 1950 return pgdat->kswapd && task_is_running(pgdat->kswapd);
facdaa91
NG
1951}
1952
1953/*
1954 * A zone's fragmentation score is the external fragmentation wrt to the
40d7e203
CTR
1955 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1956 */
1957static unsigned int fragmentation_score_zone(struct zone *zone)
1958{
1959 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1960}
1961
1962/*
1963 * A weighted zone's fragmentation score is the external fragmentation
1964 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1965 * returns a value in the range [0, 100].
facdaa91
NG
1966 *
1967 * The scaling factor ensures that proactive compaction focuses on larger
1968 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1969 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1970 * and thus never exceeds the high threshold for proactive compaction.
1971 */
40d7e203 1972static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
facdaa91
NG
1973{
1974 unsigned long score;
1975
40d7e203 1976 score = zone->present_pages * fragmentation_score_zone(zone);
facdaa91
NG
1977 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1978}
1979
1980/*
1981 * The per-node proactive (background) compaction process is started by its
1982 * corresponding kcompactd thread when the node's fragmentation score
1983 * exceeds the high threshold. The compaction process remains active till
1984 * the node's score falls below the low threshold, or one of the back-off
1985 * conditions is met.
1986 */
d34c0a75 1987static unsigned int fragmentation_score_node(pg_data_t *pgdat)
facdaa91 1988{
d34c0a75 1989 unsigned int score = 0;
facdaa91
NG
1990 int zoneid;
1991
1992 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1993 struct zone *zone;
1994
1995 zone = &pgdat->node_zones[zoneid];
40d7e203 1996 score += fragmentation_score_zone_weighted(zone);
facdaa91
NG
1997 }
1998
1999 return score;
2000}
2001
d34c0a75 2002static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
facdaa91 2003{
d34c0a75 2004 unsigned int wmark_low;
facdaa91
NG
2005
2006 /*
f0953a1b
IM
2007 * Cap the low watermark to avoid excessive compaction
2008 * activity in case a user sets the proactiveness tunable
facdaa91
NG
2009 * close to 100 (maximum).
2010 */
d34c0a75
NG
2011 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2012 return low ? wmark_low : min(wmark_low + 10, 100U);
facdaa91
NG
2013}
2014
2015static bool should_proactive_compact_node(pg_data_t *pgdat)
2016{
2017 int wmark_high;
2018
2019 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2020 return false;
2021
2022 wmark_high = fragmentation_score_wmark(pgdat, false);
2023 return fragmentation_score_node(pgdat) > wmark_high;
2024}
2025
40cacbcb 2026static enum compact_result __compact_finished(struct compact_control *cc)
748446bb 2027{
8fb74b9f 2028 unsigned int order;
d39773a0 2029 const int migratetype = cc->migratetype;
cb2dcaf0 2030 int ret;
748446bb 2031
753341a4 2032 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 2033 if (compact_scanners_met(cc)) {
55b7c4c9 2034 /* Let the next compaction start anew. */
40cacbcb 2035 reset_cached_positions(cc->zone);
55b7c4c9 2036
62997027
MG
2037 /*
2038 * Mark that the PG_migrate_skip information should be cleared
accf6242 2039 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
2040 * flag itself as the decision to be clear should be directly
2041 * based on an allocation request.
2042 */
accf6242 2043 if (cc->direct_compaction)
40cacbcb 2044 cc->zone->compact_blockskip_flush = true;
62997027 2045
c8f7de0b
MH
2046 if (cc->whole_zone)
2047 return COMPACT_COMPLETE;
2048 else
2049 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 2050 }
748446bb 2051
facdaa91
NG
2052 if (cc->proactive_compaction) {
2053 int score, wmark_low;
2054 pg_data_t *pgdat;
2055
2056 pgdat = cc->zone->zone_pgdat;
2057 if (kswapd_is_running(pgdat))
2058 return COMPACT_PARTIAL_SKIPPED;
2059
2060 score = fragmentation_score_zone(cc->zone);
2061 wmark_low = fragmentation_score_wmark(pgdat, true);
2062
2063 if (score > wmark_low)
2064 ret = COMPACT_CONTINUE;
2065 else
2066 ret = COMPACT_SUCCESS;
2067
2068 goto out;
2069 }
2070
21c527a3 2071 if (is_via_compact_memory(cc->order))
56de7263
MG
2072 return COMPACT_CONTINUE;
2073
efe771c7
MG
2074 /*
2075 * Always finish scanning a pageblock to reduce the possibility of
2076 * fallbacks in the future. This is particularly important when
2077 * migration source is unmovable/reclaimable but it's not worth
2078 * special casing.
2079 */
2080 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2081 return COMPACT_CONTINUE;
baf6a9a1 2082
56de7263 2083 /* Direct compactor: Is a suitable page free? */
cb2dcaf0 2084 ret = COMPACT_NO_SUITABLE_PAGE;
8fb74b9f 2085 for (order = cc->order; order < MAX_ORDER; order++) {
40cacbcb 2086 struct free_area *area = &cc->zone->free_area[order];
2149cdae 2087 bool can_steal;
8fb74b9f
MG
2088
2089 /* Job done if page is free of the right migratetype */
b03641af 2090 if (!free_area_empty(area, migratetype))
cf378319 2091 return COMPACT_SUCCESS;
8fb74b9f 2092
2149cdae
JK
2093#ifdef CONFIG_CMA
2094 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2095 if (migratetype == MIGRATE_MOVABLE &&
b03641af 2096 !free_area_empty(area, MIGRATE_CMA))
cf378319 2097 return COMPACT_SUCCESS;
2149cdae
JK
2098#endif
2099 /*
2100 * Job done if allocation would steal freepages from
2101 * other migratetype buddy lists.
2102 */
2103 if (find_suitable_fallback(area, order, migratetype,
baf6a9a1
VB
2104 true, &can_steal) != -1) {
2105
2106 /* movable pages are OK in any pageblock */
2107 if (migratetype == MIGRATE_MOVABLE)
2108 return COMPACT_SUCCESS;
2109
2110 /*
2111 * We are stealing for a non-movable allocation. Make
2112 * sure we finish compacting the current pageblock
2113 * first so it is as free as possible and we won't
2114 * have to steal another one soon. This only applies
2115 * to sync compaction, as async compaction operates
2116 * on pageblocks of the same migratetype.
2117 */
2118 if (cc->mode == MIGRATE_ASYNC ||
2119 IS_ALIGNED(cc->migrate_pfn,
2120 pageblock_nr_pages)) {
2121 return COMPACT_SUCCESS;
2122 }
2123
cb2dcaf0
MG
2124 ret = COMPACT_CONTINUE;
2125 break;
baf6a9a1 2126 }
56de7263
MG
2127 }
2128
facdaa91 2129out:
cb2dcaf0
MG
2130 if (cc->contended || fatal_signal_pending(current))
2131 ret = COMPACT_CONTENDED;
2132
2133 return ret;
837d026d
JK
2134}
2135
40cacbcb 2136static enum compact_result compact_finished(struct compact_control *cc)
837d026d
JK
2137{
2138 int ret;
2139
40cacbcb
MG
2140 ret = __compact_finished(cc);
2141 trace_mm_compaction_finished(cc->zone, cc->order, ret);
837d026d
JK
2142 if (ret == COMPACT_NO_SUITABLE_PAGE)
2143 ret = COMPACT_CONTINUE;
2144
2145 return ret;
748446bb
MG
2146}
2147
ea7ab982 2148static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 2149 unsigned int alloc_flags,
97a225e6 2150 int highest_zoneidx,
86a294a8 2151 unsigned long wmark_target)
3e7d3449 2152{
3e7d3449
MG
2153 unsigned long watermark;
2154
21c527a3 2155 if (is_via_compact_memory(order))
3957c776
MH
2156 return COMPACT_CONTINUE;
2157
a9214443 2158 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
ebff3980
VB
2159 /*
2160 * If watermarks for high-order allocation are already met, there
2161 * should be no need for compaction at all.
2162 */
97a225e6 2163 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
ebff3980 2164 alloc_flags))
cf378319 2165 return COMPACT_SUCCESS;
ebff3980 2166
3e7d3449 2167 /*
9861a62c 2168 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
2169 * isolate free pages for migration targets. This means that the
2170 * watermark and alloc_flags have to match, or be more pessimistic than
2171 * the check in __isolate_free_page(). We don't use the direct
2172 * compactor's alloc_flags, as they are not relevant for freepage
97a225e6
JK
2173 * isolation. We however do use the direct compactor's highest_zoneidx
2174 * to skip over zones where lowmem reserves would prevent allocation
2175 * even if compaction succeeds.
8348faf9
VB
2176 * For costly orders, we require low watermark instead of min for
2177 * compaction to proceed to increase its chances.
d883c6cf
JK
2178 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2179 * suitable migration targets
3e7d3449 2180 */
8348faf9
VB
2181 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2182 low_wmark_pages(zone) : min_wmark_pages(zone);
2183 watermark += compact_gap(order);
97a225e6 2184 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
d883c6cf 2185 ALLOC_CMA, wmark_target))
3e7d3449
MG
2186 return COMPACT_SKIPPED;
2187
cc5c9f09
VB
2188 return COMPACT_CONTINUE;
2189}
2190
2b1a20c3
HS
2191/*
2192 * compaction_suitable: Is this suitable to run compaction on this zone now?
2193 * Returns
2194 * COMPACT_SKIPPED - If there are too few free pages for compaction
2195 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2196 * COMPACT_CONTINUE - If compaction should run now
2197 */
cc5c9f09
VB
2198enum compact_result compaction_suitable(struct zone *zone, int order,
2199 unsigned int alloc_flags,
97a225e6 2200 int highest_zoneidx)
cc5c9f09
VB
2201{
2202 enum compact_result ret;
2203 int fragindex;
2204
97a225e6 2205 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
cc5c9f09 2206 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
2207 /*
2208 * fragmentation index determines if allocation failures are due to
2209 * low memory or external fragmentation
2210 *
ebff3980
VB
2211 * index of -1000 would imply allocations might succeed depending on
2212 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
2213 * index towards 0 implies failure is due to lack of memory
2214 * index towards 1000 implies failure is due to fragmentation
2215 *
20311420
VB
2216 * Only compact if a failure would be due to fragmentation. Also
2217 * ignore fragindex for non-costly orders where the alternative to
2218 * a successful reclaim/compaction is OOM. Fragindex and the
2219 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2220 * excessive compaction for costly orders, but it should not be at the
2221 * expense of system stability.
3e7d3449 2222 */
20311420 2223 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
cc5c9f09
VB
2224 fragindex = fragmentation_index(zone, order);
2225 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2226 ret = COMPACT_NOT_SUITABLE_ZONE;
2227 }
837d026d 2228
837d026d
JK
2229 trace_mm_compaction_suitable(zone, order, ret);
2230 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2231 ret = COMPACT_SKIPPED;
2232
2233 return ret;
2234}
2235
86a294a8
MH
2236bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2237 int alloc_flags)
2238{
2239 struct zone *zone;
2240 struct zoneref *z;
2241
2242 /*
2243 * Make sure at least one zone would pass __compaction_suitable if we continue
2244 * retrying the reclaim.
2245 */
97a225e6
JK
2246 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2247 ac->highest_zoneidx, ac->nodemask) {
86a294a8
MH
2248 unsigned long available;
2249 enum compact_result compact_result;
2250
2251 /*
2252 * Do not consider all the reclaimable memory because we do not
2253 * want to trash just for a single high order allocation which
2254 * is even not guaranteed to appear even if __compaction_suitable
2255 * is happy about the watermark check.
2256 */
5a1c84b4 2257 available = zone_reclaimable_pages(zone) / order;
86a294a8
MH
2258 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2259 compact_result = __compaction_suitable(zone, order, alloc_flags,
97a225e6 2260 ac->highest_zoneidx, available);
cc5c9f09 2261 if (compact_result != COMPACT_SKIPPED)
86a294a8
MH
2262 return true;
2263 }
2264
2265 return false;
2266}
2267
5e1f0f09
MG
2268static enum compact_result
2269compact_zone(struct compact_control *cc, struct capture_control *capc)
748446bb 2270{
ea7ab982 2271 enum compact_result ret;
40cacbcb
MG
2272 unsigned long start_pfn = cc->zone->zone_start_pfn;
2273 unsigned long end_pfn = zone_end_pfn(cc->zone);
566e54e1 2274 unsigned long last_migrated_pfn;
e0b9daeb 2275 const bool sync = cc->mode != MIGRATE_ASYNC;
8854c55f 2276 bool update_cached;
748446bb 2277
a94b5252
YS
2278 /*
2279 * These counters track activities during zone compaction. Initialize
2280 * them before compacting a new zone.
2281 */
2282 cc->total_migrate_scanned = 0;
2283 cc->total_free_scanned = 0;
2284 cc->nr_migratepages = 0;
2285 cc->nr_freepages = 0;
2286 INIT_LIST_HEAD(&cc->freepages);
2287 INIT_LIST_HEAD(&cc->migratepages);
2288
01c0bfe0 2289 cc->migratetype = gfp_migratetype(cc->gfp_mask);
40cacbcb 2290 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
97a225e6 2291 cc->highest_zoneidx);
c46649de 2292 /* Compaction is likely to fail */
cf378319 2293 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
3e7d3449 2294 return ret;
c46649de
MH
2295
2296 /* huh, compaction_suitable is returning something unexpected */
2297 VM_BUG_ON(ret != COMPACT_CONTINUE);
3e7d3449 2298
d3132e4b
VB
2299 /*
2300 * Clear pageblock skip if there were failures recently and compaction
accf6242 2301 * is about to be retried after being deferred.
d3132e4b 2302 */
40cacbcb
MG
2303 if (compaction_restarting(cc->zone, cc->order))
2304 __reset_isolation_suitable(cc->zone);
d3132e4b 2305
c89511ab
MG
2306 /*
2307 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
2308 * information on where the scanners should start (unless we explicitly
2309 * want to compact the whole zone), but check that it is initialised
2310 * by ensuring the values are within zone boundaries.
c89511ab 2311 */
70b44595 2312 cc->fast_start_pfn = 0;
06ed2998 2313 if (cc->whole_zone) {
c89511ab 2314 cc->migrate_pfn = start_pfn;
06ed2998
VB
2315 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2316 } else {
40cacbcb
MG
2317 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2318 cc->free_pfn = cc->zone->compact_cached_free_pfn;
06ed2998
VB
2319 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2320 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
40cacbcb 2321 cc->zone->compact_cached_free_pfn = cc->free_pfn;
06ed2998
VB
2322 }
2323 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2324 cc->migrate_pfn = start_pfn;
40cacbcb
MG
2325 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2326 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
06ed2998 2327 }
c8f7de0b 2328
e332f741 2329 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
06ed2998
VB
2330 cc->whole_zone = true;
2331 }
c8f7de0b 2332
566e54e1 2333 last_migrated_pfn = 0;
748446bb 2334
8854c55f
MG
2335 /*
2336 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2337 * the basis that some migrations will fail in ASYNC mode. However,
2338 * if the cached PFNs match and pageblocks are skipped due to having
2339 * no isolation candidates, then the sync state does not matter.
2340 * Until a pageblock with isolation candidates is found, keep the
2341 * cached PFNs in sync to avoid revisiting the same blocks.
2342 */
2343 update_cached = !sync &&
2344 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2345
16c4a097
JK
2346 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2347 cc->free_pfn, end_pfn, sync);
0eb927c0 2348
361a2a22
MK
2349 /* lru_add_drain_all could be expensive with involving other CPUs */
2350 lru_add_drain();
748446bb 2351
40cacbcb 2352 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
9d502c1c 2353 int err;
19d3cf9d 2354 unsigned long iteration_start_pfn = cc->migrate_pfn;
748446bb 2355
804d3121
MG
2356 /*
2357 * Avoid multiple rescans which can happen if a page cannot be
2358 * isolated (dirty/writeback in async mode) or if the migrated
2359 * pages are being allocated before the pageblock is cleared.
2360 * The first rescan will capture the entire pageblock for
2361 * migration. If it fails, it'll be marked skip and scanning
2362 * will proceed as normal.
2363 */
2364 cc->rescan = false;
2365 if (pageblock_start_pfn(last_migrated_pfn) ==
19d3cf9d 2366 pageblock_start_pfn(iteration_start_pfn)) {
804d3121
MG
2367 cc->rescan = true;
2368 }
2369
32aaf055 2370 switch (isolate_migratepages(cc)) {
f9e35b3b 2371 case ISOLATE_ABORT:
2d1e1041 2372 ret = COMPACT_CONTENDED;
5733c7d1 2373 putback_movable_pages(&cc->migratepages);
e64c5237 2374 cc->nr_migratepages = 0;
f9e35b3b
MG
2375 goto out;
2376 case ISOLATE_NONE:
8854c55f
MG
2377 if (update_cached) {
2378 cc->zone->compact_cached_migrate_pfn[1] =
2379 cc->zone->compact_cached_migrate_pfn[0];
2380 }
2381
fdaf7f5c
VB
2382 /*
2383 * We haven't isolated and migrated anything, but
2384 * there might still be unflushed migrations from
2385 * previous cc->order aligned block.
2386 */
2387 goto check_drain;
f9e35b3b 2388 case ISOLATE_SUCCESS:
8854c55f 2389 update_cached = false;
19d3cf9d 2390 last_migrated_pfn = iteration_start_pfn;
f9e35b3b 2391 }
748446bb 2392
d53aea3d 2393 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 2394 compaction_free, (unsigned long)cc, cc->mode,
5ac95884 2395 MR_COMPACTION, NULL);
748446bb 2396
f8c9301f
VB
2397 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2398 &cc->migratepages);
748446bb 2399
f8c9301f
VB
2400 /* All pages were either migrated or will be released */
2401 cc->nr_migratepages = 0;
9d502c1c 2402 if (err) {
5733c7d1 2403 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
2404 /*
2405 * migrate_pages() may return -ENOMEM when scanners meet
2406 * and we want compact_finished() to detect it
2407 */
f2849aa0 2408 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 2409 ret = COMPACT_CONTENDED;
4bf2bba3
DR
2410 goto out;
2411 }
fdd048e1
VB
2412 /*
2413 * We failed to migrate at least one page in the current
2414 * order-aligned block, so skip the rest of it.
2415 */
2416 if (cc->direct_compaction &&
2417 (cc->mode == MIGRATE_ASYNC)) {
2418 cc->migrate_pfn = block_end_pfn(
2419 cc->migrate_pfn - 1, cc->order);
2420 /* Draining pcplists is useless in this case */
566e54e1 2421 last_migrated_pfn = 0;
fdd048e1 2422 }
748446bb 2423 }
fdaf7f5c 2424
fdaf7f5c
VB
2425check_drain:
2426 /*
2427 * Has the migration scanner moved away from the previous
2428 * cc->order aligned block where we migrated from? If yes,
2429 * flush the pages that were freed, so that they can merge and
2430 * compact_finished() can detect immediately if allocation
2431 * would succeed.
2432 */
566e54e1 2433 if (cc->order > 0 && last_migrated_pfn) {
fdaf7f5c 2434 unsigned long current_block_start =
06b6640a 2435 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 2436
566e54e1 2437 if (last_migrated_pfn < current_block_start) {
b01b2141 2438 lru_add_drain_cpu_zone(cc->zone);
fdaf7f5c 2439 /* No more flushing until we migrate again */
566e54e1 2440 last_migrated_pfn = 0;
fdaf7f5c
VB
2441 }
2442 }
2443
5e1f0f09
MG
2444 /* Stop if a page has been captured */
2445 if (capc && capc->page) {
2446 ret = COMPACT_SUCCESS;
2447 break;
2448 }
748446bb
MG
2449 }
2450
f9e35b3b 2451out:
6bace090
VB
2452 /*
2453 * Release free pages and update where the free scanner should restart,
2454 * so we don't leave any returned pages behind in the next attempt.
2455 */
2456 if (cc->nr_freepages > 0) {
2457 unsigned long free_pfn = release_freepages(&cc->freepages);
2458
2459 cc->nr_freepages = 0;
2460 VM_BUG_ON(free_pfn == 0);
2461 /* The cached pfn is always the first in a pageblock */
06b6640a 2462 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
2463 /*
2464 * Only go back, not forward. The cached pfn might have been
2465 * already reset to zone end in compact_finished()
2466 */
40cacbcb
MG
2467 if (free_pfn > cc->zone->compact_cached_free_pfn)
2468 cc->zone->compact_cached_free_pfn = free_pfn;
6bace090 2469 }
748446bb 2470
7f354a54
DR
2471 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2472 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2473
16c4a097
JK
2474 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2475 cc->free_pfn, end_pfn, sync, ret);
0eb927c0 2476
748446bb
MG
2477 return ret;
2478}
76ab0f53 2479
ea7ab982 2480static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 2481 gfp_t gfp_mask, enum compact_priority prio,
97a225e6 2482 unsigned int alloc_flags, int highest_zoneidx,
5e1f0f09 2483 struct page **capture)
56de7263 2484{
ea7ab982 2485 enum compact_result ret;
56de7263 2486 struct compact_control cc = {
56de7263 2487 .order = order,
dbe2d4e4 2488 .search_order = order,
6d7ce559 2489 .gfp_mask = gfp_mask,
56de7263 2490 .zone = zone,
a5508cd8
VB
2491 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2492 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980 2493 .alloc_flags = alloc_flags,
97a225e6 2494 .highest_zoneidx = highest_zoneidx,
accf6242 2495 .direct_compaction = true,
a8e025e5 2496 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
2497 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2498 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263 2499 };
5e1f0f09
MG
2500 struct capture_control capc = {
2501 .cc = &cc,
2502 .page = NULL,
2503 };
2504
b9e20f0d
VB
2505 /*
2506 * Make sure the structs are really initialized before we expose the
2507 * capture control, in case we are interrupted and the interrupt handler
2508 * frees a page.
2509 */
2510 barrier();
2511 WRITE_ONCE(current->capture_control, &capc);
56de7263 2512
5e1f0f09 2513 ret = compact_zone(&cc, &capc);
e64c5237
SL
2514
2515 VM_BUG_ON(!list_empty(&cc.freepages));
2516 VM_BUG_ON(!list_empty(&cc.migratepages));
2517
b9e20f0d
VB
2518 /*
2519 * Make sure we hide capture control first before we read the captured
2520 * page pointer, otherwise an interrupt could free and capture a page
2521 * and we would leak it.
2522 */
2523 WRITE_ONCE(current->capture_control, NULL);
2524 *capture = READ_ONCE(capc.page);
06dac2f4
CTR
2525 /*
2526 * Technically, it is also possible that compaction is skipped but
2527 * the page is still captured out of luck(IRQ came and freed the page).
2528 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2529 * the COMPACT[STALL|FAIL] when compaction is skipped.
2530 */
2531 if (*capture)
2532 ret = COMPACT_SUCCESS;
5e1f0f09 2533
e64c5237 2534 return ret;
56de7263
MG
2535}
2536
5e771905
MG
2537int sysctl_extfrag_threshold = 500;
2538
56de7263
MG
2539/**
2540 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 2541 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
2542 * @order: The order of the current allocation
2543 * @alloc_flags: The allocation flags of the current allocation
2544 * @ac: The context of current allocation
112d2d29 2545 * @prio: Determines how hard direct compaction should try to succeed
6467552c 2546 * @capture: Pointer to free page created by compaction will be stored here
56de7263
MG
2547 *
2548 * This is the main entry point for direct page compaction.
2549 */
ea7ab982 2550enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 2551 unsigned int alloc_flags, const struct alloc_context *ac,
5e1f0f09 2552 enum compact_priority prio, struct page **capture)
56de7263 2553{
56de7263 2554 int may_perform_io = gfp_mask & __GFP_IO;
56de7263
MG
2555 struct zoneref *z;
2556 struct zone *zone;
1d4746d3 2557 enum compact_result rc = COMPACT_SKIPPED;
56de7263 2558
73e64c51
MH
2559 /*
2560 * Check if the GFP flags allow compaction - GFP_NOIO is really
2561 * tricky context because the migration might require IO
2562 */
2563 if (!may_perform_io)
53853e2d 2564 return COMPACT_SKIPPED;
56de7263 2565
a5508cd8 2566 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 2567
56de7263 2568 /* Compact each zone in the list */
97a225e6
JK
2569 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2570 ac->highest_zoneidx, ac->nodemask) {
ea7ab982 2571 enum compact_result status;
56de7263 2572
a8e025e5
VB
2573 if (prio > MIN_COMPACT_PRIORITY
2574 && compaction_deferred(zone, order)) {
1d4746d3 2575 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 2576 continue;
1d4746d3 2577 }
53853e2d 2578
a5508cd8 2579 status = compact_zone_order(zone, order, gfp_mask, prio,
97a225e6 2580 alloc_flags, ac->highest_zoneidx, capture);
56de7263
MG
2581 rc = max(status, rc);
2582
7ceb009a
VB
2583 /* The allocation should succeed, stop compacting */
2584 if (status == COMPACT_SUCCESS) {
53853e2d
VB
2585 /*
2586 * We think the allocation will succeed in this zone,
2587 * but it is not certain, hence the false. The caller
2588 * will repeat this with true if allocation indeed
2589 * succeeds in this zone.
2590 */
2591 compaction_defer_reset(zone, order, false);
1f9efdef 2592
c3486f53 2593 break;
1f9efdef
VB
2594 }
2595
a5508cd8 2596 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 2597 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
2598 /*
2599 * We think that allocation won't succeed in this zone
2600 * so we defer compaction there. If it ends up
2601 * succeeding after all, it will be reset.
2602 */
2603 defer_compaction(zone, order);
1f9efdef
VB
2604
2605 /*
2606 * We might have stopped compacting due to need_resched() in
2607 * async compaction, or due to a fatal signal detected. In that
c3486f53 2608 * case do not try further zones
1f9efdef 2609 */
c3486f53
VB
2610 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2611 || fatal_signal_pending(current))
2612 break;
56de7263
MG
2613 }
2614
2615 return rc;
2616}
2617
facdaa91
NG
2618/*
2619 * Compact all zones within a node till each zone's fragmentation score
2620 * reaches within proactive compaction thresholds (as determined by the
2621 * proactiveness tunable).
2622 *
2623 * It is possible that the function returns before reaching score targets
2624 * due to various back-off conditions, such as, contention on per-node or
2625 * per-zone locks.
2626 */
2627static void proactive_compact_node(pg_data_t *pgdat)
2628{
2629 int zoneid;
2630 struct zone *zone;
2631 struct compact_control cc = {
2632 .order = -1,
2633 .mode = MIGRATE_SYNC_LIGHT,
2634 .ignore_skip_hint = true,
2635 .whole_zone = true,
2636 .gfp_mask = GFP_KERNEL,
2637 .proactive_compaction = true,
2638 };
2639
2640 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2641 zone = &pgdat->node_zones[zoneid];
2642 if (!populated_zone(zone))
2643 continue;
2644
2645 cc.zone = zone;
2646
2647 compact_zone(&cc, NULL);
2648
2649 VM_BUG_ON(!list_empty(&cc.freepages));
2650 VM_BUG_ON(!list_empty(&cc.migratepages));
2651 }
2652}
56de7263 2653
76ab0f53 2654/* Compact all zones within a node */
791cae96 2655static void compact_node(int nid)
76ab0f53 2656{
791cae96 2657 pg_data_t *pgdat = NODE_DATA(nid);
76ab0f53 2658 int zoneid;
76ab0f53 2659 struct zone *zone;
791cae96
VB
2660 struct compact_control cc = {
2661 .order = -1,
2662 .mode = MIGRATE_SYNC,
2663 .ignore_skip_hint = true,
2664 .whole_zone = true,
73e64c51 2665 .gfp_mask = GFP_KERNEL,
791cae96
VB
2666 };
2667
76ab0f53 2668
76ab0f53 2669 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
2670
2671 zone = &pgdat->node_zones[zoneid];
2672 if (!populated_zone(zone))
2673 continue;
2674
791cae96 2675 cc.zone = zone;
76ab0f53 2676
5e1f0f09 2677 compact_zone(&cc, NULL);
75469345 2678
791cae96
VB
2679 VM_BUG_ON(!list_empty(&cc.freepages));
2680 VM_BUG_ON(!list_empty(&cc.migratepages));
76ab0f53 2681 }
76ab0f53
MG
2682}
2683
2684/* Compact all nodes in the system */
7964c06d 2685static void compact_nodes(void)
76ab0f53
MG
2686{
2687 int nid;
2688
8575ec29
HD
2689 /* Flush pending updates to the LRU lists */
2690 lru_add_drain_all();
2691
76ab0f53
MG
2692 for_each_online_node(nid)
2693 compact_node(nid);
76ab0f53
MG
2694}
2695
facdaa91
NG
2696/*
2697 * Tunable for proactive compaction. It determines how
2698 * aggressively the kernel should compact memory in the
2699 * background. It takes values in the range [0, 100].
2700 */
d34c0a75 2701unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
facdaa91 2702
65d759c8
CTR
2703int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2704 void *buffer, size_t *length, loff_t *ppos)
2705{
2706 int rc, nid;
2707
2708 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2709 if (rc)
2710 return rc;
2711
2712 if (write && sysctl_compaction_proactiveness) {
2713 for_each_online_node(nid) {
2714 pg_data_t *pgdat = NODE_DATA(nid);
2715
2716 if (pgdat->proactive_compact_trigger)
2717 continue;
2718
2719 pgdat->proactive_compact_trigger = true;
2720 wake_up_interruptible(&pgdat->kcompactd_wait);
2721 }
2722 }
2723
2724 return 0;
2725}
2726
fec4eb2c
YB
2727/*
2728 * This is the entry point for compacting all nodes via
2729 * /proc/sys/vm/compact_memory
2730 */
76ab0f53 2731int sysctl_compaction_handler(struct ctl_table *table, int write,
32927393 2732 void *buffer, size_t *length, loff_t *ppos)
76ab0f53
MG
2733{
2734 if (write)
7964c06d 2735 compact_nodes();
76ab0f53
MG
2736
2737 return 0;
2738}
ed4a6d7f
MG
2739
2740#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
17adb230
Y
2741static ssize_t compact_store(struct device *dev,
2742 struct device_attribute *attr,
2743 const char *buf, size_t count)
ed4a6d7f 2744{
8575ec29
HD
2745 int nid = dev->id;
2746
2747 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2748 /* Flush pending updates to the LRU lists */
2749 lru_add_drain_all();
2750
2751 compact_node(nid);
2752 }
ed4a6d7f
MG
2753
2754 return count;
2755}
17adb230 2756static DEVICE_ATTR_WO(compact);
ed4a6d7f
MG
2757
2758int compaction_register_node(struct node *node)
2759{
10fbcf4c 2760 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2761}
2762
2763void compaction_unregister_node(struct node *node)
2764{
10fbcf4c 2765 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2766}
2767#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 2768
698b1b30
VB
2769static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2770{
65d759c8
CTR
2771 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2772 pgdat->proactive_compact_trigger;
698b1b30
VB
2773}
2774
2775static bool kcompactd_node_suitable(pg_data_t *pgdat)
2776{
2777 int zoneid;
2778 struct zone *zone;
97a225e6 2779 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
698b1b30 2780
97a225e6 2781 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
698b1b30
VB
2782 zone = &pgdat->node_zones[zoneid];
2783
2784 if (!populated_zone(zone))
2785 continue;
2786
2787 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
97a225e6 2788 highest_zoneidx) == COMPACT_CONTINUE)
698b1b30
VB
2789 return true;
2790 }
2791
2792 return false;
2793}
2794
2795static void kcompactd_do_work(pg_data_t *pgdat)
2796{
2797 /*
2798 * With no special task, compact all zones so that a page of requested
2799 * order is allocatable.
2800 */
2801 int zoneid;
2802 struct zone *zone;
2803 struct compact_control cc = {
2804 .order = pgdat->kcompactd_max_order,
dbe2d4e4 2805 .search_order = pgdat->kcompactd_max_order,
97a225e6 2806 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
698b1b30 2807 .mode = MIGRATE_SYNC_LIGHT,
a0647dc9 2808 .ignore_skip_hint = false,
73e64c51 2809 .gfp_mask = GFP_KERNEL,
698b1b30 2810 };
698b1b30 2811 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
97a225e6 2812 cc.highest_zoneidx);
7f354a54 2813 count_compact_event(KCOMPACTD_WAKE);
698b1b30 2814
97a225e6 2815 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
698b1b30
VB
2816 int status;
2817
2818 zone = &pgdat->node_zones[zoneid];
2819 if (!populated_zone(zone))
2820 continue;
2821
2822 if (compaction_deferred(zone, cc.order))
2823 continue;
2824
2825 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2826 COMPACT_CONTINUE)
2827 continue;
2828
172400c6
VB
2829 if (kthread_should_stop())
2830 return;
a94b5252
YS
2831
2832 cc.zone = zone;
5e1f0f09 2833 status = compact_zone(&cc, NULL);
698b1b30 2834
7ceb009a 2835 if (status == COMPACT_SUCCESS) {
698b1b30 2836 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 2837 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
bc3106b2
DR
2838 /*
2839 * Buddy pages may become stranded on pcps that could
2840 * otherwise coalesce on the zone's free area for
2841 * order >= cc.order. This is ratelimited by the
2842 * upcoming deferral.
2843 */
2844 drain_all_pages(zone);
2845
698b1b30
VB
2846 /*
2847 * We use sync migration mode here, so we defer like
2848 * sync direct compaction does.
2849 */
2850 defer_compaction(zone, cc.order);
2851 }
2852
7f354a54
DR
2853 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2854 cc.total_migrate_scanned);
2855 count_compact_events(KCOMPACTD_FREE_SCANNED,
2856 cc.total_free_scanned);
2857
698b1b30
VB
2858 VM_BUG_ON(!list_empty(&cc.freepages));
2859 VM_BUG_ON(!list_empty(&cc.migratepages));
2860 }
2861
2862 /*
2863 * Regardless of success, we are done until woken up next. But remember
97a225e6
JK
2864 * the requested order/highest_zoneidx in case it was higher/tighter
2865 * than our current ones
698b1b30
VB
2866 */
2867 if (pgdat->kcompactd_max_order <= cc.order)
2868 pgdat->kcompactd_max_order = 0;
97a225e6
JK
2869 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2870 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2871}
2872
97a225e6 2873void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
698b1b30
VB
2874{
2875 if (!order)
2876 return;
2877
2878 if (pgdat->kcompactd_max_order < order)
2879 pgdat->kcompactd_max_order = order;
2880
97a225e6
JK
2881 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2882 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
698b1b30 2883
6818600f
DB
2884 /*
2885 * Pairs with implicit barrier in wait_event_freezable()
2886 * such that wakeups are not missed.
2887 */
2888 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
698b1b30
VB
2889 return;
2890
2891 if (!kcompactd_node_suitable(pgdat))
2892 return;
2893
2894 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
97a225e6 2895 highest_zoneidx);
698b1b30
VB
2896 wake_up_interruptible(&pgdat->kcompactd_wait);
2897}
2898
2899/*
2900 * The background compaction daemon, started as a kernel thread
2901 * from the init process.
2902 */
2903static int kcompactd(void *p)
2904{
68d68ff6 2905 pg_data_t *pgdat = (pg_data_t *)p;
698b1b30 2906 struct task_struct *tsk = current;
e1e92bfa
CTR
2907 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2908 long timeout = default_timeout;
698b1b30
VB
2909
2910 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2911
2912 if (!cpumask_empty(cpumask))
2913 set_cpus_allowed_ptr(tsk, cpumask);
2914
2915 set_freezable();
2916
2917 pgdat->kcompactd_max_order = 0;
97a225e6 2918 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2919
2920 while (!kthread_should_stop()) {
eb414681
JW
2921 unsigned long pflags;
2922
65d759c8
CTR
2923 /*
2924 * Avoid the unnecessary wakeup for proactive compaction
2925 * when it is disabled.
2926 */
2927 if (!sysctl_compaction_proactiveness)
2928 timeout = MAX_SCHEDULE_TIMEOUT;
698b1b30 2929 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
facdaa91 2930 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
65d759c8
CTR
2931 kcompactd_work_requested(pgdat), timeout) &&
2932 !pgdat->proactive_compact_trigger) {
facdaa91
NG
2933
2934 psi_memstall_enter(&pflags);
2935 kcompactd_do_work(pgdat);
2936 psi_memstall_leave(&pflags);
e1e92bfa
CTR
2937 /*
2938 * Reset the timeout value. The defer timeout from
2939 * proactive compaction is lost here but that is fine
2940 * as the condition of the zone changing substantionally
2941 * then carrying on with the previous defer interval is
2942 * not useful.
2943 */
2944 timeout = default_timeout;
facdaa91
NG
2945 continue;
2946 }
698b1b30 2947
e1e92bfa
CTR
2948 /*
2949 * Start the proactive work with default timeout. Based
2950 * on the fragmentation score, this timeout is updated.
2951 */
2952 timeout = default_timeout;
facdaa91
NG
2953 if (should_proactive_compact_node(pgdat)) {
2954 unsigned int prev_score, score;
2955
facdaa91
NG
2956 prev_score = fragmentation_score_node(pgdat);
2957 proactive_compact_node(pgdat);
2958 score = fragmentation_score_node(pgdat);
2959 /*
2960 * Defer proactive compaction if the fragmentation
2961 * score did not go down i.e. no progress made.
2962 */
e1e92bfa
CTR
2963 if (unlikely(score >= prev_score))
2964 timeout =
2965 default_timeout << COMPACT_MAX_DEFER_SHIFT;
facdaa91 2966 }
65d759c8
CTR
2967 if (unlikely(pgdat->proactive_compact_trigger))
2968 pgdat->proactive_compact_trigger = false;
698b1b30
VB
2969 }
2970
2971 return 0;
2972}
2973
2974/*
2975 * This kcompactd start function will be called by init and node-hot-add.
2976 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2977 */
2978int kcompactd_run(int nid)
2979{
2980 pg_data_t *pgdat = NODE_DATA(nid);
2981 int ret = 0;
2982
2983 if (pgdat->kcompactd)
2984 return 0;
2985
2986 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2987 if (IS_ERR(pgdat->kcompactd)) {
2988 pr_err("Failed to start kcompactd on node %d\n", nid);
2989 ret = PTR_ERR(pgdat->kcompactd);
2990 pgdat->kcompactd = NULL;
2991 }
2992 return ret;
2993}
2994
2995/*
2996 * Called by memory hotplug when all memory in a node is offlined. Caller must
2997 * hold mem_hotplug_begin/end().
2998 */
2999void kcompactd_stop(int nid)
3000{
3001 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3002
3003 if (kcompactd) {
3004 kthread_stop(kcompactd);
3005 NODE_DATA(nid)->kcompactd = NULL;
3006 }
3007}
3008
3009/*
3010 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3011 * not required for correctness. So if the last cpu in a node goes
3012 * away, we get changed to run anywhere: as the first one comes back,
3013 * restore their cpu bindings.
3014 */
e46b1db2 3015static int kcompactd_cpu_online(unsigned int cpu)
698b1b30
VB
3016{
3017 int nid;
3018
e46b1db2
AMG
3019 for_each_node_state(nid, N_MEMORY) {
3020 pg_data_t *pgdat = NODE_DATA(nid);
3021 const struct cpumask *mask;
698b1b30 3022
e46b1db2 3023 mask = cpumask_of_node(pgdat->node_id);
698b1b30 3024
e46b1db2
AMG
3025 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3026 /* One of our CPUs online: restore mask */
3027 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
698b1b30 3028 }
e46b1db2 3029 return 0;
698b1b30
VB
3030}
3031
3032static int __init kcompactd_init(void)
3033{
3034 int nid;
e46b1db2
AMG
3035 int ret;
3036
3037 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3038 "mm/compaction:online",
3039 kcompactd_cpu_online, NULL);
3040 if (ret < 0) {
3041 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3042 return ret;
3043 }
698b1b30
VB
3044
3045 for_each_node_state(nid, N_MEMORY)
3046 kcompactd_run(nid);
698b1b30
VB
3047 return 0;
3048}
3049subsys_initcall(kcompactd_init)
3050
ff9543fd 3051#endif /* CONFIG_COMPACTION */