]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/compaction.c
drm/shmem-helper: Remove errant put in error path
[mirror_ubuntu-jammy-kernel.git] / mm / compaction.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
748446bb
MG
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
698b1b30 11#include <linux/cpu.h>
748446bb
MG
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
174cd4b1 16#include <linux/sched/signal.h>
748446bb 17#include <linux/backing-dev.h>
76ab0f53 18#include <linux/sysctl.h>
ed4a6d7f 19#include <linux/sysfs.h>
194159fb 20#include <linux/page-isolation.h>
b8c73fc2 21#include <linux/kasan.h>
698b1b30
VB
22#include <linux/kthread.h>
23#include <linux/freezer.h>
83358ece 24#include <linux/page_owner.h>
eb414681 25#include <linux/psi.h>
748446bb
MG
26#include "internal.h"
27
010fc29a
MK
28#ifdef CONFIG_COMPACTION
29static inline void count_compact_event(enum vm_event_item item)
30{
31 count_vm_event(item);
32}
33
34static inline void count_compact_events(enum vm_event_item item, long delta)
35{
36 count_vm_events(item, delta);
37}
38#else
39#define count_compact_event(item) do { } while (0)
40#define count_compact_events(item, delta) do { } while (0)
41#endif
42
ff9543fd
MN
43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
b7aba698
MG
45#define CREATE_TRACE_POINTS
46#include <trace/events/compaction.h>
47
06b6640a
VB
48#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
facdaa91
NG
53/*
54 * Fragmentation score check interval for proactive compaction purposes.
55 */
d34c0a75 56static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
facdaa91
NG
57
58/*
59 * Page order with-respect-to which proactive compaction
60 * calculates external fragmentation, which is used as
61 * the "fragmentation score" of a node/zone.
62 */
63#if defined CONFIG_TRANSPARENT_HUGEPAGE
64#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
25788738 65#elif defined CONFIG_HUGETLBFS
facdaa91
NG
66#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
67#else
68#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
69#endif
70
748446bb
MG
71static unsigned long release_freepages(struct list_head *freelist)
72{
73 struct page *page, *next;
6bace090 74 unsigned long high_pfn = 0;
748446bb
MG
75
76 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 77 unsigned long pfn = page_to_pfn(page);
748446bb
MG
78 list_del(&page->lru);
79 __free_page(page);
6bace090
VB
80 if (pfn > high_pfn)
81 high_pfn = pfn;
748446bb
MG
82 }
83
6bace090 84 return high_pfn;
748446bb
MG
85}
86
4469ab98 87static void split_map_pages(struct list_head *list)
ff9543fd 88{
66c64223
JK
89 unsigned int i, order, nr_pages;
90 struct page *page, *next;
91 LIST_HEAD(tmp_list);
92
93 list_for_each_entry_safe(page, next, list, lru) {
94 list_del(&page->lru);
95
96 order = page_private(page);
97 nr_pages = 1 << order;
66c64223 98
46f24fd8 99 post_alloc_hook(page, order, __GFP_MOVABLE);
66c64223
JK
100 if (order)
101 split_page(page, order);
ff9543fd 102
66c64223
JK
103 for (i = 0; i < nr_pages; i++) {
104 list_add(&page->lru, &tmp_list);
105 page++;
106 }
ff9543fd 107 }
66c64223
JK
108
109 list_splice(&tmp_list, list);
ff9543fd
MN
110}
111
bb13ffeb 112#ifdef CONFIG_COMPACTION
24e2716f 113
bda807d4
MK
114int PageMovable(struct page *page)
115{
116 struct address_space *mapping;
117
118 VM_BUG_ON_PAGE(!PageLocked(page), page);
119 if (!__PageMovable(page))
120 return 0;
121
122 mapping = page_mapping(page);
123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 return 1;
125
126 return 0;
127}
128EXPORT_SYMBOL(PageMovable);
129
130void __SetPageMovable(struct page *page, struct address_space *mapping)
131{
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135}
136EXPORT_SYMBOL(__SetPageMovable);
137
138void __ClearPageMovable(struct page *page)
139{
bda807d4
MK
140 VM_BUG_ON_PAGE(!PageMovable(page), page);
141 /*
142 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143 * flag so that VM can catch up released page by driver after isolation.
144 * With it, VM migration doesn't try to put it back.
145 */
146 page->mapping = (void *)((unsigned long)page->mapping &
147 PAGE_MAPPING_MOVABLE);
148}
149EXPORT_SYMBOL(__ClearPageMovable);
150
24e2716f
JK
151/* Do not skip compaction more than 64 times */
152#define COMPACT_MAX_DEFER_SHIFT 6
153
154/*
155 * Compaction is deferred when compaction fails to result in a page
860b3272 156 * allocation success. 1 << compact_defer_shift, compactions are skipped up
24e2716f
JK
157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158 */
2271b016 159static void defer_compaction(struct zone *zone, int order)
24e2716f
JK
160{
161 zone->compact_considered = 0;
162 zone->compact_defer_shift++;
163
164 if (order < zone->compact_order_failed)
165 zone->compact_order_failed = order;
166
167 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169
170 trace_mm_compaction_defer_compaction(zone, order);
171}
172
173/* Returns true if compaction should be skipped this time */
2271b016 174static bool compaction_deferred(struct zone *zone, int order)
24e2716f
JK
175{
176 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177
178 if (order < zone->compact_order_failed)
179 return false;
180
181 /* Avoid possible overflow */
62b35fe0 182 if (++zone->compact_considered >= defer_limit) {
24e2716f 183 zone->compact_considered = defer_limit;
24e2716f 184 return false;
62b35fe0 185 }
24e2716f
JK
186
187 trace_mm_compaction_deferred(zone, order);
188
189 return true;
190}
191
192/*
193 * Update defer tracking counters after successful compaction of given order,
194 * which means an allocation either succeeded (alloc_success == true) or is
195 * expected to succeed.
196 */
197void compaction_defer_reset(struct zone *zone, int order,
198 bool alloc_success)
199{
200 if (alloc_success) {
201 zone->compact_considered = 0;
202 zone->compact_defer_shift = 0;
203 }
204 if (order >= zone->compact_order_failed)
205 zone->compact_order_failed = order + 1;
206
207 trace_mm_compaction_defer_reset(zone, order);
208}
209
210/* Returns true if restarting compaction after many failures */
2271b016 211static bool compaction_restarting(struct zone *zone, int order)
24e2716f
JK
212{
213 if (order < zone->compact_order_failed)
214 return false;
215
216 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217 zone->compact_considered >= 1UL << zone->compact_defer_shift;
218}
219
bb13ffeb
MG
220/* Returns true if the pageblock should be scanned for pages to isolate. */
221static inline bool isolation_suitable(struct compact_control *cc,
222 struct page *page)
223{
224 if (cc->ignore_skip_hint)
225 return true;
226
227 return !get_pageblock_skip(page);
228}
229
02333641
VB
230static void reset_cached_positions(struct zone *zone)
231{
232 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 234 zone->compact_cached_free_pfn =
06b6640a 235 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
236}
237
21dc7e02 238/*
2271b016 239 * Compound pages of >= pageblock_order should consistently be skipped until
b527cfe5
VB
240 * released. It is always pointless to compact pages of such order (if they are
241 * migratable), and the pageblocks they occupy cannot contain any free pages.
21dc7e02 242 */
b527cfe5 243static bool pageblock_skip_persistent(struct page *page)
21dc7e02 244{
b527cfe5 245 if (!PageCompound(page))
21dc7e02 246 return false;
b527cfe5
VB
247
248 page = compound_head(page);
249
250 if (compound_order(page) >= pageblock_order)
251 return true;
252
253 return false;
21dc7e02
DR
254}
255
e332f741
MG
256static bool
257__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258 bool check_target)
259{
260 struct page *page = pfn_to_online_page(pfn);
6b0868c8 261 struct page *block_page;
e332f741
MG
262 struct page *end_page;
263 unsigned long block_pfn;
264
265 if (!page)
266 return false;
267 if (zone != page_zone(page))
268 return false;
269 if (pageblock_skip_persistent(page))
270 return false;
271
272 /*
273 * If skip is already cleared do no further checking once the
274 * restart points have been set.
275 */
276 if (check_source && check_target && !get_pageblock_skip(page))
277 return true;
278
279 /*
280 * If clearing skip for the target scanner, do not select a
281 * non-movable pageblock as the starting point.
282 */
283 if (!check_source && check_target &&
284 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285 return false;
286
6b0868c8
MG
287 /* Ensure the start of the pageblock or zone is online and valid */
288 block_pfn = pageblock_start_pfn(pfn);
a2e9a5af
VB
289 block_pfn = max(block_pfn, zone->zone_start_pfn);
290 block_page = pfn_to_online_page(block_pfn);
6b0868c8
MG
291 if (block_page) {
292 page = block_page;
293 pfn = block_pfn;
294 }
295
296 /* Ensure the end of the pageblock or zone is online and valid */
a2e9a5af 297 block_pfn = pageblock_end_pfn(pfn) - 1;
6b0868c8
MG
298 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299 end_page = pfn_to_online_page(block_pfn);
300 if (!end_page)
301 return false;
302
e332f741
MG
303 /*
304 * Only clear the hint if a sample indicates there is either a
305 * free page or an LRU page in the block. One or other condition
306 * is necessary for the block to be a migration source/target.
307 */
e332f741 308 do {
859a85dd
MR
309 if (check_source && PageLRU(page)) {
310 clear_pageblock_skip(page);
311 return true;
312 }
e332f741 313
859a85dd
MR
314 if (check_target && PageBuddy(page)) {
315 clear_pageblock_skip(page);
316 return true;
e332f741
MG
317 }
318
319 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
320 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
a2e9a5af 321 } while (page <= end_page);
e332f741
MG
322
323 return false;
324}
325
bb13ffeb
MG
326/*
327 * This function is called to clear all cached information on pageblocks that
328 * should be skipped for page isolation when the migrate and free page scanner
329 * meet.
330 */
62997027 331static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb 332{
e332f741 333 unsigned long migrate_pfn = zone->zone_start_pfn;
6b0868c8 334 unsigned long free_pfn = zone_end_pfn(zone) - 1;
e332f741
MG
335 unsigned long reset_migrate = free_pfn;
336 unsigned long reset_free = migrate_pfn;
337 bool source_set = false;
338 bool free_set = false;
339
340 if (!zone->compact_blockskip_flush)
341 return;
bb13ffeb 342
62997027 343 zone->compact_blockskip_flush = false;
bb13ffeb 344
e332f741
MG
345 /*
346 * Walk the zone and update pageblock skip information. Source looks
347 * for PageLRU while target looks for PageBuddy. When the scanner
348 * is found, both PageBuddy and PageLRU are checked as the pageblock
349 * is suitable as both source and target.
350 */
351 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
352 free_pfn -= pageblock_nr_pages) {
bb13ffeb
MG
353 cond_resched();
354
e332f741
MG
355 /* Update the migrate PFN */
356 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
357 migrate_pfn < reset_migrate) {
358 source_set = true;
359 reset_migrate = migrate_pfn;
360 zone->compact_init_migrate_pfn = reset_migrate;
361 zone->compact_cached_migrate_pfn[0] = reset_migrate;
362 zone->compact_cached_migrate_pfn[1] = reset_migrate;
363 }
bb13ffeb 364
e332f741
MG
365 /* Update the free PFN */
366 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
367 free_pfn > reset_free) {
368 free_set = true;
369 reset_free = free_pfn;
370 zone->compact_init_free_pfn = reset_free;
371 zone->compact_cached_free_pfn = reset_free;
372 }
bb13ffeb 373 }
02333641 374
e332f741
MG
375 /* Leave no distance if no suitable block was reset */
376 if (reset_migrate >= reset_free) {
377 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
378 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
379 zone->compact_cached_free_pfn = free_pfn;
380 }
bb13ffeb
MG
381}
382
62997027
MG
383void reset_isolation_suitable(pg_data_t *pgdat)
384{
385 int zoneid;
386
387 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
388 struct zone *zone = &pgdat->node_zones[zoneid];
389 if (!populated_zone(zone))
390 continue;
391
392 /* Only flush if a full compaction finished recently */
393 if (zone->compact_blockskip_flush)
394 __reset_isolation_suitable(zone);
395 }
396}
397
e380bebe
MG
398/*
399 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
400 * locks are not required for read/writers. Returns true if it was already set.
401 */
402static bool test_and_set_skip(struct compact_control *cc, struct page *page,
403 unsigned long pfn)
404{
405 bool skip;
406
407 /* Do no update if skip hint is being ignored */
408 if (cc->ignore_skip_hint)
409 return false;
410
411 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
412 return false;
413
414 skip = get_pageblock_skip(page);
415 if (!skip && !cc->no_set_skip_hint)
416 set_pageblock_skip(page);
417
418 return skip;
419}
420
421static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
422{
423 struct zone *zone = cc->zone;
424
425 pfn = pageblock_end_pfn(pfn);
426
427 /* Set for isolation rather than compaction */
428 if (cc->no_set_skip_hint)
429 return;
430
431 if (pfn > zone->compact_cached_migrate_pfn[0])
432 zone->compact_cached_migrate_pfn[0] = pfn;
433 if (cc->mode != MIGRATE_ASYNC &&
434 pfn > zone->compact_cached_migrate_pfn[1])
435 zone->compact_cached_migrate_pfn[1] = pfn;
436}
437
bb13ffeb
MG
438/*
439 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 440 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 441 */
c89511ab 442static void update_pageblock_skip(struct compact_control *cc,
d097a6f6 443 struct page *page, unsigned long pfn)
bb13ffeb 444{
c89511ab 445 struct zone *zone = cc->zone;
6815bf3f 446
2583d671 447 if (cc->no_set_skip_hint)
6815bf3f
JK
448 return;
449
bb13ffeb
MG
450 if (!page)
451 return;
452
edc2ca61 453 set_pageblock_skip(page);
c89511ab 454
35979ef3 455 /* Update where async and sync compaction should restart */
e380bebe
MG
456 if (pfn < zone->compact_cached_free_pfn)
457 zone->compact_cached_free_pfn = pfn;
bb13ffeb
MG
458}
459#else
460static inline bool isolation_suitable(struct compact_control *cc,
461 struct page *page)
462{
463 return true;
464}
465
b527cfe5 466static inline bool pageblock_skip_persistent(struct page *page)
21dc7e02
DR
467{
468 return false;
469}
470
471static inline void update_pageblock_skip(struct compact_control *cc,
d097a6f6 472 struct page *page, unsigned long pfn)
bb13ffeb
MG
473{
474}
e380bebe
MG
475
476static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
477{
478}
479
480static bool test_and_set_skip(struct compact_control *cc, struct page *page,
481 unsigned long pfn)
482{
483 return false;
484}
bb13ffeb
MG
485#endif /* CONFIG_COMPACTION */
486
8b44d279
VB
487/*
488 * Compaction requires the taking of some coarse locks that are potentially
cb2dcaf0
MG
489 * very heavily contended. For async compaction, trylock and record if the
490 * lock is contended. The lock will still be acquired but compaction will
491 * abort when the current block is finished regardless of success rate.
492 * Sync compaction acquires the lock.
8b44d279 493 *
cb2dcaf0 494 * Always returns true which makes it easier to track lock state in callers.
8b44d279 495 */
cb2dcaf0 496static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
8b44d279 497 struct compact_control *cc)
77337ede 498 __acquires(lock)
2a1402aa 499{
cb2dcaf0
MG
500 /* Track if the lock is contended in async mode */
501 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
502 if (spin_trylock_irqsave(lock, *flags))
503 return true;
504
505 cc->contended = true;
8b44d279 506 }
1f9efdef 507
cb2dcaf0 508 spin_lock_irqsave(lock, *flags);
8b44d279 509 return true;
2a1402aa
MG
510}
511
c67fe375
MG
512/*
513 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
514 * very heavily contended. The lock should be periodically unlocked to avoid
515 * having disabled IRQs for a long time, even when there is nobody waiting on
516 * the lock. It might also be that allowing the IRQs will result in
517 * need_resched() becoming true. If scheduling is needed, async compaction
518 * aborts. Sync compaction schedules.
519 * Either compaction type will also abort if a fatal signal is pending.
520 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 521 *
8b44d279
VB
522 * Returns true if compaction should abort due to fatal signal pending, or
523 * async compaction due to need_resched()
524 * Returns false when compaction can continue (sync compaction might have
525 * scheduled)
c67fe375 526 */
8b44d279
VB
527static bool compact_unlock_should_abort(spinlock_t *lock,
528 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 529{
8b44d279
VB
530 if (*locked) {
531 spin_unlock_irqrestore(lock, flags);
532 *locked = false;
533 }
1f9efdef 534
8b44d279 535 if (fatal_signal_pending(current)) {
c3486f53 536 cc->contended = true;
8b44d279
VB
537 return true;
538 }
c67fe375 539
cf66f070 540 cond_resched();
be976572
VB
541
542 return false;
543}
544
85aa125f 545/*
9e4be470
JM
546 * Isolate free pages onto a private freelist. If @strict is true, will abort
547 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
548 * (even though it may still end up isolating some pages).
85aa125f 549 */
f40d1e42 550static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 551 unsigned long *start_pfn,
85aa125f
MN
552 unsigned long end_pfn,
553 struct list_head *freelist,
4fca9730 554 unsigned int stride,
85aa125f 555 bool strict)
748446bb 556{
b7aba698 557 int nr_scanned = 0, total_isolated = 0;
d097a6f6 558 struct page *cursor;
b8b2d825 559 unsigned long flags = 0;
f40d1e42 560 bool locked = false;
e14c720e 561 unsigned long blockpfn = *start_pfn;
66c64223 562 unsigned int order;
748446bb 563
4fca9730
MG
564 /* Strict mode is for isolation, speed is secondary */
565 if (strict)
566 stride = 1;
567
748446bb
MG
568 cursor = pfn_to_page(blockpfn);
569
f40d1e42 570 /* Isolate free pages. */
4fca9730 571 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
66c64223 572 int isolated;
748446bb
MG
573 struct page *page = cursor;
574
8b44d279
VB
575 /*
576 * Periodically drop the lock (if held) regardless of its
577 * contention, to give chance to IRQs. Abort if fatal signal
578 * pending or async compaction detects need_resched()
579 */
580 if (!(blockpfn % SWAP_CLUSTER_MAX)
581 && compact_unlock_should_abort(&cc->zone->lock, flags,
582 &locked, cc))
583 break;
584
b7aba698 585 nr_scanned++;
2af120bc 586
9fcd6d2e
VB
587 /*
588 * For compound pages such as THP and hugetlbfs, we can save
589 * potentially a lot of iterations if we skip them at once.
590 * The check is racy, but we can consider only valid values
591 * and the only danger is skipping too much.
592 */
593 if (PageCompound(page)) {
21dc7e02
DR
594 const unsigned int order = compound_order(page);
595
d3c85bad 596 if (likely(order < MAX_ORDER)) {
21dc7e02
DR
597 blockpfn += (1UL << order) - 1;
598 cursor += (1UL << order) - 1;
9fcd6d2e 599 }
9fcd6d2e
VB
600 goto isolate_fail;
601 }
602
f40d1e42 603 if (!PageBuddy(page))
2af120bc 604 goto isolate_fail;
f40d1e42
MG
605
606 /*
69b7189f
VB
607 * If we already hold the lock, we can skip some rechecking.
608 * Note that if we hold the lock now, checked_pageblock was
609 * already set in some previous iteration (or strict is true),
610 * so it is correct to skip the suitable migration target
611 * recheck as well.
f40d1e42 612 */
69b7189f 613 if (!locked) {
cb2dcaf0 614 locked = compact_lock_irqsave(&cc->zone->lock,
8b44d279 615 &flags, cc);
f40d1e42 616
69b7189f
VB
617 /* Recheck this is a buddy page under lock */
618 if (!PageBuddy(page))
619 goto isolate_fail;
620 }
748446bb 621
66c64223 622 /* Found a free page, will break it into order-0 pages */
ab130f91 623 order = buddy_order(page);
66c64223 624 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
625 if (!isolated)
626 break;
66c64223 627 set_page_private(page, order);
a4f04f2c 628
748446bb 629 total_isolated += isolated;
a4f04f2c 630 cc->nr_freepages += isolated;
66c64223
JK
631 list_add_tail(&page->lru, freelist);
632
a4f04f2c
DR
633 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
634 blockpfn += isolated;
635 break;
748446bb 636 }
a4f04f2c
DR
637 /* Advance to the end of split page */
638 blockpfn += isolated - 1;
639 cursor += isolated - 1;
640 continue;
2af120bc
LA
641
642isolate_fail:
643 if (strict)
644 break;
645 else
646 continue;
647
748446bb
MG
648 }
649
a4f04f2c
DR
650 if (locked)
651 spin_unlock_irqrestore(&cc->zone->lock, flags);
652
9fcd6d2e
VB
653 /*
654 * There is a tiny chance that we have read bogus compound_order(),
655 * so be careful to not go outside of the pageblock.
656 */
657 if (unlikely(blockpfn > end_pfn))
658 blockpfn = end_pfn;
659
e34d85f0
JK
660 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
661 nr_scanned, total_isolated);
662
e14c720e
VB
663 /* Record how far we have got within the block */
664 *start_pfn = blockpfn;
665
f40d1e42
MG
666 /*
667 * If strict isolation is requested by CMA then check that all the
668 * pages requested were isolated. If there were any failures, 0 is
669 * returned and CMA will fail.
670 */
2af120bc 671 if (strict && blockpfn < end_pfn)
f40d1e42
MG
672 total_isolated = 0;
673
7f354a54 674 cc->total_free_scanned += nr_scanned;
397487db 675 if (total_isolated)
010fc29a 676 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
677 return total_isolated;
678}
679
85aa125f
MN
680/**
681 * isolate_freepages_range() - isolate free pages.
e8b098fc 682 * @cc: Compaction control structure.
85aa125f
MN
683 * @start_pfn: The first PFN to start isolating.
684 * @end_pfn: The one-past-last PFN.
685 *
686 * Non-free pages, invalid PFNs, or zone boundaries within the
687 * [start_pfn, end_pfn) range are considered errors, cause function to
688 * undo its actions and return zero.
689 *
690 * Otherwise, function returns one-past-the-last PFN of isolated page
691 * (which may be greater then end_pfn if end fell in a middle of
692 * a free page).
693 */
ff9543fd 694unsigned long
bb13ffeb
MG
695isolate_freepages_range(struct compact_control *cc,
696 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 697{
e1409c32 698 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
699 LIST_HEAD(freelist);
700
7d49d886 701 pfn = start_pfn;
06b6640a 702 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
703 if (block_start_pfn < cc->zone->zone_start_pfn)
704 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 705 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
706
707 for (; pfn < end_pfn; pfn += isolated,
e1409c32 708 block_start_pfn = block_end_pfn,
7d49d886 709 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
710 /* Protect pfn from changing by isolate_freepages_block */
711 unsigned long isolate_start_pfn = pfn;
85aa125f 712
85aa125f
MN
713 block_end_pfn = min(block_end_pfn, end_pfn);
714
58420016
JK
715 /*
716 * pfn could pass the block_end_pfn if isolated freepage
717 * is more than pageblock order. In this case, we adjust
718 * scanning range to right one.
719 */
720 if (pfn >= block_end_pfn) {
06b6640a
VB
721 block_start_pfn = pageblock_start_pfn(pfn);
722 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
723 block_end_pfn = min(block_end_pfn, end_pfn);
724 }
725
e1409c32
JK
726 if (!pageblock_pfn_to_page(block_start_pfn,
727 block_end_pfn, cc->zone))
7d49d886
VB
728 break;
729
e14c720e 730 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
4fca9730 731 block_end_pfn, &freelist, 0, true);
85aa125f
MN
732
733 /*
734 * In strict mode, isolate_freepages_block() returns 0 if
735 * there are any holes in the block (ie. invalid PFNs or
736 * non-free pages).
737 */
738 if (!isolated)
739 break;
740
741 /*
742 * If we managed to isolate pages, it is always (1 << n) *
743 * pageblock_nr_pages for some non-negative n. (Max order
744 * page may span two pageblocks).
745 */
746 }
747
66c64223 748 /* __isolate_free_page() does not map the pages */
4469ab98 749 split_map_pages(&freelist);
85aa125f
MN
750
751 if (pfn < end_pfn) {
752 /* Loop terminated early, cleanup. */
753 release_freepages(&freelist);
754 return 0;
755 }
756
757 /* We don't use freelists for anything. */
758 return pfn;
759}
760
748446bb 761/* Similar to reclaim, but different enough that they don't share logic */
5f438eee 762static bool too_many_isolated(pg_data_t *pgdat)
748446bb 763{
bc693045 764 unsigned long active, inactive, isolated;
748446bb 765
5f438eee
AR
766 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
767 node_page_state(pgdat, NR_INACTIVE_ANON);
768 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
769 node_page_state(pgdat, NR_ACTIVE_ANON);
770 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
771 node_page_state(pgdat, NR_ISOLATED_ANON);
748446bb 772
bc693045 773 return isolated > (inactive + active) / 2;
748446bb
MG
774}
775
2fe86e00 776/**
edc2ca61
VB
777 * isolate_migratepages_block() - isolate all migrate-able pages within
778 * a single pageblock
2fe86e00 779 * @cc: Compaction control structure.
edc2ca61
VB
780 * @low_pfn: The first PFN to isolate
781 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
fd19bcd3 782 * @mode: Isolation mode to be used.
2fe86e00
MN
783 *
784 * Isolate all pages that can be migrated from the range specified by
edc2ca61 785 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
c2ad7a1f 786 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
369fa227 787 * -ENOMEM in case we could not allocate a page, or 0.
c2ad7a1f 788 * cc->migrate_pfn will contain the next pfn to scan.
2fe86e00 789 *
edc2ca61 790 * The pages are isolated on cc->migratepages list (not required to be empty),
c2ad7a1f 791 * and cc->nr_migratepages is updated accordingly.
748446bb 792 */
c2ad7a1f 793static int
edc2ca61 794isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
fd19bcd3 795 unsigned long end_pfn, isolate_mode_t mode)
748446bb 796{
5f438eee 797 pg_data_t *pgdat = cc->zone->zone_pgdat;
b7aba698 798 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 799 struct lruvec *lruvec;
b8b2d825 800 unsigned long flags = 0;
6168d0da 801 struct lruvec *locked = NULL;
bb13ffeb 802 struct page *page = NULL, *valid_page = NULL;
fd19bcd3 803 struct address_space *mapping;
e34d85f0 804 unsigned long start_pfn = low_pfn;
fdd048e1
VB
805 bool skip_on_failure = false;
806 unsigned long next_skip_pfn = 0;
e380bebe 807 bool skip_updated = false;
c2ad7a1f
OS
808 int ret = 0;
809
810 cc->migrate_pfn = low_pfn;
748446bb 811
748446bb
MG
812 /*
813 * Ensure that there are not too many pages isolated from the LRU
814 * list by either parallel reclaimers or compaction. If there are,
815 * delay for some time until fewer pages are isolated
816 */
5f438eee 817 while (unlikely(too_many_isolated(pgdat))) {
d20bdd57
ZY
818 /* stop isolation if there are still pages not migrated */
819 if (cc->nr_migratepages)
c2ad7a1f 820 return -EAGAIN;
d20bdd57 821
f9e35b3b 822 /* async migration should just abort */
e0b9daeb 823 if (cc->mode == MIGRATE_ASYNC)
c2ad7a1f 824 return -EAGAIN;
f9e35b3b 825
748446bb
MG
826 congestion_wait(BLK_RW_ASYNC, HZ/10);
827
828 if (fatal_signal_pending(current))
c2ad7a1f 829 return -EINTR;
748446bb
MG
830 }
831
cf66f070 832 cond_resched();
aeef4b83 833
fdd048e1
VB
834 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
835 skip_on_failure = true;
836 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
837 }
838
748446bb 839 /* Time to isolate some pages for migration */
748446bb 840 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 841
fdd048e1
VB
842 if (skip_on_failure && low_pfn >= next_skip_pfn) {
843 /*
844 * We have isolated all migration candidates in the
845 * previous order-aligned block, and did not skip it due
846 * to failure. We should migrate the pages now and
847 * hopefully succeed compaction.
848 */
849 if (nr_isolated)
850 break;
851
852 /*
853 * We failed to isolate in the previous order-aligned
854 * block. Set the new boundary to the end of the
855 * current block. Note we can't simply increase
856 * next_skip_pfn by 1 << order, as low_pfn might have
857 * been incremented by a higher number due to skipping
858 * a compound or a high-order buddy page in the
859 * previous loop iteration.
860 */
861 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
862 }
863
8b44d279
VB
864 /*
865 * Periodically drop the lock (if held) regardless of its
670105a2
MG
866 * contention, to give chance to IRQs. Abort completely if
867 * a fatal signal is pending.
8b44d279 868 */
6168d0da
AS
869 if (!(low_pfn % SWAP_CLUSTER_MAX)) {
870 if (locked) {
871 unlock_page_lruvec_irqrestore(locked, flags);
872 locked = NULL;
873 }
874
875 if (fatal_signal_pending(current)) {
876 cc->contended = true;
c2ad7a1f 877 ret = -EINTR;
6168d0da 878
6168d0da
AS
879 goto fatal_pending;
880 }
881
882 cond_resched();
670105a2 883 }
c67fe375 884
b7aba698 885 nr_scanned++;
748446bb 886
748446bb 887 page = pfn_to_page(low_pfn);
dc908600 888
e380bebe
MG
889 /*
890 * Check if the pageblock has already been marked skipped.
891 * Only the aligned PFN is checked as the caller isolates
892 * COMPACT_CLUSTER_MAX at a time so the second call must
893 * not falsely conclude that the block should be skipped.
894 */
895 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
896 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
897 low_pfn = end_pfn;
9df41314 898 page = NULL;
e380bebe
MG
899 goto isolate_abort;
900 }
bb13ffeb 901 valid_page = page;
e380bebe 902 }
bb13ffeb 903
369fa227 904 if (PageHuge(page) && cc->alloc_contig) {
ae37c7ff 905 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
369fa227
OS
906
907 /*
908 * Fail isolation in case isolate_or_dissolve_huge_page()
909 * reports an error. In case of -ENOMEM, abort right away.
910 */
911 if (ret < 0) {
912 /* Do not report -EBUSY down the chain */
913 if (ret == -EBUSY)
914 ret = 0;
915 low_pfn += (1UL << compound_order(page)) - 1;
916 goto isolate_fail;
917 }
918
ae37c7ff
OS
919 if (PageHuge(page)) {
920 /*
921 * Hugepage was successfully isolated and placed
922 * on the cc->migratepages list.
923 */
924 low_pfn += compound_nr(page) - 1;
925 goto isolate_success_no_list;
926 }
927
369fa227
OS
928 /*
929 * Ok, the hugepage was dissolved. Now these pages are
930 * Buddy and cannot be re-allocated because they are
931 * isolated. Fall-through as the check below handles
932 * Buddy pages.
933 */
934 }
935
6c14466c 936 /*
99c0fd5e
VB
937 * Skip if free. We read page order here without zone lock
938 * which is generally unsafe, but the race window is small and
939 * the worst thing that can happen is that we skip some
940 * potential isolation targets.
6c14466c 941 */
99c0fd5e 942 if (PageBuddy(page)) {
ab130f91 943 unsigned long freepage_order = buddy_order_unsafe(page);
99c0fd5e
VB
944
945 /*
946 * Without lock, we cannot be sure that what we got is
947 * a valid page order. Consider only values in the
948 * valid order range to prevent low_pfn overflow.
949 */
950 if (freepage_order > 0 && freepage_order < MAX_ORDER)
951 low_pfn += (1UL << freepage_order) - 1;
748446bb 952 continue;
99c0fd5e 953 }
748446bb 954
bc835011 955 /*
29c0dde8 956 * Regardless of being on LRU, compound pages such as THP and
1da2f328
RR
957 * hugetlbfs are not to be compacted unless we are attempting
958 * an allocation much larger than the huge page size (eg CMA).
959 * We can potentially save a lot of iterations if we skip them
960 * at once. The check is racy, but we can consider only valid
961 * values and the only danger is skipping too much.
bc835011 962 */
1da2f328 963 if (PageCompound(page) && !cc->alloc_contig) {
21dc7e02 964 const unsigned int order = compound_order(page);
edc2ca61 965
d3c85bad 966 if (likely(order < MAX_ORDER))
21dc7e02 967 low_pfn += (1UL << order) - 1;
fdd048e1 968 goto isolate_fail;
2a1402aa
MG
969 }
970
bda807d4
MK
971 /*
972 * Check may be lockless but that's ok as we recheck later.
973 * It's possible to migrate LRU and non-lru movable pages.
974 * Skip any other type of page
975 */
976 if (!PageLRU(page)) {
bda807d4
MK
977 /*
978 * __PageMovable can return false positive so we need
979 * to verify it under page_lock.
980 */
981 if (unlikely(__PageMovable(page)) &&
982 !PageIsolated(page)) {
983 if (locked) {
6168d0da
AS
984 unlock_page_lruvec_irqrestore(locked, flags);
985 locked = NULL;
bda807d4
MK
986 }
987
fd19bcd3 988 if (!isolate_movable_page(page, mode))
bda807d4
MK
989 goto isolate_success;
990 }
991
fdd048e1 992 goto isolate_fail;
bda807d4 993 }
29c0dde8 994
69ce5bae
GS
995 /*
996 * Be careful not to clear PageLRU until after we're
997 * sure the page is not being freed elsewhere -- the
998 * page release code relies on it.
999 */
1000 if (unlikely(!get_page_unless_zero(page)))
1001 goto isolate_fail;
1002
119d6d59
DR
1003 /*
1004 * Migration will fail if an anonymous page is pinned in memory,
1005 * so avoid taking lru_lock and isolating it unnecessarily in an
1006 * admittedly racy check.
1007 */
fd19bcd3 1008 mapping = page_mapping(page);
69ce5bae
GS
1009 if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1010 goto isolate_fail_put;
119d6d59 1011
73e64c51
MH
1012 /*
1013 * Only allow to migrate anonymous pages in GFP_NOFS context
1014 * because those do not depend on fs locks.
1015 */
fd19bcd3 1016 if (!(cc->gfp_mask & __GFP_FS) && mapping)
69ce5bae 1017 goto isolate_fail_put;
9df41314 1018
fd19bcd3
HD
1019 /* Only take pages on LRU: a check now makes later tests safe */
1020 if (!PageLRU(page))
1021 goto isolate_fail_put;
1022
1023 /* Compaction might skip unevictable pages but CMA takes them */
1024 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1025 goto isolate_fail_put;
1026
1027 /*
1028 * To minimise LRU disruption, the caller can indicate with
1029 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1030 * it will be able to migrate without blocking - clean pages
1031 * for the most part. PageWriteback would require blocking.
1032 */
1033 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
9df41314
AS
1034 goto isolate_fail_put;
1035
fd19bcd3
HD
1036 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1037 bool migrate_dirty;
1038
1039 /*
1040 * Only pages without mappings or that have a
1041 * ->migratepage callback are possible to migrate
1042 * without blocking. However, we can be racing with
1043 * truncation so it's necessary to lock the page
1044 * to stabilise the mapping as truncation holds
1045 * the page lock until after the page is removed
1046 * from the page cache.
1047 */
1048 if (!trylock_page(page))
1049 goto isolate_fail_put;
1050
1051 mapping = page_mapping(page);
1052 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1053 unlock_page(page);
1054 if (!migrate_dirty)
1055 goto isolate_fail_put;
1056 }
1057
9df41314
AS
1058 /* Try isolate the page */
1059 if (!TestClearPageLRU(page))
1060 goto isolate_fail_put;
1061
a984226f 1062 lruvec = mem_cgroup_page_lruvec(page);
6168d0da 1063
69b7189f 1064 /* If we already hold the lock, we can skip some rechecking */
6168d0da
AS
1065 if (lruvec != locked) {
1066 if (locked)
1067 unlock_page_lruvec_irqrestore(locked, flags);
1068
1069 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1070 locked = lruvec;
6168d0da
AS
1071
1072 lruvec_memcg_debug(lruvec, page);
e380bebe 1073
e380bebe
MG
1074 /* Try get exclusive access under lock */
1075 if (!skip_updated) {
1076 skip_updated = true;
1077 if (test_and_set_skip(cc, page, low_pfn))
1078 goto isolate_abort;
1079 }
2a1402aa 1080
29c0dde8
VB
1081 /*
1082 * Page become compound since the non-locked check,
1083 * and it's on LRU. It can only be a THP so the order
1084 * is safe to read and it's 0 for tail pages.
1085 */
1da2f328 1086 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
d8c6546b 1087 low_pfn += compound_nr(page) - 1;
9df41314
AS
1088 SetPageLRU(page);
1089 goto isolate_fail_put;
69b7189f 1090 }
d99fd5fe 1091 }
fa9add64 1092
1da2f328
RR
1093 /* The whole page is taken off the LRU; skip the tail pages. */
1094 if (PageCompound(page))
1095 low_pfn += compound_nr(page) - 1;
bc835011 1096
748446bb 1097 /* Successfully isolated */
46ae6b2c 1098 del_page_from_lru_list(page, lruvec);
1da2f328 1099 mod_node_page_state(page_pgdat(page),
9de4f22a 1100 NR_ISOLATED_ANON + page_is_file_lru(page),
6c357848 1101 thp_nr_pages(page));
b6c75016
JK
1102
1103isolate_success:
fdd048e1 1104 list_add(&page->lru, &cc->migratepages);
ae37c7ff 1105isolate_success_no_list:
38935861
ZY
1106 cc->nr_migratepages += compound_nr(page);
1107 nr_isolated += compound_nr(page);
748446bb 1108
804d3121
MG
1109 /*
1110 * Avoid isolating too much unless this block is being
cb2dcaf0
MG
1111 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1112 * or a lock is contended. For contention, isolate quickly to
1113 * potentially remove one source of contention.
804d3121 1114 */
38935861 1115 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
cb2dcaf0 1116 !cc->rescan && !cc->contended) {
31b8384a 1117 ++low_pfn;
748446bb 1118 break;
31b8384a 1119 }
fdd048e1
VB
1120
1121 continue;
9df41314
AS
1122
1123isolate_fail_put:
1124 /* Avoid potential deadlock in freeing page under lru_lock */
1125 if (locked) {
6168d0da
AS
1126 unlock_page_lruvec_irqrestore(locked, flags);
1127 locked = NULL;
9df41314
AS
1128 }
1129 put_page(page);
1130
fdd048e1 1131isolate_fail:
369fa227 1132 if (!skip_on_failure && ret != -ENOMEM)
fdd048e1
VB
1133 continue;
1134
1135 /*
1136 * We have isolated some pages, but then failed. Release them
1137 * instead of migrating, as we cannot form the cc->order buddy
1138 * page anyway.
1139 */
1140 if (nr_isolated) {
1141 if (locked) {
6168d0da
AS
1142 unlock_page_lruvec_irqrestore(locked, flags);
1143 locked = NULL;
fdd048e1 1144 }
fdd048e1
VB
1145 putback_movable_pages(&cc->migratepages);
1146 cc->nr_migratepages = 0;
fdd048e1
VB
1147 nr_isolated = 0;
1148 }
1149
1150 if (low_pfn < next_skip_pfn) {
1151 low_pfn = next_skip_pfn - 1;
1152 /*
1153 * The check near the loop beginning would have updated
1154 * next_skip_pfn too, but this is a bit simpler.
1155 */
1156 next_skip_pfn += 1UL << cc->order;
1157 }
369fa227
OS
1158
1159 if (ret == -ENOMEM)
1160 break;
748446bb
MG
1161 }
1162
99c0fd5e
VB
1163 /*
1164 * The PageBuddy() check could have potentially brought us outside
1165 * the range to be scanned.
1166 */
1167 if (unlikely(low_pfn > end_pfn))
1168 low_pfn = end_pfn;
1169
9df41314
AS
1170 page = NULL;
1171
e380bebe 1172isolate_abort:
c67fe375 1173 if (locked)
6168d0da 1174 unlock_page_lruvec_irqrestore(locked, flags);
9df41314
AS
1175 if (page) {
1176 SetPageLRU(page);
1177 put_page(page);
1178 }
748446bb 1179
50b5b094 1180 /*
804d3121
MG
1181 * Updated the cached scanner pfn once the pageblock has been scanned
1182 * Pages will either be migrated in which case there is no point
1183 * scanning in the near future or migration failed in which case the
1184 * failure reason may persist. The block is marked for skipping if
1185 * there were no pages isolated in the block or if the block is
1186 * rescanned twice in a row.
50b5b094 1187 */
804d3121 1188 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
e380bebe
MG
1189 if (valid_page && !skip_updated)
1190 set_pageblock_skip(valid_page);
1191 update_cached_migrate(cc, low_pfn);
1192 }
bb13ffeb 1193
e34d85f0
JK
1194 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1195 nr_scanned, nr_isolated);
b7aba698 1196
670105a2 1197fatal_pending:
7f354a54 1198 cc->total_migrate_scanned += nr_scanned;
397487db 1199 if (nr_isolated)
010fc29a 1200 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 1201
c2ad7a1f
OS
1202 cc->migrate_pfn = low_pfn;
1203
1204 return ret;
2fe86e00
MN
1205}
1206
edc2ca61
VB
1207/**
1208 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1209 * @cc: Compaction control structure.
1210 * @start_pfn: The first PFN to start isolating.
1211 * @end_pfn: The one-past-last PFN.
1212 *
369fa227
OS
1213 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1214 * in case we could not allocate a page, or 0.
edc2ca61 1215 */
c2ad7a1f 1216int
edc2ca61
VB
1217isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1218 unsigned long end_pfn)
1219{
e1409c32 1220 unsigned long pfn, block_start_pfn, block_end_pfn;
c2ad7a1f 1221 int ret = 0;
edc2ca61
VB
1222
1223 /* Scan block by block. First and last block may be incomplete */
1224 pfn = start_pfn;
06b6640a 1225 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
1226 if (block_start_pfn < cc->zone->zone_start_pfn)
1227 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 1228 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
1229
1230 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 1231 block_start_pfn = block_end_pfn,
edc2ca61
VB
1232 block_end_pfn += pageblock_nr_pages) {
1233
1234 block_end_pfn = min(block_end_pfn, end_pfn);
1235
e1409c32
JK
1236 if (!pageblock_pfn_to_page(block_start_pfn,
1237 block_end_pfn, cc->zone))
edc2ca61
VB
1238 continue;
1239
c2ad7a1f
OS
1240 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1241 ISOLATE_UNEVICTABLE);
edc2ca61 1242
c2ad7a1f 1243 if (ret)
edc2ca61 1244 break;
6ea41c0c 1245
38935861 1246 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
6ea41c0c 1247 break;
edc2ca61 1248 }
edc2ca61 1249
c2ad7a1f 1250 return ret;
edc2ca61
VB
1251}
1252
ff9543fd
MN
1253#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1254#ifdef CONFIG_COMPACTION
018e9a49 1255
b682debd
VB
1256static bool suitable_migration_source(struct compact_control *cc,
1257 struct page *page)
1258{
282722b0
VB
1259 int block_mt;
1260
9bebefd5
MG
1261 if (pageblock_skip_persistent(page))
1262 return false;
1263
282722b0 1264 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
b682debd
VB
1265 return true;
1266
282722b0
VB
1267 block_mt = get_pageblock_migratetype(page);
1268
1269 if (cc->migratetype == MIGRATE_MOVABLE)
1270 return is_migrate_movable(block_mt);
1271 else
1272 return block_mt == cc->migratetype;
b682debd
VB
1273}
1274
018e9a49 1275/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1276static bool suitable_migration_target(struct compact_control *cc,
1277 struct page *page)
018e9a49
AM
1278{
1279 /* If the page is a large free page, then disallow migration */
1280 if (PageBuddy(page)) {
1281 /*
1282 * We are checking page_order without zone->lock taken. But
1283 * the only small danger is that we skip a potentially suitable
1284 * pageblock, so it's not worth to check order for valid range.
1285 */
ab130f91 1286 if (buddy_order_unsafe(page) >= pageblock_order)
018e9a49
AM
1287 return false;
1288 }
1289
1ef36db2
YX
1290 if (cc->ignore_block_suitable)
1291 return true;
1292
018e9a49 1293 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
b682debd 1294 if (is_migrate_movable(get_pageblock_migratetype(page)))
018e9a49
AM
1295 return true;
1296
1297 /* Otherwise skip the block */
1298 return false;
1299}
1300
70b44595
MG
1301static inline unsigned int
1302freelist_scan_limit(struct compact_control *cc)
1303{
dd7ef7bd
QC
1304 unsigned short shift = BITS_PER_LONG - 1;
1305
1306 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
70b44595
MG
1307}
1308
f2849aa0
VB
1309/*
1310 * Test whether the free scanner has reached the same or lower pageblock than
1311 * the migration scanner, and compaction should thus terminate.
1312 */
1313static inline bool compact_scanners_met(struct compact_control *cc)
1314{
1315 return (cc->free_pfn >> pageblock_order)
1316 <= (cc->migrate_pfn >> pageblock_order);
1317}
1318
5a811889
MG
1319/*
1320 * Used when scanning for a suitable migration target which scans freelists
1321 * in reverse. Reorders the list such as the unscanned pages are scanned
1322 * first on the next iteration of the free scanner
1323 */
1324static void
1325move_freelist_head(struct list_head *freelist, struct page *freepage)
1326{
1327 LIST_HEAD(sublist);
1328
1329 if (!list_is_last(freelist, &freepage->lru)) {
1330 list_cut_before(&sublist, freelist, &freepage->lru);
d2155fe5 1331 list_splice_tail(&sublist, freelist);
5a811889
MG
1332 }
1333}
1334
1335/*
1336 * Similar to move_freelist_head except used by the migration scanner
1337 * when scanning forward. It's possible for these list operations to
1338 * move against each other if they search the free list exactly in
1339 * lockstep.
1340 */
70b44595
MG
1341static void
1342move_freelist_tail(struct list_head *freelist, struct page *freepage)
1343{
1344 LIST_HEAD(sublist);
1345
1346 if (!list_is_first(freelist, &freepage->lru)) {
1347 list_cut_position(&sublist, freelist, &freepage->lru);
d2155fe5 1348 list_splice_tail(&sublist, freelist);
70b44595
MG
1349 }
1350}
1351
5a811889
MG
1352static void
1353fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1354{
1355 unsigned long start_pfn, end_pfn;
6e2b7044 1356 struct page *page;
5a811889
MG
1357
1358 /* Do not search around if there are enough pages already */
1359 if (cc->nr_freepages >= cc->nr_migratepages)
1360 return;
1361
1362 /* Minimise scanning during async compaction */
1363 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1364 return;
1365
1366 /* Pageblock boundaries */
6e2b7044
VB
1367 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1368 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1369
1370 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1371 if (!page)
1372 return;
5a811889
MG
1373
1374 /* Scan before */
1375 if (start_pfn != pfn) {
4fca9730 1376 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
5a811889
MG
1377 if (cc->nr_freepages >= cc->nr_migratepages)
1378 return;
1379 }
1380
1381 /* Scan after */
1382 start_pfn = pfn + nr_isolated;
60fce36a 1383 if (start_pfn < end_pfn)
4fca9730 1384 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
5a811889
MG
1385
1386 /* Skip this pageblock in the future as it's full or nearly full */
1387 if (cc->nr_freepages < cc->nr_migratepages)
1388 set_pageblock_skip(page);
1389}
1390
dbe2d4e4
MG
1391/* Search orders in round-robin fashion */
1392static int next_search_order(struct compact_control *cc, int order)
1393{
1394 order--;
1395 if (order < 0)
1396 order = cc->order - 1;
1397
1398 /* Search wrapped around? */
1399 if (order == cc->search_order) {
1400 cc->search_order--;
1401 if (cc->search_order < 0)
1402 cc->search_order = cc->order - 1;
1403 return -1;
1404 }
1405
1406 return order;
1407}
1408
5a811889
MG
1409static unsigned long
1410fast_isolate_freepages(struct compact_control *cc)
1411{
b55ca526 1412 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
5a811889 1413 unsigned int nr_scanned = 0;
74e21484 1414 unsigned long low_pfn, min_pfn, highest = 0;
5a811889
MG
1415 unsigned long nr_isolated = 0;
1416 unsigned long distance;
1417 struct page *page = NULL;
1418 bool scan_start = false;
1419 int order;
1420
1421 /* Full compaction passes in a negative order */
1422 if (cc->order <= 0)
1423 return cc->free_pfn;
1424
1425 /*
1426 * If starting the scan, use a deeper search and use the highest
1427 * PFN found if a suitable one is not found.
1428 */
e332f741 1429 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
5a811889
MG
1430 limit = pageblock_nr_pages >> 1;
1431 scan_start = true;
1432 }
1433
1434 /*
1435 * Preferred point is in the top quarter of the scan space but take
1436 * a pfn from the top half if the search is problematic.
1437 */
1438 distance = (cc->free_pfn - cc->migrate_pfn);
1439 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1440 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1441
1442 if (WARN_ON_ONCE(min_pfn > low_pfn))
1443 low_pfn = min_pfn;
1444
dbe2d4e4
MG
1445 /*
1446 * Search starts from the last successful isolation order or the next
1447 * order to search after a previous failure
1448 */
1449 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1450
1451 for (order = cc->search_order;
1452 !page && order >= 0;
1453 order = next_search_order(cc, order)) {
5a811889
MG
1454 struct free_area *area = &cc->zone->free_area[order];
1455 struct list_head *freelist;
1456 struct page *freepage;
1457 unsigned long flags;
1458 unsigned int order_scanned = 0;
74e21484 1459 unsigned long high_pfn = 0;
5a811889
MG
1460
1461 if (!area->nr_free)
1462 continue;
1463
1464 spin_lock_irqsave(&cc->zone->lock, flags);
1465 freelist = &area->free_list[MIGRATE_MOVABLE];
1466 list_for_each_entry_reverse(freepage, freelist, lru) {
1467 unsigned long pfn;
1468
1469 order_scanned++;
1470 nr_scanned++;
1471 pfn = page_to_pfn(freepage);
1472
1473 if (pfn >= highest)
6e2b7044
VB
1474 highest = max(pageblock_start_pfn(pfn),
1475 cc->zone->zone_start_pfn);
5a811889
MG
1476
1477 if (pfn >= low_pfn) {
1478 cc->fast_search_fail = 0;
dbe2d4e4 1479 cc->search_order = order;
5a811889
MG
1480 page = freepage;
1481 break;
1482 }
1483
1484 if (pfn >= min_pfn && pfn > high_pfn) {
1485 high_pfn = pfn;
1486
1487 /* Shorten the scan if a candidate is found */
1488 limit >>= 1;
1489 }
1490
1491 if (order_scanned >= limit)
1492 break;
1493 }
1494
1495 /* Use a minimum pfn if a preferred one was not found */
1496 if (!page && high_pfn) {
1497 page = pfn_to_page(high_pfn);
1498
1499 /* Update freepage for the list reorder below */
1500 freepage = page;
1501 }
1502
1503 /* Reorder to so a future search skips recent pages */
1504 move_freelist_head(freelist, freepage);
1505
1506 /* Isolate the page if available */
1507 if (page) {
1508 if (__isolate_free_page(page, order)) {
1509 set_page_private(page, order);
1510 nr_isolated = 1 << order;
1511 cc->nr_freepages += nr_isolated;
1512 list_add_tail(&page->lru, &cc->freepages);
1513 count_compact_events(COMPACTISOLATED, nr_isolated);
1514 } else {
1515 /* If isolation fails, abort the search */
5b56d996 1516 order = cc->search_order + 1;
5a811889
MG
1517 page = NULL;
1518 }
1519 }
1520
1521 spin_unlock_irqrestore(&cc->zone->lock, flags);
1522
1523 /*
b55ca526 1524 * Smaller scan on next order so the total scan is related
5a811889
MG
1525 * to freelist_scan_limit.
1526 */
1527 if (order_scanned >= limit)
b55ca526 1528 limit = max(1U, limit >> 1);
5a811889
MG
1529 }
1530
1531 if (!page) {
1532 cc->fast_search_fail++;
1533 if (scan_start) {
1534 /*
1535 * Use the highest PFN found above min. If one was
f3867755 1536 * not found, be pessimistic for direct compaction
5a811889
MG
1537 * and use the min mark.
1538 */
1539 if (highest) {
1540 page = pfn_to_page(highest);
1541 cc->free_pfn = highest;
1542 } else {
e577c8b6 1543 if (cc->direct_compaction && pfn_valid(min_pfn)) {
73a6e474 1544 page = pageblock_pfn_to_page(min_pfn,
6e2b7044
VB
1545 min(pageblock_end_pfn(min_pfn),
1546 zone_end_pfn(cc->zone)),
73a6e474 1547 cc->zone);
5a811889
MG
1548 cc->free_pfn = min_pfn;
1549 }
1550 }
1551 }
1552 }
1553
d097a6f6
MG
1554 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1555 highest -= pageblock_nr_pages;
5a811889 1556 cc->zone->compact_cached_free_pfn = highest;
d097a6f6 1557 }
5a811889
MG
1558
1559 cc->total_free_scanned += nr_scanned;
1560 if (!page)
1561 return cc->free_pfn;
1562
1563 low_pfn = page_to_pfn(page);
1564 fast_isolate_around(cc, low_pfn, nr_isolated);
1565 return low_pfn;
1566}
1567
2fe86e00 1568/*
ff9543fd
MN
1569 * Based on information in the current compact_control, find blocks
1570 * suitable for isolating free pages from and then isolate them.
2fe86e00 1571 */
edc2ca61 1572static void isolate_freepages(struct compact_control *cc)
2fe86e00 1573{
edc2ca61 1574 struct zone *zone = cc->zone;
ff9543fd 1575 struct page *page;
c96b9e50 1576 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1577 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1578 unsigned long block_end_pfn; /* end of current pageblock */
1579 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1580 struct list_head *freelist = &cc->freepages;
4fca9730 1581 unsigned int stride;
2fe86e00 1582
5a811889
MG
1583 /* Try a small search of the free lists for a candidate */
1584 isolate_start_pfn = fast_isolate_freepages(cc);
1585 if (cc->nr_freepages)
1586 goto splitmap;
1587
ff9543fd
MN
1588 /*
1589 * Initialise the free scanner. The starting point is where we last
49e068f0 1590 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1591 * zone when isolating for the first time. For looping we also need
1592 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1593 * block_start_pfn -= pageblock_nr_pages in the for loop.
1594 * For ending point, take care when isolating in last pageblock of a
a1c1dbeb 1595 * zone which ends in the middle of a pageblock.
49e068f0
VB
1596 * The low boundary is the end of the pageblock the migration scanner
1597 * is using.
ff9543fd 1598 */
e14c720e 1599 isolate_start_pfn = cc->free_pfn;
5a811889 1600 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
c96b9e50
VB
1601 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1602 zone_end_pfn(zone));
06b6640a 1603 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
4fca9730 1604 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
2fe86e00 1605
ff9543fd
MN
1606 /*
1607 * Isolate free pages until enough are available to migrate the
1608 * pages on cc->migratepages. We stop searching if the migrate
1609 * and free page scanners meet or enough free pages are isolated.
1610 */
f5f61a32 1611 for (; block_start_pfn >= low_pfn;
c96b9e50 1612 block_end_pfn = block_start_pfn,
e14c720e
VB
1613 block_start_pfn -= pageblock_nr_pages,
1614 isolate_start_pfn = block_start_pfn) {
4fca9730
MG
1615 unsigned long nr_isolated;
1616
f6ea3adb
DR
1617 /*
1618 * This can iterate a massively long zone without finding any
cb810ad2 1619 * suitable migration targets, so periodically check resched.
f6ea3adb 1620 */
cb810ad2 1621 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1622 cond_resched();
f6ea3adb 1623
7d49d886
VB
1624 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1625 zone);
1626 if (!page)
ff9543fd
MN
1627 continue;
1628
1629 /* Check the block is suitable for migration */
9f7e3387 1630 if (!suitable_migration_target(cc, page))
ff9543fd 1631 continue;
68e3e926 1632
bb13ffeb
MG
1633 /* If isolation recently failed, do not retry */
1634 if (!isolation_suitable(cc, page))
1635 continue;
1636
e14c720e 1637 /* Found a block suitable for isolating free pages from. */
4fca9730
MG
1638 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1639 block_end_pfn, freelist, stride, false);
ff9543fd 1640
d097a6f6
MG
1641 /* Update the skip hint if the full pageblock was scanned */
1642 if (isolate_start_pfn == block_end_pfn)
1643 update_pageblock_skip(cc, page, block_start_pfn);
1644
cb2dcaf0
MG
1645 /* Are enough freepages isolated? */
1646 if (cc->nr_freepages >= cc->nr_migratepages) {
a46cbf3b
DR
1647 if (isolate_start_pfn >= block_end_pfn) {
1648 /*
1649 * Restart at previous pageblock if more
1650 * freepages can be isolated next time.
1651 */
f5f61a32
VB
1652 isolate_start_pfn =
1653 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1654 }
be976572 1655 break;
a46cbf3b 1656 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1657 /*
a46cbf3b
DR
1658 * If isolation failed early, do not continue
1659 * needlessly.
f5f61a32 1660 */
a46cbf3b 1661 break;
f5f61a32 1662 }
4fca9730
MG
1663
1664 /* Adjust stride depending on isolation */
1665 if (nr_isolated) {
1666 stride = 1;
1667 continue;
1668 }
1669 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
ff9543fd
MN
1670 }
1671
7ed695e0 1672 /*
f5f61a32
VB
1673 * Record where the free scanner will restart next time. Either we
1674 * broke from the loop and set isolate_start_pfn based on the last
1675 * call to isolate_freepages_block(), or we met the migration scanner
1676 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1677 */
f5f61a32 1678 cc->free_pfn = isolate_start_pfn;
5a811889
MG
1679
1680splitmap:
1681 /* __isolate_free_page() does not map the pages */
1682 split_map_pages(freelist);
748446bb
MG
1683}
1684
1685/*
1686 * This is a migrate-callback that "allocates" freepages by taking pages
1687 * from the isolated freelists in the block we are migrating to.
1688 */
1689static struct page *compaction_alloc(struct page *migratepage,
666feb21 1690 unsigned long data)
748446bb
MG
1691{
1692 struct compact_control *cc = (struct compact_control *)data;
1693 struct page *freepage;
1694
748446bb 1695 if (list_empty(&cc->freepages)) {
cb2dcaf0 1696 isolate_freepages(cc);
748446bb
MG
1697
1698 if (list_empty(&cc->freepages))
1699 return NULL;
1700 }
1701
1702 freepage = list_entry(cc->freepages.next, struct page, lru);
1703 list_del(&freepage->lru);
1704 cc->nr_freepages--;
1705
1706 return freepage;
1707}
1708
1709/*
d53aea3d
DR
1710 * This is a migrate-callback that "frees" freepages back to the isolated
1711 * freelist. All pages on the freelist are from the same zone, so there is no
1712 * special handling needed for NUMA.
1713 */
1714static void compaction_free(struct page *page, unsigned long data)
1715{
1716 struct compact_control *cc = (struct compact_control *)data;
1717
1718 list_add(&page->lru, &cc->freepages);
1719 cc->nr_freepages++;
1720}
1721
ff9543fd
MN
1722/* possible outcome of isolate_migratepages */
1723typedef enum {
1724 ISOLATE_ABORT, /* Abort compaction now */
1725 ISOLATE_NONE, /* No pages isolated, continue scanning */
1726 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1727} isolate_migrate_t;
1728
5bbe3547
EM
1729/*
1730 * Allow userspace to control policy on scanning the unevictable LRU for
1731 * compactable pages.
1732 */
6923aa0d
SAS
1733#ifdef CONFIG_PREEMPT_RT
1734int sysctl_compact_unevictable_allowed __read_mostly = 0;
1735#else
5bbe3547 1736int sysctl_compact_unevictable_allowed __read_mostly = 1;
6923aa0d 1737#endif
5bbe3547 1738
70b44595
MG
1739static inline void
1740update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1741{
1742 if (cc->fast_start_pfn == ULONG_MAX)
1743 return;
1744
1745 if (!cc->fast_start_pfn)
1746 cc->fast_start_pfn = pfn;
1747
1748 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1749}
1750
1751static inline unsigned long
1752reinit_migrate_pfn(struct compact_control *cc)
1753{
1754 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1755 return cc->migrate_pfn;
1756
1757 cc->migrate_pfn = cc->fast_start_pfn;
1758 cc->fast_start_pfn = ULONG_MAX;
1759
1760 return cc->migrate_pfn;
1761}
1762
1763/*
1764 * Briefly search the free lists for a migration source that already has
1765 * some free pages to reduce the number of pages that need migration
1766 * before a pageblock is free.
1767 */
1768static unsigned long fast_find_migrateblock(struct compact_control *cc)
1769{
1770 unsigned int limit = freelist_scan_limit(cc);
1771 unsigned int nr_scanned = 0;
1772 unsigned long distance;
1773 unsigned long pfn = cc->migrate_pfn;
1774 unsigned long high_pfn;
1775 int order;
15d28d0d 1776 bool found_block = false;
70b44595
MG
1777
1778 /* Skip hints are relied on to avoid repeats on the fast search */
1779 if (cc->ignore_skip_hint)
1780 return pfn;
1781
1782 /*
1783 * If the migrate_pfn is not at the start of a zone or the start
1784 * of a pageblock then assume this is a continuation of a previous
1785 * scan restarted due to COMPACT_CLUSTER_MAX.
1786 */
1787 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1788 return pfn;
1789
1790 /*
1791 * For smaller orders, just linearly scan as the number of pages
1792 * to migrate should be relatively small and does not necessarily
1793 * justify freeing up a large block for a small allocation.
1794 */
1795 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1796 return pfn;
1797
1798 /*
1799 * Only allow kcompactd and direct requests for movable pages to
1800 * quickly clear out a MOVABLE pageblock for allocation. This
1801 * reduces the risk that a large movable pageblock is freed for
1802 * an unmovable/reclaimable small allocation.
1803 */
1804 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1805 return pfn;
1806
1807 /*
1808 * When starting the migration scanner, pick any pageblock within the
1809 * first half of the search space. Otherwise try and pick a pageblock
1810 * within the first eighth to reduce the chances that a migration
1811 * target later becomes a source.
1812 */
1813 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1814 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1815 distance >>= 2;
1816 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1817
1818 for (order = cc->order - 1;
15d28d0d 1819 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
70b44595
MG
1820 order--) {
1821 struct free_area *area = &cc->zone->free_area[order];
1822 struct list_head *freelist;
1823 unsigned long flags;
1824 struct page *freepage;
1825
1826 if (!area->nr_free)
1827 continue;
1828
1829 spin_lock_irqsave(&cc->zone->lock, flags);
1830 freelist = &area->free_list[MIGRATE_MOVABLE];
1831 list_for_each_entry(freepage, freelist, lru) {
1832 unsigned long free_pfn;
1833
15d28d0d
WY
1834 if (nr_scanned++ >= limit) {
1835 move_freelist_tail(freelist, freepage);
1836 break;
1837 }
1838
70b44595
MG
1839 free_pfn = page_to_pfn(freepage);
1840 if (free_pfn < high_pfn) {
70b44595
MG
1841 /*
1842 * Avoid if skipped recently. Ideally it would
1843 * move to the tail but even safe iteration of
1844 * the list assumes an entry is deleted, not
1845 * reordered.
1846 */
15d28d0d 1847 if (get_pageblock_skip(freepage))
70b44595 1848 continue;
70b44595
MG
1849
1850 /* Reorder to so a future search skips recent pages */
1851 move_freelist_tail(freelist, freepage);
1852
e380bebe 1853 update_fast_start_pfn(cc, free_pfn);
70b44595 1854 pfn = pageblock_start_pfn(free_pfn);
880cfefb
RY
1855 if (pfn < cc->zone->zone_start_pfn)
1856 pfn = cc->zone->zone_start_pfn;
70b44595 1857 cc->fast_search_fail = 0;
15d28d0d 1858 found_block = true;
70b44595
MG
1859 set_pageblock_skip(freepage);
1860 break;
1861 }
70b44595
MG
1862 }
1863 spin_unlock_irqrestore(&cc->zone->lock, flags);
1864 }
1865
1866 cc->total_migrate_scanned += nr_scanned;
1867
1868 /*
1869 * If fast scanning failed then use a cached entry for a page block
1870 * that had free pages as the basis for starting a linear scan.
1871 */
15d28d0d
WY
1872 if (!found_block) {
1873 cc->fast_search_fail++;
70b44595 1874 pfn = reinit_migrate_pfn(cc);
15d28d0d 1875 }
70b44595
MG
1876 return pfn;
1877}
1878
ff9543fd 1879/*
edc2ca61
VB
1880 * Isolate all pages that can be migrated from the first suitable block,
1881 * starting at the block pointed to by the migrate scanner pfn within
1882 * compact_control.
ff9543fd 1883 */
32aaf055 1884static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
ff9543fd 1885{
e1409c32
JK
1886 unsigned long block_start_pfn;
1887 unsigned long block_end_pfn;
1888 unsigned long low_pfn;
edc2ca61
VB
1889 struct page *page;
1890 const isolate_mode_t isolate_mode =
5bbe3547 1891 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 1892 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
70b44595 1893 bool fast_find_block;
ff9543fd 1894
edc2ca61
VB
1895 /*
1896 * Start at where we last stopped, or beginning of the zone as
70b44595
MG
1897 * initialized by compact_zone(). The first failure will use
1898 * the lowest PFN as the starting point for linear scanning.
edc2ca61 1899 */
70b44595 1900 low_pfn = fast_find_migrateblock(cc);
06b6640a 1901 block_start_pfn = pageblock_start_pfn(low_pfn);
32aaf055
PL
1902 if (block_start_pfn < cc->zone->zone_start_pfn)
1903 block_start_pfn = cc->zone->zone_start_pfn;
ff9543fd 1904
70b44595
MG
1905 /*
1906 * fast_find_migrateblock marks a pageblock skipped so to avoid
1907 * the isolation_suitable check below, check whether the fast
1908 * search was successful.
1909 */
1910 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1911
ff9543fd 1912 /* Only scan within a pageblock boundary */
06b6640a 1913 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1914
edc2ca61
VB
1915 /*
1916 * Iterate over whole pageblocks until we find the first suitable.
1917 * Do not cross the free scanner.
1918 */
e1409c32 1919 for (; block_end_pfn <= cc->free_pfn;
70b44595 1920 fast_find_block = false,
c2ad7a1f 1921 cc->migrate_pfn = low_pfn = block_end_pfn,
e1409c32
JK
1922 block_start_pfn = block_end_pfn,
1923 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1924
edc2ca61
VB
1925 /*
1926 * This can potentially iterate a massively long zone with
1927 * many pageblocks unsuitable, so periodically check if we
cb810ad2 1928 * need to schedule.
edc2ca61 1929 */
cb810ad2 1930 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1931 cond_resched();
ff9543fd 1932
32aaf055
PL
1933 page = pageblock_pfn_to_page(block_start_pfn,
1934 block_end_pfn, cc->zone);
7d49d886 1935 if (!page)
edc2ca61
VB
1936 continue;
1937
e380bebe
MG
1938 /*
1939 * If isolation recently failed, do not retry. Only check the
1940 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1941 * to be visited multiple times. Assume skip was checked
1942 * before making it "skip" so other compaction instances do
1943 * not scan the same block.
1944 */
1945 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1946 !fast_find_block && !isolation_suitable(cc, page))
edc2ca61
VB
1947 continue;
1948
1949 /*
9bebefd5
MG
1950 * For async compaction, also only scan in MOVABLE blocks
1951 * without huge pages. Async compaction is optimistic to see
1952 * if the minimum amount of work satisfies the allocation.
1953 * The cached PFN is updated as it's possible that all
1954 * remaining blocks between source and target are unsuitable
1955 * and the compaction scanners fail to meet.
edc2ca61 1956 */
9bebefd5
MG
1957 if (!suitable_migration_source(cc, page)) {
1958 update_cached_migrate(cc, block_end_pfn);
edc2ca61 1959 continue;
9bebefd5 1960 }
edc2ca61
VB
1961
1962 /* Perform the isolation */
c2ad7a1f
OS
1963 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1964 isolate_mode))
edc2ca61
VB
1965 return ISOLATE_ABORT;
1966
1967 /*
1968 * Either we isolated something and proceed with migration. Or
1969 * we failed and compact_zone should decide if we should
1970 * continue or not.
1971 */
1972 break;
1973 }
1974
edc2ca61 1975 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1976}
1977
21c527a3
YB
1978/*
1979 * order == -1 is expected when compacting via
1980 * /proc/sys/vm/compact_memory
1981 */
1982static inline bool is_via_compact_memory(int order)
1983{
1984 return order == -1;
1985}
1986
facdaa91
NG
1987static bool kswapd_is_running(pg_data_t *pgdat)
1988{
b03fbd4f 1989 return pgdat->kswapd && task_is_running(pgdat->kswapd);
facdaa91
NG
1990}
1991
1992/*
1993 * A zone's fragmentation score is the external fragmentation wrt to the
40d7e203
CTR
1994 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1995 */
1996static unsigned int fragmentation_score_zone(struct zone *zone)
1997{
1998 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1999}
2000
2001/*
2002 * A weighted zone's fragmentation score is the external fragmentation
2003 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2004 * returns a value in the range [0, 100].
facdaa91
NG
2005 *
2006 * The scaling factor ensures that proactive compaction focuses on larger
2007 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2008 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2009 * and thus never exceeds the high threshold for proactive compaction.
2010 */
40d7e203 2011static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
facdaa91
NG
2012{
2013 unsigned long score;
2014
40d7e203 2015 score = zone->present_pages * fragmentation_score_zone(zone);
facdaa91
NG
2016 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2017}
2018
2019/*
2020 * The per-node proactive (background) compaction process is started by its
2021 * corresponding kcompactd thread when the node's fragmentation score
2022 * exceeds the high threshold. The compaction process remains active till
2023 * the node's score falls below the low threshold, or one of the back-off
2024 * conditions is met.
2025 */
d34c0a75 2026static unsigned int fragmentation_score_node(pg_data_t *pgdat)
facdaa91 2027{
d34c0a75 2028 unsigned int score = 0;
facdaa91
NG
2029 int zoneid;
2030
2031 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2032 struct zone *zone;
2033
2034 zone = &pgdat->node_zones[zoneid];
40d7e203 2035 score += fragmentation_score_zone_weighted(zone);
facdaa91
NG
2036 }
2037
2038 return score;
2039}
2040
d34c0a75 2041static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
facdaa91 2042{
d34c0a75 2043 unsigned int wmark_low;
facdaa91
NG
2044
2045 /*
f0953a1b
IM
2046 * Cap the low watermark to avoid excessive compaction
2047 * activity in case a user sets the proactiveness tunable
facdaa91
NG
2048 * close to 100 (maximum).
2049 */
d34c0a75
NG
2050 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2051 return low ? wmark_low : min(wmark_low + 10, 100U);
facdaa91
NG
2052}
2053
2054static bool should_proactive_compact_node(pg_data_t *pgdat)
2055{
2056 int wmark_high;
2057
2058 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2059 return false;
2060
2061 wmark_high = fragmentation_score_wmark(pgdat, false);
2062 return fragmentation_score_node(pgdat) > wmark_high;
2063}
2064
40cacbcb 2065static enum compact_result __compact_finished(struct compact_control *cc)
748446bb 2066{
8fb74b9f 2067 unsigned int order;
d39773a0 2068 const int migratetype = cc->migratetype;
cb2dcaf0 2069 int ret;
748446bb 2070
753341a4 2071 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 2072 if (compact_scanners_met(cc)) {
55b7c4c9 2073 /* Let the next compaction start anew. */
40cacbcb 2074 reset_cached_positions(cc->zone);
55b7c4c9 2075
62997027
MG
2076 /*
2077 * Mark that the PG_migrate_skip information should be cleared
accf6242 2078 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
2079 * flag itself as the decision to be clear should be directly
2080 * based on an allocation request.
2081 */
accf6242 2082 if (cc->direct_compaction)
40cacbcb 2083 cc->zone->compact_blockskip_flush = true;
62997027 2084
c8f7de0b
MH
2085 if (cc->whole_zone)
2086 return COMPACT_COMPLETE;
2087 else
2088 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 2089 }
748446bb 2090
facdaa91
NG
2091 if (cc->proactive_compaction) {
2092 int score, wmark_low;
2093 pg_data_t *pgdat;
2094
2095 pgdat = cc->zone->zone_pgdat;
2096 if (kswapd_is_running(pgdat))
2097 return COMPACT_PARTIAL_SKIPPED;
2098
2099 score = fragmentation_score_zone(cc->zone);
2100 wmark_low = fragmentation_score_wmark(pgdat, true);
2101
2102 if (score > wmark_low)
2103 ret = COMPACT_CONTINUE;
2104 else
2105 ret = COMPACT_SUCCESS;
2106
2107 goto out;
2108 }
2109
21c527a3 2110 if (is_via_compact_memory(cc->order))
56de7263
MG
2111 return COMPACT_CONTINUE;
2112
efe771c7
MG
2113 /*
2114 * Always finish scanning a pageblock to reduce the possibility of
2115 * fallbacks in the future. This is particularly important when
2116 * migration source is unmovable/reclaimable but it's not worth
2117 * special casing.
2118 */
2119 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2120 return COMPACT_CONTINUE;
baf6a9a1 2121
56de7263 2122 /* Direct compactor: Is a suitable page free? */
cb2dcaf0 2123 ret = COMPACT_NO_SUITABLE_PAGE;
8fb74b9f 2124 for (order = cc->order; order < MAX_ORDER; order++) {
40cacbcb 2125 struct free_area *area = &cc->zone->free_area[order];
2149cdae 2126 bool can_steal;
8fb74b9f
MG
2127
2128 /* Job done if page is free of the right migratetype */
b03641af 2129 if (!free_area_empty(area, migratetype))
cf378319 2130 return COMPACT_SUCCESS;
8fb74b9f 2131
2149cdae
JK
2132#ifdef CONFIG_CMA
2133 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2134 if (migratetype == MIGRATE_MOVABLE &&
b03641af 2135 !free_area_empty(area, MIGRATE_CMA))
cf378319 2136 return COMPACT_SUCCESS;
2149cdae
JK
2137#endif
2138 /*
2139 * Job done if allocation would steal freepages from
2140 * other migratetype buddy lists.
2141 */
2142 if (find_suitable_fallback(area, order, migratetype,
baf6a9a1
VB
2143 true, &can_steal) != -1) {
2144
2145 /* movable pages are OK in any pageblock */
2146 if (migratetype == MIGRATE_MOVABLE)
2147 return COMPACT_SUCCESS;
2148
2149 /*
2150 * We are stealing for a non-movable allocation. Make
2151 * sure we finish compacting the current pageblock
2152 * first so it is as free as possible and we won't
2153 * have to steal another one soon. This only applies
2154 * to sync compaction, as async compaction operates
2155 * on pageblocks of the same migratetype.
2156 */
2157 if (cc->mode == MIGRATE_ASYNC ||
2158 IS_ALIGNED(cc->migrate_pfn,
2159 pageblock_nr_pages)) {
2160 return COMPACT_SUCCESS;
2161 }
2162
cb2dcaf0
MG
2163 ret = COMPACT_CONTINUE;
2164 break;
baf6a9a1 2165 }
56de7263
MG
2166 }
2167
facdaa91 2168out:
cb2dcaf0
MG
2169 if (cc->contended || fatal_signal_pending(current))
2170 ret = COMPACT_CONTENDED;
2171
2172 return ret;
837d026d
JK
2173}
2174
40cacbcb 2175static enum compact_result compact_finished(struct compact_control *cc)
837d026d
JK
2176{
2177 int ret;
2178
40cacbcb
MG
2179 ret = __compact_finished(cc);
2180 trace_mm_compaction_finished(cc->zone, cc->order, ret);
837d026d
JK
2181 if (ret == COMPACT_NO_SUITABLE_PAGE)
2182 ret = COMPACT_CONTINUE;
2183
2184 return ret;
748446bb
MG
2185}
2186
ea7ab982 2187static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 2188 unsigned int alloc_flags,
97a225e6 2189 int highest_zoneidx,
86a294a8 2190 unsigned long wmark_target)
3e7d3449 2191{
3e7d3449
MG
2192 unsigned long watermark;
2193
21c527a3 2194 if (is_via_compact_memory(order))
3957c776
MH
2195 return COMPACT_CONTINUE;
2196
a9214443 2197 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
ebff3980
VB
2198 /*
2199 * If watermarks for high-order allocation are already met, there
2200 * should be no need for compaction at all.
2201 */
97a225e6 2202 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
ebff3980 2203 alloc_flags))
cf378319 2204 return COMPACT_SUCCESS;
ebff3980 2205
3e7d3449 2206 /*
9861a62c 2207 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
2208 * isolate free pages for migration targets. This means that the
2209 * watermark and alloc_flags have to match, or be more pessimistic than
2210 * the check in __isolate_free_page(). We don't use the direct
2211 * compactor's alloc_flags, as they are not relevant for freepage
97a225e6
JK
2212 * isolation. We however do use the direct compactor's highest_zoneidx
2213 * to skip over zones where lowmem reserves would prevent allocation
2214 * even if compaction succeeds.
8348faf9
VB
2215 * For costly orders, we require low watermark instead of min for
2216 * compaction to proceed to increase its chances.
d883c6cf
JK
2217 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2218 * suitable migration targets
3e7d3449 2219 */
8348faf9
VB
2220 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2221 low_wmark_pages(zone) : min_wmark_pages(zone);
2222 watermark += compact_gap(order);
97a225e6 2223 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
d883c6cf 2224 ALLOC_CMA, wmark_target))
3e7d3449
MG
2225 return COMPACT_SKIPPED;
2226
cc5c9f09
VB
2227 return COMPACT_CONTINUE;
2228}
2229
2b1a20c3
HS
2230/*
2231 * compaction_suitable: Is this suitable to run compaction on this zone now?
2232 * Returns
2233 * COMPACT_SKIPPED - If there are too few free pages for compaction
2234 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2235 * COMPACT_CONTINUE - If compaction should run now
2236 */
cc5c9f09
VB
2237enum compact_result compaction_suitable(struct zone *zone, int order,
2238 unsigned int alloc_flags,
97a225e6 2239 int highest_zoneidx)
cc5c9f09
VB
2240{
2241 enum compact_result ret;
2242 int fragindex;
2243
97a225e6 2244 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
cc5c9f09 2245 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
2246 /*
2247 * fragmentation index determines if allocation failures are due to
2248 * low memory or external fragmentation
2249 *
ebff3980
VB
2250 * index of -1000 would imply allocations might succeed depending on
2251 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
2252 * index towards 0 implies failure is due to lack of memory
2253 * index towards 1000 implies failure is due to fragmentation
2254 *
20311420
VB
2255 * Only compact if a failure would be due to fragmentation. Also
2256 * ignore fragindex for non-costly orders where the alternative to
2257 * a successful reclaim/compaction is OOM. Fragindex and the
2258 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2259 * excessive compaction for costly orders, but it should not be at the
2260 * expense of system stability.
3e7d3449 2261 */
20311420 2262 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
cc5c9f09
VB
2263 fragindex = fragmentation_index(zone, order);
2264 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2265 ret = COMPACT_NOT_SUITABLE_ZONE;
2266 }
837d026d 2267
837d026d
JK
2268 trace_mm_compaction_suitable(zone, order, ret);
2269 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2270 ret = COMPACT_SKIPPED;
2271
2272 return ret;
2273}
2274
86a294a8
MH
2275bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2276 int alloc_flags)
2277{
2278 struct zone *zone;
2279 struct zoneref *z;
2280
2281 /*
2282 * Make sure at least one zone would pass __compaction_suitable if we continue
2283 * retrying the reclaim.
2284 */
97a225e6
JK
2285 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2286 ac->highest_zoneidx, ac->nodemask) {
86a294a8
MH
2287 unsigned long available;
2288 enum compact_result compact_result;
2289
2290 /*
2291 * Do not consider all the reclaimable memory because we do not
2292 * want to trash just for a single high order allocation which
2293 * is even not guaranteed to appear even if __compaction_suitable
2294 * is happy about the watermark check.
2295 */
5a1c84b4 2296 available = zone_reclaimable_pages(zone) / order;
86a294a8
MH
2297 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2298 compact_result = __compaction_suitable(zone, order, alloc_flags,
97a225e6 2299 ac->highest_zoneidx, available);
cc5c9f09 2300 if (compact_result != COMPACT_SKIPPED)
86a294a8
MH
2301 return true;
2302 }
2303
2304 return false;
2305}
2306
5e1f0f09
MG
2307static enum compact_result
2308compact_zone(struct compact_control *cc, struct capture_control *capc)
748446bb 2309{
ea7ab982 2310 enum compact_result ret;
40cacbcb
MG
2311 unsigned long start_pfn = cc->zone->zone_start_pfn;
2312 unsigned long end_pfn = zone_end_pfn(cc->zone);
566e54e1 2313 unsigned long last_migrated_pfn;
e0b9daeb 2314 const bool sync = cc->mode != MIGRATE_ASYNC;
8854c55f 2315 bool update_cached;
748446bb 2316
a94b5252
YS
2317 /*
2318 * These counters track activities during zone compaction. Initialize
2319 * them before compacting a new zone.
2320 */
2321 cc->total_migrate_scanned = 0;
2322 cc->total_free_scanned = 0;
2323 cc->nr_migratepages = 0;
2324 cc->nr_freepages = 0;
2325 INIT_LIST_HEAD(&cc->freepages);
2326 INIT_LIST_HEAD(&cc->migratepages);
2327
01c0bfe0 2328 cc->migratetype = gfp_migratetype(cc->gfp_mask);
40cacbcb 2329 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
97a225e6 2330 cc->highest_zoneidx);
c46649de 2331 /* Compaction is likely to fail */
cf378319 2332 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
3e7d3449 2333 return ret;
c46649de
MH
2334
2335 /* huh, compaction_suitable is returning something unexpected */
2336 VM_BUG_ON(ret != COMPACT_CONTINUE);
3e7d3449 2337
d3132e4b
VB
2338 /*
2339 * Clear pageblock skip if there were failures recently and compaction
accf6242 2340 * is about to be retried after being deferred.
d3132e4b 2341 */
40cacbcb
MG
2342 if (compaction_restarting(cc->zone, cc->order))
2343 __reset_isolation_suitable(cc->zone);
d3132e4b 2344
c89511ab
MG
2345 /*
2346 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
2347 * information on where the scanners should start (unless we explicitly
2348 * want to compact the whole zone), but check that it is initialised
2349 * by ensuring the values are within zone boundaries.
c89511ab 2350 */
70b44595 2351 cc->fast_start_pfn = 0;
06ed2998 2352 if (cc->whole_zone) {
c89511ab 2353 cc->migrate_pfn = start_pfn;
06ed2998
VB
2354 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2355 } else {
40cacbcb
MG
2356 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2357 cc->free_pfn = cc->zone->compact_cached_free_pfn;
06ed2998
VB
2358 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2359 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
40cacbcb 2360 cc->zone->compact_cached_free_pfn = cc->free_pfn;
06ed2998
VB
2361 }
2362 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2363 cc->migrate_pfn = start_pfn;
40cacbcb
MG
2364 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2365 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
06ed2998 2366 }
c8f7de0b 2367
e332f741 2368 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
06ed2998
VB
2369 cc->whole_zone = true;
2370 }
c8f7de0b 2371
566e54e1 2372 last_migrated_pfn = 0;
748446bb 2373
8854c55f
MG
2374 /*
2375 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2376 * the basis that some migrations will fail in ASYNC mode. However,
2377 * if the cached PFNs match and pageblocks are skipped due to having
2378 * no isolation candidates, then the sync state does not matter.
2379 * Until a pageblock with isolation candidates is found, keep the
2380 * cached PFNs in sync to avoid revisiting the same blocks.
2381 */
2382 update_cached = !sync &&
2383 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2384
16c4a097
JK
2385 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2386 cc->free_pfn, end_pfn, sync);
0eb927c0 2387
361a2a22
MK
2388 /* lru_add_drain_all could be expensive with involving other CPUs */
2389 lru_add_drain();
748446bb 2390
40cacbcb 2391 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
9d502c1c 2392 int err;
19d3cf9d 2393 unsigned long iteration_start_pfn = cc->migrate_pfn;
748446bb 2394
804d3121
MG
2395 /*
2396 * Avoid multiple rescans which can happen if a page cannot be
2397 * isolated (dirty/writeback in async mode) or if the migrated
2398 * pages are being allocated before the pageblock is cleared.
2399 * The first rescan will capture the entire pageblock for
2400 * migration. If it fails, it'll be marked skip and scanning
2401 * will proceed as normal.
2402 */
2403 cc->rescan = false;
2404 if (pageblock_start_pfn(last_migrated_pfn) ==
19d3cf9d 2405 pageblock_start_pfn(iteration_start_pfn)) {
804d3121
MG
2406 cc->rescan = true;
2407 }
2408
32aaf055 2409 switch (isolate_migratepages(cc)) {
f9e35b3b 2410 case ISOLATE_ABORT:
2d1e1041 2411 ret = COMPACT_CONTENDED;
5733c7d1 2412 putback_movable_pages(&cc->migratepages);
e64c5237 2413 cc->nr_migratepages = 0;
f9e35b3b
MG
2414 goto out;
2415 case ISOLATE_NONE:
8854c55f
MG
2416 if (update_cached) {
2417 cc->zone->compact_cached_migrate_pfn[1] =
2418 cc->zone->compact_cached_migrate_pfn[0];
2419 }
2420
fdaf7f5c
VB
2421 /*
2422 * We haven't isolated and migrated anything, but
2423 * there might still be unflushed migrations from
2424 * previous cc->order aligned block.
2425 */
2426 goto check_drain;
f9e35b3b 2427 case ISOLATE_SUCCESS:
8854c55f 2428 update_cached = false;
19d3cf9d 2429 last_migrated_pfn = iteration_start_pfn;
f9e35b3b 2430 }
748446bb 2431
d53aea3d 2432 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 2433 compaction_free, (unsigned long)cc, cc->mode,
5ac95884 2434 MR_COMPACTION, NULL);
748446bb 2435
f8c9301f
VB
2436 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2437 &cc->migratepages);
748446bb 2438
f8c9301f
VB
2439 /* All pages were either migrated or will be released */
2440 cc->nr_migratepages = 0;
9d502c1c 2441 if (err) {
5733c7d1 2442 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
2443 /*
2444 * migrate_pages() may return -ENOMEM when scanners meet
2445 * and we want compact_finished() to detect it
2446 */
f2849aa0 2447 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 2448 ret = COMPACT_CONTENDED;
4bf2bba3
DR
2449 goto out;
2450 }
fdd048e1
VB
2451 /*
2452 * We failed to migrate at least one page in the current
2453 * order-aligned block, so skip the rest of it.
2454 */
2455 if (cc->direct_compaction &&
2456 (cc->mode == MIGRATE_ASYNC)) {
2457 cc->migrate_pfn = block_end_pfn(
2458 cc->migrate_pfn - 1, cc->order);
2459 /* Draining pcplists is useless in this case */
566e54e1 2460 last_migrated_pfn = 0;
fdd048e1 2461 }
748446bb 2462 }
fdaf7f5c 2463
fdaf7f5c
VB
2464check_drain:
2465 /*
2466 * Has the migration scanner moved away from the previous
2467 * cc->order aligned block where we migrated from? If yes,
2468 * flush the pages that were freed, so that they can merge and
2469 * compact_finished() can detect immediately if allocation
2470 * would succeed.
2471 */
566e54e1 2472 if (cc->order > 0 && last_migrated_pfn) {
fdaf7f5c 2473 unsigned long current_block_start =
06b6640a 2474 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 2475
566e54e1 2476 if (last_migrated_pfn < current_block_start) {
b01b2141 2477 lru_add_drain_cpu_zone(cc->zone);
fdaf7f5c 2478 /* No more flushing until we migrate again */
566e54e1 2479 last_migrated_pfn = 0;
fdaf7f5c
VB
2480 }
2481 }
2482
5e1f0f09
MG
2483 /* Stop if a page has been captured */
2484 if (capc && capc->page) {
2485 ret = COMPACT_SUCCESS;
2486 break;
2487 }
748446bb
MG
2488 }
2489
f9e35b3b 2490out:
6bace090
VB
2491 /*
2492 * Release free pages and update where the free scanner should restart,
2493 * so we don't leave any returned pages behind in the next attempt.
2494 */
2495 if (cc->nr_freepages > 0) {
2496 unsigned long free_pfn = release_freepages(&cc->freepages);
2497
2498 cc->nr_freepages = 0;
2499 VM_BUG_ON(free_pfn == 0);
2500 /* The cached pfn is always the first in a pageblock */
06b6640a 2501 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
2502 /*
2503 * Only go back, not forward. The cached pfn might have been
2504 * already reset to zone end in compact_finished()
2505 */
40cacbcb
MG
2506 if (free_pfn > cc->zone->compact_cached_free_pfn)
2507 cc->zone->compact_cached_free_pfn = free_pfn;
6bace090 2508 }
748446bb 2509
7f354a54
DR
2510 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2511 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2512
16c4a097
JK
2513 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2514 cc->free_pfn, end_pfn, sync, ret);
0eb927c0 2515
748446bb
MG
2516 return ret;
2517}
76ab0f53 2518
ea7ab982 2519static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 2520 gfp_t gfp_mask, enum compact_priority prio,
97a225e6 2521 unsigned int alloc_flags, int highest_zoneidx,
5e1f0f09 2522 struct page **capture)
56de7263 2523{
ea7ab982 2524 enum compact_result ret;
56de7263 2525 struct compact_control cc = {
56de7263 2526 .order = order,
dbe2d4e4 2527 .search_order = order,
6d7ce559 2528 .gfp_mask = gfp_mask,
56de7263 2529 .zone = zone,
a5508cd8
VB
2530 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2531 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980 2532 .alloc_flags = alloc_flags,
97a225e6 2533 .highest_zoneidx = highest_zoneidx,
accf6242 2534 .direct_compaction = true,
a8e025e5 2535 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
2536 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2537 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263 2538 };
5e1f0f09
MG
2539 struct capture_control capc = {
2540 .cc = &cc,
2541 .page = NULL,
2542 };
2543
b9e20f0d
VB
2544 /*
2545 * Make sure the structs are really initialized before we expose the
2546 * capture control, in case we are interrupted and the interrupt handler
2547 * frees a page.
2548 */
2549 barrier();
2550 WRITE_ONCE(current->capture_control, &capc);
56de7263 2551
5e1f0f09 2552 ret = compact_zone(&cc, &capc);
e64c5237
SL
2553
2554 VM_BUG_ON(!list_empty(&cc.freepages));
2555 VM_BUG_ON(!list_empty(&cc.migratepages));
2556
b9e20f0d
VB
2557 /*
2558 * Make sure we hide capture control first before we read the captured
2559 * page pointer, otherwise an interrupt could free and capture a page
2560 * and we would leak it.
2561 */
2562 WRITE_ONCE(current->capture_control, NULL);
2563 *capture = READ_ONCE(capc.page);
06dac2f4
CTR
2564 /*
2565 * Technically, it is also possible that compaction is skipped but
2566 * the page is still captured out of luck(IRQ came and freed the page).
2567 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2568 * the COMPACT[STALL|FAIL] when compaction is skipped.
2569 */
2570 if (*capture)
2571 ret = COMPACT_SUCCESS;
5e1f0f09 2572
e64c5237 2573 return ret;
56de7263
MG
2574}
2575
5e771905
MG
2576int sysctl_extfrag_threshold = 500;
2577
56de7263
MG
2578/**
2579 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 2580 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
2581 * @order: The order of the current allocation
2582 * @alloc_flags: The allocation flags of the current allocation
2583 * @ac: The context of current allocation
112d2d29 2584 * @prio: Determines how hard direct compaction should try to succeed
6467552c 2585 * @capture: Pointer to free page created by compaction will be stored here
56de7263
MG
2586 *
2587 * This is the main entry point for direct page compaction.
2588 */
ea7ab982 2589enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 2590 unsigned int alloc_flags, const struct alloc_context *ac,
5e1f0f09 2591 enum compact_priority prio, struct page **capture)
56de7263 2592{
56de7263 2593 int may_perform_io = gfp_mask & __GFP_IO;
56de7263
MG
2594 struct zoneref *z;
2595 struct zone *zone;
1d4746d3 2596 enum compact_result rc = COMPACT_SKIPPED;
56de7263 2597
73e64c51
MH
2598 /*
2599 * Check if the GFP flags allow compaction - GFP_NOIO is really
2600 * tricky context because the migration might require IO
2601 */
2602 if (!may_perform_io)
53853e2d 2603 return COMPACT_SKIPPED;
56de7263 2604
a5508cd8 2605 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 2606
56de7263 2607 /* Compact each zone in the list */
97a225e6
JK
2608 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2609 ac->highest_zoneidx, ac->nodemask) {
ea7ab982 2610 enum compact_result status;
56de7263 2611
a8e025e5
VB
2612 if (prio > MIN_COMPACT_PRIORITY
2613 && compaction_deferred(zone, order)) {
1d4746d3 2614 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 2615 continue;
1d4746d3 2616 }
53853e2d 2617
a5508cd8 2618 status = compact_zone_order(zone, order, gfp_mask, prio,
97a225e6 2619 alloc_flags, ac->highest_zoneidx, capture);
56de7263
MG
2620 rc = max(status, rc);
2621
7ceb009a
VB
2622 /* The allocation should succeed, stop compacting */
2623 if (status == COMPACT_SUCCESS) {
53853e2d
VB
2624 /*
2625 * We think the allocation will succeed in this zone,
2626 * but it is not certain, hence the false. The caller
2627 * will repeat this with true if allocation indeed
2628 * succeeds in this zone.
2629 */
2630 compaction_defer_reset(zone, order, false);
1f9efdef 2631
c3486f53 2632 break;
1f9efdef
VB
2633 }
2634
a5508cd8 2635 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 2636 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
2637 /*
2638 * We think that allocation won't succeed in this zone
2639 * so we defer compaction there. If it ends up
2640 * succeeding after all, it will be reset.
2641 */
2642 defer_compaction(zone, order);
1f9efdef
VB
2643
2644 /*
2645 * We might have stopped compacting due to need_resched() in
2646 * async compaction, or due to a fatal signal detected. In that
c3486f53 2647 * case do not try further zones
1f9efdef 2648 */
c3486f53
VB
2649 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2650 || fatal_signal_pending(current))
2651 break;
56de7263
MG
2652 }
2653
2654 return rc;
2655}
2656
facdaa91
NG
2657/*
2658 * Compact all zones within a node till each zone's fragmentation score
2659 * reaches within proactive compaction thresholds (as determined by the
2660 * proactiveness tunable).
2661 *
2662 * It is possible that the function returns before reaching score targets
2663 * due to various back-off conditions, such as, contention on per-node or
2664 * per-zone locks.
2665 */
2666static void proactive_compact_node(pg_data_t *pgdat)
2667{
2668 int zoneid;
2669 struct zone *zone;
2670 struct compact_control cc = {
2671 .order = -1,
2672 .mode = MIGRATE_SYNC_LIGHT,
2673 .ignore_skip_hint = true,
2674 .whole_zone = true,
2675 .gfp_mask = GFP_KERNEL,
2676 .proactive_compaction = true,
2677 };
2678
2679 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2680 zone = &pgdat->node_zones[zoneid];
2681 if (!populated_zone(zone))
2682 continue;
2683
2684 cc.zone = zone;
2685
2686 compact_zone(&cc, NULL);
2687
2688 VM_BUG_ON(!list_empty(&cc.freepages));
2689 VM_BUG_ON(!list_empty(&cc.migratepages));
2690 }
2691}
56de7263 2692
76ab0f53 2693/* Compact all zones within a node */
791cae96 2694static void compact_node(int nid)
76ab0f53 2695{
791cae96 2696 pg_data_t *pgdat = NODE_DATA(nid);
76ab0f53 2697 int zoneid;
76ab0f53 2698 struct zone *zone;
791cae96
VB
2699 struct compact_control cc = {
2700 .order = -1,
2701 .mode = MIGRATE_SYNC,
2702 .ignore_skip_hint = true,
2703 .whole_zone = true,
73e64c51 2704 .gfp_mask = GFP_KERNEL,
791cae96
VB
2705 };
2706
76ab0f53 2707
76ab0f53 2708 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
2709
2710 zone = &pgdat->node_zones[zoneid];
2711 if (!populated_zone(zone))
2712 continue;
2713
791cae96 2714 cc.zone = zone;
76ab0f53 2715
5e1f0f09 2716 compact_zone(&cc, NULL);
75469345 2717
791cae96
VB
2718 VM_BUG_ON(!list_empty(&cc.freepages));
2719 VM_BUG_ON(!list_empty(&cc.migratepages));
76ab0f53 2720 }
76ab0f53
MG
2721}
2722
2723/* Compact all nodes in the system */
7964c06d 2724static void compact_nodes(void)
76ab0f53
MG
2725{
2726 int nid;
2727
8575ec29
HD
2728 /* Flush pending updates to the LRU lists */
2729 lru_add_drain_all();
2730
76ab0f53
MG
2731 for_each_online_node(nid)
2732 compact_node(nid);
76ab0f53
MG
2733}
2734
facdaa91
NG
2735/*
2736 * Tunable for proactive compaction. It determines how
2737 * aggressively the kernel should compact memory in the
2738 * background. It takes values in the range [0, 100].
2739 */
d34c0a75 2740unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
facdaa91 2741
65d759c8
CTR
2742int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2743 void *buffer, size_t *length, loff_t *ppos)
2744{
2745 int rc, nid;
2746
2747 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2748 if (rc)
2749 return rc;
2750
2751 if (write && sysctl_compaction_proactiveness) {
2752 for_each_online_node(nid) {
2753 pg_data_t *pgdat = NODE_DATA(nid);
2754
2755 if (pgdat->proactive_compact_trigger)
2756 continue;
2757
2758 pgdat->proactive_compact_trigger = true;
2759 wake_up_interruptible(&pgdat->kcompactd_wait);
2760 }
2761 }
2762
2763 return 0;
2764}
2765
fec4eb2c
YB
2766/*
2767 * This is the entry point for compacting all nodes via
2768 * /proc/sys/vm/compact_memory
2769 */
76ab0f53 2770int sysctl_compaction_handler(struct ctl_table *table, int write,
32927393 2771 void *buffer, size_t *length, loff_t *ppos)
76ab0f53
MG
2772{
2773 if (write)
7964c06d 2774 compact_nodes();
76ab0f53
MG
2775
2776 return 0;
2777}
ed4a6d7f
MG
2778
2779#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
17adb230
Y
2780static ssize_t compact_store(struct device *dev,
2781 struct device_attribute *attr,
2782 const char *buf, size_t count)
ed4a6d7f 2783{
8575ec29
HD
2784 int nid = dev->id;
2785
2786 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2787 /* Flush pending updates to the LRU lists */
2788 lru_add_drain_all();
2789
2790 compact_node(nid);
2791 }
ed4a6d7f
MG
2792
2793 return count;
2794}
17adb230 2795static DEVICE_ATTR_WO(compact);
ed4a6d7f
MG
2796
2797int compaction_register_node(struct node *node)
2798{
10fbcf4c 2799 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2800}
2801
2802void compaction_unregister_node(struct node *node)
2803{
10fbcf4c 2804 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2805}
2806#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 2807
698b1b30
VB
2808static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2809{
65d759c8
CTR
2810 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2811 pgdat->proactive_compact_trigger;
698b1b30
VB
2812}
2813
2814static bool kcompactd_node_suitable(pg_data_t *pgdat)
2815{
2816 int zoneid;
2817 struct zone *zone;
97a225e6 2818 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
698b1b30 2819
97a225e6 2820 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
698b1b30
VB
2821 zone = &pgdat->node_zones[zoneid];
2822
2823 if (!populated_zone(zone))
2824 continue;
2825
2826 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
97a225e6 2827 highest_zoneidx) == COMPACT_CONTINUE)
698b1b30
VB
2828 return true;
2829 }
2830
2831 return false;
2832}
2833
2834static void kcompactd_do_work(pg_data_t *pgdat)
2835{
2836 /*
2837 * With no special task, compact all zones so that a page of requested
2838 * order is allocatable.
2839 */
2840 int zoneid;
2841 struct zone *zone;
2842 struct compact_control cc = {
2843 .order = pgdat->kcompactd_max_order,
dbe2d4e4 2844 .search_order = pgdat->kcompactd_max_order,
97a225e6 2845 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
698b1b30 2846 .mode = MIGRATE_SYNC_LIGHT,
a0647dc9 2847 .ignore_skip_hint = false,
73e64c51 2848 .gfp_mask = GFP_KERNEL,
698b1b30 2849 };
698b1b30 2850 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
97a225e6 2851 cc.highest_zoneidx);
7f354a54 2852 count_compact_event(KCOMPACTD_WAKE);
698b1b30 2853
97a225e6 2854 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
698b1b30
VB
2855 int status;
2856
2857 zone = &pgdat->node_zones[zoneid];
2858 if (!populated_zone(zone))
2859 continue;
2860
2861 if (compaction_deferred(zone, cc.order))
2862 continue;
2863
2864 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2865 COMPACT_CONTINUE)
2866 continue;
2867
172400c6
VB
2868 if (kthread_should_stop())
2869 return;
a94b5252
YS
2870
2871 cc.zone = zone;
5e1f0f09 2872 status = compact_zone(&cc, NULL);
698b1b30 2873
7ceb009a 2874 if (status == COMPACT_SUCCESS) {
698b1b30 2875 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 2876 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
bc3106b2
DR
2877 /*
2878 * Buddy pages may become stranded on pcps that could
2879 * otherwise coalesce on the zone's free area for
2880 * order >= cc.order. This is ratelimited by the
2881 * upcoming deferral.
2882 */
2883 drain_all_pages(zone);
2884
698b1b30
VB
2885 /*
2886 * We use sync migration mode here, so we defer like
2887 * sync direct compaction does.
2888 */
2889 defer_compaction(zone, cc.order);
2890 }
2891
7f354a54
DR
2892 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2893 cc.total_migrate_scanned);
2894 count_compact_events(KCOMPACTD_FREE_SCANNED,
2895 cc.total_free_scanned);
2896
698b1b30
VB
2897 VM_BUG_ON(!list_empty(&cc.freepages));
2898 VM_BUG_ON(!list_empty(&cc.migratepages));
2899 }
2900
2901 /*
2902 * Regardless of success, we are done until woken up next. But remember
97a225e6
JK
2903 * the requested order/highest_zoneidx in case it was higher/tighter
2904 * than our current ones
698b1b30
VB
2905 */
2906 if (pgdat->kcompactd_max_order <= cc.order)
2907 pgdat->kcompactd_max_order = 0;
97a225e6
JK
2908 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2909 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2910}
2911
97a225e6 2912void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
698b1b30
VB
2913{
2914 if (!order)
2915 return;
2916
2917 if (pgdat->kcompactd_max_order < order)
2918 pgdat->kcompactd_max_order = order;
2919
97a225e6
JK
2920 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2921 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
698b1b30 2922
6818600f
DB
2923 /*
2924 * Pairs with implicit barrier in wait_event_freezable()
2925 * such that wakeups are not missed.
2926 */
2927 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
698b1b30
VB
2928 return;
2929
2930 if (!kcompactd_node_suitable(pgdat))
2931 return;
2932
2933 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
97a225e6 2934 highest_zoneidx);
698b1b30
VB
2935 wake_up_interruptible(&pgdat->kcompactd_wait);
2936}
2937
2938/*
2939 * The background compaction daemon, started as a kernel thread
2940 * from the init process.
2941 */
2942static int kcompactd(void *p)
2943{
68d68ff6 2944 pg_data_t *pgdat = (pg_data_t *)p;
698b1b30 2945 struct task_struct *tsk = current;
e1e92bfa
CTR
2946 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2947 long timeout = default_timeout;
698b1b30
VB
2948
2949 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2950
2951 if (!cpumask_empty(cpumask))
2952 set_cpus_allowed_ptr(tsk, cpumask);
2953
2954 set_freezable();
2955
2956 pgdat->kcompactd_max_order = 0;
97a225e6 2957 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2958
2959 while (!kthread_should_stop()) {
eb414681
JW
2960 unsigned long pflags;
2961
65d759c8
CTR
2962 /*
2963 * Avoid the unnecessary wakeup for proactive compaction
2964 * when it is disabled.
2965 */
2966 if (!sysctl_compaction_proactiveness)
2967 timeout = MAX_SCHEDULE_TIMEOUT;
698b1b30 2968 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
facdaa91 2969 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
65d759c8
CTR
2970 kcompactd_work_requested(pgdat), timeout) &&
2971 !pgdat->proactive_compact_trigger) {
facdaa91
NG
2972
2973 psi_memstall_enter(&pflags);
2974 kcompactd_do_work(pgdat);
2975 psi_memstall_leave(&pflags);
e1e92bfa
CTR
2976 /*
2977 * Reset the timeout value. The defer timeout from
2978 * proactive compaction is lost here but that is fine
2979 * as the condition of the zone changing substantionally
2980 * then carrying on with the previous defer interval is
2981 * not useful.
2982 */
2983 timeout = default_timeout;
facdaa91
NG
2984 continue;
2985 }
698b1b30 2986
e1e92bfa
CTR
2987 /*
2988 * Start the proactive work with default timeout. Based
2989 * on the fragmentation score, this timeout is updated.
2990 */
2991 timeout = default_timeout;
facdaa91
NG
2992 if (should_proactive_compact_node(pgdat)) {
2993 unsigned int prev_score, score;
2994
facdaa91
NG
2995 prev_score = fragmentation_score_node(pgdat);
2996 proactive_compact_node(pgdat);
2997 score = fragmentation_score_node(pgdat);
2998 /*
2999 * Defer proactive compaction if the fragmentation
3000 * score did not go down i.e. no progress made.
3001 */
e1e92bfa
CTR
3002 if (unlikely(score >= prev_score))
3003 timeout =
3004 default_timeout << COMPACT_MAX_DEFER_SHIFT;
facdaa91 3005 }
65d759c8
CTR
3006 if (unlikely(pgdat->proactive_compact_trigger))
3007 pgdat->proactive_compact_trigger = false;
698b1b30
VB
3008 }
3009
3010 return 0;
3011}
3012
3013/*
3014 * This kcompactd start function will be called by init and node-hot-add.
3015 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3016 */
3017int kcompactd_run(int nid)
3018{
3019 pg_data_t *pgdat = NODE_DATA(nid);
3020 int ret = 0;
3021
3022 if (pgdat->kcompactd)
3023 return 0;
3024
3025 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3026 if (IS_ERR(pgdat->kcompactd)) {
3027 pr_err("Failed to start kcompactd on node %d\n", nid);
3028 ret = PTR_ERR(pgdat->kcompactd);
3029 pgdat->kcompactd = NULL;
3030 }
3031 return ret;
3032}
3033
3034/*
3035 * Called by memory hotplug when all memory in a node is offlined. Caller must
3036 * hold mem_hotplug_begin/end().
3037 */
3038void kcompactd_stop(int nid)
3039{
3040 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3041
3042 if (kcompactd) {
3043 kthread_stop(kcompactd);
3044 NODE_DATA(nid)->kcompactd = NULL;
3045 }
3046}
3047
3048/*
3049 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3050 * not required for correctness. So if the last cpu in a node goes
3051 * away, we get changed to run anywhere: as the first one comes back,
3052 * restore their cpu bindings.
3053 */
e46b1db2 3054static int kcompactd_cpu_online(unsigned int cpu)
698b1b30
VB
3055{
3056 int nid;
3057
e46b1db2
AMG
3058 for_each_node_state(nid, N_MEMORY) {
3059 pg_data_t *pgdat = NODE_DATA(nid);
3060 const struct cpumask *mask;
698b1b30 3061
e46b1db2 3062 mask = cpumask_of_node(pgdat->node_id);
698b1b30 3063
e46b1db2
AMG
3064 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3065 /* One of our CPUs online: restore mask */
3066 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
698b1b30 3067 }
e46b1db2 3068 return 0;
698b1b30
VB
3069}
3070
3071static int __init kcompactd_init(void)
3072{
3073 int nid;
e46b1db2
AMG
3074 int ret;
3075
3076 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3077 "mm/compaction:online",
3078 kcompactd_cpu_online, NULL);
3079 if (ret < 0) {
3080 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3081 return ret;
3082 }
698b1b30
VB
3083
3084 for_each_node_state(nid, N_MEMORY)
3085 kcompactd_run(nid);
698b1b30
VB
3086 return 0;
3087}
3088subsys_initcall(kcompactd_init)
3089
ff9543fd 3090#endif /* CONFIG_COMPACTION */