]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/compaction.c
mm, compaction: reduce premature advancement of the migration target scanner
[mirror_ubuntu-hirsute-kernel.git] / mm / compaction.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
748446bb
MG
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
698b1b30 11#include <linux/cpu.h>
748446bb
MG
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
174cd4b1 16#include <linux/sched/signal.h>
748446bb 17#include <linux/backing-dev.h>
76ab0f53 18#include <linux/sysctl.h>
ed4a6d7f 19#include <linux/sysfs.h>
194159fb 20#include <linux/page-isolation.h>
b8c73fc2 21#include <linux/kasan.h>
698b1b30
VB
22#include <linux/kthread.h>
23#include <linux/freezer.h>
83358ece 24#include <linux/page_owner.h>
eb414681 25#include <linux/psi.h>
748446bb
MG
26#include "internal.h"
27
010fc29a
MK
28#ifdef CONFIG_COMPACTION
29static inline void count_compact_event(enum vm_event_item item)
30{
31 count_vm_event(item);
32}
33
34static inline void count_compact_events(enum vm_event_item item, long delta)
35{
36 count_vm_events(item, delta);
37}
38#else
39#define count_compact_event(item) do { } while (0)
40#define count_compact_events(item, delta) do { } while (0)
41#endif
42
ff9543fd
MN
43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
b7aba698
MG
45#define CREATE_TRACE_POINTS
46#include <trace/events/compaction.h>
47
06b6640a
VB
48#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
748446bb
MG
53static unsigned long release_freepages(struct list_head *freelist)
54{
55 struct page *page, *next;
6bace090 56 unsigned long high_pfn = 0;
748446bb
MG
57
58 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 59 unsigned long pfn = page_to_pfn(page);
748446bb
MG
60 list_del(&page->lru);
61 __free_page(page);
6bace090
VB
62 if (pfn > high_pfn)
63 high_pfn = pfn;
748446bb
MG
64 }
65
6bace090 66 return high_pfn;
748446bb
MG
67}
68
4469ab98 69static void split_map_pages(struct list_head *list)
ff9543fd 70{
66c64223
JK
71 unsigned int i, order, nr_pages;
72 struct page *page, *next;
73 LIST_HEAD(tmp_list);
74
75 list_for_each_entry_safe(page, next, list, lru) {
76 list_del(&page->lru);
77
78 order = page_private(page);
79 nr_pages = 1 << order;
66c64223 80
46f24fd8 81 post_alloc_hook(page, order, __GFP_MOVABLE);
66c64223
JK
82 if (order)
83 split_page(page, order);
ff9543fd 84
66c64223
JK
85 for (i = 0; i < nr_pages; i++) {
86 list_add(&page->lru, &tmp_list);
87 page++;
88 }
ff9543fd 89 }
66c64223
JK
90
91 list_splice(&tmp_list, list);
ff9543fd
MN
92}
93
bb13ffeb 94#ifdef CONFIG_COMPACTION
24e2716f 95
bda807d4
MK
96int PageMovable(struct page *page)
97{
98 struct address_space *mapping;
99
100 VM_BUG_ON_PAGE(!PageLocked(page), page);
101 if (!__PageMovable(page))
102 return 0;
103
104 mapping = page_mapping(page);
105 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106 return 1;
107
108 return 0;
109}
110EXPORT_SYMBOL(PageMovable);
111
112void __SetPageMovable(struct page *page, struct address_space *mapping)
113{
114 VM_BUG_ON_PAGE(!PageLocked(page), page);
115 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117}
118EXPORT_SYMBOL(__SetPageMovable);
119
120void __ClearPageMovable(struct page *page)
121{
122 VM_BUG_ON_PAGE(!PageLocked(page), page);
123 VM_BUG_ON_PAGE(!PageMovable(page), page);
124 /*
125 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126 * flag so that VM can catch up released page by driver after isolation.
127 * With it, VM migration doesn't try to put it back.
128 */
129 page->mapping = (void *)((unsigned long)page->mapping &
130 PAGE_MAPPING_MOVABLE);
131}
132EXPORT_SYMBOL(__ClearPageMovable);
133
24e2716f
JK
134/* Do not skip compaction more than 64 times */
135#define COMPACT_MAX_DEFER_SHIFT 6
136
137/*
138 * Compaction is deferred when compaction fails to result in a page
139 * allocation success. 1 << compact_defer_limit compactions are skipped up
140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141 */
142void defer_compaction(struct zone *zone, int order)
143{
144 zone->compact_considered = 0;
145 zone->compact_defer_shift++;
146
147 if (order < zone->compact_order_failed)
148 zone->compact_order_failed = order;
149
150 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152
153 trace_mm_compaction_defer_compaction(zone, order);
154}
155
156/* Returns true if compaction should be skipped this time */
157bool compaction_deferred(struct zone *zone, int order)
158{
159 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160
161 if (order < zone->compact_order_failed)
162 return false;
163
164 /* Avoid possible overflow */
165 if (++zone->compact_considered > defer_limit)
166 zone->compact_considered = defer_limit;
167
168 if (zone->compact_considered >= defer_limit)
169 return false;
170
171 trace_mm_compaction_deferred(zone, order);
172
173 return true;
174}
175
176/*
177 * Update defer tracking counters after successful compaction of given order,
178 * which means an allocation either succeeded (alloc_success == true) or is
179 * expected to succeed.
180 */
181void compaction_defer_reset(struct zone *zone, int order,
182 bool alloc_success)
183{
184 if (alloc_success) {
185 zone->compact_considered = 0;
186 zone->compact_defer_shift = 0;
187 }
188 if (order >= zone->compact_order_failed)
189 zone->compact_order_failed = order + 1;
190
191 trace_mm_compaction_defer_reset(zone, order);
192}
193
194/* Returns true if restarting compaction after many failures */
195bool compaction_restarting(struct zone *zone, int order)
196{
197 if (order < zone->compact_order_failed)
198 return false;
199
200 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201 zone->compact_considered >= 1UL << zone->compact_defer_shift;
202}
203
bb13ffeb
MG
204/* Returns true if the pageblock should be scanned for pages to isolate. */
205static inline bool isolation_suitable(struct compact_control *cc,
206 struct page *page)
207{
208 if (cc->ignore_skip_hint)
209 return true;
210
211 return !get_pageblock_skip(page);
212}
213
02333641
VB
214static void reset_cached_positions(struct zone *zone)
215{
216 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 218 zone->compact_cached_free_pfn =
06b6640a 219 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
220}
221
21dc7e02 222/*
b527cfe5
VB
223 * Compound pages of >= pageblock_order should consistenly be skipped until
224 * released. It is always pointless to compact pages of such order (if they are
225 * migratable), and the pageblocks they occupy cannot contain any free pages.
21dc7e02 226 */
b527cfe5 227static bool pageblock_skip_persistent(struct page *page)
21dc7e02 228{
b527cfe5 229 if (!PageCompound(page))
21dc7e02 230 return false;
b527cfe5
VB
231
232 page = compound_head(page);
233
234 if (compound_order(page) >= pageblock_order)
235 return true;
236
237 return false;
21dc7e02
DR
238}
239
bb13ffeb
MG
240/*
241 * This function is called to clear all cached information on pageblocks that
242 * should be skipped for page isolation when the migrate and free page scanner
243 * meet.
244 */
62997027 245static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb
MG
246{
247 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 248 unsigned long end_pfn = zone_end_pfn(zone);
bb13ffeb
MG
249 unsigned long pfn;
250
62997027 251 zone->compact_blockskip_flush = false;
bb13ffeb
MG
252
253 /* Walk the zone and mark every pageblock as suitable for isolation */
254 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
255 struct page *page;
256
257 cond_resched();
258
ccbe1e4d
MH
259 page = pfn_to_online_page(pfn);
260 if (!page)
bb13ffeb 261 continue;
bb13ffeb
MG
262 if (zone != page_zone(page))
263 continue;
b527cfe5 264 if (pageblock_skip_persistent(page))
21dc7e02 265 continue;
bb13ffeb
MG
266
267 clear_pageblock_skip(page);
268 }
02333641
VB
269
270 reset_cached_positions(zone);
bb13ffeb
MG
271}
272
62997027
MG
273void reset_isolation_suitable(pg_data_t *pgdat)
274{
275 int zoneid;
276
277 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
278 struct zone *zone = &pgdat->node_zones[zoneid];
279 if (!populated_zone(zone))
280 continue;
281
282 /* Only flush if a full compaction finished recently */
283 if (zone->compact_blockskip_flush)
284 __reset_isolation_suitable(zone);
285 }
286}
287
e380bebe
MG
288/*
289 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
290 * locks are not required for read/writers. Returns true if it was already set.
291 */
292static bool test_and_set_skip(struct compact_control *cc, struct page *page,
293 unsigned long pfn)
294{
295 bool skip;
296
297 /* Do no update if skip hint is being ignored */
298 if (cc->ignore_skip_hint)
299 return false;
300
301 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
302 return false;
303
304 skip = get_pageblock_skip(page);
305 if (!skip && !cc->no_set_skip_hint)
306 set_pageblock_skip(page);
307
308 return skip;
309}
310
311static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
312{
313 struct zone *zone = cc->zone;
314
315 pfn = pageblock_end_pfn(pfn);
316
317 /* Set for isolation rather than compaction */
318 if (cc->no_set_skip_hint)
319 return;
320
321 if (pfn > zone->compact_cached_migrate_pfn[0])
322 zone->compact_cached_migrate_pfn[0] = pfn;
323 if (cc->mode != MIGRATE_ASYNC &&
324 pfn > zone->compact_cached_migrate_pfn[1])
325 zone->compact_cached_migrate_pfn[1] = pfn;
326}
327
bb13ffeb
MG
328/*
329 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 330 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 331 */
c89511ab 332static void update_pageblock_skip(struct compact_control *cc,
d097a6f6 333 struct page *page, unsigned long pfn)
bb13ffeb 334{
c89511ab 335 struct zone *zone = cc->zone;
6815bf3f 336
2583d671 337 if (cc->no_set_skip_hint)
6815bf3f
JK
338 return;
339
bb13ffeb
MG
340 if (!page)
341 return;
342
edc2ca61 343 set_pageblock_skip(page);
c89511ab 344
35979ef3 345 /* Update where async and sync compaction should restart */
e380bebe
MG
346 if (pfn < zone->compact_cached_free_pfn)
347 zone->compact_cached_free_pfn = pfn;
bb13ffeb
MG
348}
349#else
350static inline bool isolation_suitable(struct compact_control *cc,
351 struct page *page)
352{
353 return true;
354}
355
b527cfe5 356static inline bool pageblock_skip_persistent(struct page *page)
21dc7e02
DR
357{
358 return false;
359}
360
361static inline void update_pageblock_skip(struct compact_control *cc,
d097a6f6 362 struct page *page, unsigned long pfn)
bb13ffeb
MG
363{
364}
e380bebe
MG
365
366static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
367{
368}
369
370static bool test_and_set_skip(struct compact_control *cc, struct page *page,
371 unsigned long pfn)
372{
373 return false;
374}
bb13ffeb
MG
375#endif /* CONFIG_COMPACTION */
376
8b44d279
VB
377/*
378 * Compaction requires the taking of some coarse locks that are potentially
cb2dcaf0
MG
379 * very heavily contended. For async compaction, trylock and record if the
380 * lock is contended. The lock will still be acquired but compaction will
381 * abort when the current block is finished regardless of success rate.
382 * Sync compaction acquires the lock.
8b44d279 383 *
cb2dcaf0 384 * Always returns true which makes it easier to track lock state in callers.
8b44d279 385 */
cb2dcaf0 386static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
8b44d279 387 struct compact_control *cc)
2a1402aa 388{
cb2dcaf0
MG
389 /* Track if the lock is contended in async mode */
390 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
391 if (spin_trylock_irqsave(lock, *flags))
392 return true;
393
394 cc->contended = true;
8b44d279 395 }
1f9efdef 396
cb2dcaf0 397 spin_lock_irqsave(lock, *flags);
8b44d279 398 return true;
2a1402aa
MG
399}
400
c67fe375
MG
401/*
402 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
403 * very heavily contended. The lock should be periodically unlocked to avoid
404 * having disabled IRQs for a long time, even when there is nobody waiting on
405 * the lock. It might also be that allowing the IRQs will result in
406 * need_resched() becoming true. If scheduling is needed, async compaction
407 * aborts. Sync compaction schedules.
408 * Either compaction type will also abort if a fatal signal is pending.
409 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 410 *
8b44d279
VB
411 * Returns true if compaction should abort due to fatal signal pending, or
412 * async compaction due to need_resched()
413 * Returns false when compaction can continue (sync compaction might have
414 * scheduled)
c67fe375 415 */
8b44d279
VB
416static bool compact_unlock_should_abort(spinlock_t *lock,
417 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 418{
8b44d279
VB
419 if (*locked) {
420 spin_unlock_irqrestore(lock, flags);
421 *locked = false;
422 }
1f9efdef 423
8b44d279 424 if (fatal_signal_pending(current)) {
c3486f53 425 cc->contended = true;
8b44d279
VB
426 return true;
427 }
c67fe375 428
cf66f070 429 cond_resched();
be976572
VB
430
431 return false;
432}
433
85aa125f 434/*
9e4be470
JM
435 * Isolate free pages onto a private freelist. If @strict is true, will abort
436 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
437 * (even though it may still end up isolating some pages).
85aa125f 438 */
f40d1e42 439static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 440 unsigned long *start_pfn,
85aa125f
MN
441 unsigned long end_pfn,
442 struct list_head *freelist,
443 bool strict)
748446bb 444{
b7aba698 445 int nr_scanned = 0, total_isolated = 0;
d097a6f6 446 struct page *cursor;
b8b2d825 447 unsigned long flags = 0;
f40d1e42 448 bool locked = false;
e14c720e 449 unsigned long blockpfn = *start_pfn;
66c64223 450 unsigned int order;
748446bb 451
748446bb
MG
452 cursor = pfn_to_page(blockpfn);
453
f40d1e42 454 /* Isolate free pages. */
748446bb 455 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
66c64223 456 int isolated;
748446bb
MG
457 struct page *page = cursor;
458
8b44d279
VB
459 /*
460 * Periodically drop the lock (if held) regardless of its
461 * contention, to give chance to IRQs. Abort if fatal signal
462 * pending or async compaction detects need_resched()
463 */
464 if (!(blockpfn % SWAP_CLUSTER_MAX)
465 && compact_unlock_should_abort(&cc->zone->lock, flags,
466 &locked, cc))
467 break;
468
b7aba698 469 nr_scanned++;
f40d1e42 470 if (!pfn_valid_within(blockpfn))
2af120bc
LA
471 goto isolate_fail;
472
9fcd6d2e
VB
473 /*
474 * For compound pages such as THP and hugetlbfs, we can save
475 * potentially a lot of iterations if we skip them at once.
476 * The check is racy, but we can consider only valid values
477 * and the only danger is skipping too much.
478 */
479 if (PageCompound(page)) {
21dc7e02
DR
480 const unsigned int order = compound_order(page);
481
d3c85bad 482 if (likely(order < MAX_ORDER)) {
21dc7e02
DR
483 blockpfn += (1UL << order) - 1;
484 cursor += (1UL << order) - 1;
9fcd6d2e 485 }
9fcd6d2e
VB
486 goto isolate_fail;
487 }
488
f40d1e42 489 if (!PageBuddy(page))
2af120bc 490 goto isolate_fail;
f40d1e42
MG
491
492 /*
69b7189f
VB
493 * If we already hold the lock, we can skip some rechecking.
494 * Note that if we hold the lock now, checked_pageblock was
495 * already set in some previous iteration (or strict is true),
496 * so it is correct to skip the suitable migration target
497 * recheck as well.
f40d1e42 498 */
69b7189f 499 if (!locked) {
cb2dcaf0 500 locked = compact_lock_irqsave(&cc->zone->lock,
8b44d279 501 &flags, cc);
f40d1e42 502
69b7189f
VB
503 /* Recheck this is a buddy page under lock */
504 if (!PageBuddy(page))
505 goto isolate_fail;
506 }
748446bb 507
66c64223
JK
508 /* Found a free page, will break it into order-0 pages */
509 order = page_order(page);
510 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
511 if (!isolated)
512 break;
66c64223 513 set_page_private(page, order);
a4f04f2c 514
748446bb 515 total_isolated += isolated;
a4f04f2c 516 cc->nr_freepages += isolated;
66c64223
JK
517 list_add_tail(&page->lru, freelist);
518
a4f04f2c
DR
519 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
520 blockpfn += isolated;
521 break;
748446bb 522 }
a4f04f2c
DR
523 /* Advance to the end of split page */
524 blockpfn += isolated - 1;
525 cursor += isolated - 1;
526 continue;
2af120bc
LA
527
528isolate_fail:
529 if (strict)
530 break;
531 else
532 continue;
533
748446bb
MG
534 }
535
a4f04f2c
DR
536 if (locked)
537 spin_unlock_irqrestore(&cc->zone->lock, flags);
538
9fcd6d2e
VB
539 /*
540 * There is a tiny chance that we have read bogus compound_order(),
541 * so be careful to not go outside of the pageblock.
542 */
543 if (unlikely(blockpfn > end_pfn))
544 blockpfn = end_pfn;
545
e34d85f0
JK
546 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
547 nr_scanned, total_isolated);
548
e14c720e
VB
549 /* Record how far we have got within the block */
550 *start_pfn = blockpfn;
551
f40d1e42
MG
552 /*
553 * If strict isolation is requested by CMA then check that all the
554 * pages requested were isolated. If there were any failures, 0 is
555 * returned and CMA will fail.
556 */
2af120bc 557 if (strict && blockpfn < end_pfn)
f40d1e42
MG
558 total_isolated = 0;
559
7f354a54 560 cc->total_free_scanned += nr_scanned;
397487db 561 if (total_isolated)
010fc29a 562 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
563 return total_isolated;
564}
565
85aa125f
MN
566/**
567 * isolate_freepages_range() - isolate free pages.
e8b098fc 568 * @cc: Compaction control structure.
85aa125f
MN
569 * @start_pfn: The first PFN to start isolating.
570 * @end_pfn: The one-past-last PFN.
571 *
572 * Non-free pages, invalid PFNs, or zone boundaries within the
573 * [start_pfn, end_pfn) range are considered errors, cause function to
574 * undo its actions and return zero.
575 *
576 * Otherwise, function returns one-past-the-last PFN of isolated page
577 * (which may be greater then end_pfn if end fell in a middle of
578 * a free page).
579 */
ff9543fd 580unsigned long
bb13ffeb
MG
581isolate_freepages_range(struct compact_control *cc,
582 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 583{
e1409c32 584 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
585 LIST_HEAD(freelist);
586
7d49d886 587 pfn = start_pfn;
06b6640a 588 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
589 if (block_start_pfn < cc->zone->zone_start_pfn)
590 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 591 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
592
593 for (; pfn < end_pfn; pfn += isolated,
e1409c32 594 block_start_pfn = block_end_pfn,
7d49d886 595 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
596 /* Protect pfn from changing by isolate_freepages_block */
597 unsigned long isolate_start_pfn = pfn;
85aa125f 598
85aa125f
MN
599 block_end_pfn = min(block_end_pfn, end_pfn);
600
58420016
JK
601 /*
602 * pfn could pass the block_end_pfn if isolated freepage
603 * is more than pageblock order. In this case, we adjust
604 * scanning range to right one.
605 */
606 if (pfn >= block_end_pfn) {
06b6640a
VB
607 block_start_pfn = pageblock_start_pfn(pfn);
608 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
609 block_end_pfn = min(block_end_pfn, end_pfn);
610 }
611
e1409c32
JK
612 if (!pageblock_pfn_to_page(block_start_pfn,
613 block_end_pfn, cc->zone))
7d49d886
VB
614 break;
615
e14c720e
VB
616 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
617 block_end_pfn, &freelist, true);
85aa125f
MN
618
619 /*
620 * In strict mode, isolate_freepages_block() returns 0 if
621 * there are any holes in the block (ie. invalid PFNs or
622 * non-free pages).
623 */
624 if (!isolated)
625 break;
626
627 /*
628 * If we managed to isolate pages, it is always (1 << n) *
629 * pageblock_nr_pages for some non-negative n. (Max order
630 * page may span two pageblocks).
631 */
632 }
633
66c64223 634 /* __isolate_free_page() does not map the pages */
4469ab98 635 split_map_pages(&freelist);
85aa125f
MN
636
637 if (pfn < end_pfn) {
638 /* Loop terminated early, cleanup. */
639 release_freepages(&freelist);
640 return 0;
641 }
642
643 /* We don't use freelists for anything. */
644 return pfn;
645}
646
748446bb
MG
647/* Similar to reclaim, but different enough that they don't share logic */
648static bool too_many_isolated(struct zone *zone)
649{
bc693045 650 unsigned long active, inactive, isolated;
748446bb 651
599d0c95
MG
652 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
653 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
654 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
655 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
656 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
657 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
748446bb 658
bc693045 659 return isolated > (inactive + active) / 2;
748446bb
MG
660}
661
2fe86e00 662/**
edc2ca61
VB
663 * isolate_migratepages_block() - isolate all migrate-able pages within
664 * a single pageblock
2fe86e00 665 * @cc: Compaction control structure.
edc2ca61
VB
666 * @low_pfn: The first PFN to isolate
667 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
668 * @isolate_mode: Isolation mode to be used.
2fe86e00
MN
669 *
670 * Isolate all pages that can be migrated from the range specified by
edc2ca61
VB
671 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
672 * Returns zero if there is a fatal signal pending, otherwise PFN of the
673 * first page that was not scanned (which may be both less, equal to or more
674 * than end_pfn).
2fe86e00 675 *
edc2ca61
VB
676 * The pages are isolated on cc->migratepages list (not required to be empty),
677 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
678 * is neither read nor updated.
748446bb 679 */
edc2ca61
VB
680static unsigned long
681isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
682 unsigned long end_pfn, isolate_mode_t isolate_mode)
748446bb 683{
edc2ca61 684 struct zone *zone = cc->zone;
b7aba698 685 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 686 struct lruvec *lruvec;
b8b2d825 687 unsigned long flags = 0;
2a1402aa 688 bool locked = false;
bb13ffeb 689 struct page *page = NULL, *valid_page = NULL;
e34d85f0 690 unsigned long start_pfn = low_pfn;
fdd048e1
VB
691 bool skip_on_failure = false;
692 unsigned long next_skip_pfn = 0;
e380bebe 693 bool skip_updated = false;
748446bb 694
748446bb
MG
695 /*
696 * Ensure that there are not too many pages isolated from the LRU
697 * list by either parallel reclaimers or compaction. If there are,
698 * delay for some time until fewer pages are isolated
699 */
700 while (unlikely(too_many_isolated(zone))) {
f9e35b3b 701 /* async migration should just abort */
e0b9daeb 702 if (cc->mode == MIGRATE_ASYNC)
2fe86e00 703 return 0;
f9e35b3b 704
748446bb
MG
705 congestion_wait(BLK_RW_ASYNC, HZ/10);
706
707 if (fatal_signal_pending(current))
2fe86e00 708 return 0;
748446bb
MG
709 }
710
cf66f070 711 cond_resched();
aeef4b83 712
fdd048e1
VB
713 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
714 skip_on_failure = true;
715 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
716 }
717
748446bb 718 /* Time to isolate some pages for migration */
748446bb 719 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 720
fdd048e1
VB
721 if (skip_on_failure && low_pfn >= next_skip_pfn) {
722 /*
723 * We have isolated all migration candidates in the
724 * previous order-aligned block, and did not skip it due
725 * to failure. We should migrate the pages now and
726 * hopefully succeed compaction.
727 */
728 if (nr_isolated)
729 break;
730
731 /*
732 * We failed to isolate in the previous order-aligned
733 * block. Set the new boundary to the end of the
734 * current block. Note we can't simply increase
735 * next_skip_pfn by 1 << order, as low_pfn might have
736 * been incremented by a higher number due to skipping
737 * a compound or a high-order buddy page in the
738 * previous loop iteration.
739 */
740 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
741 }
742
8b44d279
VB
743 /*
744 * Periodically drop the lock (if held) regardless of its
745 * contention, to give chance to IRQs. Abort async compaction
746 * if contended.
747 */
748 if (!(low_pfn % SWAP_CLUSTER_MAX)
a52633d8 749 && compact_unlock_should_abort(zone_lru_lock(zone), flags,
8b44d279
VB
750 &locked, cc))
751 break;
c67fe375 752
748446bb 753 if (!pfn_valid_within(low_pfn))
fdd048e1 754 goto isolate_fail;
b7aba698 755 nr_scanned++;
748446bb 756
748446bb 757 page = pfn_to_page(low_pfn);
dc908600 758
e380bebe
MG
759 /*
760 * Check if the pageblock has already been marked skipped.
761 * Only the aligned PFN is checked as the caller isolates
762 * COMPACT_CLUSTER_MAX at a time so the second call must
763 * not falsely conclude that the block should be skipped.
764 */
765 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
766 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
767 low_pfn = end_pfn;
768 goto isolate_abort;
769 }
bb13ffeb 770 valid_page = page;
e380bebe 771 }
bb13ffeb 772
6c14466c 773 /*
99c0fd5e
VB
774 * Skip if free. We read page order here without zone lock
775 * which is generally unsafe, but the race window is small and
776 * the worst thing that can happen is that we skip some
777 * potential isolation targets.
6c14466c 778 */
99c0fd5e
VB
779 if (PageBuddy(page)) {
780 unsigned long freepage_order = page_order_unsafe(page);
781
782 /*
783 * Without lock, we cannot be sure that what we got is
784 * a valid page order. Consider only values in the
785 * valid order range to prevent low_pfn overflow.
786 */
787 if (freepage_order > 0 && freepage_order < MAX_ORDER)
788 low_pfn += (1UL << freepage_order) - 1;
748446bb 789 continue;
99c0fd5e 790 }
748446bb 791
bc835011 792 /*
29c0dde8
VB
793 * Regardless of being on LRU, compound pages such as THP and
794 * hugetlbfs are not to be compacted. We can potentially save
795 * a lot of iterations if we skip them at once. The check is
796 * racy, but we can consider only valid values and the only
797 * danger is skipping too much.
bc835011 798 */
29c0dde8 799 if (PageCompound(page)) {
21dc7e02 800 const unsigned int order = compound_order(page);
edc2ca61 801
d3c85bad 802 if (likely(order < MAX_ORDER))
21dc7e02 803 low_pfn += (1UL << order) - 1;
fdd048e1 804 goto isolate_fail;
2a1402aa
MG
805 }
806
bda807d4
MK
807 /*
808 * Check may be lockless but that's ok as we recheck later.
809 * It's possible to migrate LRU and non-lru movable pages.
810 * Skip any other type of page
811 */
812 if (!PageLRU(page)) {
bda807d4
MK
813 /*
814 * __PageMovable can return false positive so we need
815 * to verify it under page_lock.
816 */
817 if (unlikely(__PageMovable(page)) &&
818 !PageIsolated(page)) {
819 if (locked) {
a52633d8 820 spin_unlock_irqrestore(zone_lru_lock(zone),
bda807d4
MK
821 flags);
822 locked = false;
823 }
824
9e5bcd61 825 if (!isolate_movable_page(page, isolate_mode))
bda807d4
MK
826 goto isolate_success;
827 }
828
fdd048e1 829 goto isolate_fail;
bda807d4 830 }
29c0dde8 831
119d6d59
DR
832 /*
833 * Migration will fail if an anonymous page is pinned in memory,
834 * so avoid taking lru_lock and isolating it unnecessarily in an
835 * admittedly racy check.
836 */
837 if (!page_mapping(page) &&
838 page_count(page) > page_mapcount(page))
fdd048e1 839 goto isolate_fail;
119d6d59 840
73e64c51
MH
841 /*
842 * Only allow to migrate anonymous pages in GFP_NOFS context
843 * because those do not depend on fs locks.
844 */
845 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
846 goto isolate_fail;
847
69b7189f
VB
848 /* If we already hold the lock, we can skip some rechecking */
849 if (!locked) {
cb2dcaf0 850 locked = compact_lock_irqsave(zone_lru_lock(zone),
8b44d279 851 &flags, cc);
e380bebe 852
e380bebe
MG
853 /* Try get exclusive access under lock */
854 if (!skip_updated) {
855 skip_updated = true;
856 if (test_and_set_skip(cc, page, low_pfn))
857 goto isolate_abort;
858 }
2a1402aa 859
29c0dde8 860 /* Recheck PageLRU and PageCompound under lock */
69b7189f 861 if (!PageLRU(page))
fdd048e1 862 goto isolate_fail;
29c0dde8
VB
863
864 /*
865 * Page become compound since the non-locked check,
866 * and it's on LRU. It can only be a THP so the order
867 * is safe to read and it's 0 for tail pages.
868 */
869 if (unlikely(PageCompound(page))) {
d3c85bad 870 low_pfn += (1UL << compound_order(page)) - 1;
fdd048e1 871 goto isolate_fail;
69b7189f 872 }
bc835011
AA
873 }
874
599d0c95 875 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
fa9add64 876
748446bb 877 /* Try isolate the page */
edc2ca61 878 if (__isolate_lru_page(page, isolate_mode) != 0)
fdd048e1 879 goto isolate_fail;
748446bb 880
29c0dde8 881 VM_BUG_ON_PAGE(PageCompound(page), page);
bc835011 882
748446bb 883 /* Successfully isolated */
fa9add64 884 del_page_from_lru_list(page, lruvec, page_lru(page));
6afcf8ef
ML
885 inc_node_page_state(page,
886 NR_ISOLATED_ANON + page_is_file_cache(page));
b6c75016
JK
887
888isolate_success:
fdd048e1 889 list_add(&page->lru, &cc->migratepages);
748446bb 890 cc->nr_migratepages++;
b7aba698 891 nr_isolated++;
748446bb 892
804d3121
MG
893 /*
894 * Avoid isolating too much unless this block is being
cb2dcaf0
MG
895 * rescanned (e.g. dirty/writeback pages, parallel allocation)
896 * or a lock is contended. For contention, isolate quickly to
897 * potentially remove one source of contention.
804d3121 898 */
cb2dcaf0
MG
899 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
900 !cc->rescan && !cc->contended) {
31b8384a 901 ++low_pfn;
748446bb 902 break;
31b8384a 903 }
fdd048e1
VB
904
905 continue;
906isolate_fail:
907 if (!skip_on_failure)
908 continue;
909
910 /*
911 * We have isolated some pages, but then failed. Release them
912 * instead of migrating, as we cannot form the cc->order buddy
913 * page anyway.
914 */
915 if (nr_isolated) {
916 if (locked) {
a52633d8 917 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
fdd048e1
VB
918 locked = false;
919 }
fdd048e1
VB
920 putback_movable_pages(&cc->migratepages);
921 cc->nr_migratepages = 0;
fdd048e1
VB
922 nr_isolated = 0;
923 }
924
925 if (low_pfn < next_skip_pfn) {
926 low_pfn = next_skip_pfn - 1;
927 /*
928 * The check near the loop beginning would have updated
929 * next_skip_pfn too, but this is a bit simpler.
930 */
931 next_skip_pfn += 1UL << cc->order;
932 }
748446bb
MG
933 }
934
99c0fd5e
VB
935 /*
936 * The PageBuddy() check could have potentially brought us outside
937 * the range to be scanned.
938 */
939 if (unlikely(low_pfn > end_pfn))
940 low_pfn = end_pfn;
941
e380bebe 942isolate_abort:
c67fe375 943 if (locked)
a52633d8 944 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
748446bb 945
50b5b094 946 /*
804d3121
MG
947 * Updated the cached scanner pfn once the pageblock has been scanned
948 * Pages will either be migrated in which case there is no point
949 * scanning in the near future or migration failed in which case the
950 * failure reason may persist. The block is marked for skipping if
951 * there were no pages isolated in the block or if the block is
952 * rescanned twice in a row.
50b5b094 953 */
804d3121 954 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
e380bebe
MG
955 if (valid_page && !skip_updated)
956 set_pageblock_skip(valid_page);
957 update_cached_migrate(cc, low_pfn);
958 }
bb13ffeb 959
e34d85f0
JK
960 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
961 nr_scanned, nr_isolated);
b7aba698 962
7f354a54 963 cc->total_migrate_scanned += nr_scanned;
397487db 964 if (nr_isolated)
010fc29a 965 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 966
2fe86e00
MN
967 return low_pfn;
968}
969
edc2ca61
VB
970/**
971 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
972 * @cc: Compaction control structure.
973 * @start_pfn: The first PFN to start isolating.
974 * @end_pfn: The one-past-last PFN.
975 *
976 * Returns zero if isolation fails fatally due to e.g. pending signal.
977 * Otherwise, function returns one-past-the-last PFN of isolated page
978 * (which may be greater than end_pfn if end fell in a middle of a THP page).
979 */
980unsigned long
981isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
982 unsigned long end_pfn)
983{
e1409c32 984 unsigned long pfn, block_start_pfn, block_end_pfn;
edc2ca61
VB
985
986 /* Scan block by block. First and last block may be incomplete */
987 pfn = start_pfn;
06b6640a 988 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
989 if (block_start_pfn < cc->zone->zone_start_pfn)
990 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 991 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
992
993 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 994 block_start_pfn = block_end_pfn,
edc2ca61
VB
995 block_end_pfn += pageblock_nr_pages) {
996
997 block_end_pfn = min(block_end_pfn, end_pfn);
998
e1409c32
JK
999 if (!pageblock_pfn_to_page(block_start_pfn,
1000 block_end_pfn, cc->zone))
edc2ca61
VB
1001 continue;
1002
1003 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1004 ISOLATE_UNEVICTABLE);
1005
14af4a5e 1006 if (!pfn)
edc2ca61 1007 break;
6ea41c0c
JK
1008
1009 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1010 break;
edc2ca61 1011 }
edc2ca61
VB
1012
1013 return pfn;
1014}
1015
ff9543fd
MN
1016#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1017#ifdef CONFIG_COMPACTION
018e9a49 1018
b682debd
VB
1019static bool suitable_migration_source(struct compact_control *cc,
1020 struct page *page)
1021{
282722b0
VB
1022 int block_mt;
1023
9bebefd5
MG
1024 if (pageblock_skip_persistent(page))
1025 return false;
1026
282722b0 1027 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
b682debd
VB
1028 return true;
1029
282722b0
VB
1030 block_mt = get_pageblock_migratetype(page);
1031
1032 if (cc->migratetype == MIGRATE_MOVABLE)
1033 return is_migrate_movable(block_mt);
1034 else
1035 return block_mt == cc->migratetype;
b682debd
VB
1036}
1037
018e9a49 1038/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1039static bool suitable_migration_target(struct compact_control *cc,
1040 struct page *page)
018e9a49
AM
1041{
1042 /* If the page is a large free page, then disallow migration */
1043 if (PageBuddy(page)) {
1044 /*
1045 * We are checking page_order without zone->lock taken. But
1046 * the only small danger is that we skip a potentially suitable
1047 * pageblock, so it's not worth to check order for valid range.
1048 */
1049 if (page_order_unsafe(page) >= pageblock_order)
1050 return false;
1051 }
1052
1ef36db2
YX
1053 if (cc->ignore_block_suitable)
1054 return true;
1055
018e9a49 1056 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
b682debd 1057 if (is_migrate_movable(get_pageblock_migratetype(page)))
018e9a49
AM
1058 return true;
1059
1060 /* Otherwise skip the block */
1061 return false;
1062}
1063
70b44595
MG
1064static inline unsigned int
1065freelist_scan_limit(struct compact_control *cc)
1066{
1067 return (COMPACT_CLUSTER_MAX >> cc->fast_search_fail) + 1;
1068}
1069
f2849aa0
VB
1070/*
1071 * Test whether the free scanner has reached the same or lower pageblock than
1072 * the migration scanner, and compaction should thus terminate.
1073 */
1074static inline bool compact_scanners_met(struct compact_control *cc)
1075{
1076 return (cc->free_pfn >> pageblock_order)
1077 <= (cc->migrate_pfn >> pageblock_order);
1078}
1079
5a811889
MG
1080/*
1081 * Used when scanning for a suitable migration target which scans freelists
1082 * in reverse. Reorders the list such as the unscanned pages are scanned
1083 * first on the next iteration of the free scanner
1084 */
1085static void
1086move_freelist_head(struct list_head *freelist, struct page *freepage)
1087{
1088 LIST_HEAD(sublist);
1089
1090 if (!list_is_last(freelist, &freepage->lru)) {
1091 list_cut_before(&sublist, freelist, &freepage->lru);
1092 if (!list_empty(&sublist))
1093 list_splice_tail(&sublist, freelist);
1094 }
1095}
1096
1097/*
1098 * Similar to move_freelist_head except used by the migration scanner
1099 * when scanning forward. It's possible for these list operations to
1100 * move against each other if they search the free list exactly in
1101 * lockstep.
1102 */
70b44595
MG
1103static void
1104move_freelist_tail(struct list_head *freelist, struct page *freepage)
1105{
1106 LIST_HEAD(sublist);
1107
1108 if (!list_is_first(freelist, &freepage->lru)) {
1109 list_cut_position(&sublist, freelist, &freepage->lru);
1110 if (!list_empty(&sublist))
1111 list_splice_tail(&sublist, freelist);
1112 }
1113}
1114
5a811889
MG
1115static void
1116fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1117{
1118 unsigned long start_pfn, end_pfn;
1119 struct page *page = pfn_to_page(pfn);
1120
1121 /* Do not search around if there are enough pages already */
1122 if (cc->nr_freepages >= cc->nr_migratepages)
1123 return;
1124
1125 /* Minimise scanning during async compaction */
1126 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1127 return;
1128
1129 /* Pageblock boundaries */
1130 start_pfn = pageblock_start_pfn(pfn);
1131 end_pfn = min(start_pfn + pageblock_nr_pages, zone_end_pfn(cc->zone));
1132
1133 /* Scan before */
1134 if (start_pfn != pfn) {
1135 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, false);
1136 if (cc->nr_freepages >= cc->nr_migratepages)
1137 return;
1138 }
1139
1140 /* Scan after */
1141 start_pfn = pfn + nr_isolated;
1142 if (start_pfn != end_pfn)
1143 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, false);
1144
1145 /* Skip this pageblock in the future as it's full or nearly full */
1146 if (cc->nr_freepages < cc->nr_migratepages)
1147 set_pageblock_skip(page);
1148}
1149
1150static unsigned long
1151fast_isolate_freepages(struct compact_control *cc)
1152{
1153 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1154 unsigned int nr_scanned = 0;
1155 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1156 unsigned long nr_isolated = 0;
1157 unsigned long distance;
1158 struct page *page = NULL;
1159 bool scan_start = false;
1160 int order;
1161
1162 /* Full compaction passes in a negative order */
1163 if (cc->order <= 0)
1164 return cc->free_pfn;
1165
1166 /*
1167 * If starting the scan, use a deeper search and use the highest
1168 * PFN found if a suitable one is not found.
1169 */
1170 if (cc->free_pfn == pageblock_start_pfn(zone_end_pfn(cc->zone) - 1)) {
1171 limit = pageblock_nr_pages >> 1;
1172 scan_start = true;
1173 }
1174
1175 /*
1176 * Preferred point is in the top quarter of the scan space but take
1177 * a pfn from the top half if the search is problematic.
1178 */
1179 distance = (cc->free_pfn - cc->migrate_pfn);
1180 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1181 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1182
1183 if (WARN_ON_ONCE(min_pfn > low_pfn))
1184 low_pfn = min_pfn;
1185
1186 for (order = cc->order - 1;
1187 order >= 0 && !page;
1188 order--) {
1189 struct free_area *area = &cc->zone->free_area[order];
1190 struct list_head *freelist;
1191 struct page *freepage;
1192 unsigned long flags;
1193 unsigned int order_scanned = 0;
1194
1195 if (!area->nr_free)
1196 continue;
1197
1198 spin_lock_irqsave(&cc->zone->lock, flags);
1199 freelist = &area->free_list[MIGRATE_MOVABLE];
1200 list_for_each_entry_reverse(freepage, freelist, lru) {
1201 unsigned long pfn;
1202
1203 order_scanned++;
1204 nr_scanned++;
1205 pfn = page_to_pfn(freepage);
1206
1207 if (pfn >= highest)
1208 highest = pageblock_start_pfn(pfn);
1209
1210 if (pfn >= low_pfn) {
1211 cc->fast_search_fail = 0;
1212 page = freepage;
1213 break;
1214 }
1215
1216 if (pfn >= min_pfn && pfn > high_pfn) {
1217 high_pfn = pfn;
1218
1219 /* Shorten the scan if a candidate is found */
1220 limit >>= 1;
1221 }
1222
1223 if (order_scanned >= limit)
1224 break;
1225 }
1226
1227 /* Use a minimum pfn if a preferred one was not found */
1228 if (!page && high_pfn) {
1229 page = pfn_to_page(high_pfn);
1230
1231 /* Update freepage for the list reorder below */
1232 freepage = page;
1233 }
1234
1235 /* Reorder to so a future search skips recent pages */
1236 move_freelist_head(freelist, freepage);
1237
1238 /* Isolate the page if available */
1239 if (page) {
1240 if (__isolate_free_page(page, order)) {
1241 set_page_private(page, order);
1242 nr_isolated = 1 << order;
1243 cc->nr_freepages += nr_isolated;
1244 list_add_tail(&page->lru, &cc->freepages);
1245 count_compact_events(COMPACTISOLATED, nr_isolated);
1246 } else {
1247 /* If isolation fails, abort the search */
1248 order = -1;
1249 page = NULL;
1250 }
1251 }
1252
1253 spin_unlock_irqrestore(&cc->zone->lock, flags);
1254
1255 /*
1256 * Smaller scan on next order so the total scan ig related
1257 * to freelist_scan_limit.
1258 */
1259 if (order_scanned >= limit)
1260 limit = min(1U, limit >> 1);
1261 }
1262
1263 if (!page) {
1264 cc->fast_search_fail++;
1265 if (scan_start) {
1266 /*
1267 * Use the highest PFN found above min. If one was
1268 * not found, be pessemistic for direct compaction
1269 * and use the min mark.
1270 */
1271 if (highest) {
1272 page = pfn_to_page(highest);
1273 cc->free_pfn = highest;
1274 } else {
1275 if (cc->direct_compaction) {
1276 page = pfn_to_page(min_pfn);
1277 cc->free_pfn = min_pfn;
1278 }
1279 }
1280 }
1281 }
1282
d097a6f6
MG
1283 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1284 highest -= pageblock_nr_pages;
5a811889 1285 cc->zone->compact_cached_free_pfn = highest;
d097a6f6 1286 }
5a811889
MG
1287
1288 cc->total_free_scanned += nr_scanned;
1289 if (!page)
1290 return cc->free_pfn;
1291
1292 low_pfn = page_to_pfn(page);
1293 fast_isolate_around(cc, low_pfn, nr_isolated);
1294 return low_pfn;
1295}
1296
2fe86e00 1297/*
ff9543fd
MN
1298 * Based on information in the current compact_control, find blocks
1299 * suitable for isolating free pages from and then isolate them.
2fe86e00 1300 */
edc2ca61 1301static void isolate_freepages(struct compact_control *cc)
2fe86e00 1302{
edc2ca61 1303 struct zone *zone = cc->zone;
ff9543fd 1304 struct page *page;
c96b9e50 1305 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1306 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1307 unsigned long block_end_pfn; /* end of current pageblock */
1308 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1309 struct list_head *freelist = &cc->freepages;
2fe86e00 1310
5a811889
MG
1311 /* Try a small search of the free lists for a candidate */
1312 isolate_start_pfn = fast_isolate_freepages(cc);
1313 if (cc->nr_freepages)
1314 goto splitmap;
1315
ff9543fd
MN
1316 /*
1317 * Initialise the free scanner. The starting point is where we last
49e068f0 1318 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1319 * zone when isolating for the first time. For looping we also need
1320 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1321 * block_start_pfn -= pageblock_nr_pages in the for loop.
1322 * For ending point, take care when isolating in last pageblock of a
1323 * a zone which ends in the middle of a pageblock.
49e068f0
VB
1324 * The low boundary is the end of the pageblock the migration scanner
1325 * is using.
ff9543fd 1326 */
e14c720e 1327 isolate_start_pfn = cc->free_pfn;
5a811889 1328 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
c96b9e50
VB
1329 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1330 zone_end_pfn(zone));
06b6640a 1331 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
2fe86e00 1332
ff9543fd
MN
1333 /*
1334 * Isolate free pages until enough are available to migrate the
1335 * pages on cc->migratepages. We stop searching if the migrate
1336 * and free page scanners meet or enough free pages are isolated.
1337 */
f5f61a32 1338 for (; block_start_pfn >= low_pfn;
c96b9e50 1339 block_end_pfn = block_start_pfn,
e14c720e
VB
1340 block_start_pfn -= pageblock_nr_pages,
1341 isolate_start_pfn = block_start_pfn) {
f6ea3adb
DR
1342 /*
1343 * This can iterate a massively long zone without finding any
cb810ad2 1344 * suitable migration targets, so periodically check resched.
f6ea3adb 1345 */
cb810ad2 1346 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1347 cond_resched();
f6ea3adb 1348
7d49d886
VB
1349 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1350 zone);
1351 if (!page)
ff9543fd
MN
1352 continue;
1353
1354 /* Check the block is suitable for migration */
9f7e3387 1355 if (!suitable_migration_target(cc, page))
ff9543fd 1356 continue;
68e3e926 1357
bb13ffeb
MG
1358 /* If isolation recently failed, do not retry */
1359 if (!isolation_suitable(cc, page))
1360 continue;
1361
e14c720e 1362 /* Found a block suitable for isolating free pages from. */
a46cbf3b
DR
1363 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1364 freelist, false);
ff9543fd 1365
d097a6f6
MG
1366 /* Update the skip hint if the full pageblock was scanned */
1367 if (isolate_start_pfn == block_end_pfn)
1368 update_pageblock_skip(cc, page, block_start_pfn);
1369
cb2dcaf0
MG
1370 /* Are enough freepages isolated? */
1371 if (cc->nr_freepages >= cc->nr_migratepages) {
a46cbf3b
DR
1372 if (isolate_start_pfn >= block_end_pfn) {
1373 /*
1374 * Restart at previous pageblock if more
1375 * freepages can be isolated next time.
1376 */
f5f61a32
VB
1377 isolate_start_pfn =
1378 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1379 }
be976572 1380 break;
a46cbf3b 1381 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1382 /*
a46cbf3b
DR
1383 * If isolation failed early, do not continue
1384 * needlessly.
f5f61a32 1385 */
a46cbf3b 1386 break;
f5f61a32 1387 }
ff9543fd
MN
1388 }
1389
7ed695e0 1390 /*
f5f61a32
VB
1391 * Record where the free scanner will restart next time. Either we
1392 * broke from the loop and set isolate_start_pfn based on the last
1393 * call to isolate_freepages_block(), or we met the migration scanner
1394 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1395 */
f5f61a32 1396 cc->free_pfn = isolate_start_pfn;
5a811889
MG
1397
1398splitmap:
1399 /* __isolate_free_page() does not map the pages */
1400 split_map_pages(freelist);
748446bb
MG
1401}
1402
1403/*
1404 * This is a migrate-callback that "allocates" freepages by taking pages
1405 * from the isolated freelists in the block we are migrating to.
1406 */
1407static struct page *compaction_alloc(struct page *migratepage,
666feb21 1408 unsigned long data)
748446bb
MG
1409{
1410 struct compact_control *cc = (struct compact_control *)data;
1411 struct page *freepage;
1412
748446bb 1413 if (list_empty(&cc->freepages)) {
cb2dcaf0 1414 isolate_freepages(cc);
748446bb
MG
1415
1416 if (list_empty(&cc->freepages))
1417 return NULL;
1418 }
1419
1420 freepage = list_entry(cc->freepages.next, struct page, lru);
1421 list_del(&freepage->lru);
1422 cc->nr_freepages--;
1423
1424 return freepage;
1425}
1426
1427/*
d53aea3d
DR
1428 * This is a migrate-callback that "frees" freepages back to the isolated
1429 * freelist. All pages on the freelist are from the same zone, so there is no
1430 * special handling needed for NUMA.
1431 */
1432static void compaction_free(struct page *page, unsigned long data)
1433{
1434 struct compact_control *cc = (struct compact_control *)data;
1435
1436 list_add(&page->lru, &cc->freepages);
1437 cc->nr_freepages++;
1438}
1439
ff9543fd
MN
1440/* possible outcome of isolate_migratepages */
1441typedef enum {
1442 ISOLATE_ABORT, /* Abort compaction now */
1443 ISOLATE_NONE, /* No pages isolated, continue scanning */
1444 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1445} isolate_migrate_t;
1446
5bbe3547
EM
1447/*
1448 * Allow userspace to control policy on scanning the unevictable LRU for
1449 * compactable pages.
1450 */
1451int sysctl_compact_unevictable_allowed __read_mostly = 1;
1452
70b44595
MG
1453static inline void
1454update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1455{
1456 if (cc->fast_start_pfn == ULONG_MAX)
1457 return;
1458
1459 if (!cc->fast_start_pfn)
1460 cc->fast_start_pfn = pfn;
1461
1462 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1463}
1464
1465static inline unsigned long
1466reinit_migrate_pfn(struct compact_control *cc)
1467{
1468 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1469 return cc->migrate_pfn;
1470
1471 cc->migrate_pfn = cc->fast_start_pfn;
1472 cc->fast_start_pfn = ULONG_MAX;
1473
1474 return cc->migrate_pfn;
1475}
1476
1477/*
1478 * Briefly search the free lists for a migration source that already has
1479 * some free pages to reduce the number of pages that need migration
1480 * before a pageblock is free.
1481 */
1482static unsigned long fast_find_migrateblock(struct compact_control *cc)
1483{
1484 unsigned int limit = freelist_scan_limit(cc);
1485 unsigned int nr_scanned = 0;
1486 unsigned long distance;
1487 unsigned long pfn = cc->migrate_pfn;
1488 unsigned long high_pfn;
1489 int order;
1490
1491 /* Skip hints are relied on to avoid repeats on the fast search */
1492 if (cc->ignore_skip_hint)
1493 return pfn;
1494
1495 /*
1496 * If the migrate_pfn is not at the start of a zone or the start
1497 * of a pageblock then assume this is a continuation of a previous
1498 * scan restarted due to COMPACT_CLUSTER_MAX.
1499 */
1500 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1501 return pfn;
1502
1503 /*
1504 * For smaller orders, just linearly scan as the number of pages
1505 * to migrate should be relatively small and does not necessarily
1506 * justify freeing up a large block for a small allocation.
1507 */
1508 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1509 return pfn;
1510
1511 /*
1512 * Only allow kcompactd and direct requests for movable pages to
1513 * quickly clear out a MOVABLE pageblock for allocation. This
1514 * reduces the risk that a large movable pageblock is freed for
1515 * an unmovable/reclaimable small allocation.
1516 */
1517 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1518 return pfn;
1519
1520 /*
1521 * When starting the migration scanner, pick any pageblock within the
1522 * first half of the search space. Otherwise try and pick a pageblock
1523 * within the first eighth to reduce the chances that a migration
1524 * target later becomes a source.
1525 */
1526 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1527 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1528 distance >>= 2;
1529 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1530
1531 for (order = cc->order - 1;
1532 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1533 order--) {
1534 struct free_area *area = &cc->zone->free_area[order];
1535 struct list_head *freelist;
1536 unsigned long flags;
1537 struct page *freepage;
1538
1539 if (!area->nr_free)
1540 continue;
1541
1542 spin_lock_irqsave(&cc->zone->lock, flags);
1543 freelist = &area->free_list[MIGRATE_MOVABLE];
1544 list_for_each_entry(freepage, freelist, lru) {
1545 unsigned long free_pfn;
1546
1547 nr_scanned++;
1548 free_pfn = page_to_pfn(freepage);
1549 if (free_pfn < high_pfn) {
70b44595
MG
1550 /*
1551 * Avoid if skipped recently. Ideally it would
1552 * move to the tail but even safe iteration of
1553 * the list assumes an entry is deleted, not
1554 * reordered.
1555 */
1556 if (get_pageblock_skip(freepage)) {
1557 if (list_is_last(freelist, &freepage->lru))
1558 break;
1559
1560 continue;
1561 }
1562
1563 /* Reorder to so a future search skips recent pages */
1564 move_freelist_tail(freelist, freepage);
1565
e380bebe 1566 update_fast_start_pfn(cc, free_pfn);
70b44595
MG
1567 pfn = pageblock_start_pfn(free_pfn);
1568 cc->fast_search_fail = 0;
1569 set_pageblock_skip(freepage);
1570 break;
1571 }
1572
1573 if (nr_scanned >= limit) {
1574 cc->fast_search_fail++;
1575 move_freelist_tail(freelist, freepage);
1576 break;
1577 }
1578 }
1579 spin_unlock_irqrestore(&cc->zone->lock, flags);
1580 }
1581
1582 cc->total_migrate_scanned += nr_scanned;
1583
1584 /*
1585 * If fast scanning failed then use a cached entry for a page block
1586 * that had free pages as the basis for starting a linear scan.
1587 */
1588 if (pfn == cc->migrate_pfn)
1589 pfn = reinit_migrate_pfn(cc);
1590
1591 return pfn;
1592}
1593
ff9543fd 1594/*
edc2ca61
VB
1595 * Isolate all pages that can be migrated from the first suitable block,
1596 * starting at the block pointed to by the migrate scanner pfn within
1597 * compact_control.
ff9543fd
MN
1598 */
1599static isolate_migrate_t isolate_migratepages(struct zone *zone,
1600 struct compact_control *cc)
1601{
e1409c32
JK
1602 unsigned long block_start_pfn;
1603 unsigned long block_end_pfn;
1604 unsigned long low_pfn;
edc2ca61
VB
1605 struct page *page;
1606 const isolate_mode_t isolate_mode =
5bbe3547 1607 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 1608 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
70b44595 1609 bool fast_find_block;
ff9543fd 1610
edc2ca61
VB
1611 /*
1612 * Start at where we last stopped, or beginning of the zone as
70b44595
MG
1613 * initialized by compact_zone(). The first failure will use
1614 * the lowest PFN as the starting point for linear scanning.
edc2ca61 1615 */
70b44595 1616 low_pfn = fast_find_migrateblock(cc);
06b6640a 1617 block_start_pfn = pageblock_start_pfn(low_pfn);
e1409c32
JK
1618 if (block_start_pfn < zone->zone_start_pfn)
1619 block_start_pfn = zone->zone_start_pfn;
ff9543fd 1620
70b44595
MG
1621 /*
1622 * fast_find_migrateblock marks a pageblock skipped so to avoid
1623 * the isolation_suitable check below, check whether the fast
1624 * search was successful.
1625 */
1626 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1627
ff9543fd 1628 /* Only scan within a pageblock boundary */
06b6640a 1629 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1630
edc2ca61
VB
1631 /*
1632 * Iterate over whole pageblocks until we find the first suitable.
1633 * Do not cross the free scanner.
1634 */
e1409c32 1635 for (; block_end_pfn <= cc->free_pfn;
70b44595 1636 fast_find_block = false,
e1409c32
JK
1637 low_pfn = block_end_pfn,
1638 block_start_pfn = block_end_pfn,
1639 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1640
edc2ca61
VB
1641 /*
1642 * This can potentially iterate a massively long zone with
1643 * many pageblocks unsuitable, so periodically check if we
cb810ad2 1644 * need to schedule.
edc2ca61 1645 */
cb810ad2 1646 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1647 cond_resched();
ff9543fd 1648
e1409c32
JK
1649 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1650 zone);
7d49d886 1651 if (!page)
edc2ca61
VB
1652 continue;
1653
e380bebe
MG
1654 /*
1655 * If isolation recently failed, do not retry. Only check the
1656 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1657 * to be visited multiple times. Assume skip was checked
1658 * before making it "skip" so other compaction instances do
1659 * not scan the same block.
1660 */
1661 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1662 !fast_find_block && !isolation_suitable(cc, page))
edc2ca61
VB
1663 continue;
1664
1665 /*
9bebefd5
MG
1666 * For async compaction, also only scan in MOVABLE blocks
1667 * without huge pages. Async compaction is optimistic to see
1668 * if the minimum amount of work satisfies the allocation.
1669 * The cached PFN is updated as it's possible that all
1670 * remaining blocks between source and target are unsuitable
1671 * and the compaction scanners fail to meet.
edc2ca61 1672 */
9bebefd5
MG
1673 if (!suitable_migration_source(cc, page)) {
1674 update_cached_migrate(cc, block_end_pfn);
edc2ca61 1675 continue;
9bebefd5 1676 }
edc2ca61
VB
1677
1678 /* Perform the isolation */
e1409c32
JK
1679 low_pfn = isolate_migratepages_block(cc, low_pfn,
1680 block_end_pfn, isolate_mode);
edc2ca61 1681
cb2dcaf0 1682 if (!low_pfn)
edc2ca61
VB
1683 return ISOLATE_ABORT;
1684
1685 /*
1686 * Either we isolated something and proceed with migration. Or
1687 * we failed and compact_zone should decide if we should
1688 * continue or not.
1689 */
1690 break;
1691 }
1692
f2849aa0
VB
1693 /* Record where migration scanner will be restarted. */
1694 cc->migrate_pfn = low_pfn;
ff9543fd 1695
edc2ca61 1696 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1697}
1698
21c527a3
YB
1699/*
1700 * order == -1 is expected when compacting via
1701 * /proc/sys/vm/compact_memory
1702 */
1703static inline bool is_via_compact_memory(int order)
1704{
1705 return order == -1;
1706}
1707
40cacbcb 1708static enum compact_result __compact_finished(struct compact_control *cc)
748446bb 1709{
8fb74b9f 1710 unsigned int order;
d39773a0 1711 const int migratetype = cc->migratetype;
cb2dcaf0 1712 int ret;
748446bb 1713
753341a4 1714 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 1715 if (compact_scanners_met(cc)) {
55b7c4c9 1716 /* Let the next compaction start anew. */
40cacbcb 1717 reset_cached_positions(cc->zone);
55b7c4c9 1718
62997027
MG
1719 /*
1720 * Mark that the PG_migrate_skip information should be cleared
accf6242 1721 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
1722 * flag itself as the decision to be clear should be directly
1723 * based on an allocation request.
1724 */
accf6242 1725 if (cc->direct_compaction)
40cacbcb 1726 cc->zone->compact_blockskip_flush = true;
62997027 1727
c8f7de0b
MH
1728 if (cc->whole_zone)
1729 return COMPACT_COMPLETE;
1730 else
1731 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 1732 }
748446bb 1733
21c527a3 1734 if (is_via_compact_memory(cc->order))
56de7263
MG
1735 return COMPACT_CONTINUE;
1736
efe771c7
MG
1737 /*
1738 * Always finish scanning a pageblock to reduce the possibility of
1739 * fallbacks in the future. This is particularly important when
1740 * migration source is unmovable/reclaimable but it's not worth
1741 * special casing.
1742 */
1743 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1744 return COMPACT_CONTINUE;
baf6a9a1 1745
56de7263 1746 /* Direct compactor: Is a suitable page free? */
cb2dcaf0 1747 ret = COMPACT_NO_SUITABLE_PAGE;
8fb74b9f 1748 for (order = cc->order; order < MAX_ORDER; order++) {
40cacbcb 1749 struct free_area *area = &cc->zone->free_area[order];
2149cdae 1750 bool can_steal;
8fb74b9f
MG
1751
1752 /* Job done if page is free of the right migratetype */
6d7ce559 1753 if (!list_empty(&area->free_list[migratetype]))
cf378319 1754 return COMPACT_SUCCESS;
8fb74b9f 1755
2149cdae
JK
1756#ifdef CONFIG_CMA
1757 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1758 if (migratetype == MIGRATE_MOVABLE &&
1759 !list_empty(&area->free_list[MIGRATE_CMA]))
cf378319 1760 return COMPACT_SUCCESS;
2149cdae
JK
1761#endif
1762 /*
1763 * Job done if allocation would steal freepages from
1764 * other migratetype buddy lists.
1765 */
1766 if (find_suitable_fallback(area, order, migratetype,
baf6a9a1
VB
1767 true, &can_steal) != -1) {
1768
1769 /* movable pages are OK in any pageblock */
1770 if (migratetype == MIGRATE_MOVABLE)
1771 return COMPACT_SUCCESS;
1772
1773 /*
1774 * We are stealing for a non-movable allocation. Make
1775 * sure we finish compacting the current pageblock
1776 * first so it is as free as possible and we won't
1777 * have to steal another one soon. This only applies
1778 * to sync compaction, as async compaction operates
1779 * on pageblocks of the same migratetype.
1780 */
1781 if (cc->mode == MIGRATE_ASYNC ||
1782 IS_ALIGNED(cc->migrate_pfn,
1783 pageblock_nr_pages)) {
1784 return COMPACT_SUCCESS;
1785 }
1786
cb2dcaf0
MG
1787 ret = COMPACT_CONTINUE;
1788 break;
baf6a9a1 1789 }
56de7263
MG
1790 }
1791
cb2dcaf0
MG
1792 if (cc->contended || fatal_signal_pending(current))
1793 ret = COMPACT_CONTENDED;
1794
1795 return ret;
837d026d
JK
1796}
1797
40cacbcb 1798static enum compact_result compact_finished(struct compact_control *cc)
837d026d
JK
1799{
1800 int ret;
1801
40cacbcb
MG
1802 ret = __compact_finished(cc);
1803 trace_mm_compaction_finished(cc->zone, cc->order, ret);
837d026d
JK
1804 if (ret == COMPACT_NO_SUITABLE_PAGE)
1805 ret = COMPACT_CONTINUE;
1806
1807 return ret;
748446bb
MG
1808}
1809
3e7d3449
MG
1810/*
1811 * compaction_suitable: Is this suitable to run compaction on this zone now?
1812 * Returns
1813 * COMPACT_SKIPPED - If there are too few free pages for compaction
cf378319 1814 * COMPACT_SUCCESS - If the allocation would succeed without compaction
3e7d3449
MG
1815 * COMPACT_CONTINUE - If compaction should run now
1816 */
ea7ab982 1817static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 1818 unsigned int alloc_flags,
86a294a8
MH
1819 int classzone_idx,
1820 unsigned long wmark_target)
3e7d3449 1821{
3e7d3449
MG
1822 unsigned long watermark;
1823
21c527a3 1824 if (is_via_compact_memory(order))
3957c776
MH
1825 return COMPACT_CONTINUE;
1826
a9214443 1827 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
ebff3980
VB
1828 /*
1829 * If watermarks for high-order allocation are already met, there
1830 * should be no need for compaction at all.
1831 */
1832 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1833 alloc_flags))
cf378319 1834 return COMPACT_SUCCESS;
ebff3980 1835
3e7d3449 1836 /*
9861a62c 1837 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
1838 * isolate free pages for migration targets. This means that the
1839 * watermark and alloc_flags have to match, or be more pessimistic than
1840 * the check in __isolate_free_page(). We don't use the direct
1841 * compactor's alloc_flags, as they are not relevant for freepage
1842 * isolation. We however do use the direct compactor's classzone_idx to
1843 * skip over zones where lowmem reserves would prevent allocation even
1844 * if compaction succeeds.
8348faf9
VB
1845 * For costly orders, we require low watermark instead of min for
1846 * compaction to proceed to increase its chances.
d883c6cf
JK
1847 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1848 * suitable migration targets
3e7d3449 1849 */
8348faf9
VB
1850 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1851 low_wmark_pages(zone) : min_wmark_pages(zone);
1852 watermark += compact_gap(order);
86a294a8 1853 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
d883c6cf 1854 ALLOC_CMA, wmark_target))
3e7d3449
MG
1855 return COMPACT_SKIPPED;
1856
cc5c9f09
VB
1857 return COMPACT_CONTINUE;
1858}
1859
1860enum compact_result compaction_suitable(struct zone *zone, int order,
1861 unsigned int alloc_flags,
1862 int classzone_idx)
1863{
1864 enum compact_result ret;
1865 int fragindex;
1866
1867 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1868 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
1869 /*
1870 * fragmentation index determines if allocation failures are due to
1871 * low memory or external fragmentation
1872 *
ebff3980
VB
1873 * index of -1000 would imply allocations might succeed depending on
1874 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
1875 * index towards 0 implies failure is due to lack of memory
1876 * index towards 1000 implies failure is due to fragmentation
1877 *
20311420
VB
1878 * Only compact if a failure would be due to fragmentation. Also
1879 * ignore fragindex for non-costly orders where the alternative to
1880 * a successful reclaim/compaction is OOM. Fragindex and the
1881 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1882 * excessive compaction for costly orders, but it should not be at the
1883 * expense of system stability.
3e7d3449 1884 */
20311420 1885 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
cc5c9f09
VB
1886 fragindex = fragmentation_index(zone, order);
1887 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1888 ret = COMPACT_NOT_SUITABLE_ZONE;
1889 }
837d026d 1890
837d026d
JK
1891 trace_mm_compaction_suitable(zone, order, ret);
1892 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1893 ret = COMPACT_SKIPPED;
1894
1895 return ret;
1896}
1897
86a294a8
MH
1898bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1899 int alloc_flags)
1900{
1901 struct zone *zone;
1902 struct zoneref *z;
1903
1904 /*
1905 * Make sure at least one zone would pass __compaction_suitable if we continue
1906 * retrying the reclaim.
1907 */
1908 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1909 ac->nodemask) {
1910 unsigned long available;
1911 enum compact_result compact_result;
1912
1913 /*
1914 * Do not consider all the reclaimable memory because we do not
1915 * want to trash just for a single high order allocation which
1916 * is even not guaranteed to appear even if __compaction_suitable
1917 * is happy about the watermark check.
1918 */
5a1c84b4 1919 available = zone_reclaimable_pages(zone) / order;
86a294a8
MH
1920 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1921 compact_result = __compaction_suitable(zone, order, alloc_flags,
1922 ac_classzone_idx(ac), available);
cc5c9f09 1923 if (compact_result != COMPACT_SKIPPED)
86a294a8
MH
1924 return true;
1925 }
1926
1927 return false;
1928}
1929
40cacbcb 1930static enum compact_result compact_zone(struct compact_control *cc)
748446bb 1931{
ea7ab982 1932 enum compact_result ret;
40cacbcb
MG
1933 unsigned long start_pfn = cc->zone->zone_start_pfn;
1934 unsigned long end_pfn = zone_end_pfn(cc->zone);
566e54e1 1935 unsigned long last_migrated_pfn;
e0b9daeb 1936 const bool sync = cc->mode != MIGRATE_ASYNC;
8854c55f 1937 bool update_cached;
748446bb 1938
d39773a0 1939 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
40cacbcb 1940 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
ebff3980 1941 cc->classzone_idx);
c46649de 1942 /* Compaction is likely to fail */
cf378319 1943 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
3e7d3449 1944 return ret;
c46649de
MH
1945
1946 /* huh, compaction_suitable is returning something unexpected */
1947 VM_BUG_ON(ret != COMPACT_CONTINUE);
3e7d3449 1948
d3132e4b
VB
1949 /*
1950 * Clear pageblock skip if there were failures recently and compaction
accf6242 1951 * is about to be retried after being deferred.
d3132e4b 1952 */
40cacbcb
MG
1953 if (compaction_restarting(cc->zone, cc->order))
1954 __reset_isolation_suitable(cc->zone);
d3132e4b 1955
c89511ab
MG
1956 /*
1957 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
1958 * information on where the scanners should start (unless we explicitly
1959 * want to compact the whole zone), but check that it is initialised
1960 * by ensuring the values are within zone boundaries.
c89511ab 1961 */
70b44595 1962 cc->fast_start_pfn = 0;
06ed2998 1963 if (cc->whole_zone) {
c89511ab 1964 cc->migrate_pfn = start_pfn;
06ed2998
VB
1965 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1966 } else {
40cacbcb
MG
1967 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
1968 cc->free_pfn = cc->zone->compact_cached_free_pfn;
06ed2998
VB
1969 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1970 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
40cacbcb 1971 cc->zone->compact_cached_free_pfn = cc->free_pfn;
06ed2998
VB
1972 }
1973 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1974 cc->migrate_pfn = start_pfn;
40cacbcb
MG
1975 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1976 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
06ed2998 1977 }
c8f7de0b 1978
06ed2998
VB
1979 if (cc->migrate_pfn == start_pfn)
1980 cc->whole_zone = true;
1981 }
c8f7de0b 1982
566e54e1 1983 last_migrated_pfn = 0;
748446bb 1984
8854c55f
MG
1985 /*
1986 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
1987 * the basis that some migrations will fail in ASYNC mode. However,
1988 * if the cached PFNs match and pageblocks are skipped due to having
1989 * no isolation candidates, then the sync state does not matter.
1990 * Until a pageblock with isolation candidates is found, keep the
1991 * cached PFNs in sync to avoid revisiting the same blocks.
1992 */
1993 update_cached = !sync &&
1994 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
1995
16c4a097
JK
1996 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1997 cc->free_pfn, end_pfn, sync);
0eb927c0 1998
748446bb
MG
1999 migrate_prep_local();
2000
40cacbcb 2001 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
9d502c1c 2002 int err;
566e54e1 2003 unsigned long start_pfn = cc->migrate_pfn;
748446bb 2004
804d3121
MG
2005 /*
2006 * Avoid multiple rescans which can happen if a page cannot be
2007 * isolated (dirty/writeback in async mode) or if the migrated
2008 * pages are being allocated before the pageblock is cleared.
2009 * The first rescan will capture the entire pageblock for
2010 * migration. If it fails, it'll be marked skip and scanning
2011 * will proceed as normal.
2012 */
2013 cc->rescan = false;
2014 if (pageblock_start_pfn(last_migrated_pfn) ==
2015 pageblock_start_pfn(start_pfn)) {
2016 cc->rescan = true;
2017 }
2018
40cacbcb 2019 switch (isolate_migratepages(cc->zone, cc)) {
f9e35b3b 2020 case ISOLATE_ABORT:
2d1e1041 2021 ret = COMPACT_CONTENDED;
5733c7d1 2022 putback_movable_pages(&cc->migratepages);
e64c5237 2023 cc->nr_migratepages = 0;
566e54e1 2024 last_migrated_pfn = 0;
f9e35b3b
MG
2025 goto out;
2026 case ISOLATE_NONE:
8854c55f
MG
2027 if (update_cached) {
2028 cc->zone->compact_cached_migrate_pfn[1] =
2029 cc->zone->compact_cached_migrate_pfn[0];
2030 }
2031
fdaf7f5c
VB
2032 /*
2033 * We haven't isolated and migrated anything, but
2034 * there might still be unflushed migrations from
2035 * previous cc->order aligned block.
2036 */
2037 goto check_drain;
f9e35b3b 2038 case ISOLATE_SUCCESS:
8854c55f 2039 update_cached = false;
566e54e1 2040 last_migrated_pfn = start_pfn;
f9e35b3b
MG
2041 ;
2042 }
748446bb 2043
d53aea3d 2044 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 2045 compaction_free, (unsigned long)cc, cc->mode,
7b2a2d4a 2046 MR_COMPACTION);
748446bb 2047
f8c9301f
VB
2048 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2049 &cc->migratepages);
748446bb 2050
f8c9301f
VB
2051 /* All pages were either migrated or will be released */
2052 cc->nr_migratepages = 0;
9d502c1c 2053 if (err) {
5733c7d1 2054 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
2055 /*
2056 * migrate_pages() may return -ENOMEM when scanners meet
2057 * and we want compact_finished() to detect it
2058 */
f2849aa0 2059 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 2060 ret = COMPACT_CONTENDED;
4bf2bba3
DR
2061 goto out;
2062 }
fdd048e1
VB
2063 /*
2064 * We failed to migrate at least one page in the current
2065 * order-aligned block, so skip the rest of it.
2066 */
2067 if (cc->direct_compaction &&
2068 (cc->mode == MIGRATE_ASYNC)) {
2069 cc->migrate_pfn = block_end_pfn(
2070 cc->migrate_pfn - 1, cc->order);
2071 /* Draining pcplists is useless in this case */
566e54e1 2072 last_migrated_pfn = 0;
fdd048e1 2073 }
748446bb 2074 }
fdaf7f5c 2075
fdaf7f5c
VB
2076check_drain:
2077 /*
2078 * Has the migration scanner moved away from the previous
2079 * cc->order aligned block where we migrated from? If yes,
2080 * flush the pages that were freed, so that they can merge and
2081 * compact_finished() can detect immediately if allocation
2082 * would succeed.
2083 */
566e54e1 2084 if (cc->order > 0 && last_migrated_pfn) {
fdaf7f5c
VB
2085 int cpu;
2086 unsigned long current_block_start =
06b6640a 2087 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 2088
566e54e1 2089 if (last_migrated_pfn < current_block_start) {
fdaf7f5c
VB
2090 cpu = get_cpu();
2091 lru_add_drain_cpu(cpu);
40cacbcb 2092 drain_local_pages(cc->zone);
fdaf7f5c
VB
2093 put_cpu();
2094 /* No more flushing until we migrate again */
566e54e1 2095 last_migrated_pfn = 0;
fdaf7f5c
VB
2096 }
2097 }
2098
748446bb
MG
2099 }
2100
f9e35b3b 2101out:
6bace090
VB
2102 /*
2103 * Release free pages and update where the free scanner should restart,
2104 * so we don't leave any returned pages behind in the next attempt.
2105 */
2106 if (cc->nr_freepages > 0) {
2107 unsigned long free_pfn = release_freepages(&cc->freepages);
2108
2109 cc->nr_freepages = 0;
2110 VM_BUG_ON(free_pfn == 0);
2111 /* The cached pfn is always the first in a pageblock */
06b6640a 2112 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
2113 /*
2114 * Only go back, not forward. The cached pfn might have been
2115 * already reset to zone end in compact_finished()
2116 */
40cacbcb
MG
2117 if (free_pfn > cc->zone->compact_cached_free_pfn)
2118 cc->zone->compact_cached_free_pfn = free_pfn;
6bace090 2119 }
748446bb 2120
7f354a54
DR
2121 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2122 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2123
16c4a097
JK
2124 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2125 cc->free_pfn, end_pfn, sync, ret);
0eb927c0 2126
748446bb
MG
2127 return ret;
2128}
76ab0f53 2129
ea7ab982 2130static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 2131 gfp_t gfp_mask, enum compact_priority prio,
c603844b 2132 unsigned int alloc_flags, int classzone_idx)
56de7263 2133{
ea7ab982 2134 enum compact_result ret;
56de7263
MG
2135 struct compact_control cc = {
2136 .nr_freepages = 0,
2137 .nr_migratepages = 0,
7f354a54
DR
2138 .total_migrate_scanned = 0,
2139 .total_free_scanned = 0,
56de7263 2140 .order = order,
6d7ce559 2141 .gfp_mask = gfp_mask,
56de7263 2142 .zone = zone,
a5508cd8
VB
2143 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2144 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980
VB
2145 .alloc_flags = alloc_flags,
2146 .classzone_idx = classzone_idx,
accf6242 2147 .direct_compaction = true,
a8e025e5 2148 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
2149 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2150 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263
MG
2151 };
2152 INIT_LIST_HEAD(&cc.freepages);
2153 INIT_LIST_HEAD(&cc.migratepages);
2154
40cacbcb 2155 ret = compact_zone(&cc);
e64c5237
SL
2156
2157 VM_BUG_ON(!list_empty(&cc.freepages));
2158 VM_BUG_ON(!list_empty(&cc.migratepages));
2159
e64c5237 2160 return ret;
56de7263
MG
2161}
2162
5e771905
MG
2163int sysctl_extfrag_threshold = 500;
2164
56de7263
MG
2165/**
2166 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 2167 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
2168 * @order: The order of the current allocation
2169 * @alloc_flags: The allocation flags of the current allocation
2170 * @ac: The context of current allocation
112d2d29 2171 * @prio: Determines how hard direct compaction should try to succeed
56de7263
MG
2172 *
2173 * This is the main entry point for direct page compaction.
2174 */
ea7ab982 2175enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 2176 unsigned int alloc_flags, const struct alloc_context *ac,
c3486f53 2177 enum compact_priority prio)
56de7263 2178{
56de7263 2179 int may_perform_io = gfp_mask & __GFP_IO;
56de7263
MG
2180 struct zoneref *z;
2181 struct zone *zone;
1d4746d3 2182 enum compact_result rc = COMPACT_SKIPPED;
56de7263 2183
73e64c51
MH
2184 /*
2185 * Check if the GFP flags allow compaction - GFP_NOIO is really
2186 * tricky context because the migration might require IO
2187 */
2188 if (!may_perform_io)
53853e2d 2189 return COMPACT_SKIPPED;
56de7263 2190
a5508cd8 2191 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 2192
56de7263 2193 /* Compact each zone in the list */
1a6d53a1
VB
2194 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2195 ac->nodemask) {
ea7ab982 2196 enum compact_result status;
56de7263 2197
a8e025e5
VB
2198 if (prio > MIN_COMPACT_PRIORITY
2199 && compaction_deferred(zone, order)) {
1d4746d3 2200 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 2201 continue;
1d4746d3 2202 }
53853e2d 2203
a5508cd8 2204 status = compact_zone_order(zone, order, gfp_mask, prio,
c3486f53 2205 alloc_flags, ac_classzone_idx(ac));
56de7263
MG
2206 rc = max(status, rc);
2207
7ceb009a
VB
2208 /* The allocation should succeed, stop compacting */
2209 if (status == COMPACT_SUCCESS) {
53853e2d
VB
2210 /*
2211 * We think the allocation will succeed in this zone,
2212 * but it is not certain, hence the false. The caller
2213 * will repeat this with true if allocation indeed
2214 * succeeds in this zone.
2215 */
2216 compaction_defer_reset(zone, order, false);
1f9efdef 2217
c3486f53 2218 break;
1f9efdef
VB
2219 }
2220
a5508cd8 2221 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 2222 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
2223 /*
2224 * We think that allocation won't succeed in this zone
2225 * so we defer compaction there. If it ends up
2226 * succeeding after all, it will be reset.
2227 */
2228 defer_compaction(zone, order);
1f9efdef
VB
2229
2230 /*
2231 * We might have stopped compacting due to need_resched() in
2232 * async compaction, or due to a fatal signal detected. In that
c3486f53 2233 * case do not try further zones
1f9efdef 2234 */
c3486f53
VB
2235 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2236 || fatal_signal_pending(current))
2237 break;
56de7263
MG
2238 }
2239
2240 return rc;
2241}
2242
2243
76ab0f53 2244/* Compact all zones within a node */
791cae96 2245static void compact_node(int nid)
76ab0f53 2246{
791cae96 2247 pg_data_t *pgdat = NODE_DATA(nid);
76ab0f53 2248 int zoneid;
76ab0f53 2249 struct zone *zone;
791cae96
VB
2250 struct compact_control cc = {
2251 .order = -1,
7f354a54
DR
2252 .total_migrate_scanned = 0,
2253 .total_free_scanned = 0,
791cae96
VB
2254 .mode = MIGRATE_SYNC,
2255 .ignore_skip_hint = true,
2256 .whole_zone = true,
73e64c51 2257 .gfp_mask = GFP_KERNEL,
791cae96
VB
2258 };
2259
76ab0f53 2260
76ab0f53 2261 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
2262
2263 zone = &pgdat->node_zones[zoneid];
2264 if (!populated_zone(zone))
2265 continue;
2266
791cae96
VB
2267 cc.nr_freepages = 0;
2268 cc.nr_migratepages = 0;
2269 cc.zone = zone;
2270 INIT_LIST_HEAD(&cc.freepages);
2271 INIT_LIST_HEAD(&cc.migratepages);
76ab0f53 2272
40cacbcb 2273 compact_zone(&cc);
75469345 2274
791cae96
VB
2275 VM_BUG_ON(!list_empty(&cc.freepages));
2276 VM_BUG_ON(!list_empty(&cc.migratepages));
76ab0f53 2277 }
76ab0f53
MG
2278}
2279
2280/* Compact all nodes in the system */
7964c06d 2281static void compact_nodes(void)
76ab0f53
MG
2282{
2283 int nid;
2284
8575ec29
HD
2285 /* Flush pending updates to the LRU lists */
2286 lru_add_drain_all();
2287
76ab0f53
MG
2288 for_each_online_node(nid)
2289 compact_node(nid);
76ab0f53
MG
2290}
2291
2292/* The written value is actually unused, all memory is compacted */
2293int sysctl_compact_memory;
2294
fec4eb2c
YB
2295/*
2296 * This is the entry point for compacting all nodes via
2297 * /proc/sys/vm/compact_memory
2298 */
76ab0f53
MG
2299int sysctl_compaction_handler(struct ctl_table *table, int write,
2300 void __user *buffer, size_t *length, loff_t *ppos)
2301{
2302 if (write)
7964c06d 2303 compact_nodes();
76ab0f53
MG
2304
2305 return 0;
2306}
ed4a6d7f
MG
2307
2308#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
74e77fb9 2309static ssize_t sysfs_compact_node(struct device *dev,
10fbcf4c 2310 struct device_attribute *attr,
ed4a6d7f
MG
2311 const char *buf, size_t count)
2312{
8575ec29
HD
2313 int nid = dev->id;
2314
2315 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2316 /* Flush pending updates to the LRU lists */
2317 lru_add_drain_all();
2318
2319 compact_node(nid);
2320 }
ed4a6d7f
MG
2321
2322 return count;
2323}
0825a6f9 2324static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
ed4a6d7f
MG
2325
2326int compaction_register_node(struct node *node)
2327{
10fbcf4c 2328 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2329}
2330
2331void compaction_unregister_node(struct node *node)
2332{
10fbcf4c 2333 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2334}
2335#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 2336
698b1b30
VB
2337static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2338{
172400c6 2339 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
698b1b30
VB
2340}
2341
2342static bool kcompactd_node_suitable(pg_data_t *pgdat)
2343{
2344 int zoneid;
2345 struct zone *zone;
2346 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
2347
6cd9dc3e 2348 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
698b1b30
VB
2349 zone = &pgdat->node_zones[zoneid];
2350
2351 if (!populated_zone(zone))
2352 continue;
2353
2354 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2355 classzone_idx) == COMPACT_CONTINUE)
2356 return true;
2357 }
2358
2359 return false;
2360}
2361
2362static void kcompactd_do_work(pg_data_t *pgdat)
2363{
2364 /*
2365 * With no special task, compact all zones so that a page of requested
2366 * order is allocatable.
2367 */
2368 int zoneid;
2369 struct zone *zone;
2370 struct compact_control cc = {
2371 .order = pgdat->kcompactd_max_order,
7f354a54
DR
2372 .total_migrate_scanned = 0,
2373 .total_free_scanned = 0,
698b1b30
VB
2374 .classzone_idx = pgdat->kcompactd_classzone_idx,
2375 .mode = MIGRATE_SYNC_LIGHT,
a0647dc9 2376 .ignore_skip_hint = false,
73e64c51 2377 .gfp_mask = GFP_KERNEL,
698b1b30 2378 };
698b1b30
VB
2379 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2380 cc.classzone_idx);
7f354a54 2381 count_compact_event(KCOMPACTD_WAKE);
698b1b30 2382
6cd9dc3e 2383 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
698b1b30
VB
2384 int status;
2385
2386 zone = &pgdat->node_zones[zoneid];
2387 if (!populated_zone(zone))
2388 continue;
2389
2390 if (compaction_deferred(zone, cc.order))
2391 continue;
2392
2393 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2394 COMPACT_CONTINUE)
2395 continue;
2396
2397 cc.nr_freepages = 0;
2398 cc.nr_migratepages = 0;
7f354a54
DR
2399 cc.total_migrate_scanned = 0;
2400 cc.total_free_scanned = 0;
698b1b30
VB
2401 cc.zone = zone;
2402 INIT_LIST_HEAD(&cc.freepages);
2403 INIT_LIST_HEAD(&cc.migratepages);
2404
172400c6
VB
2405 if (kthread_should_stop())
2406 return;
40cacbcb 2407 status = compact_zone(&cc);
698b1b30 2408
7ceb009a 2409 if (status == COMPACT_SUCCESS) {
698b1b30 2410 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 2411 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
bc3106b2
DR
2412 /*
2413 * Buddy pages may become stranded on pcps that could
2414 * otherwise coalesce on the zone's free area for
2415 * order >= cc.order. This is ratelimited by the
2416 * upcoming deferral.
2417 */
2418 drain_all_pages(zone);
2419
698b1b30
VB
2420 /*
2421 * We use sync migration mode here, so we defer like
2422 * sync direct compaction does.
2423 */
2424 defer_compaction(zone, cc.order);
2425 }
2426
7f354a54
DR
2427 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2428 cc.total_migrate_scanned);
2429 count_compact_events(KCOMPACTD_FREE_SCANNED,
2430 cc.total_free_scanned);
2431
698b1b30
VB
2432 VM_BUG_ON(!list_empty(&cc.freepages));
2433 VM_BUG_ON(!list_empty(&cc.migratepages));
2434 }
2435
2436 /*
2437 * Regardless of success, we are done until woken up next. But remember
2438 * the requested order/classzone_idx in case it was higher/tighter than
2439 * our current ones
2440 */
2441 if (pgdat->kcompactd_max_order <= cc.order)
2442 pgdat->kcompactd_max_order = 0;
2443 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2444 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2445}
2446
2447void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2448{
2449 if (!order)
2450 return;
2451
2452 if (pgdat->kcompactd_max_order < order)
2453 pgdat->kcompactd_max_order = order;
2454
2455 if (pgdat->kcompactd_classzone_idx > classzone_idx)
2456 pgdat->kcompactd_classzone_idx = classzone_idx;
2457
6818600f
DB
2458 /*
2459 * Pairs with implicit barrier in wait_event_freezable()
2460 * such that wakeups are not missed.
2461 */
2462 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
698b1b30
VB
2463 return;
2464
2465 if (!kcompactd_node_suitable(pgdat))
2466 return;
2467
2468 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2469 classzone_idx);
2470 wake_up_interruptible(&pgdat->kcompactd_wait);
2471}
2472
2473/*
2474 * The background compaction daemon, started as a kernel thread
2475 * from the init process.
2476 */
2477static int kcompactd(void *p)
2478{
2479 pg_data_t *pgdat = (pg_data_t*)p;
2480 struct task_struct *tsk = current;
2481
2482 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2483
2484 if (!cpumask_empty(cpumask))
2485 set_cpus_allowed_ptr(tsk, cpumask);
2486
2487 set_freezable();
2488
2489 pgdat->kcompactd_max_order = 0;
2490 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2491
2492 while (!kthread_should_stop()) {
eb414681
JW
2493 unsigned long pflags;
2494
698b1b30
VB
2495 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2496 wait_event_freezable(pgdat->kcompactd_wait,
2497 kcompactd_work_requested(pgdat));
2498
eb414681 2499 psi_memstall_enter(&pflags);
698b1b30 2500 kcompactd_do_work(pgdat);
eb414681 2501 psi_memstall_leave(&pflags);
698b1b30
VB
2502 }
2503
2504 return 0;
2505}
2506
2507/*
2508 * This kcompactd start function will be called by init and node-hot-add.
2509 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2510 */
2511int kcompactd_run(int nid)
2512{
2513 pg_data_t *pgdat = NODE_DATA(nid);
2514 int ret = 0;
2515
2516 if (pgdat->kcompactd)
2517 return 0;
2518
2519 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2520 if (IS_ERR(pgdat->kcompactd)) {
2521 pr_err("Failed to start kcompactd on node %d\n", nid);
2522 ret = PTR_ERR(pgdat->kcompactd);
2523 pgdat->kcompactd = NULL;
2524 }
2525 return ret;
2526}
2527
2528/*
2529 * Called by memory hotplug when all memory in a node is offlined. Caller must
2530 * hold mem_hotplug_begin/end().
2531 */
2532void kcompactd_stop(int nid)
2533{
2534 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2535
2536 if (kcompactd) {
2537 kthread_stop(kcompactd);
2538 NODE_DATA(nid)->kcompactd = NULL;
2539 }
2540}
2541
2542/*
2543 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2544 * not required for correctness. So if the last cpu in a node goes
2545 * away, we get changed to run anywhere: as the first one comes back,
2546 * restore their cpu bindings.
2547 */
e46b1db2 2548static int kcompactd_cpu_online(unsigned int cpu)
698b1b30
VB
2549{
2550 int nid;
2551
e46b1db2
AMG
2552 for_each_node_state(nid, N_MEMORY) {
2553 pg_data_t *pgdat = NODE_DATA(nid);
2554 const struct cpumask *mask;
698b1b30 2555
e46b1db2 2556 mask = cpumask_of_node(pgdat->node_id);
698b1b30 2557
e46b1db2
AMG
2558 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2559 /* One of our CPUs online: restore mask */
2560 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
698b1b30 2561 }
e46b1db2 2562 return 0;
698b1b30
VB
2563}
2564
2565static int __init kcompactd_init(void)
2566{
2567 int nid;
e46b1db2
AMG
2568 int ret;
2569
2570 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2571 "mm/compaction:online",
2572 kcompactd_cpu_online, NULL);
2573 if (ret < 0) {
2574 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2575 return ret;
2576 }
698b1b30
VB
2577
2578 for_each_node_state(nid, N_MEMORY)
2579 kcompactd_run(nid);
698b1b30
VB
2580 return 0;
2581}
2582subsys_initcall(kcompactd_init)
2583
ff9543fd 2584#endif /* CONFIG_COMPACTION */