]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/dmapool.c
mm: ksm use pr_err instead of printk
[mirror_ubuntu-artful-kernel.git] / mm / dmapool.c
CommitLineData
6182a094
MW
1/*
2 * DMA Pool allocator
3 *
4 * Copyright 2001 David Brownell
5 * Copyright 2007 Intel Corporation
6 * Author: Matthew Wilcox <willy@linux.intel.com>
7 *
8 * This software may be redistributed and/or modified under the terms of
9 * the GNU General Public License ("GPL") version 2 as published by the
10 * Free Software Foundation.
11 *
12 * This allocator returns small blocks of a given size which are DMA-able by
13 * the given device. It uses the dma_alloc_coherent page allocator to get
14 * new pages, then splits them up into blocks of the required size.
15 * Many older drivers still have their own code to do this.
16 *
17 * The current design of this allocator is fairly simple. The pool is
18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
19 * allocated pages. Each page in the page_list is split into blocks of at
a35a3455
MW
20 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
21 * list of free blocks within the page. Used blocks aren't tracked, but we
22 * keep a count of how many are currently allocated from each page.
6182a094 23 */
1da177e4
LT
24
25#include <linux/device.h>
1da177e4
LT
26#include <linux/dma-mapping.h>
27#include <linux/dmapool.h>
6182a094
MW
28#include <linux/kernel.h>
29#include <linux/list.h>
b95f1b31 30#include <linux/export.h>
6182a094 31#include <linux/mutex.h>
c9cf5528 32#include <linux/poison.h>
e8edc6e0 33#include <linux/sched.h>
6182a094 34#include <linux/slab.h>
7c77509c 35#include <linux/stat.h>
6182a094
MW
36#include <linux/spinlock.h>
37#include <linux/string.h>
38#include <linux/types.h>
39#include <linux/wait.h>
1da177e4 40
b5ee5bef
AK
41#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
42#define DMAPOOL_DEBUG 1
43#endif
44
e87aa773
MW
45struct dma_pool { /* the pool */
46 struct list_head page_list;
47 spinlock_t lock;
e87aa773
MW
48 size_t size;
49 struct device *dev;
50 size_t allocation;
e34f44b3 51 size_t boundary;
e87aa773 52 char name[32];
e87aa773 53 struct list_head pools;
1da177e4
LT
54};
55
e87aa773
MW
56struct dma_page { /* cacheable header for 'allocation' bytes */
57 struct list_head page_list;
58 void *vaddr;
59 dma_addr_t dma;
a35a3455
MW
60 unsigned int in_use;
61 unsigned int offset;
1da177e4
LT
62};
63
e87aa773 64static DEFINE_MUTEX(pools_lock);
01c2965f 65static DEFINE_MUTEX(pools_reg_lock);
1da177e4
LT
66
67static ssize_t
e87aa773 68show_pools(struct device *dev, struct device_attribute *attr, char *buf)
1da177e4
LT
69{
70 unsigned temp;
71 unsigned size;
72 char *next;
73 struct dma_page *page;
74 struct dma_pool *pool;
75
76 next = buf;
77 size = PAGE_SIZE;
78
79 temp = scnprintf(next, size, "poolinfo - 0.1\n");
80 size -= temp;
81 next += temp;
82
b2366d68 83 mutex_lock(&pools_lock);
1da177e4
LT
84 list_for_each_entry(pool, &dev->dma_pools, pools) {
85 unsigned pages = 0;
86 unsigned blocks = 0;
87
c4956823 88 spin_lock_irq(&pool->lock);
1da177e4
LT
89 list_for_each_entry(page, &pool->page_list, page_list) {
90 pages++;
91 blocks += page->in_use;
92 }
c4956823 93 spin_unlock_irq(&pool->lock);
1da177e4
LT
94
95 /* per-pool info, no real statistics yet */
96 temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
a35a3455
MW
97 pool->name, blocks,
98 pages * (pool->allocation / pool->size),
e87aa773 99 pool->size, pages);
1da177e4
LT
100 size -= temp;
101 next += temp;
102 }
b2366d68 103 mutex_unlock(&pools_lock);
1da177e4
LT
104
105 return PAGE_SIZE - size;
106}
e87aa773
MW
107
108static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
1da177e4
LT
109
110/**
111 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
112 * @name: name of pool, for diagnostics
113 * @dev: device that will be doing the DMA
114 * @size: size of the blocks in this pool.
115 * @align: alignment requirement for blocks; must be a power of two
e34f44b3 116 * @boundary: returned blocks won't cross this power of two boundary
1da177e4
LT
117 * Context: !in_interrupt()
118 *
119 * Returns a dma allocation pool with the requested characteristics, or
120 * null if one can't be created. Given one of these pools, dma_pool_alloc()
121 * may be used to allocate memory. Such memory will all have "consistent"
122 * DMA mappings, accessible by the device and its driver without using
123 * cache flushing primitives. The actual size of blocks allocated may be
124 * larger than requested because of alignment.
125 *
e34f44b3 126 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
1da177e4
LT
127 * cross that size boundary. This is useful for devices which have
128 * addressing restrictions on individual DMA transfers, such as not crossing
129 * boundaries of 4KBytes.
130 */
e87aa773 131struct dma_pool *dma_pool_create(const char *name, struct device *dev,
e34f44b3 132 size_t size, size_t align, size_t boundary)
1da177e4 133{
e87aa773 134 struct dma_pool *retval;
e34f44b3 135 size_t allocation;
01c2965f 136 bool empty = false;
1da177e4 137
399154be 138 if (align == 0) {
1da177e4 139 align = 1;
399154be 140 } else if (align & (align - 1)) {
1da177e4 141 return NULL;
1da177e4
LT
142 }
143
a35a3455 144 if (size == 0) {
399154be 145 return NULL;
a35a3455
MW
146 } else if (size < 4) {
147 size = 4;
148 }
399154be
MW
149
150 if ((size % align) != 0)
151 size = ALIGN(size, align);
152
e34f44b3
MW
153 allocation = max_t(size_t, size, PAGE_SIZE);
154
155 if (!boundary) {
156 boundary = allocation;
157 } else if ((boundary < size) || (boundary & (boundary - 1))) {
1da177e4 158 return NULL;
e34f44b3 159 }
1da177e4 160
e34f44b3
MW
161 retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
162 if (!retval)
1da177e4
LT
163 return retval;
164
e34f44b3 165 strlcpy(retval->name, name, sizeof(retval->name));
1da177e4
LT
166
167 retval->dev = dev;
168
e87aa773
MW
169 INIT_LIST_HEAD(&retval->page_list);
170 spin_lock_init(&retval->lock);
1da177e4 171 retval->size = size;
e34f44b3 172 retval->boundary = boundary;
1da177e4 173 retval->allocation = allocation;
1da177e4 174
cc6b664a
DY
175 INIT_LIST_HEAD(&retval->pools);
176
01c2965f
SAS
177 /*
178 * pools_lock ensures that the ->dma_pools list does not get corrupted.
179 * pools_reg_lock ensures that there is not a race between
180 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create()
181 * when the first invocation of dma_pool_create() failed on
182 * device_create_file() and the second assumes that it has been done (I
183 * know it is a short window).
184 */
185 mutex_lock(&pools_reg_lock);
cc6b664a 186 mutex_lock(&pools_lock);
01c2965f
SAS
187 if (list_empty(&dev->dma_pools))
188 empty = true;
189 list_add(&retval->pools, &dev->dma_pools);
cc6b664a 190 mutex_unlock(&pools_lock);
01c2965f
SAS
191 if (empty) {
192 int err;
193
194 err = device_create_file(dev, &dev_attr_pools);
195 if (err) {
196 mutex_lock(&pools_lock);
197 list_del(&retval->pools);
198 mutex_unlock(&pools_lock);
199 mutex_unlock(&pools_reg_lock);
200 kfree(retval);
201 return NULL;
202 }
203 }
204 mutex_unlock(&pools_reg_lock);
1da177e4
LT
205 return retval;
206}
e87aa773 207EXPORT_SYMBOL(dma_pool_create);
1da177e4 208
a35a3455
MW
209static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
210{
211 unsigned int offset = 0;
e34f44b3 212 unsigned int next_boundary = pool->boundary;
a35a3455
MW
213
214 do {
215 unsigned int next = offset + pool->size;
e34f44b3
MW
216 if (unlikely((next + pool->size) >= next_boundary)) {
217 next = next_boundary;
218 next_boundary += pool->boundary;
219 }
a35a3455
MW
220 *(int *)(page->vaddr + offset) = next;
221 offset = next;
222 } while (offset < pool->allocation);
223}
224
e87aa773 225static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
1da177e4 226{
e87aa773 227 struct dma_page *page;
1da177e4 228
a35a3455 229 page = kmalloc(sizeof(*page), mem_flags);
1da177e4
LT
230 if (!page)
231 return NULL;
a35a3455 232 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
e87aa773 233 &page->dma, mem_flags);
1da177e4 234 if (page->vaddr) {
b5ee5bef 235#ifdef DMAPOOL_DEBUG
e87aa773 236 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
1da177e4 237#endif
a35a3455 238 pool_initialise_page(pool, page);
1da177e4 239 page->in_use = 0;
a35a3455 240 page->offset = 0;
1da177e4 241 } else {
e87aa773 242 kfree(page);
1da177e4
LT
243 page = NULL;
244 }
245 return page;
246}
247
a35a3455 248static inline int is_page_busy(struct dma_page *page)
1da177e4 249{
a35a3455 250 return page->in_use != 0;
1da177e4
LT
251}
252
e87aa773 253static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
1da177e4 254{
e87aa773 255 dma_addr_t dma = page->dma;
1da177e4 256
b5ee5bef 257#ifdef DMAPOOL_DEBUG
e87aa773 258 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
1da177e4 259#endif
e87aa773
MW
260 dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
261 list_del(&page->page_list);
262 kfree(page);
1da177e4
LT
263}
264
1da177e4
LT
265/**
266 * dma_pool_destroy - destroys a pool of dma memory blocks.
267 * @pool: dma pool that will be destroyed
268 * Context: !in_interrupt()
269 *
270 * Caller guarantees that no more memory from the pool is in use,
271 * and that nothing will try to use the pool after this call.
272 */
e87aa773 273void dma_pool_destroy(struct dma_pool *pool)
1da177e4 274{
01c2965f
SAS
275 bool empty = false;
276
277 mutex_lock(&pools_reg_lock);
b2366d68 278 mutex_lock(&pools_lock);
e87aa773
MW
279 list_del(&pool->pools);
280 if (pool->dev && list_empty(&pool->dev->dma_pools))
01c2965f 281 empty = true;
b2366d68 282 mutex_unlock(&pools_lock);
01c2965f
SAS
283 if (empty)
284 device_remove_file(pool->dev, &dev_attr_pools);
285 mutex_unlock(&pools_reg_lock);
1da177e4 286
e87aa773
MW
287 while (!list_empty(&pool->page_list)) {
288 struct dma_page *page;
289 page = list_entry(pool->page_list.next,
290 struct dma_page, page_list);
a35a3455 291 if (is_page_busy(page)) {
1da177e4 292 if (pool->dev)
e87aa773
MW
293 dev_err(pool->dev,
294 "dma_pool_destroy %s, %p busy\n",
1da177e4
LT
295 pool->name, page->vaddr);
296 else
e87aa773
MW
297 printk(KERN_ERR
298 "dma_pool_destroy %s, %p busy\n",
299 pool->name, page->vaddr);
1da177e4 300 /* leak the still-in-use consistent memory */
e87aa773
MW
301 list_del(&page->page_list);
302 kfree(page);
1da177e4 303 } else
e87aa773 304 pool_free_page(pool, page);
1da177e4
LT
305 }
306
e87aa773 307 kfree(pool);
1da177e4 308}
e87aa773 309EXPORT_SYMBOL(dma_pool_destroy);
1da177e4
LT
310
311/**
312 * dma_pool_alloc - get a block of consistent memory
313 * @pool: dma pool that will produce the block
314 * @mem_flags: GFP_* bitmask
315 * @handle: pointer to dma address of block
316 *
317 * This returns the kernel virtual address of a currently unused block,
318 * and reports its dma address through the handle.
6182a094 319 * If such a memory block can't be allocated, %NULL is returned.
1da177e4 320 */
e87aa773
MW
321void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
322 dma_addr_t *handle)
1da177e4 323{
e87aa773
MW
324 unsigned long flags;
325 struct dma_page *page;
e87aa773
MW
326 size_t offset;
327 void *retval;
328
ea05c844
DZ
329 might_sleep_if(mem_flags & __GFP_WAIT);
330
e87aa773 331 spin_lock_irqsave(&pool->lock, flags);
1da177e4 332 list_for_each_entry(page, &pool->page_list, page_list) {
a35a3455
MW
333 if (page->offset < pool->allocation)
334 goto ready;
1da177e4 335 }
1da177e4 336
387870f2
MS
337 /* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
338 spin_unlock_irqrestore(&pool->lock, flags);
1da177e4 339
387870f2
MS
340 page = pool_alloc_page(pool, mem_flags);
341 if (!page)
342 return NULL;
1da177e4 343
387870f2 344 spin_lock_irqsave(&pool->lock, flags);
1da177e4 345
387870f2 346 list_add(&page->page_list, &pool->page_list);
e87aa773 347 ready:
1da177e4 348 page->in_use++;
a35a3455
MW
349 offset = page->offset;
350 page->offset = *(int *)(page->vaddr + offset);
1da177e4
LT
351 retval = offset + page->vaddr;
352 *handle = offset + page->dma;
b5ee5bef 353#ifdef DMAPOOL_DEBUG
5de55b26
MC
354 {
355 int i;
356 u8 *data = retval;
357 /* page->offset is stored in first 4 bytes */
358 for (i = sizeof(page->offset); i < pool->size; i++) {
359 if (data[i] == POOL_POISON_FREED)
360 continue;
361 if (pool->dev)
362 dev_err(pool->dev,
5835f251 363 "dma_pool_alloc %s, %p (corrupted)\n",
5de55b26
MC
364 pool->name, retval);
365 else
5835f251 366 pr_err("dma_pool_alloc %s, %p (corrupted)\n",
5de55b26
MC
367 pool->name, retval);
368
369 /*
370 * Dump the first 4 bytes even if they are not
371 * POOL_POISON_FREED
372 */
373 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
374 data, pool->size, 1);
375 break;
376 }
377 }
e87aa773 378 memset(retval, POOL_POISON_ALLOCATED, pool->size);
1da177e4 379#endif
e87aa773 380 spin_unlock_irqrestore(&pool->lock, flags);
1da177e4
LT
381 return retval;
382}
e87aa773 383EXPORT_SYMBOL(dma_pool_alloc);
1da177e4 384
e87aa773 385static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
1da177e4 386{
e87aa773 387 struct dma_page *page;
1da177e4 388
1da177e4
LT
389 list_for_each_entry(page, &pool->page_list, page_list) {
390 if (dma < page->dma)
391 continue;
392 if (dma < (page->dma + pool->allocation))
84bc227d 393 return page;
1da177e4 394 }
84bc227d 395 return NULL;
1da177e4
LT
396}
397
1da177e4
LT
398/**
399 * dma_pool_free - put block back into dma pool
400 * @pool: the dma pool holding the block
401 * @vaddr: virtual address of block
402 * @dma: dma address of block
403 *
404 * Caller promises neither device nor driver will again touch this block
405 * unless it is first re-allocated.
406 */
e87aa773 407void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
1da177e4 408{
e87aa773
MW
409 struct dma_page *page;
410 unsigned long flags;
a35a3455 411 unsigned int offset;
1da177e4 412
84bc227d 413 spin_lock_irqsave(&pool->lock, flags);
e87aa773
MW
414 page = pool_find_page(pool, dma);
415 if (!page) {
84bc227d 416 spin_unlock_irqrestore(&pool->lock, flags);
1da177e4 417 if (pool->dev)
e87aa773
MW
418 dev_err(pool->dev,
419 "dma_pool_free %s, %p/%lx (bad dma)\n",
420 pool->name, vaddr, (unsigned long)dma);
1da177e4 421 else
e87aa773
MW
422 printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
423 pool->name, vaddr, (unsigned long)dma);
1da177e4
LT
424 return;
425 }
426
a35a3455 427 offset = vaddr - page->vaddr;
b5ee5bef 428#ifdef DMAPOOL_DEBUG
a35a3455 429 if ((dma - page->dma) != offset) {
84bc227d 430 spin_unlock_irqrestore(&pool->lock, flags);
1da177e4 431 if (pool->dev)
e87aa773
MW
432 dev_err(pool->dev,
433 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
434 pool->name, vaddr, (unsigned long long)dma);
1da177e4 435 else
e87aa773
MW
436 printk(KERN_ERR
437 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
438 pool->name, vaddr, (unsigned long long)dma);
1da177e4
LT
439 return;
440 }
a35a3455
MW
441 {
442 unsigned int chain = page->offset;
443 while (chain < pool->allocation) {
444 if (chain != offset) {
445 chain = *(int *)(page->vaddr + chain);
446 continue;
447 }
84bc227d 448 spin_unlock_irqrestore(&pool->lock, flags);
a35a3455
MW
449 if (pool->dev)
450 dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
451 "already free\n", pool->name,
452 (unsigned long long)dma);
453 else
454 printk(KERN_ERR "dma_pool_free %s, dma %Lx "
455 "already free\n", pool->name,
456 (unsigned long long)dma);
457 return;
458 }
1da177e4 459 }
e87aa773 460 memset(vaddr, POOL_POISON_FREED, pool->size);
1da177e4
LT
461#endif
462
1da177e4 463 page->in_use--;
a35a3455
MW
464 *(int *)vaddr = page->offset;
465 page->offset = offset;
1da177e4
LT
466 /*
467 * Resist a temptation to do
a35a3455 468 * if (!is_page_busy(page)) pool_free_page(pool, page);
1da177e4
LT
469 * Better have a few empty pages hang around.
470 */
e87aa773 471 spin_unlock_irqrestore(&pool->lock, flags);
1da177e4 472}
e87aa773 473EXPORT_SYMBOL(dma_pool_free);
1da177e4 474
9ac7849e
TH
475/*
476 * Managed DMA pool
477 */
478static void dmam_pool_release(struct device *dev, void *res)
479{
480 struct dma_pool *pool = *(struct dma_pool **)res;
481
482 dma_pool_destroy(pool);
483}
484
485static int dmam_pool_match(struct device *dev, void *res, void *match_data)
486{
487 return *(struct dma_pool **)res == match_data;
488}
489
490/**
491 * dmam_pool_create - Managed dma_pool_create()
492 * @name: name of pool, for diagnostics
493 * @dev: device that will be doing the DMA
494 * @size: size of the blocks in this pool.
495 * @align: alignment requirement for blocks; must be a power of two
496 * @allocation: returned blocks won't cross this boundary (or zero)
497 *
498 * Managed dma_pool_create(). DMA pool created with this function is
499 * automatically destroyed on driver detach.
500 */
501struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
502 size_t size, size_t align, size_t allocation)
503{
504 struct dma_pool **ptr, *pool;
505
506 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
507 if (!ptr)
508 return NULL;
509
510 pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
511 if (pool)
512 devres_add(dev, ptr);
513 else
514 devres_free(ptr);
515
516 return pool;
517}
e87aa773 518EXPORT_SYMBOL(dmam_pool_create);
9ac7849e
TH
519
520/**
521 * dmam_pool_destroy - Managed dma_pool_destroy()
522 * @pool: dma pool that will be destroyed
523 *
524 * Managed dma_pool_destroy().
525 */
526void dmam_pool_destroy(struct dma_pool *pool)
527{
528 struct device *dev = pool->dev;
529
172cb4b3 530 WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool));
9ac7849e 531}
e87aa773 532EXPORT_SYMBOL(dmam_pool_destroy);