]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/filemap.c | |
3 | * | |
4 | * Copyright (C) 1994-1999 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * This file handles the generic file mmap semantics used by | |
9 | * most "normal" filesystems (but you don't /have/ to use this: | |
10 | * the NFS filesystem used to do this differently, for example) | |
11 | */ | |
b95f1b31 | 12 | #include <linux/export.h> |
1da177e4 | 13 | #include <linux/compiler.h> |
f9fe48be | 14 | #include <linux/dax.h> |
1da177e4 | 15 | #include <linux/fs.h> |
c22ce143 | 16 | #include <linux/uaccess.h> |
c59ede7b | 17 | #include <linux/capability.h> |
1da177e4 | 18 | #include <linux/kernel_stat.h> |
5a0e3ad6 | 19 | #include <linux/gfp.h> |
1da177e4 LT |
20 | #include <linux/mm.h> |
21 | #include <linux/swap.h> | |
22 | #include <linux/mman.h> | |
23 | #include <linux/pagemap.h> | |
24 | #include <linux/file.h> | |
25 | #include <linux/uio.h> | |
26 | #include <linux/hash.h> | |
27 | #include <linux/writeback.h> | |
53253383 | 28 | #include <linux/backing-dev.h> |
1da177e4 LT |
29 | #include <linux/pagevec.h> |
30 | #include <linux/blkdev.h> | |
31 | #include <linux/security.h> | |
44110fe3 | 32 | #include <linux/cpuset.h> |
2f718ffc | 33 | #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ |
00501b53 | 34 | #include <linux/hugetlb.h> |
8a9f3ccd | 35 | #include <linux/memcontrol.h> |
c515e1fd | 36 | #include <linux/cleancache.h> |
f1820361 | 37 | #include <linux/rmap.h> |
0f8053a5 NP |
38 | #include "internal.h" |
39 | ||
fe0bfaaf RJ |
40 | #define CREATE_TRACE_POINTS |
41 | #include <trace/events/filemap.h> | |
42 | ||
1da177e4 | 43 | /* |
1da177e4 LT |
44 | * FIXME: remove all knowledge of the buffer layer from the core VM |
45 | */ | |
148f948b | 46 | #include <linux/buffer_head.h> /* for try_to_free_buffers */ |
1da177e4 | 47 | |
1da177e4 LT |
48 | #include <asm/mman.h> |
49 | ||
50 | /* | |
51 | * Shared mappings implemented 30.11.1994. It's not fully working yet, | |
52 | * though. | |
53 | * | |
54 | * Shared mappings now work. 15.8.1995 Bruno. | |
55 | * | |
56 | * finished 'unifying' the page and buffer cache and SMP-threaded the | |
57 | * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> | |
58 | * | |
59 | * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> | |
60 | */ | |
61 | ||
62 | /* | |
63 | * Lock ordering: | |
64 | * | |
c8c06efa | 65 | * ->i_mmap_rwsem (truncate_pagecache) |
1da177e4 | 66 | * ->private_lock (__free_pte->__set_page_dirty_buffers) |
5d337b91 HD |
67 | * ->swap_lock (exclusive_swap_page, others) |
68 | * ->mapping->tree_lock | |
1da177e4 | 69 | * |
1b1dcc1b | 70 | * ->i_mutex |
c8c06efa | 71 | * ->i_mmap_rwsem (truncate->unmap_mapping_range) |
1da177e4 LT |
72 | * |
73 | * ->mmap_sem | |
c8c06efa | 74 | * ->i_mmap_rwsem |
b8072f09 | 75 | * ->page_table_lock or pte_lock (various, mainly in memory.c) |
1da177e4 LT |
76 | * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) |
77 | * | |
78 | * ->mmap_sem | |
79 | * ->lock_page (access_process_vm) | |
80 | * | |
ccad2365 | 81 | * ->i_mutex (generic_perform_write) |
82591e6e | 82 | * ->mmap_sem (fault_in_pages_readable->do_page_fault) |
1da177e4 | 83 | * |
f758eeab | 84 | * bdi->wb.list_lock |
a66979ab | 85 | * sb_lock (fs/fs-writeback.c) |
1da177e4 LT |
86 | * ->mapping->tree_lock (__sync_single_inode) |
87 | * | |
c8c06efa | 88 | * ->i_mmap_rwsem |
1da177e4 LT |
89 | * ->anon_vma.lock (vma_adjust) |
90 | * | |
91 | * ->anon_vma.lock | |
b8072f09 | 92 | * ->page_table_lock or pte_lock (anon_vma_prepare and various) |
1da177e4 | 93 | * |
b8072f09 | 94 | * ->page_table_lock or pte_lock |
5d337b91 | 95 | * ->swap_lock (try_to_unmap_one) |
1da177e4 LT |
96 | * ->private_lock (try_to_unmap_one) |
97 | * ->tree_lock (try_to_unmap_one) | |
98 | * ->zone.lru_lock (follow_page->mark_page_accessed) | |
053837fc | 99 | * ->zone.lru_lock (check_pte_range->isolate_lru_page) |
1da177e4 LT |
100 | * ->private_lock (page_remove_rmap->set_page_dirty) |
101 | * ->tree_lock (page_remove_rmap->set_page_dirty) | |
f758eeab | 102 | * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) |
250df6ed | 103 | * ->inode->i_lock (page_remove_rmap->set_page_dirty) |
81f8c3a4 | 104 | * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) |
f758eeab | 105 | * bdi.wb->list_lock (zap_pte_range->set_page_dirty) |
250df6ed | 106 | * ->inode->i_lock (zap_pte_range->set_page_dirty) |
1da177e4 LT |
107 | * ->private_lock (zap_pte_range->__set_page_dirty_buffers) |
108 | * | |
c8c06efa | 109 | * ->i_mmap_rwsem |
9a3c531d | 110 | * ->tasklist_lock (memory_failure, collect_procs_ao) |
1da177e4 LT |
111 | */ |
112 | ||
91b0abe3 JW |
113 | static void page_cache_tree_delete(struct address_space *mapping, |
114 | struct page *page, void *shadow) | |
115 | { | |
449dd698 | 116 | struct radix_tree_node *node; |
91b0abe3 | 117 | |
449dd698 JW |
118 | VM_BUG_ON(!PageLocked(page)); |
119 | ||
d604c324 MW |
120 | node = radix_tree_replace_clear_tags(&mapping->page_tree, page->index, |
121 | shadow); | |
449dd698 JW |
122 | |
123 | if (shadow) { | |
f9fe48be | 124 | mapping->nrexceptional++; |
91b0abe3 | 125 | /* |
f9fe48be | 126 | * Make sure the nrexceptional update is committed before |
91b0abe3 JW |
127 | * the nrpages update so that final truncate racing |
128 | * with reclaim does not see both counters 0 at the | |
129 | * same time and miss a shadow entry. | |
130 | */ | |
131 | smp_wmb(); | |
449dd698 | 132 | } |
91b0abe3 | 133 | mapping->nrpages--; |
449dd698 | 134 | |
d604c324 | 135 | if (!node) |
449dd698 | 136 | return; |
449dd698 | 137 | |
449dd698 JW |
138 | workingset_node_pages_dec(node); |
139 | if (shadow) | |
140 | workingset_node_shadows_inc(node); | |
141 | else | |
142 | if (__radix_tree_delete_node(&mapping->page_tree, node)) | |
143 | return; | |
144 | ||
145 | /* | |
ac401cc7 JK |
146 | * Track node that only contains shadow entries. DAX mappings contain |
147 | * no shadow entries and may contain other exceptional entries so skip | |
148 | * those. | |
449dd698 JW |
149 | * |
150 | * Avoid acquiring the list_lru lock if already tracked. The | |
151 | * list_empty() test is safe as node->private_list is | |
152 | * protected by mapping->tree_lock. | |
153 | */ | |
ac401cc7 | 154 | if (!dax_mapping(mapping) && !workingset_node_pages(node) && |
449dd698 JW |
155 | list_empty(&node->private_list)) { |
156 | node->private_data = mapping; | |
157 | list_lru_add(&workingset_shadow_nodes, &node->private_list); | |
158 | } | |
91b0abe3 JW |
159 | } |
160 | ||
1da177e4 | 161 | /* |
e64a782f | 162 | * Delete a page from the page cache and free it. Caller has to make |
1da177e4 | 163 | * sure the page is locked and that nobody else uses it - or that usage |
fdf1cdb9 | 164 | * is safe. The caller must hold the mapping's tree_lock. |
1da177e4 | 165 | */ |
62cccb8c | 166 | void __delete_from_page_cache(struct page *page, void *shadow) |
1da177e4 LT |
167 | { |
168 | struct address_space *mapping = page->mapping; | |
169 | ||
fe0bfaaf | 170 | trace_mm_filemap_delete_from_page_cache(page); |
c515e1fd DM |
171 | /* |
172 | * if we're uptodate, flush out into the cleancache, otherwise | |
173 | * invalidate any existing cleancache entries. We can't leave | |
174 | * stale data around in the cleancache once our page is gone | |
175 | */ | |
176 | if (PageUptodate(page) && PageMappedToDisk(page)) | |
177 | cleancache_put_page(page); | |
178 | else | |
3167760f | 179 | cleancache_invalidate_page(mapping, page); |
c515e1fd | 180 | |
06b241f3 HD |
181 | VM_BUG_ON_PAGE(page_mapped(page), page); |
182 | if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { | |
183 | int mapcount; | |
184 | ||
185 | pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", | |
186 | current->comm, page_to_pfn(page)); | |
187 | dump_page(page, "still mapped when deleted"); | |
188 | dump_stack(); | |
189 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | |
190 | ||
191 | mapcount = page_mapcount(page); | |
192 | if (mapping_exiting(mapping) && | |
193 | page_count(page) >= mapcount + 2) { | |
194 | /* | |
195 | * All vmas have already been torn down, so it's | |
196 | * a good bet that actually the page is unmapped, | |
197 | * and we'd prefer not to leak it: if we're wrong, | |
198 | * some other bad page check should catch it later. | |
199 | */ | |
200 | page_mapcount_reset(page); | |
6d061f9f | 201 | page_ref_sub(page, mapcount); |
06b241f3 HD |
202 | } |
203 | } | |
204 | ||
91b0abe3 JW |
205 | page_cache_tree_delete(mapping, page, shadow); |
206 | ||
1da177e4 | 207 | page->mapping = NULL; |
b85e0eff | 208 | /* Leave page->index set: truncation lookup relies upon it */ |
91b0abe3 | 209 | |
4165b9b4 MH |
210 | /* hugetlb pages do not participate in page cache accounting. */ |
211 | if (!PageHuge(page)) | |
212 | __dec_zone_page_state(page, NR_FILE_PAGES); | |
4b02108a KM |
213 | if (PageSwapBacked(page)) |
214 | __dec_zone_page_state(page, NR_SHMEM); | |
3a692790 LT |
215 | |
216 | /* | |
b9ea2515 KK |
217 | * At this point page must be either written or cleaned by truncate. |
218 | * Dirty page here signals a bug and loss of unwritten data. | |
3a692790 | 219 | * |
b9ea2515 KK |
220 | * This fixes dirty accounting after removing the page entirely but |
221 | * leaves PageDirty set: it has no effect for truncated page and | |
222 | * anyway will be cleared before returning page into buddy allocator. | |
3a692790 | 223 | */ |
b9ea2515 | 224 | if (WARN_ON_ONCE(PageDirty(page))) |
62cccb8c | 225 | account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); |
1da177e4 LT |
226 | } |
227 | ||
702cfbf9 MK |
228 | /** |
229 | * delete_from_page_cache - delete page from page cache | |
230 | * @page: the page which the kernel is trying to remove from page cache | |
231 | * | |
232 | * This must be called only on pages that have been verified to be in the page | |
233 | * cache and locked. It will never put the page into the free list, the caller | |
234 | * has a reference on the page. | |
235 | */ | |
236 | void delete_from_page_cache(struct page *page) | |
1da177e4 LT |
237 | { |
238 | struct address_space *mapping = page->mapping; | |
c4843a75 GT |
239 | unsigned long flags; |
240 | ||
6072d13c | 241 | void (*freepage)(struct page *); |
1da177e4 | 242 | |
cd7619d6 | 243 | BUG_ON(!PageLocked(page)); |
1da177e4 | 244 | |
6072d13c | 245 | freepage = mapping->a_ops->freepage; |
c4843a75 | 246 | |
c4843a75 | 247 | spin_lock_irqsave(&mapping->tree_lock, flags); |
62cccb8c | 248 | __delete_from_page_cache(page, NULL); |
c4843a75 | 249 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
6072d13c LT |
250 | |
251 | if (freepage) | |
252 | freepage(page); | |
09cbfeaf | 253 | put_page(page); |
97cecb5a MK |
254 | } |
255 | EXPORT_SYMBOL(delete_from_page_cache); | |
256 | ||
865ffef3 DM |
257 | static int filemap_check_errors(struct address_space *mapping) |
258 | { | |
259 | int ret = 0; | |
260 | /* Check for outstanding write errors */ | |
7fcbbaf1 JA |
261 | if (test_bit(AS_ENOSPC, &mapping->flags) && |
262 | test_and_clear_bit(AS_ENOSPC, &mapping->flags)) | |
865ffef3 | 263 | ret = -ENOSPC; |
7fcbbaf1 JA |
264 | if (test_bit(AS_EIO, &mapping->flags) && |
265 | test_and_clear_bit(AS_EIO, &mapping->flags)) | |
865ffef3 DM |
266 | ret = -EIO; |
267 | return ret; | |
268 | } | |
269 | ||
1da177e4 | 270 | /** |
485bb99b | 271 | * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range |
67be2dd1 MW |
272 | * @mapping: address space structure to write |
273 | * @start: offset in bytes where the range starts | |
469eb4d0 | 274 | * @end: offset in bytes where the range ends (inclusive) |
67be2dd1 | 275 | * @sync_mode: enable synchronous operation |
1da177e4 | 276 | * |
485bb99b RD |
277 | * Start writeback against all of a mapping's dirty pages that lie |
278 | * within the byte offsets <start, end> inclusive. | |
279 | * | |
1da177e4 | 280 | * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as |
485bb99b | 281 | * opposed to a regular memory cleansing writeback. The difference between |
1da177e4 LT |
282 | * these two operations is that if a dirty page/buffer is encountered, it must |
283 | * be waited upon, and not just skipped over. | |
284 | */ | |
ebcf28e1 AM |
285 | int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
286 | loff_t end, int sync_mode) | |
1da177e4 LT |
287 | { |
288 | int ret; | |
289 | struct writeback_control wbc = { | |
290 | .sync_mode = sync_mode, | |
05fe478d | 291 | .nr_to_write = LONG_MAX, |
111ebb6e OH |
292 | .range_start = start, |
293 | .range_end = end, | |
1da177e4 LT |
294 | }; |
295 | ||
296 | if (!mapping_cap_writeback_dirty(mapping)) | |
297 | return 0; | |
298 | ||
b16b1deb | 299 | wbc_attach_fdatawrite_inode(&wbc, mapping->host); |
1da177e4 | 300 | ret = do_writepages(mapping, &wbc); |
b16b1deb | 301 | wbc_detach_inode(&wbc); |
1da177e4 LT |
302 | return ret; |
303 | } | |
304 | ||
305 | static inline int __filemap_fdatawrite(struct address_space *mapping, | |
306 | int sync_mode) | |
307 | { | |
111ebb6e | 308 | return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); |
1da177e4 LT |
309 | } |
310 | ||
311 | int filemap_fdatawrite(struct address_space *mapping) | |
312 | { | |
313 | return __filemap_fdatawrite(mapping, WB_SYNC_ALL); | |
314 | } | |
315 | EXPORT_SYMBOL(filemap_fdatawrite); | |
316 | ||
f4c0a0fd | 317 | int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
ebcf28e1 | 318 | loff_t end) |
1da177e4 LT |
319 | { |
320 | return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); | |
321 | } | |
f4c0a0fd | 322 | EXPORT_SYMBOL(filemap_fdatawrite_range); |
1da177e4 | 323 | |
485bb99b RD |
324 | /** |
325 | * filemap_flush - mostly a non-blocking flush | |
326 | * @mapping: target address_space | |
327 | * | |
1da177e4 LT |
328 | * This is a mostly non-blocking flush. Not suitable for data-integrity |
329 | * purposes - I/O may not be started against all dirty pages. | |
330 | */ | |
331 | int filemap_flush(struct address_space *mapping) | |
332 | { | |
333 | return __filemap_fdatawrite(mapping, WB_SYNC_NONE); | |
334 | } | |
335 | EXPORT_SYMBOL(filemap_flush); | |
336 | ||
aa750fd7 JN |
337 | static int __filemap_fdatawait_range(struct address_space *mapping, |
338 | loff_t start_byte, loff_t end_byte) | |
1da177e4 | 339 | { |
09cbfeaf KS |
340 | pgoff_t index = start_byte >> PAGE_SHIFT; |
341 | pgoff_t end = end_byte >> PAGE_SHIFT; | |
1da177e4 LT |
342 | struct pagevec pvec; |
343 | int nr_pages; | |
aa750fd7 | 344 | int ret = 0; |
1da177e4 | 345 | |
94004ed7 | 346 | if (end_byte < start_byte) |
865ffef3 | 347 | goto out; |
1da177e4 LT |
348 | |
349 | pagevec_init(&pvec, 0); | |
1da177e4 LT |
350 | while ((index <= end) && |
351 | (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | |
352 | PAGECACHE_TAG_WRITEBACK, | |
353 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { | |
354 | unsigned i; | |
355 | ||
356 | for (i = 0; i < nr_pages; i++) { | |
357 | struct page *page = pvec.pages[i]; | |
358 | ||
359 | /* until radix tree lookup accepts end_index */ | |
360 | if (page->index > end) | |
361 | continue; | |
362 | ||
363 | wait_on_page_writeback(page); | |
212260aa | 364 | if (TestClearPageError(page)) |
1da177e4 LT |
365 | ret = -EIO; |
366 | } | |
367 | pagevec_release(&pvec); | |
368 | cond_resched(); | |
369 | } | |
865ffef3 | 370 | out: |
aa750fd7 JN |
371 | return ret; |
372 | } | |
373 | ||
374 | /** | |
375 | * filemap_fdatawait_range - wait for writeback to complete | |
376 | * @mapping: address space structure to wait for | |
377 | * @start_byte: offset in bytes where the range starts | |
378 | * @end_byte: offset in bytes where the range ends (inclusive) | |
379 | * | |
380 | * Walk the list of under-writeback pages of the given address space | |
381 | * in the given range and wait for all of them. Check error status of | |
382 | * the address space and return it. | |
383 | * | |
384 | * Since the error status of the address space is cleared by this function, | |
385 | * callers are responsible for checking the return value and handling and/or | |
386 | * reporting the error. | |
387 | */ | |
388 | int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, | |
389 | loff_t end_byte) | |
390 | { | |
391 | int ret, ret2; | |
392 | ||
393 | ret = __filemap_fdatawait_range(mapping, start_byte, end_byte); | |
865ffef3 DM |
394 | ret2 = filemap_check_errors(mapping); |
395 | if (!ret) | |
396 | ret = ret2; | |
1da177e4 LT |
397 | |
398 | return ret; | |
399 | } | |
d3bccb6f JK |
400 | EXPORT_SYMBOL(filemap_fdatawait_range); |
401 | ||
aa750fd7 JN |
402 | /** |
403 | * filemap_fdatawait_keep_errors - wait for writeback without clearing errors | |
404 | * @mapping: address space structure to wait for | |
405 | * | |
406 | * Walk the list of under-writeback pages of the given address space | |
407 | * and wait for all of them. Unlike filemap_fdatawait(), this function | |
408 | * does not clear error status of the address space. | |
409 | * | |
410 | * Use this function if callers don't handle errors themselves. Expected | |
411 | * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), | |
412 | * fsfreeze(8) | |
413 | */ | |
414 | void filemap_fdatawait_keep_errors(struct address_space *mapping) | |
415 | { | |
416 | loff_t i_size = i_size_read(mapping->host); | |
417 | ||
418 | if (i_size == 0) | |
419 | return; | |
420 | ||
421 | __filemap_fdatawait_range(mapping, 0, i_size - 1); | |
422 | } | |
423 | ||
1da177e4 | 424 | /** |
485bb99b | 425 | * filemap_fdatawait - wait for all under-writeback pages to complete |
1da177e4 | 426 | * @mapping: address space structure to wait for |
485bb99b RD |
427 | * |
428 | * Walk the list of under-writeback pages of the given address space | |
aa750fd7 JN |
429 | * and wait for all of them. Check error status of the address space |
430 | * and return it. | |
431 | * | |
432 | * Since the error status of the address space is cleared by this function, | |
433 | * callers are responsible for checking the return value and handling and/or | |
434 | * reporting the error. | |
1da177e4 LT |
435 | */ |
436 | int filemap_fdatawait(struct address_space *mapping) | |
437 | { | |
438 | loff_t i_size = i_size_read(mapping->host); | |
439 | ||
440 | if (i_size == 0) | |
441 | return 0; | |
442 | ||
94004ed7 | 443 | return filemap_fdatawait_range(mapping, 0, i_size - 1); |
1da177e4 LT |
444 | } |
445 | EXPORT_SYMBOL(filemap_fdatawait); | |
446 | ||
447 | int filemap_write_and_wait(struct address_space *mapping) | |
448 | { | |
28fd1298 | 449 | int err = 0; |
1da177e4 | 450 | |
7f6d5b52 RZ |
451 | if ((!dax_mapping(mapping) && mapping->nrpages) || |
452 | (dax_mapping(mapping) && mapping->nrexceptional)) { | |
28fd1298 OH |
453 | err = filemap_fdatawrite(mapping); |
454 | /* | |
455 | * Even if the above returned error, the pages may be | |
456 | * written partially (e.g. -ENOSPC), so we wait for it. | |
457 | * But the -EIO is special case, it may indicate the worst | |
458 | * thing (e.g. bug) happened, so we avoid waiting for it. | |
459 | */ | |
460 | if (err != -EIO) { | |
461 | int err2 = filemap_fdatawait(mapping); | |
462 | if (!err) | |
463 | err = err2; | |
464 | } | |
865ffef3 DM |
465 | } else { |
466 | err = filemap_check_errors(mapping); | |
1da177e4 | 467 | } |
28fd1298 | 468 | return err; |
1da177e4 | 469 | } |
28fd1298 | 470 | EXPORT_SYMBOL(filemap_write_and_wait); |
1da177e4 | 471 | |
485bb99b RD |
472 | /** |
473 | * filemap_write_and_wait_range - write out & wait on a file range | |
474 | * @mapping: the address_space for the pages | |
475 | * @lstart: offset in bytes where the range starts | |
476 | * @lend: offset in bytes where the range ends (inclusive) | |
477 | * | |
469eb4d0 AM |
478 | * Write out and wait upon file offsets lstart->lend, inclusive. |
479 | * | |
480 | * Note that `lend' is inclusive (describes the last byte to be written) so | |
481 | * that this function can be used to write to the very end-of-file (end = -1). | |
482 | */ | |
1da177e4 LT |
483 | int filemap_write_and_wait_range(struct address_space *mapping, |
484 | loff_t lstart, loff_t lend) | |
485 | { | |
28fd1298 | 486 | int err = 0; |
1da177e4 | 487 | |
7f6d5b52 RZ |
488 | if ((!dax_mapping(mapping) && mapping->nrpages) || |
489 | (dax_mapping(mapping) && mapping->nrexceptional)) { | |
28fd1298 OH |
490 | err = __filemap_fdatawrite_range(mapping, lstart, lend, |
491 | WB_SYNC_ALL); | |
492 | /* See comment of filemap_write_and_wait() */ | |
493 | if (err != -EIO) { | |
94004ed7 CH |
494 | int err2 = filemap_fdatawait_range(mapping, |
495 | lstart, lend); | |
28fd1298 OH |
496 | if (!err) |
497 | err = err2; | |
498 | } | |
865ffef3 DM |
499 | } else { |
500 | err = filemap_check_errors(mapping); | |
1da177e4 | 501 | } |
28fd1298 | 502 | return err; |
1da177e4 | 503 | } |
f6995585 | 504 | EXPORT_SYMBOL(filemap_write_and_wait_range); |
1da177e4 | 505 | |
ef6a3c63 MS |
506 | /** |
507 | * replace_page_cache_page - replace a pagecache page with a new one | |
508 | * @old: page to be replaced | |
509 | * @new: page to replace with | |
510 | * @gfp_mask: allocation mode | |
511 | * | |
512 | * This function replaces a page in the pagecache with a new one. On | |
513 | * success it acquires the pagecache reference for the new page and | |
514 | * drops it for the old page. Both the old and new pages must be | |
515 | * locked. This function does not add the new page to the LRU, the | |
516 | * caller must do that. | |
517 | * | |
518 | * The remove + add is atomic. The only way this function can fail is | |
519 | * memory allocation failure. | |
520 | */ | |
521 | int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) | |
522 | { | |
523 | int error; | |
ef6a3c63 | 524 | |
309381fe SL |
525 | VM_BUG_ON_PAGE(!PageLocked(old), old); |
526 | VM_BUG_ON_PAGE(!PageLocked(new), new); | |
527 | VM_BUG_ON_PAGE(new->mapping, new); | |
ef6a3c63 | 528 | |
ef6a3c63 MS |
529 | error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); |
530 | if (!error) { | |
531 | struct address_space *mapping = old->mapping; | |
532 | void (*freepage)(struct page *); | |
c4843a75 | 533 | unsigned long flags; |
ef6a3c63 MS |
534 | |
535 | pgoff_t offset = old->index; | |
536 | freepage = mapping->a_ops->freepage; | |
537 | ||
09cbfeaf | 538 | get_page(new); |
ef6a3c63 MS |
539 | new->mapping = mapping; |
540 | new->index = offset; | |
541 | ||
c4843a75 | 542 | spin_lock_irqsave(&mapping->tree_lock, flags); |
62cccb8c | 543 | __delete_from_page_cache(old, NULL); |
ef6a3c63 MS |
544 | error = radix_tree_insert(&mapping->page_tree, offset, new); |
545 | BUG_ON(error); | |
546 | mapping->nrpages++; | |
4165b9b4 MH |
547 | |
548 | /* | |
549 | * hugetlb pages do not participate in page cache accounting. | |
550 | */ | |
551 | if (!PageHuge(new)) | |
552 | __inc_zone_page_state(new, NR_FILE_PAGES); | |
ef6a3c63 MS |
553 | if (PageSwapBacked(new)) |
554 | __inc_zone_page_state(new, NR_SHMEM); | |
c4843a75 | 555 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
6a93ca8f | 556 | mem_cgroup_migrate(old, new); |
ef6a3c63 MS |
557 | radix_tree_preload_end(); |
558 | if (freepage) | |
559 | freepage(old); | |
09cbfeaf | 560 | put_page(old); |
ef6a3c63 MS |
561 | } |
562 | ||
563 | return error; | |
564 | } | |
565 | EXPORT_SYMBOL_GPL(replace_page_cache_page); | |
566 | ||
0cd6144a | 567 | static int page_cache_tree_insert(struct address_space *mapping, |
a528910e | 568 | struct page *page, void **shadowp) |
0cd6144a | 569 | { |
449dd698 | 570 | struct radix_tree_node *node; |
0cd6144a JW |
571 | void **slot; |
572 | int error; | |
573 | ||
e6145236 | 574 | error = __radix_tree_create(&mapping->page_tree, page->index, 0, |
449dd698 JW |
575 | &node, &slot); |
576 | if (error) | |
577 | return error; | |
578 | if (*slot) { | |
0cd6144a JW |
579 | void *p; |
580 | ||
581 | p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); | |
582 | if (!radix_tree_exceptional_entry(p)) | |
583 | return -EEXIST; | |
f9fe48be | 584 | |
f9fe48be | 585 | mapping->nrexceptional--; |
4f622938 JK |
586 | if (!dax_mapping(mapping)) { |
587 | if (shadowp) | |
588 | *shadowp = p; | |
589 | if (node) | |
590 | workingset_node_shadows_dec(node); | |
591 | } else { | |
592 | /* DAX can replace empty locked entry with a hole */ | |
593 | WARN_ON_ONCE(p != | |
594 | (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | | |
595 | RADIX_DAX_ENTRY_LOCK)); | |
596 | /* DAX accounts exceptional entries as normal pages */ | |
597 | if (node) | |
598 | workingset_node_pages_dec(node); | |
ac401cc7 JK |
599 | /* Wakeup waiters for exceptional entry lock */ |
600 | dax_wake_mapping_entry_waiter(mapping, page->index, | |
601 | false); | |
4f622938 | 602 | } |
0cd6144a | 603 | } |
449dd698 JW |
604 | radix_tree_replace_slot(slot, page); |
605 | mapping->nrpages++; | |
606 | if (node) { | |
607 | workingset_node_pages_inc(node); | |
608 | /* | |
609 | * Don't track node that contains actual pages. | |
610 | * | |
611 | * Avoid acquiring the list_lru lock if already | |
612 | * untracked. The list_empty() test is safe as | |
613 | * node->private_list is protected by | |
614 | * mapping->tree_lock. | |
615 | */ | |
616 | if (!list_empty(&node->private_list)) | |
617 | list_lru_del(&workingset_shadow_nodes, | |
618 | &node->private_list); | |
619 | } | |
620 | return 0; | |
0cd6144a JW |
621 | } |
622 | ||
a528910e JW |
623 | static int __add_to_page_cache_locked(struct page *page, |
624 | struct address_space *mapping, | |
625 | pgoff_t offset, gfp_t gfp_mask, | |
626 | void **shadowp) | |
1da177e4 | 627 | { |
00501b53 JW |
628 | int huge = PageHuge(page); |
629 | struct mem_cgroup *memcg; | |
e286781d NP |
630 | int error; |
631 | ||
309381fe SL |
632 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
633 | VM_BUG_ON_PAGE(PageSwapBacked(page), page); | |
e286781d | 634 | |
00501b53 JW |
635 | if (!huge) { |
636 | error = mem_cgroup_try_charge(page, current->mm, | |
f627c2f5 | 637 | gfp_mask, &memcg, false); |
00501b53 JW |
638 | if (error) |
639 | return error; | |
640 | } | |
1da177e4 | 641 | |
5e4c0d97 | 642 | error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); |
66a0c8ee | 643 | if (error) { |
00501b53 | 644 | if (!huge) |
f627c2f5 | 645 | mem_cgroup_cancel_charge(page, memcg, false); |
66a0c8ee KS |
646 | return error; |
647 | } | |
648 | ||
09cbfeaf | 649 | get_page(page); |
66a0c8ee KS |
650 | page->mapping = mapping; |
651 | page->index = offset; | |
652 | ||
653 | spin_lock_irq(&mapping->tree_lock); | |
a528910e | 654 | error = page_cache_tree_insert(mapping, page, shadowp); |
66a0c8ee KS |
655 | radix_tree_preload_end(); |
656 | if (unlikely(error)) | |
657 | goto err_insert; | |
4165b9b4 MH |
658 | |
659 | /* hugetlb pages do not participate in page cache accounting. */ | |
660 | if (!huge) | |
661 | __inc_zone_page_state(page, NR_FILE_PAGES); | |
66a0c8ee | 662 | spin_unlock_irq(&mapping->tree_lock); |
00501b53 | 663 | if (!huge) |
f627c2f5 | 664 | mem_cgroup_commit_charge(page, memcg, false, false); |
66a0c8ee KS |
665 | trace_mm_filemap_add_to_page_cache(page); |
666 | return 0; | |
667 | err_insert: | |
668 | page->mapping = NULL; | |
669 | /* Leave page->index set: truncation relies upon it */ | |
670 | spin_unlock_irq(&mapping->tree_lock); | |
00501b53 | 671 | if (!huge) |
f627c2f5 | 672 | mem_cgroup_cancel_charge(page, memcg, false); |
09cbfeaf | 673 | put_page(page); |
1da177e4 LT |
674 | return error; |
675 | } | |
a528910e JW |
676 | |
677 | /** | |
678 | * add_to_page_cache_locked - add a locked page to the pagecache | |
679 | * @page: page to add | |
680 | * @mapping: the page's address_space | |
681 | * @offset: page index | |
682 | * @gfp_mask: page allocation mode | |
683 | * | |
684 | * This function is used to add a page to the pagecache. It must be locked. | |
685 | * This function does not add the page to the LRU. The caller must do that. | |
686 | */ | |
687 | int add_to_page_cache_locked(struct page *page, struct address_space *mapping, | |
688 | pgoff_t offset, gfp_t gfp_mask) | |
689 | { | |
690 | return __add_to_page_cache_locked(page, mapping, offset, | |
691 | gfp_mask, NULL); | |
692 | } | |
e286781d | 693 | EXPORT_SYMBOL(add_to_page_cache_locked); |
1da177e4 LT |
694 | |
695 | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, | |
6daa0e28 | 696 | pgoff_t offset, gfp_t gfp_mask) |
1da177e4 | 697 | { |
a528910e | 698 | void *shadow = NULL; |
4f98a2fe RR |
699 | int ret; |
700 | ||
48c935ad | 701 | __SetPageLocked(page); |
a528910e JW |
702 | ret = __add_to_page_cache_locked(page, mapping, offset, |
703 | gfp_mask, &shadow); | |
704 | if (unlikely(ret)) | |
48c935ad | 705 | __ClearPageLocked(page); |
a528910e JW |
706 | else { |
707 | /* | |
708 | * The page might have been evicted from cache only | |
709 | * recently, in which case it should be activated like | |
710 | * any other repeatedly accessed page. | |
f0281a00 RR |
711 | * The exception is pages getting rewritten; evicting other |
712 | * data from the working set, only to cache data that will | |
713 | * get overwritten with something else, is a waste of memory. | |
a528910e | 714 | */ |
f0281a00 RR |
715 | if (!(gfp_mask & __GFP_WRITE) && |
716 | shadow && workingset_refault(shadow)) { | |
a528910e JW |
717 | SetPageActive(page); |
718 | workingset_activation(page); | |
719 | } else | |
720 | ClearPageActive(page); | |
721 | lru_cache_add(page); | |
722 | } | |
1da177e4 LT |
723 | return ret; |
724 | } | |
18bc0bbd | 725 | EXPORT_SYMBOL_GPL(add_to_page_cache_lru); |
1da177e4 | 726 | |
44110fe3 | 727 | #ifdef CONFIG_NUMA |
2ae88149 | 728 | struct page *__page_cache_alloc(gfp_t gfp) |
44110fe3 | 729 | { |
c0ff7453 MX |
730 | int n; |
731 | struct page *page; | |
732 | ||
44110fe3 | 733 | if (cpuset_do_page_mem_spread()) { |
cc9a6c87 MG |
734 | unsigned int cpuset_mems_cookie; |
735 | do { | |
d26914d1 | 736 | cpuset_mems_cookie = read_mems_allowed_begin(); |
cc9a6c87 | 737 | n = cpuset_mem_spread_node(); |
96db800f | 738 | page = __alloc_pages_node(n, gfp, 0); |
d26914d1 | 739 | } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); |
cc9a6c87 | 740 | |
c0ff7453 | 741 | return page; |
44110fe3 | 742 | } |
2ae88149 | 743 | return alloc_pages(gfp, 0); |
44110fe3 | 744 | } |
2ae88149 | 745 | EXPORT_SYMBOL(__page_cache_alloc); |
44110fe3 PJ |
746 | #endif |
747 | ||
1da177e4 LT |
748 | /* |
749 | * In order to wait for pages to become available there must be | |
750 | * waitqueues associated with pages. By using a hash table of | |
751 | * waitqueues where the bucket discipline is to maintain all | |
752 | * waiters on the same queue and wake all when any of the pages | |
753 | * become available, and for the woken contexts to check to be | |
754 | * sure the appropriate page became available, this saves space | |
755 | * at a cost of "thundering herd" phenomena during rare hash | |
756 | * collisions. | |
757 | */ | |
a4796e37 | 758 | wait_queue_head_t *page_waitqueue(struct page *page) |
1da177e4 LT |
759 | { |
760 | const struct zone *zone = page_zone(page); | |
761 | ||
762 | return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; | |
763 | } | |
a4796e37 | 764 | EXPORT_SYMBOL(page_waitqueue); |
1da177e4 | 765 | |
920c7a5d | 766 | void wait_on_page_bit(struct page *page, int bit_nr) |
1da177e4 LT |
767 | { |
768 | DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); | |
769 | ||
770 | if (test_bit(bit_nr, &page->flags)) | |
74316201 | 771 | __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io, |
1da177e4 LT |
772 | TASK_UNINTERRUPTIBLE); |
773 | } | |
774 | EXPORT_SYMBOL(wait_on_page_bit); | |
775 | ||
f62e00cc KM |
776 | int wait_on_page_bit_killable(struct page *page, int bit_nr) |
777 | { | |
778 | DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); | |
779 | ||
780 | if (!test_bit(bit_nr, &page->flags)) | |
781 | return 0; | |
782 | ||
783 | return __wait_on_bit(page_waitqueue(page), &wait, | |
74316201 | 784 | bit_wait_io, TASK_KILLABLE); |
f62e00cc KM |
785 | } |
786 | ||
cbbce822 N |
787 | int wait_on_page_bit_killable_timeout(struct page *page, |
788 | int bit_nr, unsigned long timeout) | |
789 | { | |
790 | DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); | |
791 | ||
792 | wait.key.timeout = jiffies + timeout; | |
793 | if (!test_bit(bit_nr, &page->flags)) | |
794 | return 0; | |
795 | return __wait_on_bit(page_waitqueue(page), &wait, | |
796 | bit_wait_io_timeout, TASK_KILLABLE); | |
797 | } | |
798 | EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout); | |
799 | ||
385e1ca5 DH |
800 | /** |
801 | * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue | |
697f619f RD |
802 | * @page: Page defining the wait queue of interest |
803 | * @waiter: Waiter to add to the queue | |
385e1ca5 DH |
804 | * |
805 | * Add an arbitrary @waiter to the wait queue for the nominated @page. | |
806 | */ | |
807 | void add_page_wait_queue(struct page *page, wait_queue_t *waiter) | |
808 | { | |
809 | wait_queue_head_t *q = page_waitqueue(page); | |
810 | unsigned long flags; | |
811 | ||
812 | spin_lock_irqsave(&q->lock, flags); | |
813 | __add_wait_queue(q, waiter); | |
814 | spin_unlock_irqrestore(&q->lock, flags); | |
815 | } | |
816 | EXPORT_SYMBOL_GPL(add_page_wait_queue); | |
817 | ||
1da177e4 | 818 | /** |
485bb99b | 819 | * unlock_page - unlock a locked page |
1da177e4 LT |
820 | * @page: the page |
821 | * | |
822 | * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). | |
823 | * Also wakes sleepers in wait_on_page_writeback() because the wakeup | |
da3dae54 | 824 | * mechanism between PageLocked pages and PageWriteback pages is shared. |
1da177e4 LT |
825 | * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. |
826 | * | |
8413ac9d NP |
827 | * The mb is necessary to enforce ordering between the clear_bit and the read |
828 | * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). | |
1da177e4 | 829 | */ |
920c7a5d | 830 | void unlock_page(struct page *page) |
1da177e4 | 831 | { |
48c935ad | 832 | page = compound_head(page); |
309381fe | 833 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
8413ac9d | 834 | clear_bit_unlock(PG_locked, &page->flags); |
4e857c58 | 835 | smp_mb__after_atomic(); |
1da177e4 LT |
836 | wake_up_page(page, PG_locked); |
837 | } | |
838 | EXPORT_SYMBOL(unlock_page); | |
839 | ||
485bb99b RD |
840 | /** |
841 | * end_page_writeback - end writeback against a page | |
842 | * @page: the page | |
1da177e4 LT |
843 | */ |
844 | void end_page_writeback(struct page *page) | |
845 | { | |
888cf2db MG |
846 | /* |
847 | * TestClearPageReclaim could be used here but it is an atomic | |
848 | * operation and overkill in this particular case. Failing to | |
849 | * shuffle a page marked for immediate reclaim is too mild to | |
850 | * justify taking an atomic operation penalty at the end of | |
851 | * ever page writeback. | |
852 | */ | |
853 | if (PageReclaim(page)) { | |
854 | ClearPageReclaim(page); | |
ac6aadb2 | 855 | rotate_reclaimable_page(page); |
888cf2db | 856 | } |
ac6aadb2 MS |
857 | |
858 | if (!test_clear_page_writeback(page)) | |
859 | BUG(); | |
860 | ||
4e857c58 | 861 | smp_mb__after_atomic(); |
1da177e4 LT |
862 | wake_up_page(page, PG_writeback); |
863 | } | |
864 | EXPORT_SYMBOL(end_page_writeback); | |
865 | ||
57d99845 MW |
866 | /* |
867 | * After completing I/O on a page, call this routine to update the page | |
868 | * flags appropriately | |
869 | */ | |
870 | void page_endio(struct page *page, int rw, int err) | |
871 | { | |
872 | if (rw == READ) { | |
873 | if (!err) { | |
874 | SetPageUptodate(page); | |
875 | } else { | |
876 | ClearPageUptodate(page); | |
877 | SetPageError(page); | |
878 | } | |
879 | unlock_page(page); | |
880 | } else { /* rw == WRITE */ | |
881 | if (err) { | |
882 | SetPageError(page); | |
883 | if (page->mapping) | |
884 | mapping_set_error(page->mapping, err); | |
885 | } | |
886 | end_page_writeback(page); | |
887 | } | |
888 | } | |
889 | EXPORT_SYMBOL_GPL(page_endio); | |
890 | ||
485bb99b RD |
891 | /** |
892 | * __lock_page - get a lock on the page, assuming we need to sleep to get it | |
893 | * @page: the page to lock | |
1da177e4 | 894 | */ |
920c7a5d | 895 | void __lock_page(struct page *page) |
1da177e4 | 896 | { |
48c935ad KS |
897 | struct page *page_head = compound_head(page); |
898 | DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked); | |
1da177e4 | 899 | |
48c935ad | 900 | __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io, |
1da177e4 LT |
901 | TASK_UNINTERRUPTIBLE); |
902 | } | |
903 | EXPORT_SYMBOL(__lock_page); | |
904 | ||
b5606c2d | 905 | int __lock_page_killable(struct page *page) |
2687a356 | 906 | { |
48c935ad KS |
907 | struct page *page_head = compound_head(page); |
908 | DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked); | |
2687a356 | 909 | |
48c935ad | 910 | return __wait_on_bit_lock(page_waitqueue(page_head), &wait, |
74316201 | 911 | bit_wait_io, TASK_KILLABLE); |
2687a356 | 912 | } |
18bc0bbd | 913 | EXPORT_SYMBOL_GPL(__lock_page_killable); |
2687a356 | 914 | |
9a95f3cf PC |
915 | /* |
916 | * Return values: | |
917 | * 1 - page is locked; mmap_sem is still held. | |
918 | * 0 - page is not locked. | |
919 | * mmap_sem has been released (up_read()), unless flags had both | |
920 | * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in | |
921 | * which case mmap_sem is still held. | |
922 | * | |
923 | * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 | |
924 | * with the page locked and the mmap_sem unperturbed. | |
925 | */ | |
d065bd81 ML |
926 | int __lock_page_or_retry(struct page *page, struct mm_struct *mm, |
927 | unsigned int flags) | |
928 | { | |
37b23e05 KM |
929 | if (flags & FAULT_FLAG_ALLOW_RETRY) { |
930 | /* | |
931 | * CAUTION! In this case, mmap_sem is not released | |
932 | * even though return 0. | |
933 | */ | |
934 | if (flags & FAULT_FLAG_RETRY_NOWAIT) | |
935 | return 0; | |
936 | ||
937 | up_read(&mm->mmap_sem); | |
938 | if (flags & FAULT_FLAG_KILLABLE) | |
939 | wait_on_page_locked_killable(page); | |
940 | else | |
318b275f | 941 | wait_on_page_locked(page); |
d065bd81 | 942 | return 0; |
37b23e05 KM |
943 | } else { |
944 | if (flags & FAULT_FLAG_KILLABLE) { | |
945 | int ret; | |
946 | ||
947 | ret = __lock_page_killable(page); | |
948 | if (ret) { | |
949 | up_read(&mm->mmap_sem); | |
950 | return 0; | |
951 | } | |
952 | } else | |
953 | __lock_page(page); | |
954 | return 1; | |
d065bd81 ML |
955 | } |
956 | } | |
957 | ||
e7b563bb JW |
958 | /** |
959 | * page_cache_next_hole - find the next hole (not-present entry) | |
960 | * @mapping: mapping | |
961 | * @index: index | |
962 | * @max_scan: maximum range to search | |
963 | * | |
964 | * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the | |
965 | * lowest indexed hole. | |
966 | * | |
967 | * Returns: the index of the hole if found, otherwise returns an index | |
968 | * outside of the set specified (in which case 'return - index >= | |
969 | * max_scan' will be true). In rare cases of index wrap-around, 0 will | |
970 | * be returned. | |
971 | * | |
972 | * page_cache_next_hole may be called under rcu_read_lock. However, | |
973 | * like radix_tree_gang_lookup, this will not atomically search a | |
974 | * snapshot of the tree at a single point in time. For example, if a | |
975 | * hole is created at index 5, then subsequently a hole is created at | |
976 | * index 10, page_cache_next_hole covering both indexes may return 10 | |
977 | * if called under rcu_read_lock. | |
978 | */ | |
979 | pgoff_t page_cache_next_hole(struct address_space *mapping, | |
980 | pgoff_t index, unsigned long max_scan) | |
981 | { | |
982 | unsigned long i; | |
983 | ||
984 | for (i = 0; i < max_scan; i++) { | |
0cd6144a JW |
985 | struct page *page; |
986 | ||
987 | page = radix_tree_lookup(&mapping->page_tree, index); | |
988 | if (!page || radix_tree_exceptional_entry(page)) | |
e7b563bb JW |
989 | break; |
990 | index++; | |
991 | if (index == 0) | |
992 | break; | |
993 | } | |
994 | ||
995 | return index; | |
996 | } | |
997 | EXPORT_SYMBOL(page_cache_next_hole); | |
998 | ||
999 | /** | |
1000 | * page_cache_prev_hole - find the prev hole (not-present entry) | |
1001 | * @mapping: mapping | |
1002 | * @index: index | |
1003 | * @max_scan: maximum range to search | |
1004 | * | |
1005 | * Search backwards in the range [max(index-max_scan+1, 0), index] for | |
1006 | * the first hole. | |
1007 | * | |
1008 | * Returns: the index of the hole if found, otherwise returns an index | |
1009 | * outside of the set specified (in which case 'index - return >= | |
1010 | * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX | |
1011 | * will be returned. | |
1012 | * | |
1013 | * page_cache_prev_hole may be called under rcu_read_lock. However, | |
1014 | * like radix_tree_gang_lookup, this will not atomically search a | |
1015 | * snapshot of the tree at a single point in time. For example, if a | |
1016 | * hole is created at index 10, then subsequently a hole is created at | |
1017 | * index 5, page_cache_prev_hole covering both indexes may return 5 if | |
1018 | * called under rcu_read_lock. | |
1019 | */ | |
1020 | pgoff_t page_cache_prev_hole(struct address_space *mapping, | |
1021 | pgoff_t index, unsigned long max_scan) | |
1022 | { | |
1023 | unsigned long i; | |
1024 | ||
1025 | for (i = 0; i < max_scan; i++) { | |
0cd6144a JW |
1026 | struct page *page; |
1027 | ||
1028 | page = radix_tree_lookup(&mapping->page_tree, index); | |
1029 | if (!page || radix_tree_exceptional_entry(page)) | |
e7b563bb JW |
1030 | break; |
1031 | index--; | |
1032 | if (index == ULONG_MAX) | |
1033 | break; | |
1034 | } | |
1035 | ||
1036 | return index; | |
1037 | } | |
1038 | EXPORT_SYMBOL(page_cache_prev_hole); | |
1039 | ||
485bb99b | 1040 | /** |
0cd6144a | 1041 | * find_get_entry - find and get a page cache entry |
485bb99b | 1042 | * @mapping: the address_space to search |
0cd6144a JW |
1043 | * @offset: the page cache index |
1044 | * | |
1045 | * Looks up the page cache slot at @mapping & @offset. If there is a | |
1046 | * page cache page, it is returned with an increased refcount. | |
485bb99b | 1047 | * |
139b6a6f JW |
1048 | * If the slot holds a shadow entry of a previously evicted page, or a |
1049 | * swap entry from shmem/tmpfs, it is returned. | |
0cd6144a JW |
1050 | * |
1051 | * Otherwise, %NULL is returned. | |
1da177e4 | 1052 | */ |
0cd6144a | 1053 | struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) |
1da177e4 | 1054 | { |
a60637c8 | 1055 | void **pagep; |
1da177e4 LT |
1056 | struct page *page; |
1057 | ||
a60637c8 NP |
1058 | rcu_read_lock(); |
1059 | repeat: | |
1060 | page = NULL; | |
1061 | pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); | |
1062 | if (pagep) { | |
1063 | page = radix_tree_deref_slot(pagep); | |
27d20fdd NP |
1064 | if (unlikely(!page)) |
1065 | goto out; | |
a2c16d6c | 1066 | if (radix_tree_exception(page)) { |
8079b1c8 HD |
1067 | if (radix_tree_deref_retry(page)) |
1068 | goto repeat; | |
1069 | /* | |
139b6a6f JW |
1070 | * A shadow entry of a recently evicted page, |
1071 | * or a swap entry from shmem/tmpfs. Return | |
1072 | * it without attempting to raise page count. | |
8079b1c8 HD |
1073 | */ |
1074 | goto out; | |
a2c16d6c | 1075 | } |
a60637c8 NP |
1076 | if (!page_cache_get_speculative(page)) |
1077 | goto repeat; | |
1078 | ||
1079 | /* | |
1080 | * Has the page moved? | |
1081 | * This is part of the lockless pagecache protocol. See | |
1082 | * include/linux/pagemap.h for details. | |
1083 | */ | |
1084 | if (unlikely(page != *pagep)) { | |
09cbfeaf | 1085 | put_page(page); |
a60637c8 NP |
1086 | goto repeat; |
1087 | } | |
1088 | } | |
27d20fdd | 1089 | out: |
a60637c8 NP |
1090 | rcu_read_unlock(); |
1091 | ||
1da177e4 LT |
1092 | return page; |
1093 | } | |
0cd6144a | 1094 | EXPORT_SYMBOL(find_get_entry); |
1da177e4 | 1095 | |
0cd6144a JW |
1096 | /** |
1097 | * find_lock_entry - locate, pin and lock a page cache entry | |
1098 | * @mapping: the address_space to search | |
1099 | * @offset: the page cache index | |
1100 | * | |
1101 | * Looks up the page cache slot at @mapping & @offset. If there is a | |
1102 | * page cache page, it is returned locked and with an increased | |
1103 | * refcount. | |
1104 | * | |
139b6a6f JW |
1105 | * If the slot holds a shadow entry of a previously evicted page, or a |
1106 | * swap entry from shmem/tmpfs, it is returned. | |
0cd6144a JW |
1107 | * |
1108 | * Otherwise, %NULL is returned. | |
1109 | * | |
1110 | * find_lock_entry() may sleep. | |
1111 | */ | |
1112 | struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) | |
1da177e4 LT |
1113 | { |
1114 | struct page *page; | |
1115 | ||
1da177e4 | 1116 | repeat: |
0cd6144a | 1117 | page = find_get_entry(mapping, offset); |
a2c16d6c | 1118 | if (page && !radix_tree_exception(page)) { |
a60637c8 NP |
1119 | lock_page(page); |
1120 | /* Has the page been truncated? */ | |
1121 | if (unlikely(page->mapping != mapping)) { | |
1122 | unlock_page(page); | |
09cbfeaf | 1123 | put_page(page); |
a60637c8 | 1124 | goto repeat; |
1da177e4 | 1125 | } |
309381fe | 1126 | VM_BUG_ON_PAGE(page->index != offset, page); |
1da177e4 | 1127 | } |
1da177e4 LT |
1128 | return page; |
1129 | } | |
0cd6144a JW |
1130 | EXPORT_SYMBOL(find_lock_entry); |
1131 | ||
1132 | /** | |
2457aec6 | 1133 | * pagecache_get_page - find and get a page reference |
0cd6144a JW |
1134 | * @mapping: the address_space to search |
1135 | * @offset: the page index | |
2457aec6 | 1136 | * @fgp_flags: PCG flags |
45f87de5 | 1137 | * @gfp_mask: gfp mask to use for the page cache data page allocation |
0cd6144a | 1138 | * |
2457aec6 | 1139 | * Looks up the page cache slot at @mapping & @offset. |
1da177e4 | 1140 | * |
75325189 | 1141 | * PCG flags modify how the page is returned. |
0cd6144a | 1142 | * |
2457aec6 MG |
1143 | * FGP_ACCESSED: the page will be marked accessed |
1144 | * FGP_LOCK: Page is return locked | |
1145 | * FGP_CREAT: If page is not present then a new page is allocated using | |
45f87de5 MH |
1146 | * @gfp_mask and added to the page cache and the VM's LRU |
1147 | * list. The page is returned locked and with an increased | |
1148 | * refcount. Otherwise, %NULL is returned. | |
1da177e4 | 1149 | * |
2457aec6 MG |
1150 | * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even |
1151 | * if the GFP flags specified for FGP_CREAT are atomic. | |
1da177e4 | 1152 | * |
2457aec6 | 1153 | * If there is a page cache page, it is returned with an increased refcount. |
1da177e4 | 1154 | */ |
2457aec6 | 1155 | struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, |
45f87de5 | 1156 | int fgp_flags, gfp_t gfp_mask) |
1da177e4 | 1157 | { |
eb2be189 | 1158 | struct page *page; |
2457aec6 | 1159 | |
1da177e4 | 1160 | repeat: |
2457aec6 MG |
1161 | page = find_get_entry(mapping, offset); |
1162 | if (radix_tree_exceptional_entry(page)) | |
1163 | page = NULL; | |
1164 | if (!page) | |
1165 | goto no_page; | |
1166 | ||
1167 | if (fgp_flags & FGP_LOCK) { | |
1168 | if (fgp_flags & FGP_NOWAIT) { | |
1169 | if (!trylock_page(page)) { | |
09cbfeaf | 1170 | put_page(page); |
2457aec6 MG |
1171 | return NULL; |
1172 | } | |
1173 | } else { | |
1174 | lock_page(page); | |
1175 | } | |
1176 | ||
1177 | /* Has the page been truncated? */ | |
1178 | if (unlikely(page->mapping != mapping)) { | |
1179 | unlock_page(page); | |
09cbfeaf | 1180 | put_page(page); |
2457aec6 MG |
1181 | goto repeat; |
1182 | } | |
1183 | VM_BUG_ON_PAGE(page->index != offset, page); | |
1184 | } | |
1185 | ||
1186 | if (page && (fgp_flags & FGP_ACCESSED)) | |
1187 | mark_page_accessed(page); | |
1188 | ||
1189 | no_page: | |
1190 | if (!page && (fgp_flags & FGP_CREAT)) { | |
1191 | int err; | |
1192 | if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) | |
45f87de5 MH |
1193 | gfp_mask |= __GFP_WRITE; |
1194 | if (fgp_flags & FGP_NOFS) | |
1195 | gfp_mask &= ~__GFP_FS; | |
2457aec6 | 1196 | |
45f87de5 | 1197 | page = __page_cache_alloc(gfp_mask); |
eb2be189 NP |
1198 | if (!page) |
1199 | return NULL; | |
2457aec6 MG |
1200 | |
1201 | if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) | |
1202 | fgp_flags |= FGP_LOCK; | |
1203 | ||
eb39d618 | 1204 | /* Init accessed so avoid atomic mark_page_accessed later */ |
2457aec6 | 1205 | if (fgp_flags & FGP_ACCESSED) |
eb39d618 | 1206 | __SetPageReferenced(page); |
2457aec6 | 1207 | |
45f87de5 MH |
1208 | err = add_to_page_cache_lru(page, mapping, offset, |
1209 | gfp_mask & GFP_RECLAIM_MASK); | |
eb2be189 | 1210 | if (unlikely(err)) { |
09cbfeaf | 1211 | put_page(page); |
eb2be189 NP |
1212 | page = NULL; |
1213 | if (err == -EEXIST) | |
1214 | goto repeat; | |
1da177e4 | 1215 | } |
1da177e4 | 1216 | } |
2457aec6 | 1217 | |
1da177e4 LT |
1218 | return page; |
1219 | } | |
2457aec6 | 1220 | EXPORT_SYMBOL(pagecache_get_page); |
1da177e4 | 1221 | |
0cd6144a JW |
1222 | /** |
1223 | * find_get_entries - gang pagecache lookup | |
1224 | * @mapping: The address_space to search | |
1225 | * @start: The starting page cache index | |
1226 | * @nr_entries: The maximum number of entries | |
1227 | * @entries: Where the resulting entries are placed | |
1228 | * @indices: The cache indices corresponding to the entries in @entries | |
1229 | * | |
1230 | * find_get_entries() will search for and return a group of up to | |
1231 | * @nr_entries entries in the mapping. The entries are placed at | |
1232 | * @entries. find_get_entries() takes a reference against any actual | |
1233 | * pages it returns. | |
1234 | * | |
1235 | * The search returns a group of mapping-contiguous page cache entries | |
1236 | * with ascending indexes. There may be holes in the indices due to | |
1237 | * not-present pages. | |
1238 | * | |
139b6a6f JW |
1239 | * Any shadow entries of evicted pages, or swap entries from |
1240 | * shmem/tmpfs, are included in the returned array. | |
0cd6144a JW |
1241 | * |
1242 | * find_get_entries() returns the number of pages and shadow entries | |
1243 | * which were found. | |
1244 | */ | |
1245 | unsigned find_get_entries(struct address_space *mapping, | |
1246 | pgoff_t start, unsigned int nr_entries, | |
1247 | struct page **entries, pgoff_t *indices) | |
1248 | { | |
1249 | void **slot; | |
1250 | unsigned int ret = 0; | |
1251 | struct radix_tree_iter iter; | |
1252 | ||
1253 | if (!nr_entries) | |
1254 | return 0; | |
1255 | ||
1256 | rcu_read_lock(); | |
0cd6144a JW |
1257 | radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { |
1258 | struct page *page; | |
1259 | repeat: | |
1260 | page = radix_tree_deref_slot(slot); | |
1261 | if (unlikely(!page)) | |
1262 | continue; | |
1263 | if (radix_tree_exception(page)) { | |
2cf938aa MW |
1264 | if (radix_tree_deref_retry(page)) { |
1265 | slot = radix_tree_iter_retry(&iter); | |
1266 | continue; | |
1267 | } | |
0cd6144a | 1268 | /* |
f9fe48be RZ |
1269 | * A shadow entry of a recently evicted page, a swap |
1270 | * entry from shmem/tmpfs or a DAX entry. Return it | |
1271 | * without attempting to raise page count. | |
0cd6144a JW |
1272 | */ |
1273 | goto export; | |
1274 | } | |
1275 | if (!page_cache_get_speculative(page)) | |
1276 | goto repeat; | |
1277 | ||
1278 | /* Has the page moved? */ | |
1279 | if (unlikely(page != *slot)) { | |
09cbfeaf | 1280 | put_page(page); |
0cd6144a JW |
1281 | goto repeat; |
1282 | } | |
1283 | export: | |
1284 | indices[ret] = iter.index; | |
1285 | entries[ret] = page; | |
1286 | if (++ret == nr_entries) | |
1287 | break; | |
1288 | } | |
1289 | rcu_read_unlock(); | |
1290 | return ret; | |
1291 | } | |
1292 | ||
1da177e4 LT |
1293 | /** |
1294 | * find_get_pages - gang pagecache lookup | |
1295 | * @mapping: The address_space to search | |
1296 | * @start: The starting page index | |
1297 | * @nr_pages: The maximum number of pages | |
1298 | * @pages: Where the resulting pages are placed | |
1299 | * | |
1300 | * find_get_pages() will search for and return a group of up to | |
1301 | * @nr_pages pages in the mapping. The pages are placed at @pages. | |
1302 | * find_get_pages() takes a reference against the returned pages. | |
1303 | * | |
1304 | * The search returns a group of mapping-contiguous pages with ascending | |
1305 | * indexes. There may be holes in the indices due to not-present pages. | |
1306 | * | |
1307 | * find_get_pages() returns the number of pages which were found. | |
1308 | */ | |
1309 | unsigned find_get_pages(struct address_space *mapping, pgoff_t start, | |
1310 | unsigned int nr_pages, struct page **pages) | |
1311 | { | |
0fc9d104 KK |
1312 | struct radix_tree_iter iter; |
1313 | void **slot; | |
1314 | unsigned ret = 0; | |
1315 | ||
1316 | if (unlikely(!nr_pages)) | |
1317 | return 0; | |
a60637c8 NP |
1318 | |
1319 | rcu_read_lock(); | |
0fc9d104 | 1320 | radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { |
a60637c8 NP |
1321 | struct page *page; |
1322 | repeat: | |
0fc9d104 | 1323 | page = radix_tree_deref_slot(slot); |
a60637c8 NP |
1324 | if (unlikely(!page)) |
1325 | continue; | |
9d8aa4ea | 1326 | |
a2c16d6c | 1327 | if (radix_tree_exception(page)) { |
8079b1c8 | 1328 | if (radix_tree_deref_retry(page)) { |
2cf938aa MW |
1329 | slot = radix_tree_iter_retry(&iter); |
1330 | continue; | |
8079b1c8 | 1331 | } |
a2c16d6c | 1332 | /* |
139b6a6f JW |
1333 | * A shadow entry of a recently evicted page, |
1334 | * or a swap entry from shmem/tmpfs. Skip | |
1335 | * over it. | |
a2c16d6c | 1336 | */ |
8079b1c8 | 1337 | continue; |
27d20fdd | 1338 | } |
a60637c8 NP |
1339 | |
1340 | if (!page_cache_get_speculative(page)) | |
1341 | goto repeat; | |
1342 | ||
1343 | /* Has the page moved? */ | |
0fc9d104 | 1344 | if (unlikely(page != *slot)) { |
09cbfeaf | 1345 | put_page(page); |
a60637c8 NP |
1346 | goto repeat; |
1347 | } | |
1da177e4 | 1348 | |
a60637c8 | 1349 | pages[ret] = page; |
0fc9d104 KK |
1350 | if (++ret == nr_pages) |
1351 | break; | |
a60637c8 | 1352 | } |
5b280c0c | 1353 | |
a60637c8 | 1354 | rcu_read_unlock(); |
1da177e4 LT |
1355 | return ret; |
1356 | } | |
1357 | ||
ebf43500 JA |
1358 | /** |
1359 | * find_get_pages_contig - gang contiguous pagecache lookup | |
1360 | * @mapping: The address_space to search | |
1361 | * @index: The starting page index | |
1362 | * @nr_pages: The maximum number of pages | |
1363 | * @pages: Where the resulting pages are placed | |
1364 | * | |
1365 | * find_get_pages_contig() works exactly like find_get_pages(), except | |
1366 | * that the returned number of pages are guaranteed to be contiguous. | |
1367 | * | |
1368 | * find_get_pages_contig() returns the number of pages which were found. | |
1369 | */ | |
1370 | unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, | |
1371 | unsigned int nr_pages, struct page **pages) | |
1372 | { | |
0fc9d104 KK |
1373 | struct radix_tree_iter iter; |
1374 | void **slot; | |
1375 | unsigned int ret = 0; | |
1376 | ||
1377 | if (unlikely(!nr_pages)) | |
1378 | return 0; | |
a60637c8 NP |
1379 | |
1380 | rcu_read_lock(); | |
0fc9d104 | 1381 | radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { |
a60637c8 NP |
1382 | struct page *page; |
1383 | repeat: | |
0fc9d104 KK |
1384 | page = radix_tree_deref_slot(slot); |
1385 | /* The hole, there no reason to continue */ | |
a60637c8 | 1386 | if (unlikely(!page)) |
0fc9d104 | 1387 | break; |
9d8aa4ea | 1388 | |
a2c16d6c | 1389 | if (radix_tree_exception(page)) { |
8079b1c8 | 1390 | if (radix_tree_deref_retry(page)) { |
2cf938aa MW |
1391 | slot = radix_tree_iter_retry(&iter); |
1392 | continue; | |
8079b1c8 | 1393 | } |
a2c16d6c | 1394 | /* |
139b6a6f JW |
1395 | * A shadow entry of a recently evicted page, |
1396 | * or a swap entry from shmem/tmpfs. Stop | |
1397 | * looking for contiguous pages. | |
a2c16d6c | 1398 | */ |
8079b1c8 | 1399 | break; |
a2c16d6c | 1400 | } |
ebf43500 | 1401 | |
a60637c8 NP |
1402 | if (!page_cache_get_speculative(page)) |
1403 | goto repeat; | |
1404 | ||
1405 | /* Has the page moved? */ | |
0fc9d104 | 1406 | if (unlikely(page != *slot)) { |
09cbfeaf | 1407 | put_page(page); |
a60637c8 NP |
1408 | goto repeat; |
1409 | } | |
1410 | ||
9cbb4cb2 NP |
1411 | /* |
1412 | * must check mapping and index after taking the ref. | |
1413 | * otherwise we can get both false positives and false | |
1414 | * negatives, which is just confusing to the caller. | |
1415 | */ | |
0fc9d104 | 1416 | if (page->mapping == NULL || page->index != iter.index) { |
09cbfeaf | 1417 | put_page(page); |
9cbb4cb2 NP |
1418 | break; |
1419 | } | |
1420 | ||
a60637c8 | 1421 | pages[ret] = page; |
0fc9d104 KK |
1422 | if (++ret == nr_pages) |
1423 | break; | |
ebf43500 | 1424 | } |
a60637c8 NP |
1425 | rcu_read_unlock(); |
1426 | return ret; | |
ebf43500 | 1427 | } |
ef71c15c | 1428 | EXPORT_SYMBOL(find_get_pages_contig); |
ebf43500 | 1429 | |
485bb99b RD |
1430 | /** |
1431 | * find_get_pages_tag - find and return pages that match @tag | |
1432 | * @mapping: the address_space to search | |
1433 | * @index: the starting page index | |
1434 | * @tag: the tag index | |
1435 | * @nr_pages: the maximum number of pages | |
1436 | * @pages: where the resulting pages are placed | |
1437 | * | |
1da177e4 | 1438 | * Like find_get_pages, except we only return pages which are tagged with |
485bb99b | 1439 | * @tag. We update @index to index the next page for the traversal. |
1da177e4 LT |
1440 | */ |
1441 | unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, | |
1442 | int tag, unsigned int nr_pages, struct page **pages) | |
1443 | { | |
0fc9d104 KK |
1444 | struct radix_tree_iter iter; |
1445 | void **slot; | |
1446 | unsigned ret = 0; | |
1447 | ||
1448 | if (unlikely(!nr_pages)) | |
1449 | return 0; | |
a60637c8 NP |
1450 | |
1451 | rcu_read_lock(); | |
0fc9d104 KK |
1452 | radix_tree_for_each_tagged(slot, &mapping->page_tree, |
1453 | &iter, *index, tag) { | |
a60637c8 NP |
1454 | struct page *page; |
1455 | repeat: | |
0fc9d104 | 1456 | page = radix_tree_deref_slot(slot); |
a60637c8 NP |
1457 | if (unlikely(!page)) |
1458 | continue; | |
9d8aa4ea | 1459 | |
a2c16d6c | 1460 | if (radix_tree_exception(page)) { |
8079b1c8 | 1461 | if (radix_tree_deref_retry(page)) { |
2cf938aa MW |
1462 | slot = radix_tree_iter_retry(&iter); |
1463 | continue; | |
8079b1c8 | 1464 | } |
a2c16d6c | 1465 | /* |
139b6a6f JW |
1466 | * A shadow entry of a recently evicted page. |
1467 | * | |
1468 | * Those entries should never be tagged, but | |
1469 | * this tree walk is lockless and the tags are | |
1470 | * looked up in bulk, one radix tree node at a | |
1471 | * time, so there is a sizable window for page | |
1472 | * reclaim to evict a page we saw tagged. | |
1473 | * | |
1474 | * Skip over it. | |
a2c16d6c | 1475 | */ |
139b6a6f | 1476 | continue; |
a2c16d6c | 1477 | } |
a60637c8 NP |
1478 | |
1479 | if (!page_cache_get_speculative(page)) | |
1480 | goto repeat; | |
1481 | ||
1482 | /* Has the page moved? */ | |
0fc9d104 | 1483 | if (unlikely(page != *slot)) { |
09cbfeaf | 1484 | put_page(page); |
a60637c8 NP |
1485 | goto repeat; |
1486 | } | |
1487 | ||
1488 | pages[ret] = page; | |
0fc9d104 KK |
1489 | if (++ret == nr_pages) |
1490 | break; | |
a60637c8 | 1491 | } |
5b280c0c | 1492 | |
a60637c8 | 1493 | rcu_read_unlock(); |
1da177e4 | 1494 | |
1da177e4 LT |
1495 | if (ret) |
1496 | *index = pages[ret - 1]->index + 1; | |
a60637c8 | 1497 | |
1da177e4 LT |
1498 | return ret; |
1499 | } | |
ef71c15c | 1500 | EXPORT_SYMBOL(find_get_pages_tag); |
1da177e4 | 1501 | |
7e7f7749 RZ |
1502 | /** |
1503 | * find_get_entries_tag - find and return entries that match @tag | |
1504 | * @mapping: the address_space to search | |
1505 | * @start: the starting page cache index | |
1506 | * @tag: the tag index | |
1507 | * @nr_entries: the maximum number of entries | |
1508 | * @entries: where the resulting entries are placed | |
1509 | * @indices: the cache indices corresponding to the entries in @entries | |
1510 | * | |
1511 | * Like find_get_entries, except we only return entries which are tagged with | |
1512 | * @tag. | |
1513 | */ | |
1514 | unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, | |
1515 | int tag, unsigned int nr_entries, | |
1516 | struct page **entries, pgoff_t *indices) | |
1517 | { | |
1518 | void **slot; | |
1519 | unsigned int ret = 0; | |
1520 | struct radix_tree_iter iter; | |
1521 | ||
1522 | if (!nr_entries) | |
1523 | return 0; | |
1524 | ||
1525 | rcu_read_lock(); | |
7e7f7749 RZ |
1526 | radix_tree_for_each_tagged(slot, &mapping->page_tree, |
1527 | &iter, start, tag) { | |
1528 | struct page *page; | |
1529 | repeat: | |
1530 | page = radix_tree_deref_slot(slot); | |
1531 | if (unlikely(!page)) | |
1532 | continue; | |
1533 | if (radix_tree_exception(page)) { | |
1534 | if (radix_tree_deref_retry(page)) { | |
2cf938aa MW |
1535 | slot = radix_tree_iter_retry(&iter); |
1536 | continue; | |
7e7f7749 RZ |
1537 | } |
1538 | ||
1539 | /* | |
1540 | * A shadow entry of a recently evicted page, a swap | |
1541 | * entry from shmem/tmpfs or a DAX entry. Return it | |
1542 | * without attempting to raise page count. | |
1543 | */ | |
1544 | goto export; | |
1545 | } | |
1546 | if (!page_cache_get_speculative(page)) | |
1547 | goto repeat; | |
1548 | ||
1549 | /* Has the page moved? */ | |
1550 | if (unlikely(page != *slot)) { | |
09cbfeaf | 1551 | put_page(page); |
7e7f7749 RZ |
1552 | goto repeat; |
1553 | } | |
1554 | export: | |
1555 | indices[ret] = iter.index; | |
1556 | entries[ret] = page; | |
1557 | if (++ret == nr_entries) | |
1558 | break; | |
1559 | } | |
1560 | rcu_read_unlock(); | |
1561 | return ret; | |
1562 | } | |
1563 | EXPORT_SYMBOL(find_get_entries_tag); | |
1564 | ||
76d42bd9 WF |
1565 | /* |
1566 | * CD/DVDs are error prone. When a medium error occurs, the driver may fail | |
1567 | * a _large_ part of the i/o request. Imagine the worst scenario: | |
1568 | * | |
1569 | * ---R__________________________________________B__________ | |
1570 | * ^ reading here ^ bad block(assume 4k) | |
1571 | * | |
1572 | * read(R) => miss => readahead(R...B) => media error => frustrating retries | |
1573 | * => failing the whole request => read(R) => read(R+1) => | |
1574 | * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => | |
1575 | * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => | |
1576 | * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... | |
1577 | * | |
1578 | * It is going insane. Fix it by quickly scaling down the readahead size. | |
1579 | */ | |
1580 | static void shrink_readahead_size_eio(struct file *filp, | |
1581 | struct file_ra_state *ra) | |
1582 | { | |
76d42bd9 | 1583 | ra->ra_pages /= 4; |
76d42bd9 WF |
1584 | } |
1585 | ||
485bb99b | 1586 | /** |
36e78914 | 1587 | * do_generic_file_read - generic file read routine |
485bb99b RD |
1588 | * @filp: the file to read |
1589 | * @ppos: current file position | |
6e58e79d AV |
1590 | * @iter: data destination |
1591 | * @written: already copied | |
485bb99b | 1592 | * |
1da177e4 | 1593 | * This is a generic file read routine, and uses the |
485bb99b | 1594 | * mapping->a_ops->readpage() function for the actual low-level stuff. |
1da177e4 LT |
1595 | * |
1596 | * This is really ugly. But the goto's actually try to clarify some | |
1597 | * of the logic when it comes to error handling etc. | |
1da177e4 | 1598 | */ |
6e58e79d AV |
1599 | static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, |
1600 | struct iov_iter *iter, ssize_t written) | |
1da177e4 | 1601 | { |
36e78914 | 1602 | struct address_space *mapping = filp->f_mapping; |
1da177e4 | 1603 | struct inode *inode = mapping->host; |
36e78914 | 1604 | struct file_ra_state *ra = &filp->f_ra; |
57f6b96c FW |
1605 | pgoff_t index; |
1606 | pgoff_t last_index; | |
1607 | pgoff_t prev_index; | |
1608 | unsigned long offset; /* offset into pagecache page */ | |
ec0f1637 | 1609 | unsigned int prev_offset; |
6e58e79d | 1610 | int error = 0; |
1da177e4 | 1611 | |
09cbfeaf KS |
1612 | index = *ppos >> PAGE_SHIFT; |
1613 | prev_index = ra->prev_pos >> PAGE_SHIFT; | |
1614 | prev_offset = ra->prev_pos & (PAGE_SIZE-1); | |
1615 | last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; | |
1616 | offset = *ppos & ~PAGE_MASK; | |
1da177e4 | 1617 | |
1da177e4 LT |
1618 | for (;;) { |
1619 | struct page *page; | |
57f6b96c | 1620 | pgoff_t end_index; |
a32ea1e1 | 1621 | loff_t isize; |
1da177e4 LT |
1622 | unsigned long nr, ret; |
1623 | ||
1da177e4 | 1624 | cond_resched(); |
1da177e4 LT |
1625 | find_page: |
1626 | page = find_get_page(mapping, index); | |
3ea89ee8 | 1627 | if (!page) { |
cf914a7d | 1628 | page_cache_sync_readahead(mapping, |
7ff81078 | 1629 | ra, filp, |
3ea89ee8 FW |
1630 | index, last_index - index); |
1631 | page = find_get_page(mapping, index); | |
1632 | if (unlikely(page == NULL)) | |
1633 | goto no_cached_page; | |
1634 | } | |
1635 | if (PageReadahead(page)) { | |
cf914a7d | 1636 | page_cache_async_readahead(mapping, |
7ff81078 | 1637 | ra, filp, page, |
3ea89ee8 | 1638 | index, last_index - index); |
1da177e4 | 1639 | } |
8ab22b9a | 1640 | if (!PageUptodate(page)) { |
ebded027 MG |
1641 | /* |
1642 | * See comment in do_read_cache_page on why | |
1643 | * wait_on_page_locked is used to avoid unnecessarily | |
1644 | * serialisations and why it's safe. | |
1645 | */ | |
1646 | wait_on_page_locked_killable(page); | |
1647 | if (PageUptodate(page)) | |
1648 | goto page_ok; | |
1649 | ||
09cbfeaf | 1650 | if (inode->i_blkbits == PAGE_SHIFT || |
8ab22b9a HH |
1651 | !mapping->a_ops->is_partially_uptodate) |
1652 | goto page_not_up_to_date; | |
529ae9aa | 1653 | if (!trylock_page(page)) |
8ab22b9a | 1654 | goto page_not_up_to_date; |
8d056cb9 DH |
1655 | /* Did it get truncated before we got the lock? */ |
1656 | if (!page->mapping) | |
1657 | goto page_not_up_to_date_locked; | |
8ab22b9a | 1658 | if (!mapping->a_ops->is_partially_uptodate(page, |
6e58e79d | 1659 | offset, iter->count)) |
8ab22b9a HH |
1660 | goto page_not_up_to_date_locked; |
1661 | unlock_page(page); | |
1662 | } | |
1da177e4 | 1663 | page_ok: |
a32ea1e1 N |
1664 | /* |
1665 | * i_size must be checked after we know the page is Uptodate. | |
1666 | * | |
1667 | * Checking i_size after the check allows us to calculate | |
1668 | * the correct value for "nr", which means the zero-filled | |
1669 | * part of the page is not copied back to userspace (unless | |
1670 | * another truncate extends the file - this is desired though). | |
1671 | */ | |
1672 | ||
1673 | isize = i_size_read(inode); | |
09cbfeaf | 1674 | end_index = (isize - 1) >> PAGE_SHIFT; |
a32ea1e1 | 1675 | if (unlikely(!isize || index > end_index)) { |
09cbfeaf | 1676 | put_page(page); |
a32ea1e1 N |
1677 | goto out; |
1678 | } | |
1679 | ||
1680 | /* nr is the maximum number of bytes to copy from this page */ | |
09cbfeaf | 1681 | nr = PAGE_SIZE; |
a32ea1e1 | 1682 | if (index == end_index) { |
09cbfeaf | 1683 | nr = ((isize - 1) & ~PAGE_MASK) + 1; |
a32ea1e1 | 1684 | if (nr <= offset) { |
09cbfeaf | 1685 | put_page(page); |
a32ea1e1 N |
1686 | goto out; |
1687 | } | |
1688 | } | |
1689 | nr = nr - offset; | |
1da177e4 LT |
1690 | |
1691 | /* If users can be writing to this page using arbitrary | |
1692 | * virtual addresses, take care about potential aliasing | |
1693 | * before reading the page on the kernel side. | |
1694 | */ | |
1695 | if (mapping_writably_mapped(mapping)) | |
1696 | flush_dcache_page(page); | |
1697 | ||
1698 | /* | |
ec0f1637 JK |
1699 | * When a sequential read accesses a page several times, |
1700 | * only mark it as accessed the first time. | |
1da177e4 | 1701 | */ |
ec0f1637 | 1702 | if (prev_index != index || offset != prev_offset) |
1da177e4 LT |
1703 | mark_page_accessed(page); |
1704 | prev_index = index; | |
1705 | ||
1706 | /* | |
1707 | * Ok, we have the page, and it's up-to-date, so | |
1708 | * now we can copy it to user space... | |
1da177e4 | 1709 | */ |
6e58e79d AV |
1710 | |
1711 | ret = copy_page_to_iter(page, offset, nr, iter); | |
1da177e4 | 1712 | offset += ret; |
09cbfeaf KS |
1713 | index += offset >> PAGE_SHIFT; |
1714 | offset &= ~PAGE_MASK; | |
6ce745ed | 1715 | prev_offset = offset; |
1da177e4 | 1716 | |
09cbfeaf | 1717 | put_page(page); |
6e58e79d AV |
1718 | written += ret; |
1719 | if (!iov_iter_count(iter)) | |
1720 | goto out; | |
1721 | if (ret < nr) { | |
1722 | error = -EFAULT; | |
1723 | goto out; | |
1724 | } | |
1725 | continue; | |
1da177e4 LT |
1726 | |
1727 | page_not_up_to_date: | |
1728 | /* Get exclusive access to the page ... */ | |
85462323 ON |
1729 | error = lock_page_killable(page); |
1730 | if (unlikely(error)) | |
1731 | goto readpage_error; | |
1da177e4 | 1732 | |
8ab22b9a | 1733 | page_not_up_to_date_locked: |
da6052f7 | 1734 | /* Did it get truncated before we got the lock? */ |
1da177e4 LT |
1735 | if (!page->mapping) { |
1736 | unlock_page(page); | |
09cbfeaf | 1737 | put_page(page); |
1da177e4 LT |
1738 | continue; |
1739 | } | |
1740 | ||
1741 | /* Did somebody else fill it already? */ | |
1742 | if (PageUptodate(page)) { | |
1743 | unlock_page(page); | |
1744 | goto page_ok; | |
1745 | } | |
1746 | ||
1747 | readpage: | |
91803b49 JM |
1748 | /* |
1749 | * A previous I/O error may have been due to temporary | |
1750 | * failures, eg. multipath errors. | |
1751 | * PG_error will be set again if readpage fails. | |
1752 | */ | |
1753 | ClearPageError(page); | |
1da177e4 LT |
1754 | /* Start the actual read. The read will unlock the page. */ |
1755 | error = mapping->a_ops->readpage(filp, page); | |
1756 | ||
994fc28c ZB |
1757 | if (unlikely(error)) { |
1758 | if (error == AOP_TRUNCATED_PAGE) { | |
09cbfeaf | 1759 | put_page(page); |
6e58e79d | 1760 | error = 0; |
994fc28c ZB |
1761 | goto find_page; |
1762 | } | |
1da177e4 | 1763 | goto readpage_error; |
994fc28c | 1764 | } |
1da177e4 LT |
1765 | |
1766 | if (!PageUptodate(page)) { | |
85462323 ON |
1767 | error = lock_page_killable(page); |
1768 | if (unlikely(error)) | |
1769 | goto readpage_error; | |
1da177e4 LT |
1770 | if (!PageUptodate(page)) { |
1771 | if (page->mapping == NULL) { | |
1772 | /* | |
2ecdc82e | 1773 | * invalidate_mapping_pages got it |
1da177e4 LT |
1774 | */ |
1775 | unlock_page(page); | |
09cbfeaf | 1776 | put_page(page); |
1da177e4 LT |
1777 | goto find_page; |
1778 | } | |
1779 | unlock_page(page); | |
7ff81078 | 1780 | shrink_readahead_size_eio(filp, ra); |
85462323 ON |
1781 | error = -EIO; |
1782 | goto readpage_error; | |
1da177e4 LT |
1783 | } |
1784 | unlock_page(page); | |
1785 | } | |
1786 | ||
1da177e4 LT |
1787 | goto page_ok; |
1788 | ||
1789 | readpage_error: | |
1790 | /* UHHUH! A synchronous read error occurred. Report it */ | |
09cbfeaf | 1791 | put_page(page); |
1da177e4 LT |
1792 | goto out; |
1793 | ||
1794 | no_cached_page: | |
1795 | /* | |
1796 | * Ok, it wasn't cached, so we need to create a new | |
1797 | * page.. | |
1798 | */ | |
eb2be189 NP |
1799 | page = page_cache_alloc_cold(mapping); |
1800 | if (!page) { | |
6e58e79d | 1801 | error = -ENOMEM; |
eb2be189 | 1802 | goto out; |
1da177e4 | 1803 | } |
6afdb859 | 1804 | error = add_to_page_cache_lru(page, mapping, index, |
c62d2555 | 1805 | mapping_gfp_constraint(mapping, GFP_KERNEL)); |
1da177e4 | 1806 | if (error) { |
09cbfeaf | 1807 | put_page(page); |
6e58e79d AV |
1808 | if (error == -EEXIST) { |
1809 | error = 0; | |
1da177e4 | 1810 | goto find_page; |
6e58e79d | 1811 | } |
1da177e4 LT |
1812 | goto out; |
1813 | } | |
1da177e4 LT |
1814 | goto readpage; |
1815 | } | |
1816 | ||
1817 | out: | |
7ff81078 | 1818 | ra->prev_pos = prev_index; |
09cbfeaf | 1819 | ra->prev_pos <<= PAGE_SHIFT; |
7ff81078 | 1820 | ra->prev_pos |= prev_offset; |
1da177e4 | 1821 | |
09cbfeaf | 1822 | *ppos = ((loff_t)index << PAGE_SHIFT) + offset; |
0c6aa263 | 1823 | file_accessed(filp); |
6e58e79d | 1824 | return written ? written : error; |
1da177e4 LT |
1825 | } |
1826 | ||
485bb99b | 1827 | /** |
6abd2322 | 1828 | * generic_file_read_iter - generic filesystem read routine |
485bb99b | 1829 | * @iocb: kernel I/O control block |
6abd2322 | 1830 | * @iter: destination for the data read |
485bb99b | 1831 | * |
6abd2322 | 1832 | * This is the "read_iter()" routine for all filesystems |
1da177e4 LT |
1833 | * that can use the page cache directly. |
1834 | */ | |
1835 | ssize_t | |
ed978a81 | 1836 | generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) |
1da177e4 | 1837 | { |
ed978a81 | 1838 | struct file *file = iocb->ki_filp; |
cb66a7a1 | 1839 | ssize_t retval = 0; |
e7080a43 NS |
1840 | size_t count = iov_iter_count(iter); |
1841 | ||
1842 | if (!count) | |
1843 | goto out; /* skip atime */ | |
1da177e4 | 1844 | |
2ba48ce5 | 1845 | if (iocb->ki_flags & IOCB_DIRECT) { |
ed978a81 AV |
1846 | struct address_space *mapping = file->f_mapping; |
1847 | struct inode *inode = mapping->host; | |
543ade1f | 1848 | loff_t size; |
1da177e4 | 1849 | |
1da177e4 | 1850 | size = i_size_read(inode); |
c64fb5c7 CH |
1851 | retval = filemap_write_and_wait_range(mapping, iocb->ki_pos, |
1852 | iocb->ki_pos + count - 1); | |
9fe55eea | 1853 | if (!retval) { |
ed978a81 | 1854 | struct iov_iter data = *iter; |
c8b8e32d | 1855 | retval = mapping->a_ops->direct_IO(iocb, &data); |
9fe55eea | 1856 | } |
d8d3d94b | 1857 | |
9fe55eea | 1858 | if (retval > 0) { |
c64fb5c7 | 1859 | iocb->ki_pos += retval; |
ed978a81 | 1860 | iov_iter_advance(iter, retval); |
9fe55eea | 1861 | } |
66f998f6 | 1862 | |
9fe55eea SW |
1863 | /* |
1864 | * Btrfs can have a short DIO read if we encounter | |
1865 | * compressed extents, so if there was an error, or if | |
1866 | * we've already read everything we wanted to, or if | |
1867 | * there was a short read because we hit EOF, go ahead | |
1868 | * and return. Otherwise fallthrough to buffered io for | |
fbbbad4b MW |
1869 | * the rest of the read. Buffered reads will not work for |
1870 | * DAX files, so don't bother trying. | |
9fe55eea | 1871 | */ |
c64fb5c7 | 1872 | if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size || |
fbbbad4b | 1873 | IS_DAX(inode)) { |
ed978a81 | 1874 | file_accessed(file); |
9fe55eea | 1875 | goto out; |
0e0bcae3 | 1876 | } |
1da177e4 LT |
1877 | } |
1878 | ||
c64fb5c7 | 1879 | retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval); |
1da177e4 LT |
1880 | out: |
1881 | return retval; | |
1882 | } | |
ed978a81 | 1883 | EXPORT_SYMBOL(generic_file_read_iter); |
1da177e4 | 1884 | |
1da177e4 | 1885 | #ifdef CONFIG_MMU |
485bb99b RD |
1886 | /** |
1887 | * page_cache_read - adds requested page to the page cache if not already there | |
1888 | * @file: file to read | |
1889 | * @offset: page index | |
62eb320a | 1890 | * @gfp_mask: memory allocation flags |
485bb99b | 1891 | * |
1da177e4 LT |
1892 | * This adds the requested page to the page cache if it isn't already there, |
1893 | * and schedules an I/O to read in its contents from disk. | |
1894 | */ | |
c20cd45e | 1895 | static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) |
1da177e4 LT |
1896 | { |
1897 | struct address_space *mapping = file->f_mapping; | |
99dadfdd | 1898 | struct page *page; |
994fc28c | 1899 | int ret; |
1da177e4 | 1900 | |
994fc28c | 1901 | do { |
c20cd45e | 1902 | page = __page_cache_alloc(gfp_mask|__GFP_COLD); |
994fc28c ZB |
1903 | if (!page) |
1904 | return -ENOMEM; | |
1905 | ||
c20cd45e | 1906 | ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL); |
994fc28c ZB |
1907 | if (ret == 0) |
1908 | ret = mapping->a_ops->readpage(file, page); | |
1909 | else if (ret == -EEXIST) | |
1910 | ret = 0; /* losing race to add is OK */ | |
1da177e4 | 1911 | |
09cbfeaf | 1912 | put_page(page); |
1da177e4 | 1913 | |
994fc28c | 1914 | } while (ret == AOP_TRUNCATED_PAGE); |
99dadfdd | 1915 | |
994fc28c | 1916 | return ret; |
1da177e4 LT |
1917 | } |
1918 | ||
1919 | #define MMAP_LOTSAMISS (100) | |
1920 | ||
ef00e08e LT |
1921 | /* |
1922 | * Synchronous readahead happens when we don't even find | |
1923 | * a page in the page cache at all. | |
1924 | */ | |
1925 | static void do_sync_mmap_readahead(struct vm_area_struct *vma, | |
1926 | struct file_ra_state *ra, | |
1927 | struct file *file, | |
1928 | pgoff_t offset) | |
1929 | { | |
ef00e08e LT |
1930 | struct address_space *mapping = file->f_mapping; |
1931 | ||
1932 | /* If we don't want any read-ahead, don't bother */ | |
64363aad | 1933 | if (vma->vm_flags & VM_RAND_READ) |
ef00e08e | 1934 | return; |
275b12bf WF |
1935 | if (!ra->ra_pages) |
1936 | return; | |
ef00e08e | 1937 | |
64363aad | 1938 | if (vma->vm_flags & VM_SEQ_READ) { |
7ffc59b4 WF |
1939 | page_cache_sync_readahead(mapping, ra, file, offset, |
1940 | ra->ra_pages); | |
ef00e08e LT |
1941 | return; |
1942 | } | |
1943 | ||
207d04ba AK |
1944 | /* Avoid banging the cache line if not needed */ |
1945 | if (ra->mmap_miss < MMAP_LOTSAMISS * 10) | |
ef00e08e LT |
1946 | ra->mmap_miss++; |
1947 | ||
1948 | /* | |
1949 | * Do we miss much more than hit in this file? If so, | |
1950 | * stop bothering with read-ahead. It will only hurt. | |
1951 | */ | |
1952 | if (ra->mmap_miss > MMAP_LOTSAMISS) | |
1953 | return; | |
1954 | ||
d30a1100 WF |
1955 | /* |
1956 | * mmap read-around | |
1957 | */ | |
600e19af RG |
1958 | ra->start = max_t(long, 0, offset - ra->ra_pages / 2); |
1959 | ra->size = ra->ra_pages; | |
1960 | ra->async_size = ra->ra_pages / 4; | |
275b12bf | 1961 | ra_submit(ra, mapping, file); |
ef00e08e LT |
1962 | } |
1963 | ||
1964 | /* | |
1965 | * Asynchronous readahead happens when we find the page and PG_readahead, | |
1966 | * so we want to possibly extend the readahead further.. | |
1967 | */ | |
1968 | static void do_async_mmap_readahead(struct vm_area_struct *vma, | |
1969 | struct file_ra_state *ra, | |
1970 | struct file *file, | |
1971 | struct page *page, | |
1972 | pgoff_t offset) | |
1973 | { | |
1974 | struct address_space *mapping = file->f_mapping; | |
1975 | ||
1976 | /* If we don't want any read-ahead, don't bother */ | |
64363aad | 1977 | if (vma->vm_flags & VM_RAND_READ) |
ef00e08e LT |
1978 | return; |
1979 | if (ra->mmap_miss > 0) | |
1980 | ra->mmap_miss--; | |
1981 | if (PageReadahead(page)) | |
2fad6f5d WF |
1982 | page_cache_async_readahead(mapping, ra, file, |
1983 | page, offset, ra->ra_pages); | |
ef00e08e LT |
1984 | } |
1985 | ||
485bb99b | 1986 | /** |
54cb8821 | 1987 | * filemap_fault - read in file data for page fault handling |
d0217ac0 NP |
1988 | * @vma: vma in which the fault was taken |
1989 | * @vmf: struct vm_fault containing details of the fault | |
485bb99b | 1990 | * |
54cb8821 | 1991 | * filemap_fault() is invoked via the vma operations vector for a |
1da177e4 LT |
1992 | * mapped memory region to read in file data during a page fault. |
1993 | * | |
1994 | * The goto's are kind of ugly, but this streamlines the normal case of having | |
1995 | * it in the page cache, and handles the special cases reasonably without | |
1996 | * having a lot of duplicated code. | |
9a95f3cf PC |
1997 | * |
1998 | * vma->vm_mm->mmap_sem must be held on entry. | |
1999 | * | |
2000 | * If our return value has VM_FAULT_RETRY set, it's because | |
2001 | * lock_page_or_retry() returned 0. | |
2002 | * The mmap_sem has usually been released in this case. | |
2003 | * See __lock_page_or_retry() for the exception. | |
2004 | * | |
2005 | * If our return value does not have VM_FAULT_RETRY set, the mmap_sem | |
2006 | * has not been released. | |
2007 | * | |
2008 | * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. | |
1da177e4 | 2009 | */ |
d0217ac0 | 2010 | int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
1da177e4 LT |
2011 | { |
2012 | int error; | |
54cb8821 | 2013 | struct file *file = vma->vm_file; |
1da177e4 LT |
2014 | struct address_space *mapping = file->f_mapping; |
2015 | struct file_ra_state *ra = &file->f_ra; | |
2016 | struct inode *inode = mapping->host; | |
ef00e08e | 2017 | pgoff_t offset = vmf->pgoff; |
1da177e4 | 2018 | struct page *page; |
99e3e53f | 2019 | loff_t size; |
83c54070 | 2020 | int ret = 0; |
1da177e4 | 2021 | |
09cbfeaf KS |
2022 | size = round_up(i_size_read(inode), PAGE_SIZE); |
2023 | if (offset >= size >> PAGE_SHIFT) | |
5307cc1a | 2024 | return VM_FAULT_SIGBUS; |
1da177e4 | 2025 | |
1da177e4 | 2026 | /* |
49426420 | 2027 | * Do we have something in the page cache already? |
1da177e4 | 2028 | */ |
ef00e08e | 2029 | page = find_get_page(mapping, offset); |
45cac65b | 2030 | if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { |
1da177e4 | 2031 | /* |
ef00e08e LT |
2032 | * We found the page, so try async readahead before |
2033 | * waiting for the lock. | |
1da177e4 | 2034 | */ |
ef00e08e | 2035 | do_async_mmap_readahead(vma, ra, file, page, offset); |
45cac65b | 2036 | } else if (!page) { |
ef00e08e LT |
2037 | /* No page in the page cache at all */ |
2038 | do_sync_mmap_readahead(vma, ra, file, offset); | |
2039 | count_vm_event(PGMAJFAULT); | |
456f998e | 2040 | mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); |
ef00e08e LT |
2041 | ret = VM_FAULT_MAJOR; |
2042 | retry_find: | |
b522c94d | 2043 | page = find_get_page(mapping, offset); |
1da177e4 LT |
2044 | if (!page) |
2045 | goto no_cached_page; | |
2046 | } | |
2047 | ||
d88c0922 | 2048 | if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { |
09cbfeaf | 2049 | put_page(page); |
d065bd81 | 2050 | return ret | VM_FAULT_RETRY; |
d88c0922 | 2051 | } |
b522c94d ML |
2052 | |
2053 | /* Did it get truncated? */ | |
2054 | if (unlikely(page->mapping != mapping)) { | |
2055 | unlock_page(page); | |
2056 | put_page(page); | |
2057 | goto retry_find; | |
2058 | } | |
309381fe | 2059 | VM_BUG_ON_PAGE(page->index != offset, page); |
b522c94d | 2060 | |
1da177e4 | 2061 | /* |
d00806b1 NP |
2062 | * We have a locked page in the page cache, now we need to check |
2063 | * that it's up-to-date. If not, it is going to be due to an error. | |
1da177e4 | 2064 | */ |
d00806b1 | 2065 | if (unlikely(!PageUptodate(page))) |
1da177e4 LT |
2066 | goto page_not_uptodate; |
2067 | ||
ef00e08e LT |
2068 | /* |
2069 | * Found the page and have a reference on it. | |
2070 | * We must recheck i_size under page lock. | |
2071 | */ | |
09cbfeaf KS |
2072 | size = round_up(i_size_read(inode), PAGE_SIZE); |
2073 | if (unlikely(offset >= size >> PAGE_SHIFT)) { | |
d00806b1 | 2074 | unlock_page(page); |
09cbfeaf | 2075 | put_page(page); |
5307cc1a | 2076 | return VM_FAULT_SIGBUS; |
d00806b1 NP |
2077 | } |
2078 | ||
d0217ac0 | 2079 | vmf->page = page; |
83c54070 | 2080 | return ret | VM_FAULT_LOCKED; |
1da177e4 | 2081 | |
1da177e4 LT |
2082 | no_cached_page: |
2083 | /* | |
2084 | * We're only likely to ever get here if MADV_RANDOM is in | |
2085 | * effect. | |
2086 | */ | |
c20cd45e | 2087 | error = page_cache_read(file, offset, vmf->gfp_mask); |
1da177e4 LT |
2088 | |
2089 | /* | |
2090 | * The page we want has now been added to the page cache. | |
2091 | * In the unlikely event that someone removed it in the | |
2092 | * meantime, we'll just come back here and read it again. | |
2093 | */ | |
2094 | if (error >= 0) | |
2095 | goto retry_find; | |
2096 | ||
2097 | /* | |
2098 | * An error return from page_cache_read can result if the | |
2099 | * system is low on memory, or a problem occurs while trying | |
2100 | * to schedule I/O. | |
2101 | */ | |
2102 | if (error == -ENOMEM) | |
d0217ac0 NP |
2103 | return VM_FAULT_OOM; |
2104 | return VM_FAULT_SIGBUS; | |
1da177e4 LT |
2105 | |
2106 | page_not_uptodate: | |
1da177e4 LT |
2107 | /* |
2108 | * Umm, take care of errors if the page isn't up-to-date. | |
2109 | * Try to re-read it _once_. We do this synchronously, | |
2110 | * because there really aren't any performance issues here | |
2111 | * and we need to check for errors. | |
2112 | */ | |
1da177e4 | 2113 | ClearPageError(page); |
994fc28c | 2114 | error = mapping->a_ops->readpage(file, page); |
3ef0f720 MS |
2115 | if (!error) { |
2116 | wait_on_page_locked(page); | |
2117 | if (!PageUptodate(page)) | |
2118 | error = -EIO; | |
2119 | } | |
09cbfeaf | 2120 | put_page(page); |
d00806b1 NP |
2121 | |
2122 | if (!error || error == AOP_TRUNCATED_PAGE) | |
994fc28c | 2123 | goto retry_find; |
1da177e4 | 2124 | |
d00806b1 | 2125 | /* Things didn't work out. Return zero to tell the mm layer so. */ |
76d42bd9 | 2126 | shrink_readahead_size_eio(file, ra); |
d0217ac0 | 2127 | return VM_FAULT_SIGBUS; |
54cb8821 NP |
2128 | } |
2129 | EXPORT_SYMBOL(filemap_fault); | |
2130 | ||
f1820361 KS |
2131 | void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf) |
2132 | { | |
2133 | struct radix_tree_iter iter; | |
2134 | void **slot; | |
2135 | struct file *file = vma->vm_file; | |
2136 | struct address_space *mapping = file->f_mapping; | |
2137 | loff_t size; | |
2138 | struct page *page; | |
2139 | unsigned long address = (unsigned long) vmf->virtual_address; | |
2140 | unsigned long addr; | |
2141 | pte_t *pte; | |
2142 | ||
2143 | rcu_read_lock(); | |
2144 | radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) { | |
2145 | if (iter.index > vmf->max_pgoff) | |
2146 | break; | |
2147 | repeat: | |
2148 | page = radix_tree_deref_slot(slot); | |
2149 | if (unlikely(!page)) | |
2150 | goto next; | |
2151 | if (radix_tree_exception(page)) { | |
2cf938aa MW |
2152 | if (radix_tree_deref_retry(page)) { |
2153 | slot = radix_tree_iter_retry(&iter); | |
2154 | continue; | |
2155 | } | |
2156 | goto next; | |
f1820361 KS |
2157 | } |
2158 | ||
2159 | if (!page_cache_get_speculative(page)) | |
2160 | goto repeat; | |
2161 | ||
2162 | /* Has the page moved? */ | |
2163 | if (unlikely(page != *slot)) { | |
09cbfeaf | 2164 | put_page(page); |
f1820361 KS |
2165 | goto repeat; |
2166 | } | |
2167 | ||
2168 | if (!PageUptodate(page) || | |
2169 | PageReadahead(page) || | |
2170 | PageHWPoison(page)) | |
2171 | goto skip; | |
2172 | if (!trylock_page(page)) | |
2173 | goto skip; | |
2174 | ||
2175 | if (page->mapping != mapping || !PageUptodate(page)) | |
2176 | goto unlock; | |
2177 | ||
09cbfeaf KS |
2178 | size = round_up(i_size_read(mapping->host), PAGE_SIZE); |
2179 | if (page->index >= size >> PAGE_SHIFT) | |
f1820361 KS |
2180 | goto unlock; |
2181 | ||
2182 | pte = vmf->pte + page->index - vmf->pgoff; | |
2183 | if (!pte_none(*pte)) | |
2184 | goto unlock; | |
2185 | ||
2186 | if (file->f_ra.mmap_miss > 0) | |
2187 | file->f_ra.mmap_miss--; | |
2188 | addr = address + (page->index - vmf->pgoff) * PAGE_SIZE; | |
5c0a85fa | 2189 | do_set_pte(vma, addr, page, pte, false, false, true); |
f1820361 KS |
2190 | unlock_page(page); |
2191 | goto next; | |
2192 | unlock: | |
2193 | unlock_page(page); | |
2194 | skip: | |
09cbfeaf | 2195 | put_page(page); |
f1820361 KS |
2196 | next: |
2197 | if (iter.index == vmf->max_pgoff) | |
2198 | break; | |
2199 | } | |
2200 | rcu_read_unlock(); | |
2201 | } | |
2202 | EXPORT_SYMBOL(filemap_map_pages); | |
2203 | ||
4fcf1c62 JK |
2204 | int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) |
2205 | { | |
2206 | struct page *page = vmf->page; | |
496ad9aa | 2207 | struct inode *inode = file_inode(vma->vm_file); |
4fcf1c62 JK |
2208 | int ret = VM_FAULT_LOCKED; |
2209 | ||
14da9200 | 2210 | sb_start_pagefault(inode->i_sb); |
4fcf1c62 JK |
2211 | file_update_time(vma->vm_file); |
2212 | lock_page(page); | |
2213 | if (page->mapping != inode->i_mapping) { | |
2214 | unlock_page(page); | |
2215 | ret = VM_FAULT_NOPAGE; | |
2216 | goto out; | |
2217 | } | |
14da9200 JK |
2218 | /* |
2219 | * We mark the page dirty already here so that when freeze is in | |
2220 | * progress, we are guaranteed that writeback during freezing will | |
2221 | * see the dirty page and writeprotect it again. | |
2222 | */ | |
2223 | set_page_dirty(page); | |
1d1d1a76 | 2224 | wait_for_stable_page(page); |
4fcf1c62 | 2225 | out: |
14da9200 | 2226 | sb_end_pagefault(inode->i_sb); |
4fcf1c62 JK |
2227 | return ret; |
2228 | } | |
2229 | EXPORT_SYMBOL(filemap_page_mkwrite); | |
2230 | ||
f0f37e2f | 2231 | const struct vm_operations_struct generic_file_vm_ops = { |
54cb8821 | 2232 | .fault = filemap_fault, |
f1820361 | 2233 | .map_pages = filemap_map_pages, |
4fcf1c62 | 2234 | .page_mkwrite = filemap_page_mkwrite, |
1da177e4 LT |
2235 | }; |
2236 | ||
2237 | /* This is used for a general mmap of a disk file */ | |
2238 | ||
2239 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | |
2240 | { | |
2241 | struct address_space *mapping = file->f_mapping; | |
2242 | ||
2243 | if (!mapping->a_ops->readpage) | |
2244 | return -ENOEXEC; | |
2245 | file_accessed(file); | |
2246 | vma->vm_ops = &generic_file_vm_ops; | |
2247 | return 0; | |
2248 | } | |
1da177e4 LT |
2249 | |
2250 | /* | |
2251 | * This is for filesystems which do not implement ->writepage. | |
2252 | */ | |
2253 | int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) | |
2254 | { | |
2255 | if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) | |
2256 | return -EINVAL; | |
2257 | return generic_file_mmap(file, vma); | |
2258 | } | |
2259 | #else | |
2260 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | |
2261 | { | |
2262 | return -ENOSYS; | |
2263 | } | |
2264 | int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) | |
2265 | { | |
2266 | return -ENOSYS; | |
2267 | } | |
2268 | #endif /* CONFIG_MMU */ | |
2269 | ||
2270 | EXPORT_SYMBOL(generic_file_mmap); | |
2271 | EXPORT_SYMBOL(generic_file_readonly_mmap); | |
2272 | ||
67f9fd91 SL |
2273 | static struct page *wait_on_page_read(struct page *page) |
2274 | { | |
2275 | if (!IS_ERR(page)) { | |
2276 | wait_on_page_locked(page); | |
2277 | if (!PageUptodate(page)) { | |
09cbfeaf | 2278 | put_page(page); |
67f9fd91 SL |
2279 | page = ERR_PTR(-EIO); |
2280 | } | |
2281 | } | |
2282 | return page; | |
2283 | } | |
2284 | ||
32b63529 | 2285 | static struct page *do_read_cache_page(struct address_space *mapping, |
57f6b96c | 2286 | pgoff_t index, |
5e5358e7 | 2287 | int (*filler)(void *, struct page *), |
0531b2aa LT |
2288 | void *data, |
2289 | gfp_t gfp) | |
1da177e4 | 2290 | { |
eb2be189 | 2291 | struct page *page; |
1da177e4 LT |
2292 | int err; |
2293 | repeat: | |
2294 | page = find_get_page(mapping, index); | |
2295 | if (!page) { | |
0531b2aa | 2296 | page = __page_cache_alloc(gfp | __GFP_COLD); |
eb2be189 NP |
2297 | if (!page) |
2298 | return ERR_PTR(-ENOMEM); | |
e6f67b8c | 2299 | err = add_to_page_cache_lru(page, mapping, index, gfp); |
eb2be189 | 2300 | if (unlikely(err)) { |
09cbfeaf | 2301 | put_page(page); |
eb2be189 NP |
2302 | if (err == -EEXIST) |
2303 | goto repeat; | |
1da177e4 | 2304 | /* Presumably ENOMEM for radix tree node */ |
1da177e4 LT |
2305 | return ERR_PTR(err); |
2306 | } | |
32b63529 MG |
2307 | |
2308 | filler: | |
1da177e4 LT |
2309 | err = filler(data, page); |
2310 | if (err < 0) { | |
09cbfeaf | 2311 | put_page(page); |
32b63529 | 2312 | return ERR_PTR(err); |
1da177e4 | 2313 | } |
1da177e4 | 2314 | |
32b63529 MG |
2315 | page = wait_on_page_read(page); |
2316 | if (IS_ERR(page)) | |
2317 | return page; | |
2318 | goto out; | |
2319 | } | |
1da177e4 LT |
2320 | if (PageUptodate(page)) |
2321 | goto out; | |
2322 | ||
ebded027 MG |
2323 | /* |
2324 | * Page is not up to date and may be locked due one of the following | |
2325 | * case a: Page is being filled and the page lock is held | |
2326 | * case b: Read/write error clearing the page uptodate status | |
2327 | * case c: Truncation in progress (page locked) | |
2328 | * case d: Reclaim in progress | |
2329 | * | |
2330 | * Case a, the page will be up to date when the page is unlocked. | |
2331 | * There is no need to serialise on the page lock here as the page | |
2332 | * is pinned so the lock gives no additional protection. Even if the | |
2333 | * the page is truncated, the data is still valid if PageUptodate as | |
2334 | * it's a race vs truncate race. | |
2335 | * Case b, the page will not be up to date | |
2336 | * Case c, the page may be truncated but in itself, the data may still | |
2337 | * be valid after IO completes as it's a read vs truncate race. The | |
2338 | * operation must restart if the page is not uptodate on unlock but | |
2339 | * otherwise serialising on page lock to stabilise the mapping gives | |
2340 | * no additional guarantees to the caller as the page lock is | |
2341 | * released before return. | |
2342 | * Case d, similar to truncation. If reclaim holds the page lock, it | |
2343 | * will be a race with remove_mapping that determines if the mapping | |
2344 | * is valid on unlock but otherwise the data is valid and there is | |
2345 | * no need to serialise with page lock. | |
2346 | * | |
2347 | * As the page lock gives no additional guarantee, we optimistically | |
2348 | * wait on the page to be unlocked and check if it's up to date and | |
2349 | * use the page if it is. Otherwise, the page lock is required to | |
2350 | * distinguish between the different cases. The motivation is that we | |
2351 | * avoid spurious serialisations and wakeups when multiple processes | |
2352 | * wait on the same page for IO to complete. | |
2353 | */ | |
2354 | wait_on_page_locked(page); | |
2355 | if (PageUptodate(page)) | |
2356 | goto out; | |
2357 | ||
2358 | /* Distinguish between all the cases under the safety of the lock */ | |
1da177e4 | 2359 | lock_page(page); |
ebded027 MG |
2360 | |
2361 | /* Case c or d, restart the operation */ | |
1da177e4 LT |
2362 | if (!page->mapping) { |
2363 | unlock_page(page); | |
09cbfeaf | 2364 | put_page(page); |
32b63529 | 2365 | goto repeat; |
1da177e4 | 2366 | } |
ebded027 MG |
2367 | |
2368 | /* Someone else locked and filled the page in a very small window */ | |
1da177e4 LT |
2369 | if (PageUptodate(page)) { |
2370 | unlock_page(page); | |
2371 | goto out; | |
2372 | } | |
32b63529 MG |
2373 | goto filler; |
2374 | ||
c855ff37 | 2375 | out: |
6fe6900e NP |
2376 | mark_page_accessed(page); |
2377 | return page; | |
2378 | } | |
0531b2aa LT |
2379 | |
2380 | /** | |
67f9fd91 | 2381 | * read_cache_page - read into page cache, fill it if needed |
0531b2aa LT |
2382 | * @mapping: the page's address_space |
2383 | * @index: the page index | |
2384 | * @filler: function to perform the read | |
5e5358e7 | 2385 | * @data: first arg to filler(data, page) function, often left as NULL |
0531b2aa | 2386 | * |
0531b2aa | 2387 | * Read into the page cache. If a page already exists, and PageUptodate() is |
67f9fd91 | 2388 | * not set, try to fill the page and wait for it to become unlocked. |
0531b2aa LT |
2389 | * |
2390 | * If the page does not get brought uptodate, return -EIO. | |
2391 | */ | |
67f9fd91 | 2392 | struct page *read_cache_page(struct address_space *mapping, |
0531b2aa | 2393 | pgoff_t index, |
5e5358e7 | 2394 | int (*filler)(void *, struct page *), |
0531b2aa LT |
2395 | void *data) |
2396 | { | |
2397 | return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); | |
2398 | } | |
67f9fd91 | 2399 | EXPORT_SYMBOL(read_cache_page); |
0531b2aa LT |
2400 | |
2401 | /** | |
2402 | * read_cache_page_gfp - read into page cache, using specified page allocation flags. | |
2403 | * @mapping: the page's address_space | |
2404 | * @index: the page index | |
2405 | * @gfp: the page allocator flags to use if allocating | |
2406 | * | |
2407 | * This is the same as "read_mapping_page(mapping, index, NULL)", but with | |
e6f67b8c | 2408 | * any new page allocations done using the specified allocation flags. |
0531b2aa LT |
2409 | * |
2410 | * If the page does not get brought uptodate, return -EIO. | |
2411 | */ | |
2412 | struct page *read_cache_page_gfp(struct address_space *mapping, | |
2413 | pgoff_t index, | |
2414 | gfp_t gfp) | |
2415 | { | |
2416 | filler_t *filler = (filler_t *)mapping->a_ops->readpage; | |
2417 | ||
67f9fd91 | 2418 | return do_read_cache_page(mapping, index, filler, NULL, gfp); |
0531b2aa LT |
2419 | } |
2420 | EXPORT_SYMBOL(read_cache_page_gfp); | |
2421 | ||
1da177e4 LT |
2422 | /* |
2423 | * Performs necessary checks before doing a write | |
2424 | * | |
485bb99b | 2425 | * Can adjust writing position or amount of bytes to write. |
1da177e4 LT |
2426 | * Returns appropriate error code that caller should return or |
2427 | * zero in case that write should be allowed. | |
2428 | */ | |
3309dd04 | 2429 | inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 | 2430 | { |
3309dd04 | 2431 | struct file *file = iocb->ki_filp; |
1da177e4 | 2432 | struct inode *inode = file->f_mapping->host; |
59e99e5b | 2433 | unsigned long limit = rlimit(RLIMIT_FSIZE); |
3309dd04 | 2434 | loff_t pos; |
1da177e4 | 2435 | |
3309dd04 AV |
2436 | if (!iov_iter_count(from)) |
2437 | return 0; | |
1da177e4 | 2438 | |
0fa6b005 | 2439 | /* FIXME: this is for backwards compatibility with 2.4 */ |
2ba48ce5 | 2440 | if (iocb->ki_flags & IOCB_APPEND) |
3309dd04 | 2441 | iocb->ki_pos = i_size_read(inode); |
1da177e4 | 2442 | |
3309dd04 | 2443 | pos = iocb->ki_pos; |
1da177e4 | 2444 | |
0fa6b005 | 2445 | if (limit != RLIM_INFINITY) { |
3309dd04 | 2446 | if (iocb->ki_pos >= limit) { |
0fa6b005 AV |
2447 | send_sig(SIGXFSZ, current, 0); |
2448 | return -EFBIG; | |
1da177e4 | 2449 | } |
3309dd04 | 2450 | iov_iter_truncate(from, limit - (unsigned long)pos); |
1da177e4 LT |
2451 | } |
2452 | ||
2453 | /* | |
2454 | * LFS rule | |
2455 | */ | |
3309dd04 | 2456 | if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && |
1da177e4 | 2457 | !(file->f_flags & O_LARGEFILE))) { |
3309dd04 | 2458 | if (pos >= MAX_NON_LFS) |
1da177e4 | 2459 | return -EFBIG; |
3309dd04 | 2460 | iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); |
1da177e4 LT |
2461 | } |
2462 | ||
2463 | /* | |
2464 | * Are we about to exceed the fs block limit ? | |
2465 | * | |
2466 | * If we have written data it becomes a short write. If we have | |
2467 | * exceeded without writing data we send a signal and return EFBIG. | |
2468 | * Linus frestrict idea will clean these up nicely.. | |
2469 | */ | |
3309dd04 AV |
2470 | if (unlikely(pos >= inode->i_sb->s_maxbytes)) |
2471 | return -EFBIG; | |
1da177e4 | 2472 | |
3309dd04 AV |
2473 | iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); |
2474 | return iov_iter_count(from); | |
1da177e4 LT |
2475 | } |
2476 | EXPORT_SYMBOL(generic_write_checks); | |
2477 | ||
afddba49 NP |
2478 | int pagecache_write_begin(struct file *file, struct address_space *mapping, |
2479 | loff_t pos, unsigned len, unsigned flags, | |
2480 | struct page **pagep, void **fsdata) | |
2481 | { | |
2482 | const struct address_space_operations *aops = mapping->a_ops; | |
2483 | ||
4e02ed4b | 2484 | return aops->write_begin(file, mapping, pos, len, flags, |
afddba49 | 2485 | pagep, fsdata); |
afddba49 NP |
2486 | } |
2487 | EXPORT_SYMBOL(pagecache_write_begin); | |
2488 | ||
2489 | int pagecache_write_end(struct file *file, struct address_space *mapping, | |
2490 | loff_t pos, unsigned len, unsigned copied, | |
2491 | struct page *page, void *fsdata) | |
2492 | { | |
2493 | const struct address_space_operations *aops = mapping->a_ops; | |
afddba49 | 2494 | |
4e02ed4b | 2495 | return aops->write_end(file, mapping, pos, len, copied, page, fsdata); |
afddba49 NP |
2496 | } |
2497 | EXPORT_SYMBOL(pagecache_write_end); | |
2498 | ||
1da177e4 | 2499 | ssize_t |
1af5bb49 | 2500 | generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
2501 | { |
2502 | struct file *file = iocb->ki_filp; | |
2503 | struct address_space *mapping = file->f_mapping; | |
2504 | struct inode *inode = mapping->host; | |
1af5bb49 | 2505 | loff_t pos = iocb->ki_pos; |
1da177e4 | 2506 | ssize_t written; |
a969e903 CH |
2507 | size_t write_len; |
2508 | pgoff_t end; | |
26978b8b | 2509 | struct iov_iter data; |
1da177e4 | 2510 | |
0c949334 | 2511 | write_len = iov_iter_count(from); |
09cbfeaf | 2512 | end = (pos + write_len - 1) >> PAGE_SHIFT; |
a969e903 | 2513 | |
48b47c56 | 2514 | written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); |
a969e903 CH |
2515 | if (written) |
2516 | goto out; | |
2517 | ||
2518 | /* | |
2519 | * After a write we want buffered reads to be sure to go to disk to get | |
2520 | * the new data. We invalidate clean cached page from the region we're | |
2521 | * about to write. We do this *before* the write so that we can return | |
6ccfa806 | 2522 | * without clobbering -EIOCBQUEUED from ->direct_IO(). |
a969e903 CH |
2523 | */ |
2524 | if (mapping->nrpages) { | |
2525 | written = invalidate_inode_pages2_range(mapping, | |
09cbfeaf | 2526 | pos >> PAGE_SHIFT, end); |
6ccfa806 HH |
2527 | /* |
2528 | * If a page can not be invalidated, return 0 to fall back | |
2529 | * to buffered write. | |
2530 | */ | |
2531 | if (written) { | |
2532 | if (written == -EBUSY) | |
2533 | return 0; | |
a969e903 | 2534 | goto out; |
6ccfa806 | 2535 | } |
a969e903 CH |
2536 | } |
2537 | ||
26978b8b | 2538 | data = *from; |
c8b8e32d | 2539 | written = mapping->a_ops->direct_IO(iocb, &data); |
a969e903 CH |
2540 | |
2541 | /* | |
2542 | * Finally, try again to invalidate clean pages which might have been | |
2543 | * cached by non-direct readahead, or faulted in by get_user_pages() | |
2544 | * if the source of the write was an mmap'ed region of the file | |
2545 | * we're writing. Either one is a pretty crazy thing to do, | |
2546 | * so we don't support it 100%. If this invalidation | |
2547 | * fails, tough, the write still worked... | |
2548 | */ | |
2549 | if (mapping->nrpages) { | |
2550 | invalidate_inode_pages2_range(mapping, | |
09cbfeaf | 2551 | pos >> PAGE_SHIFT, end); |
a969e903 CH |
2552 | } |
2553 | ||
1da177e4 | 2554 | if (written > 0) { |
0116651c | 2555 | pos += written; |
f8579f86 | 2556 | iov_iter_advance(from, written); |
0116651c NK |
2557 | if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { |
2558 | i_size_write(inode, pos); | |
1da177e4 LT |
2559 | mark_inode_dirty(inode); |
2560 | } | |
5cb6c6c7 | 2561 | iocb->ki_pos = pos; |
1da177e4 | 2562 | } |
a969e903 | 2563 | out: |
1da177e4 LT |
2564 | return written; |
2565 | } | |
2566 | EXPORT_SYMBOL(generic_file_direct_write); | |
2567 | ||
eb2be189 NP |
2568 | /* |
2569 | * Find or create a page at the given pagecache position. Return the locked | |
2570 | * page. This function is specifically for buffered writes. | |
2571 | */ | |
54566b2c NP |
2572 | struct page *grab_cache_page_write_begin(struct address_space *mapping, |
2573 | pgoff_t index, unsigned flags) | |
eb2be189 | 2574 | { |
eb2be189 | 2575 | struct page *page; |
bbddabe2 | 2576 | int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; |
0faa70cb | 2577 | |
54566b2c | 2578 | if (flags & AOP_FLAG_NOFS) |
2457aec6 MG |
2579 | fgp_flags |= FGP_NOFS; |
2580 | ||
2581 | page = pagecache_get_page(mapping, index, fgp_flags, | |
45f87de5 | 2582 | mapping_gfp_mask(mapping)); |
c585a267 | 2583 | if (page) |
2457aec6 | 2584 | wait_for_stable_page(page); |
eb2be189 | 2585 | |
eb2be189 NP |
2586 | return page; |
2587 | } | |
54566b2c | 2588 | EXPORT_SYMBOL(grab_cache_page_write_begin); |
eb2be189 | 2589 | |
3b93f911 | 2590 | ssize_t generic_perform_write(struct file *file, |
afddba49 NP |
2591 | struct iov_iter *i, loff_t pos) |
2592 | { | |
2593 | struct address_space *mapping = file->f_mapping; | |
2594 | const struct address_space_operations *a_ops = mapping->a_ops; | |
2595 | long status = 0; | |
2596 | ssize_t written = 0; | |
674b892e NP |
2597 | unsigned int flags = 0; |
2598 | ||
2599 | /* | |
2600 | * Copies from kernel address space cannot fail (NFSD is a big user). | |
2601 | */ | |
777eda2c | 2602 | if (!iter_is_iovec(i)) |
674b892e | 2603 | flags |= AOP_FLAG_UNINTERRUPTIBLE; |
afddba49 NP |
2604 | |
2605 | do { | |
2606 | struct page *page; | |
afddba49 NP |
2607 | unsigned long offset; /* Offset into pagecache page */ |
2608 | unsigned long bytes; /* Bytes to write to page */ | |
2609 | size_t copied; /* Bytes copied from user */ | |
2610 | void *fsdata; | |
2611 | ||
09cbfeaf KS |
2612 | offset = (pos & (PAGE_SIZE - 1)); |
2613 | bytes = min_t(unsigned long, PAGE_SIZE - offset, | |
afddba49 NP |
2614 | iov_iter_count(i)); |
2615 | ||
2616 | again: | |
00a3d660 LT |
2617 | /* |
2618 | * Bring in the user page that we will copy from _first_. | |
2619 | * Otherwise there's a nasty deadlock on copying from the | |
2620 | * same page as we're writing to, without it being marked | |
2621 | * up-to-date. | |
2622 | * | |
2623 | * Not only is this an optimisation, but it is also required | |
2624 | * to check that the address is actually valid, when atomic | |
2625 | * usercopies are used, below. | |
2626 | */ | |
2627 | if (unlikely(iov_iter_fault_in_readable(i, bytes))) { | |
2628 | status = -EFAULT; | |
2629 | break; | |
2630 | } | |
2631 | ||
296291cd JK |
2632 | if (fatal_signal_pending(current)) { |
2633 | status = -EINTR; | |
2634 | break; | |
2635 | } | |
2636 | ||
674b892e | 2637 | status = a_ops->write_begin(file, mapping, pos, bytes, flags, |
afddba49 | 2638 | &page, &fsdata); |
2457aec6 | 2639 | if (unlikely(status < 0)) |
afddba49 NP |
2640 | break; |
2641 | ||
931e80e4 | 2642 | if (mapping_writably_mapped(mapping)) |
2643 | flush_dcache_page(page); | |
00a3d660 | 2644 | |
afddba49 | 2645 | copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); |
afddba49 NP |
2646 | flush_dcache_page(page); |
2647 | ||
2648 | status = a_ops->write_end(file, mapping, pos, bytes, copied, | |
2649 | page, fsdata); | |
2650 | if (unlikely(status < 0)) | |
2651 | break; | |
2652 | copied = status; | |
2653 | ||
2654 | cond_resched(); | |
2655 | ||
124d3b70 | 2656 | iov_iter_advance(i, copied); |
afddba49 NP |
2657 | if (unlikely(copied == 0)) { |
2658 | /* | |
2659 | * If we were unable to copy any data at all, we must | |
2660 | * fall back to a single segment length write. | |
2661 | * | |
2662 | * If we didn't fallback here, we could livelock | |
2663 | * because not all segments in the iov can be copied at | |
2664 | * once without a pagefault. | |
2665 | */ | |
09cbfeaf | 2666 | bytes = min_t(unsigned long, PAGE_SIZE - offset, |
afddba49 NP |
2667 | iov_iter_single_seg_count(i)); |
2668 | goto again; | |
2669 | } | |
afddba49 NP |
2670 | pos += copied; |
2671 | written += copied; | |
2672 | ||
2673 | balance_dirty_pages_ratelimited(mapping); | |
afddba49 NP |
2674 | } while (iov_iter_count(i)); |
2675 | ||
2676 | return written ? written : status; | |
2677 | } | |
3b93f911 | 2678 | EXPORT_SYMBOL(generic_perform_write); |
1da177e4 | 2679 | |
e4dd9de3 | 2680 | /** |
8174202b | 2681 | * __generic_file_write_iter - write data to a file |
e4dd9de3 | 2682 | * @iocb: IO state structure (file, offset, etc.) |
8174202b | 2683 | * @from: iov_iter with data to write |
e4dd9de3 JK |
2684 | * |
2685 | * This function does all the work needed for actually writing data to a | |
2686 | * file. It does all basic checks, removes SUID from the file, updates | |
2687 | * modification times and calls proper subroutines depending on whether we | |
2688 | * do direct IO or a standard buffered write. | |
2689 | * | |
2690 | * It expects i_mutex to be grabbed unless we work on a block device or similar | |
2691 | * object which does not need locking at all. | |
2692 | * | |
2693 | * This function does *not* take care of syncing data in case of O_SYNC write. | |
2694 | * A caller has to handle it. This is mainly due to the fact that we want to | |
2695 | * avoid syncing under i_mutex. | |
2696 | */ | |
8174202b | 2697 | ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
2698 | { |
2699 | struct file *file = iocb->ki_filp; | |
fb5527e6 | 2700 | struct address_space * mapping = file->f_mapping; |
1da177e4 | 2701 | struct inode *inode = mapping->host; |
3b93f911 | 2702 | ssize_t written = 0; |
1da177e4 | 2703 | ssize_t err; |
3b93f911 | 2704 | ssize_t status; |
1da177e4 | 2705 | |
1da177e4 | 2706 | /* We can write back this queue in page reclaim */ |
de1414a6 | 2707 | current->backing_dev_info = inode_to_bdi(inode); |
5fa8e0a1 | 2708 | err = file_remove_privs(file); |
1da177e4 LT |
2709 | if (err) |
2710 | goto out; | |
2711 | ||
c3b2da31 JB |
2712 | err = file_update_time(file); |
2713 | if (err) | |
2714 | goto out; | |
1da177e4 | 2715 | |
2ba48ce5 | 2716 | if (iocb->ki_flags & IOCB_DIRECT) { |
0b8def9d | 2717 | loff_t pos, endbyte; |
fb5527e6 | 2718 | |
1af5bb49 | 2719 | written = generic_file_direct_write(iocb, from); |
1da177e4 | 2720 | /* |
fbbbad4b MW |
2721 | * If the write stopped short of completing, fall back to |
2722 | * buffered writes. Some filesystems do this for writes to | |
2723 | * holes, for example. For DAX files, a buffered write will | |
2724 | * not succeed (even if it did, DAX does not handle dirty | |
2725 | * page-cache pages correctly). | |
1da177e4 | 2726 | */ |
0b8def9d | 2727 | if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) |
fbbbad4b MW |
2728 | goto out; |
2729 | ||
0b8def9d | 2730 | status = generic_perform_write(file, from, pos = iocb->ki_pos); |
fb5527e6 | 2731 | /* |
3b93f911 | 2732 | * If generic_perform_write() returned a synchronous error |
fb5527e6 JM |
2733 | * then we want to return the number of bytes which were |
2734 | * direct-written, or the error code if that was zero. Note | |
2735 | * that this differs from normal direct-io semantics, which | |
2736 | * will return -EFOO even if some bytes were written. | |
2737 | */ | |
60bb4529 | 2738 | if (unlikely(status < 0)) { |
3b93f911 | 2739 | err = status; |
fb5527e6 JM |
2740 | goto out; |
2741 | } | |
fb5527e6 JM |
2742 | /* |
2743 | * We need to ensure that the page cache pages are written to | |
2744 | * disk and invalidated to preserve the expected O_DIRECT | |
2745 | * semantics. | |
2746 | */ | |
3b93f911 | 2747 | endbyte = pos + status - 1; |
0b8def9d | 2748 | err = filemap_write_and_wait_range(mapping, pos, endbyte); |
fb5527e6 | 2749 | if (err == 0) { |
0b8def9d | 2750 | iocb->ki_pos = endbyte + 1; |
3b93f911 | 2751 | written += status; |
fb5527e6 | 2752 | invalidate_mapping_pages(mapping, |
09cbfeaf KS |
2753 | pos >> PAGE_SHIFT, |
2754 | endbyte >> PAGE_SHIFT); | |
fb5527e6 JM |
2755 | } else { |
2756 | /* | |
2757 | * We don't know how much we wrote, so just return | |
2758 | * the number of bytes which were direct-written | |
2759 | */ | |
2760 | } | |
2761 | } else { | |
0b8def9d AV |
2762 | written = generic_perform_write(file, from, iocb->ki_pos); |
2763 | if (likely(written > 0)) | |
2764 | iocb->ki_pos += written; | |
fb5527e6 | 2765 | } |
1da177e4 LT |
2766 | out: |
2767 | current->backing_dev_info = NULL; | |
2768 | return written ? written : err; | |
2769 | } | |
8174202b | 2770 | EXPORT_SYMBOL(__generic_file_write_iter); |
e4dd9de3 | 2771 | |
e4dd9de3 | 2772 | /** |
8174202b | 2773 | * generic_file_write_iter - write data to a file |
e4dd9de3 | 2774 | * @iocb: IO state structure |
8174202b | 2775 | * @from: iov_iter with data to write |
e4dd9de3 | 2776 | * |
8174202b | 2777 | * This is a wrapper around __generic_file_write_iter() to be used by most |
e4dd9de3 JK |
2778 | * filesystems. It takes care of syncing the file in case of O_SYNC file |
2779 | * and acquires i_mutex as needed. | |
2780 | */ | |
8174202b | 2781 | ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
2782 | { |
2783 | struct file *file = iocb->ki_filp; | |
148f948b | 2784 | struct inode *inode = file->f_mapping->host; |
1da177e4 | 2785 | ssize_t ret; |
1da177e4 | 2786 | |
5955102c | 2787 | inode_lock(inode); |
3309dd04 AV |
2788 | ret = generic_write_checks(iocb, from); |
2789 | if (ret > 0) | |
5f380c7f | 2790 | ret = __generic_file_write_iter(iocb, from); |
5955102c | 2791 | inode_unlock(inode); |
1da177e4 | 2792 | |
e2592217 CH |
2793 | if (ret > 0) |
2794 | ret = generic_write_sync(iocb, ret); | |
1da177e4 LT |
2795 | return ret; |
2796 | } | |
8174202b | 2797 | EXPORT_SYMBOL(generic_file_write_iter); |
1da177e4 | 2798 | |
cf9a2ae8 DH |
2799 | /** |
2800 | * try_to_release_page() - release old fs-specific metadata on a page | |
2801 | * | |
2802 | * @page: the page which the kernel is trying to free | |
2803 | * @gfp_mask: memory allocation flags (and I/O mode) | |
2804 | * | |
2805 | * The address_space is to try to release any data against the page | |
2806 | * (presumably at page->private). If the release was successful, return `1'. | |
2807 | * Otherwise return zero. | |
2808 | * | |
266cf658 DH |
2809 | * This may also be called if PG_fscache is set on a page, indicating that the |
2810 | * page is known to the local caching routines. | |
2811 | * | |
cf9a2ae8 | 2812 | * The @gfp_mask argument specifies whether I/O may be performed to release |
71baba4b | 2813 | * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). |
cf9a2ae8 | 2814 | * |
cf9a2ae8 DH |
2815 | */ |
2816 | int try_to_release_page(struct page *page, gfp_t gfp_mask) | |
2817 | { | |
2818 | struct address_space * const mapping = page->mapping; | |
2819 | ||
2820 | BUG_ON(!PageLocked(page)); | |
2821 | if (PageWriteback(page)) | |
2822 | return 0; | |
2823 | ||
2824 | if (mapping && mapping->a_ops->releasepage) | |
2825 | return mapping->a_ops->releasepage(page, gfp_mask); | |
2826 | return try_to_free_buffers(page); | |
2827 | } | |
2828 | ||
2829 | EXPORT_SYMBOL(try_to_release_page); |