]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/filemap.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
3f07c014 16#include <linux/sched/signal.h>
c22ce143 17#include <linux/uaccess.h>
c59ede7b 18#include <linux/capability.h>
1da177e4 19#include <linux/kernel_stat.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/mm.h>
22#include <linux/swap.h>
23#include <linux/mman.h>
24#include <linux/pagemap.h>
25#include <linux/file.h>
26#include <linux/uio.h>
27#include <linux/hash.h>
28#include <linux/writeback.h>
53253383 29#include <linux/backing-dev.h>
1da177e4
LT
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/security.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 35#include <linux/hugetlb.h>
8a9f3ccd 36#include <linux/memcontrol.h>
c515e1fd 37#include <linux/cleancache.h>
f1820361 38#include <linux/rmap.h>
0f8053a5
NP
39#include "internal.h"
40
fe0bfaaf
RJ
41#define CREATE_TRACE_POINTS
42#include <trace/events/filemap.h>
43
1da177e4 44/*
1da177e4
LT
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
148f948b 47#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 48
1da177e4
LT
49#include <asm/mman.h>
50
51/*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63/*
64 * Lock ordering:
65 *
c8c06efa 66 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
1da177e4 70 *
1b1dcc1b 71 * ->i_mutex
c8c06efa 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
73 *
74 * ->mmap_sem
c8c06efa 75 * ->i_mmap_rwsem
b8072f09 76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
ccad2365 82 * ->i_mutex (generic_perform_write)
82591e6e 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 84 *
f758eeab 85 * bdi->wb.list_lock
a66979ab 86 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
87 * ->mapping->tree_lock (__sync_single_inode)
88 *
c8c06efa 89 * ->i_mmap_rwsem
1da177e4
LT
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
b8072f09 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 94 *
b8072f09 95 * ->page_table_lock or pte_lock
5d337b91 96 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
a52633d8
MG
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
1da177e4
LT
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
c8c06efa 110 * ->i_mmap_rwsem
9a3c531d 111 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
112 */
113
22f2ac51
JW
114static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116{
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
121 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 if (!radix_tree_exceptional_entry(p))
130 return -EEXIST;
131
132 mapping->nrexceptional--;
133 if (!dax_mapping(mapping)) {
134 if (shadowp)
135 *shadowp = p;
22f2ac51
JW
136 } else {
137 /* DAX can replace empty locked entry with a hole */
138 WARN_ON_ONCE(p !=
642261ac 139 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
22f2ac51 140 /* Wakeup waiters for exceptional entry lock */
63e95b5c 141 dax_wake_mapping_entry_waiter(mapping, page->index, p,
965d004a 142 true);
22f2ac51
JW
143 }
144 }
14b46879
JW
145 __radix_tree_replace(&mapping->page_tree, node, slot, page,
146 workingset_update_node, mapping);
22f2ac51 147 mapping->nrpages++;
22f2ac51
JW
148 return 0;
149}
150
91b0abe3
JW
151static void page_cache_tree_delete(struct address_space *mapping,
152 struct page *page, void *shadow)
153{
c70b647d
KS
154 int i, nr;
155
156 /* hugetlb pages are represented by one entry in the radix tree */
157 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
91b0abe3 158
83929372
KS
159 VM_BUG_ON_PAGE(!PageLocked(page), page);
160 VM_BUG_ON_PAGE(PageTail(page), page);
161 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 162
83929372 163 for (i = 0; i < nr; i++) {
d3798ae8
JW
164 struct radix_tree_node *node;
165 void **slot;
166
167 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168 &node, &slot);
169
dbc446b8 170 VM_BUG_ON_PAGE(!node && nr != 1, page);
449dd698 171
14b46879
JW
172 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174 workingset_update_node, mapping);
449dd698 175 }
d3798ae8
JW
176
177 if (shadow) {
178 mapping->nrexceptional += nr;
179 /*
180 * Make sure the nrexceptional update is committed before
181 * the nrpages update so that final truncate racing
182 * with reclaim does not see both counters 0 at the
183 * same time and miss a shadow entry.
184 */
185 smp_wmb();
186 }
187 mapping->nrpages -= nr;
91b0abe3
JW
188}
189
1da177e4 190/*
e64a782f 191 * Delete a page from the page cache and free it. Caller has to make
1da177e4 192 * sure the page is locked and that nobody else uses it - or that usage
fdf1cdb9 193 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 194 */
62cccb8c 195void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
196{
197 struct address_space *mapping = page->mapping;
83929372 198 int nr = hpage_nr_pages(page);
1da177e4 199
fe0bfaaf 200 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
201 /*
202 * if we're uptodate, flush out into the cleancache, otherwise
203 * invalidate any existing cleancache entries. We can't leave
204 * stale data around in the cleancache once our page is gone
205 */
206 if (PageUptodate(page) && PageMappedToDisk(page))
207 cleancache_put_page(page);
208 else
3167760f 209 cleancache_invalidate_page(mapping, page);
c515e1fd 210
83929372 211 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
212 VM_BUG_ON_PAGE(page_mapped(page), page);
213 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214 int mapcount;
215
216 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
217 current->comm, page_to_pfn(page));
218 dump_page(page, "still mapped when deleted");
219 dump_stack();
220 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222 mapcount = page_mapcount(page);
223 if (mapping_exiting(mapping) &&
224 page_count(page) >= mapcount + 2) {
225 /*
226 * All vmas have already been torn down, so it's
227 * a good bet that actually the page is unmapped,
228 * and we'd prefer not to leak it: if we're wrong,
229 * some other bad page check should catch it later.
230 */
231 page_mapcount_reset(page);
6d061f9f 232 page_ref_sub(page, mapcount);
06b241f3
HD
233 }
234 }
235
91b0abe3
JW
236 page_cache_tree_delete(mapping, page, shadow);
237
1da177e4 238 page->mapping = NULL;
b85e0eff 239 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 240
4165b9b4
MH
241 /* hugetlb pages do not participate in page cache accounting. */
242 if (!PageHuge(page))
11fb9989 243 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
800d8c63 244 if (PageSwapBacked(page)) {
11fb9989 245 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
800d8c63 246 if (PageTransHuge(page))
11fb9989 247 __dec_node_page_state(page, NR_SHMEM_THPS);
800d8c63
KS
248 } else {
249 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
250 }
3a692790
LT
251
252 /*
b9ea2515
KK
253 * At this point page must be either written or cleaned by truncate.
254 * Dirty page here signals a bug and loss of unwritten data.
3a692790 255 *
b9ea2515
KK
256 * This fixes dirty accounting after removing the page entirely but
257 * leaves PageDirty set: it has no effect for truncated page and
258 * anyway will be cleared before returning page into buddy allocator.
3a692790 259 */
b9ea2515 260 if (WARN_ON_ONCE(PageDirty(page)))
62cccb8c 261 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
1da177e4
LT
262}
263
702cfbf9
MK
264/**
265 * delete_from_page_cache - delete page from page cache
266 * @page: the page which the kernel is trying to remove from page cache
267 *
268 * This must be called only on pages that have been verified to be in the page
269 * cache and locked. It will never put the page into the free list, the caller
270 * has a reference on the page.
271 */
272void delete_from_page_cache(struct page *page)
1da177e4 273{
83929372 274 struct address_space *mapping = page_mapping(page);
c4843a75 275 unsigned long flags;
6072d13c 276 void (*freepage)(struct page *);
1da177e4 277
cd7619d6 278 BUG_ON(!PageLocked(page));
1da177e4 279
6072d13c 280 freepage = mapping->a_ops->freepage;
c4843a75 281
c4843a75 282 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 283 __delete_from_page_cache(page, NULL);
c4843a75 284 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
285
286 if (freepage)
287 freepage(page);
83929372
KS
288
289 if (PageTransHuge(page) && !PageHuge(page)) {
290 page_ref_sub(page, HPAGE_PMD_NR);
291 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
292 } else {
293 put_page(page);
294 }
97cecb5a
MK
295}
296EXPORT_SYMBOL(delete_from_page_cache);
297
d72d9e2a 298int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
299{
300 int ret = 0;
301 /* Check for outstanding write errors */
7fcbbaf1
JA
302 if (test_bit(AS_ENOSPC, &mapping->flags) &&
303 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 304 ret = -ENOSPC;
7fcbbaf1
JA
305 if (test_bit(AS_EIO, &mapping->flags) &&
306 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
307 ret = -EIO;
308 return ret;
309}
d72d9e2a 310EXPORT_SYMBOL(filemap_check_errors);
865ffef3 311
76341cab
JL
312static int filemap_check_and_keep_errors(struct address_space *mapping)
313{
314 /* Check for outstanding write errors */
315 if (test_bit(AS_EIO, &mapping->flags))
316 return -EIO;
317 if (test_bit(AS_ENOSPC, &mapping->flags))
318 return -ENOSPC;
319 return 0;
320}
321
1da177e4 322/**
485bb99b 323 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
324 * @mapping: address space structure to write
325 * @start: offset in bytes where the range starts
469eb4d0 326 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 327 * @sync_mode: enable synchronous operation
1da177e4 328 *
485bb99b
RD
329 * Start writeback against all of a mapping's dirty pages that lie
330 * within the byte offsets <start, end> inclusive.
331 *
1da177e4 332 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 333 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
334 * these two operations is that if a dirty page/buffer is encountered, it must
335 * be waited upon, and not just skipped over.
336 */
ebcf28e1
AM
337int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
338 loff_t end, int sync_mode)
1da177e4
LT
339{
340 int ret;
341 struct writeback_control wbc = {
342 .sync_mode = sync_mode,
05fe478d 343 .nr_to_write = LONG_MAX,
111ebb6e
OH
344 .range_start = start,
345 .range_end = end,
1da177e4
LT
346 };
347
348 if (!mapping_cap_writeback_dirty(mapping))
349 return 0;
350
b16b1deb 351 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 352 ret = do_writepages(mapping, &wbc);
b16b1deb 353 wbc_detach_inode(&wbc);
1da177e4
LT
354 return ret;
355}
356
357static inline int __filemap_fdatawrite(struct address_space *mapping,
358 int sync_mode)
359{
111ebb6e 360 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
361}
362
363int filemap_fdatawrite(struct address_space *mapping)
364{
365 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
366}
367EXPORT_SYMBOL(filemap_fdatawrite);
368
f4c0a0fd 369int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 370 loff_t end)
1da177e4
LT
371{
372 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
373}
f4c0a0fd 374EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 375
485bb99b
RD
376/**
377 * filemap_flush - mostly a non-blocking flush
378 * @mapping: target address_space
379 *
1da177e4
LT
380 * This is a mostly non-blocking flush. Not suitable for data-integrity
381 * purposes - I/O may not be started against all dirty pages.
382 */
383int filemap_flush(struct address_space *mapping)
384{
385 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
386}
387EXPORT_SYMBOL(filemap_flush);
388
7fc9e472
GR
389/**
390 * filemap_range_has_page - check if a page exists in range.
391 * @mapping: address space within which to check
392 * @start_byte: offset in bytes where the range starts
393 * @end_byte: offset in bytes where the range ends (inclusive)
394 *
395 * Find at least one page in the range supplied, usually used to check if
396 * direct writing in this range will trigger a writeback.
397 */
398bool filemap_range_has_page(struct address_space *mapping,
399 loff_t start_byte, loff_t end_byte)
400{
401 pgoff_t index = start_byte >> PAGE_SHIFT;
402 pgoff_t end = end_byte >> PAGE_SHIFT;
403 struct pagevec pvec;
404 bool ret;
405
406 if (end_byte < start_byte)
407 return false;
408
409 if (mapping->nrpages == 0)
410 return false;
411
412 pagevec_init(&pvec, 0);
413 if (!pagevec_lookup(&pvec, mapping, index, 1))
414 return false;
415 ret = (pvec.pages[0]->index <= end);
416 pagevec_release(&pvec);
417 return ret;
418}
419EXPORT_SYMBOL(filemap_range_has_page);
420
5e8fcc1a 421static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 422 loff_t start_byte, loff_t end_byte)
1da177e4 423{
09cbfeaf
KS
424 pgoff_t index = start_byte >> PAGE_SHIFT;
425 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
426 struct pagevec pvec;
427 int nr_pages;
1da177e4 428
94004ed7 429 if (end_byte < start_byte)
5e8fcc1a 430 return;
1da177e4
LT
431
432 pagevec_init(&pvec, 0);
1da177e4
LT
433 while ((index <= end) &&
434 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
435 PAGECACHE_TAG_WRITEBACK,
436 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
437 unsigned i;
438
439 for (i = 0; i < nr_pages; i++) {
440 struct page *page = pvec.pages[i];
441
442 /* until radix tree lookup accepts end_index */
443 if (page->index > end)
444 continue;
445
446 wait_on_page_writeback(page);
5e8fcc1a 447 ClearPageError(page);
1da177e4
LT
448 }
449 pagevec_release(&pvec);
450 cond_resched();
451 }
aa750fd7
JN
452}
453
454/**
455 * filemap_fdatawait_range - wait for writeback to complete
456 * @mapping: address space structure to wait for
457 * @start_byte: offset in bytes where the range starts
458 * @end_byte: offset in bytes where the range ends (inclusive)
459 *
460 * Walk the list of under-writeback pages of the given address space
461 * in the given range and wait for all of them. Check error status of
462 * the address space and return it.
463 *
464 * Since the error status of the address space is cleared by this function,
465 * callers are responsible for checking the return value and handling and/or
466 * reporting the error.
467 */
468int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
469 loff_t end_byte)
470{
5e8fcc1a
JL
471 __filemap_fdatawait_range(mapping, start_byte, end_byte);
472 return filemap_check_errors(mapping);
1da177e4 473}
d3bccb6f
JK
474EXPORT_SYMBOL(filemap_fdatawait_range);
475
aa750fd7
JN
476/**
477 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
478 * @mapping: address space structure to wait for
479 *
480 * Walk the list of under-writeback pages of the given address space
481 * and wait for all of them. Unlike filemap_fdatawait(), this function
482 * does not clear error status of the address space.
483 *
484 * Use this function if callers don't handle errors themselves. Expected
485 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
486 * fsfreeze(8)
487 */
76341cab 488int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7
JN
489{
490 loff_t i_size = i_size_read(mapping->host);
491
492 if (i_size == 0)
76341cab 493 return 0;
aa750fd7
JN
494
495 __filemap_fdatawait_range(mapping, 0, i_size - 1);
76341cab 496 return filemap_check_and_keep_errors(mapping);
aa750fd7 497}
76341cab 498EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 499
1da177e4 500/**
485bb99b 501 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 502 * @mapping: address space structure to wait for
485bb99b
RD
503 *
504 * Walk the list of under-writeback pages of the given address space
aa750fd7
JN
505 * and wait for all of them. Check error status of the address space
506 * and return it.
507 *
508 * Since the error status of the address space is cleared by this function,
509 * callers are responsible for checking the return value and handling and/or
510 * reporting the error.
1da177e4
LT
511 */
512int filemap_fdatawait(struct address_space *mapping)
513{
514 loff_t i_size = i_size_read(mapping->host);
515
516 if (i_size == 0)
517 return 0;
518
94004ed7 519 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
520}
521EXPORT_SYMBOL(filemap_fdatawait);
522
523int filemap_write_and_wait(struct address_space *mapping)
524{
28fd1298 525 int err = 0;
1da177e4 526
7f6d5b52
RZ
527 if ((!dax_mapping(mapping) && mapping->nrpages) ||
528 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
529 err = filemap_fdatawrite(mapping);
530 /*
531 * Even if the above returned error, the pages may be
532 * written partially (e.g. -ENOSPC), so we wait for it.
533 * But the -EIO is special case, it may indicate the worst
534 * thing (e.g. bug) happened, so we avoid waiting for it.
535 */
536 if (err != -EIO) {
537 int err2 = filemap_fdatawait(mapping);
538 if (!err)
539 err = err2;
cbeaf951
JL
540 } else {
541 /* Clear any previously stored errors */
542 filemap_check_errors(mapping);
28fd1298 543 }
865ffef3
DM
544 } else {
545 err = filemap_check_errors(mapping);
1da177e4 546 }
28fd1298 547 return err;
1da177e4 548}
28fd1298 549EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 550
485bb99b
RD
551/**
552 * filemap_write_and_wait_range - write out & wait on a file range
553 * @mapping: the address_space for the pages
554 * @lstart: offset in bytes where the range starts
555 * @lend: offset in bytes where the range ends (inclusive)
556 *
469eb4d0
AM
557 * Write out and wait upon file offsets lstart->lend, inclusive.
558 *
0e056eb5 559 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0
AM
560 * that this function can be used to write to the very end-of-file (end = -1).
561 */
1da177e4
LT
562int filemap_write_and_wait_range(struct address_space *mapping,
563 loff_t lstart, loff_t lend)
564{
28fd1298 565 int err = 0;
1da177e4 566
7f6d5b52
RZ
567 if ((!dax_mapping(mapping) && mapping->nrpages) ||
568 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
569 err = __filemap_fdatawrite_range(mapping, lstart, lend,
570 WB_SYNC_ALL);
571 /* See comment of filemap_write_and_wait() */
572 if (err != -EIO) {
94004ed7
CH
573 int err2 = filemap_fdatawait_range(mapping,
574 lstart, lend);
28fd1298
OH
575 if (!err)
576 err = err2;
cbeaf951
JL
577 } else {
578 /* Clear any previously stored errors */
579 filemap_check_errors(mapping);
28fd1298 580 }
865ffef3
DM
581 } else {
582 err = filemap_check_errors(mapping);
1da177e4 583 }
28fd1298 584 return err;
1da177e4 585}
f6995585 586EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 587
5660e13d
JL
588void __filemap_set_wb_err(struct address_space *mapping, int err)
589{
590 errseq_t eseq = __errseq_set(&mapping->wb_err, err);
591
592 trace_filemap_set_wb_err(mapping, eseq);
593}
594EXPORT_SYMBOL(__filemap_set_wb_err);
595
596/**
597 * file_check_and_advance_wb_err - report wb error (if any) that was previously
598 * and advance wb_err to current one
599 * @file: struct file on which the error is being reported
600 *
601 * When userland calls fsync (or something like nfsd does the equivalent), we
602 * want to report any writeback errors that occurred since the last fsync (or
603 * since the file was opened if there haven't been any).
604 *
605 * Grab the wb_err from the mapping. If it matches what we have in the file,
606 * then just quickly return 0. The file is all caught up.
607 *
608 * If it doesn't match, then take the mapping value, set the "seen" flag in
609 * it and try to swap it into place. If it works, or another task beat us
610 * to it with the new value, then update the f_wb_err and return the error
611 * portion. The error at this point must be reported via proper channels
612 * (a'la fsync, or NFS COMMIT operation, etc.).
613 *
614 * While we handle mapping->wb_err with atomic operations, the f_wb_err
615 * value is protected by the f_lock since we must ensure that it reflects
616 * the latest value swapped in for this file descriptor.
617 */
618int file_check_and_advance_wb_err(struct file *file)
619{
620 int err = 0;
621 errseq_t old = READ_ONCE(file->f_wb_err);
622 struct address_space *mapping = file->f_mapping;
623
624 /* Locklessly handle the common case where nothing has changed */
625 if (errseq_check(&mapping->wb_err, old)) {
626 /* Something changed, must use slow path */
627 spin_lock(&file->f_lock);
628 old = file->f_wb_err;
629 err = errseq_check_and_advance(&mapping->wb_err,
630 &file->f_wb_err);
631 trace_file_check_and_advance_wb_err(file, old);
632 spin_unlock(&file->f_lock);
633 }
634 return err;
635}
636EXPORT_SYMBOL(file_check_and_advance_wb_err);
637
638/**
639 * file_write_and_wait_range - write out & wait on a file range
640 * @file: file pointing to address_space with pages
641 * @lstart: offset in bytes where the range starts
642 * @lend: offset in bytes where the range ends (inclusive)
643 *
644 * Write out and wait upon file offsets lstart->lend, inclusive.
645 *
646 * Note that @lend is inclusive (describes the last byte to be written) so
647 * that this function can be used to write to the very end-of-file (end = -1).
648 *
649 * After writing out and waiting on the data, we check and advance the
650 * f_wb_err cursor to the latest value, and return any errors detected there.
651 */
652int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
653{
654 int err = 0, err2;
655 struct address_space *mapping = file->f_mapping;
656
657 if ((!dax_mapping(mapping) && mapping->nrpages) ||
658 (dax_mapping(mapping) && mapping->nrexceptional)) {
659 err = __filemap_fdatawrite_range(mapping, lstart, lend,
660 WB_SYNC_ALL);
661 /* See comment of filemap_write_and_wait() */
662 if (err != -EIO)
663 __filemap_fdatawait_range(mapping, lstart, lend);
664 }
665 err2 = file_check_and_advance_wb_err(file);
666 if (!err)
667 err = err2;
668 return err;
669}
670EXPORT_SYMBOL(file_write_and_wait_range);
671
ef6a3c63
MS
672/**
673 * replace_page_cache_page - replace a pagecache page with a new one
674 * @old: page to be replaced
675 * @new: page to replace with
676 * @gfp_mask: allocation mode
677 *
678 * This function replaces a page in the pagecache with a new one. On
679 * success it acquires the pagecache reference for the new page and
680 * drops it for the old page. Both the old and new pages must be
681 * locked. This function does not add the new page to the LRU, the
682 * caller must do that.
683 *
684 * The remove + add is atomic. The only way this function can fail is
685 * memory allocation failure.
686 */
687int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
688{
689 int error;
ef6a3c63 690
309381fe
SL
691 VM_BUG_ON_PAGE(!PageLocked(old), old);
692 VM_BUG_ON_PAGE(!PageLocked(new), new);
693 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 694
ef6a3c63
MS
695 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
696 if (!error) {
697 struct address_space *mapping = old->mapping;
698 void (*freepage)(struct page *);
c4843a75 699 unsigned long flags;
ef6a3c63
MS
700
701 pgoff_t offset = old->index;
702 freepage = mapping->a_ops->freepage;
703
09cbfeaf 704 get_page(new);
ef6a3c63
MS
705 new->mapping = mapping;
706 new->index = offset;
707
c4843a75 708 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 709 __delete_from_page_cache(old, NULL);
22f2ac51 710 error = page_cache_tree_insert(mapping, new, NULL);
ef6a3c63 711 BUG_ON(error);
4165b9b4
MH
712
713 /*
714 * hugetlb pages do not participate in page cache accounting.
715 */
716 if (!PageHuge(new))
11fb9989 717 __inc_node_page_state(new, NR_FILE_PAGES);
ef6a3c63 718 if (PageSwapBacked(new))
11fb9989 719 __inc_node_page_state(new, NR_SHMEM);
c4843a75 720 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6a93ca8f 721 mem_cgroup_migrate(old, new);
ef6a3c63
MS
722 radix_tree_preload_end();
723 if (freepage)
724 freepage(old);
09cbfeaf 725 put_page(old);
ef6a3c63
MS
726 }
727
728 return error;
729}
730EXPORT_SYMBOL_GPL(replace_page_cache_page);
731
a528910e
JW
732static int __add_to_page_cache_locked(struct page *page,
733 struct address_space *mapping,
734 pgoff_t offset, gfp_t gfp_mask,
735 void **shadowp)
1da177e4 736{
00501b53
JW
737 int huge = PageHuge(page);
738 struct mem_cgroup *memcg;
e286781d
NP
739 int error;
740
309381fe
SL
741 VM_BUG_ON_PAGE(!PageLocked(page), page);
742 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 743
00501b53
JW
744 if (!huge) {
745 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 746 gfp_mask, &memcg, false);
00501b53
JW
747 if (error)
748 return error;
749 }
1da177e4 750
5e4c0d97 751 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 752 if (error) {
00501b53 753 if (!huge)
f627c2f5 754 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
755 return error;
756 }
757
09cbfeaf 758 get_page(page);
66a0c8ee
KS
759 page->mapping = mapping;
760 page->index = offset;
761
762 spin_lock_irq(&mapping->tree_lock);
a528910e 763 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
764 radix_tree_preload_end();
765 if (unlikely(error))
766 goto err_insert;
4165b9b4
MH
767
768 /* hugetlb pages do not participate in page cache accounting. */
769 if (!huge)
11fb9989 770 __inc_node_page_state(page, NR_FILE_PAGES);
66a0c8ee 771 spin_unlock_irq(&mapping->tree_lock);
00501b53 772 if (!huge)
f627c2f5 773 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
774 trace_mm_filemap_add_to_page_cache(page);
775 return 0;
776err_insert:
777 page->mapping = NULL;
778 /* Leave page->index set: truncation relies upon it */
779 spin_unlock_irq(&mapping->tree_lock);
00501b53 780 if (!huge)
f627c2f5 781 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 782 put_page(page);
1da177e4
LT
783 return error;
784}
a528910e
JW
785
786/**
787 * add_to_page_cache_locked - add a locked page to the pagecache
788 * @page: page to add
789 * @mapping: the page's address_space
790 * @offset: page index
791 * @gfp_mask: page allocation mode
792 *
793 * This function is used to add a page to the pagecache. It must be locked.
794 * This function does not add the page to the LRU. The caller must do that.
795 */
796int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
797 pgoff_t offset, gfp_t gfp_mask)
798{
799 return __add_to_page_cache_locked(page, mapping, offset,
800 gfp_mask, NULL);
801}
e286781d 802EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
803
804int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 805 pgoff_t offset, gfp_t gfp_mask)
1da177e4 806{
a528910e 807 void *shadow = NULL;
4f98a2fe
RR
808 int ret;
809
48c935ad 810 __SetPageLocked(page);
a528910e
JW
811 ret = __add_to_page_cache_locked(page, mapping, offset,
812 gfp_mask, &shadow);
813 if (unlikely(ret))
48c935ad 814 __ClearPageLocked(page);
a528910e
JW
815 else {
816 /*
817 * The page might have been evicted from cache only
818 * recently, in which case it should be activated like
819 * any other repeatedly accessed page.
f0281a00
RR
820 * The exception is pages getting rewritten; evicting other
821 * data from the working set, only to cache data that will
822 * get overwritten with something else, is a waste of memory.
a528910e 823 */
f0281a00
RR
824 if (!(gfp_mask & __GFP_WRITE) &&
825 shadow && workingset_refault(shadow)) {
a528910e
JW
826 SetPageActive(page);
827 workingset_activation(page);
828 } else
829 ClearPageActive(page);
830 lru_cache_add(page);
831 }
1da177e4
LT
832 return ret;
833}
18bc0bbd 834EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 835
44110fe3 836#ifdef CONFIG_NUMA
2ae88149 837struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 838{
c0ff7453
MX
839 int n;
840 struct page *page;
841
44110fe3 842 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
843 unsigned int cpuset_mems_cookie;
844 do {
d26914d1 845 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 846 n = cpuset_mem_spread_node();
96db800f 847 page = __alloc_pages_node(n, gfp, 0);
d26914d1 848 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 849
c0ff7453 850 return page;
44110fe3 851 }
2ae88149 852 return alloc_pages(gfp, 0);
44110fe3 853}
2ae88149 854EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
855#endif
856
1da177e4
LT
857/*
858 * In order to wait for pages to become available there must be
859 * waitqueues associated with pages. By using a hash table of
860 * waitqueues where the bucket discipline is to maintain all
861 * waiters on the same queue and wake all when any of the pages
862 * become available, and for the woken contexts to check to be
863 * sure the appropriate page became available, this saves space
864 * at a cost of "thundering herd" phenomena during rare hash
865 * collisions.
866 */
62906027
NP
867#define PAGE_WAIT_TABLE_BITS 8
868#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
869static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
870
871static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 872{
62906027 873 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 874}
1da177e4 875
62906027 876void __init pagecache_init(void)
1da177e4 877{
62906027 878 int i;
1da177e4 879
62906027
NP
880 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
881 init_waitqueue_head(&page_wait_table[i]);
882
883 page_writeback_init();
1da177e4 884}
1da177e4 885
62906027
NP
886struct wait_page_key {
887 struct page *page;
888 int bit_nr;
889 int page_match;
890};
891
892struct wait_page_queue {
893 struct page *page;
894 int bit_nr;
ac6424b9 895 wait_queue_entry_t wait;
62906027
NP
896};
897
ac6424b9 898static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 899{
62906027
NP
900 struct wait_page_key *key = arg;
901 struct wait_page_queue *wait_page
902 = container_of(wait, struct wait_page_queue, wait);
903
904 if (wait_page->page != key->page)
905 return 0;
906 key->page_match = 1;
f62e00cc 907
62906027
NP
908 if (wait_page->bit_nr != key->bit_nr)
909 return 0;
910 if (test_bit(key->bit_nr, &key->page->flags))
f62e00cc
KM
911 return 0;
912
62906027 913 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
914}
915
74d81bfa 916static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 917{
62906027
NP
918 wait_queue_head_t *q = page_waitqueue(page);
919 struct wait_page_key key;
920 unsigned long flags;
cbbce822 921
62906027
NP
922 key.page = page;
923 key.bit_nr = bit_nr;
924 key.page_match = 0;
925
926 spin_lock_irqsave(&q->lock, flags);
927 __wake_up_locked_key(q, TASK_NORMAL, &key);
928 /*
929 * It is possible for other pages to have collided on the waitqueue
930 * hash, so in that case check for a page match. That prevents a long-
931 * term waiter
932 *
933 * It is still possible to miss a case here, when we woke page waiters
934 * and removed them from the waitqueue, but there are still other
935 * page waiters.
936 */
937 if (!waitqueue_active(q) || !key.page_match) {
938 ClearPageWaiters(page);
939 /*
940 * It's possible to miss clearing Waiters here, when we woke
941 * our page waiters, but the hashed waitqueue has waiters for
942 * other pages on it.
943 *
944 * That's okay, it's a rare case. The next waker will clear it.
945 */
946 }
947 spin_unlock_irqrestore(&q->lock, flags);
948}
74d81bfa
NP
949
950static void wake_up_page(struct page *page, int bit)
951{
952 if (!PageWaiters(page))
953 return;
954 wake_up_page_bit(page, bit);
955}
62906027
NP
956
957static inline int wait_on_page_bit_common(wait_queue_head_t *q,
958 struct page *page, int bit_nr, int state, bool lock)
959{
960 struct wait_page_queue wait_page;
ac6424b9 961 wait_queue_entry_t *wait = &wait_page.wait;
62906027
NP
962 int ret = 0;
963
964 init_wait(wait);
965 wait->func = wake_page_function;
966 wait_page.page = page;
967 wait_page.bit_nr = bit_nr;
968
969 for (;;) {
970 spin_lock_irq(&q->lock);
971
2055da97 972 if (likely(list_empty(&wait->entry))) {
62906027 973 if (lock)
ac6424b9 974 __add_wait_queue_entry_tail_exclusive(q, wait);
62906027
NP
975 else
976 __add_wait_queue(q, wait);
977 SetPageWaiters(page);
978 }
979
980 set_current_state(state);
981
982 spin_unlock_irq(&q->lock);
983
984 if (likely(test_bit(bit_nr, &page->flags))) {
985 io_schedule();
986 if (unlikely(signal_pending_state(state, current))) {
987 ret = -EINTR;
988 break;
989 }
990 }
991
992 if (lock) {
993 if (!test_and_set_bit_lock(bit_nr, &page->flags))
994 break;
995 } else {
996 if (!test_bit(bit_nr, &page->flags))
997 break;
998 }
999 }
1000
1001 finish_wait(q, wait);
1002
1003 /*
1004 * A signal could leave PageWaiters set. Clearing it here if
1005 * !waitqueue_active would be possible (by open-coding finish_wait),
1006 * but still fail to catch it in the case of wait hash collision. We
1007 * already can fail to clear wait hash collision cases, so don't
1008 * bother with signals either.
1009 */
1010
1011 return ret;
1012}
1013
1014void wait_on_page_bit(struct page *page, int bit_nr)
1015{
1016 wait_queue_head_t *q = page_waitqueue(page);
1017 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1018}
1019EXPORT_SYMBOL(wait_on_page_bit);
1020
1021int wait_on_page_bit_killable(struct page *page, int bit_nr)
1022{
1023 wait_queue_head_t *q = page_waitqueue(page);
1024 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
cbbce822 1025}
cbbce822 1026
385e1ca5
DH
1027/**
1028 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1029 * @page: Page defining the wait queue of interest
1030 * @waiter: Waiter to add to the queue
385e1ca5
DH
1031 *
1032 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1033 */
ac6424b9 1034void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1035{
1036 wait_queue_head_t *q = page_waitqueue(page);
1037 unsigned long flags;
1038
1039 spin_lock_irqsave(&q->lock, flags);
1040 __add_wait_queue(q, waiter);
62906027 1041 SetPageWaiters(page);
385e1ca5
DH
1042 spin_unlock_irqrestore(&q->lock, flags);
1043}
1044EXPORT_SYMBOL_GPL(add_page_wait_queue);
1045
b91e1302
LT
1046#ifndef clear_bit_unlock_is_negative_byte
1047
1048/*
1049 * PG_waiters is the high bit in the same byte as PG_lock.
1050 *
1051 * On x86 (and on many other architectures), we can clear PG_lock and
1052 * test the sign bit at the same time. But if the architecture does
1053 * not support that special operation, we just do this all by hand
1054 * instead.
1055 *
1056 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1057 * being cleared, but a memory barrier should be unneccssary since it is
1058 * in the same byte as PG_locked.
1059 */
1060static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1061{
1062 clear_bit_unlock(nr, mem);
1063 /* smp_mb__after_atomic(); */
98473f9f 1064 return test_bit(PG_waiters, mem);
b91e1302
LT
1065}
1066
1067#endif
1068
1da177e4 1069/**
485bb99b 1070 * unlock_page - unlock a locked page
1da177e4
LT
1071 * @page: the page
1072 *
1073 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1074 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1075 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1076 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1077 *
b91e1302
LT
1078 * Note that this depends on PG_waiters being the sign bit in the byte
1079 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1080 * clear the PG_locked bit and test PG_waiters at the same time fairly
1081 * portably (architectures that do LL/SC can test any bit, while x86 can
1082 * test the sign bit).
1da177e4 1083 */
920c7a5d 1084void unlock_page(struct page *page)
1da177e4 1085{
b91e1302 1086 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1087 page = compound_head(page);
309381fe 1088 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1089 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1090 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1091}
1092EXPORT_SYMBOL(unlock_page);
1093
485bb99b
RD
1094/**
1095 * end_page_writeback - end writeback against a page
1096 * @page: the page
1da177e4
LT
1097 */
1098void end_page_writeback(struct page *page)
1099{
888cf2db
MG
1100 /*
1101 * TestClearPageReclaim could be used here but it is an atomic
1102 * operation and overkill in this particular case. Failing to
1103 * shuffle a page marked for immediate reclaim is too mild to
1104 * justify taking an atomic operation penalty at the end of
1105 * ever page writeback.
1106 */
1107 if (PageReclaim(page)) {
1108 ClearPageReclaim(page);
ac6aadb2 1109 rotate_reclaimable_page(page);
888cf2db 1110 }
ac6aadb2
MS
1111
1112 if (!test_clear_page_writeback(page))
1113 BUG();
1114
4e857c58 1115 smp_mb__after_atomic();
1da177e4
LT
1116 wake_up_page(page, PG_writeback);
1117}
1118EXPORT_SYMBOL(end_page_writeback);
1119
57d99845
MW
1120/*
1121 * After completing I/O on a page, call this routine to update the page
1122 * flags appropriately
1123 */
c11f0c0b 1124void page_endio(struct page *page, bool is_write, int err)
57d99845 1125{
c11f0c0b 1126 if (!is_write) {
57d99845
MW
1127 if (!err) {
1128 SetPageUptodate(page);
1129 } else {
1130 ClearPageUptodate(page);
1131 SetPageError(page);
1132 }
1133 unlock_page(page);
abf54548 1134 } else {
57d99845 1135 if (err) {
dd8416c4
MK
1136 struct address_space *mapping;
1137
57d99845 1138 SetPageError(page);
dd8416c4
MK
1139 mapping = page_mapping(page);
1140 if (mapping)
1141 mapping_set_error(mapping, err);
57d99845
MW
1142 }
1143 end_page_writeback(page);
1144 }
1145}
1146EXPORT_SYMBOL_GPL(page_endio);
1147
485bb99b
RD
1148/**
1149 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1150 * @__page: the page to lock
1da177e4 1151 */
62906027 1152void __lock_page(struct page *__page)
1da177e4 1153{
62906027
NP
1154 struct page *page = compound_head(__page);
1155 wait_queue_head_t *q = page_waitqueue(page);
1156 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1da177e4
LT
1157}
1158EXPORT_SYMBOL(__lock_page);
1159
62906027 1160int __lock_page_killable(struct page *__page)
2687a356 1161{
62906027
NP
1162 struct page *page = compound_head(__page);
1163 wait_queue_head_t *q = page_waitqueue(page);
1164 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
2687a356 1165}
18bc0bbd 1166EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1167
9a95f3cf
PC
1168/*
1169 * Return values:
1170 * 1 - page is locked; mmap_sem is still held.
1171 * 0 - page is not locked.
1172 * mmap_sem has been released (up_read()), unless flags had both
1173 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1174 * which case mmap_sem is still held.
1175 *
1176 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1177 * with the page locked and the mmap_sem unperturbed.
1178 */
d065bd81
ML
1179int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1180 unsigned int flags)
1181{
37b23e05
KM
1182 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1183 /*
1184 * CAUTION! In this case, mmap_sem is not released
1185 * even though return 0.
1186 */
1187 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1188 return 0;
1189
1190 up_read(&mm->mmap_sem);
1191 if (flags & FAULT_FLAG_KILLABLE)
1192 wait_on_page_locked_killable(page);
1193 else
318b275f 1194 wait_on_page_locked(page);
d065bd81 1195 return 0;
37b23e05
KM
1196 } else {
1197 if (flags & FAULT_FLAG_KILLABLE) {
1198 int ret;
1199
1200 ret = __lock_page_killable(page);
1201 if (ret) {
1202 up_read(&mm->mmap_sem);
1203 return 0;
1204 }
1205 } else
1206 __lock_page(page);
1207 return 1;
d065bd81
ML
1208 }
1209}
1210
e7b563bb
JW
1211/**
1212 * page_cache_next_hole - find the next hole (not-present entry)
1213 * @mapping: mapping
1214 * @index: index
1215 * @max_scan: maximum range to search
1216 *
1217 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1218 * lowest indexed hole.
1219 *
1220 * Returns: the index of the hole if found, otherwise returns an index
1221 * outside of the set specified (in which case 'return - index >=
1222 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1223 * be returned.
1224 *
1225 * page_cache_next_hole may be called under rcu_read_lock. However,
1226 * like radix_tree_gang_lookup, this will not atomically search a
1227 * snapshot of the tree at a single point in time. For example, if a
1228 * hole is created at index 5, then subsequently a hole is created at
1229 * index 10, page_cache_next_hole covering both indexes may return 10
1230 * if called under rcu_read_lock.
1231 */
1232pgoff_t page_cache_next_hole(struct address_space *mapping,
1233 pgoff_t index, unsigned long max_scan)
1234{
1235 unsigned long i;
1236
1237 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1238 struct page *page;
1239
1240 page = radix_tree_lookup(&mapping->page_tree, index);
1241 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1242 break;
1243 index++;
1244 if (index == 0)
1245 break;
1246 }
1247
1248 return index;
1249}
1250EXPORT_SYMBOL(page_cache_next_hole);
1251
1252/**
1253 * page_cache_prev_hole - find the prev hole (not-present entry)
1254 * @mapping: mapping
1255 * @index: index
1256 * @max_scan: maximum range to search
1257 *
1258 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1259 * the first hole.
1260 *
1261 * Returns: the index of the hole if found, otherwise returns an index
1262 * outside of the set specified (in which case 'index - return >=
1263 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1264 * will be returned.
1265 *
1266 * page_cache_prev_hole may be called under rcu_read_lock. However,
1267 * like radix_tree_gang_lookup, this will not atomically search a
1268 * snapshot of the tree at a single point in time. For example, if a
1269 * hole is created at index 10, then subsequently a hole is created at
1270 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1271 * called under rcu_read_lock.
1272 */
1273pgoff_t page_cache_prev_hole(struct address_space *mapping,
1274 pgoff_t index, unsigned long max_scan)
1275{
1276 unsigned long i;
1277
1278 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1279 struct page *page;
1280
1281 page = radix_tree_lookup(&mapping->page_tree, index);
1282 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1283 break;
1284 index--;
1285 if (index == ULONG_MAX)
1286 break;
1287 }
1288
1289 return index;
1290}
1291EXPORT_SYMBOL(page_cache_prev_hole);
1292
485bb99b 1293/**
0cd6144a 1294 * find_get_entry - find and get a page cache entry
485bb99b 1295 * @mapping: the address_space to search
0cd6144a
JW
1296 * @offset: the page cache index
1297 *
1298 * Looks up the page cache slot at @mapping & @offset. If there is a
1299 * page cache page, it is returned with an increased refcount.
485bb99b 1300 *
139b6a6f
JW
1301 * If the slot holds a shadow entry of a previously evicted page, or a
1302 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1303 *
1304 * Otherwise, %NULL is returned.
1da177e4 1305 */
0cd6144a 1306struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1307{
a60637c8 1308 void **pagep;
83929372 1309 struct page *head, *page;
1da177e4 1310
a60637c8
NP
1311 rcu_read_lock();
1312repeat:
1313 page = NULL;
1314 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1315 if (pagep) {
1316 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1317 if (unlikely(!page))
1318 goto out;
a2c16d6c 1319 if (radix_tree_exception(page)) {
8079b1c8
HD
1320 if (radix_tree_deref_retry(page))
1321 goto repeat;
1322 /*
139b6a6f
JW
1323 * A shadow entry of a recently evicted page,
1324 * or a swap entry from shmem/tmpfs. Return
1325 * it without attempting to raise page count.
8079b1c8
HD
1326 */
1327 goto out;
a2c16d6c 1328 }
83929372
KS
1329
1330 head = compound_head(page);
1331 if (!page_cache_get_speculative(head))
1332 goto repeat;
1333
1334 /* The page was split under us? */
1335 if (compound_head(page) != head) {
1336 put_page(head);
a60637c8 1337 goto repeat;
83929372 1338 }
a60637c8
NP
1339
1340 /*
1341 * Has the page moved?
1342 * This is part of the lockless pagecache protocol. See
1343 * include/linux/pagemap.h for details.
1344 */
1345 if (unlikely(page != *pagep)) {
83929372 1346 put_page(head);
a60637c8
NP
1347 goto repeat;
1348 }
1349 }
27d20fdd 1350out:
a60637c8
NP
1351 rcu_read_unlock();
1352
1da177e4
LT
1353 return page;
1354}
0cd6144a 1355EXPORT_SYMBOL(find_get_entry);
1da177e4 1356
0cd6144a
JW
1357/**
1358 * find_lock_entry - locate, pin and lock a page cache entry
1359 * @mapping: the address_space to search
1360 * @offset: the page cache index
1361 *
1362 * Looks up the page cache slot at @mapping & @offset. If there is a
1363 * page cache page, it is returned locked and with an increased
1364 * refcount.
1365 *
139b6a6f
JW
1366 * If the slot holds a shadow entry of a previously evicted page, or a
1367 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1368 *
1369 * Otherwise, %NULL is returned.
1370 *
1371 * find_lock_entry() may sleep.
1372 */
1373struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1374{
1375 struct page *page;
1376
1da177e4 1377repeat:
0cd6144a 1378 page = find_get_entry(mapping, offset);
a2c16d6c 1379 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1380 lock_page(page);
1381 /* Has the page been truncated? */
83929372 1382 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1383 unlock_page(page);
09cbfeaf 1384 put_page(page);
a60637c8 1385 goto repeat;
1da177e4 1386 }
83929372 1387 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1388 }
1da177e4
LT
1389 return page;
1390}
0cd6144a
JW
1391EXPORT_SYMBOL(find_lock_entry);
1392
1393/**
2457aec6 1394 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1395 * @mapping: the address_space to search
1396 * @offset: the page index
2457aec6 1397 * @fgp_flags: PCG flags
45f87de5 1398 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1399 *
2457aec6 1400 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1401 *
75325189 1402 * PCG flags modify how the page is returned.
0cd6144a 1403 *
0e056eb5
MCC
1404 * @fgp_flags can be:
1405 *
1406 * - FGP_ACCESSED: the page will be marked accessed
1407 * - FGP_LOCK: Page is return locked
1408 * - FGP_CREAT: If page is not present then a new page is allocated using
1409 * @gfp_mask and added to the page cache and the VM's LRU
1410 * list. The page is returned locked and with an increased
1411 * refcount. Otherwise, NULL is returned.
1da177e4 1412 *
2457aec6
MG
1413 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1414 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1415 *
2457aec6 1416 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1417 */
2457aec6 1418struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1419 int fgp_flags, gfp_t gfp_mask)
1da177e4 1420{
eb2be189 1421 struct page *page;
2457aec6 1422
1da177e4 1423repeat:
2457aec6
MG
1424 page = find_get_entry(mapping, offset);
1425 if (radix_tree_exceptional_entry(page))
1426 page = NULL;
1427 if (!page)
1428 goto no_page;
1429
1430 if (fgp_flags & FGP_LOCK) {
1431 if (fgp_flags & FGP_NOWAIT) {
1432 if (!trylock_page(page)) {
09cbfeaf 1433 put_page(page);
2457aec6
MG
1434 return NULL;
1435 }
1436 } else {
1437 lock_page(page);
1438 }
1439
1440 /* Has the page been truncated? */
1441 if (unlikely(page->mapping != mapping)) {
1442 unlock_page(page);
09cbfeaf 1443 put_page(page);
2457aec6
MG
1444 goto repeat;
1445 }
1446 VM_BUG_ON_PAGE(page->index != offset, page);
1447 }
1448
1449 if (page && (fgp_flags & FGP_ACCESSED))
1450 mark_page_accessed(page);
1451
1452no_page:
1453 if (!page && (fgp_flags & FGP_CREAT)) {
1454 int err;
1455 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1456 gfp_mask |= __GFP_WRITE;
1457 if (fgp_flags & FGP_NOFS)
1458 gfp_mask &= ~__GFP_FS;
2457aec6 1459
45f87de5 1460 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1461 if (!page)
1462 return NULL;
2457aec6
MG
1463
1464 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1465 fgp_flags |= FGP_LOCK;
1466
eb39d618 1467 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1468 if (fgp_flags & FGP_ACCESSED)
eb39d618 1469 __SetPageReferenced(page);
2457aec6 1470
45f87de5
MH
1471 err = add_to_page_cache_lru(page, mapping, offset,
1472 gfp_mask & GFP_RECLAIM_MASK);
eb2be189 1473 if (unlikely(err)) {
09cbfeaf 1474 put_page(page);
eb2be189
NP
1475 page = NULL;
1476 if (err == -EEXIST)
1477 goto repeat;
1da177e4 1478 }
1da177e4 1479 }
2457aec6 1480
1da177e4
LT
1481 return page;
1482}
2457aec6 1483EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1484
0cd6144a
JW
1485/**
1486 * find_get_entries - gang pagecache lookup
1487 * @mapping: The address_space to search
1488 * @start: The starting page cache index
1489 * @nr_entries: The maximum number of entries
1490 * @entries: Where the resulting entries are placed
1491 * @indices: The cache indices corresponding to the entries in @entries
1492 *
1493 * find_get_entries() will search for and return a group of up to
1494 * @nr_entries entries in the mapping. The entries are placed at
1495 * @entries. find_get_entries() takes a reference against any actual
1496 * pages it returns.
1497 *
1498 * The search returns a group of mapping-contiguous page cache entries
1499 * with ascending indexes. There may be holes in the indices due to
1500 * not-present pages.
1501 *
139b6a6f
JW
1502 * Any shadow entries of evicted pages, or swap entries from
1503 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1504 *
1505 * find_get_entries() returns the number of pages and shadow entries
1506 * which were found.
1507 */
1508unsigned find_get_entries(struct address_space *mapping,
1509 pgoff_t start, unsigned int nr_entries,
1510 struct page **entries, pgoff_t *indices)
1511{
1512 void **slot;
1513 unsigned int ret = 0;
1514 struct radix_tree_iter iter;
1515
1516 if (!nr_entries)
1517 return 0;
1518
1519 rcu_read_lock();
0cd6144a 1520 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1521 struct page *head, *page;
0cd6144a
JW
1522repeat:
1523 page = radix_tree_deref_slot(slot);
1524 if (unlikely(!page))
1525 continue;
1526 if (radix_tree_exception(page)) {
2cf938aa
MW
1527 if (radix_tree_deref_retry(page)) {
1528 slot = radix_tree_iter_retry(&iter);
1529 continue;
1530 }
0cd6144a 1531 /*
f9fe48be
RZ
1532 * A shadow entry of a recently evicted page, a swap
1533 * entry from shmem/tmpfs or a DAX entry. Return it
1534 * without attempting to raise page count.
0cd6144a
JW
1535 */
1536 goto export;
1537 }
83929372
KS
1538
1539 head = compound_head(page);
1540 if (!page_cache_get_speculative(head))
1541 goto repeat;
1542
1543 /* The page was split under us? */
1544 if (compound_head(page) != head) {
1545 put_page(head);
0cd6144a 1546 goto repeat;
83929372 1547 }
0cd6144a
JW
1548
1549 /* Has the page moved? */
1550 if (unlikely(page != *slot)) {
83929372 1551 put_page(head);
0cd6144a
JW
1552 goto repeat;
1553 }
1554export:
1555 indices[ret] = iter.index;
1556 entries[ret] = page;
1557 if (++ret == nr_entries)
1558 break;
1559 }
1560 rcu_read_unlock();
1561 return ret;
1562}
1563
1da177e4
LT
1564/**
1565 * find_get_pages - gang pagecache lookup
1566 * @mapping: The address_space to search
1567 * @start: The starting page index
1568 * @nr_pages: The maximum number of pages
1569 * @pages: Where the resulting pages are placed
1570 *
1571 * find_get_pages() will search for and return a group of up to
1572 * @nr_pages pages in the mapping. The pages are placed at @pages.
1573 * find_get_pages() takes a reference against the returned pages.
1574 *
1575 * The search returns a group of mapping-contiguous pages with ascending
1576 * indexes. There may be holes in the indices due to not-present pages.
1577 *
1578 * find_get_pages() returns the number of pages which were found.
1579 */
1580unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1581 unsigned int nr_pages, struct page **pages)
1582{
0fc9d104
KK
1583 struct radix_tree_iter iter;
1584 void **slot;
1585 unsigned ret = 0;
1586
1587 if (unlikely(!nr_pages))
1588 return 0;
a60637c8
NP
1589
1590 rcu_read_lock();
0fc9d104 1591 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1592 struct page *head, *page;
a60637c8 1593repeat:
0fc9d104 1594 page = radix_tree_deref_slot(slot);
a60637c8
NP
1595 if (unlikely(!page))
1596 continue;
9d8aa4ea 1597
a2c16d6c 1598 if (radix_tree_exception(page)) {
8079b1c8 1599 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1600 slot = radix_tree_iter_retry(&iter);
1601 continue;
8079b1c8 1602 }
a2c16d6c 1603 /*
139b6a6f
JW
1604 * A shadow entry of a recently evicted page,
1605 * or a swap entry from shmem/tmpfs. Skip
1606 * over it.
a2c16d6c 1607 */
8079b1c8 1608 continue;
27d20fdd 1609 }
a60637c8 1610
83929372
KS
1611 head = compound_head(page);
1612 if (!page_cache_get_speculative(head))
1613 goto repeat;
1614
1615 /* The page was split under us? */
1616 if (compound_head(page) != head) {
1617 put_page(head);
a60637c8 1618 goto repeat;
83929372 1619 }
a60637c8
NP
1620
1621 /* Has the page moved? */
0fc9d104 1622 if (unlikely(page != *slot)) {
83929372 1623 put_page(head);
a60637c8
NP
1624 goto repeat;
1625 }
1da177e4 1626
a60637c8 1627 pages[ret] = page;
0fc9d104
KK
1628 if (++ret == nr_pages)
1629 break;
a60637c8 1630 }
5b280c0c 1631
a60637c8 1632 rcu_read_unlock();
1da177e4
LT
1633 return ret;
1634}
1635
ebf43500
JA
1636/**
1637 * find_get_pages_contig - gang contiguous pagecache lookup
1638 * @mapping: The address_space to search
1639 * @index: The starting page index
1640 * @nr_pages: The maximum number of pages
1641 * @pages: Where the resulting pages are placed
1642 *
1643 * find_get_pages_contig() works exactly like find_get_pages(), except
1644 * that the returned number of pages are guaranteed to be contiguous.
1645 *
1646 * find_get_pages_contig() returns the number of pages which were found.
1647 */
1648unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1649 unsigned int nr_pages, struct page **pages)
1650{
0fc9d104
KK
1651 struct radix_tree_iter iter;
1652 void **slot;
1653 unsigned int ret = 0;
1654
1655 if (unlikely(!nr_pages))
1656 return 0;
a60637c8
NP
1657
1658 rcu_read_lock();
0fc9d104 1659 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
83929372 1660 struct page *head, *page;
a60637c8 1661repeat:
0fc9d104
KK
1662 page = radix_tree_deref_slot(slot);
1663 /* The hole, there no reason to continue */
a60637c8 1664 if (unlikely(!page))
0fc9d104 1665 break;
9d8aa4ea 1666
a2c16d6c 1667 if (radix_tree_exception(page)) {
8079b1c8 1668 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1669 slot = radix_tree_iter_retry(&iter);
1670 continue;
8079b1c8 1671 }
a2c16d6c 1672 /*
139b6a6f
JW
1673 * A shadow entry of a recently evicted page,
1674 * or a swap entry from shmem/tmpfs. Stop
1675 * looking for contiguous pages.
a2c16d6c 1676 */
8079b1c8 1677 break;
a2c16d6c 1678 }
ebf43500 1679
83929372
KS
1680 head = compound_head(page);
1681 if (!page_cache_get_speculative(head))
1682 goto repeat;
1683
1684 /* The page was split under us? */
1685 if (compound_head(page) != head) {
1686 put_page(head);
a60637c8 1687 goto repeat;
83929372 1688 }
a60637c8
NP
1689
1690 /* Has the page moved? */
0fc9d104 1691 if (unlikely(page != *slot)) {
83929372 1692 put_page(head);
a60637c8
NP
1693 goto repeat;
1694 }
1695
9cbb4cb2
NP
1696 /*
1697 * must check mapping and index after taking the ref.
1698 * otherwise we can get both false positives and false
1699 * negatives, which is just confusing to the caller.
1700 */
83929372 1701 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
09cbfeaf 1702 put_page(page);
9cbb4cb2
NP
1703 break;
1704 }
1705
a60637c8 1706 pages[ret] = page;
0fc9d104
KK
1707 if (++ret == nr_pages)
1708 break;
ebf43500 1709 }
a60637c8
NP
1710 rcu_read_unlock();
1711 return ret;
ebf43500 1712}
ef71c15c 1713EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1714
485bb99b
RD
1715/**
1716 * find_get_pages_tag - find and return pages that match @tag
1717 * @mapping: the address_space to search
1718 * @index: the starting page index
1719 * @tag: the tag index
1720 * @nr_pages: the maximum number of pages
1721 * @pages: where the resulting pages are placed
1722 *
1da177e4 1723 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1724 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1725 */
1726unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1727 int tag, unsigned int nr_pages, struct page **pages)
1728{
0fc9d104
KK
1729 struct radix_tree_iter iter;
1730 void **slot;
1731 unsigned ret = 0;
1732
1733 if (unlikely(!nr_pages))
1734 return 0;
a60637c8
NP
1735
1736 rcu_read_lock();
0fc9d104
KK
1737 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1738 &iter, *index, tag) {
83929372 1739 struct page *head, *page;
a60637c8 1740repeat:
0fc9d104 1741 page = radix_tree_deref_slot(slot);
a60637c8
NP
1742 if (unlikely(!page))
1743 continue;
9d8aa4ea 1744
a2c16d6c 1745 if (radix_tree_exception(page)) {
8079b1c8 1746 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1747 slot = radix_tree_iter_retry(&iter);
1748 continue;
8079b1c8 1749 }
a2c16d6c 1750 /*
139b6a6f
JW
1751 * A shadow entry of a recently evicted page.
1752 *
1753 * Those entries should never be tagged, but
1754 * this tree walk is lockless and the tags are
1755 * looked up in bulk, one radix tree node at a
1756 * time, so there is a sizable window for page
1757 * reclaim to evict a page we saw tagged.
1758 *
1759 * Skip over it.
a2c16d6c 1760 */
139b6a6f 1761 continue;
a2c16d6c 1762 }
a60637c8 1763
83929372
KS
1764 head = compound_head(page);
1765 if (!page_cache_get_speculative(head))
a60637c8
NP
1766 goto repeat;
1767
83929372
KS
1768 /* The page was split under us? */
1769 if (compound_head(page) != head) {
1770 put_page(head);
1771 goto repeat;
1772 }
1773
a60637c8 1774 /* Has the page moved? */
0fc9d104 1775 if (unlikely(page != *slot)) {
83929372 1776 put_page(head);
a60637c8
NP
1777 goto repeat;
1778 }
1779
1780 pages[ret] = page;
0fc9d104
KK
1781 if (++ret == nr_pages)
1782 break;
a60637c8 1783 }
5b280c0c 1784
a60637c8 1785 rcu_read_unlock();
1da177e4 1786
1da177e4
LT
1787 if (ret)
1788 *index = pages[ret - 1]->index + 1;
a60637c8 1789
1da177e4
LT
1790 return ret;
1791}
ef71c15c 1792EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1793
7e7f7749
RZ
1794/**
1795 * find_get_entries_tag - find and return entries that match @tag
1796 * @mapping: the address_space to search
1797 * @start: the starting page cache index
1798 * @tag: the tag index
1799 * @nr_entries: the maximum number of entries
1800 * @entries: where the resulting entries are placed
1801 * @indices: the cache indices corresponding to the entries in @entries
1802 *
1803 * Like find_get_entries, except we only return entries which are tagged with
1804 * @tag.
1805 */
1806unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1807 int tag, unsigned int nr_entries,
1808 struct page **entries, pgoff_t *indices)
1809{
1810 void **slot;
1811 unsigned int ret = 0;
1812 struct radix_tree_iter iter;
1813
1814 if (!nr_entries)
1815 return 0;
1816
1817 rcu_read_lock();
7e7f7749
RZ
1818 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1819 &iter, start, tag) {
83929372 1820 struct page *head, *page;
7e7f7749
RZ
1821repeat:
1822 page = radix_tree_deref_slot(slot);
1823 if (unlikely(!page))
1824 continue;
1825 if (radix_tree_exception(page)) {
1826 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1827 slot = radix_tree_iter_retry(&iter);
1828 continue;
7e7f7749
RZ
1829 }
1830
1831 /*
1832 * A shadow entry of a recently evicted page, a swap
1833 * entry from shmem/tmpfs or a DAX entry. Return it
1834 * without attempting to raise page count.
1835 */
1836 goto export;
1837 }
83929372
KS
1838
1839 head = compound_head(page);
1840 if (!page_cache_get_speculative(head))
7e7f7749
RZ
1841 goto repeat;
1842
83929372
KS
1843 /* The page was split under us? */
1844 if (compound_head(page) != head) {
1845 put_page(head);
1846 goto repeat;
1847 }
1848
7e7f7749
RZ
1849 /* Has the page moved? */
1850 if (unlikely(page != *slot)) {
83929372 1851 put_page(head);
7e7f7749
RZ
1852 goto repeat;
1853 }
1854export:
1855 indices[ret] = iter.index;
1856 entries[ret] = page;
1857 if (++ret == nr_entries)
1858 break;
1859 }
1860 rcu_read_unlock();
1861 return ret;
1862}
1863EXPORT_SYMBOL(find_get_entries_tag);
1864
76d42bd9
WF
1865/*
1866 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1867 * a _large_ part of the i/o request. Imagine the worst scenario:
1868 *
1869 * ---R__________________________________________B__________
1870 * ^ reading here ^ bad block(assume 4k)
1871 *
1872 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1873 * => failing the whole request => read(R) => read(R+1) =>
1874 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1875 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1876 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1877 *
1878 * It is going insane. Fix it by quickly scaling down the readahead size.
1879 */
1880static void shrink_readahead_size_eio(struct file *filp,
1881 struct file_ra_state *ra)
1882{
76d42bd9 1883 ra->ra_pages /= 4;
76d42bd9
WF
1884}
1885
485bb99b 1886/**
36e78914 1887 * do_generic_file_read - generic file read routine
485bb99b
RD
1888 * @filp: the file to read
1889 * @ppos: current file position
6e58e79d
AV
1890 * @iter: data destination
1891 * @written: already copied
485bb99b 1892 *
1da177e4 1893 * This is a generic file read routine, and uses the
485bb99b 1894 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1895 *
1896 * This is really ugly. But the goto's actually try to clarify some
1897 * of the logic when it comes to error handling etc.
1da177e4 1898 */
6e58e79d
AV
1899static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1900 struct iov_iter *iter, ssize_t written)
1da177e4 1901{
36e78914 1902 struct address_space *mapping = filp->f_mapping;
1da177e4 1903 struct inode *inode = mapping->host;
36e78914 1904 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1905 pgoff_t index;
1906 pgoff_t last_index;
1907 pgoff_t prev_index;
1908 unsigned long offset; /* offset into pagecache page */
ec0f1637 1909 unsigned int prev_offset;
6e58e79d 1910 int error = 0;
1da177e4 1911
c2a9737f 1912 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 1913 return 0;
c2a9737f
WF
1914 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1915
09cbfeaf
KS
1916 index = *ppos >> PAGE_SHIFT;
1917 prev_index = ra->prev_pos >> PAGE_SHIFT;
1918 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1919 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1920 offset = *ppos & ~PAGE_MASK;
1da177e4 1921
1da177e4
LT
1922 for (;;) {
1923 struct page *page;
57f6b96c 1924 pgoff_t end_index;
a32ea1e1 1925 loff_t isize;
1da177e4
LT
1926 unsigned long nr, ret;
1927
1da177e4 1928 cond_resched();
1da177e4 1929find_page:
5abf186a
MH
1930 if (fatal_signal_pending(current)) {
1931 error = -EINTR;
1932 goto out;
1933 }
1934
1da177e4 1935 page = find_get_page(mapping, index);
3ea89ee8 1936 if (!page) {
cf914a7d 1937 page_cache_sync_readahead(mapping,
7ff81078 1938 ra, filp,
3ea89ee8
FW
1939 index, last_index - index);
1940 page = find_get_page(mapping, index);
1941 if (unlikely(page == NULL))
1942 goto no_cached_page;
1943 }
1944 if (PageReadahead(page)) {
cf914a7d 1945 page_cache_async_readahead(mapping,
7ff81078 1946 ra, filp, page,
3ea89ee8 1947 index, last_index - index);
1da177e4 1948 }
8ab22b9a 1949 if (!PageUptodate(page)) {
ebded027
MG
1950 /*
1951 * See comment in do_read_cache_page on why
1952 * wait_on_page_locked is used to avoid unnecessarily
1953 * serialisations and why it's safe.
1954 */
c4b209a4
BVA
1955 error = wait_on_page_locked_killable(page);
1956 if (unlikely(error))
1957 goto readpage_error;
ebded027
MG
1958 if (PageUptodate(page))
1959 goto page_ok;
1960
09cbfeaf 1961 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
1962 !mapping->a_ops->is_partially_uptodate)
1963 goto page_not_up_to_date;
6d6d36bc
EG
1964 /* pipes can't handle partially uptodate pages */
1965 if (unlikely(iter->type & ITER_PIPE))
1966 goto page_not_up_to_date;
529ae9aa 1967 if (!trylock_page(page))
8ab22b9a 1968 goto page_not_up_to_date;
8d056cb9
DH
1969 /* Did it get truncated before we got the lock? */
1970 if (!page->mapping)
1971 goto page_not_up_to_date_locked;
8ab22b9a 1972 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1973 offset, iter->count))
8ab22b9a
HH
1974 goto page_not_up_to_date_locked;
1975 unlock_page(page);
1976 }
1da177e4 1977page_ok:
a32ea1e1
N
1978 /*
1979 * i_size must be checked after we know the page is Uptodate.
1980 *
1981 * Checking i_size after the check allows us to calculate
1982 * the correct value for "nr", which means the zero-filled
1983 * part of the page is not copied back to userspace (unless
1984 * another truncate extends the file - this is desired though).
1985 */
1986
1987 isize = i_size_read(inode);
09cbfeaf 1988 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 1989 if (unlikely(!isize || index > end_index)) {
09cbfeaf 1990 put_page(page);
a32ea1e1
N
1991 goto out;
1992 }
1993
1994 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 1995 nr = PAGE_SIZE;
a32ea1e1 1996 if (index == end_index) {
09cbfeaf 1997 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 1998 if (nr <= offset) {
09cbfeaf 1999 put_page(page);
a32ea1e1
N
2000 goto out;
2001 }
2002 }
2003 nr = nr - offset;
1da177e4
LT
2004
2005 /* If users can be writing to this page using arbitrary
2006 * virtual addresses, take care about potential aliasing
2007 * before reading the page on the kernel side.
2008 */
2009 if (mapping_writably_mapped(mapping))
2010 flush_dcache_page(page);
2011
2012 /*
ec0f1637
JK
2013 * When a sequential read accesses a page several times,
2014 * only mark it as accessed the first time.
1da177e4 2015 */
ec0f1637 2016 if (prev_index != index || offset != prev_offset)
1da177e4
LT
2017 mark_page_accessed(page);
2018 prev_index = index;
2019
2020 /*
2021 * Ok, we have the page, and it's up-to-date, so
2022 * now we can copy it to user space...
1da177e4 2023 */
6e58e79d
AV
2024
2025 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 2026 offset += ret;
09cbfeaf
KS
2027 index += offset >> PAGE_SHIFT;
2028 offset &= ~PAGE_MASK;
6ce745ed 2029 prev_offset = offset;
1da177e4 2030
09cbfeaf 2031 put_page(page);
6e58e79d
AV
2032 written += ret;
2033 if (!iov_iter_count(iter))
2034 goto out;
2035 if (ret < nr) {
2036 error = -EFAULT;
2037 goto out;
2038 }
2039 continue;
1da177e4
LT
2040
2041page_not_up_to_date:
2042 /* Get exclusive access to the page ... */
85462323
ON
2043 error = lock_page_killable(page);
2044 if (unlikely(error))
2045 goto readpage_error;
1da177e4 2046
8ab22b9a 2047page_not_up_to_date_locked:
da6052f7 2048 /* Did it get truncated before we got the lock? */
1da177e4
LT
2049 if (!page->mapping) {
2050 unlock_page(page);
09cbfeaf 2051 put_page(page);
1da177e4
LT
2052 continue;
2053 }
2054
2055 /* Did somebody else fill it already? */
2056 if (PageUptodate(page)) {
2057 unlock_page(page);
2058 goto page_ok;
2059 }
2060
2061readpage:
91803b49
JM
2062 /*
2063 * A previous I/O error may have been due to temporary
2064 * failures, eg. multipath errors.
2065 * PG_error will be set again if readpage fails.
2066 */
2067 ClearPageError(page);
1da177e4
LT
2068 /* Start the actual read. The read will unlock the page. */
2069 error = mapping->a_ops->readpage(filp, page);
2070
994fc28c
ZB
2071 if (unlikely(error)) {
2072 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 2073 put_page(page);
6e58e79d 2074 error = 0;
994fc28c
ZB
2075 goto find_page;
2076 }
1da177e4 2077 goto readpage_error;
994fc28c 2078 }
1da177e4
LT
2079
2080 if (!PageUptodate(page)) {
85462323
ON
2081 error = lock_page_killable(page);
2082 if (unlikely(error))
2083 goto readpage_error;
1da177e4
LT
2084 if (!PageUptodate(page)) {
2085 if (page->mapping == NULL) {
2086 /*
2ecdc82e 2087 * invalidate_mapping_pages got it
1da177e4
LT
2088 */
2089 unlock_page(page);
09cbfeaf 2090 put_page(page);
1da177e4
LT
2091 goto find_page;
2092 }
2093 unlock_page(page);
7ff81078 2094 shrink_readahead_size_eio(filp, ra);
85462323
ON
2095 error = -EIO;
2096 goto readpage_error;
1da177e4
LT
2097 }
2098 unlock_page(page);
2099 }
2100
1da177e4
LT
2101 goto page_ok;
2102
2103readpage_error:
2104 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 2105 put_page(page);
1da177e4
LT
2106 goto out;
2107
2108no_cached_page:
2109 /*
2110 * Ok, it wasn't cached, so we need to create a new
2111 * page..
2112 */
eb2be189
NP
2113 page = page_cache_alloc_cold(mapping);
2114 if (!page) {
6e58e79d 2115 error = -ENOMEM;
eb2be189 2116 goto out;
1da177e4 2117 }
6afdb859 2118 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2119 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2120 if (error) {
09cbfeaf 2121 put_page(page);
6e58e79d
AV
2122 if (error == -EEXIST) {
2123 error = 0;
1da177e4 2124 goto find_page;
6e58e79d 2125 }
1da177e4
LT
2126 goto out;
2127 }
1da177e4
LT
2128 goto readpage;
2129 }
2130
2131out:
7ff81078 2132 ra->prev_pos = prev_index;
09cbfeaf 2133 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2134 ra->prev_pos |= prev_offset;
1da177e4 2135
09cbfeaf 2136 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2137 file_accessed(filp);
6e58e79d 2138 return written ? written : error;
1da177e4
LT
2139}
2140
485bb99b 2141/**
6abd2322 2142 * generic_file_read_iter - generic filesystem read routine
485bb99b 2143 * @iocb: kernel I/O control block
6abd2322 2144 * @iter: destination for the data read
485bb99b 2145 *
6abd2322 2146 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
2147 * that can use the page cache directly.
2148 */
2149ssize_t
ed978a81 2150generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2151{
ed978a81 2152 struct file *file = iocb->ki_filp;
cb66a7a1 2153 ssize_t retval = 0;
e7080a43
NS
2154 size_t count = iov_iter_count(iter);
2155
2156 if (!count)
2157 goto out; /* skip atime */
1da177e4 2158
2ba48ce5 2159 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
2160 struct address_space *mapping = file->f_mapping;
2161 struct inode *inode = mapping->host;
543ade1f 2162 loff_t size;
1da177e4 2163
1da177e4 2164 size = i_size_read(inode);
6be96d3a
GR
2165 if (iocb->ki_flags & IOCB_NOWAIT) {
2166 if (filemap_range_has_page(mapping, iocb->ki_pos,
2167 iocb->ki_pos + count - 1))
2168 return -EAGAIN;
2169 } else {
2170 retval = filemap_write_and_wait_range(mapping,
2171 iocb->ki_pos,
2172 iocb->ki_pos + count - 1);
2173 if (retval < 0)
2174 goto out;
2175 }
d8d3d94b 2176
0d5b0cf2
CH
2177 file_accessed(file);
2178
5ecda137 2179 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2180 if (retval >= 0) {
c64fb5c7 2181 iocb->ki_pos += retval;
5ecda137 2182 count -= retval;
9fe55eea 2183 }
5b47d59a 2184 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2185
9fe55eea
SW
2186 /*
2187 * Btrfs can have a short DIO read if we encounter
2188 * compressed extents, so if there was an error, or if
2189 * we've already read everything we wanted to, or if
2190 * there was a short read because we hit EOF, go ahead
2191 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2192 * the rest of the read. Buffered reads will not work for
2193 * DAX files, so don't bother trying.
9fe55eea 2194 */
5ecda137 2195 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2196 IS_DAX(inode))
9fe55eea 2197 goto out;
1da177e4
LT
2198 }
2199
c64fb5c7 2200 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1da177e4
LT
2201out:
2202 return retval;
2203}
ed978a81 2204EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2205
1da177e4 2206#ifdef CONFIG_MMU
485bb99b
RD
2207/**
2208 * page_cache_read - adds requested page to the page cache if not already there
2209 * @file: file to read
2210 * @offset: page index
62eb320a 2211 * @gfp_mask: memory allocation flags
485bb99b 2212 *
1da177e4
LT
2213 * This adds the requested page to the page cache if it isn't already there,
2214 * and schedules an I/O to read in its contents from disk.
2215 */
c20cd45e 2216static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
2217{
2218 struct address_space *mapping = file->f_mapping;
99dadfdd 2219 struct page *page;
994fc28c 2220 int ret;
1da177e4 2221
994fc28c 2222 do {
c20cd45e 2223 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
994fc28c
ZB
2224 if (!page)
2225 return -ENOMEM;
2226
c20cd45e 2227 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
994fc28c
ZB
2228 if (ret == 0)
2229 ret = mapping->a_ops->readpage(file, page);
2230 else if (ret == -EEXIST)
2231 ret = 0; /* losing race to add is OK */
1da177e4 2232
09cbfeaf 2233 put_page(page);
1da177e4 2234
994fc28c 2235 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 2236
994fc28c 2237 return ret;
1da177e4
LT
2238}
2239
2240#define MMAP_LOTSAMISS (100)
2241
ef00e08e
LT
2242/*
2243 * Synchronous readahead happens when we don't even find
2244 * a page in the page cache at all.
2245 */
2246static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2247 struct file_ra_state *ra,
2248 struct file *file,
2249 pgoff_t offset)
2250{
ef00e08e
LT
2251 struct address_space *mapping = file->f_mapping;
2252
2253 /* If we don't want any read-ahead, don't bother */
64363aad 2254 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 2255 return;
275b12bf
WF
2256 if (!ra->ra_pages)
2257 return;
ef00e08e 2258
64363aad 2259 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
2260 page_cache_sync_readahead(mapping, ra, file, offset,
2261 ra->ra_pages);
ef00e08e
LT
2262 return;
2263 }
2264
207d04ba
AK
2265 /* Avoid banging the cache line if not needed */
2266 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2267 ra->mmap_miss++;
2268
2269 /*
2270 * Do we miss much more than hit in this file? If so,
2271 * stop bothering with read-ahead. It will only hurt.
2272 */
2273 if (ra->mmap_miss > MMAP_LOTSAMISS)
2274 return;
2275
d30a1100
WF
2276 /*
2277 * mmap read-around
2278 */
600e19af
RG
2279 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2280 ra->size = ra->ra_pages;
2281 ra->async_size = ra->ra_pages / 4;
275b12bf 2282 ra_submit(ra, mapping, file);
ef00e08e
LT
2283}
2284
2285/*
2286 * Asynchronous readahead happens when we find the page and PG_readahead,
2287 * so we want to possibly extend the readahead further..
2288 */
2289static void do_async_mmap_readahead(struct vm_area_struct *vma,
2290 struct file_ra_state *ra,
2291 struct file *file,
2292 struct page *page,
2293 pgoff_t offset)
2294{
2295 struct address_space *mapping = file->f_mapping;
2296
2297 /* If we don't want any read-ahead, don't bother */
64363aad 2298 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
2299 return;
2300 if (ra->mmap_miss > 0)
2301 ra->mmap_miss--;
2302 if (PageReadahead(page))
2fad6f5d
WF
2303 page_cache_async_readahead(mapping, ra, file,
2304 page, offset, ra->ra_pages);
ef00e08e
LT
2305}
2306
485bb99b 2307/**
54cb8821 2308 * filemap_fault - read in file data for page fault handling
d0217ac0 2309 * @vmf: struct vm_fault containing details of the fault
485bb99b 2310 *
54cb8821 2311 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2312 * mapped memory region to read in file data during a page fault.
2313 *
2314 * The goto's are kind of ugly, but this streamlines the normal case of having
2315 * it in the page cache, and handles the special cases reasonably without
2316 * having a lot of duplicated code.
9a95f3cf
PC
2317 *
2318 * vma->vm_mm->mmap_sem must be held on entry.
2319 *
2320 * If our return value has VM_FAULT_RETRY set, it's because
2321 * lock_page_or_retry() returned 0.
2322 * The mmap_sem has usually been released in this case.
2323 * See __lock_page_or_retry() for the exception.
2324 *
2325 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2326 * has not been released.
2327 *
2328 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2329 */
11bac800 2330int filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2331{
2332 int error;
11bac800 2333 struct file *file = vmf->vma->vm_file;
1da177e4
LT
2334 struct address_space *mapping = file->f_mapping;
2335 struct file_ra_state *ra = &file->f_ra;
2336 struct inode *inode = mapping->host;
ef00e08e 2337 pgoff_t offset = vmf->pgoff;
9ab2594f 2338 pgoff_t max_off;
1da177e4 2339 struct page *page;
83c54070 2340 int ret = 0;
1da177e4 2341
9ab2594f
MW
2342 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2343 if (unlikely(offset >= max_off))
5307cc1a 2344 return VM_FAULT_SIGBUS;
1da177e4 2345
1da177e4 2346 /*
49426420 2347 * Do we have something in the page cache already?
1da177e4 2348 */
ef00e08e 2349 page = find_get_page(mapping, offset);
45cac65b 2350 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2351 /*
ef00e08e
LT
2352 * We found the page, so try async readahead before
2353 * waiting for the lock.
1da177e4 2354 */
11bac800 2355 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
45cac65b 2356 } else if (!page) {
ef00e08e 2357 /* No page in the page cache at all */
11bac800 2358 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
ef00e08e 2359 count_vm_event(PGMAJFAULT);
2262185c 2360 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2361 ret = VM_FAULT_MAJOR;
2362retry_find:
b522c94d 2363 page = find_get_page(mapping, offset);
1da177e4
LT
2364 if (!page)
2365 goto no_cached_page;
2366 }
2367
11bac800 2368 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
09cbfeaf 2369 put_page(page);
d065bd81 2370 return ret | VM_FAULT_RETRY;
d88c0922 2371 }
b522c94d
ML
2372
2373 /* Did it get truncated? */
2374 if (unlikely(page->mapping != mapping)) {
2375 unlock_page(page);
2376 put_page(page);
2377 goto retry_find;
2378 }
309381fe 2379 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2380
1da177e4 2381 /*
d00806b1
NP
2382 * We have a locked page in the page cache, now we need to check
2383 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2384 */
d00806b1 2385 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2386 goto page_not_uptodate;
2387
ef00e08e
LT
2388 /*
2389 * Found the page and have a reference on it.
2390 * We must recheck i_size under page lock.
2391 */
9ab2594f
MW
2392 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2393 if (unlikely(offset >= max_off)) {
d00806b1 2394 unlock_page(page);
09cbfeaf 2395 put_page(page);
5307cc1a 2396 return VM_FAULT_SIGBUS;
d00806b1
NP
2397 }
2398
d0217ac0 2399 vmf->page = page;
83c54070 2400 return ret | VM_FAULT_LOCKED;
1da177e4 2401
1da177e4
LT
2402no_cached_page:
2403 /*
2404 * We're only likely to ever get here if MADV_RANDOM is in
2405 * effect.
2406 */
c20cd45e 2407 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2408
2409 /*
2410 * The page we want has now been added to the page cache.
2411 * In the unlikely event that someone removed it in the
2412 * meantime, we'll just come back here and read it again.
2413 */
2414 if (error >= 0)
2415 goto retry_find;
2416
2417 /*
2418 * An error return from page_cache_read can result if the
2419 * system is low on memory, or a problem occurs while trying
2420 * to schedule I/O.
2421 */
2422 if (error == -ENOMEM)
d0217ac0
NP
2423 return VM_FAULT_OOM;
2424 return VM_FAULT_SIGBUS;
1da177e4
LT
2425
2426page_not_uptodate:
1da177e4
LT
2427 /*
2428 * Umm, take care of errors if the page isn't up-to-date.
2429 * Try to re-read it _once_. We do this synchronously,
2430 * because there really aren't any performance issues here
2431 * and we need to check for errors.
2432 */
1da177e4 2433 ClearPageError(page);
994fc28c 2434 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2435 if (!error) {
2436 wait_on_page_locked(page);
2437 if (!PageUptodate(page))
2438 error = -EIO;
2439 }
09cbfeaf 2440 put_page(page);
d00806b1
NP
2441
2442 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2443 goto retry_find;
1da177e4 2444
d00806b1 2445 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2446 shrink_readahead_size_eio(file, ra);
d0217ac0 2447 return VM_FAULT_SIGBUS;
54cb8821
NP
2448}
2449EXPORT_SYMBOL(filemap_fault);
2450
82b0f8c3 2451void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2452 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361
KS
2453{
2454 struct radix_tree_iter iter;
2455 void **slot;
82b0f8c3 2456 struct file *file = vmf->vma->vm_file;
f1820361 2457 struct address_space *mapping = file->f_mapping;
bae473a4 2458 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2459 unsigned long max_idx;
83929372 2460 struct page *head, *page;
f1820361
KS
2461
2462 rcu_read_lock();
bae473a4
KS
2463 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2464 start_pgoff) {
2465 if (iter.index > end_pgoff)
f1820361
KS
2466 break;
2467repeat:
2468 page = radix_tree_deref_slot(slot);
2469 if (unlikely(!page))
2470 goto next;
2471 if (radix_tree_exception(page)) {
2cf938aa
MW
2472 if (radix_tree_deref_retry(page)) {
2473 slot = radix_tree_iter_retry(&iter);
2474 continue;
2475 }
2476 goto next;
f1820361
KS
2477 }
2478
83929372
KS
2479 head = compound_head(page);
2480 if (!page_cache_get_speculative(head))
f1820361
KS
2481 goto repeat;
2482
83929372
KS
2483 /* The page was split under us? */
2484 if (compound_head(page) != head) {
2485 put_page(head);
2486 goto repeat;
2487 }
2488
f1820361
KS
2489 /* Has the page moved? */
2490 if (unlikely(page != *slot)) {
83929372 2491 put_page(head);
f1820361
KS
2492 goto repeat;
2493 }
2494
2495 if (!PageUptodate(page) ||
2496 PageReadahead(page) ||
2497 PageHWPoison(page))
2498 goto skip;
2499 if (!trylock_page(page))
2500 goto skip;
2501
2502 if (page->mapping != mapping || !PageUptodate(page))
2503 goto unlock;
2504
9ab2594f
MW
2505 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2506 if (page->index >= max_idx)
f1820361
KS
2507 goto unlock;
2508
f1820361
KS
2509 if (file->f_ra.mmap_miss > 0)
2510 file->f_ra.mmap_miss--;
7267ec00 2511
82b0f8c3
JK
2512 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2513 if (vmf->pte)
2514 vmf->pte += iter.index - last_pgoff;
7267ec00 2515 last_pgoff = iter.index;
82b0f8c3 2516 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2517 goto unlock;
f1820361
KS
2518 unlock_page(page);
2519 goto next;
2520unlock:
2521 unlock_page(page);
2522skip:
09cbfeaf 2523 put_page(page);
f1820361 2524next:
7267ec00 2525 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2526 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2527 break;
bae473a4 2528 if (iter.index == end_pgoff)
f1820361
KS
2529 break;
2530 }
2531 rcu_read_unlock();
2532}
2533EXPORT_SYMBOL(filemap_map_pages);
2534
11bac800 2535int filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2536{
2537 struct page *page = vmf->page;
11bac800 2538 struct inode *inode = file_inode(vmf->vma->vm_file);
4fcf1c62
JK
2539 int ret = VM_FAULT_LOCKED;
2540
14da9200 2541 sb_start_pagefault(inode->i_sb);
11bac800 2542 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2543 lock_page(page);
2544 if (page->mapping != inode->i_mapping) {
2545 unlock_page(page);
2546 ret = VM_FAULT_NOPAGE;
2547 goto out;
2548 }
14da9200
JK
2549 /*
2550 * We mark the page dirty already here so that when freeze is in
2551 * progress, we are guaranteed that writeback during freezing will
2552 * see the dirty page and writeprotect it again.
2553 */
2554 set_page_dirty(page);
1d1d1a76 2555 wait_for_stable_page(page);
4fcf1c62 2556out:
14da9200 2557 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2558 return ret;
2559}
2560EXPORT_SYMBOL(filemap_page_mkwrite);
2561
f0f37e2f 2562const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2563 .fault = filemap_fault,
f1820361 2564 .map_pages = filemap_map_pages,
4fcf1c62 2565 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2566};
2567
2568/* This is used for a general mmap of a disk file */
2569
2570int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2571{
2572 struct address_space *mapping = file->f_mapping;
2573
2574 if (!mapping->a_ops->readpage)
2575 return -ENOEXEC;
2576 file_accessed(file);
2577 vma->vm_ops = &generic_file_vm_ops;
2578 return 0;
2579}
1da177e4
LT
2580
2581/*
2582 * This is for filesystems which do not implement ->writepage.
2583 */
2584int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2585{
2586 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2587 return -EINVAL;
2588 return generic_file_mmap(file, vma);
2589}
2590#else
2591int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2592{
2593 return -ENOSYS;
2594}
2595int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2596{
2597 return -ENOSYS;
2598}
2599#endif /* CONFIG_MMU */
2600
2601EXPORT_SYMBOL(generic_file_mmap);
2602EXPORT_SYMBOL(generic_file_readonly_mmap);
2603
67f9fd91
SL
2604static struct page *wait_on_page_read(struct page *page)
2605{
2606 if (!IS_ERR(page)) {
2607 wait_on_page_locked(page);
2608 if (!PageUptodate(page)) {
09cbfeaf 2609 put_page(page);
67f9fd91
SL
2610 page = ERR_PTR(-EIO);
2611 }
2612 }
2613 return page;
2614}
2615
32b63529 2616static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2617 pgoff_t index,
5e5358e7 2618 int (*filler)(void *, struct page *),
0531b2aa
LT
2619 void *data,
2620 gfp_t gfp)
1da177e4 2621{
eb2be189 2622 struct page *page;
1da177e4
LT
2623 int err;
2624repeat:
2625 page = find_get_page(mapping, index);
2626 if (!page) {
0531b2aa 2627 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2628 if (!page)
2629 return ERR_PTR(-ENOMEM);
e6f67b8c 2630 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2631 if (unlikely(err)) {
09cbfeaf 2632 put_page(page);
eb2be189
NP
2633 if (err == -EEXIST)
2634 goto repeat;
1da177e4 2635 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2636 return ERR_PTR(err);
2637 }
32b63529
MG
2638
2639filler:
1da177e4
LT
2640 err = filler(data, page);
2641 if (err < 0) {
09cbfeaf 2642 put_page(page);
32b63529 2643 return ERR_PTR(err);
1da177e4 2644 }
1da177e4 2645
32b63529
MG
2646 page = wait_on_page_read(page);
2647 if (IS_ERR(page))
2648 return page;
2649 goto out;
2650 }
1da177e4
LT
2651 if (PageUptodate(page))
2652 goto out;
2653
ebded027
MG
2654 /*
2655 * Page is not up to date and may be locked due one of the following
2656 * case a: Page is being filled and the page lock is held
2657 * case b: Read/write error clearing the page uptodate status
2658 * case c: Truncation in progress (page locked)
2659 * case d: Reclaim in progress
2660 *
2661 * Case a, the page will be up to date when the page is unlocked.
2662 * There is no need to serialise on the page lock here as the page
2663 * is pinned so the lock gives no additional protection. Even if the
2664 * the page is truncated, the data is still valid if PageUptodate as
2665 * it's a race vs truncate race.
2666 * Case b, the page will not be up to date
2667 * Case c, the page may be truncated but in itself, the data may still
2668 * be valid after IO completes as it's a read vs truncate race. The
2669 * operation must restart if the page is not uptodate on unlock but
2670 * otherwise serialising on page lock to stabilise the mapping gives
2671 * no additional guarantees to the caller as the page lock is
2672 * released before return.
2673 * Case d, similar to truncation. If reclaim holds the page lock, it
2674 * will be a race with remove_mapping that determines if the mapping
2675 * is valid on unlock but otherwise the data is valid and there is
2676 * no need to serialise with page lock.
2677 *
2678 * As the page lock gives no additional guarantee, we optimistically
2679 * wait on the page to be unlocked and check if it's up to date and
2680 * use the page if it is. Otherwise, the page lock is required to
2681 * distinguish between the different cases. The motivation is that we
2682 * avoid spurious serialisations and wakeups when multiple processes
2683 * wait on the same page for IO to complete.
2684 */
2685 wait_on_page_locked(page);
2686 if (PageUptodate(page))
2687 goto out;
2688
2689 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2690 lock_page(page);
ebded027
MG
2691
2692 /* Case c or d, restart the operation */
1da177e4
LT
2693 if (!page->mapping) {
2694 unlock_page(page);
09cbfeaf 2695 put_page(page);
32b63529 2696 goto repeat;
1da177e4 2697 }
ebded027
MG
2698
2699 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2700 if (PageUptodate(page)) {
2701 unlock_page(page);
2702 goto out;
2703 }
32b63529
MG
2704 goto filler;
2705
c855ff37 2706out:
6fe6900e
NP
2707 mark_page_accessed(page);
2708 return page;
2709}
0531b2aa
LT
2710
2711/**
67f9fd91 2712 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2713 * @mapping: the page's address_space
2714 * @index: the page index
2715 * @filler: function to perform the read
5e5358e7 2716 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2717 *
0531b2aa 2718 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2719 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2720 *
2721 * If the page does not get brought uptodate, return -EIO.
2722 */
67f9fd91 2723struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2724 pgoff_t index,
5e5358e7 2725 int (*filler)(void *, struct page *),
0531b2aa
LT
2726 void *data)
2727{
2728 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2729}
67f9fd91 2730EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2731
2732/**
2733 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2734 * @mapping: the page's address_space
2735 * @index: the page index
2736 * @gfp: the page allocator flags to use if allocating
2737 *
2738 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2739 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2740 *
2741 * If the page does not get brought uptodate, return -EIO.
2742 */
2743struct page *read_cache_page_gfp(struct address_space *mapping,
2744 pgoff_t index,
2745 gfp_t gfp)
2746{
2747 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2748
67f9fd91 2749 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2750}
2751EXPORT_SYMBOL(read_cache_page_gfp);
2752
1da177e4
LT
2753/*
2754 * Performs necessary checks before doing a write
2755 *
485bb99b 2756 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2757 * Returns appropriate error code that caller should return or
2758 * zero in case that write should be allowed.
2759 */
3309dd04 2760inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2761{
3309dd04 2762 struct file *file = iocb->ki_filp;
1da177e4 2763 struct inode *inode = file->f_mapping->host;
59e99e5b 2764 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2765 loff_t pos;
1da177e4 2766
3309dd04
AV
2767 if (!iov_iter_count(from))
2768 return 0;
1da177e4 2769
0fa6b005 2770 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2771 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2772 iocb->ki_pos = i_size_read(inode);
1da177e4 2773
3309dd04 2774 pos = iocb->ki_pos;
1da177e4 2775
6be96d3a
GR
2776 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2777 return -EINVAL;
2778
0fa6b005 2779 if (limit != RLIM_INFINITY) {
3309dd04 2780 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2781 send_sig(SIGXFSZ, current, 0);
2782 return -EFBIG;
1da177e4 2783 }
3309dd04 2784 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2785 }
2786
2787 /*
2788 * LFS rule
2789 */
3309dd04 2790 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2791 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2792 if (pos >= MAX_NON_LFS)
1da177e4 2793 return -EFBIG;
3309dd04 2794 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2795 }
2796
2797 /*
2798 * Are we about to exceed the fs block limit ?
2799 *
2800 * If we have written data it becomes a short write. If we have
2801 * exceeded without writing data we send a signal and return EFBIG.
2802 * Linus frestrict idea will clean these up nicely..
2803 */
3309dd04
AV
2804 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2805 return -EFBIG;
1da177e4 2806
3309dd04
AV
2807 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2808 return iov_iter_count(from);
1da177e4
LT
2809}
2810EXPORT_SYMBOL(generic_write_checks);
2811
afddba49
NP
2812int pagecache_write_begin(struct file *file, struct address_space *mapping,
2813 loff_t pos, unsigned len, unsigned flags,
2814 struct page **pagep, void **fsdata)
2815{
2816 const struct address_space_operations *aops = mapping->a_ops;
2817
4e02ed4b 2818 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2819 pagep, fsdata);
afddba49
NP
2820}
2821EXPORT_SYMBOL(pagecache_write_begin);
2822
2823int pagecache_write_end(struct file *file, struct address_space *mapping,
2824 loff_t pos, unsigned len, unsigned copied,
2825 struct page *page, void *fsdata)
2826{
2827 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2828
4e02ed4b 2829 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2830}
2831EXPORT_SYMBOL(pagecache_write_end);
2832
1da177e4 2833ssize_t
1af5bb49 2834generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2835{
2836 struct file *file = iocb->ki_filp;
2837 struct address_space *mapping = file->f_mapping;
2838 struct inode *inode = mapping->host;
1af5bb49 2839 loff_t pos = iocb->ki_pos;
1da177e4 2840 ssize_t written;
a969e903
CH
2841 size_t write_len;
2842 pgoff_t end;
1da177e4 2843
0c949334 2844 write_len = iov_iter_count(from);
09cbfeaf 2845 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 2846
6be96d3a
GR
2847 if (iocb->ki_flags & IOCB_NOWAIT) {
2848 /* If there are pages to writeback, return */
2849 if (filemap_range_has_page(inode->i_mapping, pos,
2850 pos + iov_iter_count(from)))
2851 return -EAGAIN;
2852 } else {
2853 written = filemap_write_and_wait_range(mapping, pos,
2854 pos + write_len - 1);
2855 if (written)
2856 goto out;
2857 }
a969e903
CH
2858
2859 /*
2860 * After a write we want buffered reads to be sure to go to disk to get
2861 * the new data. We invalidate clean cached page from the region we're
2862 * about to write. We do this *before* the write so that we can return
6ccfa806 2863 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 2864 */
55635ba7 2865 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 2866 pos >> PAGE_SHIFT, end);
55635ba7
AR
2867 /*
2868 * If a page can not be invalidated, return 0 to fall back
2869 * to buffered write.
2870 */
2871 if (written) {
2872 if (written == -EBUSY)
2873 return 0;
2874 goto out;
a969e903
CH
2875 }
2876
639a93a5 2877 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
2878
2879 /*
2880 * Finally, try again to invalidate clean pages which might have been
2881 * cached by non-direct readahead, or faulted in by get_user_pages()
2882 * if the source of the write was an mmap'ed region of the file
2883 * we're writing. Either one is a pretty crazy thing to do,
2884 * so we don't support it 100%. If this invalidation
2885 * fails, tough, the write still worked...
2886 */
55635ba7
AR
2887 invalidate_inode_pages2_range(mapping,
2888 pos >> PAGE_SHIFT, end);
a969e903 2889
1da177e4 2890 if (written > 0) {
0116651c 2891 pos += written;
639a93a5 2892 write_len -= written;
0116651c
NK
2893 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2894 i_size_write(inode, pos);
1da177e4
LT
2895 mark_inode_dirty(inode);
2896 }
5cb6c6c7 2897 iocb->ki_pos = pos;
1da177e4 2898 }
639a93a5 2899 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 2900out:
1da177e4
LT
2901 return written;
2902}
2903EXPORT_SYMBOL(generic_file_direct_write);
2904
eb2be189
NP
2905/*
2906 * Find or create a page at the given pagecache position. Return the locked
2907 * page. This function is specifically for buffered writes.
2908 */
54566b2c
NP
2909struct page *grab_cache_page_write_begin(struct address_space *mapping,
2910 pgoff_t index, unsigned flags)
eb2be189 2911{
eb2be189 2912 struct page *page;
bbddabe2 2913 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 2914
54566b2c 2915 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2916 fgp_flags |= FGP_NOFS;
2917
2918 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2919 mapping_gfp_mask(mapping));
c585a267 2920 if (page)
2457aec6 2921 wait_for_stable_page(page);
eb2be189 2922
eb2be189
NP
2923 return page;
2924}
54566b2c 2925EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2926
3b93f911 2927ssize_t generic_perform_write(struct file *file,
afddba49
NP
2928 struct iov_iter *i, loff_t pos)
2929{
2930 struct address_space *mapping = file->f_mapping;
2931 const struct address_space_operations *a_ops = mapping->a_ops;
2932 long status = 0;
2933 ssize_t written = 0;
674b892e
NP
2934 unsigned int flags = 0;
2935
afddba49
NP
2936 do {
2937 struct page *page;
afddba49
NP
2938 unsigned long offset; /* Offset into pagecache page */
2939 unsigned long bytes; /* Bytes to write to page */
2940 size_t copied; /* Bytes copied from user */
2941 void *fsdata;
2942
09cbfeaf
KS
2943 offset = (pos & (PAGE_SIZE - 1));
2944 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2945 iov_iter_count(i));
2946
2947again:
00a3d660
LT
2948 /*
2949 * Bring in the user page that we will copy from _first_.
2950 * Otherwise there's a nasty deadlock on copying from the
2951 * same page as we're writing to, without it being marked
2952 * up-to-date.
2953 *
2954 * Not only is this an optimisation, but it is also required
2955 * to check that the address is actually valid, when atomic
2956 * usercopies are used, below.
2957 */
2958 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2959 status = -EFAULT;
2960 break;
2961 }
2962
296291cd
JK
2963 if (fatal_signal_pending(current)) {
2964 status = -EINTR;
2965 break;
2966 }
2967
674b892e 2968 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2969 &page, &fsdata);
2457aec6 2970 if (unlikely(status < 0))
afddba49
NP
2971 break;
2972
931e80e4 2973 if (mapping_writably_mapped(mapping))
2974 flush_dcache_page(page);
00a3d660 2975
afddba49 2976 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2977 flush_dcache_page(page);
2978
2979 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2980 page, fsdata);
2981 if (unlikely(status < 0))
2982 break;
2983 copied = status;
2984
2985 cond_resched();
2986
124d3b70 2987 iov_iter_advance(i, copied);
afddba49
NP
2988 if (unlikely(copied == 0)) {
2989 /*
2990 * If we were unable to copy any data at all, we must
2991 * fall back to a single segment length write.
2992 *
2993 * If we didn't fallback here, we could livelock
2994 * because not all segments in the iov can be copied at
2995 * once without a pagefault.
2996 */
09cbfeaf 2997 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2998 iov_iter_single_seg_count(i));
2999 goto again;
3000 }
afddba49
NP
3001 pos += copied;
3002 written += copied;
3003
3004 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3005 } while (iov_iter_count(i));
3006
3007 return written ? written : status;
3008}
3b93f911 3009EXPORT_SYMBOL(generic_perform_write);
1da177e4 3010
e4dd9de3 3011/**
8174202b 3012 * __generic_file_write_iter - write data to a file
e4dd9de3 3013 * @iocb: IO state structure (file, offset, etc.)
8174202b 3014 * @from: iov_iter with data to write
e4dd9de3
JK
3015 *
3016 * This function does all the work needed for actually writing data to a
3017 * file. It does all basic checks, removes SUID from the file, updates
3018 * modification times and calls proper subroutines depending on whether we
3019 * do direct IO or a standard buffered write.
3020 *
3021 * It expects i_mutex to be grabbed unless we work on a block device or similar
3022 * object which does not need locking at all.
3023 *
3024 * This function does *not* take care of syncing data in case of O_SYNC write.
3025 * A caller has to handle it. This is mainly due to the fact that we want to
3026 * avoid syncing under i_mutex.
3027 */
8174202b 3028ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3029{
3030 struct file *file = iocb->ki_filp;
fb5527e6 3031 struct address_space * mapping = file->f_mapping;
1da177e4 3032 struct inode *inode = mapping->host;
3b93f911 3033 ssize_t written = 0;
1da177e4 3034 ssize_t err;
3b93f911 3035 ssize_t status;
1da177e4 3036
1da177e4 3037 /* We can write back this queue in page reclaim */
de1414a6 3038 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3039 err = file_remove_privs(file);
1da177e4
LT
3040 if (err)
3041 goto out;
3042
c3b2da31
JB
3043 err = file_update_time(file);
3044 if (err)
3045 goto out;
1da177e4 3046
2ba48ce5 3047 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3048 loff_t pos, endbyte;
fb5527e6 3049
1af5bb49 3050 written = generic_file_direct_write(iocb, from);
1da177e4 3051 /*
fbbbad4b
MW
3052 * If the write stopped short of completing, fall back to
3053 * buffered writes. Some filesystems do this for writes to
3054 * holes, for example. For DAX files, a buffered write will
3055 * not succeed (even if it did, DAX does not handle dirty
3056 * page-cache pages correctly).
1da177e4 3057 */
0b8def9d 3058 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3059 goto out;
3060
0b8def9d 3061 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3062 /*
3b93f911 3063 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3064 * then we want to return the number of bytes which were
3065 * direct-written, or the error code if that was zero. Note
3066 * that this differs from normal direct-io semantics, which
3067 * will return -EFOO even if some bytes were written.
3068 */
60bb4529 3069 if (unlikely(status < 0)) {
3b93f911 3070 err = status;
fb5527e6
JM
3071 goto out;
3072 }
fb5527e6
JM
3073 /*
3074 * We need to ensure that the page cache pages are written to
3075 * disk and invalidated to preserve the expected O_DIRECT
3076 * semantics.
3077 */
3b93f911 3078 endbyte = pos + status - 1;
0b8def9d 3079 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3080 if (err == 0) {
0b8def9d 3081 iocb->ki_pos = endbyte + 1;
3b93f911 3082 written += status;
fb5527e6 3083 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3084 pos >> PAGE_SHIFT,
3085 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3086 } else {
3087 /*
3088 * We don't know how much we wrote, so just return
3089 * the number of bytes which were direct-written
3090 */
3091 }
3092 } else {
0b8def9d
AV
3093 written = generic_perform_write(file, from, iocb->ki_pos);
3094 if (likely(written > 0))
3095 iocb->ki_pos += written;
fb5527e6 3096 }
1da177e4
LT
3097out:
3098 current->backing_dev_info = NULL;
3099 return written ? written : err;
3100}
8174202b 3101EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3102
e4dd9de3 3103/**
8174202b 3104 * generic_file_write_iter - write data to a file
e4dd9de3 3105 * @iocb: IO state structure
8174202b 3106 * @from: iov_iter with data to write
e4dd9de3 3107 *
8174202b 3108 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3109 * filesystems. It takes care of syncing the file in case of O_SYNC file
3110 * and acquires i_mutex as needed.
3111 */
8174202b 3112ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3113{
3114 struct file *file = iocb->ki_filp;
148f948b 3115 struct inode *inode = file->f_mapping->host;
1da177e4 3116 ssize_t ret;
1da177e4 3117
5955102c 3118 inode_lock(inode);
3309dd04
AV
3119 ret = generic_write_checks(iocb, from);
3120 if (ret > 0)
5f380c7f 3121 ret = __generic_file_write_iter(iocb, from);
5955102c 3122 inode_unlock(inode);
1da177e4 3123
e2592217
CH
3124 if (ret > 0)
3125 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3126 return ret;
3127}
8174202b 3128EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3129
cf9a2ae8
DH
3130/**
3131 * try_to_release_page() - release old fs-specific metadata on a page
3132 *
3133 * @page: the page which the kernel is trying to free
3134 * @gfp_mask: memory allocation flags (and I/O mode)
3135 *
3136 * The address_space is to try to release any data against the page
0e056eb5 3137 * (presumably at page->private). If the release was successful, return '1'.
cf9a2ae8
DH
3138 * Otherwise return zero.
3139 *
266cf658
DH
3140 * This may also be called if PG_fscache is set on a page, indicating that the
3141 * page is known to the local caching routines.
3142 *
cf9a2ae8 3143 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3144 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3145 *
cf9a2ae8
DH
3146 */
3147int try_to_release_page(struct page *page, gfp_t gfp_mask)
3148{
3149 struct address_space * const mapping = page->mapping;
3150
3151 BUG_ON(!PageLocked(page));
3152 if (PageWriteback(page))
3153 return 0;
3154
3155 if (mapping && mapping->a_ops->releasepage)
3156 return mapping->a_ops->releasepage(page, gfp_mask);
3157 return try_to_free_buffers(page);
3158}
3159
3160EXPORT_SYMBOL(try_to_release_page);