]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/filemap.c
netfilter: use skb_to_full_sk in ip_route_me_harder
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
c22ce143 16#include <linux/uaccess.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 34#include <linux/hugetlb.h>
8a9f3ccd 35#include <linux/memcontrol.h>
c515e1fd 36#include <linux/cleancache.h>
f1820361 37#include <linux/rmap.h>
0f8053a5
NP
38#include "internal.h"
39
fe0bfaaf
RJ
40#define CREATE_TRACE_POINTS
41#include <trace/events/filemap.h>
42
1da177e4 43/*
1da177e4
LT
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
148f948b 46#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 47
1da177e4
LT
48#include <asm/mman.h>
49
50/*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62/*
63 * Lock ordering:
64 *
c8c06efa 65 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
1da177e4 69 *
1b1dcc1b 70 * ->i_mutex
c8c06efa 71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
72 *
73 * ->mmap_sem
c8c06efa 74 * ->i_mmap_rwsem
b8072f09 75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
ccad2365 81 * ->i_mutex (generic_perform_write)
82591e6e 82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 83 *
f758eeab 84 * bdi->wb.list_lock
a66979ab 85 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
c8c06efa 88 * ->i_mmap_rwsem
1da177e4
LT
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
b8072f09 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 93 *
b8072f09 94 * ->page_table_lock or pte_lock
5d337b91 95 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
a52633d8
MG
98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
1da177e4
LT
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
c8c06efa 109 * ->i_mmap_rwsem
9a3c531d 110 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
111 */
112
22f2ac51
JW
113static int page_cache_tree_insert(struct address_space *mapping,
114 struct page *page, void **shadowp)
115{
116 struct radix_tree_node *node;
117 void **slot;
118 int error;
119
120 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 &node, &slot);
122 if (error)
123 return error;
124 if (*slot) {
125 void *p;
126
127 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 if (!radix_tree_exceptional_entry(p))
129 return -EEXIST;
130
131 mapping->nrexceptional--;
132 if (!dax_mapping(mapping)) {
133 if (shadowp)
134 *shadowp = p;
22f2ac51
JW
135 } else {
136 /* DAX can replace empty locked entry with a hole */
137 WARN_ON_ONCE(p !=
642261ac 138 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
22f2ac51 139 /* Wakeup waiters for exceptional entry lock */
63e95b5c 140 dax_wake_mapping_entry_waiter(mapping, page->index, p,
965d004a 141 true);
22f2ac51
JW
142 }
143 }
14b46879
JW
144 __radix_tree_replace(&mapping->page_tree, node, slot, page,
145 workingset_update_node, mapping);
22f2ac51 146 mapping->nrpages++;
22f2ac51
JW
147 return 0;
148}
149
91b0abe3
JW
150static void page_cache_tree_delete(struct address_space *mapping,
151 struct page *page, void *shadow)
152{
c70b647d
KS
153 int i, nr;
154
155 /* hugetlb pages are represented by one entry in the radix tree */
156 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
91b0abe3 157
83929372
KS
158 VM_BUG_ON_PAGE(!PageLocked(page), page);
159 VM_BUG_ON_PAGE(PageTail(page), page);
160 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 161
83929372 162 for (i = 0; i < nr; i++) {
d3798ae8
JW
163 struct radix_tree_node *node;
164 void **slot;
165
166 __radix_tree_lookup(&mapping->page_tree, page->index + i,
167 &node, &slot);
168
dbc446b8 169 VM_BUG_ON_PAGE(!node && nr != 1, page);
449dd698 170
14b46879
JW
171 radix_tree_clear_tags(&mapping->page_tree, node, slot);
172 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
173 workingset_update_node, mapping);
449dd698 174 }
d3798ae8
JW
175
176 if (shadow) {
177 mapping->nrexceptional += nr;
178 /*
179 * Make sure the nrexceptional update is committed before
180 * the nrpages update so that final truncate racing
181 * with reclaim does not see both counters 0 at the
182 * same time and miss a shadow entry.
183 */
184 smp_wmb();
185 }
186 mapping->nrpages -= nr;
91b0abe3
JW
187}
188
1da177e4 189/*
e64a782f 190 * Delete a page from the page cache and free it. Caller has to make
1da177e4 191 * sure the page is locked and that nobody else uses it - or that usage
fdf1cdb9 192 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 193 */
62cccb8c 194void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
195{
196 struct address_space *mapping = page->mapping;
83929372 197 int nr = hpage_nr_pages(page);
1da177e4 198
fe0bfaaf 199 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
200 /*
201 * if we're uptodate, flush out into the cleancache, otherwise
202 * invalidate any existing cleancache entries. We can't leave
203 * stale data around in the cleancache once our page is gone
204 */
205 if (PageUptodate(page) && PageMappedToDisk(page))
206 cleancache_put_page(page);
207 else
3167760f 208 cleancache_invalidate_page(mapping, page);
c515e1fd 209
83929372 210 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
211 VM_BUG_ON_PAGE(page_mapped(page), page);
212 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
213 int mapcount;
214
215 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
216 current->comm, page_to_pfn(page));
217 dump_page(page, "still mapped when deleted");
218 dump_stack();
219 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
220
221 mapcount = page_mapcount(page);
222 if (mapping_exiting(mapping) &&
223 page_count(page) >= mapcount + 2) {
224 /*
225 * All vmas have already been torn down, so it's
226 * a good bet that actually the page is unmapped,
227 * and we'd prefer not to leak it: if we're wrong,
228 * some other bad page check should catch it later.
229 */
230 page_mapcount_reset(page);
6d061f9f 231 page_ref_sub(page, mapcount);
06b241f3
HD
232 }
233 }
234
91b0abe3
JW
235 page_cache_tree_delete(mapping, page, shadow);
236
1da177e4 237 page->mapping = NULL;
b85e0eff 238 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 239
4165b9b4
MH
240 /* hugetlb pages do not participate in page cache accounting. */
241 if (!PageHuge(page))
11fb9989 242 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
800d8c63 243 if (PageSwapBacked(page)) {
11fb9989 244 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
800d8c63 245 if (PageTransHuge(page))
11fb9989 246 __dec_node_page_state(page, NR_SHMEM_THPS);
800d8c63
KS
247 } else {
248 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
249 }
3a692790
LT
250
251 /*
b9ea2515
KK
252 * At this point page must be either written or cleaned by truncate.
253 * Dirty page here signals a bug and loss of unwritten data.
3a692790 254 *
b9ea2515
KK
255 * This fixes dirty accounting after removing the page entirely but
256 * leaves PageDirty set: it has no effect for truncated page and
257 * anyway will be cleared before returning page into buddy allocator.
3a692790 258 */
b9ea2515 259 if (WARN_ON_ONCE(PageDirty(page)))
62cccb8c 260 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
1da177e4
LT
261}
262
702cfbf9
MK
263/**
264 * delete_from_page_cache - delete page from page cache
265 * @page: the page which the kernel is trying to remove from page cache
266 *
267 * This must be called only on pages that have been verified to be in the page
268 * cache and locked. It will never put the page into the free list, the caller
269 * has a reference on the page.
270 */
271void delete_from_page_cache(struct page *page)
1da177e4 272{
83929372 273 struct address_space *mapping = page_mapping(page);
c4843a75 274 unsigned long flags;
6072d13c 275 void (*freepage)(struct page *);
1da177e4 276
cd7619d6 277 BUG_ON(!PageLocked(page));
1da177e4 278
6072d13c 279 freepage = mapping->a_ops->freepage;
c4843a75 280
c4843a75 281 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 282 __delete_from_page_cache(page, NULL);
c4843a75 283 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
284
285 if (freepage)
286 freepage(page);
83929372
KS
287
288 if (PageTransHuge(page) && !PageHuge(page)) {
289 page_ref_sub(page, HPAGE_PMD_NR);
290 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
291 } else {
292 put_page(page);
293 }
97cecb5a
MK
294}
295EXPORT_SYMBOL(delete_from_page_cache);
296
d72d9e2a 297int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
298{
299 int ret = 0;
300 /* Check for outstanding write errors */
7fcbbaf1
JA
301 if (test_bit(AS_ENOSPC, &mapping->flags) &&
302 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 303 ret = -ENOSPC;
7fcbbaf1
JA
304 if (test_bit(AS_EIO, &mapping->flags) &&
305 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
306 ret = -EIO;
307 return ret;
308}
d72d9e2a 309EXPORT_SYMBOL(filemap_check_errors);
865ffef3 310
1da177e4 311/**
485bb99b 312 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
313 * @mapping: address space structure to write
314 * @start: offset in bytes where the range starts
469eb4d0 315 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 316 * @sync_mode: enable synchronous operation
1da177e4 317 *
485bb99b
RD
318 * Start writeback against all of a mapping's dirty pages that lie
319 * within the byte offsets <start, end> inclusive.
320 *
1da177e4 321 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 322 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
323 * these two operations is that if a dirty page/buffer is encountered, it must
324 * be waited upon, and not just skipped over.
325 */
ebcf28e1
AM
326int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
327 loff_t end, int sync_mode)
1da177e4
LT
328{
329 int ret;
330 struct writeback_control wbc = {
331 .sync_mode = sync_mode,
05fe478d 332 .nr_to_write = LONG_MAX,
111ebb6e
OH
333 .range_start = start,
334 .range_end = end,
1da177e4
LT
335 };
336
337 if (!mapping_cap_writeback_dirty(mapping))
338 return 0;
339
b16b1deb 340 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 341 ret = do_writepages(mapping, &wbc);
b16b1deb 342 wbc_detach_inode(&wbc);
1da177e4
LT
343 return ret;
344}
345
346static inline int __filemap_fdatawrite(struct address_space *mapping,
347 int sync_mode)
348{
111ebb6e 349 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
350}
351
352int filemap_fdatawrite(struct address_space *mapping)
353{
354 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
355}
356EXPORT_SYMBOL(filemap_fdatawrite);
357
f4c0a0fd 358int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 359 loff_t end)
1da177e4
LT
360{
361 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
362}
f4c0a0fd 363EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 364
485bb99b
RD
365/**
366 * filemap_flush - mostly a non-blocking flush
367 * @mapping: target address_space
368 *
1da177e4
LT
369 * This is a mostly non-blocking flush. Not suitable for data-integrity
370 * purposes - I/O may not be started against all dirty pages.
371 */
372int filemap_flush(struct address_space *mapping)
373{
374 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
375}
376EXPORT_SYMBOL(filemap_flush);
377
aa750fd7
JN
378static int __filemap_fdatawait_range(struct address_space *mapping,
379 loff_t start_byte, loff_t end_byte)
1da177e4 380{
09cbfeaf
KS
381 pgoff_t index = start_byte >> PAGE_SHIFT;
382 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
383 struct pagevec pvec;
384 int nr_pages;
aa750fd7 385 int ret = 0;
1da177e4 386
94004ed7 387 if (end_byte < start_byte)
865ffef3 388 goto out;
1da177e4
LT
389
390 pagevec_init(&pvec, 0);
1da177e4
LT
391 while ((index <= end) &&
392 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
393 PAGECACHE_TAG_WRITEBACK,
394 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
395 unsigned i;
396
397 for (i = 0; i < nr_pages; i++) {
398 struct page *page = pvec.pages[i];
399
400 /* until radix tree lookup accepts end_index */
401 if (page->index > end)
402 continue;
403
404 wait_on_page_writeback(page);
212260aa 405 if (TestClearPageError(page))
1da177e4
LT
406 ret = -EIO;
407 }
408 pagevec_release(&pvec);
409 cond_resched();
410 }
865ffef3 411out:
aa750fd7
JN
412 return ret;
413}
414
415/**
416 * filemap_fdatawait_range - wait for writeback to complete
417 * @mapping: address space structure to wait for
418 * @start_byte: offset in bytes where the range starts
419 * @end_byte: offset in bytes where the range ends (inclusive)
420 *
421 * Walk the list of under-writeback pages of the given address space
422 * in the given range and wait for all of them. Check error status of
423 * the address space and return it.
424 *
425 * Since the error status of the address space is cleared by this function,
426 * callers are responsible for checking the return value and handling and/or
427 * reporting the error.
428 */
429int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
430 loff_t end_byte)
431{
432 int ret, ret2;
433
434 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
865ffef3
DM
435 ret2 = filemap_check_errors(mapping);
436 if (!ret)
437 ret = ret2;
1da177e4
LT
438
439 return ret;
440}
d3bccb6f
JK
441EXPORT_SYMBOL(filemap_fdatawait_range);
442
aa750fd7
JN
443/**
444 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
445 * @mapping: address space structure to wait for
446 *
447 * Walk the list of under-writeback pages of the given address space
448 * and wait for all of them. Unlike filemap_fdatawait(), this function
449 * does not clear error status of the address space.
450 *
451 * Use this function if callers don't handle errors themselves. Expected
452 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
453 * fsfreeze(8)
454 */
455void filemap_fdatawait_keep_errors(struct address_space *mapping)
456{
457 loff_t i_size = i_size_read(mapping->host);
458
459 if (i_size == 0)
460 return;
461
462 __filemap_fdatawait_range(mapping, 0, i_size - 1);
463}
464
1da177e4 465/**
485bb99b 466 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 467 * @mapping: address space structure to wait for
485bb99b
RD
468 *
469 * Walk the list of under-writeback pages of the given address space
aa750fd7
JN
470 * and wait for all of them. Check error status of the address space
471 * and return it.
472 *
473 * Since the error status of the address space is cleared by this function,
474 * callers are responsible for checking the return value and handling and/or
475 * reporting the error.
1da177e4
LT
476 */
477int filemap_fdatawait(struct address_space *mapping)
478{
479 loff_t i_size = i_size_read(mapping->host);
480
481 if (i_size == 0)
482 return 0;
483
94004ed7 484 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
485}
486EXPORT_SYMBOL(filemap_fdatawait);
487
488int filemap_write_and_wait(struct address_space *mapping)
489{
28fd1298 490 int err = 0;
1da177e4 491
7f6d5b52
RZ
492 if ((!dax_mapping(mapping) && mapping->nrpages) ||
493 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
494 err = filemap_fdatawrite(mapping);
495 /*
496 * Even if the above returned error, the pages may be
497 * written partially (e.g. -ENOSPC), so we wait for it.
498 * But the -EIO is special case, it may indicate the worst
499 * thing (e.g. bug) happened, so we avoid waiting for it.
500 */
501 if (err != -EIO) {
502 int err2 = filemap_fdatawait(mapping);
503 if (!err)
504 err = err2;
505 }
865ffef3
DM
506 } else {
507 err = filemap_check_errors(mapping);
1da177e4 508 }
28fd1298 509 return err;
1da177e4 510}
28fd1298 511EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 512
485bb99b
RD
513/**
514 * filemap_write_and_wait_range - write out & wait on a file range
515 * @mapping: the address_space for the pages
516 * @lstart: offset in bytes where the range starts
517 * @lend: offset in bytes where the range ends (inclusive)
518 *
469eb4d0
AM
519 * Write out and wait upon file offsets lstart->lend, inclusive.
520 *
521 * Note that `lend' is inclusive (describes the last byte to be written) so
522 * that this function can be used to write to the very end-of-file (end = -1).
523 */
1da177e4
LT
524int filemap_write_and_wait_range(struct address_space *mapping,
525 loff_t lstart, loff_t lend)
526{
28fd1298 527 int err = 0;
1da177e4 528
7f6d5b52
RZ
529 if ((!dax_mapping(mapping) && mapping->nrpages) ||
530 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
531 err = __filemap_fdatawrite_range(mapping, lstart, lend,
532 WB_SYNC_ALL);
533 /* See comment of filemap_write_and_wait() */
534 if (err != -EIO) {
94004ed7
CH
535 int err2 = filemap_fdatawait_range(mapping,
536 lstart, lend);
28fd1298
OH
537 if (!err)
538 err = err2;
539 }
865ffef3
DM
540 } else {
541 err = filemap_check_errors(mapping);
1da177e4 542 }
28fd1298 543 return err;
1da177e4 544}
f6995585 545EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 546
ef6a3c63
MS
547/**
548 * replace_page_cache_page - replace a pagecache page with a new one
549 * @old: page to be replaced
550 * @new: page to replace with
551 * @gfp_mask: allocation mode
552 *
553 * This function replaces a page in the pagecache with a new one. On
554 * success it acquires the pagecache reference for the new page and
555 * drops it for the old page. Both the old and new pages must be
556 * locked. This function does not add the new page to the LRU, the
557 * caller must do that.
558 *
559 * The remove + add is atomic. The only way this function can fail is
560 * memory allocation failure.
561 */
562int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
563{
564 int error;
ef6a3c63 565
309381fe
SL
566 VM_BUG_ON_PAGE(!PageLocked(old), old);
567 VM_BUG_ON_PAGE(!PageLocked(new), new);
568 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 569
ef6a3c63
MS
570 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
571 if (!error) {
572 struct address_space *mapping = old->mapping;
573 void (*freepage)(struct page *);
c4843a75 574 unsigned long flags;
ef6a3c63
MS
575
576 pgoff_t offset = old->index;
577 freepage = mapping->a_ops->freepage;
578
09cbfeaf 579 get_page(new);
ef6a3c63
MS
580 new->mapping = mapping;
581 new->index = offset;
582
c4843a75 583 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 584 __delete_from_page_cache(old, NULL);
22f2ac51 585 error = page_cache_tree_insert(mapping, new, NULL);
ef6a3c63 586 BUG_ON(error);
4165b9b4
MH
587
588 /*
589 * hugetlb pages do not participate in page cache accounting.
590 */
591 if (!PageHuge(new))
11fb9989 592 __inc_node_page_state(new, NR_FILE_PAGES);
ef6a3c63 593 if (PageSwapBacked(new))
11fb9989 594 __inc_node_page_state(new, NR_SHMEM);
c4843a75 595 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6a93ca8f 596 mem_cgroup_migrate(old, new);
ef6a3c63
MS
597 radix_tree_preload_end();
598 if (freepage)
599 freepage(old);
09cbfeaf 600 put_page(old);
ef6a3c63
MS
601 }
602
603 return error;
604}
605EXPORT_SYMBOL_GPL(replace_page_cache_page);
606
a528910e
JW
607static int __add_to_page_cache_locked(struct page *page,
608 struct address_space *mapping,
609 pgoff_t offset, gfp_t gfp_mask,
610 void **shadowp)
1da177e4 611{
00501b53
JW
612 int huge = PageHuge(page);
613 struct mem_cgroup *memcg;
e286781d
NP
614 int error;
615
309381fe
SL
616 VM_BUG_ON_PAGE(!PageLocked(page), page);
617 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 618
00501b53
JW
619 if (!huge) {
620 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 621 gfp_mask, &memcg, false);
00501b53
JW
622 if (error)
623 return error;
624 }
1da177e4 625
5e4c0d97 626 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 627 if (error) {
00501b53 628 if (!huge)
f627c2f5 629 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
630 return error;
631 }
632
09cbfeaf 633 get_page(page);
66a0c8ee
KS
634 page->mapping = mapping;
635 page->index = offset;
636
637 spin_lock_irq(&mapping->tree_lock);
a528910e 638 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
639 radix_tree_preload_end();
640 if (unlikely(error))
641 goto err_insert;
4165b9b4
MH
642
643 /* hugetlb pages do not participate in page cache accounting. */
644 if (!huge)
11fb9989 645 __inc_node_page_state(page, NR_FILE_PAGES);
66a0c8ee 646 spin_unlock_irq(&mapping->tree_lock);
00501b53 647 if (!huge)
f627c2f5 648 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
649 trace_mm_filemap_add_to_page_cache(page);
650 return 0;
651err_insert:
652 page->mapping = NULL;
653 /* Leave page->index set: truncation relies upon it */
654 spin_unlock_irq(&mapping->tree_lock);
00501b53 655 if (!huge)
f627c2f5 656 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 657 put_page(page);
1da177e4
LT
658 return error;
659}
a528910e
JW
660
661/**
662 * add_to_page_cache_locked - add a locked page to the pagecache
663 * @page: page to add
664 * @mapping: the page's address_space
665 * @offset: page index
666 * @gfp_mask: page allocation mode
667 *
668 * This function is used to add a page to the pagecache. It must be locked.
669 * This function does not add the page to the LRU. The caller must do that.
670 */
671int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
672 pgoff_t offset, gfp_t gfp_mask)
673{
674 return __add_to_page_cache_locked(page, mapping, offset,
675 gfp_mask, NULL);
676}
e286781d 677EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
678
679int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 680 pgoff_t offset, gfp_t gfp_mask)
1da177e4 681{
a528910e 682 void *shadow = NULL;
4f98a2fe
RR
683 int ret;
684
48c935ad 685 __SetPageLocked(page);
a528910e
JW
686 ret = __add_to_page_cache_locked(page, mapping, offset,
687 gfp_mask, &shadow);
688 if (unlikely(ret))
48c935ad 689 __ClearPageLocked(page);
a528910e
JW
690 else {
691 /*
692 * The page might have been evicted from cache only
693 * recently, in which case it should be activated like
694 * any other repeatedly accessed page.
f0281a00
RR
695 * The exception is pages getting rewritten; evicting other
696 * data from the working set, only to cache data that will
697 * get overwritten with something else, is a waste of memory.
a528910e 698 */
f0281a00
RR
699 if (!(gfp_mask & __GFP_WRITE) &&
700 shadow && workingset_refault(shadow)) {
a528910e
JW
701 SetPageActive(page);
702 workingset_activation(page);
703 } else
704 ClearPageActive(page);
705 lru_cache_add(page);
706 }
1da177e4
LT
707 return ret;
708}
18bc0bbd 709EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 710
44110fe3 711#ifdef CONFIG_NUMA
2ae88149 712struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 713{
c0ff7453
MX
714 int n;
715 struct page *page;
716
44110fe3 717 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
718 unsigned int cpuset_mems_cookie;
719 do {
d26914d1 720 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 721 n = cpuset_mem_spread_node();
96db800f 722 page = __alloc_pages_node(n, gfp, 0);
d26914d1 723 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 724
c0ff7453 725 return page;
44110fe3 726 }
2ae88149 727 return alloc_pages(gfp, 0);
44110fe3 728}
2ae88149 729EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
730#endif
731
1da177e4
LT
732/*
733 * In order to wait for pages to become available there must be
734 * waitqueues associated with pages. By using a hash table of
735 * waitqueues where the bucket discipline is to maintain all
736 * waiters on the same queue and wake all when any of the pages
737 * become available, and for the woken contexts to check to be
738 * sure the appropriate page became available, this saves space
739 * at a cost of "thundering herd" phenomena during rare hash
740 * collisions.
741 */
62906027
NP
742#define PAGE_WAIT_TABLE_BITS 8
743#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
744static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
745
746static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 747{
62906027 748 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 749}
1da177e4 750
62906027 751void __init pagecache_init(void)
1da177e4 752{
62906027 753 int i;
1da177e4 754
62906027
NP
755 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
756 init_waitqueue_head(&page_wait_table[i]);
757
758 page_writeback_init();
1da177e4 759}
1da177e4 760
62906027
NP
761struct wait_page_key {
762 struct page *page;
763 int bit_nr;
764 int page_match;
765};
766
767struct wait_page_queue {
768 struct page *page;
769 int bit_nr;
770 wait_queue_t wait;
771};
772
773static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 774{
62906027
NP
775 struct wait_page_key *key = arg;
776 struct wait_page_queue *wait_page
777 = container_of(wait, struct wait_page_queue, wait);
778
779 if (wait_page->page != key->page)
780 return 0;
781 key->page_match = 1;
f62e00cc 782
62906027
NP
783 if (wait_page->bit_nr != key->bit_nr)
784 return 0;
785 if (test_bit(key->bit_nr, &key->page->flags))
f62e00cc
KM
786 return 0;
787
62906027 788 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
789}
790
74d81bfa 791static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 792{
62906027
NP
793 wait_queue_head_t *q = page_waitqueue(page);
794 struct wait_page_key key;
795 unsigned long flags;
cbbce822 796
62906027
NP
797 key.page = page;
798 key.bit_nr = bit_nr;
799 key.page_match = 0;
800
801 spin_lock_irqsave(&q->lock, flags);
802 __wake_up_locked_key(q, TASK_NORMAL, &key);
803 /*
804 * It is possible for other pages to have collided on the waitqueue
805 * hash, so in that case check for a page match. That prevents a long-
806 * term waiter
807 *
808 * It is still possible to miss a case here, when we woke page waiters
809 * and removed them from the waitqueue, but there are still other
810 * page waiters.
811 */
812 if (!waitqueue_active(q) || !key.page_match) {
813 ClearPageWaiters(page);
814 /*
815 * It's possible to miss clearing Waiters here, when we woke
816 * our page waiters, but the hashed waitqueue has waiters for
817 * other pages on it.
818 *
819 * That's okay, it's a rare case. The next waker will clear it.
820 */
821 }
822 spin_unlock_irqrestore(&q->lock, flags);
823}
74d81bfa
NP
824
825static void wake_up_page(struct page *page, int bit)
826{
827 if (!PageWaiters(page))
828 return;
829 wake_up_page_bit(page, bit);
830}
62906027
NP
831
832static inline int wait_on_page_bit_common(wait_queue_head_t *q,
833 struct page *page, int bit_nr, int state, bool lock)
834{
835 struct wait_page_queue wait_page;
836 wait_queue_t *wait = &wait_page.wait;
837 int ret = 0;
838
839 init_wait(wait);
840 wait->func = wake_page_function;
841 wait_page.page = page;
842 wait_page.bit_nr = bit_nr;
843
844 for (;;) {
845 spin_lock_irq(&q->lock);
846
847 if (likely(list_empty(&wait->task_list))) {
848 if (lock)
849 __add_wait_queue_tail_exclusive(q, wait);
850 else
851 __add_wait_queue(q, wait);
852 SetPageWaiters(page);
853 }
854
855 set_current_state(state);
856
857 spin_unlock_irq(&q->lock);
858
859 if (likely(test_bit(bit_nr, &page->flags))) {
860 io_schedule();
861 if (unlikely(signal_pending_state(state, current))) {
862 ret = -EINTR;
863 break;
864 }
865 }
866
867 if (lock) {
868 if (!test_and_set_bit_lock(bit_nr, &page->flags))
869 break;
870 } else {
871 if (!test_bit(bit_nr, &page->flags))
872 break;
873 }
874 }
875
876 finish_wait(q, wait);
877
878 /*
879 * A signal could leave PageWaiters set. Clearing it here if
880 * !waitqueue_active would be possible (by open-coding finish_wait),
881 * but still fail to catch it in the case of wait hash collision. We
882 * already can fail to clear wait hash collision cases, so don't
883 * bother with signals either.
884 */
885
886 return ret;
887}
888
889void wait_on_page_bit(struct page *page, int bit_nr)
890{
891 wait_queue_head_t *q = page_waitqueue(page);
892 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
893}
894EXPORT_SYMBOL(wait_on_page_bit);
895
896int wait_on_page_bit_killable(struct page *page, int bit_nr)
897{
898 wait_queue_head_t *q = page_waitqueue(page);
899 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
cbbce822 900}
cbbce822 901
385e1ca5
DH
902/**
903 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
904 * @page: Page defining the wait queue of interest
905 * @waiter: Waiter to add to the queue
385e1ca5
DH
906 *
907 * Add an arbitrary @waiter to the wait queue for the nominated @page.
908 */
909void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
910{
911 wait_queue_head_t *q = page_waitqueue(page);
912 unsigned long flags;
913
914 spin_lock_irqsave(&q->lock, flags);
915 __add_wait_queue(q, waiter);
62906027 916 SetPageWaiters(page);
385e1ca5
DH
917 spin_unlock_irqrestore(&q->lock, flags);
918}
919EXPORT_SYMBOL_GPL(add_page_wait_queue);
920
b91e1302
LT
921#ifndef clear_bit_unlock_is_negative_byte
922
923/*
924 * PG_waiters is the high bit in the same byte as PG_lock.
925 *
926 * On x86 (and on many other architectures), we can clear PG_lock and
927 * test the sign bit at the same time. But if the architecture does
928 * not support that special operation, we just do this all by hand
929 * instead.
930 *
931 * The read of PG_waiters has to be after (or concurrently with) PG_locked
932 * being cleared, but a memory barrier should be unneccssary since it is
933 * in the same byte as PG_locked.
934 */
935static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
936{
937 clear_bit_unlock(nr, mem);
938 /* smp_mb__after_atomic(); */
98473f9f 939 return test_bit(PG_waiters, mem);
b91e1302
LT
940}
941
942#endif
943
1da177e4 944/**
485bb99b 945 * unlock_page - unlock a locked page
1da177e4
LT
946 * @page: the page
947 *
948 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
949 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 950 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
951 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
952 *
b91e1302
LT
953 * Note that this depends on PG_waiters being the sign bit in the byte
954 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
955 * clear the PG_locked bit and test PG_waiters at the same time fairly
956 * portably (architectures that do LL/SC can test any bit, while x86 can
957 * test the sign bit).
1da177e4 958 */
920c7a5d 959void unlock_page(struct page *page)
1da177e4 960{
b91e1302 961 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 962 page = compound_head(page);
309381fe 963 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
964 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
965 wake_up_page_bit(page, PG_locked);
1da177e4
LT
966}
967EXPORT_SYMBOL(unlock_page);
968
485bb99b
RD
969/**
970 * end_page_writeback - end writeback against a page
971 * @page: the page
1da177e4
LT
972 */
973void end_page_writeback(struct page *page)
974{
888cf2db
MG
975 /*
976 * TestClearPageReclaim could be used here but it is an atomic
977 * operation and overkill in this particular case. Failing to
978 * shuffle a page marked for immediate reclaim is too mild to
979 * justify taking an atomic operation penalty at the end of
980 * ever page writeback.
981 */
982 if (PageReclaim(page)) {
983 ClearPageReclaim(page);
ac6aadb2 984 rotate_reclaimable_page(page);
888cf2db 985 }
ac6aadb2
MS
986
987 if (!test_clear_page_writeback(page))
988 BUG();
989
4e857c58 990 smp_mb__after_atomic();
1da177e4
LT
991 wake_up_page(page, PG_writeback);
992}
993EXPORT_SYMBOL(end_page_writeback);
994
57d99845
MW
995/*
996 * After completing I/O on a page, call this routine to update the page
997 * flags appropriately
998 */
c11f0c0b 999void page_endio(struct page *page, bool is_write, int err)
57d99845 1000{
c11f0c0b 1001 if (!is_write) {
57d99845
MW
1002 if (!err) {
1003 SetPageUptodate(page);
1004 } else {
1005 ClearPageUptodate(page);
1006 SetPageError(page);
1007 }
1008 unlock_page(page);
abf54548 1009 } else {
57d99845
MW
1010 if (err) {
1011 SetPageError(page);
1012 if (page->mapping)
1013 mapping_set_error(page->mapping, err);
1014 }
1015 end_page_writeback(page);
1016 }
1017}
1018EXPORT_SYMBOL_GPL(page_endio);
1019
485bb99b
RD
1020/**
1021 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1022 * @__page: the page to lock
1da177e4 1023 */
62906027 1024void __lock_page(struct page *__page)
1da177e4 1025{
62906027
NP
1026 struct page *page = compound_head(__page);
1027 wait_queue_head_t *q = page_waitqueue(page);
1028 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1da177e4
LT
1029}
1030EXPORT_SYMBOL(__lock_page);
1031
62906027 1032int __lock_page_killable(struct page *__page)
2687a356 1033{
62906027
NP
1034 struct page *page = compound_head(__page);
1035 wait_queue_head_t *q = page_waitqueue(page);
1036 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
2687a356 1037}
18bc0bbd 1038EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1039
9a95f3cf
PC
1040/*
1041 * Return values:
1042 * 1 - page is locked; mmap_sem is still held.
1043 * 0 - page is not locked.
1044 * mmap_sem has been released (up_read()), unless flags had both
1045 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1046 * which case mmap_sem is still held.
1047 *
1048 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1049 * with the page locked and the mmap_sem unperturbed.
1050 */
d065bd81
ML
1051int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1052 unsigned int flags)
1053{
37b23e05
KM
1054 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1055 /*
1056 * CAUTION! In this case, mmap_sem is not released
1057 * even though return 0.
1058 */
1059 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1060 return 0;
1061
1062 up_read(&mm->mmap_sem);
1063 if (flags & FAULT_FLAG_KILLABLE)
1064 wait_on_page_locked_killable(page);
1065 else
318b275f 1066 wait_on_page_locked(page);
d065bd81 1067 return 0;
37b23e05
KM
1068 } else {
1069 if (flags & FAULT_FLAG_KILLABLE) {
1070 int ret;
1071
1072 ret = __lock_page_killable(page);
1073 if (ret) {
1074 up_read(&mm->mmap_sem);
1075 return 0;
1076 }
1077 } else
1078 __lock_page(page);
1079 return 1;
d065bd81
ML
1080 }
1081}
1082
e7b563bb
JW
1083/**
1084 * page_cache_next_hole - find the next hole (not-present entry)
1085 * @mapping: mapping
1086 * @index: index
1087 * @max_scan: maximum range to search
1088 *
1089 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1090 * lowest indexed hole.
1091 *
1092 * Returns: the index of the hole if found, otherwise returns an index
1093 * outside of the set specified (in which case 'return - index >=
1094 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1095 * be returned.
1096 *
1097 * page_cache_next_hole may be called under rcu_read_lock. However,
1098 * like radix_tree_gang_lookup, this will not atomically search a
1099 * snapshot of the tree at a single point in time. For example, if a
1100 * hole is created at index 5, then subsequently a hole is created at
1101 * index 10, page_cache_next_hole covering both indexes may return 10
1102 * if called under rcu_read_lock.
1103 */
1104pgoff_t page_cache_next_hole(struct address_space *mapping,
1105 pgoff_t index, unsigned long max_scan)
1106{
1107 unsigned long i;
1108
1109 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1110 struct page *page;
1111
1112 page = radix_tree_lookup(&mapping->page_tree, index);
1113 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1114 break;
1115 index++;
1116 if (index == 0)
1117 break;
1118 }
1119
1120 return index;
1121}
1122EXPORT_SYMBOL(page_cache_next_hole);
1123
1124/**
1125 * page_cache_prev_hole - find the prev hole (not-present entry)
1126 * @mapping: mapping
1127 * @index: index
1128 * @max_scan: maximum range to search
1129 *
1130 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1131 * the first hole.
1132 *
1133 * Returns: the index of the hole if found, otherwise returns an index
1134 * outside of the set specified (in which case 'index - return >=
1135 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1136 * will be returned.
1137 *
1138 * page_cache_prev_hole may be called under rcu_read_lock. However,
1139 * like radix_tree_gang_lookup, this will not atomically search a
1140 * snapshot of the tree at a single point in time. For example, if a
1141 * hole is created at index 10, then subsequently a hole is created at
1142 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1143 * called under rcu_read_lock.
1144 */
1145pgoff_t page_cache_prev_hole(struct address_space *mapping,
1146 pgoff_t index, unsigned long max_scan)
1147{
1148 unsigned long i;
1149
1150 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1151 struct page *page;
1152
1153 page = radix_tree_lookup(&mapping->page_tree, index);
1154 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1155 break;
1156 index--;
1157 if (index == ULONG_MAX)
1158 break;
1159 }
1160
1161 return index;
1162}
1163EXPORT_SYMBOL(page_cache_prev_hole);
1164
485bb99b 1165/**
0cd6144a 1166 * find_get_entry - find and get a page cache entry
485bb99b 1167 * @mapping: the address_space to search
0cd6144a
JW
1168 * @offset: the page cache index
1169 *
1170 * Looks up the page cache slot at @mapping & @offset. If there is a
1171 * page cache page, it is returned with an increased refcount.
485bb99b 1172 *
139b6a6f
JW
1173 * If the slot holds a shadow entry of a previously evicted page, or a
1174 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1175 *
1176 * Otherwise, %NULL is returned.
1da177e4 1177 */
0cd6144a 1178struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1179{
a60637c8 1180 void **pagep;
83929372 1181 struct page *head, *page;
1da177e4 1182
a60637c8
NP
1183 rcu_read_lock();
1184repeat:
1185 page = NULL;
1186 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1187 if (pagep) {
1188 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1189 if (unlikely(!page))
1190 goto out;
a2c16d6c 1191 if (radix_tree_exception(page)) {
8079b1c8
HD
1192 if (radix_tree_deref_retry(page))
1193 goto repeat;
1194 /*
139b6a6f
JW
1195 * A shadow entry of a recently evicted page,
1196 * or a swap entry from shmem/tmpfs. Return
1197 * it without attempting to raise page count.
8079b1c8
HD
1198 */
1199 goto out;
a2c16d6c 1200 }
83929372
KS
1201
1202 head = compound_head(page);
1203 if (!page_cache_get_speculative(head))
1204 goto repeat;
1205
1206 /* The page was split under us? */
1207 if (compound_head(page) != head) {
1208 put_page(head);
a60637c8 1209 goto repeat;
83929372 1210 }
a60637c8
NP
1211
1212 /*
1213 * Has the page moved?
1214 * This is part of the lockless pagecache protocol. See
1215 * include/linux/pagemap.h for details.
1216 */
1217 if (unlikely(page != *pagep)) {
83929372 1218 put_page(head);
a60637c8
NP
1219 goto repeat;
1220 }
1221 }
27d20fdd 1222out:
a60637c8
NP
1223 rcu_read_unlock();
1224
1da177e4
LT
1225 return page;
1226}
0cd6144a 1227EXPORT_SYMBOL(find_get_entry);
1da177e4 1228
0cd6144a
JW
1229/**
1230 * find_lock_entry - locate, pin and lock a page cache entry
1231 * @mapping: the address_space to search
1232 * @offset: the page cache index
1233 *
1234 * Looks up the page cache slot at @mapping & @offset. If there is a
1235 * page cache page, it is returned locked and with an increased
1236 * refcount.
1237 *
139b6a6f
JW
1238 * If the slot holds a shadow entry of a previously evicted page, or a
1239 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1240 *
1241 * Otherwise, %NULL is returned.
1242 *
1243 * find_lock_entry() may sleep.
1244 */
1245struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1246{
1247 struct page *page;
1248
1da177e4 1249repeat:
0cd6144a 1250 page = find_get_entry(mapping, offset);
a2c16d6c 1251 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1252 lock_page(page);
1253 /* Has the page been truncated? */
83929372 1254 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1255 unlock_page(page);
09cbfeaf 1256 put_page(page);
a60637c8 1257 goto repeat;
1da177e4 1258 }
83929372 1259 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1260 }
1da177e4
LT
1261 return page;
1262}
0cd6144a
JW
1263EXPORT_SYMBOL(find_lock_entry);
1264
1265/**
2457aec6 1266 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1267 * @mapping: the address_space to search
1268 * @offset: the page index
2457aec6 1269 * @fgp_flags: PCG flags
45f87de5 1270 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1271 *
2457aec6 1272 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1273 *
75325189 1274 * PCG flags modify how the page is returned.
0cd6144a 1275 *
2457aec6
MG
1276 * FGP_ACCESSED: the page will be marked accessed
1277 * FGP_LOCK: Page is return locked
1278 * FGP_CREAT: If page is not present then a new page is allocated using
45f87de5
MH
1279 * @gfp_mask and added to the page cache and the VM's LRU
1280 * list. The page is returned locked and with an increased
1281 * refcount. Otherwise, %NULL is returned.
1da177e4 1282 *
2457aec6
MG
1283 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1284 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1285 *
2457aec6 1286 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1287 */
2457aec6 1288struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1289 int fgp_flags, gfp_t gfp_mask)
1da177e4 1290{
eb2be189 1291 struct page *page;
2457aec6 1292
1da177e4 1293repeat:
2457aec6
MG
1294 page = find_get_entry(mapping, offset);
1295 if (radix_tree_exceptional_entry(page))
1296 page = NULL;
1297 if (!page)
1298 goto no_page;
1299
1300 if (fgp_flags & FGP_LOCK) {
1301 if (fgp_flags & FGP_NOWAIT) {
1302 if (!trylock_page(page)) {
09cbfeaf 1303 put_page(page);
2457aec6
MG
1304 return NULL;
1305 }
1306 } else {
1307 lock_page(page);
1308 }
1309
1310 /* Has the page been truncated? */
1311 if (unlikely(page->mapping != mapping)) {
1312 unlock_page(page);
09cbfeaf 1313 put_page(page);
2457aec6
MG
1314 goto repeat;
1315 }
1316 VM_BUG_ON_PAGE(page->index != offset, page);
1317 }
1318
1319 if (page && (fgp_flags & FGP_ACCESSED))
1320 mark_page_accessed(page);
1321
1322no_page:
1323 if (!page && (fgp_flags & FGP_CREAT)) {
1324 int err;
1325 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1326 gfp_mask |= __GFP_WRITE;
1327 if (fgp_flags & FGP_NOFS)
1328 gfp_mask &= ~__GFP_FS;
2457aec6 1329
45f87de5 1330 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1331 if (!page)
1332 return NULL;
2457aec6
MG
1333
1334 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1335 fgp_flags |= FGP_LOCK;
1336
eb39d618 1337 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1338 if (fgp_flags & FGP_ACCESSED)
eb39d618 1339 __SetPageReferenced(page);
2457aec6 1340
45f87de5
MH
1341 err = add_to_page_cache_lru(page, mapping, offset,
1342 gfp_mask & GFP_RECLAIM_MASK);
eb2be189 1343 if (unlikely(err)) {
09cbfeaf 1344 put_page(page);
eb2be189
NP
1345 page = NULL;
1346 if (err == -EEXIST)
1347 goto repeat;
1da177e4 1348 }
1da177e4 1349 }
2457aec6 1350
1da177e4
LT
1351 return page;
1352}
2457aec6 1353EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1354
0cd6144a
JW
1355/**
1356 * find_get_entries - gang pagecache lookup
1357 * @mapping: The address_space to search
1358 * @start: The starting page cache index
1359 * @nr_entries: The maximum number of entries
1360 * @entries: Where the resulting entries are placed
1361 * @indices: The cache indices corresponding to the entries in @entries
1362 *
1363 * find_get_entries() will search for and return a group of up to
1364 * @nr_entries entries in the mapping. The entries are placed at
1365 * @entries. find_get_entries() takes a reference against any actual
1366 * pages it returns.
1367 *
1368 * The search returns a group of mapping-contiguous page cache entries
1369 * with ascending indexes. There may be holes in the indices due to
1370 * not-present pages.
1371 *
139b6a6f
JW
1372 * Any shadow entries of evicted pages, or swap entries from
1373 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1374 *
1375 * find_get_entries() returns the number of pages and shadow entries
1376 * which were found.
1377 */
1378unsigned find_get_entries(struct address_space *mapping,
1379 pgoff_t start, unsigned int nr_entries,
1380 struct page **entries, pgoff_t *indices)
1381{
1382 void **slot;
1383 unsigned int ret = 0;
1384 struct radix_tree_iter iter;
1385
1386 if (!nr_entries)
1387 return 0;
1388
1389 rcu_read_lock();
0cd6144a 1390 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1391 struct page *head, *page;
0cd6144a
JW
1392repeat:
1393 page = radix_tree_deref_slot(slot);
1394 if (unlikely(!page))
1395 continue;
1396 if (radix_tree_exception(page)) {
2cf938aa
MW
1397 if (radix_tree_deref_retry(page)) {
1398 slot = radix_tree_iter_retry(&iter);
1399 continue;
1400 }
0cd6144a 1401 /*
f9fe48be
RZ
1402 * A shadow entry of a recently evicted page, a swap
1403 * entry from shmem/tmpfs or a DAX entry. Return it
1404 * without attempting to raise page count.
0cd6144a
JW
1405 */
1406 goto export;
1407 }
83929372
KS
1408
1409 head = compound_head(page);
1410 if (!page_cache_get_speculative(head))
1411 goto repeat;
1412
1413 /* The page was split under us? */
1414 if (compound_head(page) != head) {
1415 put_page(head);
0cd6144a 1416 goto repeat;
83929372 1417 }
0cd6144a
JW
1418
1419 /* Has the page moved? */
1420 if (unlikely(page != *slot)) {
83929372 1421 put_page(head);
0cd6144a
JW
1422 goto repeat;
1423 }
1424export:
1425 indices[ret] = iter.index;
1426 entries[ret] = page;
1427 if (++ret == nr_entries)
1428 break;
1429 }
1430 rcu_read_unlock();
1431 return ret;
1432}
1433
1da177e4
LT
1434/**
1435 * find_get_pages - gang pagecache lookup
1436 * @mapping: The address_space to search
1437 * @start: The starting page index
1438 * @nr_pages: The maximum number of pages
1439 * @pages: Where the resulting pages are placed
1440 *
1441 * find_get_pages() will search for and return a group of up to
1442 * @nr_pages pages in the mapping. The pages are placed at @pages.
1443 * find_get_pages() takes a reference against the returned pages.
1444 *
1445 * The search returns a group of mapping-contiguous pages with ascending
1446 * indexes. There may be holes in the indices due to not-present pages.
1447 *
1448 * find_get_pages() returns the number of pages which were found.
1449 */
1450unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1451 unsigned int nr_pages, struct page **pages)
1452{
0fc9d104
KK
1453 struct radix_tree_iter iter;
1454 void **slot;
1455 unsigned ret = 0;
1456
1457 if (unlikely(!nr_pages))
1458 return 0;
a60637c8
NP
1459
1460 rcu_read_lock();
0fc9d104 1461 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1462 struct page *head, *page;
a60637c8 1463repeat:
0fc9d104 1464 page = radix_tree_deref_slot(slot);
a60637c8
NP
1465 if (unlikely(!page))
1466 continue;
9d8aa4ea 1467
a2c16d6c 1468 if (radix_tree_exception(page)) {
8079b1c8 1469 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1470 slot = radix_tree_iter_retry(&iter);
1471 continue;
8079b1c8 1472 }
a2c16d6c 1473 /*
139b6a6f
JW
1474 * A shadow entry of a recently evicted page,
1475 * or a swap entry from shmem/tmpfs. Skip
1476 * over it.
a2c16d6c 1477 */
8079b1c8 1478 continue;
27d20fdd 1479 }
a60637c8 1480
83929372
KS
1481 head = compound_head(page);
1482 if (!page_cache_get_speculative(head))
1483 goto repeat;
1484
1485 /* The page was split under us? */
1486 if (compound_head(page) != head) {
1487 put_page(head);
a60637c8 1488 goto repeat;
83929372 1489 }
a60637c8
NP
1490
1491 /* Has the page moved? */
0fc9d104 1492 if (unlikely(page != *slot)) {
83929372 1493 put_page(head);
a60637c8
NP
1494 goto repeat;
1495 }
1da177e4 1496
a60637c8 1497 pages[ret] = page;
0fc9d104
KK
1498 if (++ret == nr_pages)
1499 break;
a60637c8 1500 }
5b280c0c 1501
a60637c8 1502 rcu_read_unlock();
1da177e4
LT
1503 return ret;
1504}
1505
ebf43500
JA
1506/**
1507 * find_get_pages_contig - gang contiguous pagecache lookup
1508 * @mapping: The address_space to search
1509 * @index: The starting page index
1510 * @nr_pages: The maximum number of pages
1511 * @pages: Where the resulting pages are placed
1512 *
1513 * find_get_pages_contig() works exactly like find_get_pages(), except
1514 * that the returned number of pages are guaranteed to be contiguous.
1515 *
1516 * find_get_pages_contig() returns the number of pages which were found.
1517 */
1518unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1519 unsigned int nr_pages, struct page **pages)
1520{
0fc9d104
KK
1521 struct radix_tree_iter iter;
1522 void **slot;
1523 unsigned int ret = 0;
1524
1525 if (unlikely(!nr_pages))
1526 return 0;
a60637c8
NP
1527
1528 rcu_read_lock();
0fc9d104 1529 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
83929372 1530 struct page *head, *page;
a60637c8 1531repeat:
0fc9d104
KK
1532 page = radix_tree_deref_slot(slot);
1533 /* The hole, there no reason to continue */
a60637c8 1534 if (unlikely(!page))
0fc9d104 1535 break;
9d8aa4ea 1536
a2c16d6c 1537 if (radix_tree_exception(page)) {
8079b1c8 1538 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1539 slot = radix_tree_iter_retry(&iter);
1540 continue;
8079b1c8 1541 }
a2c16d6c 1542 /*
139b6a6f
JW
1543 * A shadow entry of a recently evicted page,
1544 * or a swap entry from shmem/tmpfs. Stop
1545 * looking for contiguous pages.
a2c16d6c 1546 */
8079b1c8 1547 break;
a2c16d6c 1548 }
ebf43500 1549
83929372
KS
1550 head = compound_head(page);
1551 if (!page_cache_get_speculative(head))
1552 goto repeat;
1553
1554 /* The page was split under us? */
1555 if (compound_head(page) != head) {
1556 put_page(head);
a60637c8 1557 goto repeat;
83929372 1558 }
a60637c8
NP
1559
1560 /* Has the page moved? */
0fc9d104 1561 if (unlikely(page != *slot)) {
83929372 1562 put_page(head);
a60637c8
NP
1563 goto repeat;
1564 }
1565
9cbb4cb2
NP
1566 /*
1567 * must check mapping and index after taking the ref.
1568 * otherwise we can get both false positives and false
1569 * negatives, which is just confusing to the caller.
1570 */
83929372 1571 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
09cbfeaf 1572 put_page(page);
9cbb4cb2
NP
1573 break;
1574 }
1575
a60637c8 1576 pages[ret] = page;
0fc9d104
KK
1577 if (++ret == nr_pages)
1578 break;
ebf43500 1579 }
a60637c8
NP
1580 rcu_read_unlock();
1581 return ret;
ebf43500 1582}
ef71c15c 1583EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1584
485bb99b
RD
1585/**
1586 * find_get_pages_tag - find and return pages that match @tag
1587 * @mapping: the address_space to search
1588 * @index: the starting page index
1589 * @tag: the tag index
1590 * @nr_pages: the maximum number of pages
1591 * @pages: where the resulting pages are placed
1592 *
1da177e4 1593 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1594 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1595 */
1596unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1597 int tag, unsigned int nr_pages, struct page **pages)
1598{
0fc9d104
KK
1599 struct radix_tree_iter iter;
1600 void **slot;
1601 unsigned ret = 0;
1602
1603 if (unlikely(!nr_pages))
1604 return 0;
a60637c8
NP
1605
1606 rcu_read_lock();
0fc9d104
KK
1607 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1608 &iter, *index, tag) {
83929372 1609 struct page *head, *page;
a60637c8 1610repeat:
0fc9d104 1611 page = radix_tree_deref_slot(slot);
a60637c8
NP
1612 if (unlikely(!page))
1613 continue;
9d8aa4ea 1614
a2c16d6c 1615 if (radix_tree_exception(page)) {
8079b1c8 1616 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1617 slot = radix_tree_iter_retry(&iter);
1618 continue;
8079b1c8 1619 }
a2c16d6c 1620 /*
139b6a6f
JW
1621 * A shadow entry of a recently evicted page.
1622 *
1623 * Those entries should never be tagged, but
1624 * this tree walk is lockless and the tags are
1625 * looked up in bulk, one radix tree node at a
1626 * time, so there is a sizable window for page
1627 * reclaim to evict a page we saw tagged.
1628 *
1629 * Skip over it.
a2c16d6c 1630 */
139b6a6f 1631 continue;
a2c16d6c 1632 }
a60637c8 1633
83929372
KS
1634 head = compound_head(page);
1635 if (!page_cache_get_speculative(head))
a60637c8
NP
1636 goto repeat;
1637
83929372
KS
1638 /* The page was split under us? */
1639 if (compound_head(page) != head) {
1640 put_page(head);
1641 goto repeat;
1642 }
1643
a60637c8 1644 /* Has the page moved? */
0fc9d104 1645 if (unlikely(page != *slot)) {
83929372 1646 put_page(head);
a60637c8
NP
1647 goto repeat;
1648 }
1649
1650 pages[ret] = page;
0fc9d104
KK
1651 if (++ret == nr_pages)
1652 break;
a60637c8 1653 }
5b280c0c 1654
a60637c8 1655 rcu_read_unlock();
1da177e4 1656
1da177e4
LT
1657 if (ret)
1658 *index = pages[ret - 1]->index + 1;
a60637c8 1659
1da177e4
LT
1660 return ret;
1661}
ef71c15c 1662EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1663
7e7f7749
RZ
1664/**
1665 * find_get_entries_tag - find and return entries that match @tag
1666 * @mapping: the address_space to search
1667 * @start: the starting page cache index
1668 * @tag: the tag index
1669 * @nr_entries: the maximum number of entries
1670 * @entries: where the resulting entries are placed
1671 * @indices: the cache indices corresponding to the entries in @entries
1672 *
1673 * Like find_get_entries, except we only return entries which are tagged with
1674 * @tag.
1675 */
1676unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1677 int tag, unsigned int nr_entries,
1678 struct page **entries, pgoff_t *indices)
1679{
1680 void **slot;
1681 unsigned int ret = 0;
1682 struct radix_tree_iter iter;
1683
1684 if (!nr_entries)
1685 return 0;
1686
1687 rcu_read_lock();
7e7f7749
RZ
1688 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1689 &iter, start, tag) {
83929372 1690 struct page *head, *page;
7e7f7749
RZ
1691repeat:
1692 page = radix_tree_deref_slot(slot);
1693 if (unlikely(!page))
1694 continue;
1695 if (radix_tree_exception(page)) {
1696 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1697 slot = radix_tree_iter_retry(&iter);
1698 continue;
7e7f7749
RZ
1699 }
1700
1701 /*
1702 * A shadow entry of a recently evicted page, a swap
1703 * entry from shmem/tmpfs or a DAX entry. Return it
1704 * without attempting to raise page count.
1705 */
1706 goto export;
1707 }
83929372
KS
1708
1709 head = compound_head(page);
1710 if (!page_cache_get_speculative(head))
7e7f7749
RZ
1711 goto repeat;
1712
83929372
KS
1713 /* The page was split under us? */
1714 if (compound_head(page) != head) {
1715 put_page(head);
1716 goto repeat;
1717 }
1718
7e7f7749
RZ
1719 /* Has the page moved? */
1720 if (unlikely(page != *slot)) {
83929372 1721 put_page(head);
7e7f7749
RZ
1722 goto repeat;
1723 }
1724export:
1725 indices[ret] = iter.index;
1726 entries[ret] = page;
1727 if (++ret == nr_entries)
1728 break;
1729 }
1730 rcu_read_unlock();
1731 return ret;
1732}
1733EXPORT_SYMBOL(find_get_entries_tag);
1734
76d42bd9
WF
1735/*
1736 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1737 * a _large_ part of the i/o request. Imagine the worst scenario:
1738 *
1739 * ---R__________________________________________B__________
1740 * ^ reading here ^ bad block(assume 4k)
1741 *
1742 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1743 * => failing the whole request => read(R) => read(R+1) =>
1744 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1745 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1746 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1747 *
1748 * It is going insane. Fix it by quickly scaling down the readahead size.
1749 */
1750static void shrink_readahead_size_eio(struct file *filp,
1751 struct file_ra_state *ra)
1752{
76d42bd9 1753 ra->ra_pages /= 4;
76d42bd9
WF
1754}
1755
485bb99b 1756/**
36e78914 1757 * do_generic_file_read - generic file read routine
485bb99b
RD
1758 * @filp: the file to read
1759 * @ppos: current file position
6e58e79d
AV
1760 * @iter: data destination
1761 * @written: already copied
485bb99b 1762 *
1da177e4 1763 * This is a generic file read routine, and uses the
485bb99b 1764 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1765 *
1766 * This is really ugly. But the goto's actually try to clarify some
1767 * of the logic when it comes to error handling etc.
1da177e4 1768 */
6e58e79d
AV
1769static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1770 struct iov_iter *iter, ssize_t written)
1da177e4 1771{
36e78914 1772 struct address_space *mapping = filp->f_mapping;
1da177e4 1773 struct inode *inode = mapping->host;
36e78914 1774 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1775 pgoff_t index;
1776 pgoff_t last_index;
1777 pgoff_t prev_index;
1778 unsigned long offset; /* offset into pagecache page */
ec0f1637 1779 unsigned int prev_offset;
6e58e79d 1780 int error = 0;
1da177e4 1781
c2a9737f 1782 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 1783 return 0;
c2a9737f
WF
1784 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1785
09cbfeaf
KS
1786 index = *ppos >> PAGE_SHIFT;
1787 prev_index = ra->prev_pos >> PAGE_SHIFT;
1788 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1789 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1790 offset = *ppos & ~PAGE_MASK;
1da177e4 1791
1da177e4
LT
1792 for (;;) {
1793 struct page *page;
57f6b96c 1794 pgoff_t end_index;
a32ea1e1 1795 loff_t isize;
1da177e4
LT
1796 unsigned long nr, ret;
1797
1da177e4 1798 cond_resched();
1da177e4 1799find_page:
5abf186a
MH
1800 if (fatal_signal_pending(current)) {
1801 error = -EINTR;
1802 goto out;
1803 }
1804
1da177e4 1805 page = find_get_page(mapping, index);
3ea89ee8 1806 if (!page) {
cf914a7d 1807 page_cache_sync_readahead(mapping,
7ff81078 1808 ra, filp,
3ea89ee8
FW
1809 index, last_index - index);
1810 page = find_get_page(mapping, index);
1811 if (unlikely(page == NULL))
1812 goto no_cached_page;
1813 }
1814 if (PageReadahead(page)) {
cf914a7d 1815 page_cache_async_readahead(mapping,
7ff81078 1816 ra, filp, page,
3ea89ee8 1817 index, last_index - index);
1da177e4 1818 }
8ab22b9a 1819 if (!PageUptodate(page)) {
ebded027
MG
1820 /*
1821 * See comment in do_read_cache_page on why
1822 * wait_on_page_locked is used to avoid unnecessarily
1823 * serialisations and why it's safe.
1824 */
c4b209a4
BVA
1825 error = wait_on_page_locked_killable(page);
1826 if (unlikely(error))
1827 goto readpage_error;
ebded027
MG
1828 if (PageUptodate(page))
1829 goto page_ok;
1830
09cbfeaf 1831 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
1832 !mapping->a_ops->is_partially_uptodate)
1833 goto page_not_up_to_date;
6d6d36bc
EG
1834 /* pipes can't handle partially uptodate pages */
1835 if (unlikely(iter->type & ITER_PIPE))
1836 goto page_not_up_to_date;
529ae9aa 1837 if (!trylock_page(page))
8ab22b9a 1838 goto page_not_up_to_date;
8d056cb9
DH
1839 /* Did it get truncated before we got the lock? */
1840 if (!page->mapping)
1841 goto page_not_up_to_date_locked;
8ab22b9a 1842 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1843 offset, iter->count))
8ab22b9a
HH
1844 goto page_not_up_to_date_locked;
1845 unlock_page(page);
1846 }
1da177e4 1847page_ok:
a32ea1e1
N
1848 /*
1849 * i_size must be checked after we know the page is Uptodate.
1850 *
1851 * Checking i_size after the check allows us to calculate
1852 * the correct value for "nr", which means the zero-filled
1853 * part of the page is not copied back to userspace (unless
1854 * another truncate extends the file - this is desired though).
1855 */
1856
1857 isize = i_size_read(inode);
09cbfeaf 1858 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 1859 if (unlikely(!isize || index > end_index)) {
09cbfeaf 1860 put_page(page);
a32ea1e1
N
1861 goto out;
1862 }
1863
1864 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 1865 nr = PAGE_SIZE;
a32ea1e1 1866 if (index == end_index) {
09cbfeaf 1867 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 1868 if (nr <= offset) {
09cbfeaf 1869 put_page(page);
a32ea1e1
N
1870 goto out;
1871 }
1872 }
1873 nr = nr - offset;
1da177e4
LT
1874
1875 /* If users can be writing to this page using arbitrary
1876 * virtual addresses, take care about potential aliasing
1877 * before reading the page on the kernel side.
1878 */
1879 if (mapping_writably_mapped(mapping))
1880 flush_dcache_page(page);
1881
1882 /*
ec0f1637
JK
1883 * When a sequential read accesses a page several times,
1884 * only mark it as accessed the first time.
1da177e4 1885 */
ec0f1637 1886 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1887 mark_page_accessed(page);
1888 prev_index = index;
1889
1890 /*
1891 * Ok, we have the page, and it's up-to-date, so
1892 * now we can copy it to user space...
1da177e4 1893 */
6e58e79d
AV
1894
1895 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 1896 offset += ret;
09cbfeaf
KS
1897 index += offset >> PAGE_SHIFT;
1898 offset &= ~PAGE_MASK;
6ce745ed 1899 prev_offset = offset;
1da177e4 1900
09cbfeaf 1901 put_page(page);
6e58e79d
AV
1902 written += ret;
1903 if (!iov_iter_count(iter))
1904 goto out;
1905 if (ret < nr) {
1906 error = -EFAULT;
1907 goto out;
1908 }
1909 continue;
1da177e4
LT
1910
1911page_not_up_to_date:
1912 /* Get exclusive access to the page ... */
85462323
ON
1913 error = lock_page_killable(page);
1914 if (unlikely(error))
1915 goto readpage_error;
1da177e4 1916
8ab22b9a 1917page_not_up_to_date_locked:
da6052f7 1918 /* Did it get truncated before we got the lock? */
1da177e4
LT
1919 if (!page->mapping) {
1920 unlock_page(page);
09cbfeaf 1921 put_page(page);
1da177e4
LT
1922 continue;
1923 }
1924
1925 /* Did somebody else fill it already? */
1926 if (PageUptodate(page)) {
1927 unlock_page(page);
1928 goto page_ok;
1929 }
1930
1931readpage:
91803b49
JM
1932 /*
1933 * A previous I/O error may have been due to temporary
1934 * failures, eg. multipath errors.
1935 * PG_error will be set again if readpage fails.
1936 */
1937 ClearPageError(page);
1da177e4
LT
1938 /* Start the actual read. The read will unlock the page. */
1939 error = mapping->a_ops->readpage(filp, page);
1940
994fc28c
ZB
1941 if (unlikely(error)) {
1942 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 1943 put_page(page);
6e58e79d 1944 error = 0;
994fc28c
ZB
1945 goto find_page;
1946 }
1da177e4 1947 goto readpage_error;
994fc28c 1948 }
1da177e4
LT
1949
1950 if (!PageUptodate(page)) {
85462323
ON
1951 error = lock_page_killable(page);
1952 if (unlikely(error))
1953 goto readpage_error;
1da177e4
LT
1954 if (!PageUptodate(page)) {
1955 if (page->mapping == NULL) {
1956 /*
2ecdc82e 1957 * invalidate_mapping_pages got it
1da177e4
LT
1958 */
1959 unlock_page(page);
09cbfeaf 1960 put_page(page);
1da177e4
LT
1961 goto find_page;
1962 }
1963 unlock_page(page);
7ff81078 1964 shrink_readahead_size_eio(filp, ra);
85462323
ON
1965 error = -EIO;
1966 goto readpage_error;
1da177e4
LT
1967 }
1968 unlock_page(page);
1969 }
1970
1da177e4
LT
1971 goto page_ok;
1972
1973readpage_error:
1974 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 1975 put_page(page);
1da177e4
LT
1976 goto out;
1977
1978no_cached_page:
1979 /*
1980 * Ok, it wasn't cached, so we need to create a new
1981 * page..
1982 */
eb2be189
NP
1983 page = page_cache_alloc_cold(mapping);
1984 if (!page) {
6e58e79d 1985 error = -ENOMEM;
eb2be189 1986 goto out;
1da177e4 1987 }
6afdb859 1988 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 1989 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 1990 if (error) {
09cbfeaf 1991 put_page(page);
6e58e79d
AV
1992 if (error == -EEXIST) {
1993 error = 0;
1da177e4 1994 goto find_page;
6e58e79d 1995 }
1da177e4
LT
1996 goto out;
1997 }
1da177e4
LT
1998 goto readpage;
1999 }
2000
2001out:
7ff81078 2002 ra->prev_pos = prev_index;
09cbfeaf 2003 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2004 ra->prev_pos |= prev_offset;
1da177e4 2005
09cbfeaf 2006 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2007 file_accessed(filp);
6e58e79d 2008 return written ? written : error;
1da177e4
LT
2009}
2010
485bb99b 2011/**
6abd2322 2012 * generic_file_read_iter - generic filesystem read routine
485bb99b 2013 * @iocb: kernel I/O control block
6abd2322 2014 * @iter: destination for the data read
485bb99b 2015 *
6abd2322 2016 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
2017 * that can use the page cache directly.
2018 */
2019ssize_t
ed978a81 2020generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2021{
ed978a81 2022 struct file *file = iocb->ki_filp;
cb66a7a1 2023 ssize_t retval = 0;
e7080a43
NS
2024 size_t count = iov_iter_count(iter);
2025
2026 if (!count)
2027 goto out; /* skip atime */
1da177e4 2028
2ba48ce5 2029 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
2030 struct address_space *mapping = file->f_mapping;
2031 struct inode *inode = mapping->host;
0d5b0cf2 2032 struct iov_iter data = *iter;
543ade1f 2033 loff_t size;
1da177e4 2034
1da177e4 2035 size = i_size_read(inode);
c64fb5c7
CH
2036 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2037 iocb->ki_pos + count - 1);
0d5b0cf2
CH
2038 if (retval < 0)
2039 goto out;
d8d3d94b 2040
0d5b0cf2
CH
2041 file_accessed(file);
2042
2043 retval = mapping->a_ops->direct_IO(iocb, &data);
c3a69024 2044 if (retval >= 0) {
c64fb5c7 2045 iocb->ki_pos += retval;
ed978a81 2046 iov_iter_advance(iter, retval);
9fe55eea 2047 }
66f998f6 2048
9fe55eea
SW
2049 /*
2050 * Btrfs can have a short DIO read if we encounter
2051 * compressed extents, so if there was an error, or if
2052 * we've already read everything we wanted to, or if
2053 * there was a short read because we hit EOF, go ahead
2054 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2055 * the rest of the read. Buffered reads will not work for
2056 * DAX files, so don't bother trying.
9fe55eea 2057 */
c64fb5c7 2058 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
0d5b0cf2 2059 IS_DAX(inode))
9fe55eea 2060 goto out;
1da177e4
LT
2061 }
2062
c64fb5c7 2063 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1da177e4
LT
2064out:
2065 return retval;
2066}
ed978a81 2067EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2068
1da177e4 2069#ifdef CONFIG_MMU
485bb99b
RD
2070/**
2071 * page_cache_read - adds requested page to the page cache if not already there
2072 * @file: file to read
2073 * @offset: page index
62eb320a 2074 * @gfp_mask: memory allocation flags
485bb99b 2075 *
1da177e4
LT
2076 * This adds the requested page to the page cache if it isn't already there,
2077 * and schedules an I/O to read in its contents from disk.
2078 */
c20cd45e 2079static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
2080{
2081 struct address_space *mapping = file->f_mapping;
99dadfdd 2082 struct page *page;
994fc28c 2083 int ret;
1da177e4 2084
994fc28c 2085 do {
c20cd45e 2086 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
994fc28c
ZB
2087 if (!page)
2088 return -ENOMEM;
2089
c20cd45e 2090 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
994fc28c
ZB
2091 if (ret == 0)
2092 ret = mapping->a_ops->readpage(file, page);
2093 else if (ret == -EEXIST)
2094 ret = 0; /* losing race to add is OK */
1da177e4 2095
09cbfeaf 2096 put_page(page);
1da177e4 2097
994fc28c 2098 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 2099
994fc28c 2100 return ret;
1da177e4
LT
2101}
2102
2103#define MMAP_LOTSAMISS (100)
2104
ef00e08e
LT
2105/*
2106 * Synchronous readahead happens when we don't even find
2107 * a page in the page cache at all.
2108 */
2109static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2110 struct file_ra_state *ra,
2111 struct file *file,
2112 pgoff_t offset)
2113{
ef00e08e
LT
2114 struct address_space *mapping = file->f_mapping;
2115
2116 /* If we don't want any read-ahead, don't bother */
64363aad 2117 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 2118 return;
275b12bf
WF
2119 if (!ra->ra_pages)
2120 return;
ef00e08e 2121
64363aad 2122 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
2123 page_cache_sync_readahead(mapping, ra, file, offset,
2124 ra->ra_pages);
ef00e08e
LT
2125 return;
2126 }
2127
207d04ba
AK
2128 /* Avoid banging the cache line if not needed */
2129 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2130 ra->mmap_miss++;
2131
2132 /*
2133 * Do we miss much more than hit in this file? If so,
2134 * stop bothering with read-ahead. It will only hurt.
2135 */
2136 if (ra->mmap_miss > MMAP_LOTSAMISS)
2137 return;
2138
d30a1100
WF
2139 /*
2140 * mmap read-around
2141 */
600e19af
RG
2142 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2143 ra->size = ra->ra_pages;
2144 ra->async_size = ra->ra_pages / 4;
275b12bf 2145 ra_submit(ra, mapping, file);
ef00e08e
LT
2146}
2147
2148/*
2149 * Asynchronous readahead happens when we find the page and PG_readahead,
2150 * so we want to possibly extend the readahead further..
2151 */
2152static void do_async_mmap_readahead(struct vm_area_struct *vma,
2153 struct file_ra_state *ra,
2154 struct file *file,
2155 struct page *page,
2156 pgoff_t offset)
2157{
2158 struct address_space *mapping = file->f_mapping;
2159
2160 /* If we don't want any read-ahead, don't bother */
64363aad 2161 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
2162 return;
2163 if (ra->mmap_miss > 0)
2164 ra->mmap_miss--;
2165 if (PageReadahead(page))
2fad6f5d
WF
2166 page_cache_async_readahead(mapping, ra, file,
2167 page, offset, ra->ra_pages);
ef00e08e
LT
2168}
2169
485bb99b 2170/**
54cb8821 2171 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
2172 * @vma: vma in which the fault was taken
2173 * @vmf: struct vm_fault containing details of the fault
485bb99b 2174 *
54cb8821 2175 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2176 * mapped memory region to read in file data during a page fault.
2177 *
2178 * The goto's are kind of ugly, but this streamlines the normal case of having
2179 * it in the page cache, and handles the special cases reasonably without
2180 * having a lot of duplicated code.
9a95f3cf
PC
2181 *
2182 * vma->vm_mm->mmap_sem must be held on entry.
2183 *
2184 * If our return value has VM_FAULT_RETRY set, it's because
2185 * lock_page_or_retry() returned 0.
2186 * The mmap_sem has usually been released in this case.
2187 * See __lock_page_or_retry() for the exception.
2188 *
2189 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2190 * has not been released.
2191 *
2192 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2193 */
d0217ac0 2194int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2195{
2196 int error;
54cb8821 2197 struct file *file = vma->vm_file;
1da177e4
LT
2198 struct address_space *mapping = file->f_mapping;
2199 struct file_ra_state *ra = &file->f_ra;
2200 struct inode *inode = mapping->host;
ef00e08e 2201 pgoff_t offset = vmf->pgoff;
1da177e4 2202 struct page *page;
99e3e53f 2203 loff_t size;
83c54070 2204 int ret = 0;
1da177e4 2205
09cbfeaf
KS
2206 size = round_up(i_size_read(inode), PAGE_SIZE);
2207 if (offset >= size >> PAGE_SHIFT)
5307cc1a 2208 return VM_FAULT_SIGBUS;
1da177e4 2209
1da177e4 2210 /*
49426420 2211 * Do we have something in the page cache already?
1da177e4 2212 */
ef00e08e 2213 page = find_get_page(mapping, offset);
45cac65b 2214 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2215 /*
ef00e08e
LT
2216 * We found the page, so try async readahead before
2217 * waiting for the lock.
1da177e4 2218 */
ef00e08e 2219 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 2220 } else if (!page) {
ef00e08e
LT
2221 /* No page in the page cache at all */
2222 do_sync_mmap_readahead(vma, ra, file, offset);
2223 count_vm_event(PGMAJFAULT);
456f998e 2224 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2225 ret = VM_FAULT_MAJOR;
2226retry_find:
b522c94d 2227 page = find_get_page(mapping, offset);
1da177e4
LT
2228 if (!page)
2229 goto no_cached_page;
2230 }
2231
d88c0922 2232 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
09cbfeaf 2233 put_page(page);
d065bd81 2234 return ret | VM_FAULT_RETRY;
d88c0922 2235 }
b522c94d
ML
2236
2237 /* Did it get truncated? */
2238 if (unlikely(page->mapping != mapping)) {
2239 unlock_page(page);
2240 put_page(page);
2241 goto retry_find;
2242 }
309381fe 2243 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2244
1da177e4 2245 /*
d00806b1
NP
2246 * We have a locked page in the page cache, now we need to check
2247 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2248 */
d00806b1 2249 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2250 goto page_not_uptodate;
2251
ef00e08e
LT
2252 /*
2253 * Found the page and have a reference on it.
2254 * We must recheck i_size under page lock.
2255 */
09cbfeaf
KS
2256 size = round_up(i_size_read(inode), PAGE_SIZE);
2257 if (unlikely(offset >= size >> PAGE_SHIFT)) {
d00806b1 2258 unlock_page(page);
09cbfeaf 2259 put_page(page);
5307cc1a 2260 return VM_FAULT_SIGBUS;
d00806b1
NP
2261 }
2262
d0217ac0 2263 vmf->page = page;
83c54070 2264 return ret | VM_FAULT_LOCKED;
1da177e4 2265
1da177e4
LT
2266no_cached_page:
2267 /*
2268 * We're only likely to ever get here if MADV_RANDOM is in
2269 * effect.
2270 */
c20cd45e 2271 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2272
2273 /*
2274 * The page we want has now been added to the page cache.
2275 * In the unlikely event that someone removed it in the
2276 * meantime, we'll just come back here and read it again.
2277 */
2278 if (error >= 0)
2279 goto retry_find;
2280
2281 /*
2282 * An error return from page_cache_read can result if the
2283 * system is low on memory, or a problem occurs while trying
2284 * to schedule I/O.
2285 */
2286 if (error == -ENOMEM)
d0217ac0
NP
2287 return VM_FAULT_OOM;
2288 return VM_FAULT_SIGBUS;
1da177e4
LT
2289
2290page_not_uptodate:
1da177e4
LT
2291 /*
2292 * Umm, take care of errors if the page isn't up-to-date.
2293 * Try to re-read it _once_. We do this synchronously,
2294 * because there really aren't any performance issues here
2295 * and we need to check for errors.
2296 */
1da177e4 2297 ClearPageError(page);
994fc28c 2298 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2299 if (!error) {
2300 wait_on_page_locked(page);
2301 if (!PageUptodate(page))
2302 error = -EIO;
2303 }
09cbfeaf 2304 put_page(page);
d00806b1
NP
2305
2306 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2307 goto retry_find;
1da177e4 2308
d00806b1 2309 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2310 shrink_readahead_size_eio(file, ra);
d0217ac0 2311 return VM_FAULT_SIGBUS;
54cb8821
NP
2312}
2313EXPORT_SYMBOL(filemap_fault);
2314
82b0f8c3 2315void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2316 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361
KS
2317{
2318 struct radix_tree_iter iter;
2319 void **slot;
82b0f8c3 2320 struct file *file = vmf->vma->vm_file;
f1820361 2321 struct address_space *mapping = file->f_mapping;
bae473a4 2322 pgoff_t last_pgoff = start_pgoff;
f1820361 2323 loff_t size;
83929372 2324 struct page *head, *page;
f1820361
KS
2325
2326 rcu_read_lock();
bae473a4
KS
2327 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2328 start_pgoff) {
2329 if (iter.index > end_pgoff)
f1820361
KS
2330 break;
2331repeat:
2332 page = radix_tree_deref_slot(slot);
2333 if (unlikely(!page))
2334 goto next;
2335 if (radix_tree_exception(page)) {
2cf938aa
MW
2336 if (radix_tree_deref_retry(page)) {
2337 slot = radix_tree_iter_retry(&iter);
2338 continue;
2339 }
2340 goto next;
f1820361
KS
2341 }
2342
83929372
KS
2343 head = compound_head(page);
2344 if (!page_cache_get_speculative(head))
f1820361
KS
2345 goto repeat;
2346
83929372
KS
2347 /* The page was split under us? */
2348 if (compound_head(page) != head) {
2349 put_page(head);
2350 goto repeat;
2351 }
2352
f1820361
KS
2353 /* Has the page moved? */
2354 if (unlikely(page != *slot)) {
83929372 2355 put_page(head);
f1820361
KS
2356 goto repeat;
2357 }
2358
2359 if (!PageUptodate(page) ||
2360 PageReadahead(page) ||
2361 PageHWPoison(page))
2362 goto skip;
2363 if (!trylock_page(page))
2364 goto skip;
2365
2366 if (page->mapping != mapping || !PageUptodate(page))
2367 goto unlock;
2368
09cbfeaf
KS
2369 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2370 if (page->index >= size >> PAGE_SHIFT)
f1820361
KS
2371 goto unlock;
2372
f1820361
KS
2373 if (file->f_ra.mmap_miss > 0)
2374 file->f_ra.mmap_miss--;
7267ec00 2375
82b0f8c3
JK
2376 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2377 if (vmf->pte)
2378 vmf->pte += iter.index - last_pgoff;
7267ec00 2379 last_pgoff = iter.index;
82b0f8c3 2380 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2381 goto unlock;
f1820361
KS
2382 unlock_page(page);
2383 goto next;
2384unlock:
2385 unlock_page(page);
2386skip:
09cbfeaf 2387 put_page(page);
f1820361 2388next:
7267ec00 2389 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2390 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2391 break;
bae473a4 2392 if (iter.index == end_pgoff)
f1820361
KS
2393 break;
2394 }
2395 rcu_read_unlock();
2396}
2397EXPORT_SYMBOL(filemap_map_pages);
2398
4fcf1c62
JK
2399int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2400{
2401 struct page *page = vmf->page;
496ad9aa 2402 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
2403 int ret = VM_FAULT_LOCKED;
2404
14da9200 2405 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
2406 file_update_time(vma->vm_file);
2407 lock_page(page);
2408 if (page->mapping != inode->i_mapping) {
2409 unlock_page(page);
2410 ret = VM_FAULT_NOPAGE;
2411 goto out;
2412 }
14da9200
JK
2413 /*
2414 * We mark the page dirty already here so that when freeze is in
2415 * progress, we are guaranteed that writeback during freezing will
2416 * see the dirty page and writeprotect it again.
2417 */
2418 set_page_dirty(page);
1d1d1a76 2419 wait_for_stable_page(page);
4fcf1c62 2420out:
14da9200 2421 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2422 return ret;
2423}
2424EXPORT_SYMBOL(filemap_page_mkwrite);
2425
f0f37e2f 2426const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2427 .fault = filemap_fault,
f1820361 2428 .map_pages = filemap_map_pages,
4fcf1c62 2429 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2430};
2431
2432/* This is used for a general mmap of a disk file */
2433
2434int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2435{
2436 struct address_space *mapping = file->f_mapping;
2437
2438 if (!mapping->a_ops->readpage)
2439 return -ENOEXEC;
2440 file_accessed(file);
2441 vma->vm_ops = &generic_file_vm_ops;
2442 return 0;
2443}
1da177e4
LT
2444
2445/*
2446 * This is for filesystems which do not implement ->writepage.
2447 */
2448int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2449{
2450 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2451 return -EINVAL;
2452 return generic_file_mmap(file, vma);
2453}
2454#else
2455int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2456{
2457 return -ENOSYS;
2458}
2459int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2460{
2461 return -ENOSYS;
2462}
2463#endif /* CONFIG_MMU */
2464
2465EXPORT_SYMBOL(generic_file_mmap);
2466EXPORT_SYMBOL(generic_file_readonly_mmap);
2467
67f9fd91
SL
2468static struct page *wait_on_page_read(struct page *page)
2469{
2470 if (!IS_ERR(page)) {
2471 wait_on_page_locked(page);
2472 if (!PageUptodate(page)) {
09cbfeaf 2473 put_page(page);
67f9fd91
SL
2474 page = ERR_PTR(-EIO);
2475 }
2476 }
2477 return page;
2478}
2479
32b63529 2480static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2481 pgoff_t index,
5e5358e7 2482 int (*filler)(void *, struct page *),
0531b2aa
LT
2483 void *data,
2484 gfp_t gfp)
1da177e4 2485{
eb2be189 2486 struct page *page;
1da177e4
LT
2487 int err;
2488repeat:
2489 page = find_get_page(mapping, index);
2490 if (!page) {
0531b2aa 2491 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2492 if (!page)
2493 return ERR_PTR(-ENOMEM);
e6f67b8c 2494 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2495 if (unlikely(err)) {
09cbfeaf 2496 put_page(page);
eb2be189
NP
2497 if (err == -EEXIST)
2498 goto repeat;
1da177e4 2499 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2500 return ERR_PTR(err);
2501 }
32b63529
MG
2502
2503filler:
1da177e4
LT
2504 err = filler(data, page);
2505 if (err < 0) {
09cbfeaf 2506 put_page(page);
32b63529 2507 return ERR_PTR(err);
1da177e4 2508 }
1da177e4 2509
32b63529
MG
2510 page = wait_on_page_read(page);
2511 if (IS_ERR(page))
2512 return page;
2513 goto out;
2514 }
1da177e4
LT
2515 if (PageUptodate(page))
2516 goto out;
2517
ebded027
MG
2518 /*
2519 * Page is not up to date and may be locked due one of the following
2520 * case a: Page is being filled and the page lock is held
2521 * case b: Read/write error clearing the page uptodate status
2522 * case c: Truncation in progress (page locked)
2523 * case d: Reclaim in progress
2524 *
2525 * Case a, the page will be up to date when the page is unlocked.
2526 * There is no need to serialise on the page lock here as the page
2527 * is pinned so the lock gives no additional protection. Even if the
2528 * the page is truncated, the data is still valid if PageUptodate as
2529 * it's a race vs truncate race.
2530 * Case b, the page will not be up to date
2531 * Case c, the page may be truncated but in itself, the data may still
2532 * be valid after IO completes as it's a read vs truncate race. The
2533 * operation must restart if the page is not uptodate on unlock but
2534 * otherwise serialising on page lock to stabilise the mapping gives
2535 * no additional guarantees to the caller as the page lock is
2536 * released before return.
2537 * Case d, similar to truncation. If reclaim holds the page lock, it
2538 * will be a race with remove_mapping that determines if the mapping
2539 * is valid on unlock but otherwise the data is valid and there is
2540 * no need to serialise with page lock.
2541 *
2542 * As the page lock gives no additional guarantee, we optimistically
2543 * wait on the page to be unlocked and check if it's up to date and
2544 * use the page if it is. Otherwise, the page lock is required to
2545 * distinguish between the different cases. The motivation is that we
2546 * avoid spurious serialisations and wakeups when multiple processes
2547 * wait on the same page for IO to complete.
2548 */
2549 wait_on_page_locked(page);
2550 if (PageUptodate(page))
2551 goto out;
2552
2553 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2554 lock_page(page);
ebded027
MG
2555
2556 /* Case c or d, restart the operation */
1da177e4
LT
2557 if (!page->mapping) {
2558 unlock_page(page);
09cbfeaf 2559 put_page(page);
32b63529 2560 goto repeat;
1da177e4 2561 }
ebded027
MG
2562
2563 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2564 if (PageUptodate(page)) {
2565 unlock_page(page);
2566 goto out;
2567 }
32b63529
MG
2568 goto filler;
2569
c855ff37 2570out:
6fe6900e
NP
2571 mark_page_accessed(page);
2572 return page;
2573}
0531b2aa
LT
2574
2575/**
67f9fd91 2576 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2577 * @mapping: the page's address_space
2578 * @index: the page index
2579 * @filler: function to perform the read
5e5358e7 2580 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2581 *
0531b2aa 2582 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2583 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2584 *
2585 * If the page does not get brought uptodate, return -EIO.
2586 */
67f9fd91 2587struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2588 pgoff_t index,
5e5358e7 2589 int (*filler)(void *, struct page *),
0531b2aa
LT
2590 void *data)
2591{
2592 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2593}
67f9fd91 2594EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2595
2596/**
2597 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2598 * @mapping: the page's address_space
2599 * @index: the page index
2600 * @gfp: the page allocator flags to use if allocating
2601 *
2602 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2603 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2604 *
2605 * If the page does not get brought uptodate, return -EIO.
2606 */
2607struct page *read_cache_page_gfp(struct address_space *mapping,
2608 pgoff_t index,
2609 gfp_t gfp)
2610{
2611 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2612
67f9fd91 2613 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2614}
2615EXPORT_SYMBOL(read_cache_page_gfp);
2616
1da177e4
LT
2617/*
2618 * Performs necessary checks before doing a write
2619 *
485bb99b 2620 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2621 * Returns appropriate error code that caller should return or
2622 * zero in case that write should be allowed.
2623 */
3309dd04 2624inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2625{
3309dd04 2626 struct file *file = iocb->ki_filp;
1da177e4 2627 struct inode *inode = file->f_mapping->host;
59e99e5b 2628 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2629 loff_t pos;
1da177e4 2630
3309dd04
AV
2631 if (!iov_iter_count(from))
2632 return 0;
1da177e4 2633
0fa6b005 2634 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2635 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2636 iocb->ki_pos = i_size_read(inode);
1da177e4 2637
3309dd04 2638 pos = iocb->ki_pos;
1da177e4 2639
0fa6b005 2640 if (limit != RLIM_INFINITY) {
3309dd04 2641 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2642 send_sig(SIGXFSZ, current, 0);
2643 return -EFBIG;
1da177e4 2644 }
3309dd04 2645 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2646 }
2647
2648 /*
2649 * LFS rule
2650 */
3309dd04 2651 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2652 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2653 if (pos >= MAX_NON_LFS)
1da177e4 2654 return -EFBIG;
3309dd04 2655 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2656 }
2657
2658 /*
2659 * Are we about to exceed the fs block limit ?
2660 *
2661 * If we have written data it becomes a short write. If we have
2662 * exceeded without writing data we send a signal and return EFBIG.
2663 * Linus frestrict idea will clean these up nicely..
2664 */
3309dd04
AV
2665 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2666 return -EFBIG;
1da177e4 2667
3309dd04
AV
2668 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2669 return iov_iter_count(from);
1da177e4
LT
2670}
2671EXPORT_SYMBOL(generic_write_checks);
2672
afddba49
NP
2673int pagecache_write_begin(struct file *file, struct address_space *mapping,
2674 loff_t pos, unsigned len, unsigned flags,
2675 struct page **pagep, void **fsdata)
2676{
2677 const struct address_space_operations *aops = mapping->a_ops;
2678
4e02ed4b 2679 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2680 pagep, fsdata);
afddba49
NP
2681}
2682EXPORT_SYMBOL(pagecache_write_begin);
2683
2684int pagecache_write_end(struct file *file, struct address_space *mapping,
2685 loff_t pos, unsigned len, unsigned copied,
2686 struct page *page, void *fsdata)
2687{
2688 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2689
4e02ed4b 2690 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2691}
2692EXPORT_SYMBOL(pagecache_write_end);
2693
1da177e4 2694ssize_t
1af5bb49 2695generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2696{
2697 struct file *file = iocb->ki_filp;
2698 struct address_space *mapping = file->f_mapping;
2699 struct inode *inode = mapping->host;
1af5bb49 2700 loff_t pos = iocb->ki_pos;
1da177e4 2701 ssize_t written;
a969e903
CH
2702 size_t write_len;
2703 pgoff_t end;
26978b8b 2704 struct iov_iter data;
1da177e4 2705
0c949334 2706 write_len = iov_iter_count(from);
09cbfeaf 2707 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 2708
48b47c56 2709 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2710 if (written)
2711 goto out;
2712
2713 /*
2714 * After a write we want buffered reads to be sure to go to disk to get
2715 * the new data. We invalidate clean cached page from the region we're
2716 * about to write. We do this *before* the write so that we can return
6ccfa806 2717 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2718 */
2719 if (mapping->nrpages) {
2720 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 2721 pos >> PAGE_SHIFT, end);
6ccfa806
HH
2722 /*
2723 * If a page can not be invalidated, return 0 to fall back
2724 * to buffered write.
2725 */
2726 if (written) {
2727 if (written == -EBUSY)
2728 return 0;
a969e903 2729 goto out;
6ccfa806 2730 }
a969e903
CH
2731 }
2732
26978b8b 2733 data = *from;
c8b8e32d 2734 written = mapping->a_ops->direct_IO(iocb, &data);
a969e903
CH
2735
2736 /*
2737 * Finally, try again to invalidate clean pages which might have been
2738 * cached by non-direct readahead, or faulted in by get_user_pages()
2739 * if the source of the write was an mmap'ed region of the file
2740 * we're writing. Either one is a pretty crazy thing to do,
2741 * so we don't support it 100%. If this invalidation
2742 * fails, tough, the write still worked...
2743 */
2744 if (mapping->nrpages) {
2745 invalidate_inode_pages2_range(mapping,
09cbfeaf 2746 pos >> PAGE_SHIFT, end);
a969e903
CH
2747 }
2748
1da177e4 2749 if (written > 0) {
0116651c 2750 pos += written;
f8579f86 2751 iov_iter_advance(from, written);
0116651c
NK
2752 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2753 i_size_write(inode, pos);
1da177e4
LT
2754 mark_inode_dirty(inode);
2755 }
5cb6c6c7 2756 iocb->ki_pos = pos;
1da177e4 2757 }
a969e903 2758out:
1da177e4
LT
2759 return written;
2760}
2761EXPORT_SYMBOL(generic_file_direct_write);
2762
eb2be189
NP
2763/*
2764 * Find or create a page at the given pagecache position. Return the locked
2765 * page. This function is specifically for buffered writes.
2766 */
54566b2c
NP
2767struct page *grab_cache_page_write_begin(struct address_space *mapping,
2768 pgoff_t index, unsigned flags)
eb2be189 2769{
eb2be189 2770 struct page *page;
bbddabe2 2771 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 2772
54566b2c 2773 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2774 fgp_flags |= FGP_NOFS;
2775
2776 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2777 mapping_gfp_mask(mapping));
c585a267 2778 if (page)
2457aec6 2779 wait_for_stable_page(page);
eb2be189 2780
eb2be189
NP
2781 return page;
2782}
54566b2c 2783EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2784
3b93f911 2785ssize_t generic_perform_write(struct file *file,
afddba49
NP
2786 struct iov_iter *i, loff_t pos)
2787{
2788 struct address_space *mapping = file->f_mapping;
2789 const struct address_space_operations *a_ops = mapping->a_ops;
2790 long status = 0;
2791 ssize_t written = 0;
674b892e
NP
2792 unsigned int flags = 0;
2793
2794 /*
2795 * Copies from kernel address space cannot fail (NFSD is a big user).
2796 */
777eda2c 2797 if (!iter_is_iovec(i))
674b892e 2798 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2799
2800 do {
2801 struct page *page;
afddba49
NP
2802 unsigned long offset; /* Offset into pagecache page */
2803 unsigned long bytes; /* Bytes to write to page */
2804 size_t copied; /* Bytes copied from user */
2805 void *fsdata;
2806
09cbfeaf
KS
2807 offset = (pos & (PAGE_SIZE - 1));
2808 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2809 iov_iter_count(i));
2810
2811again:
00a3d660
LT
2812 /*
2813 * Bring in the user page that we will copy from _first_.
2814 * Otherwise there's a nasty deadlock on copying from the
2815 * same page as we're writing to, without it being marked
2816 * up-to-date.
2817 *
2818 * Not only is this an optimisation, but it is also required
2819 * to check that the address is actually valid, when atomic
2820 * usercopies are used, below.
2821 */
2822 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2823 status = -EFAULT;
2824 break;
2825 }
2826
296291cd
JK
2827 if (fatal_signal_pending(current)) {
2828 status = -EINTR;
2829 break;
2830 }
2831
674b892e 2832 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2833 &page, &fsdata);
2457aec6 2834 if (unlikely(status < 0))
afddba49
NP
2835 break;
2836
931e80e4 2837 if (mapping_writably_mapped(mapping))
2838 flush_dcache_page(page);
00a3d660 2839
afddba49 2840 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2841 flush_dcache_page(page);
2842
2843 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2844 page, fsdata);
2845 if (unlikely(status < 0))
2846 break;
2847 copied = status;
2848
2849 cond_resched();
2850
124d3b70 2851 iov_iter_advance(i, copied);
afddba49
NP
2852 if (unlikely(copied == 0)) {
2853 /*
2854 * If we were unable to copy any data at all, we must
2855 * fall back to a single segment length write.
2856 *
2857 * If we didn't fallback here, we could livelock
2858 * because not all segments in the iov can be copied at
2859 * once without a pagefault.
2860 */
09cbfeaf 2861 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2862 iov_iter_single_seg_count(i));
2863 goto again;
2864 }
afddba49
NP
2865 pos += copied;
2866 written += copied;
2867
2868 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
2869 } while (iov_iter_count(i));
2870
2871 return written ? written : status;
2872}
3b93f911 2873EXPORT_SYMBOL(generic_perform_write);
1da177e4 2874
e4dd9de3 2875/**
8174202b 2876 * __generic_file_write_iter - write data to a file
e4dd9de3 2877 * @iocb: IO state structure (file, offset, etc.)
8174202b 2878 * @from: iov_iter with data to write
e4dd9de3
JK
2879 *
2880 * This function does all the work needed for actually writing data to a
2881 * file. It does all basic checks, removes SUID from the file, updates
2882 * modification times and calls proper subroutines depending on whether we
2883 * do direct IO or a standard buffered write.
2884 *
2885 * It expects i_mutex to be grabbed unless we work on a block device or similar
2886 * object which does not need locking at all.
2887 *
2888 * This function does *not* take care of syncing data in case of O_SYNC write.
2889 * A caller has to handle it. This is mainly due to the fact that we want to
2890 * avoid syncing under i_mutex.
2891 */
8174202b 2892ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2893{
2894 struct file *file = iocb->ki_filp;
fb5527e6 2895 struct address_space * mapping = file->f_mapping;
1da177e4 2896 struct inode *inode = mapping->host;
3b93f911 2897 ssize_t written = 0;
1da177e4 2898 ssize_t err;
3b93f911 2899 ssize_t status;
1da177e4 2900
1da177e4 2901 /* We can write back this queue in page reclaim */
de1414a6 2902 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 2903 err = file_remove_privs(file);
1da177e4
LT
2904 if (err)
2905 goto out;
2906
c3b2da31
JB
2907 err = file_update_time(file);
2908 if (err)
2909 goto out;
1da177e4 2910
2ba48ce5 2911 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 2912 loff_t pos, endbyte;
fb5527e6 2913
1af5bb49 2914 written = generic_file_direct_write(iocb, from);
1da177e4 2915 /*
fbbbad4b
MW
2916 * If the write stopped short of completing, fall back to
2917 * buffered writes. Some filesystems do this for writes to
2918 * holes, for example. For DAX files, a buffered write will
2919 * not succeed (even if it did, DAX does not handle dirty
2920 * page-cache pages correctly).
1da177e4 2921 */
0b8def9d 2922 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
2923 goto out;
2924
0b8def9d 2925 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 2926 /*
3b93f911 2927 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2928 * then we want to return the number of bytes which were
2929 * direct-written, or the error code if that was zero. Note
2930 * that this differs from normal direct-io semantics, which
2931 * will return -EFOO even if some bytes were written.
2932 */
60bb4529 2933 if (unlikely(status < 0)) {
3b93f911 2934 err = status;
fb5527e6
JM
2935 goto out;
2936 }
fb5527e6
JM
2937 /*
2938 * We need to ensure that the page cache pages are written to
2939 * disk and invalidated to preserve the expected O_DIRECT
2940 * semantics.
2941 */
3b93f911 2942 endbyte = pos + status - 1;
0b8def9d 2943 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 2944 if (err == 0) {
0b8def9d 2945 iocb->ki_pos = endbyte + 1;
3b93f911 2946 written += status;
fb5527e6 2947 invalidate_mapping_pages(mapping,
09cbfeaf
KS
2948 pos >> PAGE_SHIFT,
2949 endbyte >> PAGE_SHIFT);
fb5527e6
JM
2950 } else {
2951 /*
2952 * We don't know how much we wrote, so just return
2953 * the number of bytes which were direct-written
2954 */
2955 }
2956 } else {
0b8def9d
AV
2957 written = generic_perform_write(file, from, iocb->ki_pos);
2958 if (likely(written > 0))
2959 iocb->ki_pos += written;
fb5527e6 2960 }
1da177e4
LT
2961out:
2962 current->backing_dev_info = NULL;
2963 return written ? written : err;
2964}
8174202b 2965EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2966
e4dd9de3 2967/**
8174202b 2968 * generic_file_write_iter - write data to a file
e4dd9de3 2969 * @iocb: IO state structure
8174202b 2970 * @from: iov_iter with data to write
e4dd9de3 2971 *
8174202b 2972 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2973 * filesystems. It takes care of syncing the file in case of O_SYNC file
2974 * and acquires i_mutex as needed.
2975 */
8174202b 2976ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2977{
2978 struct file *file = iocb->ki_filp;
148f948b 2979 struct inode *inode = file->f_mapping->host;
1da177e4 2980 ssize_t ret;
1da177e4 2981
5955102c 2982 inode_lock(inode);
3309dd04
AV
2983 ret = generic_write_checks(iocb, from);
2984 if (ret > 0)
5f380c7f 2985 ret = __generic_file_write_iter(iocb, from);
5955102c 2986 inode_unlock(inode);
1da177e4 2987
e2592217
CH
2988 if (ret > 0)
2989 ret = generic_write_sync(iocb, ret);
1da177e4
LT
2990 return ret;
2991}
8174202b 2992EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 2993
cf9a2ae8
DH
2994/**
2995 * try_to_release_page() - release old fs-specific metadata on a page
2996 *
2997 * @page: the page which the kernel is trying to free
2998 * @gfp_mask: memory allocation flags (and I/O mode)
2999 *
3000 * The address_space is to try to release any data against the page
3001 * (presumably at page->private). If the release was successful, return `1'.
3002 * Otherwise return zero.
3003 *
266cf658
DH
3004 * This may also be called if PG_fscache is set on a page, indicating that the
3005 * page is known to the local caching routines.
3006 *
cf9a2ae8 3007 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3008 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3009 *
cf9a2ae8
DH
3010 */
3011int try_to_release_page(struct page *page, gfp_t gfp_mask)
3012{
3013 struct address_space * const mapping = page->mapping;
3014
3015 BUG_ON(!PageLocked(page));
3016 if (PageWriteback(page))
3017 return 0;
3018
3019 if (mapping && mapping->a_ops->releasepage)
3020 return mapping->a_ops->releasepage(page, gfp_mask);
3021 return try_to_free_buffers(page);
3022}
3023
3024EXPORT_SYMBOL(try_to_release_page);