]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/filemap.c
Revert "rmap: do not call mmu_notifier_invalidate_page() under ptl"
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
3f07c014 16#include <linux/sched/signal.h>
c22ce143 17#include <linux/uaccess.h>
c59ede7b 18#include <linux/capability.h>
1da177e4 19#include <linux/kernel_stat.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/mm.h>
22#include <linux/swap.h>
23#include <linux/mman.h>
24#include <linux/pagemap.h>
25#include <linux/file.h>
26#include <linux/uio.h>
27#include <linux/hash.h>
28#include <linux/writeback.h>
53253383 29#include <linux/backing-dev.h>
1da177e4
LT
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/security.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 35#include <linux/hugetlb.h>
8a9f3ccd 36#include <linux/memcontrol.h>
c515e1fd 37#include <linux/cleancache.h>
f1820361 38#include <linux/rmap.h>
0f8053a5
NP
39#include "internal.h"
40
fe0bfaaf
RJ
41#define CREATE_TRACE_POINTS
42#include <trace/events/filemap.h>
43
1da177e4 44/*
1da177e4
LT
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
148f948b 47#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 48
1da177e4
LT
49#include <asm/mman.h>
50
51/*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63/*
64 * Lock ordering:
65 *
c8c06efa 66 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
1da177e4 70 *
1b1dcc1b 71 * ->i_mutex
c8c06efa 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
73 *
74 * ->mmap_sem
c8c06efa 75 * ->i_mmap_rwsem
b8072f09 76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
ccad2365 82 * ->i_mutex (generic_perform_write)
82591e6e 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 84 *
f758eeab 85 * bdi->wb.list_lock
a66979ab 86 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
87 * ->mapping->tree_lock (__sync_single_inode)
88 *
c8c06efa 89 * ->i_mmap_rwsem
1da177e4
LT
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
b8072f09 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 94 *
b8072f09 95 * ->page_table_lock or pte_lock
5d337b91 96 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
a52633d8
MG
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
1da177e4
LT
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
c8c06efa 110 * ->i_mmap_rwsem
9a3c531d 111 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
112 */
113
22f2ac51
JW
114static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116{
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
121 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 if (!radix_tree_exceptional_entry(p))
130 return -EEXIST;
131
132 mapping->nrexceptional--;
133 if (!dax_mapping(mapping)) {
134 if (shadowp)
135 *shadowp = p;
22f2ac51
JW
136 } else {
137 /* DAX can replace empty locked entry with a hole */
138 WARN_ON_ONCE(p !=
642261ac 139 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
22f2ac51 140 /* Wakeup waiters for exceptional entry lock */
63e95b5c 141 dax_wake_mapping_entry_waiter(mapping, page->index, p,
965d004a 142 true);
22f2ac51
JW
143 }
144 }
14b46879
JW
145 __radix_tree_replace(&mapping->page_tree, node, slot, page,
146 workingset_update_node, mapping);
22f2ac51 147 mapping->nrpages++;
22f2ac51
JW
148 return 0;
149}
150
91b0abe3
JW
151static void page_cache_tree_delete(struct address_space *mapping,
152 struct page *page, void *shadow)
153{
c70b647d
KS
154 int i, nr;
155
156 /* hugetlb pages are represented by one entry in the radix tree */
157 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
91b0abe3 158
83929372
KS
159 VM_BUG_ON_PAGE(!PageLocked(page), page);
160 VM_BUG_ON_PAGE(PageTail(page), page);
161 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 162
83929372 163 for (i = 0; i < nr; i++) {
d3798ae8
JW
164 struct radix_tree_node *node;
165 void **slot;
166
167 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168 &node, &slot);
169
dbc446b8 170 VM_BUG_ON_PAGE(!node && nr != 1, page);
449dd698 171
14b46879
JW
172 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174 workingset_update_node, mapping);
449dd698 175 }
d3798ae8
JW
176
177 if (shadow) {
178 mapping->nrexceptional += nr;
179 /*
180 * Make sure the nrexceptional update is committed before
181 * the nrpages update so that final truncate racing
182 * with reclaim does not see both counters 0 at the
183 * same time and miss a shadow entry.
184 */
185 smp_wmb();
186 }
187 mapping->nrpages -= nr;
91b0abe3
JW
188}
189
1da177e4 190/*
e64a782f 191 * Delete a page from the page cache and free it. Caller has to make
1da177e4 192 * sure the page is locked and that nobody else uses it - or that usage
fdf1cdb9 193 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 194 */
62cccb8c 195void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
196{
197 struct address_space *mapping = page->mapping;
83929372 198 int nr = hpage_nr_pages(page);
1da177e4 199
fe0bfaaf 200 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
201 /*
202 * if we're uptodate, flush out into the cleancache, otherwise
203 * invalidate any existing cleancache entries. We can't leave
204 * stale data around in the cleancache once our page is gone
205 */
206 if (PageUptodate(page) && PageMappedToDisk(page))
207 cleancache_put_page(page);
208 else
3167760f 209 cleancache_invalidate_page(mapping, page);
c515e1fd 210
83929372 211 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
212 VM_BUG_ON_PAGE(page_mapped(page), page);
213 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214 int mapcount;
215
216 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
217 current->comm, page_to_pfn(page));
218 dump_page(page, "still mapped when deleted");
219 dump_stack();
220 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222 mapcount = page_mapcount(page);
223 if (mapping_exiting(mapping) &&
224 page_count(page) >= mapcount + 2) {
225 /*
226 * All vmas have already been torn down, so it's
227 * a good bet that actually the page is unmapped,
228 * and we'd prefer not to leak it: if we're wrong,
229 * some other bad page check should catch it later.
230 */
231 page_mapcount_reset(page);
6d061f9f 232 page_ref_sub(page, mapcount);
06b241f3
HD
233 }
234 }
235
91b0abe3
JW
236 page_cache_tree_delete(mapping, page, shadow);
237
1da177e4 238 page->mapping = NULL;
b85e0eff 239 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 240
4165b9b4 241 /* hugetlb pages do not participate in page cache accounting. */
09612fa6
NH
242 if (PageHuge(page))
243 return;
244
245 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
800d8c63 246 if (PageSwapBacked(page)) {
11fb9989 247 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
800d8c63 248 if (PageTransHuge(page))
11fb9989 249 __dec_node_page_state(page, NR_SHMEM_THPS);
800d8c63 250 } else {
09612fa6 251 VM_BUG_ON_PAGE(PageTransHuge(page), page);
800d8c63 252 }
3a692790
LT
253
254 /*
b9ea2515
KK
255 * At this point page must be either written or cleaned by truncate.
256 * Dirty page here signals a bug and loss of unwritten data.
3a692790 257 *
b9ea2515
KK
258 * This fixes dirty accounting after removing the page entirely but
259 * leaves PageDirty set: it has no effect for truncated page and
260 * anyway will be cleared before returning page into buddy allocator.
3a692790 261 */
b9ea2515 262 if (WARN_ON_ONCE(PageDirty(page)))
62cccb8c 263 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
1da177e4
LT
264}
265
702cfbf9
MK
266/**
267 * delete_from_page_cache - delete page from page cache
268 * @page: the page which the kernel is trying to remove from page cache
269 *
270 * This must be called only on pages that have been verified to be in the page
271 * cache and locked. It will never put the page into the free list, the caller
272 * has a reference on the page.
273 */
274void delete_from_page_cache(struct page *page)
1da177e4 275{
83929372 276 struct address_space *mapping = page_mapping(page);
c4843a75 277 unsigned long flags;
6072d13c 278 void (*freepage)(struct page *);
1da177e4 279
cd7619d6 280 BUG_ON(!PageLocked(page));
1da177e4 281
6072d13c 282 freepage = mapping->a_ops->freepage;
c4843a75 283
c4843a75 284 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 285 __delete_from_page_cache(page, NULL);
c4843a75 286 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
287
288 if (freepage)
289 freepage(page);
83929372
KS
290
291 if (PageTransHuge(page) && !PageHuge(page)) {
292 page_ref_sub(page, HPAGE_PMD_NR);
293 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
294 } else {
295 put_page(page);
296 }
97cecb5a
MK
297}
298EXPORT_SYMBOL(delete_from_page_cache);
299
d72d9e2a 300int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
301{
302 int ret = 0;
303 /* Check for outstanding write errors */
7fcbbaf1
JA
304 if (test_bit(AS_ENOSPC, &mapping->flags) &&
305 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 306 ret = -ENOSPC;
7fcbbaf1
JA
307 if (test_bit(AS_EIO, &mapping->flags) &&
308 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
309 ret = -EIO;
310 return ret;
311}
d72d9e2a 312EXPORT_SYMBOL(filemap_check_errors);
865ffef3 313
76341cab
JL
314static int filemap_check_and_keep_errors(struct address_space *mapping)
315{
316 /* Check for outstanding write errors */
317 if (test_bit(AS_EIO, &mapping->flags))
318 return -EIO;
319 if (test_bit(AS_ENOSPC, &mapping->flags))
320 return -ENOSPC;
321 return 0;
322}
323
1da177e4 324/**
485bb99b 325 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
326 * @mapping: address space structure to write
327 * @start: offset in bytes where the range starts
469eb4d0 328 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 329 * @sync_mode: enable synchronous operation
1da177e4 330 *
485bb99b
RD
331 * Start writeback against all of a mapping's dirty pages that lie
332 * within the byte offsets <start, end> inclusive.
333 *
1da177e4 334 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 335 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
336 * these two operations is that if a dirty page/buffer is encountered, it must
337 * be waited upon, and not just skipped over.
338 */
ebcf28e1
AM
339int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
340 loff_t end, int sync_mode)
1da177e4
LT
341{
342 int ret;
343 struct writeback_control wbc = {
344 .sync_mode = sync_mode,
05fe478d 345 .nr_to_write = LONG_MAX,
111ebb6e
OH
346 .range_start = start,
347 .range_end = end,
1da177e4
LT
348 };
349
350 if (!mapping_cap_writeback_dirty(mapping))
351 return 0;
352
b16b1deb 353 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 354 ret = do_writepages(mapping, &wbc);
b16b1deb 355 wbc_detach_inode(&wbc);
1da177e4
LT
356 return ret;
357}
358
359static inline int __filemap_fdatawrite(struct address_space *mapping,
360 int sync_mode)
361{
111ebb6e 362 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
363}
364
365int filemap_fdatawrite(struct address_space *mapping)
366{
367 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
368}
369EXPORT_SYMBOL(filemap_fdatawrite);
370
f4c0a0fd 371int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 372 loff_t end)
1da177e4
LT
373{
374 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
375}
f4c0a0fd 376EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 377
485bb99b
RD
378/**
379 * filemap_flush - mostly a non-blocking flush
380 * @mapping: target address_space
381 *
1da177e4
LT
382 * This is a mostly non-blocking flush. Not suitable for data-integrity
383 * purposes - I/O may not be started against all dirty pages.
384 */
385int filemap_flush(struct address_space *mapping)
386{
387 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
388}
389EXPORT_SYMBOL(filemap_flush);
390
7fc9e472
GR
391/**
392 * filemap_range_has_page - check if a page exists in range.
393 * @mapping: address space within which to check
394 * @start_byte: offset in bytes where the range starts
395 * @end_byte: offset in bytes where the range ends (inclusive)
396 *
397 * Find at least one page in the range supplied, usually used to check if
398 * direct writing in this range will trigger a writeback.
399 */
400bool filemap_range_has_page(struct address_space *mapping,
401 loff_t start_byte, loff_t end_byte)
402{
403 pgoff_t index = start_byte >> PAGE_SHIFT;
404 pgoff_t end = end_byte >> PAGE_SHIFT;
405 struct pagevec pvec;
406 bool ret;
407
408 if (end_byte < start_byte)
409 return false;
410
411 if (mapping->nrpages == 0)
412 return false;
413
414 pagevec_init(&pvec, 0);
415 if (!pagevec_lookup(&pvec, mapping, index, 1))
416 return false;
417 ret = (pvec.pages[0]->index <= end);
418 pagevec_release(&pvec);
419 return ret;
420}
421EXPORT_SYMBOL(filemap_range_has_page);
422
5e8fcc1a 423static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 424 loff_t start_byte, loff_t end_byte)
1da177e4 425{
09cbfeaf
KS
426 pgoff_t index = start_byte >> PAGE_SHIFT;
427 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
428 struct pagevec pvec;
429 int nr_pages;
1da177e4 430
94004ed7 431 if (end_byte < start_byte)
5e8fcc1a 432 return;
1da177e4
LT
433
434 pagevec_init(&pvec, 0);
1da177e4
LT
435 while ((index <= end) &&
436 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
437 PAGECACHE_TAG_WRITEBACK,
438 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
439 unsigned i;
440
441 for (i = 0; i < nr_pages; i++) {
442 struct page *page = pvec.pages[i];
443
444 /* until radix tree lookup accepts end_index */
445 if (page->index > end)
446 continue;
447
448 wait_on_page_writeback(page);
5e8fcc1a 449 ClearPageError(page);
1da177e4
LT
450 }
451 pagevec_release(&pvec);
452 cond_resched();
453 }
aa750fd7
JN
454}
455
456/**
457 * filemap_fdatawait_range - wait for writeback to complete
458 * @mapping: address space structure to wait for
459 * @start_byte: offset in bytes where the range starts
460 * @end_byte: offset in bytes where the range ends (inclusive)
461 *
462 * Walk the list of under-writeback pages of the given address space
463 * in the given range and wait for all of them. Check error status of
464 * the address space and return it.
465 *
466 * Since the error status of the address space is cleared by this function,
467 * callers are responsible for checking the return value and handling and/or
468 * reporting the error.
469 */
470int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
471 loff_t end_byte)
472{
5e8fcc1a
JL
473 __filemap_fdatawait_range(mapping, start_byte, end_byte);
474 return filemap_check_errors(mapping);
1da177e4 475}
d3bccb6f
JK
476EXPORT_SYMBOL(filemap_fdatawait_range);
477
aa750fd7
JN
478/**
479 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
480 * @mapping: address space structure to wait for
481 *
482 * Walk the list of under-writeback pages of the given address space
483 * and wait for all of them. Unlike filemap_fdatawait(), this function
484 * does not clear error status of the address space.
485 *
486 * Use this function if callers don't handle errors themselves. Expected
487 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
488 * fsfreeze(8)
489 */
76341cab 490int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7
JN
491{
492 loff_t i_size = i_size_read(mapping->host);
493
494 if (i_size == 0)
76341cab 495 return 0;
aa750fd7
JN
496
497 __filemap_fdatawait_range(mapping, 0, i_size - 1);
76341cab 498 return filemap_check_and_keep_errors(mapping);
aa750fd7 499}
76341cab 500EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 501
1da177e4 502/**
485bb99b 503 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 504 * @mapping: address space structure to wait for
485bb99b
RD
505 *
506 * Walk the list of under-writeback pages of the given address space
aa750fd7
JN
507 * and wait for all of them. Check error status of the address space
508 * and return it.
509 *
510 * Since the error status of the address space is cleared by this function,
511 * callers are responsible for checking the return value and handling and/or
512 * reporting the error.
1da177e4
LT
513 */
514int filemap_fdatawait(struct address_space *mapping)
515{
516 loff_t i_size = i_size_read(mapping->host);
517
518 if (i_size == 0)
519 return 0;
520
94004ed7 521 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
522}
523EXPORT_SYMBOL(filemap_fdatawait);
524
525int filemap_write_and_wait(struct address_space *mapping)
526{
28fd1298 527 int err = 0;
1da177e4 528
7f6d5b52
RZ
529 if ((!dax_mapping(mapping) && mapping->nrpages) ||
530 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
531 err = filemap_fdatawrite(mapping);
532 /*
533 * Even if the above returned error, the pages may be
534 * written partially (e.g. -ENOSPC), so we wait for it.
535 * But the -EIO is special case, it may indicate the worst
536 * thing (e.g. bug) happened, so we avoid waiting for it.
537 */
538 if (err != -EIO) {
539 int err2 = filemap_fdatawait(mapping);
540 if (!err)
541 err = err2;
cbeaf951
JL
542 } else {
543 /* Clear any previously stored errors */
544 filemap_check_errors(mapping);
28fd1298 545 }
865ffef3
DM
546 } else {
547 err = filemap_check_errors(mapping);
1da177e4 548 }
28fd1298 549 return err;
1da177e4 550}
28fd1298 551EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 552
485bb99b
RD
553/**
554 * filemap_write_and_wait_range - write out & wait on a file range
555 * @mapping: the address_space for the pages
556 * @lstart: offset in bytes where the range starts
557 * @lend: offset in bytes where the range ends (inclusive)
558 *
469eb4d0
AM
559 * Write out and wait upon file offsets lstart->lend, inclusive.
560 *
0e056eb5 561 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0
AM
562 * that this function can be used to write to the very end-of-file (end = -1).
563 */
1da177e4
LT
564int filemap_write_and_wait_range(struct address_space *mapping,
565 loff_t lstart, loff_t lend)
566{
28fd1298 567 int err = 0;
1da177e4 568
7f6d5b52
RZ
569 if ((!dax_mapping(mapping) && mapping->nrpages) ||
570 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
571 err = __filemap_fdatawrite_range(mapping, lstart, lend,
572 WB_SYNC_ALL);
573 /* See comment of filemap_write_and_wait() */
574 if (err != -EIO) {
94004ed7
CH
575 int err2 = filemap_fdatawait_range(mapping,
576 lstart, lend);
28fd1298
OH
577 if (!err)
578 err = err2;
cbeaf951
JL
579 } else {
580 /* Clear any previously stored errors */
581 filemap_check_errors(mapping);
28fd1298 582 }
865ffef3
DM
583 } else {
584 err = filemap_check_errors(mapping);
1da177e4 585 }
28fd1298 586 return err;
1da177e4 587}
f6995585 588EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 589
5660e13d
JL
590void __filemap_set_wb_err(struct address_space *mapping, int err)
591{
592 errseq_t eseq = __errseq_set(&mapping->wb_err, err);
593
594 trace_filemap_set_wb_err(mapping, eseq);
595}
596EXPORT_SYMBOL(__filemap_set_wb_err);
597
598/**
599 * file_check_and_advance_wb_err - report wb error (if any) that was previously
600 * and advance wb_err to current one
601 * @file: struct file on which the error is being reported
602 *
603 * When userland calls fsync (or something like nfsd does the equivalent), we
604 * want to report any writeback errors that occurred since the last fsync (or
605 * since the file was opened if there haven't been any).
606 *
607 * Grab the wb_err from the mapping. If it matches what we have in the file,
608 * then just quickly return 0. The file is all caught up.
609 *
610 * If it doesn't match, then take the mapping value, set the "seen" flag in
611 * it and try to swap it into place. If it works, or another task beat us
612 * to it with the new value, then update the f_wb_err and return the error
613 * portion. The error at this point must be reported via proper channels
614 * (a'la fsync, or NFS COMMIT operation, etc.).
615 *
616 * While we handle mapping->wb_err with atomic operations, the f_wb_err
617 * value is protected by the f_lock since we must ensure that it reflects
618 * the latest value swapped in for this file descriptor.
619 */
620int file_check_and_advance_wb_err(struct file *file)
621{
622 int err = 0;
623 errseq_t old = READ_ONCE(file->f_wb_err);
624 struct address_space *mapping = file->f_mapping;
625
626 /* Locklessly handle the common case where nothing has changed */
627 if (errseq_check(&mapping->wb_err, old)) {
628 /* Something changed, must use slow path */
629 spin_lock(&file->f_lock);
630 old = file->f_wb_err;
631 err = errseq_check_and_advance(&mapping->wb_err,
632 &file->f_wb_err);
633 trace_file_check_and_advance_wb_err(file, old);
634 spin_unlock(&file->f_lock);
635 }
636 return err;
637}
638EXPORT_SYMBOL(file_check_and_advance_wb_err);
639
640/**
641 * file_write_and_wait_range - write out & wait on a file range
642 * @file: file pointing to address_space with pages
643 * @lstart: offset in bytes where the range starts
644 * @lend: offset in bytes where the range ends (inclusive)
645 *
646 * Write out and wait upon file offsets lstart->lend, inclusive.
647 *
648 * Note that @lend is inclusive (describes the last byte to be written) so
649 * that this function can be used to write to the very end-of-file (end = -1).
650 *
651 * After writing out and waiting on the data, we check and advance the
652 * f_wb_err cursor to the latest value, and return any errors detected there.
653 */
654int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
655{
656 int err = 0, err2;
657 struct address_space *mapping = file->f_mapping;
658
659 if ((!dax_mapping(mapping) && mapping->nrpages) ||
660 (dax_mapping(mapping) && mapping->nrexceptional)) {
661 err = __filemap_fdatawrite_range(mapping, lstart, lend,
662 WB_SYNC_ALL);
663 /* See comment of filemap_write_and_wait() */
664 if (err != -EIO)
665 __filemap_fdatawait_range(mapping, lstart, lend);
666 }
667 err2 = file_check_and_advance_wb_err(file);
668 if (!err)
669 err = err2;
670 return err;
671}
672EXPORT_SYMBOL(file_write_and_wait_range);
673
ef6a3c63
MS
674/**
675 * replace_page_cache_page - replace a pagecache page with a new one
676 * @old: page to be replaced
677 * @new: page to replace with
678 * @gfp_mask: allocation mode
679 *
680 * This function replaces a page in the pagecache with a new one. On
681 * success it acquires the pagecache reference for the new page and
682 * drops it for the old page. Both the old and new pages must be
683 * locked. This function does not add the new page to the LRU, the
684 * caller must do that.
685 *
686 * The remove + add is atomic. The only way this function can fail is
687 * memory allocation failure.
688 */
689int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
690{
691 int error;
ef6a3c63 692
309381fe
SL
693 VM_BUG_ON_PAGE(!PageLocked(old), old);
694 VM_BUG_ON_PAGE(!PageLocked(new), new);
695 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 696
ef6a3c63
MS
697 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
698 if (!error) {
699 struct address_space *mapping = old->mapping;
700 void (*freepage)(struct page *);
c4843a75 701 unsigned long flags;
ef6a3c63
MS
702
703 pgoff_t offset = old->index;
704 freepage = mapping->a_ops->freepage;
705
09cbfeaf 706 get_page(new);
ef6a3c63
MS
707 new->mapping = mapping;
708 new->index = offset;
709
c4843a75 710 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 711 __delete_from_page_cache(old, NULL);
22f2ac51 712 error = page_cache_tree_insert(mapping, new, NULL);
ef6a3c63 713 BUG_ON(error);
4165b9b4
MH
714
715 /*
716 * hugetlb pages do not participate in page cache accounting.
717 */
718 if (!PageHuge(new))
11fb9989 719 __inc_node_page_state(new, NR_FILE_PAGES);
ef6a3c63 720 if (PageSwapBacked(new))
11fb9989 721 __inc_node_page_state(new, NR_SHMEM);
c4843a75 722 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6a93ca8f 723 mem_cgroup_migrate(old, new);
ef6a3c63
MS
724 radix_tree_preload_end();
725 if (freepage)
726 freepage(old);
09cbfeaf 727 put_page(old);
ef6a3c63
MS
728 }
729
730 return error;
731}
732EXPORT_SYMBOL_GPL(replace_page_cache_page);
733
a528910e
JW
734static int __add_to_page_cache_locked(struct page *page,
735 struct address_space *mapping,
736 pgoff_t offset, gfp_t gfp_mask,
737 void **shadowp)
1da177e4 738{
00501b53
JW
739 int huge = PageHuge(page);
740 struct mem_cgroup *memcg;
e286781d
NP
741 int error;
742
309381fe
SL
743 VM_BUG_ON_PAGE(!PageLocked(page), page);
744 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 745
00501b53
JW
746 if (!huge) {
747 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 748 gfp_mask, &memcg, false);
00501b53
JW
749 if (error)
750 return error;
751 }
1da177e4 752
5e4c0d97 753 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 754 if (error) {
00501b53 755 if (!huge)
f627c2f5 756 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
757 return error;
758 }
759
09cbfeaf 760 get_page(page);
66a0c8ee
KS
761 page->mapping = mapping;
762 page->index = offset;
763
764 spin_lock_irq(&mapping->tree_lock);
a528910e 765 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
766 radix_tree_preload_end();
767 if (unlikely(error))
768 goto err_insert;
4165b9b4
MH
769
770 /* hugetlb pages do not participate in page cache accounting. */
771 if (!huge)
11fb9989 772 __inc_node_page_state(page, NR_FILE_PAGES);
66a0c8ee 773 spin_unlock_irq(&mapping->tree_lock);
00501b53 774 if (!huge)
f627c2f5 775 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
776 trace_mm_filemap_add_to_page_cache(page);
777 return 0;
778err_insert:
779 page->mapping = NULL;
780 /* Leave page->index set: truncation relies upon it */
781 spin_unlock_irq(&mapping->tree_lock);
00501b53 782 if (!huge)
f627c2f5 783 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 784 put_page(page);
1da177e4
LT
785 return error;
786}
a528910e
JW
787
788/**
789 * add_to_page_cache_locked - add a locked page to the pagecache
790 * @page: page to add
791 * @mapping: the page's address_space
792 * @offset: page index
793 * @gfp_mask: page allocation mode
794 *
795 * This function is used to add a page to the pagecache. It must be locked.
796 * This function does not add the page to the LRU. The caller must do that.
797 */
798int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
799 pgoff_t offset, gfp_t gfp_mask)
800{
801 return __add_to_page_cache_locked(page, mapping, offset,
802 gfp_mask, NULL);
803}
e286781d 804EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
805
806int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 807 pgoff_t offset, gfp_t gfp_mask)
1da177e4 808{
a528910e 809 void *shadow = NULL;
4f98a2fe
RR
810 int ret;
811
48c935ad 812 __SetPageLocked(page);
a528910e
JW
813 ret = __add_to_page_cache_locked(page, mapping, offset,
814 gfp_mask, &shadow);
815 if (unlikely(ret))
48c935ad 816 __ClearPageLocked(page);
a528910e
JW
817 else {
818 /*
819 * The page might have been evicted from cache only
820 * recently, in which case it should be activated like
821 * any other repeatedly accessed page.
f0281a00
RR
822 * The exception is pages getting rewritten; evicting other
823 * data from the working set, only to cache data that will
824 * get overwritten with something else, is a waste of memory.
a528910e 825 */
f0281a00
RR
826 if (!(gfp_mask & __GFP_WRITE) &&
827 shadow && workingset_refault(shadow)) {
a528910e
JW
828 SetPageActive(page);
829 workingset_activation(page);
830 } else
831 ClearPageActive(page);
832 lru_cache_add(page);
833 }
1da177e4
LT
834 return ret;
835}
18bc0bbd 836EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 837
44110fe3 838#ifdef CONFIG_NUMA
2ae88149 839struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 840{
c0ff7453
MX
841 int n;
842 struct page *page;
843
44110fe3 844 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
845 unsigned int cpuset_mems_cookie;
846 do {
d26914d1 847 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 848 n = cpuset_mem_spread_node();
96db800f 849 page = __alloc_pages_node(n, gfp, 0);
d26914d1 850 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 851
c0ff7453 852 return page;
44110fe3 853 }
2ae88149 854 return alloc_pages(gfp, 0);
44110fe3 855}
2ae88149 856EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
857#endif
858
1da177e4
LT
859/*
860 * In order to wait for pages to become available there must be
861 * waitqueues associated with pages. By using a hash table of
862 * waitqueues where the bucket discipline is to maintain all
863 * waiters on the same queue and wake all when any of the pages
864 * become available, and for the woken contexts to check to be
865 * sure the appropriate page became available, this saves space
866 * at a cost of "thundering herd" phenomena during rare hash
867 * collisions.
868 */
62906027
NP
869#define PAGE_WAIT_TABLE_BITS 8
870#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
871static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
872
873static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 874{
62906027 875 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 876}
1da177e4 877
62906027 878void __init pagecache_init(void)
1da177e4 879{
62906027 880 int i;
1da177e4 881
62906027
NP
882 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
883 init_waitqueue_head(&page_wait_table[i]);
884
885 page_writeback_init();
1da177e4 886}
1da177e4 887
3510ca20 888/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
62906027
NP
889struct wait_page_key {
890 struct page *page;
891 int bit_nr;
892 int page_match;
893};
894
895struct wait_page_queue {
896 struct page *page;
897 int bit_nr;
ac6424b9 898 wait_queue_entry_t wait;
62906027
NP
899};
900
ac6424b9 901static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 902{
62906027
NP
903 struct wait_page_key *key = arg;
904 struct wait_page_queue *wait_page
905 = container_of(wait, struct wait_page_queue, wait);
906
907 if (wait_page->page != key->page)
908 return 0;
909 key->page_match = 1;
f62e00cc 910
62906027
NP
911 if (wait_page->bit_nr != key->bit_nr)
912 return 0;
3510ca20
LT
913
914 /* Stop walking if it's locked */
62906027 915 if (test_bit(key->bit_nr, &key->page->flags))
3510ca20 916 return -1;
f62e00cc 917
62906027 918 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
919}
920
74d81bfa 921static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 922{
62906027
NP
923 wait_queue_head_t *q = page_waitqueue(page);
924 struct wait_page_key key;
925 unsigned long flags;
cbbce822 926
62906027
NP
927 key.page = page;
928 key.bit_nr = bit_nr;
929 key.page_match = 0;
930
931 spin_lock_irqsave(&q->lock, flags);
932 __wake_up_locked_key(q, TASK_NORMAL, &key);
933 /*
934 * It is possible for other pages to have collided on the waitqueue
935 * hash, so in that case check for a page match. That prevents a long-
936 * term waiter
937 *
938 * It is still possible to miss a case here, when we woke page waiters
939 * and removed them from the waitqueue, but there are still other
940 * page waiters.
941 */
942 if (!waitqueue_active(q) || !key.page_match) {
943 ClearPageWaiters(page);
944 /*
945 * It's possible to miss clearing Waiters here, when we woke
946 * our page waiters, but the hashed waitqueue has waiters for
947 * other pages on it.
948 *
949 * That's okay, it's a rare case. The next waker will clear it.
950 */
951 }
952 spin_unlock_irqrestore(&q->lock, flags);
953}
74d81bfa
NP
954
955static void wake_up_page(struct page *page, int bit)
956{
957 if (!PageWaiters(page))
958 return;
959 wake_up_page_bit(page, bit);
960}
62906027
NP
961
962static inline int wait_on_page_bit_common(wait_queue_head_t *q,
963 struct page *page, int bit_nr, int state, bool lock)
964{
965 struct wait_page_queue wait_page;
ac6424b9 966 wait_queue_entry_t *wait = &wait_page.wait;
62906027
NP
967 int ret = 0;
968
969 init_wait(wait);
3510ca20 970 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
62906027
NP
971 wait->func = wake_page_function;
972 wait_page.page = page;
973 wait_page.bit_nr = bit_nr;
974
975 for (;;) {
976 spin_lock_irq(&q->lock);
977
2055da97 978 if (likely(list_empty(&wait->entry))) {
3510ca20 979 __add_wait_queue_entry_tail(q, wait);
62906027
NP
980 SetPageWaiters(page);
981 }
982
983 set_current_state(state);
984
985 spin_unlock_irq(&q->lock);
986
987 if (likely(test_bit(bit_nr, &page->flags))) {
988 io_schedule();
62906027
NP
989 }
990
991 if (lock) {
992 if (!test_and_set_bit_lock(bit_nr, &page->flags))
993 break;
994 } else {
995 if (!test_bit(bit_nr, &page->flags))
996 break;
997 }
a8b169af
LT
998
999 if (unlikely(signal_pending_state(state, current))) {
1000 ret = -EINTR;
1001 break;
1002 }
62906027
NP
1003 }
1004
1005 finish_wait(q, wait);
1006
1007 /*
1008 * A signal could leave PageWaiters set. Clearing it here if
1009 * !waitqueue_active would be possible (by open-coding finish_wait),
1010 * but still fail to catch it in the case of wait hash collision. We
1011 * already can fail to clear wait hash collision cases, so don't
1012 * bother with signals either.
1013 */
1014
1015 return ret;
1016}
1017
1018void wait_on_page_bit(struct page *page, int bit_nr)
1019{
1020 wait_queue_head_t *q = page_waitqueue(page);
1021 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1022}
1023EXPORT_SYMBOL(wait_on_page_bit);
1024
1025int wait_on_page_bit_killable(struct page *page, int bit_nr)
1026{
1027 wait_queue_head_t *q = page_waitqueue(page);
1028 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
cbbce822 1029}
cbbce822 1030
385e1ca5
DH
1031/**
1032 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1033 * @page: Page defining the wait queue of interest
1034 * @waiter: Waiter to add to the queue
385e1ca5
DH
1035 *
1036 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1037 */
ac6424b9 1038void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1039{
1040 wait_queue_head_t *q = page_waitqueue(page);
1041 unsigned long flags;
1042
1043 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1044 __add_wait_queue_entry_tail(q, waiter);
62906027 1045 SetPageWaiters(page);
385e1ca5
DH
1046 spin_unlock_irqrestore(&q->lock, flags);
1047}
1048EXPORT_SYMBOL_GPL(add_page_wait_queue);
1049
b91e1302
LT
1050#ifndef clear_bit_unlock_is_negative_byte
1051
1052/*
1053 * PG_waiters is the high bit in the same byte as PG_lock.
1054 *
1055 * On x86 (and on many other architectures), we can clear PG_lock and
1056 * test the sign bit at the same time. But if the architecture does
1057 * not support that special operation, we just do this all by hand
1058 * instead.
1059 *
1060 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1061 * being cleared, but a memory barrier should be unneccssary since it is
1062 * in the same byte as PG_locked.
1063 */
1064static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1065{
1066 clear_bit_unlock(nr, mem);
1067 /* smp_mb__after_atomic(); */
98473f9f 1068 return test_bit(PG_waiters, mem);
b91e1302
LT
1069}
1070
1071#endif
1072
1da177e4 1073/**
485bb99b 1074 * unlock_page - unlock a locked page
1da177e4
LT
1075 * @page: the page
1076 *
1077 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1078 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1079 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1080 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1081 *
b91e1302
LT
1082 * Note that this depends on PG_waiters being the sign bit in the byte
1083 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1084 * clear the PG_locked bit and test PG_waiters at the same time fairly
1085 * portably (architectures that do LL/SC can test any bit, while x86 can
1086 * test the sign bit).
1da177e4 1087 */
920c7a5d 1088void unlock_page(struct page *page)
1da177e4 1089{
b91e1302 1090 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1091 page = compound_head(page);
309381fe 1092 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1093 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1094 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1095}
1096EXPORT_SYMBOL(unlock_page);
1097
485bb99b
RD
1098/**
1099 * end_page_writeback - end writeback against a page
1100 * @page: the page
1da177e4
LT
1101 */
1102void end_page_writeback(struct page *page)
1103{
888cf2db
MG
1104 /*
1105 * TestClearPageReclaim could be used here but it is an atomic
1106 * operation and overkill in this particular case. Failing to
1107 * shuffle a page marked for immediate reclaim is too mild to
1108 * justify taking an atomic operation penalty at the end of
1109 * ever page writeback.
1110 */
1111 if (PageReclaim(page)) {
1112 ClearPageReclaim(page);
ac6aadb2 1113 rotate_reclaimable_page(page);
888cf2db 1114 }
ac6aadb2
MS
1115
1116 if (!test_clear_page_writeback(page))
1117 BUG();
1118
4e857c58 1119 smp_mb__after_atomic();
1da177e4
LT
1120 wake_up_page(page, PG_writeback);
1121}
1122EXPORT_SYMBOL(end_page_writeback);
1123
57d99845
MW
1124/*
1125 * After completing I/O on a page, call this routine to update the page
1126 * flags appropriately
1127 */
c11f0c0b 1128void page_endio(struct page *page, bool is_write, int err)
57d99845 1129{
c11f0c0b 1130 if (!is_write) {
57d99845
MW
1131 if (!err) {
1132 SetPageUptodate(page);
1133 } else {
1134 ClearPageUptodate(page);
1135 SetPageError(page);
1136 }
1137 unlock_page(page);
abf54548 1138 } else {
57d99845 1139 if (err) {
dd8416c4
MK
1140 struct address_space *mapping;
1141
57d99845 1142 SetPageError(page);
dd8416c4
MK
1143 mapping = page_mapping(page);
1144 if (mapping)
1145 mapping_set_error(mapping, err);
57d99845
MW
1146 }
1147 end_page_writeback(page);
1148 }
1149}
1150EXPORT_SYMBOL_GPL(page_endio);
1151
485bb99b
RD
1152/**
1153 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1154 * @__page: the page to lock
1da177e4 1155 */
62906027 1156void __lock_page(struct page *__page)
1da177e4 1157{
62906027
NP
1158 struct page *page = compound_head(__page);
1159 wait_queue_head_t *q = page_waitqueue(page);
1160 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1da177e4
LT
1161}
1162EXPORT_SYMBOL(__lock_page);
1163
62906027 1164int __lock_page_killable(struct page *__page)
2687a356 1165{
62906027
NP
1166 struct page *page = compound_head(__page);
1167 wait_queue_head_t *q = page_waitqueue(page);
1168 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
2687a356 1169}
18bc0bbd 1170EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1171
9a95f3cf
PC
1172/*
1173 * Return values:
1174 * 1 - page is locked; mmap_sem is still held.
1175 * 0 - page is not locked.
1176 * mmap_sem has been released (up_read()), unless flags had both
1177 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1178 * which case mmap_sem is still held.
1179 *
1180 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1181 * with the page locked and the mmap_sem unperturbed.
1182 */
d065bd81
ML
1183int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1184 unsigned int flags)
1185{
37b23e05
KM
1186 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1187 /*
1188 * CAUTION! In this case, mmap_sem is not released
1189 * even though return 0.
1190 */
1191 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1192 return 0;
1193
1194 up_read(&mm->mmap_sem);
1195 if (flags & FAULT_FLAG_KILLABLE)
1196 wait_on_page_locked_killable(page);
1197 else
318b275f 1198 wait_on_page_locked(page);
d065bd81 1199 return 0;
37b23e05
KM
1200 } else {
1201 if (flags & FAULT_FLAG_KILLABLE) {
1202 int ret;
1203
1204 ret = __lock_page_killable(page);
1205 if (ret) {
1206 up_read(&mm->mmap_sem);
1207 return 0;
1208 }
1209 } else
1210 __lock_page(page);
1211 return 1;
d065bd81
ML
1212 }
1213}
1214
e7b563bb
JW
1215/**
1216 * page_cache_next_hole - find the next hole (not-present entry)
1217 * @mapping: mapping
1218 * @index: index
1219 * @max_scan: maximum range to search
1220 *
1221 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1222 * lowest indexed hole.
1223 *
1224 * Returns: the index of the hole if found, otherwise returns an index
1225 * outside of the set specified (in which case 'return - index >=
1226 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1227 * be returned.
1228 *
1229 * page_cache_next_hole may be called under rcu_read_lock. However,
1230 * like radix_tree_gang_lookup, this will not atomically search a
1231 * snapshot of the tree at a single point in time. For example, if a
1232 * hole is created at index 5, then subsequently a hole is created at
1233 * index 10, page_cache_next_hole covering both indexes may return 10
1234 * if called under rcu_read_lock.
1235 */
1236pgoff_t page_cache_next_hole(struct address_space *mapping,
1237 pgoff_t index, unsigned long max_scan)
1238{
1239 unsigned long i;
1240
1241 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1242 struct page *page;
1243
1244 page = radix_tree_lookup(&mapping->page_tree, index);
1245 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1246 break;
1247 index++;
1248 if (index == 0)
1249 break;
1250 }
1251
1252 return index;
1253}
1254EXPORT_SYMBOL(page_cache_next_hole);
1255
1256/**
1257 * page_cache_prev_hole - find the prev hole (not-present entry)
1258 * @mapping: mapping
1259 * @index: index
1260 * @max_scan: maximum range to search
1261 *
1262 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1263 * the first hole.
1264 *
1265 * Returns: the index of the hole if found, otherwise returns an index
1266 * outside of the set specified (in which case 'index - return >=
1267 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1268 * will be returned.
1269 *
1270 * page_cache_prev_hole may be called under rcu_read_lock. However,
1271 * like radix_tree_gang_lookup, this will not atomically search a
1272 * snapshot of the tree at a single point in time. For example, if a
1273 * hole is created at index 10, then subsequently a hole is created at
1274 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1275 * called under rcu_read_lock.
1276 */
1277pgoff_t page_cache_prev_hole(struct address_space *mapping,
1278 pgoff_t index, unsigned long max_scan)
1279{
1280 unsigned long i;
1281
1282 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1283 struct page *page;
1284
1285 page = radix_tree_lookup(&mapping->page_tree, index);
1286 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1287 break;
1288 index--;
1289 if (index == ULONG_MAX)
1290 break;
1291 }
1292
1293 return index;
1294}
1295EXPORT_SYMBOL(page_cache_prev_hole);
1296
485bb99b 1297/**
0cd6144a 1298 * find_get_entry - find and get a page cache entry
485bb99b 1299 * @mapping: the address_space to search
0cd6144a
JW
1300 * @offset: the page cache index
1301 *
1302 * Looks up the page cache slot at @mapping & @offset. If there is a
1303 * page cache page, it is returned with an increased refcount.
485bb99b 1304 *
139b6a6f
JW
1305 * If the slot holds a shadow entry of a previously evicted page, or a
1306 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1307 *
1308 * Otherwise, %NULL is returned.
1da177e4 1309 */
0cd6144a 1310struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1311{
a60637c8 1312 void **pagep;
83929372 1313 struct page *head, *page;
1da177e4 1314
a60637c8
NP
1315 rcu_read_lock();
1316repeat:
1317 page = NULL;
1318 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1319 if (pagep) {
1320 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1321 if (unlikely(!page))
1322 goto out;
a2c16d6c 1323 if (radix_tree_exception(page)) {
8079b1c8
HD
1324 if (radix_tree_deref_retry(page))
1325 goto repeat;
1326 /*
139b6a6f
JW
1327 * A shadow entry of a recently evicted page,
1328 * or a swap entry from shmem/tmpfs. Return
1329 * it without attempting to raise page count.
8079b1c8
HD
1330 */
1331 goto out;
a2c16d6c 1332 }
83929372
KS
1333
1334 head = compound_head(page);
1335 if (!page_cache_get_speculative(head))
1336 goto repeat;
1337
1338 /* The page was split under us? */
1339 if (compound_head(page) != head) {
1340 put_page(head);
a60637c8 1341 goto repeat;
83929372 1342 }
a60637c8
NP
1343
1344 /*
1345 * Has the page moved?
1346 * This is part of the lockless pagecache protocol. See
1347 * include/linux/pagemap.h for details.
1348 */
1349 if (unlikely(page != *pagep)) {
83929372 1350 put_page(head);
a60637c8
NP
1351 goto repeat;
1352 }
1353 }
27d20fdd 1354out:
a60637c8
NP
1355 rcu_read_unlock();
1356
1da177e4
LT
1357 return page;
1358}
0cd6144a 1359EXPORT_SYMBOL(find_get_entry);
1da177e4 1360
0cd6144a
JW
1361/**
1362 * find_lock_entry - locate, pin and lock a page cache entry
1363 * @mapping: the address_space to search
1364 * @offset: the page cache index
1365 *
1366 * Looks up the page cache slot at @mapping & @offset. If there is a
1367 * page cache page, it is returned locked and with an increased
1368 * refcount.
1369 *
139b6a6f
JW
1370 * If the slot holds a shadow entry of a previously evicted page, or a
1371 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1372 *
1373 * Otherwise, %NULL is returned.
1374 *
1375 * find_lock_entry() may sleep.
1376 */
1377struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1378{
1379 struct page *page;
1380
1da177e4 1381repeat:
0cd6144a 1382 page = find_get_entry(mapping, offset);
a2c16d6c 1383 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1384 lock_page(page);
1385 /* Has the page been truncated? */
83929372 1386 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1387 unlock_page(page);
09cbfeaf 1388 put_page(page);
a60637c8 1389 goto repeat;
1da177e4 1390 }
83929372 1391 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1392 }
1da177e4
LT
1393 return page;
1394}
0cd6144a
JW
1395EXPORT_SYMBOL(find_lock_entry);
1396
1397/**
2457aec6 1398 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1399 * @mapping: the address_space to search
1400 * @offset: the page index
2457aec6 1401 * @fgp_flags: PCG flags
45f87de5 1402 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1403 *
2457aec6 1404 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1405 *
75325189 1406 * PCG flags modify how the page is returned.
0cd6144a 1407 *
0e056eb5
MCC
1408 * @fgp_flags can be:
1409 *
1410 * - FGP_ACCESSED: the page will be marked accessed
1411 * - FGP_LOCK: Page is return locked
1412 * - FGP_CREAT: If page is not present then a new page is allocated using
1413 * @gfp_mask and added to the page cache and the VM's LRU
1414 * list. The page is returned locked and with an increased
1415 * refcount. Otherwise, NULL is returned.
1da177e4 1416 *
2457aec6
MG
1417 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1418 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1419 *
2457aec6 1420 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1421 */
2457aec6 1422struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1423 int fgp_flags, gfp_t gfp_mask)
1da177e4 1424{
eb2be189 1425 struct page *page;
2457aec6 1426
1da177e4 1427repeat:
2457aec6
MG
1428 page = find_get_entry(mapping, offset);
1429 if (radix_tree_exceptional_entry(page))
1430 page = NULL;
1431 if (!page)
1432 goto no_page;
1433
1434 if (fgp_flags & FGP_LOCK) {
1435 if (fgp_flags & FGP_NOWAIT) {
1436 if (!trylock_page(page)) {
09cbfeaf 1437 put_page(page);
2457aec6
MG
1438 return NULL;
1439 }
1440 } else {
1441 lock_page(page);
1442 }
1443
1444 /* Has the page been truncated? */
1445 if (unlikely(page->mapping != mapping)) {
1446 unlock_page(page);
09cbfeaf 1447 put_page(page);
2457aec6
MG
1448 goto repeat;
1449 }
1450 VM_BUG_ON_PAGE(page->index != offset, page);
1451 }
1452
1453 if (page && (fgp_flags & FGP_ACCESSED))
1454 mark_page_accessed(page);
1455
1456no_page:
1457 if (!page && (fgp_flags & FGP_CREAT)) {
1458 int err;
1459 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1460 gfp_mask |= __GFP_WRITE;
1461 if (fgp_flags & FGP_NOFS)
1462 gfp_mask &= ~__GFP_FS;
2457aec6 1463
45f87de5 1464 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1465 if (!page)
1466 return NULL;
2457aec6
MG
1467
1468 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1469 fgp_flags |= FGP_LOCK;
1470
eb39d618 1471 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1472 if (fgp_flags & FGP_ACCESSED)
eb39d618 1473 __SetPageReferenced(page);
2457aec6 1474
45f87de5
MH
1475 err = add_to_page_cache_lru(page, mapping, offset,
1476 gfp_mask & GFP_RECLAIM_MASK);
eb2be189 1477 if (unlikely(err)) {
09cbfeaf 1478 put_page(page);
eb2be189
NP
1479 page = NULL;
1480 if (err == -EEXIST)
1481 goto repeat;
1da177e4 1482 }
1da177e4 1483 }
2457aec6 1484
1da177e4
LT
1485 return page;
1486}
2457aec6 1487EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1488
0cd6144a
JW
1489/**
1490 * find_get_entries - gang pagecache lookup
1491 * @mapping: The address_space to search
1492 * @start: The starting page cache index
1493 * @nr_entries: The maximum number of entries
1494 * @entries: Where the resulting entries are placed
1495 * @indices: The cache indices corresponding to the entries in @entries
1496 *
1497 * find_get_entries() will search for and return a group of up to
1498 * @nr_entries entries in the mapping. The entries are placed at
1499 * @entries. find_get_entries() takes a reference against any actual
1500 * pages it returns.
1501 *
1502 * The search returns a group of mapping-contiguous page cache entries
1503 * with ascending indexes. There may be holes in the indices due to
1504 * not-present pages.
1505 *
139b6a6f
JW
1506 * Any shadow entries of evicted pages, or swap entries from
1507 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1508 *
1509 * find_get_entries() returns the number of pages and shadow entries
1510 * which were found.
1511 */
1512unsigned find_get_entries(struct address_space *mapping,
1513 pgoff_t start, unsigned int nr_entries,
1514 struct page **entries, pgoff_t *indices)
1515{
1516 void **slot;
1517 unsigned int ret = 0;
1518 struct radix_tree_iter iter;
1519
1520 if (!nr_entries)
1521 return 0;
1522
1523 rcu_read_lock();
0cd6144a 1524 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1525 struct page *head, *page;
0cd6144a
JW
1526repeat:
1527 page = radix_tree_deref_slot(slot);
1528 if (unlikely(!page))
1529 continue;
1530 if (radix_tree_exception(page)) {
2cf938aa
MW
1531 if (radix_tree_deref_retry(page)) {
1532 slot = radix_tree_iter_retry(&iter);
1533 continue;
1534 }
0cd6144a 1535 /*
f9fe48be
RZ
1536 * A shadow entry of a recently evicted page, a swap
1537 * entry from shmem/tmpfs or a DAX entry. Return it
1538 * without attempting to raise page count.
0cd6144a
JW
1539 */
1540 goto export;
1541 }
83929372
KS
1542
1543 head = compound_head(page);
1544 if (!page_cache_get_speculative(head))
1545 goto repeat;
1546
1547 /* The page was split under us? */
1548 if (compound_head(page) != head) {
1549 put_page(head);
0cd6144a 1550 goto repeat;
83929372 1551 }
0cd6144a
JW
1552
1553 /* Has the page moved? */
1554 if (unlikely(page != *slot)) {
83929372 1555 put_page(head);
0cd6144a
JW
1556 goto repeat;
1557 }
1558export:
1559 indices[ret] = iter.index;
1560 entries[ret] = page;
1561 if (++ret == nr_entries)
1562 break;
1563 }
1564 rcu_read_unlock();
1565 return ret;
1566}
1567
1da177e4
LT
1568/**
1569 * find_get_pages - gang pagecache lookup
1570 * @mapping: The address_space to search
1571 * @start: The starting page index
1572 * @nr_pages: The maximum number of pages
1573 * @pages: Where the resulting pages are placed
1574 *
1575 * find_get_pages() will search for and return a group of up to
1576 * @nr_pages pages in the mapping. The pages are placed at @pages.
1577 * find_get_pages() takes a reference against the returned pages.
1578 *
1579 * The search returns a group of mapping-contiguous pages with ascending
1580 * indexes. There may be holes in the indices due to not-present pages.
1581 *
1582 * find_get_pages() returns the number of pages which were found.
1583 */
1584unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1585 unsigned int nr_pages, struct page **pages)
1586{
0fc9d104
KK
1587 struct radix_tree_iter iter;
1588 void **slot;
1589 unsigned ret = 0;
1590
1591 if (unlikely(!nr_pages))
1592 return 0;
a60637c8
NP
1593
1594 rcu_read_lock();
0fc9d104 1595 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1596 struct page *head, *page;
a60637c8 1597repeat:
0fc9d104 1598 page = radix_tree_deref_slot(slot);
a60637c8
NP
1599 if (unlikely(!page))
1600 continue;
9d8aa4ea 1601
a2c16d6c 1602 if (radix_tree_exception(page)) {
8079b1c8 1603 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1604 slot = radix_tree_iter_retry(&iter);
1605 continue;
8079b1c8 1606 }
a2c16d6c 1607 /*
139b6a6f
JW
1608 * A shadow entry of a recently evicted page,
1609 * or a swap entry from shmem/tmpfs. Skip
1610 * over it.
a2c16d6c 1611 */
8079b1c8 1612 continue;
27d20fdd 1613 }
a60637c8 1614
83929372
KS
1615 head = compound_head(page);
1616 if (!page_cache_get_speculative(head))
1617 goto repeat;
1618
1619 /* The page was split under us? */
1620 if (compound_head(page) != head) {
1621 put_page(head);
a60637c8 1622 goto repeat;
83929372 1623 }
a60637c8
NP
1624
1625 /* Has the page moved? */
0fc9d104 1626 if (unlikely(page != *slot)) {
83929372 1627 put_page(head);
a60637c8
NP
1628 goto repeat;
1629 }
1da177e4 1630
a60637c8 1631 pages[ret] = page;
0fc9d104
KK
1632 if (++ret == nr_pages)
1633 break;
a60637c8 1634 }
5b280c0c 1635
a60637c8 1636 rcu_read_unlock();
1da177e4
LT
1637 return ret;
1638}
1639
ebf43500
JA
1640/**
1641 * find_get_pages_contig - gang contiguous pagecache lookup
1642 * @mapping: The address_space to search
1643 * @index: The starting page index
1644 * @nr_pages: The maximum number of pages
1645 * @pages: Where the resulting pages are placed
1646 *
1647 * find_get_pages_contig() works exactly like find_get_pages(), except
1648 * that the returned number of pages are guaranteed to be contiguous.
1649 *
1650 * find_get_pages_contig() returns the number of pages which were found.
1651 */
1652unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1653 unsigned int nr_pages, struct page **pages)
1654{
0fc9d104
KK
1655 struct radix_tree_iter iter;
1656 void **slot;
1657 unsigned int ret = 0;
1658
1659 if (unlikely(!nr_pages))
1660 return 0;
a60637c8
NP
1661
1662 rcu_read_lock();
0fc9d104 1663 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
83929372 1664 struct page *head, *page;
a60637c8 1665repeat:
0fc9d104
KK
1666 page = radix_tree_deref_slot(slot);
1667 /* The hole, there no reason to continue */
a60637c8 1668 if (unlikely(!page))
0fc9d104 1669 break;
9d8aa4ea 1670
a2c16d6c 1671 if (radix_tree_exception(page)) {
8079b1c8 1672 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1673 slot = radix_tree_iter_retry(&iter);
1674 continue;
8079b1c8 1675 }
a2c16d6c 1676 /*
139b6a6f
JW
1677 * A shadow entry of a recently evicted page,
1678 * or a swap entry from shmem/tmpfs. Stop
1679 * looking for contiguous pages.
a2c16d6c 1680 */
8079b1c8 1681 break;
a2c16d6c 1682 }
ebf43500 1683
83929372
KS
1684 head = compound_head(page);
1685 if (!page_cache_get_speculative(head))
1686 goto repeat;
1687
1688 /* The page was split under us? */
1689 if (compound_head(page) != head) {
1690 put_page(head);
a60637c8 1691 goto repeat;
83929372 1692 }
a60637c8
NP
1693
1694 /* Has the page moved? */
0fc9d104 1695 if (unlikely(page != *slot)) {
83929372 1696 put_page(head);
a60637c8
NP
1697 goto repeat;
1698 }
1699
9cbb4cb2
NP
1700 /*
1701 * must check mapping and index after taking the ref.
1702 * otherwise we can get both false positives and false
1703 * negatives, which is just confusing to the caller.
1704 */
83929372 1705 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
09cbfeaf 1706 put_page(page);
9cbb4cb2
NP
1707 break;
1708 }
1709
a60637c8 1710 pages[ret] = page;
0fc9d104
KK
1711 if (++ret == nr_pages)
1712 break;
ebf43500 1713 }
a60637c8
NP
1714 rcu_read_unlock();
1715 return ret;
ebf43500 1716}
ef71c15c 1717EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1718
485bb99b
RD
1719/**
1720 * find_get_pages_tag - find and return pages that match @tag
1721 * @mapping: the address_space to search
1722 * @index: the starting page index
1723 * @tag: the tag index
1724 * @nr_pages: the maximum number of pages
1725 * @pages: where the resulting pages are placed
1726 *
1da177e4 1727 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1728 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1729 */
1730unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1731 int tag, unsigned int nr_pages, struct page **pages)
1732{
0fc9d104
KK
1733 struct radix_tree_iter iter;
1734 void **slot;
1735 unsigned ret = 0;
1736
1737 if (unlikely(!nr_pages))
1738 return 0;
a60637c8
NP
1739
1740 rcu_read_lock();
0fc9d104
KK
1741 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1742 &iter, *index, tag) {
83929372 1743 struct page *head, *page;
a60637c8 1744repeat:
0fc9d104 1745 page = radix_tree_deref_slot(slot);
a60637c8
NP
1746 if (unlikely(!page))
1747 continue;
9d8aa4ea 1748
a2c16d6c 1749 if (radix_tree_exception(page)) {
8079b1c8 1750 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1751 slot = radix_tree_iter_retry(&iter);
1752 continue;
8079b1c8 1753 }
a2c16d6c 1754 /*
139b6a6f
JW
1755 * A shadow entry of a recently evicted page.
1756 *
1757 * Those entries should never be tagged, but
1758 * this tree walk is lockless and the tags are
1759 * looked up in bulk, one radix tree node at a
1760 * time, so there is a sizable window for page
1761 * reclaim to evict a page we saw tagged.
1762 *
1763 * Skip over it.
a2c16d6c 1764 */
139b6a6f 1765 continue;
a2c16d6c 1766 }
a60637c8 1767
83929372
KS
1768 head = compound_head(page);
1769 if (!page_cache_get_speculative(head))
a60637c8
NP
1770 goto repeat;
1771
83929372
KS
1772 /* The page was split under us? */
1773 if (compound_head(page) != head) {
1774 put_page(head);
1775 goto repeat;
1776 }
1777
a60637c8 1778 /* Has the page moved? */
0fc9d104 1779 if (unlikely(page != *slot)) {
83929372 1780 put_page(head);
a60637c8
NP
1781 goto repeat;
1782 }
1783
1784 pages[ret] = page;
0fc9d104
KK
1785 if (++ret == nr_pages)
1786 break;
a60637c8 1787 }
5b280c0c 1788
a60637c8 1789 rcu_read_unlock();
1da177e4 1790
1da177e4
LT
1791 if (ret)
1792 *index = pages[ret - 1]->index + 1;
a60637c8 1793
1da177e4
LT
1794 return ret;
1795}
ef71c15c 1796EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1797
7e7f7749
RZ
1798/**
1799 * find_get_entries_tag - find and return entries that match @tag
1800 * @mapping: the address_space to search
1801 * @start: the starting page cache index
1802 * @tag: the tag index
1803 * @nr_entries: the maximum number of entries
1804 * @entries: where the resulting entries are placed
1805 * @indices: the cache indices corresponding to the entries in @entries
1806 *
1807 * Like find_get_entries, except we only return entries which are tagged with
1808 * @tag.
1809 */
1810unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1811 int tag, unsigned int nr_entries,
1812 struct page **entries, pgoff_t *indices)
1813{
1814 void **slot;
1815 unsigned int ret = 0;
1816 struct radix_tree_iter iter;
1817
1818 if (!nr_entries)
1819 return 0;
1820
1821 rcu_read_lock();
7e7f7749
RZ
1822 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1823 &iter, start, tag) {
83929372 1824 struct page *head, *page;
7e7f7749
RZ
1825repeat:
1826 page = radix_tree_deref_slot(slot);
1827 if (unlikely(!page))
1828 continue;
1829 if (radix_tree_exception(page)) {
1830 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1831 slot = radix_tree_iter_retry(&iter);
1832 continue;
7e7f7749
RZ
1833 }
1834
1835 /*
1836 * A shadow entry of a recently evicted page, a swap
1837 * entry from shmem/tmpfs or a DAX entry. Return it
1838 * without attempting to raise page count.
1839 */
1840 goto export;
1841 }
83929372
KS
1842
1843 head = compound_head(page);
1844 if (!page_cache_get_speculative(head))
7e7f7749
RZ
1845 goto repeat;
1846
83929372
KS
1847 /* The page was split under us? */
1848 if (compound_head(page) != head) {
1849 put_page(head);
1850 goto repeat;
1851 }
1852
7e7f7749
RZ
1853 /* Has the page moved? */
1854 if (unlikely(page != *slot)) {
83929372 1855 put_page(head);
7e7f7749
RZ
1856 goto repeat;
1857 }
1858export:
1859 indices[ret] = iter.index;
1860 entries[ret] = page;
1861 if (++ret == nr_entries)
1862 break;
1863 }
1864 rcu_read_unlock();
1865 return ret;
1866}
1867EXPORT_SYMBOL(find_get_entries_tag);
1868
76d42bd9
WF
1869/*
1870 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1871 * a _large_ part of the i/o request. Imagine the worst scenario:
1872 *
1873 * ---R__________________________________________B__________
1874 * ^ reading here ^ bad block(assume 4k)
1875 *
1876 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1877 * => failing the whole request => read(R) => read(R+1) =>
1878 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1879 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1880 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1881 *
1882 * It is going insane. Fix it by quickly scaling down the readahead size.
1883 */
1884static void shrink_readahead_size_eio(struct file *filp,
1885 struct file_ra_state *ra)
1886{
76d42bd9 1887 ra->ra_pages /= 4;
76d42bd9
WF
1888}
1889
485bb99b 1890/**
36e78914 1891 * do_generic_file_read - generic file read routine
485bb99b
RD
1892 * @filp: the file to read
1893 * @ppos: current file position
6e58e79d
AV
1894 * @iter: data destination
1895 * @written: already copied
485bb99b 1896 *
1da177e4 1897 * This is a generic file read routine, and uses the
485bb99b 1898 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1899 *
1900 * This is really ugly. But the goto's actually try to clarify some
1901 * of the logic when it comes to error handling etc.
1da177e4 1902 */
6e58e79d
AV
1903static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1904 struct iov_iter *iter, ssize_t written)
1da177e4 1905{
36e78914 1906 struct address_space *mapping = filp->f_mapping;
1da177e4 1907 struct inode *inode = mapping->host;
36e78914 1908 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1909 pgoff_t index;
1910 pgoff_t last_index;
1911 pgoff_t prev_index;
1912 unsigned long offset; /* offset into pagecache page */
ec0f1637 1913 unsigned int prev_offset;
6e58e79d 1914 int error = 0;
1da177e4 1915
c2a9737f 1916 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 1917 return 0;
c2a9737f
WF
1918 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1919
09cbfeaf
KS
1920 index = *ppos >> PAGE_SHIFT;
1921 prev_index = ra->prev_pos >> PAGE_SHIFT;
1922 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1923 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1924 offset = *ppos & ~PAGE_MASK;
1da177e4 1925
1da177e4
LT
1926 for (;;) {
1927 struct page *page;
57f6b96c 1928 pgoff_t end_index;
a32ea1e1 1929 loff_t isize;
1da177e4
LT
1930 unsigned long nr, ret;
1931
1da177e4 1932 cond_resched();
1da177e4 1933find_page:
5abf186a
MH
1934 if (fatal_signal_pending(current)) {
1935 error = -EINTR;
1936 goto out;
1937 }
1938
1da177e4 1939 page = find_get_page(mapping, index);
3ea89ee8 1940 if (!page) {
cf914a7d 1941 page_cache_sync_readahead(mapping,
7ff81078 1942 ra, filp,
3ea89ee8
FW
1943 index, last_index - index);
1944 page = find_get_page(mapping, index);
1945 if (unlikely(page == NULL))
1946 goto no_cached_page;
1947 }
1948 if (PageReadahead(page)) {
cf914a7d 1949 page_cache_async_readahead(mapping,
7ff81078 1950 ra, filp, page,
3ea89ee8 1951 index, last_index - index);
1da177e4 1952 }
8ab22b9a 1953 if (!PageUptodate(page)) {
ebded027
MG
1954 /*
1955 * See comment in do_read_cache_page on why
1956 * wait_on_page_locked is used to avoid unnecessarily
1957 * serialisations and why it's safe.
1958 */
c4b209a4
BVA
1959 error = wait_on_page_locked_killable(page);
1960 if (unlikely(error))
1961 goto readpage_error;
ebded027
MG
1962 if (PageUptodate(page))
1963 goto page_ok;
1964
09cbfeaf 1965 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
1966 !mapping->a_ops->is_partially_uptodate)
1967 goto page_not_up_to_date;
6d6d36bc
EG
1968 /* pipes can't handle partially uptodate pages */
1969 if (unlikely(iter->type & ITER_PIPE))
1970 goto page_not_up_to_date;
529ae9aa 1971 if (!trylock_page(page))
8ab22b9a 1972 goto page_not_up_to_date;
8d056cb9
DH
1973 /* Did it get truncated before we got the lock? */
1974 if (!page->mapping)
1975 goto page_not_up_to_date_locked;
8ab22b9a 1976 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1977 offset, iter->count))
8ab22b9a
HH
1978 goto page_not_up_to_date_locked;
1979 unlock_page(page);
1980 }
1da177e4 1981page_ok:
a32ea1e1
N
1982 /*
1983 * i_size must be checked after we know the page is Uptodate.
1984 *
1985 * Checking i_size after the check allows us to calculate
1986 * the correct value for "nr", which means the zero-filled
1987 * part of the page is not copied back to userspace (unless
1988 * another truncate extends the file - this is desired though).
1989 */
1990
1991 isize = i_size_read(inode);
09cbfeaf 1992 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 1993 if (unlikely(!isize || index > end_index)) {
09cbfeaf 1994 put_page(page);
a32ea1e1
N
1995 goto out;
1996 }
1997
1998 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 1999 nr = PAGE_SIZE;
a32ea1e1 2000 if (index == end_index) {
09cbfeaf 2001 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 2002 if (nr <= offset) {
09cbfeaf 2003 put_page(page);
a32ea1e1
N
2004 goto out;
2005 }
2006 }
2007 nr = nr - offset;
1da177e4
LT
2008
2009 /* If users can be writing to this page using arbitrary
2010 * virtual addresses, take care about potential aliasing
2011 * before reading the page on the kernel side.
2012 */
2013 if (mapping_writably_mapped(mapping))
2014 flush_dcache_page(page);
2015
2016 /*
ec0f1637
JK
2017 * When a sequential read accesses a page several times,
2018 * only mark it as accessed the first time.
1da177e4 2019 */
ec0f1637 2020 if (prev_index != index || offset != prev_offset)
1da177e4
LT
2021 mark_page_accessed(page);
2022 prev_index = index;
2023
2024 /*
2025 * Ok, we have the page, and it's up-to-date, so
2026 * now we can copy it to user space...
1da177e4 2027 */
6e58e79d
AV
2028
2029 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 2030 offset += ret;
09cbfeaf
KS
2031 index += offset >> PAGE_SHIFT;
2032 offset &= ~PAGE_MASK;
6ce745ed 2033 prev_offset = offset;
1da177e4 2034
09cbfeaf 2035 put_page(page);
6e58e79d
AV
2036 written += ret;
2037 if (!iov_iter_count(iter))
2038 goto out;
2039 if (ret < nr) {
2040 error = -EFAULT;
2041 goto out;
2042 }
2043 continue;
1da177e4
LT
2044
2045page_not_up_to_date:
2046 /* Get exclusive access to the page ... */
85462323
ON
2047 error = lock_page_killable(page);
2048 if (unlikely(error))
2049 goto readpage_error;
1da177e4 2050
8ab22b9a 2051page_not_up_to_date_locked:
da6052f7 2052 /* Did it get truncated before we got the lock? */
1da177e4
LT
2053 if (!page->mapping) {
2054 unlock_page(page);
09cbfeaf 2055 put_page(page);
1da177e4
LT
2056 continue;
2057 }
2058
2059 /* Did somebody else fill it already? */
2060 if (PageUptodate(page)) {
2061 unlock_page(page);
2062 goto page_ok;
2063 }
2064
2065readpage:
91803b49
JM
2066 /*
2067 * A previous I/O error may have been due to temporary
2068 * failures, eg. multipath errors.
2069 * PG_error will be set again if readpage fails.
2070 */
2071 ClearPageError(page);
1da177e4
LT
2072 /* Start the actual read. The read will unlock the page. */
2073 error = mapping->a_ops->readpage(filp, page);
2074
994fc28c
ZB
2075 if (unlikely(error)) {
2076 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 2077 put_page(page);
6e58e79d 2078 error = 0;
994fc28c
ZB
2079 goto find_page;
2080 }
1da177e4 2081 goto readpage_error;
994fc28c 2082 }
1da177e4
LT
2083
2084 if (!PageUptodate(page)) {
85462323
ON
2085 error = lock_page_killable(page);
2086 if (unlikely(error))
2087 goto readpage_error;
1da177e4
LT
2088 if (!PageUptodate(page)) {
2089 if (page->mapping == NULL) {
2090 /*
2ecdc82e 2091 * invalidate_mapping_pages got it
1da177e4
LT
2092 */
2093 unlock_page(page);
09cbfeaf 2094 put_page(page);
1da177e4
LT
2095 goto find_page;
2096 }
2097 unlock_page(page);
7ff81078 2098 shrink_readahead_size_eio(filp, ra);
85462323
ON
2099 error = -EIO;
2100 goto readpage_error;
1da177e4
LT
2101 }
2102 unlock_page(page);
2103 }
2104
1da177e4
LT
2105 goto page_ok;
2106
2107readpage_error:
2108 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 2109 put_page(page);
1da177e4
LT
2110 goto out;
2111
2112no_cached_page:
2113 /*
2114 * Ok, it wasn't cached, so we need to create a new
2115 * page..
2116 */
eb2be189
NP
2117 page = page_cache_alloc_cold(mapping);
2118 if (!page) {
6e58e79d 2119 error = -ENOMEM;
eb2be189 2120 goto out;
1da177e4 2121 }
6afdb859 2122 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2123 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2124 if (error) {
09cbfeaf 2125 put_page(page);
6e58e79d
AV
2126 if (error == -EEXIST) {
2127 error = 0;
1da177e4 2128 goto find_page;
6e58e79d 2129 }
1da177e4
LT
2130 goto out;
2131 }
1da177e4
LT
2132 goto readpage;
2133 }
2134
2135out:
7ff81078 2136 ra->prev_pos = prev_index;
09cbfeaf 2137 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2138 ra->prev_pos |= prev_offset;
1da177e4 2139
09cbfeaf 2140 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2141 file_accessed(filp);
6e58e79d 2142 return written ? written : error;
1da177e4
LT
2143}
2144
485bb99b 2145/**
6abd2322 2146 * generic_file_read_iter - generic filesystem read routine
485bb99b 2147 * @iocb: kernel I/O control block
6abd2322 2148 * @iter: destination for the data read
485bb99b 2149 *
6abd2322 2150 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
2151 * that can use the page cache directly.
2152 */
2153ssize_t
ed978a81 2154generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2155{
ed978a81 2156 struct file *file = iocb->ki_filp;
cb66a7a1 2157 ssize_t retval = 0;
e7080a43
NS
2158 size_t count = iov_iter_count(iter);
2159
2160 if (!count)
2161 goto out; /* skip atime */
1da177e4 2162
2ba48ce5 2163 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
2164 struct address_space *mapping = file->f_mapping;
2165 struct inode *inode = mapping->host;
543ade1f 2166 loff_t size;
1da177e4 2167
1da177e4 2168 size = i_size_read(inode);
6be96d3a
GR
2169 if (iocb->ki_flags & IOCB_NOWAIT) {
2170 if (filemap_range_has_page(mapping, iocb->ki_pos,
2171 iocb->ki_pos + count - 1))
2172 return -EAGAIN;
2173 } else {
2174 retval = filemap_write_and_wait_range(mapping,
2175 iocb->ki_pos,
2176 iocb->ki_pos + count - 1);
2177 if (retval < 0)
2178 goto out;
2179 }
d8d3d94b 2180
0d5b0cf2
CH
2181 file_accessed(file);
2182
5ecda137 2183 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2184 if (retval >= 0) {
c64fb5c7 2185 iocb->ki_pos += retval;
5ecda137 2186 count -= retval;
9fe55eea 2187 }
5b47d59a 2188 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2189
9fe55eea
SW
2190 /*
2191 * Btrfs can have a short DIO read if we encounter
2192 * compressed extents, so if there was an error, or if
2193 * we've already read everything we wanted to, or if
2194 * there was a short read because we hit EOF, go ahead
2195 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2196 * the rest of the read. Buffered reads will not work for
2197 * DAX files, so don't bother trying.
9fe55eea 2198 */
5ecda137 2199 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2200 IS_DAX(inode))
9fe55eea 2201 goto out;
1da177e4
LT
2202 }
2203
c64fb5c7 2204 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1da177e4
LT
2205out:
2206 return retval;
2207}
ed978a81 2208EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2209
1da177e4 2210#ifdef CONFIG_MMU
485bb99b
RD
2211/**
2212 * page_cache_read - adds requested page to the page cache if not already there
2213 * @file: file to read
2214 * @offset: page index
62eb320a 2215 * @gfp_mask: memory allocation flags
485bb99b 2216 *
1da177e4
LT
2217 * This adds the requested page to the page cache if it isn't already there,
2218 * and schedules an I/O to read in its contents from disk.
2219 */
c20cd45e 2220static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
2221{
2222 struct address_space *mapping = file->f_mapping;
99dadfdd 2223 struct page *page;
994fc28c 2224 int ret;
1da177e4 2225
994fc28c 2226 do {
c20cd45e 2227 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
994fc28c
ZB
2228 if (!page)
2229 return -ENOMEM;
2230
c20cd45e 2231 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
994fc28c
ZB
2232 if (ret == 0)
2233 ret = mapping->a_ops->readpage(file, page);
2234 else if (ret == -EEXIST)
2235 ret = 0; /* losing race to add is OK */
1da177e4 2236
09cbfeaf 2237 put_page(page);
1da177e4 2238
994fc28c 2239 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 2240
994fc28c 2241 return ret;
1da177e4
LT
2242}
2243
2244#define MMAP_LOTSAMISS (100)
2245
ef00e08e
LT
2246/*
2247 * Synchronous readahead happens when we don't even find
2248 * a page in the page cache at all.
2249 */
2250static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2251 struct file_ra_state *ra,
2252 struct file *file,
2253 pgoff_t offset)
2254{
ef00e08e
LT
2255 struct address_space *mapping = file->f_mapping;
2256
2257 /* If we don't want any read-ahead, don't bother */
64363aad 2258 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 2259 return;
275b12bf
WF
2260 if (!ra->ra_pages)
2261 return;
ef00e08e 2262
64363aad 2263 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
2264 page_cache_sync_readahead(mapping, ra, file, offset,
2265 ra->ra_pages);
ef00e08e
LT
2266 return;
2267 }
2268
207d04ba
AK
2269 /* Avoid banging the cache line if not needed */
2270 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2271 ra->mmap_miss++;
2272
2273 /*
2274 * Do we miss much more than hit in this file? If so,
2275 * stop bothering with read-ahead. It will only hurt.
2276 */
2277 if (ra->mmap_miss > MMAP_LOTSAMISS)
2278 return;
2279
d30a1100
WF
2280 /*
2281 * mmap read-around
2282 */
600e19af
RG
2283 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2284 ra->size = ra->ra_pages;
2285 ra->async_size = ra->ra_pages / 4;
275b12bf 2286 ra_submit(ra, mapping, file);
ef00e08e
LT
2287}
2288
2289/*
2290 * Asynchronous readahead happens when we find the page and PG_readahead,
2291 * so we want to possibly extend the readahead further..
2292 */
2293static void do_async_mmap_readahead(struct vm_area_struct *vma,
2294 struct file_ra_state *ra,
2295 struct file *file,
2296 struct page *page,
2297 pgoff_t offset)
2298{
2299 struct address_space *mapping = file->f_mapping;
2300
2301 /* If we don't want any read-ahead, don't bother */
64363aad 2302 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
2303 return;
2304 if (ra->mmap_miss > 0)
2305 ra->mmap_miss--;
2306 if (PageReadahead(page))
2fad6f5d
WF
2307 page_cache_async_readahead(mapping, ra, file,
2308 page, offset, ra->ra_pages);
ef00e08e
LT
2309}
2310
485bb99b 2311/**
54cb8821 2312 * filemap_fault - read in file data for page fault handling
d0217ac0 2313 * @vmf: struct vm_fault containing details of the fault
485bb99b 2314 *
54cb8821 2315 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2316 * mapped memory region to read in file data during a page fault.
2317 *
2318 * The goto's are kind of ugly, but this streamlines the normal case of having
2319 * it in the page cache, and handles the special cases reasonably without
2320 * having a lot of duplicated code.
9a95f3cf
PC
2321 *
2322 * vma->vm_mm->mmap_sem must be held on entry.
2323 *
2324 * If our return value has VM_FAULT_RETRY set, it's because
2325 * lock_page_or_retry() returned 0.
2326 * The mmap_sem has usually been released in this case.
2327 * See __lock_page_or_retry() for the exception.
2328 *
2329 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2330 * has not been released.
2331 *
2332 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2333 */
11bac800 2334int filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2335{
2336 int error;
11bac800 2337 struct file *file = vmf->vma->vm_file;
1da177e4
LT
2338 struct address_space *mapping = file->f_mapping;
2339 struct file_ra_state *ra = &file->f_ra;
2340 struct inode *inode = mapping->host;
ef00e08e 2341 pgoff_t offset = vmf->pgoff;
9ab2594f 2342 pgoff_t max_off;
1da177e4 2343 struct page *page;
83c54070 2344 int ret = 0;
1da177e4 2345
9ab2594f
MW
2346 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2347 if (unlikely(offset >= max_off))
5307cc1a 2348 return VM_FAULT_SIGBUS;
1da177e4 2349
1da177e4 2350 /*
49426420 2351 * Do we have something in the page cache already?
1da177e4 2352 */
ef00e08e 2353 page = find_get_page(mapping, offset);
45cac65b 2354 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2355 /*
ef00e08e
LT
2356 * We found the page, so try async readahead before
2357 * waiting for the lock.
1da177e4 2358 */
11bac800 2359 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
45cac65b 2360 } else if (!page) {
ef00e08e 2361 /* No page in the page cache at all */
11bac800 2362 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
ef00e08e 2363 count_vm_event(PGMAJFAULT);
2262185c 2364 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2365 ret = VM_FAULT_MAJOR;
2366retry_find:
b522c94d 2367 page = find_get_page(mapping, offset);
1da177e4
LT
2368 if (!page)
2369 goto no_cached_page;
2370 }
2371
11bac800 2372 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
09cbfeaf 2373 put_page(page);
d065bd81 2374 return ret | VM_FAULT_RETRY;
d88c0922 2375 }
b522c94d
ML
2376
2377 /* Did it get truncated? */
2378 if (unlikely(page->mapping != mapping)) {
2379 unlock_page(page);
2380 put_page(page);
2381 goto retry_find;
2382 }
309381fe 2383 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2384
1da177e4 2385 /*
d00806b1
NP
2386 * We have a locked page in the page cache, now we need to check
2387 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2388 */
d00806b1 2389 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2390 goto page_not_uptodate;
2391
ef00e08e
LT
2392 /*
2393 * Found the page and have a reference on it.
2394 * We must recheck i_size under page lock.
2395 */
9ab2594f
MW
2396 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2397 if (unlikely(offset >= max_off)) {
d00806b1 2398 unlock_page(page);
09cbfeaf 2399 put_page(page);
5307cc1a 2400 return VM_FAULT_SIGBUS;
d00806b1
NP
2401 }
2402
d0217ac0 2403 vmf->page = page;
83c54070 2404 return ret | VM_FAULT_LOCKED;
1da177e4 2405
1da177e4
LT
2406no_cached_page:
2407 /*
2408 * We're only likely to ever get here if MADV_RANDOM is in
2409 * effect.
2410 */
c20cd45e 2411 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2412
2413 /*
2414 * The page we want has now been added to the page cache.
2415 * In the unlikely event that someone removed it in the
2416 * meantime, we'll just come back here and read it again.
2417 */
2418 if (error >= 0)
2419 goto retry_find;
2420
2421 /*
2422 * An error return from page_cache_read can result if the
2423 * system is low on memory, or a problem occurs while trying
2424 * to schedule I/O.
2425 */
2426 if (error == -ENOMEM)
d0217ac0
NP
2427 return VM_FAULT_OOM;
2428 return VM_FAULT_SIGBUS;
1da177e4
LT
2429
2430page_not_uptodate:
1da177e4
LT
2431 /*
2432 * Umm, take care of errors if the page isn't up-to-date.
2433 * Try to re-read it _once_. We do this synchronously,
2434 * because there really aren't any performance issues here
2435 * and we need to check for errors.
2436 */
1da177e4 2437 ClearPageError(page);
994fc28c 2438 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2439 if (!error) {
2440 wait_on_page_locked(page);
2441 if (!PageUptodate(page))
2442 error = -EIO;
2443 }
09cbfeaf 2444 put_page(page);
d00806b1
NP
2445
2446 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2447 goto retry_find;
1da177e4 2448
d00806b1 2449 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2450 shrink_readahead_size_eio(file, ra);
d0217ac0 2451 return VM_FAULT_SIGBUS;
54cb8821
NP
2452}
2453EXPORT_SYMBOL(filemap_fault);
2454
82b0f8c3 2455void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2456 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361
KS
2457{
2458 struct radix_tree_iter iter;
2459 void **slot;
82b0f8c3 2460 struct file *file = vmf->vma->vm_file;
f1820361 2461 struct address_space *mapping = file->f_mapping;
bae473a4 2462 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2463 unsigned long max_idx;
83929372 2464 struct page *head, *page;
f1820361
KS
2465
2466 rcu_read_lock();
bae473a4
KS
2467 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2468 start_pgoff) {
2469 if (iter.index > end_pgoff)
f1820361
KS
2470 break;
2471repeat:
2472 page = radix_tree_deref_slot(slot);
2473 if (unlikely(!page))
2474 goto next;
2475 if (radix_tree_exception(page)) {
2cf938aa
MW
2476 if (radix_tree_deref_retry(page)) {
2477 slot = radix_tree_iter_retry(&iter);
2478 continue;
2479 }
2480 goto next;
f1820361
KS
2481 }
2482
83929372
KS
2483 head = compound_head(page);
2484 if (!page_cache_get_speculative(head))
f1820361
KS
2485 goto repeat;
2486
83929372
KS
2487 /* The page was split under us? */
2488 if (compound_head(page) != head) {
2489 put_page(head);
2490 goto repeat;
2491 }
2492
f1820361
KS
2493 /* Has the page moved? */
2494 if (unlikely(page != *slot)) {
83929372 2495 put_page(head);
f1820361
KS
2496 goto repeat;
2497 }
2498
2499 if (!PageUptodate(page) ||
2500 PageReadahead(page) ||
2501 PageHWPoison(page))
2502 goto skip;
2503 if (!trylock_page(page))
2504 goto skip;
2505
2506 if (page->mapping != mapping || !PageUptodate(page))
2507 goto unlock;
2508
9ab2594f
MW
2509 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2510 if (page->index >= max_idx)
f1820361
KS
2511 goto unlock;
2512
f1820361
KS
2513 if (file->f_ra.mmap_miss > 0)
2514 file->f_ra.mmap_miss--;
7267ec00 2515
82b0f8c3
JK
2516 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2517 if (vmf->pte)
2518 vmf->pte += iter.index - last_pgoff;
7267ec00 2519 last_pgoff = iter.index;
82b0f8c3 2520 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2521 goto unlock;
f1820361
KS
2522 unlock_page(page);
2523 goto next;
2524unlock:
2525 unlock_page(page);
2526skip:
09cbfeaf 2527 put_page(page);
f1820361 2528next:
7267ec00 2529 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2530 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2531 break;
bae473a4 2532 if (iter.index == end_pgoff)
f1820361
KS
2533 break;
2534 }
2535 rcu_read_unlock();
2536}
2537EXPORT_SYMBOL(filemap_map_pages);
2538
11bac800 2539int filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2540{
2541 struct page *page = vmf->page;
11bac800 2542 struct inode *inode = file_inode(vmf->vma->vm_file);
4fcf1c62
JK
2543 int ret = VM_FAULT_LOCKED;
2544
14da9200 2545 sb_start_pagefault(inode->i_sb);
11bac800 2546 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2547 lock_page(page);
2548 if (page->mapping != inode->i_mapping) {
2549 unlock_page(page);
2550 ret = VM_FAULT_NOPAGE;
2551 goto out;
2552 }
14da9200
JK
2553 /*
2554 * We mark the page dirty already here so that when freeze is in
2555 * progress, we are guaranteed that writeback during freezing will
2556 * see the dirty page and writeprotect it again.
2557 */
2558 set_page_dirty(page);
1d1d1a76 2559 wait_for_stable_page(page);
4fcf1c62 2560out:
14da9200 2561 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2562 return ret;
2563}
2564EXPORT_SYMBOL(filemap_page_mkwrite);
2565
f0f37e2f 2566const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2567 .fault = filemap_fault,
f1820361 2568 .map_pages = filemap_map_pages,
4fcf1c62 2569 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2570};
2571
2572/* This is used for a general mmap of a disk file */
2573
2574int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2575{
2576 struct address_space *mapping = file->f_mapping;
2577
2578 if (!mapping->a_ops->readpage)
2579 return -ENOEXEC;
2580 file_accessed(file);
2581 vma->vm_ops = &generic_file_vm_ops;
2582 return 0;
2583}
1da177e4
LT
2584
2585/*
2586 * This is for filesystems which do not implement ->writepage.
2587 */
2588int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2589{
2590 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2591 return -EINVAL;
2592 return generic_file_mmap(file, vma);
2593}
2594#else
2595int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2596{
2597 return -ENOSYS;
2598}
2599int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2600{
2601 return -ENOSYS;
2602}
2603#endif /* CONFIG_MMU */
2604
2605EXPORT_SYMBOL(generic_file_mmap);
2606EXPORT_SYMBOL(generic_file_readonly_mmap);
2607
67f9fd91
SL
2608static struct page *wait_on_page_read(struct page *page)
2609{
2610 if (!IS_ERR(page)) {
2611 wait_on_page_locked(page);
2612 if (!PageUptodate(page)) {
09cbfeaf 2613 put_page(page);
67f9fd91
SL
2614 page = ERR_PTR(-EIO);
2615 }
2616 }
2617 return page;
2618}
2619
32b63529 2620static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2621 pgoff_t index,
5e5358e7 2622 int (*filler)(void *, struct page *),
0531b2aa
LT
2623 void *data,
2624 gfp_t gfp)
1da177e4 2625{
eb2be189 2626 struct page *page;
1da177e4
LT
2627 int err;
2628repeat:
2629 page = find_get_page(mapping, index);
2630 if (!page) {
0531b2aa 2631 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2632 if (!page)
2633 return ERR_PTR(-ENOMEM);
e6f67b8c 2634 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2635 if (unlikely(err)) {
09cbfeaf 2636 put_page(page);
eb2be189
NP
2637 if (err == -EEXIST)
2638 goto repeat;
1da177e4 2639 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2640 return ERR_PTR(err);
2641 }
32b63529
MG
2642
2643filler:
1da177e4
LT
2644 err = filler(data, page);
2645 if (err < 0) {
09cbfeaf 2646 put_page(page);
32b63529 2647 return ERR_PTR(err);
1da177e4 2648 }
1da177e4 2649
32b63529
MG
2650 page = wait_on_page_read(page);
2651 if (IS_ERR(page))
2652 return page;
2653 goto out;
2654 }
1da177e4
LT
2655 if (PageUptodate(page))
2656 goto out;
2657
ebded027
MG
2658 /*
2659 * Page is not up to date and may be locked due one of the following
2660 * case a: Page is being filled and the page lock is held
2661 * case b: Read/write error clearing the page uptodate status
2662 * case c: Truncation in progress (page locked)
2663 * case d: Reclaim in progress
2664 *
2665 * Case a, the page will be up to date when the page is unlocked.
2666 * There is no need to serialise on the page lock here as the page
2667 * is pinned so the lock gives no additional protection. Even if the
2668 * the page is truncated, the data is still valid if PageUptodate as
2669 * it's a race vs truncate race.
2670 * Case b, the page will not be up to date
2671 * Case c, the page may be truncated but in itself, the data may still
2672 * be valid after IO completes as it's a read vs truncate race. The
2673 * operation must restart if the page is not uptodate on unlock but
2674 * otherwise serialising on page lock to stabilise the mapping gives
2675 * no additional guarantees to the caller as the page lock is
2676 * released before return.
2677 * Case d, similar to truncation. If reclaim holds the page lock, it
2678 * will be a race with remove_mapping that determines if the mapping
2679 * is valid on unlock but otherwise the data is valid and there is
2680 * no need to serialise with page lock.
2681 *
2682 * As the page lock gives no additional guarantee, we optimistically
2683 * wait on the page to be unlocked and check if it's up to date and
2684 * use the page if it is. Otherwise, the page lock is required to
2685 * distinguish between the different cases. The motivation is that we
2686 * avoid spurious serialisations and wakeups when multiple processes
2687 * wait on the same page for IO to complete.
2688 */
2689 wait_on_page_locked(page);
2690 if (PageUptodate(page))
2691 goto out;
2692
2693 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2694 lock_page(page);
ebded027
MG
2695
2696 /* Case c or d, restart the operation */
1da177e4
LT
2697 if (!page->mapping) {
2698 unlock_page(page);
09cbfeaf 2699 put_page(page);
32b63529 2700 goto repeat;
1da177e4 2701 }
ebded027
MG
2702
2703 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2704 if (PageUptodate(page)) {
2705 unlock_page(page);
2706 goto out;
2707 }
32b63529
MG
2708 goto filler;
2709
c855ff37 2710out:
6fe6900e
NP
2711 mark_page_accessed(page);
2712 return page;
2713}
0531b2aa
LT
2714
2715/**
67f9fd91 2716 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2717 * @mapping: the page's address_space
2718 * @index: the page index
2719 * @filler: function to perform the read
5e5358e7 2720 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2721 *
0531b2aa 2722 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2723 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2724 *
2725 * If the page does not get brought uptodate, return -EIO.
2726 */
67f9fd91 2727struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2728 pgoff_t index,
5e5358e7 2729 int (*filler)(void *, struct page *),
0531b2aa
LT
2730 void *data)
2731{
2732 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2733}
67f9fd91 2734EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2735
2736/**
2737 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2738 * @mapping: the page's address_space
2739 * @index: the page index
2740 * @gfp: the page allocator flags to use if allocating
2741 *
2742 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2743 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2744 *
2745 * If the page does not get brought uptodate, return -EIO.
2746 */
2747struct page *read_cache_page_gfp(struct address_space *mapping,
2748 pgoff_t index,
2749 gfp_t gfp)
2750{
2751 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2752
67f9fd91 2753 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2754}
2755EXPORT_SYMBOL(read_cache_page_gfp);
2756
1da177e4
LT
2757/*
2758 * Performs necessary checks before doing a write
2759 *
485bb99b 2760 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2761 * Returns appropriate error code that caller should return or
2762 * zero in case that write should be allowed.
2763 */
3309dd04 2764inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2765{
3309dd04 2766 struct file *file = iocb->ki_filp;
1da177e4 2767 struct inode *inode = file->f_mapping->host;
59e99e5b 2768 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2769 loff_t pos;
1da177e4 2770
3309dd04
AV
2771 if (!iov_iter_count(from))
2772 return 0;
1da177e4 2773
0fa6b005 2774 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2775 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2776 iocb->ki_pos = i_size_read(inode);
1da177e4 2777
3309dd04 2778 pos = iocb->ki_pos;
1da177e4 2779
6be96d3a
GR
2780 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2781 return -EINVAL;
2782
0fa6b005 2783 if (limit != RLIM_INFINITY) {
3309dd04 2784 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2785 send_sig(SIGXFSZ, current, 0);
2786 return -EFBIG;
1da177e4 2787 }
3309dd04 2788 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2789 }
2790
2791 /*
2792 * LFS rule
2793 */
3309dd04 2794 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2795 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2796 if (pos >= MAX_NON_LFS)
1da177e4 2797 return -EFBIG;
3309dd04 2798 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2799 }
2800
2801 /*
2802 * Are we about to exceed the fs block limit ?
2803 *
2804 * If we have written data it becomes a short write. If we have
2805 * exceeded without writing data we send a signal and return EFBIG.
2806 * Linus frestrict idea will clean these up nicely..
2807 */
3309dd04
AV
2808 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2809 return -EFBIG;
1da177e4 2810
3309dd04
AV
2811 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2812 return iov_iter_count(from);
1da177e4
LT
2813}
2814EXPORT_SYMBOL(generic_write_checks);
2815
afddba49
NP
2816int pagecache_write_begin(struct file *file, struct address_space *mapping,
2817 loff_t pos, unsigned len, unsigned flags,
2818 struct page **pagep, void **fsdata)
2819{
2820 const struct address_space_operations *aops = mapping->a_ops;
2821
4e02ed4b 2822 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2823 pagep, fsdata);
afddba49
NP
2824}
2825EXPORT_SYMBOL(pagecache_write_begin);
2826
2827int pagecache_write_end(struct file *file, struct address_space *mapping,
2828 loff_t pos, unsigned len, unsigned copied,
2829 struct page *page, void *fsdata)
2830{
2831 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2832
4e02ed4b 2833 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2834}
2835EXPORT_SYMBOL(pagecache_write_end);
2836
1da177e4 2837ssize_t
1af5bb49 2838generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2839{
2840 struct file *file = iocb->ki_filp;
2841 struct address_space *mapping = file->f_mapping;
2842 struct inode *inode = mapping->host;
1af5bb49 2843 loff_t pos = iocb->ki_pos;
1da177e4 2844 ssize_t written;
a969e903
CH
2845 size_t write_len;
2846 pgoff_t end;
1da177e4 2847
0c949334 2848 write_len = iov_iter_count(from);
09cbfeaf 2849 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 2850
6be96d3a
GR
2851 if (iocb->ki_flags & IOCB_NOWAIT) {
2852 /* If there are pages to writeback, return */
2853 if (filemap_range_has_page(inode->i_mapping, pos,
2854 pos + iov_iter_count(from)))
2855 return -EAGAIN;
2856 } else {
2857 written = filemap_write_and_wait_range(mapping, pos,
2858 pos + write_len - 1);
2859 if (written)
2860 goto out;
2861 }
a969e903
CH
2862
2863 /*
2864 * After a write we want buffered reads to be sure to go to disk to get
2865 * the new data. We invalidate clean cached page from the region we're
2866 * about to write. We do this *before* the write so that we can return
6ccfa806 2867 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 2868 */
55635ba7 2869 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 2870 pos >> PAGE_SHIFT, end);
55635ba7
AR
2871 /*
2872 * If a page can not be invalidated, return 0 to fall back
2873 * to buffered write.
2874 */
2875 if (written) {
2876 if (written == -EBUSY)
2877 return 0;
2878 goto out;
a969e903
CH
2879 }
2880
639a93a5 2881 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
2882
2883 /*
2884 * Finally, try again to invalidate clean pages which might have been
2885 * cached by non-direct readahead, or faulted in by get_user_pages()
2886 * if the source of the write was an mmap'ed region of the file
2887 * we're writing. Either one is a pretty crazy thing to do,
2888 * so we don't support it 100%. If this invalidation
2889 * fails, tough, the write still worked...
2890 */
55635ba7
AR
2891 invalidate_inode_pages2_range(mapping,
2892 pos >> PAGE_SHIFT, end);
a969e903 2893
1da177e4 2894 if (written > 0) {
0116651c 2895 pos += written;
639a93a5 2896 write_len -= written;
0116651c
NK
2897 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2898 i_size_write(inode, pos);
1da177e4
LT
2899 mark_inode_dirty(inode);
2900 }
5cb6c6c7 2901 iocb->ki_pos = pos;
1da177e4 2902 }
639a93a5 2903 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 2904out:
1da177e4
LT
2905 return written;
2906}
2907EXPORT_SYMBOL(generic_file_direct_write);
2908
eb2be189
NP
2909/*
2910 * Find or create a page at the given pagecache position. Return the locked
2911 * page. This function is specifically for buffered writes.
2912 */
54566b2c
NP
2913struct page *grab_cache_page_write_begin(struct address_space *mapping,
2914 pgoff_t index, unsigned flags)
eb2be189 2915{
eb2be189 2916 struct page *page;
bbddabe2 2917 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 2918
54566b2c 2919 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2920 fgp_flags |= FGP_NOFS;
2921
2922 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2923 mapping_gfp_mask(mapping));
c585a267 2924 if (page)
2457aec6 2925 wait_for_stable_page(page);
eb2be189 2926
eb2be189
NP
2927 return page;
2928}
54566b2c 2929EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2930
3b93f911 2931ssize_t generic_perform_write(struct file *file,
afddba49
NP
2932 struct iov_iter *i, loff_t pos)
2933{
2934 struct address_space *mapping = file->f_mapping;
2935 const struct address_space_operations *a_ops = mapping->a_ops;
2936 long status = 0;
2937 ssize_t written = 0;
674b892e
NP
2938 unsigned int flags = 0;
2939
afddba49
NP
2940 do {
2941 struct page *page;
afddba49
NP
2942 unsigned long offset; /* Offset into pagecache page */
2943 unsigned long bytes; /* Bytes to write to page */
2944 size_t copied; /* Bytes copied from user */
2945 void *fsdata;
2946
09cbfeaf
KS
2947 offset = (pos & (PAGE_SIZE - 1));
2948 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2949 iov_iter_count(i));
2950
2951again:
00a3d660
LT
2952 /*
2953 * Bring in the user page that we will copy from _first_.
2954 * Otherwise there's a nasty deadlock on copying from the
2955 * same page as we're writing to, without it being marked
2956 * up-to-date.
2957 *
2958 * Not only is this an optimisation, but it is also required
2959 * to check that the address is actually valid, when atomic
2960 * usercopies are used, below.
2961 */
2962 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2963 status = -EFAULT;
2964 break;
2965 }
2966
296291cd
JK
2967 if (fatal_signal_pending(current)) {
2968 status = -EINTR;
2969 break;
2970 }
2971
674b892e 2972 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2973 &page, &fsdata);
2457aec6 2974 if (unlikely(status < 0))
afddba49
NP
2975 break;
2976
931e80e4 2977 if (mapping_writably_mapped(mapping))
2978 flush_dcache_page(page);
00a3d660 2979
afddba49 2980 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2981 flush_dcache_page(page);
2982
2983 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2984 page, fsdata);
2985 if (unlikely(status < 0))
2986 break;
2987 copied = status;
2988
2989 cond_resched();
2990
124d3b70 2991 iov_iter_advance(i, copied);
afddba49
NP
2992 if (unlikely(copied == 0)) {
2993 /*
2994 * If we were unable to copy any data at all, we must
2995 * fall back to a single segment length write.
2996 *
2997 * If we didn't fallback here, we could livelock
2998 * because not all segments in the iov can be copied at
2999 * once without a pagefault.
3000 */
09cbfeaf 3001 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3002 iov_iter_single_seg_count(i));
3003 goto again;
3004 }
afddba49
NP
3005 pos += copied;
3006 written += copied;
3007
3008 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3009 } while (iov_iter_count(i));
3010
3011 return written ? written : status;
3012}
3b93f911 3013EXPORT_SYMBOL(generic_perform_write);
1da177e4 3014
e4dd9de3 3015/**
8174202b 3016 * __generic_file_write_iter - write data to a file
e4dd9de3 3017 * @iocb: IO state structure (file, offset, etc.)
8174202b 3018 * @from: iov_iter with data to write
e4dd9de3
JK
3019 *
3020 * This function does all the work needed for actually writing data to a
3021 * file. It does all basic checks, removes SUID from the file, updates
3022 * modification times and calls proper subroutines depending on whether we
3023 * do direct IO or a standard buffered write.
3024 *
3025 * It expects i_mutex to be grabbed unless we work on a block device or similar
3026 * object which does not need locking at all.
3027 *
3028 * This function does *not* take care of syncing data in case of O_SYNC write.
3029 * A caller has to handle it. This is mainly due to the fact that we want to
3030 * avoid syncing under i_mutex.
3031 */
8174202b 3032ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3033{
3034 struct file *file = iocb->ki_filp;
fb5527e6 3035 struct address_space * mapping = file->f_mapping;
1da177e4 3036 struct inode *inode = mapping->host;
3b93f911 3037 ssize_t written = 0;
1da177e4 3038 ssize_t err;
3b93f911 3039 ssize_t status;
1da177e4 3040
1da177e4 3041 /* We can write back this queue in page reclaim */
de1414a6 3042 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3043 err = file_remove_privs(file);
1da177e4
LT
3044 if (err)
3045 goto out;
3046
c3b2da31
JB
3047 err = file_update_time(file);
3048 if (err)
3049 goto out;
1da177e4 3050
2ba48ce5 3051 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3052 loff_t pos, endbyte;
fb5527e6 3053
1af5bb49 3054 written = generic_file_direct_write(iocb, from);
1da177e4 3055 /*
fbbbad4b
MW
3056 * If the write stopped short of completing, fall back to
3057 * buffered writes. Some filesystems do this for writes to
3058 * holes, for example. For DAX files, a buffered write will
3059 * not succeed (even if it did, DAX does not handle dirty
3060 * page-cache pages correctly).
1da177e4 3061 */
0b8def9d 3062 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3063 goto out;
3064
0b8def9d 3065 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3066 /*
3b93f911 3067 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3068 * then we want to return the number of bytes which were
3069 * direct-written, or the error code if that was zero. Note
3070 * that this differs from normal direct-io semantics, which
3071 * will return -EFOO even if some bytes were written.
3072 */
60bb4529 3073 if (unlikely(status < 0)) {
3b93f911 3074 err = status;
fb5527e6
JM
3075 goto out;
3076 }
fb5527e6
JM
3077 /*
3078 * We need to ensure that the page cache pages are written to
3079 * disk and invalidated to preserve the expected O_DIRECT
3080 * semantics.
3081 */
3b93f911 3082 endbyte = pos + status - 1;
0b8def9d 3083 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3084 if (err == 0) {
0b8def9d 3085 iocb->ki_pos = endbyte + 1;
3b93f911 3086 written += status;
fb5527e6 3087 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3088 pos >> PAGE_SHIFT,
3089 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3090 } else {
3091 /*
3092 * We don't know how much we wrote, so just return
3093 * the number of bytes which were direct-written
3094 */
3095 }
3096 } else {
0b8def9d
AV
3097 written = generic_perform_write(file, from, iocb->ki_pos);
3098 if (likely(written > 0))
3099 iocb->ki_pos += written;
fb5527e6 3100 }
1da177e4
LT
3101out:
3102 current->backing_dev_info = NULL;
3103 return written ? written : err;
3104}
8174202b 3105EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3106
e4dd9de3 3107/**
8174202b 3108 * generic_file_write_iter - write data to a file
e4dd9de3 3109 * @iocb: IO state structure
8174202b 3110 * @from: iov_iter with data to write
e4dd9de3 3111 *
8174202b 3112 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3113 * filesystems. It takes care of syncing the file in case of O_SYNC file
3114 * and acquires i_mutex as needed.
3115 */
8174202b 3116ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3117{
3118 struct file *file = iocb->ki_filp;
148f948b 3119 struct inode *inode = file->f_mapping->host;
1da177e4 3120 ssize_t ret;
1da177e4 3121
5955102c 3122 inode_lock(inode);
3309dd04
AV
3123 ret = generic_write_checks(iocb, from);
3124 if (ret > 0)
5f380c7f 3125 ret = __generic_file_write_iter(iocb, from);
5955102c 3126 inode_unlock(inode);
1da177e4 3127
e2592217
CH
3128 if (ret > 0)
3129 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3130 return ret;
3131}
8174202b 3132EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3133
cf9a2ae8
DH
3134/**
3135 * try_to_release_page() - release old fs-specific metadata on a page
3136 *
3137 * @page: the page which the kernel is trying to free
3138 * @gfp_mask: memory allocation flags (and I/O mode)
3139 *
3140 * The address_space is to try to release any data against the page
0e056eb5 3141 * (presumably at page->private). If the release was successful, return '1'.
cf9a2ae8
DH
3142 * Otherwise return zero.
3143 *
266cf658
DH
3144 * This may also be called if PG_fscache is set on a page, indicating that the
3145 * page is known to the local caching routines.
3146 *
cf9a2ae8 3147 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3148 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3149 *
cf9a2ae8
DH
3150 */
3151int try_to_release_page(struct page *page, gfp_t gfp_mask)
3152{
3153 struct address_space * const mapping = page->mapping;
3154
3155 BUG_ON(!PageLocked(page));
3156 if (PageWriteback(page))
3157 return 0;
3158
3159 if (mapping && mapping->a_ops->releasepage)
3160 return mapping->a_ops->releasepage(page, gfp_mask);
3161 return try_to_free_buffers(page);
3162}
3163
3164EXPORT_SYMBOL(try_to_release_page);