]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/filemap.c
mm/sparsemem: fix 'mem_section' will never be NULL gcc 12 warning
[mirror_ubuntu-focal-kernel.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/mman.h>
25#include <linux/pagemap.h>
26#include <linux/file.h>
27#include <linux/uio.h>
cfcbfb13 28#include <linux/error-injection.h>
1da177e4
LT
29#include <linux/hash.h>
30#include <linux/writeback.h>
53253383 31#include <linux/backing-dev.h>
1da177e4
LT
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c515e1fd 38#include <linux/cleancache.h>
c7df8ad2 39#include <linux/shmem_fs.h>
f1820361 40#include <linux/rmap.h>
b1d29ba8 41#include <linux/delayacct.h>
eb414681 42#include <linux/psi.h>
d0e6a582 43#include <linux/ramfs.h>
0f8053a5
NP
44#include "internal.h"
45
fe0bfaaf
RJ
46#define CREATE_TRACE_POINTS
47#include <trace/events/filemap.h>
48
1da177e4 49/*
1da177e4
LT
50 * FIXME: remove all knowledge of the buffer layer from the core VM
51 */
148f948b 52#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 53
1da177e4
LT
54#include <asm/mman.h>
55
56/*
57 * Shared mappings implemented 30.11.1994. It's not fully working yet,
58 * though.
59 *
60 * Shared mappings now work. 15.8.1995 Bruno.
61 *
62 * finished 'unifying' the page and buffer cache and SMP-threaded the
63 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64 *
65 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66 */
67
68/*
69 * Lock ordering:
70 *
c8c06efa 71 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 72 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 73 * ->swap_lock (exclusive_swap_page, others)
b93b0163 74 * ->i_pages lock
1da177e4 75 *
1b1dcc1b 76 * ->i_mutex
c8c06efa 77 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
78 *
79 * ->mmap_sem
c8c06efa 80 * ->i_mmap_rwsem
b8072f09 81 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 82 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4
LT
83 *
84 * ->mmap_sem
85 * ->lock_page (access_process_vm)
86 *
ccad2365 87 * ->i_mutex (generic_perform_write)
82591e6e 88 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 89 *
f758eeab 90 * bdi->wb.list_lock
a66979ab 91 * sb_lock (fs/fs-writeback.c)
b93b0163 92 * ->i_pages lock (__sync_single_inode)
1da177e4 93 *
c8c06efa 94 * ->i_mmap_rwsem
1da177e4
LT
95 * ->anon_vma.lock (vma_adjust)
96 *
97 * ->anon_vma.lock
b8072f09 98 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 99 *
b8072f09 100 * ->page_table_lock or pte_lock
5d337b91 101 * ->swap_lock (try_to_unmap_one)
1da177e4 102 * ->private_lock (try_to_unmap_one)
b93b0163 103 * ->i_pages lock (try_to_unmap_one)
f4b7e272
AR
104 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
105 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 106 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 107 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 108 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 109 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 110 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 111 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 112 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
113 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
114 *
c8c06efa 115 * ->i_mmap_rwsem
9a3c531d 116 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
117 */
118
5c024e6a 119static void page_cache_delete(struct address_space *mapping,
91b0abe3
JW
120 struct page *page, void *shadow)
121{
5c024e6a
MW
122 XA_STATE(xas, &mapping->i_pages, page->index);
123 unsigned int nr = 1;
c70b647d 124
5c024e6a 125 mapping_set_update(&xas, mapping);
c70b647d 126
5c024e6a
MW
127 /* hugetlb pages are represented by a single entry in the xarray */
128 if (!PageHuge(page)) {
129 xas_set_order(&xas, page->index, compound_order(page));
d8c6546b 130 nr = compound_nr(page);
5c024e6a 131 }
91b0abe3 132
83929372
KS
133 VM_BUG_ON_PAGE(!PageLocked(page), page);
134 VM_BUG_ON_PAGE(PageTail(page), page);
135 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 136
5c024e6a
MW
137 xas_store(&xas, shadow);
138 xas_init_marks(&xas);
d3798ae8 139
2300638b
JK
140 page->mapping = NULL;
141 /* Leave page->index set: truncation lookup relies upon it */
142
d3798ae8
JW
143 if (shadow) {
144 mapping->nrexceptional += nr;
145 /*
146 * Make sure the nrexceptional update is committed before
147 * the nrpages update so that final truncate racing
148 * with reclaim does not see both counters 0 at the
149 * same time and miss a shadow entry.
150 */
151 smp_wmb();
152 }
153 mapping->nrpages -= nr;
91b0abe3
JW
154}
155
5ecc4d85
JK
156static void unaccount_page_cache_page(struct address_space *mapping,
157 struct page *page)
1da177e4 158{
5ecc4d85 159 int nr;
1da177e4 160
c515e1fd
DM
161 /*
162 * if we're uptodate, flush out into the cleancache, otherwise
163 * invalidate any existing cleancache entries. We can't leave
164 * stale data around in the cleancache once our page is gone
165 */
166 if (PageUptodate(page) && PageMappedToDisk(page))
167 cleancache_put_page(page);
168 else
3167760f 169 cleancache_invalidate_page(mapping, page);
c515e1fd 170
83929372 171 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
172 VM_BUG_ON_PAGE(page_mapped(page), page);
173 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
174 int mapcount;
175
176 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
177 current->comm, page_to_pfn(page));
178 dump_page(page, "still mapped when deleted");
179 dump_stack();
180 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181
182 mapcount = page_mapcount(page);
183 if (mapping_exiting(mapping) &&
184 page_count(page) >= mapcount + 2) {
185 /*
186 * All vmas have already been torn down, so it's
187 * a good bet that actually the page is unmapped,
188 * and we'd prefer not to leak it: if we're wrong,
189 * some other bad page check should catch it later.
190 */
191 page_mapcount_reset(page);
6d061f9f 192 page_ref_sub(page, mapcount);
06b241f3
HD
193 }
194 }
195
4165b9b4 196 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
197 if (PageHuge(page))
198 return;
09612fa6 199
5ecc4d85
JK
200 nr = hpage_nr_pages(page);
201
202 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
203 if (PageSwapBacked(page)) {
204 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
205 if (PageTransHuge(page))
206 __dec_node_page_state(page, NR_SHMEM_THPS);
99cb0dbd
SL
207 } else if (PageTransHuge(page)) {
208 __dec_node_page_state(page, NR_FILE_THPS);
09d91cda 209 filemap_nr_thps_dec(mapping);
800d8c63 210 }
5ecc4d85
JK
211
212 /*
213 * At this point page must be either written or cleaned by
214 * truncate. Dirty page here signals a bug and loss of
215 * unwritten data.
216 *
217 * This fixes dirty accounting after removing the page entirely
218 * but leaves PageDirty set: it has no effect for truncated
219 * page and anyway will be cleared before returning page into
220 * buddy allocator.
221 */
222 if (WARN_ON_ONCE(PageDirty(page)))
223 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
224}
225
226/*
227 * Delete a page from the page cache and free it. Caller has to make
228 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 229 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
230 */
231void __delete_from_page_cache(struct page *page, void *shadow)
232{
233 struct address_space *mapping = page->mapping;
234
235 trace_mm_filemap_delete_from_page_cache(page);
236
237 unaccount_page_cache_page(mapping, page);
5c024e6a 238 page_cache_delete(mapping, page, shadow);
1da177e4
LT
239}
240
59c66c5f
JK
241static void page_cache_free_page(struct address_space *mapping,
242 struct page *page)
243{
244 void (*freepage)(struct page *);
245
246 freepage = mapping->a_ops->freepage;
247 if (freepage)
248 freepage(page);
249
250 if (PageTransHuge(page) && !PageHuge(page)) {
251 page_ref_sub(page, HPAGE_PMD_NR);
252 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
253 } else {
254 put_page(page);
255 }
256}
257
702cfbf9
MK
258/**
259 * delete_from_page_cache - delete page from page cache
260 * @page: the page which the kernel is trying to remove from page cache
261 *
262 * This must be called only on pages that have been verified to be in the page
263 * cache and locked. It will never put the page into the free list, the caller
264 * has a reference on the page.
265 */
266void delete_from_page_cache(struct page *page)
1da177e4 267{
83929372 268 struct address_space *mapping = page_mapping(page);
c4843a75 269 unsigned long flags;
1da177e4 270
cd7619d6 271 BUG_ON(!PageLocked(page));
b93b0163 272 xa_lock_irqsave(&mapping->i_pages, flags);
62cccb8c 273 __delete_from_page_cache(page, NULL);
b93b0163 274 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c 275
59c66c5f 276 page_cache_free_page(mapping, page);
97cecb5a
MK
277}
278EXPORT_SYMBOL(delete_from_page_cache);
279
aa65c29c 280/*
ef8e5717 281 * page_cache_delete_batch - delete several pages from page cache
aa65c29c
JK
282 * @mapping: the mapping to which pages belong
283 * @pvec: pagevec with pages to delete
284 *
b93b0163 285 * The function walks over mapping->i_pages and removes pages passed in @pvec
4101196b
MWO
286 * from the mapping. The function expects @pvec to be sorted by page index
287 * and is optimised for it to be dense.
b93b0163 288 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 289 * modified). The function expects only THP head pages to be present in the
4101196b 290 * @pvec.
aa65c29c 291 *
b93b0163 292 * The function expects the i_pages lock to be held.
aa65c29c 293 */
ef8e5717 294static void page_cache_delete_batch(struct address_space *mapping,
aa65c29c
JK
295 struct pagevec *pvec)
296{
ef8e5717 297 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
aa65c29c 298 int total_pages = 0;
4101196b 299 int i = 0;
aa65c29c 300 struct page *page;
aa65c29c 301
ef8e5717
MW
302 mapping_set_update(&xas, mapping);
303 xas_for_each(&xas, page, ULONG_MAX) {
4101196b 304 if (i >= pagevec_count(pvec))
aa65c29c 305 break;
4101196b
MWO
306
307 /* A swap/dax/shadow entry got inserted? Skip it. */
3159f943 308 if (xa_is_value(page))
aa65c29c 309 continue;
4101196b
MWO
310 /*
311 * A page got inserted in our range? Skip it. We have our
312 * pages locked so they are protected from being removed.
313 * If we see a page whose index is higher than ours, it
314 * means our page has been removed, which shouldn't be
315 * possible because we're holding the PageLock.
316 */
317 if (page != pvec->pages[i]) {
318 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
319 page);
320 continue;
321 }
322
323 WARN_ON_ONCE(!PageLocked(page));
324
325 if (page->index == xas.xa_index)
aa65c29c 326 page->mapping = NULL;
4101196b
MWO
327 /* Leave page->index set: truncation lookup relies on it */
328
329 /*
330 * Move to the next page in the vector if this is a regular
331 * page or the index is of the last sub-page of this compound
332 * page.
333 */
334 if (page->index + compound_nr(page) - 1 == xas.xa_index)
aa65c29c 335 i++;
ef8e5717 336 xas_store(&xas, NULL);
aa65c29c
JK
337 total_pages++;
338 }
339 mapping->nrpages -= total_pages;
340}
341
342void delete_from_page_cache_batch(struct address_space *mapping,
343 struct pagevec *pvec)
344{
345 int i;
346 unsigned long flags;
347
348 if (!pagevec_count(pvec))
349 return;
350
b93b0163 351 xa_lock_irqsave(&mapping->i_pages, flags);
aa65c29c
JK
352 for (i = 0; i < pagevec_count(pvec); i++) {
353 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
354
355 unaccount_page_cache_page(mapping, pvec->pages[i]);
356 }
ef8e5717 357 page_cache_delete_batch(mapping, pvec);
b93b0163 358 xa_unlock_irqrestore(&mapping->i_pages, flags);
aa65c29c
JK
359
360 for (i = 0; i < pagevec_count(pvec); i++)
361 page_cache_free_page(mapping, pvec->pages[i]);
362}
363
d72d9e2a 364int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
365{
366 int ret = 0;
367 /* Check for outstanding write errors */
7fcbbaf1
JA
368 if (test_bit(AS_ENOSPC, &mapping->flags) &&
369 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 370 ret = -ENOSPC;
7fcbbaf1
JA
371 if (test_bit(AS_EIO, &mapping->flags) &&
372 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
373 ret = -EIO;
374 return ret;
375}
d72d9e2a 376EXPORT_SYMBOL(filemap_check_errors);
865ffef3 377
76341cab
JL
378static int filemap_check_and_keep_errors(struct address_space *mapping)
379{
380 /* Check for outstanding write errors */
381 if (test_bit(AS_EIO, &mapping->flags))
382 return -EIO;
383 if (test_bit(AS_ENOSPC, &mapping->flags))
384 return -ENOSPC;
385 return 0;
386}
387
1da177e4 388/**
485bb99b 389 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
390 * @mapping: address space structure to write
391 * @start: offset in bytes where the range starts
469eb4d0 392 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 393 * @sync_mode: enable synchronous operation
1da177e4 394 *
485bb99b
RD
395 * Start writeback against all of a mapping's dirty pages that lie
396 * within the byte offsets <start, end> inclusive.
397 *
1da177e4 398 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 399 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
400 * these two operations is that if a dirty page/buffer is encountered, it must
401 * be waited upon, and not just skipped over.
a862f68a
MR
402 *
403 * Return: %0 on success, negative error code otherwise.
1da177e4 404 */
ebcf28e1
AM
405int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
406 loff_t end, int sync_mode)
1da177e4
LT
407{
408 int ret;
409 struct writeback_control wbc = {
410 .sync_mode = sync_mode,
05fe478d 411 .nr_to_write = LONG_MAX,
111ebb6e
OH
412 .range_start = start,
413 .range_end = end,
1da177e4
LT
414 };
415
c3aab9a0
KK
416 if (!mapping_cap_writeback_dirty(mapping) ||
417 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1da177e4
LT
418 return 0;
419
b16b1deb 420 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 421 ret = do_writepages(mapping, &wbc);
b16b1deb 422 wbc_detach_inode(&wbc);
1da177e4
LT
423 return ret;
424}
425
426static inline int __filemap_fdatawrite(struct address_space *mapping,
427 int sync_mode)
428{
111ebb6e 429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
430}
431
432int filemap_fdatawrite(struct address_space *mapping)
433{
434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435}
436EXPORT_SYMBOL(filemap_fdatawrite);
437
f4c0a0fd 438int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 439 loff_t end)
1da177e4
LT
440{
441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442}
f4c0a0fd 443EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 444
485bb99b
RD
445/**
446 * filemap_flush - mostly a non-blocking flush
447 * @mapping: target address_space
448 *
1da177e4
LT
449 * This is a mostly non-blocking flush. Not suitable for data-integrity
450 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
451 *
452 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
453 */
454int filemap_flush(struct address_space *mapping)
455{
456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457}
458EXPORT_SYMBOL(filemap_flush);
459
7fc9e472
GR
460/**
461 * filemap_range_has_page - check if a page exists in range.
462 * @mapping: address space within which to check
463 * @start_byte: offset in bytes where the range starts
464 * @end_byte: offset in bytes where the range ends (inclusive)
465 *
466 * Find at least one page in the range supplied, usually used to check if
467 * direct writing in this range will trigger a writeback.
a862f68a
MR
468 *
469 * Return: %true if at least one page exists in the specified range,
470 * %false otherwise.
7fc9e472
GR
471 */
472bool filemap_range_has_page(struct address_space *mapping,
473 loff_t start_byte, loff_t end_byte)
474{
f7b68046 475 struct page *page;
8fa8e538
MW
476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
478
479 if (end_byte < start_byte)
480 return false;
481
8fa8e538
MW
482 rcu_read_lock();
483 for (;;) {
484 page = xas_find(&xas, max);
485 if (xas_retry(&xas, page))
486 continue;
487 /* Shadow entries don't count */
488 if (xa_is_value(page))
489 continue;
490 /*
491 * We don't need to try to pin this page; we're about to
492 * release the RCU lock anyway. It is enough to know that
493 * there was a page here recently.
494 */
495 break;
496 }
497 rcu_read_unlock();
7fc9e472 498
8fa8e538 499 return page != NULL;
7fc9e472
GR
500}
501EXPORT_SYMBOL(filemap_range_has_page);
502
5e8fcc1a 503static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 504 loff_t start_byte, loff_t end_byte)
1da177e4 505{
09cbfeaf
KS
506 pgoff_t index = start_byte >> PAGE_SHIFT;
507 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
508 struct pagevec pvec;
509 int nr_pages;
1da177e4 510
94004ed7 511 if (end_byte < start_byte)
5e8fcc1a 512 return;
1da177e4 513
86679820 514 pagevec_init(&pvec);
312e9d2f 515 while (index <= end) {
1da177e4
LT
516 unsigned i;
517
312e9d2f 518 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 519 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
520 if (!nr_pages)
521 break;
522
1da177e4
LT
523 for (i = 0; i < nr_pages; i++) {
524 struct page *page = pvec.pages[i];
525
1da177e4 526 wait_on_page_writeback(page);
5e8fcc1a 527 ClearPageError(page);
1da177e4
LT
528 }
529 pagevec_release(&pvec);
530 cond_resched();
531 }
aa750fd7
JN
532}
533
534/**
535 * filemap_fdatawait_range - wait for writeback to complete
536 * @mapping: address space structure to wait for
537 * @start_byte: offset in bytes where the range starts
538 * @end_byte: offset in bytes where the range ends (inclusive)
539 *
540 * Walk the list of under-writeback pages of the given address space
541 * in the given range and wait for all of them. Check error status of
542 * the address space and return it.
543 *
544 * Since the error status of the address space is cleared by this function,
545 * callers are responsible for checking the return value and handling and/or
546 * reporting the error.
a862f68a
MR
547 *
548 * Return: error status of the address space.
aa750fd7
JN
549 */
550int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551 loff_t end_byte)
552{
5e8fcc1a
JL
553 __filemap_fdatawait_range(mapping, start_byte, end_byte);
554 return filemap_check_errors(mapping);
1da177e4 555}
d3bccb6f
JK
556EXPORT_SYMBOL(filemap_fdatawait_range);
557
aa0bfcd9
RZ
558/**
559 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
560 * @mapping: address space structure to wait for
561 * @start_byte: offset in bytes where the range starts
562 * @end_byte: offset in bytes where the range ends (inclusive)
563 *
564 * Walk the list of under-writeback pages of the given address space in the
565 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
566 * this function does not clear error status of the address space.
567 *
568 * Use this function if callers don't handle errors themselves. Expected
569 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
570 * fsfreeze(8)
571 */
572int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
573 loff_t start_byte, loff_t end_byte)
574{
575 __filemap_fdatawait_range(mapping, start_byte, end_byte);
576 return filemap_check_and_keep_errors(mapping);
577}
578EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
579
a823e458
JL
580/**
581 * file_fdatawait_range - wait for writeback to complete
582 * @file: file pointing to address space structure to wait for
583 * @start_byte: offset in bytes where the range starts
584 * @end_byte: offset in bytes where the range ends (inclusive)
585 *
586 * Walk the list of under-writeback pages of the address space that file
587 * refers to, in the given range and wait for all of them. Check error
588 * status of the address space vs. the file->f_wb_err cursor and return it.
589 *
590 * Since the error status of the file is advanced by this function,
591 * callers are responsible for checking the return value and handling and/or
592 * reporting the error.
a862f68a
MR
593 *
594 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
595 */
596int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
597{
598 struct address_space *mapping = file->f_mapping;
599
600 __filemap_fdatawait_range(mapping, start_byte, end_byte);
601 return file_check_and_advance_wb_err(file);
602}
603EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 604
aa750fd7
JN
605/**
606 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
607 * @mapping: address space structure to wait for
608 *
609 * Walk the list of under-writeback pages of the given address space
610 * and wait for all of them. Unlike filemap_fdatawait(), this function
611 * does not clear error status of the address space.
612 *
613 * Use this function if callers don't handle errors themselves. Expected
614 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
615 * fsfreeze(8)
a862f68a
MR
616 *
617 * Return: error status of the address space.
aa750fd7 618 */
76341cab 619int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 620{
ffb959bb 621 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 622 return filemap_check_and_keep_errors(mapping);
aa750fd7 623}
76341cab 624EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 625
875d91b1 626/* Returns true if writeback might be needed or already in progress. */
9326c9b2 627static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 628{
875d91b1
KK
629 if (dax_mapping(mapping))
630 return mapping->nrexceptional;
631
632 return mapping->nrpages;
1da177e4 633}
1da177e4
LT
634
635int filemap_write_and_wait(struct address_space *mapping)
636{
28fd1298 637 int err = 0;
1da177e4 638
9326c9b2 639 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
640 err = filemap_fdatawrite(mapping);
641 /*
642 * Even if the above returned error, the pages may be
643 * written partially (e.g. -ENOSPC), so we wait for it.
644 * But the -EIO is special case, it may indicate the worst
645 * thing (e.g. bug) happened, so we avoid waiting for it.
646 */
647 if (err != -EIO) {
648 int err2 = filemap_fdatawait(mapping);
649 if (!err)
650 err = err2;
cbeaf951
JL
651 } else {
652 /* Clear any previously stored errors */
653 filemap_check_errors(mapping);
28fd1298 654 }
865ffef3
DM
655 } else {
656 err = filemap_check_errors(mapping);
1da177e4 657 }
28fd1298 658 return err;
1da177e4 659}
28fd1298 660EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 661
485bb99b
RD
662/**
663 * filemap_write_and_wait_range - write out & wait on a file range
664 * @mapping: the address_space for the pages
665 * @lstart: offset in bytes where the range starts
666 * @lend: offset in bytes where the range ends (inclusive)
667 *
469eb4d0
AM
668 * Write out and wait upon file offsets lstart->lend, inclusive.
669 *
0e056eb5 670 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 671 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
672 *
673 * Return: error status of the address space.
469eb4d0 674 */
1da177e4
LT
675int filemap_write_and_wait_range(struct address_space *mapping,
676 loff_t lstart, loff_t lend)
677{
28fd1298 678 int err = 0;
1da177e4 679
9326c9b2 680 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
681 err = __filemap_fdatawrite_range(mapping, lstart, lend,
682 WB_SYNC_ALL);
683 /* See comment of filemap_write_and_wait() */
684 if (err != -EIO) {
94004ed7
CH
685 int err2 = filemap_fdatawait_range(mapping,
686 lstart, lend);
28fd1298
OH
687 if (!err)
688 err = err2;
cbeaf951
JL
689 } else {
690 /* Clear any previously stored errors */
691 filemap_check_errors(mapping);
28fd1298 692 }
865ffef3
DM
693 } else {
694 err = filemap_check_errors(mapping);
1da177e4 695 }
28fd1298 696 return err;
1da177e4 697}
f6995585 698EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 699
5660e13d
JL
700void __filemap_set_wb_err(struct address_space *mapping, int err)
701{
3acdfd28 702 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
703
704 trace_filemap_set_wb_err(mapping, eseq);
705}
706EXPORT_SYMBOL(__filemap_set_wb_err);
707
708/**
709 * file_check_and_advance_wb_err - report wb error (if any) that was previously
710 * and advance wb_err to current one
711 * @file: struct file on which the error is being reported
712 *
713 * When userland calls fsync (or something like nfsd does the equivalent), we
714 * want to report any writeback errors that occurred since the last fsync (or
715 * since the file was opened if there haven't been any).
716 *
717 * Grab the wb_err from the mapping. If it matches what we have in the file,
718 * then just quickly return 0. The file is all caught up.
719 *
720 * If it doesn't match, then take the mapping value, set the "seen" flag in
721 * it and try to swap it into place. If it works, or another task beat us
722 * to it with the new value, then update the f_wb_err and return the error
723 * portion. The error at this point must be reported via proper channels
724 * (a'la fsync, or NFS COMMIT operation, etc.).
725 *
726 * While we handle mapping->wb_err with atomic operations, the f_wb_err
727 * value is protected by the f_lock since we must ensure that it reflects
728 * the latest value swapped in for this file descriptor.
a862f68a
MR
729 *
730 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
731 */
732int file_check_and_advance_wb_err(struct file *file)
733{
734 int err = 0;
735 errseq_t old = READ_ONCE(file->f_wb_err);
736 struct address_space *mapping = file->f_mapping;
737
738 /* Locklessly handle the common case where nothing has changed */
739 if (errseq_check(&mapping->wb_err, old)) {
740 /* Something changed, must use slow path */
741 spin_lock(&file->f_lock);
742 old = file->f_wb_err;
743 err = errseq_check_and_advance(&mapping->wb_err,
744 &file->f_wb_err);
745 trace_file_check_and_advance_wb_err(file, old);
746 spin_unlock(&file->f_lock);
747 }
f4e222c5
JL
748
749 /*
750 * We're mostly using this function as a drop in replacement for
751 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
752 * that the legacy code would have had on these flags.
753 */
754 clear_bit(AS_EIO, &mapping->flags);
755 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
756 return err;
757}
758EXPORT_SYMBOL(file_check_and_advance_wb_err);
759
760/**
761 * file_write_and_wait_range - write out & wait on a file range
762 * @file: file pointing to address_space with pages
763 * @lstart: offset in bytes where the range starts
764 * @lend: offset in bytes where the range ends (inclusive)
765 *
766 * Write out and wait upon file offsets lstart->lend, inclusive.
767 *
768 * Note that @lend is inclusive (describes the last byte to be written) so
769 * that this function can be used to write to the very end-of-file (end = -1).
770 *
771 * After writing out and waiting on the data, we check and advance the
772 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
773 *
774 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
775 */
776int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
777{
778 int err = 0, err2;
779 struct address_space *mapping = file->f_mapping;
780
9326c9b2 781 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
782 err = __filemap_fdatawrite_range(mapping, lstart, lend,
783 WB_SYNC_ALL);
784 /* See comment of filemap_write_and_wait() */
785 if (err != -EIO)
786 __filemap_fdatawait_range(mapping, lstart, lend);
787 }
788 err2 = file_check_and_advance_wb_err(file);
789 if (!err)
790 err = err2;
791 return err;
792}
793EXPORT_SYMBOL(file_write_and_wait_range);
794
ef6a3c63
MS
795/**
796 * replace_page_cache_page - replace a pagecache page with a new one
797 * @old: page to be replaced
798 * @new: page to replace with
799 * @gfp_mask: allocation mode
800 *
801 * This function replaces a page in the pagecache with a new one. On
802 * success it acquires the pagecache reference for the new page and
803 * drops it for the old page. Both the old and new pages must be
804 * locked. This function does not add the new page to the LRU, the
805 * caller must do that.
806 *
74d60958 807 * The remove + add is atomic. This function cannot fail.
a862f68a
MR
808 *
809 * Return: %0
ef6a3c63
MS
810 */
811int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
812{
74d60958
MW
813 struct address_space *mapping = old->mapping;
814 void (*freepage)(struct page *) = mapping->a_ops->freepage;
815 pgoff_t offset = old->index;
816 XA_STATE(xas, &mapping->i_pages, offset);
817 unsigned long flags;
ef6a3c63 818
309381fe
SL
819 VM_BUG_ON_PAGE(!PageLocked(old), old);
820 VM_BUG_ON_PAGE(!PageLocked(new), new);
821 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 822
74d60958
MW
823 get_page(new);
824 new->mapping = mapping;
825 new->index = offset;
ef6a3c63 826
74d60958
MW
827 xas_lock_irqsave(&xas, flags);
828 xas_store(&xas, new);
4165b9b4 829
74d60958
MW
830 old->mapping = NULL;
831 /* hugetlb pages do not participate in page cache accounting. */
832 if (!PageHuge(old))
833 __dec_node_page_state(new, NR_FILE_PAGES);
834 if (!PageHuge(new))
835 __inc_node_page_state(new, NR_FILE_PAGES);
836 if (PageSwapBacked(old))
837 __dec_node_page_state(new, NR_SHMEM);
838 if (PageSwapBacked(new))
839 __inc_node_page_state(new, NR_SHMEM);
840 xas_unlock_irqrestore(&xas, flags);
841 mem_cgroup_migrate(old, new);
842 if (freepage)
843 freepage(old);
844 put_page(old);
ef6a3c63 845
74d60958 846 return 0;
ef6a3c63
MS
847}
848EXPORT_SYMBOL_GPL(replace_page_cache_page);
849
2c3ca490
AS
850noinline int __add_to_page_cache_locked(struct page *page,
851 struct address_space *mapping,
852 pgoff_t offset, gfp_t gfp_mask,
853 void **shadowp)
1da177e4 854{
74d60958 855 XA_STATE(xas, &mapping->i_pages, offset);
00501b53
JW
856 int huge = PageHuge(page);
857 struct mem_cgroup *memcg;
e286781d
NP
858 int error;
859
309381fe
SL
860 VM_BUG_ON_PAGE(!PageLocked(page), page);
861 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
74d60958 862 mapping_set_update(&xas, mapping);
e286781d 863
00501b53
JW
864 if (!huge) {
865 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 866 gfp_mask, &memcg, false);
00501b53
JW
867 if (error)
868 return error;
869 }
1da177e4 870
09cbfeaf 871 get_page(page);
66a0c8ee
KS
872 page->mapping = mapping;
873 page->index = offset;
c3f84f42 874 gfp_mask &= GFP_RECLAIM_MASK;
66a0c8ee 875
74d60958 876 do {
c3f84f42
MWO
877 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
878 void *entry, *old = NULL;
879
880 if (order > thp_order(page))
881 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
882 order, gfp_mask);
74d60958 883 xas_lock_irq(&xas);
c3f84f42
MWO
884 xas_for_each_conflict(&xas, entry) {
885 old = entry;
886 if (!xa_is_value(entry)) {
887 xas_set_err(&xas, -EEXIST);
888 goto unlock;
889 }
890 }
891
892 if (old) {
893 if (shadowp)
894 *shadowp = old;
895 /* entry may have been split before we acquired lock */
896 order = xa_get_order(xas.xa, xas.xa_index);
897 if (order > thp_order(page)) {
898 xas_split(&xas, old, order);
899 xas_reset(&xas);
900 }
901 }
902
74d60958
MW
903 xas_store(&xas, page);
904 if (xas_error(&xas))
905 goto unlock;
906
c3f84f42 907 if (old)
74d60958 908 mapping->nrexceptional--;
74d60958
MW
909 mapping->nrpages++;
910
911 /* hugetlb pages do not participate in page cache accounting */
912 if (!huge)
913 __inc_node_page_state(page, NR_FILE_PAGES);
914unlock:
915 xas_unlock_irq(&xas);
c3f84f42 916 } while (xas_nomem(&xas, gfp_mask));
74d60958
MW
917
918 if (xas_error(&xas))
919 goto error;
4165b9b4 920
00501b53 921 if (!huge)
f627c2f5 922 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
923 trace_mm_filemap_add_to_page_cache(page);
924 return 0;
74d60958 925error:
66a0c8ee
KS
926 page->mapping = NULL;
927 /* Leave page->index set: truncation relies upon it */
00501b53 928 if (!huge)
f627c2f5 929 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 930 put_page(page);
74d60958 931 return xas_error(&xas);
1da177e4 932}
cfcbfb13 933ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
a528910e
JW
934
935/**
936 * add_to_page_cache_locked - add a locked page to the pagecache
937 * @page: page to add
938 * @mapping: the page's address_space
939 * @offset: page index
940 * @gfp_mask: page allocation mode
941 *
942 * This function is used to add a page to the pagecache. It must be locked.
943 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
944 *
945 * Return: %0 on success, negative error code otherwise.
a528910e
JW
946 */
947int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
948 pgoff_t offset, gfp_t gfp_mask)
949{
950 return __add_to_page_cache_locked(page, mapping, offset,
951 gfp_mask, NULL);
952}
e286781d 953EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
954
955int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 956 pgoff_t offset, gfp_t gfp_mask)
1da177e4 957{
a528910e 958 void *shadow = NULL;
4f98a2fe
RR
959 int ret;
960
48c935ad 961 __SetPageLocked(page);
a528910e
JW
962 ret = __add_to_page_cache_locked(page, mapping, offset,
963 gfp_mask, &shadow);
964 if (unlikely(ret))
48c935ad 965 __ClearPageLocked(page);
a528910e
JW
966 else {
967 /*
968 * The page might have been evicted from cache only
969 * recently, in which case it should be activated like
970 * any other repeatedly accessed page.
f0281a00
RR
971 * The exception is pages getting rewritten; evicting other
972 * data from the working set, only to cache data that will
973 * get overwritten with something else, is a waste of memory.
a528910e 974 */
1899ad18
JW
975 WARN_ON_ONCE(PageActive(page));
976 if (!(gfp_mask & __GFP_WRITE) && shadow)
977 workingset_refault(page, shadow);
a528910e
JW
978 lru_cache_add(page);
979 }
1da177e4
LT
980 return ret;
981}
18bc0bbd 982EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 983
44110fe3 984#ifdef CONFIG_NUMA
2ae88149 985struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 986{
c0ff7453
MX
987 int n;
988 struct page *page;
989
44110fe3 990 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
991 unsigned int cpuset_mems_cookie;
992 do {
d26914d1 993 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 994 n = cpuset_mem_spread_node();
96db800f 995 page = __alloc_pages_node(n, gfp, 0);
d26914d1 996 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 997
c0ff7453 998 return page;
44110fe3 999 }
2ae88149 1000 return alloc_pages(gfp, 0);
44110fe3 1001}
2ae88149 1002EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
1003#endif
1004
1da177e4
LT
1005/*
1006 * In order to wait for pages to become available there must be
1007 * waitqueues associated with pages. By using a hash table of
1008 * waitqueues where the bucket discipline is to maintain all
1009 * waiters on the same queue and wake all when any of the pages
1010 * become available, and for the woken contexts to check to be
1011 * sure the appropriate page became available, this saves space
1012 * at a cost of "thundering herd" phenomena during rare hash
1013 * collisions.
1014 */
62906027
NP
1015#define PAGE_WAIT_TABLE_BITS 8
1016#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1017static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1018
1019static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 1020{
62906027 1021 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 1022}
1da177e4 1023
62906027 1024void __init pagecache_init(void)
1da177e4 1025{
62906027 1026 int i;
1da177e4 1027
62906027
NP
1028 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1029 init_waitqueue_head(&page_wait_table[i]);
1030
1031 page_writeback_init();
1da177e4 1032}
1da177e4 1033
3510ca20 1034/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
62906027
NP
1035struct wait_page_key {
1036 struct page *page;
1037 int bit_nr;
1038 int page_match;
1039};
1040
1041struct wait_page_queue {
1042 struct page *page;
1043 int bit_nr;
ac6424b9 1044 wait_queue_entry_t wait;
62906027
NP
1045};
1046
ac6424b9 1047static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1048{
62906027
NP
1049 struct wait_page_key *key = arg;
1050 struct wait_page_queue *wait_page
1051 = container_of(wait, struct wait_page_queue, wait);
1052
1053 if (wait_page->page != key->page)
1054 return 0;
1055 key->page_match = 1;
f62e00cc 1056
62906027
NP
1057 if (wait_page->bit_nr != key->bit_nr)
1058 return 0;
3510ca20 1059
9a1ea439
HD
1060 /*
1061 * Stop walking if it's locked.
1062 * Is this safe if put_and_wait_on_page_locked() is in use?
1063 * Yes: the waker must hold a reference to this page, and if PG_locked
1064 * has now already been set by another task, that task must also hold
1065 * a reference to the *same usage* of this page; so there is no need
1066 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1067 */
62906027 1068 if (test_bit(key->bit_nr, &key->page->flags))
3510ca20 1069 return -1;
f62e00cc 1070
62906027 1071 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
1072}
1073
74d81bfa 1074static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 1075{
62906027
NP
1076 wait_queue_head_t *q = page_waitqueue(page);
1077 struct wait_page_key key;
1078 unsigned long flags;
11a19c7b 1079 wait_queue_entry_t bookmark;
cbbce822 1080
62906027
NP
1081 key.page = page;
1082 key.bit_nr = bit_nr;
1083 key.page_match = 0;
1084
11a19c7b
TC
1085 bookmark.flags = 0;
1086 bookmark.private = NULL;
1087 bookmark.func = NULL;
1088 INIT_LIST_HEAD(&bookmark.entry);
1089
62906027 1090 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1091 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1092
1093 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1094 /*
1095 * Take a breather from holding the lock,
1096 * allow pages that finish wake up asynchronously
1097 * to acquire the lock and remove themselves
1098 * from wait queue
1099 */
1100 spin_unlock_irqrestore(&q->lock, flags);
1101 cpu_relax();
1102 spin_lock_irqsave(&q->lock, flags);
1103 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1104 }
1105
62906027
NP
1106 /*
1107 * It is possible for other pages to have collided on the waitqueue
1108 * hash, so in that case check for a page match. That prevents a long-
1109 * term waiter
1110 *
1111 * It is still possible to miss a case here, when we woke page waiters
1112 * and removed them from the waitqueue, but there are still other
1113 * page waiters.
1114 */
1115 if (!waitqueue_active(q) || !key.page_match) {
1116 ClearPageWaiters(page);
1117 /*
1118 * It's possible to miss clearing Waiters here, when we woke
1119 * our page waiters, but the hashed waitqueue has waiters for
1120 * other pages on it.
1121 *
1122 * That's okay, it's a rare case. The next waker will clear it.
1123 */
1124 }
1125 spin_unlock_irqrestore(&q->lock, flags);
1126}
74d81bfa
NP
1127
1128static void wake_up_page(struct page *page, int bit)
1129{
1130 if (!PageWaiters(page))
1131 return;
1132 wake_up_page_bit(page, bit);
1133}
62906027 1134
9a1ea439
HD
1135/*
1136 * A choice of three behaviors for wait_on_page_bit_common():
1137 */
1138enum behavior {
1139 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1140 * __lock_page() waiting on then setting PG_locked.
1141 */
1142 SHARED, /* Hold ref to page and check the bit when woken, like
1143 * wait_on_page_writeback() waiting on PG_writeback.
1144 */
1145 DROP, /* Drop ref to page before wait, no check when woken,
1146 * like put_and_wait_on_page_locked() on PG_locked.
1147 */
1148};
1149
62906027 1150static inline int wait_on_page_bit_common(wait_queue_head_t *q,
9a1ea439 1151 struct page *page, int bit_nr, int state, enum behavior behavior)
62906027
NP
1152{
1153 struct wait_page_queue wait_page;
ac6424b9 1154 wait_queue_entry_t *wait = &wait_page.wait;
9a1ea439 1155 bool bit_is_set;
b1d29ba8 1156 bool thrashing = false;
9a1ea439 1157 bool delayacct = false;
eb414681 1158 unsigned long pflags;
62906027
NP
1159 int ret = 0;
1160
eb414681 1161 if (bit_nr == PG_locked &&
b1d29ba8 1162 !PageUptodate(page) && PageWorkingset(page)) {
9a1ea439 1163 if (!PageSwapBacked(page)) {
eb414681 1164 delayacct_thrashing_start();
9a1ea439
HD
1165 delayacct = true;
1166 }
eb414681 1167 psi_memstall_enter(&pflags);
b1d29ba8
JW
1168 thrashing = true;
1169 }
1170
62906027 1171 init_wait(wait);
9a1ea439 1172 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
62906027
NP
1173 wait->func = wake_page_function;
1174 wait_page.page = page;
1175 wait_page.bit_nr = bit_nr;
1176
1177 for (;;) {
1178 spin_lock_irq(&q->lock);
1179
2055da97 1180 if (likely(list_empty(&wait->entry))) {
3510ca20 1181 __add_wait_queue_entry_tail(q, wait);
62906027
NP
1182 SetPageWaiters(page);
1183 }
1184
1185 set_current_state(state);
1186
1187 spin_unlock_irq(&q->lock);
1188
9a1ea439
HD
1189 bit_is_set = test_bit(bit_nr, &page->flags);
1190 if (behavior == DROP)
1191 put_page(page);
1192
1193 if (likely(bit_is_set))
62906027 1194 io_schedule();
62906027 1195
9a1ea439 1196 if (behavior == EXCLUSIVE) {
62906027
NP
1197 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1198 break;
9a1ea439 1199 } else if (behavior == SHARED) {
62906027
NP
1200 if (!test_bit(bit_nr, &page->flags))
1201 break;
1202 }
a8b169af 1203
fa45f116 1204 if (signal_pending_state(state, current)) {
a8b169af
LT
1205 ret = -EINTR;
1206 break;
1207 }
9a1ea439
HD
1208
1209 if (behavior == DROP) {
1210 /*
1211 * We can no longer safely access page->flags:
1212 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1213 * there is a risk of waiting forever on a page reused
1214 * for something that keeps it locked indefinitely.
1215 * But best check for -EINTR above before breaking.
1216 */
1217 break;
1218 }
62906027
NP
1219 }
1220
1221 finish_wait(q, wait);
1222
eb414681 1223 if (thrashing) {
9a1ea439 1224 if (delayacct)
eb414681
JW
1225 delayacct_thrashing_end();
1226 psi_memstall_leave(&pflags);
1227 }
b1d29ba8 1228
62906027
NP
1229 /*
1230 * A signal could leave PageWaiters set. Clearing it here if
1231 * !waitqueue_active would be possible (by open-coding finish_wait),
1232 * but still fail to catch it in the case of wait hash collision. We
1233 * already can fail to clear wait hash collision cases, so don't
1234 * bother with signals either.
1235 */
1236
1237 return ret;
1238}
1239
1240void wait_on_page_bit(struct page *page, int bit_nr)
1241{
1242 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1243 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027
NP
1244}
1245EXPORT_SYMBOL(wait_on_page_bit);
1246
1247int wait_on_page_bit_killable(struct page *page, int bit_nr)
1248{
1249 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1250 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1251}
4343d008 1252EXPORT_SYMBOL(wait_on_page_bit_killable);
cbbce822 1253
9a1ea439
HD
1254/**
1255 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1256 * @page: The page to wait for.
1257 *
1258 * The caller should hold a reference on @page. They expect the page to
1259 * become unlocked relatively soon, but do not wish to hold up migration
1260 * (for example) by holding the reference while waiting for the page to
1261 * come unlocked. After this function returns, the caller should not
1262 * dereference @page.
1263 */
1264void put_and_wait_on_page_locked(struct page *page)
1265{
1266 wait_queue_head_t *q;
1267
1268 page = compound_head(page);
1269 q = page_waitqueue(page);
1270 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1271}
1272
385e1ca5
DH
1273/**
1274 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1275 * @page: Page defining the wait queue of interest
1276 * @waiter: Waiter to add to the queue
385e1ca5
DH
1277 *
1278 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1279 */
ac6424b9 1280void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1281{
1282 wait_queue_head_t *q = page_waitqueue(page);
1283 unsigned long flags;
1284
1285 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1286 __add_wait_queue_entry_tail(q, waiter);
62906027 1287 SetPageWaiters(page);
385e1ca5
DH
1288 spin_unlock_irqrestore(&q->lock, flags);
1289}
1290EXPORT_SYMBOL_GPL(add_page_wait_queue);
1291
b91e1302
LT
1292#ifndef clear_bit_unlock_is_negative_byte
1293
1294/*
1295 * PG_waiters is the high bit in the same byte as PG_lock.
1296 *
1297 * On x86 (and on many other architectures), we can clear PG_lock and
1298 * test the sign bit at the same time. But if the architecture does
1299 * not support that special operation, we just do this all by hand
1300 * instead.
1301 *
1302 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1303 * being cleared, but a memory barrier should be unneccssary since it is
1304 * in the same byte as PG_locked.
1305 */
1306static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1307{
1308 clear_bit_unlock(nr, mem);
1309 /* smp_mb__after_atomic(); */
98473f9f 1310 return test_bit(PG_waiters, mem);
b91e1302
LT
1311}
1312
1313#endif
1314
1da177e4 1315/**
485bb99b 1316 * unlock_page - unlock a locked page
1da177e4
LT
1317 * @page: the page
1318 *
1319 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1320 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1321 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1322 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1323 *
b91e1302
LT
1324 * Note that this depends on PG_waiters being the sign bit in the byte
1325 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1326 * clear the PG_locked bit and test PG_waiters at the same time fairly
1327 * portably (architectures that do LL/SC can test any bit, while x86 can
1328 * test the sign bit).
1da177e4 1329 */
920c7a5d 1330void unlock_page(struct page *page)
1da177e4 1331{
b91e1302 1332 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1333 page = compound_head(page);
309381fe 1334 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1335 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1336 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1337}
1338EXPORT_SYMBOL(unlock_page);
1339
485bb99b
RD
1340/**
1341 * end_page_writeback - end writeback against a page
1342 * @page: the page
1da177e4
LT
1343 */
1344void end_page_writeback(struct page *page)
1345{
888cf2db
MG
1346 /*
1347 * TestClearPageReclaim could be used here but it is an atomic
1348 * operation and overkill in this particular case. Failing to
1349 * shuffle a page marked for immediate reclaim is too mild to
1350 * justify taking an atomic operation penalty at the end of
1351 * ever page writeback.
1352 */
1353 if (PageReclaim(page)) {
1354 ClearPageReclaim(page);
ac6aadb2 1355 rotate_reclaimable_page(page);
888cf2db 1356 }
ac6aadb2
MS
1357
1358 if (!test_clear_page_writeback(page))
1359 BUG();
1360
4e857c58 1361 smp_mb__after_atomic();
1da177e4
LT
1362 wake_up_page(page, PG_writeback);
1363}
1364EXPORT_SYMBOL(end_page_writeback);
1365
57d99845
MW
1366/*
1367 * After completing I/O on a page, call this routine to update the page
1368 * flags appropriately
1369 */
c11f0c0b 1370void page_endio(struct page *page, bool is_write, int err)
57d99845 1371{
c11f0c0b 1372 if (!is_write) {
57d99845
MW
1373 if (!err) {
1374 SetPageUptodate(page);
1375 } else {
1376 ClearPageUptodate(page);
1377 SetPageError(page);
1378 }
1379 unlock_page(page);
abf54548 1380 } else {
57d99845 1381 if (err) {
dd8416c4
MK
1382 struct address_space *mapping;
1383
57d99845 1384 SetPageError(page);
dd8416c4
MK
1385 mapping = page_mapping(page);
1386 if (mapping)
1387 mapping_set_error(mapping, err);
57d99845
MW
1388 }
1389 end_page_writeback(page);
1390 }
1391}
1392EXPORT_SYMBOL_GPL(page_endio);
1393
485bb99b
RD
1394/**
1395 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1396 * @__page: the page to lock
1da177e4 1397 */
62906027 1398void __lock_page(struct page *__page)
1da177e4 1399{
62906027
NP
1400 struct page *page = compound_head(__page);
1401 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1402 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1403 EXCLUSIVE);
1da177e4
LT
1404}
1405EXPORT_SYMBOL(__lock_page);
1406
62906027 1407int __lock_page_killable(struct page *__page)
2687a356 1408{
62906027
NP
1409 struct page *page = compound_head(__page);
1410 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1411 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1412 EXCLUSIVE);
2687a356 1413}
18bc0bbd 1414EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1415
9a95f3cf
PC
1416/*
1417 * Return values:
1418 * 1 - page is locked; mmap_sem is still held.
1419 * 0 - page is not locked.
1420 * mmap_sem has been released (up_read()), unless flags had both
1421 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1422 * which case mmap_sem is still held.
1423 *
1424 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1425 * with the page locked and the mmap_sem unperturbed.
1426 */
d065bd81
ML
1427int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1428 unsigned int flags)
1429{
37b23e05
KM
1430 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1431 /*
1432 * CAUTION! In this case, mmap_sem is not released
1433 * even though return 0.
1434 */
1435 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1436 return 0;
1437
1438 up_read(&mm->mmap_sem);
1439 if (flags & FAULT_FLAG_KILLABLE)
1440 wait_on_page_locked_killable(page);
1441 else
318b275f 1442 wait_on_page_locked(page);
d065bd81 1443 return 0;
37b23e05
KM
1444 } else {
1445 if (flags & FAULT_FLAG_KILLABLE) {
1446 int ret;
1447
1448 ret = __lock_page_killable(page);
1449 if (ret) {
1450 up_read(&mm->mmap_sem);
1451 return 0;
1452 }
1453 } else
1454 __lock_page(page);
1455 return 1;
d065bd81
ML
1456 }
1457}
1458
e7b563bb 1459/**
0d3f9296
MW
1460 * page_cache_next_miss() - Find the next gap in the page cache.
1461 * @mapping: Mapping.
1462 * @index: Index.
1463 * @max_scan: Maximum range to search.
e7b563bb 1464 *
0d3f9296
MW
1465 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1466 * gap with the lowest index.
e7b563bb 1467 *
0d3f9296
MW
1468 * This function may be called under the rcu_read_lock. However, this will
1469 * not atomically search a snapshot of the cache at a single point in time.
1470 * For example, if a gap is created at index 5, then subsequently a gap is
1471 * created at index 10, page_cache_next_miss covering both indices may
1472 * return 10 if called under the rcu_read_lock.
e7b563bb 1473 *
0d3f9296
MW
1474 * Return: The index of the gap if found, otherwise an index outside the
1475 * range specified (in which case 'return - index >= max_scan' will be true).
1476 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1477 */
0d3f9296 1478pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1479 pgoff_t index, unsigned long max_scan)
1480{
0d3f9296 1481 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1482
0d3f9296
MW
1483 while (max_scan--) {
1484 void *entry = xas_next(&xas);
1485 if (!entry || xa_is_value(entry))
e7b563bb 1486 break;
0d3f9296 1487 if (xas.xa_index == 0)
e7b563bb
JW
1488 break;
1489 }
1490
0d3f9296 1491 return xas.xa_index;
e7b563bb 1492}
0d3f9296 1493EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1494
1495/**
2346a560 1496 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1497 * @mapping: Mapping.
1498 * @index: Index.
1499 * @max_scan: Maximum range to search.
e7b563bb 1500 *
0d3f9296
MW
1501 * Search the range [max(index - max_scan + 1, 0), index] for the
1502 * gap with the highest index.
e7b563bb 1503 *
0d3f9296
MW
1504 * This function may be called under the rcu_read_lock. However, this will
1505 * not atomically search a snapshot of the cache at a single point in time.
1506 * For example, if a gap is created at index 10, then subsequently a gap is
1507 * created at index 5, page_cache_prev_miss() covering both indices may
1508 * return 5 if called under the rcu_read_lock.
e7b563bb 1509 *
0d3f9296
MW
1510 * Return: The index of the gap if found, otherwise an index outside the
1511 * range specified (in which case 'index - return >= max_scan' will be true).
1512 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1513 */
0d3f9296 1514pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1515 pgoff_t index, unsigned long max_scan)
1516{
0d3f9296 1517 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1518
0d3f9296
MW
1519 while (max_scan--) {
1520 void *entry = xas_prev(&xas);
1521 if (!entry || xa_is_value(entry))
e7b563bb 1522 break;
0d3f9296 1523 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1524 break;
1525 }
1526
0d3f9296 1527 return xas.xa_index;
e7b563bb 1528}
0d3f9296 1529EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1530
485bb99b 1531/**
0cd6144a 1532 * find_get_entry - find and get a page cache entry
485bb99b 1533 * @mapping: the address_space to search
0cd6144a
JW
1534 * @offset: the page cache index
1535 *
1536 * Looks up the page cache slot at @mapping & @offset. If there is a
1537 * page cache page, it is returned with an increased refcount.
485bb99b 1538 *
139b6a6f
JW
1539 * If the slot holds a shadow entry of a previously evicted page, or a
1540 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1541 *
a862f68a 1542 * Return: the found page or shadow entry, %NULL if nothing is found.
1da177e4 1543 */
0cd6144a 1544struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1545{
4c7472c0 1546 XA_STATE(xas, &mapping->i_pages, offset);
4101196b 1547 struct page *page;
1da177e4 1548
a60637c8
NP
1549 rcu_read_lock();
1550repeat:
4c7472c0
MW
1551 xas_reset(&xas);
1552 page = xas_load(&xas);
1553 if (xas_retry(&xas, page))
1554 goto repeat;
1555 /*
1556 * A shadow entry of a recently evicted page, or a swap entry from
1557 * shmem/tmpfs. Return it without attempting to raise page count.
1558 */
1559 if (!page || xa_is_value(page))
1560 goto out;
83929372 1561
4101196b 1562 if (!page_cache_get_speculative(page))
4c7472c0 1563 goto repeat;
83929372 1564
4c7472c0 1565 /*
4101196b 1566 * Has the page moved or been split?
4c7472c0
MW
1567 * This is part of the lockless pagecache protocol. See
1568 * include/linux/pagemap.h for details.
1569 */
1570 if (unlikely(page != xas_reload(&xas))) {
4101196b 1571 put_page(page);
4c7472c0 1572 goto repeat;
a60637c8 1573 }
4101196b 1574 page = find_subpage(page, offset);
27d20fdd 1575out:
a60637c8
NP
1576 rcu_read_unlock();
1577
1da177e4
LT
1578 return page;
1579}
0cd6144a 1580EXPORT_SYMBOL(find_get_entry);
1da177e4 1581
0cd6144a
JW
1582/**
1583 * find_lock_entry - locate, pin and lock a page cache entry
1584 * @mapping: the address_space to search
1585 * @offset: the page cache index
1586 *
1587 * Looks up the page cache slot at @mapping & @offset. If there is a
1588 * page cache page, it is returned locked and with an increased
1589 * refcount.
1590 *
139b6a6f
JW
1591 * If the slot holds a shadow entry of a previously evicted page, or a
1592 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1593 *
0cd6144a 1594 * find_lock_entry() may sleep.
a862f68a
MR
1595 *
1596 * Return: the found page or shadow entry, %NULL if nothing is found.
0cd6144a
JW
1597 */
1598struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1599{
1600 struct page *page;
1601
1da177e4 1602repeat:
0cd6144a 1603 page = find_get_entry(mapping, offset);
4c7472c0 1604 if (page && !xa_is_value(page)) {
a60637c8
NP
1605 lock_page(page);
1606 /* Has the page been truncated? */
83929372 1607 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1608 unlock_page(page);
09cbfeaf 1609 put_page(page);
a60637c8 1610 goto repeat;
1da177e4 1611 }
83929372 1612 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1613 }
1da177e4
LT
1614 return page;
1615}
0cd6144a
JW
1616EXPORT_SYMBOL(find_lock_entry);
1617
1618/**
2457aec6 1619 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1620 * @mapping: the address_space to search
1621 * @offset: the page index
2457aec6 1622 * @fgp_flags: PCG flags
45f87de5 1623 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1624 *
2457aec6 1625 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1626 *
75325189 1627 * PCG flags modify how the page is returned.
0cd6144a 1628 *
0e056eb5
MCC
1629 * @fgp_flags can be:
1630 *
1631 * - FGP_ACCESSED: the page will be marked accessed
1632 * - FGP_LOCK: Page is return locked
1633 * - FGP_CREAT: If page is not present then a new page is allocated using
1634 * @gfp_mask and added to the page cache and the VM's LRU
1635 * list. The page is returned locked and with an increased
a862f68a 1636 * refcount.
a75d4c33
JB
1637 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1638 * its own locking dance if the page is already in cache, or unlock the page
1639 * before returning if we had to add the page to pagecache.
1da177e4 1640 *
2457aec6
MG
1641 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1642 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1643 *
2457aec6 1644 * If there is a page cache page, it is returned with an increased refcount.
a862f68a
MR
1645 *
1646 * Return: the found page or %NULL otherwise.
1da177e4 1647 */
2457aec6 1648struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1649 int fgp_flags, gfp_t gfp_mask)
1da177e4 1650{
eb2be189 1651 struct page *page;
2457aec6 1652
1da177e4 1653repeat:
2457aec6 1654 page = find_get_entry(mapping, offset);
3159f943 1655 if (xa_is_value(page))
2457aec6
MG
1656 page = NULL;
1657 if (!page)
1658 goto no_page;
1659
1660 if (fgp_flags & FGP_LOCK) {
1661 if (fgp_flags & FGP_NOWAIT) {
1662 if (!trylock_page(page)) {
09cbfeaf 1663 put_page(page);
2457aec6
MG
1664 return NULL;
1665 }
1666 } else {
1667 lock_page(page);
1668 }
1669
1670 /* Has the page been truncated? */
31895438 1671 if (unlikely(compound_head(page)->mapping != mapping)) {
2457aec6 1672 unlock_page(page);
09cbfeaf 1673 put_page(page);
2457aec6
MG
1674 goto repeat;
1675 }
1676 VM_BUG_ON_PAGE(page->index != offset, page);
1677 }
1678
c16eb000 1679 if (fgp_flags & FGP_ACCESSED)
2457aec6
MG
1680 mark_page_accessed(page);
1681
1682no_page:
1683 if (!page && (fgp_flags & FGP_CREAT)) {
1684 int err;
1685 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1686 gfp_mask |= __GFP_WRITE;
1687 if (fgp_flags & FGP_NOFS)
1688 gfp_mask &= ~__GFP_FS;
2457aec6 1689
45f87de5 1690 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1691 if (!page)
1692 return NULL;
2457aec6 1693
a75d4c33 1694 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1695 fgp_flags |= FGP_LOCK;
1696
eb39d618 1697 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1698 if (fgp_flags & FGP_ACCESSED)
eb39d618 1699 __SetPageReferenced(page);
2457aec6 1700
abc1be13 1701 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
eb2be189 1702 if (unlikely(err)) {
09cbfeaf 1703 put_page(page);
eb2be189
NP
1704 page = NULL;
1705 if (err == -EEXIST)
1706 goto repeat;
1da177e4 1707 }
a75d4c33
JB
1708
1709 /*
1710 * add_to_page_cache_lru locks the page, and for mmap we expect
1711 * an unlocked page.
1712 */
1713 if (page && (fgp_flags & FGP_FOR_MMAP))
1714 unlock_page(page);
1da177e4 1715 }
2457aec6 1716
1da177e4
LT
1717 return page;
1718}
2457aec6 1719EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1720
0cd6144a
JW
1721/**
1722 * find_get_entries - gang pagecache lookup
1723 * @mapping: The address_space to search
1724 * @start: The starting page cache index
1725 * @nr_entries: The maximum number of entries
1726 * @entries: Where the resulting entries are placed
1727 * @indices: The cache indices corresponding to the entries in @entries
1728 *
1729 * find_get_entries() will search for and return a group of up to
1730 * @nr_entries entries in the mapping. The entries are placed at
1731 * @entries. find_get_entries() takes a reference against any actual
1732 * pages it returns.
1733 *
1734 * The search returns a group of mapping-contiguous page cache entries
1735 * with ascending indexes. There may be holes in the indices due to
1736 * not-present pages.
1737 *
139b6a6f
JW
1738 * Any shadow entries of evicted pages, or swap entries from
1739 * shmem/tmpfs, are included in the returned array.
0cd6144a 1740 *
a862f68a 1741 * Return: the number of pages and shadow entries which were found.
0cd6144a
JW
1742 */
1743unsigned find_get_entries(struct address_space *mapping,
1744 pgoff_t start, unsigned int nr_entries,
1745 struct page **entries, pgoff_t *indices)
1746{
f280bf09
MW
1747 XA_STATE(xas, &mapping->i_pages, start);
1748 struct page *page;
0cd6144a 1749 unsigned int ret = 0;
0cd6144a
JW
1750
1751 if (!nr_entries)
1752 return 0;
1753
1754 rcu_read_lock();
f280bf09 1755 xas_for_each(&xas, page, ULONG_MAX) {
f280bf09 1756 if (xas_retry(&xas, page))
0cd6144a 1757 continue;
f280bf09
MW
1758 /*
1759 * A shadow entry of a recently evicted page, a swap
1760 * entry from shmem/tmpfs or a DAX entry. Return it
1761 * without attempting to raise page count.
1762 */
1763 if (xa_is_value(page))
0cd6144a 1764 goto export;
83929372 1765
4101196b 1766 if (!page_cache_get_speculative(page))
f280bf09 1767 goto retry;
83929372 1768
4101196b 1769 /* Has the page moved or been split? */
f280bf09
MW
1770 if (unlikely(page != xas_reload(&xas)))
1771 goto put_page;
4101196b 1772 page = find_subpage(page, xas.xa_index);
f280bf09 1773
0cd6144a 1774export:
f280bf09 1775 indices[ret] = xas.xa_index;
0cd6144a
JW
1776 entries[ret] = page;
1777 if (++ret == nr_entries)
1778 break;
f280bf09
MW
1779 continue;
1780put_page:
4101196b 1781 put_page(page);
f280bf09
MW
1782retry:
1783 xas_reset(&xas);
0cd6144a
JW
1784 }
1785 rcu_read_unlock();
1786 return ret;
1787}
1788
1da177e4 1789/**
b947cee4 1790 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
1791 * @mapping: The address_space to search
1792 * @start: The starting page index
b947cee4 1793 * @end: The final page index (inclusive)
1da177e4
LT
1794 * @nr_pages: The maximum number of pages
1795 * @pages: Where the resulting pages are placed
1796 *
b947cee4
JK
1797 * find_get_pages_range() will search for and return a group of up to @nr_pages
1798 * pages in the mapping starting at index @start and up to index @end
1799 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1800 * a reference against the returned pages.
1da177e4
LT
1801 *
1802 * The search returns a group of mapping-contiguous pages with ascending
1803 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 1804 * We also update @start to index the next page for the traversal.
1da177e4 1805 *
a862f68a
MR
1806 * Return: the number of pages which were found. If this number is
1807 * smaller than @nr_pages, the end of specified range has been
b947cee4 1808 * reached.
1da177e4 1809 */
b947cee4
JK
1810unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1811 pgoff_t end, unsigned int nr_pages,
1812 struct page **pages)
1da177e4 1813{
fd1b3cee
MW
1814 XA_STATE(xas, &mapping->i_pages, *start);
1815 struct page *page;
0fc9d104
KK
1816 unsigned ret = 0;
1817
1818 if (unlikely(!nr_pages))
1819 return 0;
a60637c8
NP
1820
1821 rcu_read_lock();
fd1b3cee 1822 xas_for_each(&xas, page, end) {
fd1b3cee 1823 if (xas_retry(&xas, page))
a60637c8 1824 continue;
fd1b3cee
MW
1825 /* Skip over shadow, swap and DAX entries */
1826 if (xa_is_value(page))
8079b1c8 1827 continue;
a60637c8 1828
4101196b 1829 if (!page_cache_get_speculative(page))
fd1b3cee 1830 goto retry;
83929372 1831
4101196b 1832 /* Has the page moved or been split? */
fd1b3cee
MW
1833 if (unlikely(page != xas_reload(&xas)))
1834 goto put_page;
1da177e4 1835
4101196b 1836 pages[ret] = find_subpage(page, xas.xa_index);
b947cee4 1837 if (++ret == nr_pages) {
5d3ee42f 1838 *start = xas.xa_index + 1;
b947cee4
JK
1839 goto out;
1840 }
fd1b3cee
MW
1841 continue;
1842put_page:
4101196b 1843 put_page(page);
fd1b3cee
MW
1844retry:
1845 xas_reset(&xas);
a60637c8 1846 }
5b280c0c 1847
b947cee4
JK
1848 /*
1849 * We come here when there is no page beyond @end. We take care to not
1850 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 1851 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
1852 * already broken anyway.
1853 */
1854 if (end == (pgoff_t)-1)
1855 *start = (pgoff_t)-1;
1856 else
1857 *start = end + 1;
1858out:
a60637c8 1859 rcu_read_unlock();
d72dc8a2 1860
1da177e4
LT
1861 return ret;
1862}
1863
ebf43500
JA
1864/**
1865 * find_get_pages_contig - gang contiguous pagecache lookup
1866 * @mapping: The address_space to search
1867 * @index: The starting page index
1868 * @nr_pages: The maximum number of pages
1869 * @pages: Where the resulting pages are placed
1870 *
1871 * find_get_pages_contig() works exactly like find_get_pages(), except
1872 * that the returned number of pages are guaranteed to be contiguous.
1873 *
a862f68a 1874 * Return: the number of pages which were found.
ebf43500
JA
1875 */
1876unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1877 unsigned int nr_pages, struct page **pages)
1878{
3ece58a2
MW
1879 XA_STATE(xas, &mapping->i_pages, index);
1880 struct page *page;
0fc9d104
KK
1881 unsigned int ret = 0;
1882
1883 if (unlikely(!nr_pages))
1884 return 0;
a60637c8
NP
1885
1886 rcu_read_lock();
3ece58a2 1887 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
3ece58a2
MW
1888 if (xas_retry(&xas, page))
1889 continue;
1890 /*
1891 * If the entry has been swapped out, we can stop looking.
1892 * No current caller is looking for DAX entries.
1893 */
1894 if (xa_is_value(page))
8079b1c8 1895 break;
ebf43500 1896
4101196b 1897 if (!page_cache_get_speculative(page))
3ece58a2 1898 goto retry;
83929372 1899
4101196b 1900 /* Has the page moved or been split? */
3ece58a2
MW
1901 if (unlikely(page != xas_reload(&xas)))
1902 goto put_page;
a60637c8 1903
4101196b 1904 pages[ret] = find_subpage(page, xas.xa_index);
0fc9d104
KK
1905 if (++ret == nr_pages)
1906 break;
3ece58a2
MW
1907 continue;
1908put_page:
4101196b 1909 put_page(page);
3ece58a2
MW
1910retry:
1911 xas_reset(&xas);
ebf43500 1912 }
a60637c8
NP
1913 rcu_read_unlock();
1914 return ret;
ebf43500 1915}
ef71c15c 1916EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1917
485bb99b 1918/**
72b045ae 1919 * find_get_pages_range_tag - find and return pages in given range matching @tag
485bb99b
RD
1920 * @mapping: the address_space to search
1921 * @index: the starting page index
72b045ae 1922 * @end: The final page index (inclusive)
485bb99b
RD
1923 * @tag: the tag index
1924 * @nr_pages: the maximum number of pages
1925 * @pages: where the resulting pages are placed
1926 *
1da177e4 1927 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1928 * @tag. We update @index to index the next page for the traversal.
a862f68a
MR
1929 *
1930 * Return: the number of pages which were found.
1da177e4 1931 */
72b045ae 1932unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 1933 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 1934 struct page **pages)
1da177e4 1935{
a6906972
MW
1936 XA_STATE(xas, &mapping->i_pages, *index);
1937 struct page *page;
0fc9d104
KK
1938 unsigned ret = 0;
1939
1940 if (unlikely(!nr_pages))
1941 return 0;
a60637c8
NP
1942
1943 rcu_read_lock();
a6906972 1944 xas_for_each_marked(&xas, page, end, tag) {
a6906972 1945 if (xas_retry(&xas, page))
a60637c8 1946 continue;
a6906972
MW
1947 /*
1948 * Shadow entries should never be tagged, but this iteration
1949 * is lockless so there is a window for page reclaim to evict
1950 * a page we saw tagged. Skip over it.
1951 */
1952 if (xa_is_value(page))
139b6a6f 1953 continue;
a60637c8 1954
4101196b 1955 if (!page_cache_get_speculative(page))
a6906972 1956 goto retry;
a60637c8 1957
4101196b 1958 /* Has the page moved or been split? */
a6906972
MW
1959 if (unlikely(page != xas_reload(&xas)))
1960 goto put_page;
a60637c8 1961
4101196b 1962 pages[ret] = find_subpage(page, xas.xa_index);
72b045ae 1963 if (++ret == nr_pages) {
5d3ee42f 1964 *index = xas.xa_index + 1;
72b045ae
JK
1965 goto out;
1966 }
a6906972
MW
1967 continue;
1968put_page:
4101196b 1969 put_page(page);
a6906972
MW
1970retry:
1971 xas_reset(&xas);
a60637c8 1972 }
5b280c0c 1973
72b045ae 1974 /*
a6906972 1975 * We come here when we got to @end. We take care to not overflow the
72b045ae 1976 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
1977 * iteration when there is a page at index -1 but that is already
1978 * broken anyway.
72b045ae
JK
1979 */
1980 if (end == (pgoff_t)-1)
1981 *index = (pgoff_t)-1;
1982 else
1983 *index = end + 1;
1984out:
a60637c8 1985 rcu_read_unlock();
1da177e4 1986
1da177e4
LT
1987 return ret;
1988}
72b045ae 1989EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 1990
76d42bd9
WF
1991/*
1992 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1993 * a _large_ part of the i/o request. Imagine the worst scenario:
1994 *
1995 * ---R__________________________________________B__________
1996 * ^ reading here ^ bad block(assume 4k)
1997 *
1998 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1999 * => failing the whole request => read(R) => read(R+1) =>
2000 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2001 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2002 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2003 *
2004 * It is going insane. Fix it by quickly scaling down the readahead size.
2005 */
2006static void shrink_readahead_size_eio(struct file *filp,
2007 struct file_ra_state *ra)
2008{
76d42bd9 2009 ra->ra_pages /= 4;
76d42bd9
WF
2010}
2011
485bb99b 2012/**
47c27bc4
CH
2013 * generic_file_buffered_read - generic file read routine
2014 * @iocb: the iocb to read
6e58e79d
AV
2015 * @iter: data destination
2016 * @written: already copied
485bb99b 2017 *
1da177e4 2018 * This is a generic file read routine, and uses the
485bb99b 2019 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
2020 *
2021 * This is really ugly. But the goto's actually try to clarify some
2022 * of the logic when it comes to error handling etc.
a862f68a
MR
2023 *
2024 * Return:
2025 * * total number of bytes copied, including those the were already @written
2026 * * negative error code if nothing was copied
1da177e4 2027 */
47c27bc4 2028static ssize_t generic_file_buffered_read(struct kiocb *iocb,
6e58e79d 2029 struct iov_iter *iter, ssize_t written)
1da177e4 2030{
47c27bc4 2031 struct file *filp = iocb->ki_filp;
36e78914 2032 struct address_space *mapping = filp->f_mapping;
1da177e4 2033 struct inode *inode = mapping->host;
36e78914 2034 struct file_ra_state *ra = &filp->f_ra;
47c27bc4 2035 loff_t *ppos = &iocb->ki_pos;
57f6b96c
FW
2036 pgoff_t index;
2037 pgoff_t last_index;
2038 pgoff_t prev_index;
2039 unsigned long offset; /* offset into pagecache page */
ec0f1637 2040 unsigned int prev_offset;
6e58e79d 2041 int error = 0;
1da177e4 2042
c2a9737f 2043 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 2044 return 0;
c2a9737f
WF
2045 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2046
09cbfeaf
KS
2047 index = *ppos >> PAGE_SHIFT;
2048 prev_index = ra->prev_pos >> PAGE_SHIFT;
2049 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2050 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2051 offset = *ppos & ~PAGE_MASK;
1da177e4 2052
1da177e4
LT
2053 for (;;) {
2054 struct page *page;
57f6b96c 2055 pgoff_t end_index;
a32ea1e1 2056 loff_t isize;
1da177e4
LT
2057 unsigned long nr, ret;
2058
1da177e4 2059 cond_resched();
1da177e4 2060find_page:
5abf186a
MH
2061 if (fatal_signal_pending(current)) {
2062 error = -EINTR;
2063 goto out;
2064 }
2065
1da177e4 2066 page = find_get_page(mapping, index);
3ea89ee8 2067 if (!page) {
3239d834
MT
2068 if (iocb->ki_flags & IOCB_NOWAIT)
2069 goto would_block;
cf914a7d 2070 page_cache_sync_readahead(mapping,
7ff81078 2071 ra, filp,
3ea89ee8
FW
2072 index, last_index - index);
2073 page = find_get_page(mapping, index);
2074 if (unlikely(page == NULL))
2075 goto no_cached_page;
2076 }
2077 if (PageReadahead(page)) {
cf914a7d 2078 page_cache_async_readahead(mapping,
7ff81078 2079 ra, filp, page,
3ea89ee8 2080 index, last_index - index);
1da177e4 2081 }
8ab22b9a 2082 if (!PageUptodate(page)) {
3239d834
MT
2083 if (iocb->ki_flags & IOCB_NOWAIT) {
2084 put_page(page);
2085 goto would_block;
2086 }
2087
ebded027
MG
2088 /*
2089 * See comment in do_read_cache_page on why
2090 * wait_on_page_locked is used to avoid unnecessarily
2091 * serialisations and why it's safe.
2092 */
c4b209a4
BVA
2093 error = wait_on_page_locked_killable(page);
2094 if (unlikely(error))
2095 goto readpage_error;
ebded027
MG
2096 if (PageUptodate(page))
2097 goto page_ok;
2098
09cbfeaf 2099 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
2100 !mapping->a_ops->is_partially_uptodate)
2101 goto page_not_up_to_date;
6d6d36bc 2102 /* pipes can't handle partially uptodate pages */
00e23707 2103 if (unlikely(iov_iter_is_pipe(iter)))
6d6d36bc 2104 goto page_not_up_to_date;
529ae9aa 2105 if (!trylock_page(page))
8ab22b9a 2106 goto page_not_up_to_date;
8d056cb9
DH
2107 /* Did it get truncated before we got the lock? */
2108 if (!page->mapping)
2109 goto page_not_up_to_date_locked;
8ab22b9a 2110 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 2111 offset, iter->count))
8ab22b9a
HH
2112 goto page_not_up_to_date_locked;
2113 unlock_page(page);
2114 }
1da177e4 2115page_ok:
a32ea1e1
N
2116 /*
2117 * i_size must be checked after we know the page is Uptodate.
2118 *
2119 * Checking i_size after the check allows us to calculate
2120 * the correct value for "nr", which means the zero-filled
2121 * part of the page is not copied back to userspace (unless
2122 * another truncate extends the file - this is desired though).
2123 */
2124
2125 isize = i_size_read(inode);
09cbfeaf 2126 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 2127 if (unlikely(!isize || index > end_index)) {
09cbfeaf 2128 put_page(page);
a32ea1e1
N
2129 goto out;
2130 }
2131
2132 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 2133 nr = PAGE_SIZE;
a32ea1e1 2134 if (index == end_index) {
09cbfeaf 2135 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 2136 if (nr <= offset) {
09cbfeaf 2137 put_page(page);
a32ea1e1
N
2138 goto out;
2139 }
2140 }
2141 nr = nr - offset;
1da177e4
LT
2142
2143 /* If users can be writing to this page using arbitrary
2144 * virtual addresses, take care about potential aliasing
2145 * before reading the page on the kernel side.
2146 */
2147 if (mapping_writably_mapped(mapping))
2148 flush_dcache_page(page);
2149
2150 /*
ec0f1637
JK
2151 * When a sequential read accesses a page several times,
2152 * only mark it as accessed the first time.
1da177e4 2153 */
ec0f1637 2154 if (prev_index != index || offset != prev_offset)
1da177e4
LT
2155 mark_page_accessed(page);
2156 prev_index = index;
2157
2158 /*
2159 * Ok, we have the page, and it's up-to-date, so
2160 * now we can copy it to user space...
1da177e4 2161 */
6e58e79d
AV
2162
2163 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 2164 offset += ret;
09cbfeaf
KS
2165 index += offset >> PAGE_SHIFT;
2166 offset &= ~PAGE_MASK;
6ce745ed 2167 prev_offset = offset;
1da177e4 2168
09cbfeaf 2169 put_page(page);
6e58e79d
AV
2170 written += ret;
2171 if (!iov_iter_count(iter))
2172 goto out;
2173 if (ret < nr) {
2174 error = -EFAULT;
2175 goto out;
2176 }
2177 continue;
1da177e4
LT
2178
2179page_not_up_to_date:
2180 /* Get exclusive access to the page ... */
85462323
ON
2181 error = lock_page_killable(page);
2182 if (unlikely(error))
2183 goto readpage_error;
1da177e4 2184
8ab22b9a 2185page_not_up_to_date_locked:
da6052f7 2186 /* Did it get truncated before we got the lock? */
1da177e4
LT
2187 if (!page->mapping) {
2188 unlock_page(page);
09cbfeaf 2189 put_page(page);
1da177e4
LT
2190 continue;
2191 }
2192
2193 /* Did somebody else fill it already? */
2194 if (PageUptodate(page)) {
2195 unlock_page(page);
2196 goto page_ok;
2197 }
2198
2199readpage:
91803b49
JM
2200 /*
2201 * A previous I/O error may have been due to temporary
2202 * failures, eg. multipath errors.
2203 * PG_error will be set again if readpage fails.
2204 */
2205 ClearPageError(page);
1da177e4
LT
2206 /* Start the actual read. The read will unlock the page. */
2207 error = mapping->a_ops->readpage(filp, page);
2208
994fc28c
ZB
2209 if (unlikely(error)) {
2210 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 2211 put_page(page);
6e58e79d 2212 error = 0;
994fc28c
ZB
2213 goto find_page;
2214 }
1da177e4 2215 goto readpage_error;
994fc28c 2216 }
1da177e4
LT
2217
2218 if (!PageUptodate(page)) {
85462323
ON
2219 error = lock_page_killable(page);
2220 if (unlikely(error))
2221 goto readpage_error;
1da177e4
LT
2222 if (!PageUptodate(page)) {
2223 if (page->mapping == NULL) {
2224 /*
2ecdc82e 2225 * invalidate_mapping_pages got it
1da177e4
LT
2226 */
2227 unlock_page(page);
09cbfeaf 2228 put_page(page);
1da177e4
LT
2229 goto find_page;
2230 }
2231 unlock_page(page);
7ff81078 2232 shrink_readahead_size_eio(filp, ra);
85462323
ON
2233 error = -EIO;
2234 goto readpage_error;
1da177e4
LT
2235 }
2236 unlock_page(page);
2237 }
2238
1da177e4
LT
2239 goto page_ok;
2240
2241readpage_error:
2242 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 2243 put_page(page);
1da177e4
LT
2244 goto out;
2245
2246no_cached_page:
2247 /*
2248 * Ok, it wasn't cached, so we need to create a new
2249 * page..
2250 */
453f85d4 2251 page = page_cache_alloc(mapping);
eb2be189 2252 if (!page) {
6e58e79d 2253 error = -ENOMEM;
eb2be189 2254 goto out;
1da177e4 2255 }
6afdb859 2256 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2257 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2258 if (error) {
09cbfeaf 2259 put_page(page);
6e58e79d
AV
2260 if (error == -EEXIST) {
2261 error = 0;
1da177e4 2262 goto find_page;
6e58e79d 2263 }
1da177e4
LT
2264 goto out;
2265 }
1da177e4
LT
2266 goto readpage;
2267 }
2268
3239d834
MT
2269would_block:
2270 error = -EAGAIN;
1da177e4 2271out:
7ff81078 2272 ra->prev_pos = prev_index;
09cbfeaf 2273 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2274 ra->prev_pos |= prev_offset;
1da177e4 2275
09cbfeaf 2276 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2277 file_accessed(filp);
6e58e79d 2278 return written ? written : error;
1da177e4
LT
2279}
2280
485bb99b 2281/**
6abd2322 2282 * generic_file_read_iter - generic filesystem read routine
485bb99b 2283 * @iocb: kernel I/O control block
6abd2322 2284 * @iter: destination for the data read
485bb99b 2285 *
6abd2322 2286 * This is the "read_iter()" routine for all filesystems
1da177e4 2287 * that can use the page cache directly.
a862f68a
MR
2288 * Return:
2289 * * number of bytes copied, even for partial reads
2290 * * negative error code if nothing was read
1da177e4
LT
2291 */
2292ssize_t
ed978a81 2293generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2294{
e7080a43 2295 size_t count = iov_iter_count(iter);
47c27bc4 2296 ssize_t retval = 0;
e7080a43
NS
2297
2298 if (!count)
2299 goto out; /* skip atime */
1da177e4 2300
2ba48ce5 2301 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2302 struct file *file = iocb->ki_filp;
ed978a81
AV
2303 struct address_space *mapping = file->f_mapping;
2304 struct inode *inode = mapping->host;
543ade1f 2305 loff_t size;
1da177e4 2306
1da177e4 2307 size = i_size_read(inode);
6be96d3a
GR
2308 if (iocb->ki_flags & IOCB_NOWAIT) {
2309 if (filemap_range_has_page(mapping, iocb->ki_pos,
2310 iocb->ki_pos + count - 1))
2311 return -EAGAIN;
2312 } else {
2313 retval = filemap_write_and_wait_range(mapping,
2314 iocb->ki_pos,
2315 iocb->ki_pos + count - 1);
2316 if (retval < 0)
2317 goto out;
2318 }
d8d3d94b 2319
0d5b0cf2
CH
2320 file_accessed(file);
2321
5ecda137 2322 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2323 if (retval >= 0) {
c64fb5c7 2324 iocb->ki_pos += retval;
5ecda137 2325 count -= retval;
9fe55eea 2326 }
5b47d59a 2327 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2328
9fe55eea
SW
2329 /*
2330 * Btrfs can have a short DIO read if we encounter
2331 * compressed extents, so if there was an error, or if
2332 * we've already read everything we wanted to, or if
2333 * there was a short read because we hit EOF, go ahead
2334 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2335 * the rest of the read. Buffered reads will not work for
2336 * DAX files, so don't bother trying.
9fe55eea 2337 */
5ecda137 2338 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2339 IS_DAX(inode))
9fe55eea 2340 goto out;
1da177e4
LT
2341 }
2342
47c27bc4 2343 retval = generic_file_buffered_read(iocb, iter, retval);
1da177e4
LT
2344out:
2345 return retval;
2346}
ed978a81 2347EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2348
1da177e4 2349#ifdef CONFIG_MMU
1da177e4 2350#define MMAP_LOTSAMISS (100)
6b4c9f44
JB
2351/*
2352 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2353 * @vmf - the vm_fault for this fault.
2354 * @page - the page to lock.
2355 * @fpin - the pointer to the file we may pin (or is already pinned).
2356 *
2357 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2358 * It differs in that it actually returns the page locked if it returns 1 and 0
2359 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin
2360 * will point to the pinned file and needs to be fput()'ed at a later point.
2361 */
2362static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2363 struct file **fpin)
2364{
2365 if (trylock_page(page))
2366 return 1;
2367
8b0f9fa2
LT
2368 /*
2369 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2370 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2371 * is supposed to work. We have way too many special cases..
2372 */
6b4c9f44
JB
2373 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2374 return 0;
2375
2376 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2377 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2378 if (__lock_page_killable(page)) {
2379 /*
2380 * We didn't have the right flags to drop the mmap_sem,
2381 * but all fault_handlers only check for fatal signals
2382 * if we return VM_FAULT_RETRY, so we need to drop the
2383 * mmap_sem here and return 0 if we don't have a fpin.
2384 */
2385 if (*fpin == NULL)
2386 up_read(&vmf->vma->vm_mm->mmap_sem);
2387 return 0;
2388 }
2389 } else
2390 __lock_page(page);
2391 return 1;
2392}
2393
1da177e4 2394
ef00e08e 2395/*
6b4c9f44
JB
2396 * Synchronous readahead happens when we don't even find a page in the page
2397 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2398 * to drop the mmap sem we return the file that was pinned in order for us to do
2399 * that. If we didn't pin a file then we return NULL. The file that is
2400 * returned needs to be fput()'ed when we're done with it.
ef00e08e 2401 */
6b4c9f44 2402static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2403{
2a1180f1
JB
2404 struct file *file = vmf->vma->vm_file;
2405 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2406 struct address_space *mapping = file->f_mapping;
6b4c9f44 2407 struct file *fpin = NULL;
2a1180f1 2408 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2409
2410 /* If we don't want any read-ahead, don't bother */
2a1180f1 2411 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2412 return fpin;
275b12bf 2413 if (!ra->ra_pages)
6b4c9f44 2414 return fpin;
ef00e08e 2415
2a1180f1 2416 if (vmf->vma->vm_flags & VM_SEQ_READ) {
6b4c9f44 2417 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
7ffc59b4
WF
2418 page_cache_sync_readahead(mapping, ra, file, offset,
2419 ra->ra_pages);
6b4c9f44 2420 return fpin;
ef00e08e
LT
2421 }
2422
207d04ba
AK
2423 /* Avoid banging the cache line if not needed */
2424 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2425 ra->mmap_miss++;
2426
2427 /*
2428 * Do we miss much more than hit in this file? If so,
2429 * stop bothering with read-ahead. It will only hurt.
2430 */
2431 if (ra->mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 2432 return fpin;
ef00e08e 2433
d30a1100
WF
2434 /*
2435 * mmap read-around
2436 */
6b4c9f44 2437 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
600e19af
RG
2438 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2439 ra->size = ra->ra_pages;
2440 ra->async_size = ra->ra_pages / 4;
275b12bf 2441 ra_submit(ra, mapping, file);
6b4c9f44 2442 return fpin;
ef00e08e
LT
2443}
2444
2445/*
2446 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44
JB
2447 * so we want to possibly extend the readahead further. We return the file that
2448 * was pinned if we have to drop the mmap_sem in order to do IO.
ef00e08e 2449 */
6b4c9f44
JB
2450static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2451 struct page *page)
ef00e08e 2452{
2a1180f1
JB
2453 struct file *file = vmf->vma->vm_file;
2454 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2455 struct address_space *mapping = file->f_mapping;
6b4c9f44 2456 struct file *fpin = NULL;
2a1180f1 2457 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2458
2459 /* If we don't want any read-ahead, don't bother */
f870d3a0 2460 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 2461 return fpin;
ef00e08e
LT
2462 if (ra->mmap_miss > 0)
2463 ra->mmap_miss--;
6b4c9f44
JB
2464 if (PageReadahead(page)) {
2465 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2fad6f5d
WF
2466 page_cache_async_readahead(mapping, ra, file,
2467 page, offset, ra->ra_pages);
6b4c9f44
JB
2468 }
2469 return fpin;
ef00e08e
LT
2470}
2471
485bb99b 2472/**
54cb8821 2473 * filemap_fault - read in file data for page fault handling
d0217ac0 2474 * @vmf: struct vm_fault containing details of the fault
485bb99b 2475 *
54cb8821 2476 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2477 * mapped memory region to read in file data during a page fault.
2478 *
2479 * The goto's are kind of ugly, but this streamlines the normal case of having
2480 * it in the page cache, and handles the special cases reasonably without
2481 * having a lot of duplicated code.
9a95f3cf
PC
2482 *
2483 * vma->vm_mm->mmap_sem must be held on entry.
2484 *
a4985833
YS
2485 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2486 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
9a95f3cf
PC
2487 *
2488 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2489 * has not been released.
2490 *
2491 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
2492 *
2493 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 2494 */
2bcd6454 2495vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2496{
2497 int error;
11bac800 2498 struct file *file = vmf->vma->vm_file;
6b4c9f44 2499 struct file *fpin = NULL;
1da177e4
LT
2500 struct address_space *mapping = file->f_mapping;
2501 struct file_ra_state *ra = &file->f_ra;
2502 struct inode *inode = mapping->host;
ef00e08e 2503 pgoff_t offset = vmf->pgoff;
9ab2594f 2504 pgoff_t max_off;
1da177e4 2505 struct page *page;
2bcd6454 2506 vm_fault_t ret = 0;
1da177e4 2507
9ab2594f
MW
2508 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2509 if (unlikely(offset >= max_off))
5307cc1a 2510 return VM_FAULT_SIGBUS;
1da177e4 2511
1da177e4 2512 /*
49426420 2513 * Do we have something in the page cache already?
1da177e4 2514 */
ef00e08e 2515 page = find_get_page(mapping, offset);
45cac65b 2516 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2517 /*
ef00e08e
LT
2518 * We found the page, so try async readahead before
2519 * waiting for the lock.
1da177e4 2520 */
6b4c9f44 2521 fpin = do_async_mmap_readahead(vmf, page);
45cac65b 2522 } else if (!page) {
ef00e08e 2523 /* No page in the page cache at all */
ef00e08e 2524 count_vm_event(PGMAJFAULT);
2262185c 2525 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 2526 ret = VM_FAULT_MAJOR;
6b4c9f44 2527 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 2528retry_find:
a75d4c33
JB
2529 page = pagecache_get_page(mapping, offset,
2530 FGP_CREAT|FGP_FOR_MMAP,
2531 vmf->gfp_mask);
6b4c9f44
JB
2532 if (!page) {
2533 if (fpin)
2534 goto out_retry;
a75d4c33 2535 return vmf_error(-ENOMEM);
6b4c9f44 2536 }
1da177e4
LT
2537 }
2538
6b4c9f44
JB
2539 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2540 goto out_retry;
b522c94d
ML
2541
2542 /* Did it get truncated? */
585e5a7b 2543 if (unlikely(compound_head(page)->mapping != mapping)) {
b522c94d
ML
2544 unlock_page(page);
2545 put_page(page);
2546 goto retry_find;
2547 }
520e5ba4 2548 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
b522c94d 2549
1da177e4 2550 /*
d00806b1
NP
2551 * We have a locked page in the page cache, now we need to check
2552 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2553 */
d00806b1 2554 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2555 goto page_not_uptodate;
2556
6b4c9f44
JB
2557 /*
2558 * We've made it this far and we had to drop our mmap_sem, now is the
2559 * time to return to the upper layer and have it re-find the vma and
2560 * redo the fault.
2561 */
2562 if (fpin) {
2563 unlock_page(page);
2564 goto out_retry;
2565 }
2566
ef00e08e
LT
2567 /*
2568 * Found the page and have a reference on it.
2569 * We must recheck i_size under page lock.
2570 */
9ab2594f
MW
2571 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2572 if (unlikely(offset >= max_off)) {
d00806b1 2573 unlock_page(page);
09cbfeaf 2574 put_page(page);
5307cc1a 2575 return VM_FAULT_SIGBUS;
d00806b1
NP
2576 }
2577
d0217ac0 2578 vmf->page = page;
83c54070 2579 return ret | VM_FAULT_LOCKED;
1da177e4 2580
1da177e4 2581page_not_uptodate:
1da177e4
LT
2582 /*
2583 * Umm, take care of errors if the page isn't up-to-date.
2584 * Try to re-read it _once_. We do this synchronously,
2585 * because there really aren't any performance issues here
2586 * and we need to check for errors.
2587 */
1da177e4 2588 ClearPageError(page);
6b4c9f44 2589 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
994fc28c 2590 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2591 if (!error) {
2592 wait_on_page_locked(page);
2593 if (!PageUptodate(page))
2594 error = -EIO;
2595 }
6b4c9f44
JB
2596 if (fpin)
2597 goto out_retry;
09cbfeaf 2598 put_page(page);
d00806b1
NP
2599
2600 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2601 goto retry_find;
1da177e4 2602
d00806b1 2603 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2604 shrink_readahead_size_eio(file, ra);
d0217ac0 2605 return VM_FAULT_SIGBUS;
6b4c9f44
JB
2606
2607out_retry:
2608 /*
2609 * We dropped the mmap_sem, we need to return to the fault handler to
2610 * re-find the vma and come back and find our hopefully still populated
2611 * page.
2612 */
2613 if (page)
2614 put_page(page);
2615 if (fpin)
2616 fput(fpin);
2617 return ret | VM_FAULT_RETRY;
54cb8821
NP
2618}
2619EXPORT_SYMBOL(filemap_fault);
2620
82b0f8c3 2621void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2622 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361 2623{
82b0f8c3 2624 struct file *file = vmf->vma->vm_file;
f1820361 2625 struct address_space *mapping = file->f_mapping;
bae473a4 2626 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2627 unsigned long max_idx;
070e807c 2628 XA_STATE(xas, &mapping->i_pages, start_pgoff);
4101196b 2629 struct page *page;
f1820361
KS
2630
2631 rcu_read_lock();
070e807c
MW
2632 xas_for_each(&xas, page, end_pgoff) {
2633 if (xas_retry(&xas, page))
2634 continue;
2635 if (xa_is_value(page))
2cf938aa 2636 goto next;
f1820361 2637
e0975b2a
MH
2638 /*
2639 * Check for a locked page first, as a speculative
2640 * reference may adversely influence page migration.
2641 */
4101196b 2642 if (PageLocked(page))
e0975b2a 2643 goto next;
4101196b 2644 if (!page_cache_get_speculative(page))
070e807c 2645 goto next;
f1820361 2646
4101196b 2647 /* Has the page moved or been split? */
070e807c
MW
2648 if (unlikely(page != xas_reload(&xas)))
2649 goto skip;
4101196b 2650 page = find_subpage(page, xas.xa_index);
f1820361
KS
2651
2652 if (!PageUptodate(page) ||
2653 PageReadahead(page) ||
2654 PageHWPoison(page))
2655 goto skip;
2656 if (!trylock_page(page))
2657 goto skip;
2658
2659 if (page->mapping != mapping || !PageUptodate(page))
2660 goto unlock;
2661
9ab2594f
MW
2662 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2663 if (page->index >= max_idx)
f1820361
KS
2664 goto unlock;
2665
f1820361
KS
2666 if (file->f_ra.mmap_miss > 0)
2667 file->f_ra.mmap_miss--;
7267ec00 2668
070e807c 2669 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
82b0f8c3 2670 if (vmf->pte)
070e807c
MW
2671 vmf->pte += xas.xa_index - last_pgoff;
2672 last_pgoff = xas.xa_index;
82b0f8c3 2673 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2674 goto unlock;
f1820361
KS
2675 unlock_page(page);
2676 goto next;
2677unlock:
2678 unlock_page(page);
2679skip:
09cbfeaf 2680 put_page(page);
f1820361 2681next:
7267ec00 2682 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2683 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2684 break;
f1820361
KS
2685 }
2686 rcu_read_unlock();
2687}
2688EXPORT_SYMBOL(filemap_map_pages);
2689
2bcd6454 2690vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2691{
2692 struct page *page = vmf->page;
11bac800 2693 struct inode *inode = file_inode(vmf->vma->vm_file);
2bcd6454 2694 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 2695
14da9200 2696 sb_start_pagefault(inode->i_sb);
a3a49a17 2697 vma_file_update_time(vmf->vma);
4fcf1c62
JK
2698 lock_page(page);
2699 if (page->mapping != inode->i_mapping) {
2700 unlock_page(page);
2701 ret = VM_FAULT_NOPAGE;
2702 goto out;
2703 }
14da9200
JK
2704 /*
2705 * We mark the page dirty already here so that when freeze is in
2706 * progress, we are guaranteed that writeback during freezing will
2707 * see the dirty page and writeprotect it again.
2708 */
2709 set_page_dirty(page);
1d1d1a76 2710 wait_for_stable_page(page);
4fcf1c62 2711out:
14da9200 2712 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2713 return ret;
2714}
4fcf1c62 2715
f0f37e2f 2716const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2717 .fault = filemap_fault,
f1820361 2718 .map_pages = filemap_map_pages,
4fcf1c62 2719 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2720};
2721
2722/* This is used for a general mmap of a disk file */
2723
2724int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2725{
2726 struct address_space *mapping = file->f_mapping;
2727
2728 if (!mapping->a_ops->readpage)
2729 return -ENOEXEC;
2730 file_accessed(file);
2731 vma->vm_ops = &generic_file_vm_ops;
2732 return 0;
2733}
1da177e4
LT
2734
2735/*
2736 * This is for filesystems which do not implement ->writepage.
2737 */
2738int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2739{
2740 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2741 return -EINVAL;
2742 return generic_file_mmap(file, vma);
2743}
2744#else
4b96a37d 2745vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 2746{
4b96a37d 2747 return VM_FAULT_SIGBUS;
45397228 2748}
1da177e4
LT
2749int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2750{
2751 return -ENOSYS;
2752}
2753int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2754{
2755 return -ENOSYS;
2756}
2757#endif /* CONFIG_MMU */
2758
45397228 2759EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
2760EXPORT_SYMBOL(generic_file_mmap);
2761EXPORT_SYMBOL(generic_file_readonly_mmap);
2762
67f9fd91
SL
2763static struct page *wait_on_page_read(struct page *page)
2764{
2765 if (!IS_ERR(page)) {
2766 wait_on_page_locked(page);
2767 if (!PageUptodate(page)) {
09cbfeaf 2768 put_page(page);
67f9fd91
SL
2769 page = ERR_PTR(-EIO);
2770 }
2771 }
2772 return page;
2773}
2774
32b63529 2775static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2776 pgoff_t index,
5e5358e7 2777 int (*filler)(void *, struct page *),
0531b2aa
LT
2778 void *data,
2779 gfp_t gfp)
1da177e4 2780{
eb2be189 2781 struct page *page;
1da177e4
LT
2782 int err;
2783repeat:
2784 page = find_get_page(mapping, index);
2785 if (!page) {
453f85d4 2786 page = __page_cache_alloc(gfp);
eb2be189
NP
2787 if (!page)
2788 return ERR_PTR(-ENOMEM);
e6f67b8c 2789 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2790 if (unlikely(err)) {
09cbfeaf 2791 put_page(page);
eb2be189
NP
2792 if (err == -EEXIST)
2793 goto repeat;
22ecdb4f 2794 /* Presumably ENOMEM for xarray node */
1da177e4
LT
2795 return ERR_PTR(err);
2796 }
32b63529
MG
2797
2798filler:
6c45b454
CH
2799 if (filler)
2800 err = filler(data, page);
2801 else
2802 err = mapping->a_ops->readpage(data, page);
2803
1da177e4 2804 if (err < 0) {
09cbfeaf 2805 put_page(page);
32b63529 2806 return ERR_PTR(err);
1da177e4 2807 }
1da177e4 2808
32b63529
MG
2809 page = wait_on_page_read(page);
2810 if (IS_ERR(page))
2811 return page;
2812 goto out;
2813 }
1da177e4
LT
2814 if (PageUptodate(page))
2815 goto out;
2816
ebded027
MG
2817 /*
2818 * Page is not up to date and may be locked due one of the following
2819 * case a: Page is being filled and the page lock is held
2820 * case b: Read/write error clearing the page uptodate status
2821 * case c: Truncation in progress (page locked)
2822 * case d: Reclaim in progress
2823 *
2824 * Case a, the page will be up to date when the page is unlocked.
2825 * There is no need to serialise on the page lock here as the page
2826 * is pinned so the lock gives no additional protection. Even if the
2827 * the page is truncated, the data is still valid if PageUptodate as
2828 * it's a race vs truncate race.
2829 * Case b, the page will not be up to date
2830 * Case c, the page may be truncated but in itself, the data may still
2831 * be valid after IO completes as it's a read vs truncate race. The
2832 * operation must restart if the page is not uptodate on unlock but
2833 * otherwise serialising on page lock to stabilise the mapping gives
2834 * no additional guarantees to the caller as the page lock is
2835 * released before return.
2836 * Case d, similar to truncation. If reclaim holds the page lock, it
2837 * will be a race with remove_mapping that determines if the mapping
2838 * is valid on unlock but otherwise the data is valid and there is
2839 * no need to serialise with page lock.
2840 *
2841 * As the page lock gives no additional guarantee, we optimistically
2842 * wait on the page to be unlocked and check if it's up to date and
2843 * use the page if it is. Otherwise, the page lock is required to
2844 * distinguish between the different cases. The motivation is that we
2845 * avoid spurious serialisations and wakeups when multiple processes
2846 * wait on the same page for IO to complete.
2847 */
2848 wait_on_page_locked(page);
2849 if (PageUptodate(page))
2850 goto out;
2851
2852 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2853 lock_page(page);
ebded027
MG
2854
2855 /* Case c or d, restart the operation */
1da177e4
LT
2856 if (!page->mapping) {
2857 unlock_page(page);
09cbfeaf 2858 put_page(page);
32b63529 2859 goto repeat;
1da177e4 2860 }
ebded027
MG
2861
2862 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2863 if (PageUptodate(page)) {
2864 unlock_page(page);
2865 goto out;
2866 }
fca2b7d9
XT
2867
2868 /*
2869 * A previous I/O error may have been due to temporary
2870 * failures.
2871 * Clear page error before actual read, PG_error will be
2872 * set again if read page fails.
2873 */
2874 ClearPageError(page);
32b63529
MG
2875 goto filler;
2876
c855ff37 2877out:
6fe6900e
NP
2878 mark_page_accessed(page);
2879 return page;
2880}
0531b2aa
LT
2881
2882/**
67f9fd91 2883 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2884 * @mapping: the page's address_space
2885 * @index: the page index
2886 * @filler: function to perform the read
5e5358e7 2887 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2888 *
0531b2aa 2889 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2890 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2891 *
2892 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
2893 *
2894 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 2895 */
67f9fd91 2896struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2897 pgoff_t index,
5e5358e7 2898 int (*filler)(void *, struct page *),
0531b2aa
LT
2899 void *data)
2900{
d322a8e5
CH
2901 return do_read_cache_page(mapping, index, filler, data,
2902 mapping_gfp_mask(mapping));
0531b2aa 2903}
67f9fd91 2904EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2905
2906/**
2907 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2908 * @mapping: the page's address_space
2909 * @index: the page index
2910 * @gfp: the page allocator flags to use if allocating
2911 *
2912 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2913 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2914 *
2915 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
2916 *
2917 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
2918 */
2919struct page *read_cache_page_gfp(struct address_space *mapping,
2920 pgoff_t index,
2921 gfp_t gfp)
2922{
6c45b454 2923 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
2924}
2925EXPORT_SYMBOL(read_cache_page_gfp);
2926
9fd91a90
DW
2927/*
2928 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2929 * LFS limits. If pos is under the limit it becomes a short access. If it
2930 * exceeds the limit we return -EFBIG.
2931 */
9fd91a90
DW
2932static int generic_write_check_limits(struct file *file, loff_t pos,
2933 loff_t *count)
2934{
646955cd
AG
2935 struct inode *inode = file->f_mapping->host;
2936 loff_t max_size = inode->i_sb->s_maxbytes;
9fd91a90
DW
2937 loff_t limit = rlimit(RLIMIT_FSIZE);
2938
2939 if (limit != RLIM_INFINITY) {
2940 if (pos >= limit) {
2941 send_sig(SIGXFSZ, current, 0);
2942 return -EFBIG;
2943 }
2944 *count = min(*count, limit - pos);
2945 }
2946
646955cd
AG
2947 if (!(file->f_flags & O_LARGEFILE))
2948 max_size = MAX_NON_LFS;
2949
2950 if (unlikely(pos >= max_size))
2951 return -EFBIG;
2952
2953 *count = min(*count, max_size - pos);
2954
2955 return 0;
9fd91a90
DW
2956}
2957
1da177e4
LT
2958/*
2959 * Performs necessary checks before doing a write
2960 *
485bb99b 2961 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2962 * Returns appropriate error code that caller should return or
2963 * zero in case that write should be allowed.
2964 */
3309dd04 2965inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2966{
3309dd04 2967 struct file *file = iocb->ki_filp;
1da177e4 2968 struct inode *inode = file->f_mapping->host;
9fd91a90
DW
2969 loff_t count;
2970 int ret;
1da177e4 2971
dc617f29
DW
2972 if (IS_SWAPFILE(inode))
2973 return -ETXTBSY;
2974
3309dd04
AV
2975 if (!iov_iter_count(from))
2976 return 0;
1da177e4 2977
0fa6b005 2978 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2979 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2980 iocb->ki_pos = i_size_read(inode);
1da177e4 2981
6be96d3a
GR
2982 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2983 return -EINVAL;
2984
9fd91a90
DW
2985 count = iov_iter_count(from);
2986 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2987 if (ret)
2988 return ret;
1da177e4 2989
9fd91a90 2990 iov_iter_truncate(from, count);
3309dd04 2991 return iov_iter_count(from);
1da177e4
LT
2992}
2993EXPORT_SYMBOL(generic_write_checks);
2994
1383a7ed
DW
2995/*
2996 * Performs necessary checks before doing a clone.
2997 *
646955cd 2998 * Can adjust amount of bytes to clone via @req_count argument.
1383a7ed
DW
2999 * Returns appropriate error code that caller should return or
3000 * zero in case the clone should be allowed.
3001 */
3002int generic_remap_checks(struct file *file_in, loff_t pos_in,
3003 struct file *file_out, loff_t pos_out,
42ec3d4c 3004 loff_t *req_count, unsigned int remap_flags)
1383a7ed
DW
3005{
3006 struct inode *inode_in = file_in->f_mapping->host;
3007 struct inode *inode_out = file_out->f_mapping->host;
3008 uint64_t count = *req_count;
3009 uint64_t bcount;
3010 loff_t size_in, size_out;
3011 loff_t bs = inode_out->i_sb->s_blocksize;
9fd91a90 3012 int ret;
1383a7ed
DW
3013
3014 /* The start of both ranges must be aligned to an fs block. */
3015 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3016 return -EINVAL;
3017
3018 /* Ensure offsets don't wrap. */
3019 if (pos_in + count < pos_in || pos_out + count < pos_out)
3020 return -EINVAL;
3021
3022 size_in = i_size_read(inode_in);
3023 size_out = i_size_read(inode_out);
3024
3025 /* Dedupe requires both ranges to be within EOF. */
3d28193e 3026 if ((remap_flags & REMAP_FILE_DEDUP) &&
1383a7ed
DW
3027 (pos_in >= size_in || pos_in + count > size_in ||
3028 pos_out >= size_out || pos_out + count > size_out))
3029 return -EINVAL;
3030
3031 /* Ensure the infile range is within the infile. */
3032 if (pos_in >= size_in)
3033 return -EINVAL;
3034 count = min(count, size_in - (uint64_t)pos_in);
3035
9fd91a90
DW
3036 ret = generic_write_check_limits(file_out, pos_out, &count);
3037 if (ret)
3038 return ret;
1da177e4
LT
3039
3040 /*
1383a7ed
DW
3041 * If the user wanted us to link to the infile's EOF, round up to the
3042 * next block boundary for this check.
3043 *
3044 * Otherwise, make sure the count is also block-aligned, having
3045 * already confirmed the starting offsets' block alignment.
1da177e4 3046 */
1383a7ed
DW
3047 if (pos_in + count == size_in) {
3048 bcount = ALIGN(size_in, bs) - pos_in;
3049 } else {
3050 if (!IS_ALIGNED(count, bs))
eca3654e 3051 count = ALIGN_DOWN(count, bs);
1383a7ed 3052 bcount = count;
1da177e4
LT
3053 }
3054
1383a7ed
DW
3055 /* Don't allow overlapped cloning within the same file. */
3056 if (inode_in == inode_out &&
3057 pos_out + bcount > pos_in &&
3058 pos_out < pos_in + bcount)
3059 return -EINVAL;
3060
1da177e4 3061 /*
eca3654e
DW
3062 * We shortened the request but the caller can't deal with that, so
3063 * bounce the request back to userspace.
1da177e4 3064 */
eca3654e 3065 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
1383a7ed 3066 return -EINVAL;
1da177e4 3067
eca3654e 3068 *req_count = count;
1383a7ed 3069 return 0;
1da177e4 3070}
1da177e4 3071
a3171351
AG
3072
3073/*
3074 * Performs common checks before doing a file copy/clone
3075 * from @file_in to @file_out.
3076 */
3077int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3078{
3079 struct inode *inode_in = file_inode(file_in);
3080 struct inode *inode_out = file_inode(file_out);
3081
3082 /* Don't copy dirs, pipes, sockets... */
3083 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3084 return -EISDIR;
3085 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3086 return -EINVAL;
3087
3088 if (!(file_in->f_mode & FMODE_READ) ||
3089 !(file_out->f_mode & FMODE_WRITE) ||
3090 (file_out->f_flags & O_APPEND))
3091 return -EBADF;
3092
3093 return 0;
3094}
3095
96e6e8f4
AG
3096/*
3097 * Performs necessary checks before doing a file copy
3098 *
3099 * Can adjust amount of bytes to copy via @req_count argument.
3100 * Returns appropriate error code that caller should return or
3101 * zero in case the copy should be allowed.
3102 */
3103int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3104 struct file *file_out, loff_t pos_out,
3105 size_t *req_count, unsigned int flags)
3106{
3107 struct inode *inode_in = file_inode(file_in);
3108 struct inode *inode_out = file_inode(file_out);
3109 uint64_t count = *req_count;
3110 loff_t size_in;
3111 int ret;
3112
3113 ret = generic_file_rw_checks(file_in, file_out);
3114 if (ret)
3115 return ret;
3116
3117 /* Don't touch certain kinds of inodes */
3118 if (IS_IMMUTABLE(inode_out))
3119 return -EPERM;
3120
3121 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3122 return -ETXTBSY;
3123
3124 /* Ensure offsets don't wrap. */
3125 if (pos_in + count < pos_in || pos_out + count < pos_out)
3126 return -EOVERFLOW;
3127
3128 /* Shorten the copy to EOF */
3129 size_in = i_size_read(inode_in);
3130 if (pos_in >= size_in)
3131 count = 0;
3132 else
3133 count = min(count, size_in - (uint64_t)pos_in);
3134
3135 ret = generic_write_check_limits(file_out, pos_out, &count);
3136 if (ret)
3137 return ret;
3138
3139 /* Don't allow overlapped copying within the same file. */
3140 if (inode_in == inode_out &&
3141 pos_out + count > pos_in &&
3142 pos_out < pos_in + count)
3143 return -EINVAL;
3144
3145 *req_count = count;
3146 return 0;
3147}
3148
afddba49
NP
3149int pagecache_write_begin(struct file *file, struct address_space *mapping,
3150 loff_t pos, unsigned len, unsigned flags,
3151 struct page **pagep, void **fsdata)
3152{
3153 const struct address_space_operations *aops = mapping->a_ops;
3154
4e02ed4b 3155 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3156 pagep, fsdata);
afddba49
NP
3157}
3158EXPORT_SYMBOL(pagecache_write_begin);
3159
3160int pagecache_write_end(struct file *file, struct address_space *mapping,
3161 loff_t pos, unsigned len, unsigned copied,
3162 struct page *page, void *fsdata)
3163{
3164 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3165
4e02ed4b 3166 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3167}
3168EXPORT_SYMBOL(pagecache_write_end);
3169
1da177e4 3170ssize_t
1af5bb49 3171generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3172{
3173 struct file *file = iocb->ki_filp;
3174 struct address_space *mapping = file->f_mapping;
3175 struct inode *inode = mapping->host;
1af5bb49 3176 loff_t pos = iocb->ki_pos;
1da177e4 3177 ssize_t written;
a969e903
CH
3178 size_t write_len;
3179 pgoff_t end;
1da177e4 3180
0c949334 3181 write_len = iov_iter_count(from);
09cbfeaf 3182 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3183
6be96d3a
GR
3184 if (iocb->ki_flags & IOCB_NOWAIT) {
3185 /* If there are pages to writeback, return */
3186 if (filemap_range_has_page(inode->i_mapping, pos,
35f12f0f 3187 pos + write_len - 1))
6be96d3a
GR
3188 return -EAGAIN;
3189 } else {
3190 written = filemap_write_and_wait_range(mapping, pos,
3191 pos + write_len - 1);
3192 if (written)
3193 goto out;
3194 }
a969e903
CH
3195
3196 /*
3197 * After a write we want buffered reads to be sure to go to disk to get
3198 * the new data. We invalidate clean cached page from the region we're
3199 * about to write. We do this *before* the write so that we can return
6ccfa806 3200 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3201 */
55635ba7 3202 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3203 pos >> PAGE_SHIFT, end);
55635ba7
AR
3204 /*
3205 * If a page can not be invalidated, return 0 to fall back
3206 * to buffered write.
3207 */
3208 if (written) {
3209 if (written == -EBUSY)
3210 return 0;
3211 goto out;
a969e903
CH
3212 }
3213
639a93a5 3214 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3215
3216 /*
3217 * Finally, try again to invalidate clean pages which might have been
3218 * cached by non-direct readahead, or faulted in by get_user_pages()
3219 * if the source of the write was an mmap'ed region of the file
3220 * we're writing. Either one is a pretty crazy thing to do,
3221 * so we don't support it 100%. If this invalidation
3222 * fails, tough, the write still worked...
332391a9
LC
3223 *
3224 * Most of the time we do not need this since dio_complete() will do
3225 * the invalidation for us. However there are some file systems that
3226 * do not end up with dio_complete() being called, so let's not break
3227 * them by removing it completely
a969e903 3228 */
332391a9
LC
3229 if (mapping->nrpages)
3230 invalidate_inode_pages2_range(mapping,
3231 pos >> PAGE_SHIFT, end);
a969e903 3232
1da177e4 3233 if (written > 0) {
0116651c 3234 pos += written;
639a93a5 3235 write_len -= written;
0116651c
NK
3236 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3237 i_size_write(inode, pos);
1da177e4
LT
3238 mark_inode_dirty(inode);
3239 }
5cb6c6c7 3240 iocb->ki_pos = pos;
1da177e4 3241 }
639a93a5 3242 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3243out:
1da177e4
LT
3244 return written;
3245}
3246EXPORT_SYMBOL(generic_file_direct_write);
3247
eb2be189
NP
3248/*
3249 * Find or create a page at the given pagecache position. Return the locked
3250 * page. This function is specifically for buffered writes.
3251 */
54566b2c
NP
3252struct page *grab_cache_page_write_begin(struct address_space *mapping,
3253 pgoff_t index, unsigned flags)
eb2be189 3254{
eb2be189 3255 struct page *page;
bbddabe2 3256 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 3257
54566b2c 3258 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
3259 fgp_flags |= FGP_NOFS;
3260
3261 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 3262 mapping_gfp_mask(mapping));
c585a267 3263 if (page)
2457aec6 3264 wait_for_stable_page(page);
eb2be189 3265
eb2be189
NP
3266 return page;
3267}
54566b2c 3268EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3269
3b93f911 3270ssize_t generic_perform_write(struct file *file,
afddba49
NP
3271 struct iov_iter *i, loff_t pos)
3272{
3273 struct address_space *mapping = file->f_mapping;
3274 const struct address_space_operations *a_ops = mapping->a_ops;
3275 long status = 0;
3276 ssize_t written = 0;
674b892e
NP
3277 unsigned int flags = 0;
3278
afddba49
NP
3279 do {
3280 struct page *page;
afddba49
NP
3281 unsigned long offset; /* Offset into pagecache page */
3282 unsigned long bytes; /* Bytes to write to page */
3283 size_t copied; /* Bytes copied from user */
3284 void *fsdata;
3285
09cbfeaf
KS
3286 offset = (pos & (PAGE_SIZE - 1));
3287 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3288 iov_iter_count(i));
3289
3290again:
00a3d660
LT
3291 /*
3292 * Bring in the user page that we will copy from _first_.
3293 * Otherwise there's a nasty deadlock on copying from the
3294 * same page as we're writing to, without it being marked
3295 * up-to-date.
3296 *
3297 * Not only is this an optimisation, but it is also required
3298 * to check that the address is actually valid, when atomic
3299 * usercopies are used, below.
3300 */
3301 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3302 status = -EFAULT;
3303 break;
3304 }
3305
296291cd
JK
3306 if (fatal_signal_pending(current)) {
3307 status = -EINTR;
3308 break;
3309 }
3310
674b892e 3311 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3312 &page, &fsdata);
2457aec6 3313 if (unlikely(status < 0))
afddba49
NP
3314 break;
3315
931e80e4 3316 if (mapping_writably_mapped(mapping))
3317 flush_dcache_page(page);
00a3d660 3318
afddba49 3319 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
3320 flush_dcache_page(page);
3321
3322 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3323 page, fsdata);
3324 if (unlikely(status < 0))
3325 break;
3326 copied = status;
3327
3328 cond_resched();
3329
124d3b70 3330 iov_iter_advance(i, copied);
afddba49
NP
3331 if (unlikely(copied == 0)) {
3332 /*
3333 * If we were unable to copy any data at all, we must
3334 * fall back to a single segment length write.
3335 *
3336 * If we didn't fallback here, we could livelock
3337 * because not all segments in the iov can be copied at
3338 * once without a pagefault.
3339 */
09cbfeaf 3340 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3341 iov_iter_single_seg_count(i));
3342 goto again;
3343 }
afddba49
NP
3344 pos += copied;
3345 written += copied;
3346
3347 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3348 } while (iov_iter_count(i));
3349
3350 return written ? written : status;
3351}
3b93f911 3352EXPORT_SYMBOL(generic_perform_write);
1da177e4 3353
e4dd9de3 3354/**
8174202b 3355 * __generic_file_write_iter - write data to a file
e4dd9de3 3356 * @iocb: IO state structure (file, offset, etc.)
8174202b 3357 * @from: iov_iter with data to write
e4dd9de3
JK
3358 *
3359 * This function does all the work needed for actually writing data to a
3360 * file. It does all basic checks, removes SUID from the file, updates
3361 * modification times and calls proper subroutines depending on whether we
3362 * do direct IO or a standard buffered write.
3363 *
3364 * It expects i_mutex to be grabbed unless we work on a block device or similar
3365 * object which does not need locking at all.
3366 *
3367 * This function does *not* take care of syncing data in case of O_SYNC write.
3368 * A caller has to handle it. This is mainly due to the fact that we want to
3369 * avoid syncing under i_mutex.
a862f68a
MR
3370 *
3371 * Return:
3372 * * number of bytes written, even for truncated writes
3373 * * negative error code if no data has been written at all
e4dd9de3 3374 */
8174202b 3375ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3376{
3377 struct file *file = iocb->ki_filp;
fb5527e6 3378 struct address_space * mapping = file->f_mapping;
1da177e4 3379 struct inode *inode = mapping->host;
3b93f911 3380 ssize_t written = 0;
1da177e4 3381 ssize_t err;
3b93f911 3382 ssize_t status;
1da177e4 3383
1da177e4 3384 /* We can write back this queue in page reclaim */
de1414a6 3385 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3386 err = file_remove_privs(file);
1da177e4
LT
3387 if (err)
3388 goto out;
3389
c3b2da31
JB
3390 err = file_update_time(file);
3391 if (err)
3392 goto out;
1da177e4 3393
2ba48ce5 3394 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3395 loff_t pos, endbyte;
fb5527e6 3396
1af5bb49 3397 written = generic_file_direct_write(iocb, from);
1da177e4 3398 /*
fbbbad4b
MW
3399 * If the write stopped short of completing, fall back to
3400 * buffered writes. Some filesystems do this for writes to
3401 * holes, for example. For DAX files, a buffered write will
3402 * not succeed (even if it did, DAX does not handle dirty
3403 * page-cache pages correctly).
1da177e4 3404 */
0b8def9d 3405 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3406 goto out;
3407
0b8def9d 3408 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3409 /*
3b93f911 3410 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3411 * then we want to return the number of bytes which were
3412 * direct-written, or the error code if that was zero. Note
3413 * that this differs from normal direct-io semantics, which
3414 * will return -EFOO even if some bytes were written.
3415 */
60bb4529 3416 if (unlikely(status < 0)) {
3b93f911 3417 err = status;
fb5527e6
JM
3418 goto out;
3419 }
fb5527e6
JM
3420 /*
3421 * We need to ensure that the page cache pages are written to
3422 * disk and invalidated to preserve the expected O_DIRECT
3423 * semantics.
3424 */
3b93f911 3425 endbyte = pos + status - 1;
0b8def9d 3426 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3427 if (err == 0) {
0b8def9d 3428 iocb->ki_pos = endbyte + 1;
3b93f911 3429 written += status;
fb5527e6 3430 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3431 pos >> PAGE_SHIFT,
3432 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3433 } else {
3434 /*
3435 * We don't know how much we wrote, so just return
3436 * the number of bytes which were direct-written
3437 */
3438 }
3439 } else {
0b8def9d
AV
3440 written = generic_perform_write(file, from, iocb->ki_pos);
3441 if (likely(written > 0))
3442 iocb->ki_pos += written;
fb5527e6 3443 }
1da177e4
LT
3444out:
3445 current->backing_dev_info = NULL;
3446 return written ? written : err;
3447}
8174202b 3448EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3449
e4dd9de3 3450/**
8174202b 3451 * generic_file_write_iter - write data to a file
e4dd9de3 3452 * @iocb: IO state structure
8174202b 3453 * @from: iov_iter with data to write
e4dd9de3 3454 *
8174202b 3455 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3456 * filesystems. It takes care of syncing the file in case of O_SYNC file
3457 * and acquires i_mutex as needed.
a862f68a
MR
3458 * Return:
3459 * * negative error code if no data has been written at all of
3460 * vfs_fsync_range() failed for a synchronous write
3461 * * number of bytes written, even for truncated writes
e4dd9de3 3462 */
8174202b 3463ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3464{
3465 struct file *file = iocb->ki_filp;
148f948b 3466 struct inode *inode = file->f_mapping->host;
1da177e4 3467 ssize_t ret;
1da177e4 3468
5955102c 3469 inode_lock(inode);
3309dd04
AV
3470 ret = generic_write_checks(iocb, from);
3471 if (ret > 0)
5f380c7f 3472 ret = __generic_file_write_iter(iocb, from);
5955102c 3473 inode_unlock(inode);
1da177e4 3474
e2592217
CH
3475 if (ret > 0)
3476 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3477 return ret;
3478}
8174202b 3479EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3480
cf9a2ae8
DH
3481/**
3482 * try_to_release_page() - release old fs-specific metadata on a page
3483 *
3484 * @page: the page which the kernel is trying to free
3485 * @gfp_mask: memory allocation flags (and I/O mode)
3486 *
3487 * The address_space is to try to release any data against the page
a862f68a 3488 * (presumably at page->private).
cf9a2ae8 3489 *
266cf658
DH
3490 * This may also be called if PG_fscache is set on a page, indicating that the
3491 * page is known to the local caching routines.
3492 *
cf9a2ae8 3493 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3494 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3495 *
a862f68a 3496 * Return: %1 if the release was successful, otherwise return zero.
cf9a2ae8
DH
3497 */
3498int try_to_release_page(struct page *page, gfp_t gfp_mask)
3499{
3500 struct address_space * const mapping = page->mapping;
3501
3502 BUG_ON(!PageLocked(page));
3503 if (PageWriteback(page))
3504 return 0;
3505
3506 if (mapping && mapping->a_ops->releasepage)
3507 return mapping->a_ops->releasepage(page, gfp_mask);
3508 return try_to_free_buffers(page);
3509}
3510
3511EXPORT_SYMBOL(try_to_release_page);