]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/filemap.c
reiserfs: get rid of resierfs_sync_super
[mirror_ubuntu-zesty-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 35#include <linux/memcontrol.h>
c515e1fd 36#include <linux/cleancache.h>
0f8053a5
NP
37#include "internal.h"
38
1da177e4 39/*
1da177e4
LT
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
148f948b 42#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 43
1da177e4
LT
44#include <asm/mman.h>
45
46/*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995 Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58/*
59 * Lock ordering:
60 *
3d48ae45 61 * ->i_mmap_mutex (truncate_pagecache)
1da177e4 62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
1da177e4 65 *
1b1dcc1b 66 * ->i_mutex
3d48ae45 67 * ->i_mmap_mutex (truncate->unmap_mapping_range)
1da177e4
LT
68 *
69 * ->mmap_sem
3d48ae45 70 * ->i_mmap_mutex
b8072f09 71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
73 *
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
76 *
82591e6e
NP
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 79 *
f758eeab 80 * bdi->wb.list_lock
a66979ab 81 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
82 * ->mapping->tree_lock (__sync_single_inode)
83 *
3d48ae45 84 * ->i_mmap_mutex
1da177e4
LT
85 * ->anon_vma.lock (vma_adjust)
86 *
87 * ->anon_vma.lock
b8072f09 88 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 89 *
b8072f09 90 * ->page_table_lock or pte_lock
5d337b91 91 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
92 * ->private_lock (try_to_unmap_one)
93 * ->tree_lock (try_to_unmap_one)
94 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 95 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
96 * ->private_lock (page_remove_rmap->set_page_dirty)
97 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 98 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 99 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
f758eeab 100 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 101 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
102 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
103 *
9a3c531d
AK
104 * ->i_mmap_mutex
105 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
106 */
107
108/*
e64a782f 109 * Delete a page from the page cache and free it. Caller has to make
1da177e4 110 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 111 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 112 */
e64a782f 113void __delete_from_page_cache(struct page *page)
1da177e4
LT
114{
115 struct address_space *mapping = page->mapping;
116
c515e1fd
DM
117 /*
118 * if we're uptodate, flush out into the cleancache, otherwise
119 * invalidate any existing cleancache entries. We can't leave
120 * stale data around in the cleancache once our page is gone
121 */
122 if (PageUptodate(page) && PageMappedToDisk(page))
123 cleancache_put_page(page);
124 else
3167760f 125 cleancache_invalidate_page(mapping, page);
c515e1fd 126
1da177e4
LT
127 radix_tree_delete(&mapping->page_tree, page->index);
128 page->mapping = NULL;
b85e0eff 129 /* Leave page->index set: truncation lookup relies upon it */
1da177e4 130 mapping->nrpages--;
347ce434 131 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
132 if (PageSwapBacked(page))
133 __dec_zone_page_state(page, NR_SHMEM);
45426812 134 BUG_ON(page_mapped(page));
3a692790
LT
135
136 /*
137 * Some filesystems seem to re-dirty the page even after
138 * the VM has canceled the dirty bit (eg ext3 journaling).
139 *
140 * Fix it up by doing a final dirty accounting check after
141 * having removed the page entirely.
142 */
143 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
144 dec_zone_page_state(page, NR_FILE_DIRTY);
145 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
146 }
1da177e4
LT
147}
148
702cfbf9
MK
149/**
150 * delete_from_page_cache - delete page from page cache
151 * @page: the page which the kernel is trying to remove from page cache
152 *
153 * This must be called only on pages that have been verified to be in the page
154 * cache and locked. It will never put the page into the free list, the caller
155 * has a reference on the page.
156 */
157void delete_from_page_cache(struct page *page)
1da177e4
LT
158{
159 struct address_space *mapping = page->mapping;
6072d13c 160 void (*freepage)(struct page *);
1da177e4 161
cd7619d6 162 BUG_ON(!PageLocked(page));
1da177e4 163
6072d13c 164 freepage = mapping->a_ops->freepage;
19fd6231 165 spin_lock_irq(&mapping->tree_lock);
e64a782f 166 __delete_from_page_cache(page);
19fd6231 167 spin_unlock_irq(&mapping->tree_lock);
e767e056 168 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
169
170 if (freepage)
171 freepage(page);
97cecb5a
MK
172 page_cache_release(page);
173}
174EXPORT_SYMBOL(delete_from_page_cache);
175
7eaceacc 176static int sleep_on_page(void *word)
1da177e4 177{
1da177e4
LT
178 io_schedule();
179 return 0;
180}
181
7eaceacc 182static int sleep_on_page_killable(void *word)
2687a356 183{
7eaceacc 184 sleep_on_page(word);
2687a356
MW
185 return fatal_signal_pending(current) ? -EINTR : 0;
186}
187
1da177e4 188/**
485bb99b 189 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
190 * @mapping: address space structure to write
191 * @start: offset in bytes where the range starts
469eb4d0 192 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 193 * @sync_mode: enable synchronous operation
1da177e4 194 *
485bb99b
RD
195 * Start writeback against all of a mapping's dirty pages that lie
196 * within the byte offsets <start, end> inclusive.
197 *
1da177e4 198 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 199 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
200 * these two operations is that if a dirty page/buffer is encountered, it must
201 * be waited upon, and not just skipped over.
202 */
ebcf28e1
AM
203int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
204 loff_t end, int sync_mode)
1da177e4
LT
205{
206 int ret;
207 struct writeback_control wbc = {
208 .sync_mode = sync_mode,
05fe478d 209 .nr_to_write = LONG_MAX,
111ebb6e
OH
210 .range_start = start,
211 .range_end = end,
1da177e4
LT
212 };
213
214 if (!mapping_cap_writeback_dirty(mapping))
215 return 0;
216
217 ret = do_writepages(mapping, &wbc);
218 return ret;
219}
220
221static inline int __filemap_fdatawrite(struct address_space *mapping,
222 int sync_mode)
223{
111ebb6e 224 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
225}
226
227int filemap_fdatawrite(struct address_space *mapping)
228{
229 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
230}
231EXPORT_SYMBOL(filemap_fdatawrite);
232
f4c0a0fd 233int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 234 loff_t end)
1da177e4
LT
235{
236 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
237}
f4c0a0fd 238EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 239
485bb99b
RD
240/**
241 * filemap_flush - mostly a non-blocking flush
242 * @mapping: target address_space
243 *
1da177e4
LT
244 * This is a mostly non-blocking flush. Not suitable for data-integrity
245 * purposes - I/O may not be started against all dirty pages.
246 */
247int filemap_flush(struct address_space *mapping)
248{
249 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
250}
251EXPORT_SYMBOL(filemap_flush);
252
485bb99b 253/**
94004ed7
CH
254 * filemap_fdatawait_range - wait for writeback to complete
255 * @mapping: address space structure to wait for
256 * @start_byte: offset in bytes where the range starts
257 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 258 *
94004ed7
CH
259 * Walk the list of under-writeback pages of the given address space
260 * in the given range and wait for all of them.
1da177e4 261 */
94004ed7
CH
262int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
263 loff_t end_byte)
1da177e4 264{
94004ed7
CH
265 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
266 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
267 struct pagevec pvec;
268 int nr_pages;
269 int ret = 0;
1da177e4 270
94004ed7 271 if (end_byte < start_byte)
1da177e4
LT
272 return 0;
273
274 pagevec_init(&pvec, 0);
1da177e4
LT
275 while ((index <= end) &&
276 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
277 PAGECACHE_TAG_WRITEBACK,
278 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
279 unsigned i;
280
281 for (i = 0; i < nr_pages; i++) {
282 struct page *page = pvec.pages[i];
283
284 /* until radix tree lookup accepts end_index */
285 if (page->index > end)
286 continue;
287
288 wait_on_page_writeback(page);
212260aa 289 if (TestClearPageError(page))
1da177e4
LT
290 ret = -EIO;
291 }
292 pagevec_release(&pvec);
293 cond_resched();
294 }
295
296 /* Check for outstanding write errors */
297 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
298 ret = -ENOSPC;
299 if (test_and_clear_bit(AS_EIO, &mapping->flags))
300 ret = -EIO;
301
302 return ret;
303}
d3bccb6f
JK
304EXPORT_SYMBOL(filemap_fdatawait_range);
305
1da177e4 306/**
485bb99b 307 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 308 * @mapping: address space structure to wait for
485bb99b
RD
309 *
310 * Walk the list of under-writeback pages of the given address space
311 * and wait for all of them.
1da177e4
LT
312 */
313int filemap_fdatawait(struct address_space *mapping)
314{
315 loff_t i_size = i_size_read(mapping->host);
316
317 if (i_size == 0)
318 return 0;
319
94004ed7 320 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
321}
322EXPORT_SYMBOL(filemap_fdatawait);
323
324int filemap_write_and_wait(struct address_space *mapping)
325{
28fd1298 326 int err = 0;
1da177e4
LT
327
328 if (mapping->nrpages) {
28fd1298
OH
329 err = filemap_fdatawrite(mapping);
330 /*
331 * Even if the above returned error, the pages may be
332 * written partially (e.g. -ENOSPC), so we wait for it.
333 * But the -EIO is special case, it may indicate the worst
334 * thing (e.g. bug) happened, so we avoid waiting for it.
335 */
336 if (err != -EIO) {
337 int err2 = filemap_fdatawait(mapping);
338 if (!err)
339 err = err2;
340 }
1da177e4 341 }
28fd1298 342 return err;
1da177e4 343}
28fd1298 344EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 345
485bb99b
RD
346/**
347 * filemap_write_and_wait_range - write out & wait on a file range
348 * @mapping: the address_space for the pages
349 * @lstart: offset in bytes where the range starts
350 * @lend: offset in bytes where the range ends (inclusive)
351 *
469eb4d0
AM
352 * Write out and wait upon file offsets lstart->lend, inclusive.
353 *
354 * Note that `lend' is inclusive (describes the last byte to be written) so
355 * that this function can be used to write to the very end-of-file (end = -1).
356 */
1da177e4
LT
357int filemap_write_and_wait_range(struct address_space *mapping,
358 loff_t lstart, loff_t lend)
359{
28fd1298 360 int err = 0;
1da177e4
LT
361
362 if (mapping->nrpages) {
28fd1298
OH
363 err = __filemap_fdatawrite_range(mapping, lstart, lend,
364 WB_SYNC_ALL);
365 /* See comment of filemap_write_and_wait() */
366 if (err != -EIO) {
94004ed7
CH
367 int err2 = filemap_fdatawait_range(mapping,
368 lstart, lend);
28fd1298
OH
369 if (!err)
370 err = err2;
371 }
1da177e4 372 }
28fd1298 373 return err;
1da177e4 374}
f6995585 375EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 376
ef6a3c63
MS
377/**
378 * replace_page_cache_page - replace a pagecache page with a new one
379 * @old: page to be replaced
380 * @new: page to replace with
381 * @gfp_mask: allocation mode
382 *
383 * This function replaces a page in the pagecache with a new one. On
384 * success it acquires the pagecache reference for the new page and
385 * drops it for the old page. Both the old and new pages must be
386 * locked. This function does not add the new page to the LRU, the
387 * caller must do that.
388 *
389 * The remove + add is atomic. The only way this function can fail is
390 * memory allocation failure.
391 */
392int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
393{
394 int error;
ef6a3c63
MS
395
396 VM_BUG_ON(!PageLocked(old));
397 VM_BUG_ON(!PageLocked(new));
398 VM_BUG_ON(new->mapping);
399
ef6a3c63
MS
400 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
401 if (!error) {
402 struct address_space *mapping = old->mapping;
403 void (*freepage)(struct page *);
404
405 pgoff_t offset = old->index;
406 freepage = mapping->a_ops->freepage;
407
408 page_cache_get(new);
409 new->mapping = mapping;
410 new->index = offset;
411
412 spin_lock_irq(&mapping->tree_lock);
e64a782f 413 __delete_from_page_cache(old);
ef6a3c63
MS
414 error = radix_tree_insert(&mapping->page_tree, offset, new);
415 BUG_ON(error);
416 mapping->nrpages++;
417 __inc_zone_page_state(new, NR_FILE_PAGES);
418 if (PageSwapBacked(new))
419 __inc_zone_page_state(new, NR_SHMEM);
420 spin_unlock_irq(&mapping->tree_lock);
ab936cbc
KH
421 /* mem_cgroup codes must not be called under tree_lock */
422 mem_cgroup_replace_page_cache(old, new);
ef6a3c63
MS
423 radix_tree_preload_end();
424 if (freepage)
425 freepage(old);
426 page_cache_release(old);
ef6a3c63
MS
427 }
428
429 return error;
430}
431EXPORT_SYMBOL_GPL(replace_page_cache_page);
432
485bb99b 433/**
e286781d 434 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
435 * @page: page to add
436 * @mapping: the page's address_space
437 * @offset: page index
438 * @gfp_mask: page allocation mode
439 *
e286781d 440 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
441 * This function does not add the page to the LRU. The caller must do that.
442 */
e286781d 443int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 444 pgoff_t offset, gfp_t gfp_mask)
1da177e4 445{
e286781d
NP
446 int error;
447
448 VM_BUG_ON(!PageLocked(page));
31475dd6 449 VM_BUG_ON(PageSwapBacked(page));
e286781d
NP
450
451 error = mem_cgroup_cache_charge(page, current->mm,
2c26fdd7 452 gfp_mask & GFP_RECLAIM_MASK);
35c754d7
BS
453 if (error)
454 goto out;
1da177e4 455
35c754d7 456 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
1da177e4 457 if (error == 0) {
e286781d
NP
458 page_cache_get(page);
459 page->mapping = mapping;
460 page->index = offset;
461
19fd6231 462 spin_lock_irq(&mapping->tree_lock);
1da177e4 463 error = radix_tree_insert(&mapping->page_tree, offset, page);
e286781d 464 if (likely(!error)) {
1da177e4 465 mapping->nrpages++;
347ce434 466 __inc_zone_page_state(page, NR_FILE_PAGES);
e767e056 467 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
468 } else {
469 page->mapping = NULL;
b85e0eff 470 /* Leave page->index set: truncation relies upon it */
e767e056 471 spin_unlock_irq(&mapping->tree_lock);
69029cd5 472 mem_cgroup_uncharge_cache_page(page);
e286781d
NP
473 page_cache_release(page);
474 }
1da177e4 475 radix_tree_preload_end();
35c754d7 476 } else
69029cd5 477 mem_cgroup_uncharge_cache_page(page);
8a9f3ccd 478out:
1da177e4
LT
479 return error;
480}
e286781d 481EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
482
483int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 484 pgoff_t offset, gfp_t gfp_mask)
1da177e4 485{
4f98a2fe
RR
486 int ret;
487
4f98a2fe 488 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
31475dd6
HD
489 if (ret == 0)
490 lru_cache_add_file(page);
1da177e4
LT
491 return ret;
492}
18bc0bbd 493EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 494
44110fe3 495#ifdef CONFIG_NUMA
2ae88149 496struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 497{
c0ff7453
MX
498 int n;
499 struct page *page;
500
44110fe3 501 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
502 unsigned int cpuset_mems_cookie;
503 do {
504 cpuset_mems_cookie = get_mems_allowed();
505 n = cpuset_mem_spread_node();
506 page = alloc_pages_exact_node(n, gfp, 0);
507 } while (!put_mems_allowed(cpuset_mems_cookie) && !page);
508
c0ff7453 509 return page;
44110fe3 510 }
2ae88149 511 return alloc_pages(gfp, 0);
44110fe3 512}
2ae88149 513EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
514#endif
515
1da177e4
LT
516/*
517 * In order to wait for pages to become available there must be
518 * waitqueues associated with pages. By using a hash table of
519 * waitqueues where the bucket discipline is to maintain all
520 * waiters on the same queue and wake all when any of the pages
521 * become available, and for the woken contexts to check to be
522 * sure the appropriate page became available, this saves space
523 * at a cost of "thundering herd" phenomena during rare hash
524 * collisions.
525 */
526static wait_queue_head_t *page_waitqueue(struct page *page)
527{
528 const struct zone *zone = page_zone(page);
529
530 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
531}
532
533static inline void wake_up_page(struct page *page, int bit)
534{
535 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
536}
537
920c7a5d 538void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
539{
540 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
541
542 if (test_bit(bit_nr, &page->flags))
7eaceacc 543 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
544 TASK_UNINTERRUPTIBLE);
545}
546EXPORT_SYMBOL(wait_on_page_bit);
547
f62e00cc
KM
548int wait_on_page_bit_killable(struct page *page, int bit_nr)
549{
550 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
551
552 if (!test_bit(bit_nr, &page->flags))
553 return 0;
554
555 return __wait_on_bit(page_waitqueue(page), &wait,
556 sleep_on_page_killable, TASK_KILLABLE);
557}
558
385e1ca5
DH
559/**
560 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
561 * @page: Page defining the wait queue of interest
562 * @waiter: Waiter to add to the queue
385e1ca5
DH
563 *
564 * Add an arbitrary @waiter to the wait queue for the nominated @page.
565 */
566void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
567{
568 wait_queue_head_t *q = page_waitqueue(page);
569 unsigned long flags;
570
571 spin_lock_irqsave(&q->lock, flags);
572 __add_wait_queue(q, waiter);
573 spin_unlock_irqrestore(&q->lock, flags);
574}
575EXPORT_SYMBOL_GPL(add_page_wait_queue);
576
1da177e4 577/**
485bb99b 578 * unlock_page - unlock a locked page
1da177e4
LT
579 * @page: the page
580 *
581 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
582 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
583 * mechananism between PageLocked pages and PageWriteback pages is shared.
584 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
585 *
8413ac9d
NP
586 * The mb is necessary to enforce ordering between the clear_bit and the read
587 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 588 */
920c7a5d 589void unlock_page(struct page *page)
1da177e4 590{
8413ac9d
NP
591 VM_BUG_ON(!PageLocked(page));
592 clear_bit_unlock(PG_locked, &page->flags);
593 smp_mb__after_clear_bit();
1da177e4
LT
594 wake_up_page(page, PG_locked);
595}
596EXPORT_SYMBOL(unlock_page);
597
485bb99b
RD
598/**
599 * end_page_writeback - end writeback against a page
600 * @page: the page
1da177e4
LT
601 */
602void end_page_writeback(struct page *page)
603{
ac6aadb2
MS
604 if (TestClearPageReclaim(page))
605 rotate_reclaimable_page(page);
606
607 if (!test_clear_page_writeback(page))
608 BUG();
609
1da177e4
LT
610 smp_mb__after_clear_bit();
611 wake_up_page(page, PG_writeback);
612}
613EXPORT_SYMBOL(end_page_writeback);
614
485bb99b
RD
615/**
616 * __lock_page - get a lock on the page, assuming we need to sleep to get it
617 * @page: the page to lock
1da177e4 618 */
920c7a5d 619void __lock_page(struct page *page)
1da177e4
LT
620{
621 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
622
7eaceacc 623 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
624 TASK_UNINTERRUPTIBLE);
625}
626EXPORT_SYMBOL(__lock_page);
627
b5606c2d 628int __lock_page_killable(struct page *page)
2687a356
MW
629{
630 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
631
632 return __wait_on_bit_lock(page_waitqueue(page), &wait,
7eaceacc 633 sleep_on_page_killable, TASK_KILLABLE);
2687a356 634}
18bc0bbd 635EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 636
d065bd81
ML
637int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
638 unsigned int flags)
639{
37b23e05
KM
640 if (flags & FAULT_FLAG_ALLOW_RETRY) {
641 /*
642 * CAUTION! In this case, mmap_sem is not released
643 * even though return 0.
644 */
645 if (flags & FAULT_FLAG_RETRY_NOWAIT)
646 return 0;
647
648 up_read(&mm->mmap_sem);
649 if (flags & FAULT_FLAG_KILLABLE)
650 wait_on_page_locked_killable(page);
651 else
318b275f 652 wait_on_page_locked(page);
d065bd81 653 return 0;
37b23e05
KM
654 } else {
655 if (flags & FAULT_FLAG_KILLABLE) {
656 int ret;
657
658 ret = __lock_page_killable(page);
659 if (ret) {
660 up_read(&mm->mmap_sem);
661 return 0;
662 }
663 } else
664 __lock_page(page);
665 return 1;
d065bd81
ML
666 }
667}
668
485bb99b
RD
669/**
670 * find_get_page - find and get a page reference
671 * @mapping: the address_space to search
672 * @offset: the page index
673 *
da6052f7
NP
674 * Is there a pagecache struct page at the given (mapping, offset) tuple?
675 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 676 */
a60637c8 677struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4 678{
a60637c8 679 void **pagep;
1da177e4
LT
680 struct page *page;
681
a60637c8
NP
682 rcu_read_lock();
683repeat:
684 page = NULL;
685 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
686 if (pagep) {
687 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
688 if (unlikely(!page))
689 goto out;
a2c16d6c 690 if (radix_tree_exception(page)) {
8079b1c8
HD
691 if (radix_tree_deref_retry(page))
692 goto repeat;
693 /*
694 * Otherwise, shmem/tmpfs must be storing a swap entry
695 * here as an exceptional entry: so return it without
696 * attempting to raise page count.
697 */
698 goto out;
a2c16d6c 699 }
a60637c8
NP
700 if (!page_cache_get_speculative(page))
701 goto repeat;
702
703 /*
704 * Has the page moved?
705 * This is part of the lockless pagecache protocol. See
706 * include/linux/pagemap.h for details.
707 */
708 if (unlikely(page != *pagep)) {
709 page_cache_release(page);
710 goto repeat;
711 }
712 }
27d20fdd 713out:
a60637c8
NP
714 rcu_read_unlock();
715
1da177e4
LT
716 return page;
717}
1da177e4
LT
718EXPORT_SYMBOL(find_get_page);
719
1da177e4
LT
720/**
721 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
722 * @mapping: the address_space to search
723 * @offset: the page index
1da177e4
LT
724 *
725 * Locates the desired pagecache page, locks it, increments its reference
726 * count and returns its address.
727 *
728 * Returns zero if the page was not present. find_lock_page() may sleep.
729 */
a60637c8 730struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
731{
732 struct page *page;
733
1da177e4 734repeat:
a60637c8 735 page = find_get_page(mapping, offset);
a2c16d6c 736 if (page && !radix_tree_exception(page)) {
a60637c8
NP
737 lock_page(page);
738 /* Has the page been truncated? */
739 if (unlikely(page->mapping != mapping)) {
740 unlock_page(page);
741 page_cache_release(page);
742 goto repeat;
1da177e4 743 }
a60637c8 744 VM_BUG_ON(page->index != offset);
1da177e4 745 }
1da177e4
LT
746 return page;
747}
1da177e4
LT
748EXPORT_SYMBOL(find_lock_page);
749
750/**
751 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
752 * @mapping: the page's address_space
753 * @index: the page's index into the mapping
754 * @gfp_mask: page allocation mode
1da177e4
LT
755 *
756 * Locates a page in the pagecache. If the page is not present, a new page
757 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
758 * LRU list. The returned page is locked and has its reference count
759 * incremented.
760 *
761 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
762 * allocation!
763 *
764 * find_or_create_page() returns the desired page's address, or zero on
765 * memory exhaustion.
766 */
767struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 768 pgoff_t index, gfp_t gfp_mask)
1da177e4 769{
eb2be189 770 struct page *page;
1da177e4
LT
771 int err;
772repeat:
773 page = find_lock_page(mapping, index);
774 if (!page) {
eb2be189
NP
775 page = __page_cache_alloc(gfp_mask);
776 if (!page)
777 return NULL;
67d58ac4
NP
778 /*
779 * We want a regular kernel memory (not highmem or DMA etc)
780 * allocation for the radix tree nodes, but we need to honour
781 * the context-specific requirements the caller has asked for.
782 * GFP_RECLAIM_MASK collects those requirements.
783 */
784 err = add_to_page_cache_lru(page, mapping, index,
785 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
786 if (unlikely(err)) {
787 page_cache_release(page);
788 page = NULL;
789 if (err == -EEXIST)
790 goto repeat;
1da177e4 791 }
1da177e4 792 }
1da177e4
LT
793 return page;
794}
1da177e4
LT
795EXPORT_SYMBOL(find_or_create_page);
796
797/**
798 * find_get_pages - gang pagecache lookup
799 * @mapping: The address_space to search
800 * @start: The starting page index
801 * @nr_pages: The maximum number of pages
802 * @pages: Where the resulting pages are placed
803 *
804 * find_get_pages() will search for and return a group of up to
805 * @nr_pages pages in the mapping. The pages are placed at @pages.
806 * find_get_pages() takes a reference against the returned pages.
807 *
808 * The search returns a group of mapping-contiguous pages with ascending
809 * indexes. There may be holes in the indices due to not-present pages.
810 *
811 * find_get_pages() returns the number of pages which were found.
812 */
813unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
814 unsigned int nr_pages, struct page **pages)
815{
0fc9d104
KK
816 struct radix_tree_iter iter;
817 void **slot;
818 unsigned ret = 0;
819
820 if (unlikely(!nr_pages))
821 return 0;
a60637c8
NP
822
823 rcu_read_lock();
824restart:
0fc9d104 825 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
826 struct page *page;
827repeat:
0fc9d104 828 page = radix_tree_deref_slot(slot);
a60637c8
NP
829 if (unlikely(!page))
830 continue;
9d8aa4ea 831
a2c16d6c 832 if (radix_tree_exception(page)) {
8079b1c8
HD
833 if (radix_tree_deref_retry(page)) {
834 /*
835 * Transient condition which can only trigger
836 * when entry at index 0 moves out of or back
837 * to root: none yet gotten, safe to restart.
838 */
0fc9d104 839 WARN_ON(iter.index);
8079b1c8
HD
840 goto restart;
841 }
a2c16d6c 842 /*
8079b1c8
HD
843 * Otherwise, shmem/tmpfs must be storing a swap entry
844 * here as an exceptional entry: so skip over it -
845 * we only reach this from invalidate_mapping_pages().
a2c16d6c 846 */
8079b1c8 847 continue;
27d20fdd 848 }
a60637c8
NP
849
850 if (!page_cache_get_speculative(page))
851 goto repeat;
852
853 /* Has the page moved? */
0fc9d104 854 if (unlikely(page != *slot)) {
a60637c8
NP
855 page_cache_release(page);
856 goto repeat;
857 }
1da177e4 858
a60637c8 859 pages[ret] = page;
0fc9d104
KK
860 if (++ret == nr_pages)
861 break;
a60637c8 862 }
5b280c0c 863
a60637c8 864 rcu_read_unlock();
1da177e4
LT
865 return ret;
866}
867
ebf43500
JA
868/**
869 * find_get_pages_contig - gang contiguous pagecache lookup
870 * @mapping: The address_space to search
871 * @index: The starting page index
872 * @nr_pages: The maximum number of pages
873 * @pages: Where the resulting pages are placed
874 *
875 * find_get_pages_contig() works exactly like find_get_pages(), except
876 * that the returned number of pages are guaranteed to be contiguous.
877 *
878 * find_get_pages_contig() returns the number of pages which were found.
879 */
880unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
881 unsigned int nr_pages, struct page **pages)
882{
0fc9d104
KK
883 struct radix_tree_iter iter;
884 void **slot;
885 unsigned int ret = 0;
886
887 if (unlikely(!nr_pages))
888 return 0;
a60637c8
NP
889
890 rcu_read_lock();
891restart:
0fc9d104 892 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
893 struct page *page;
894repeat:
0fc9d104
KK
895 page = radix_tree_deref_slot(slot);
896 /* The hole, there no reason to continue */
a60637c8 897 if (unlikely(!page))
0fc9d104 898 break;
9d8aa4ea 899
a2c16d6c 900 if (radix_tree_exception(page)) {
8079b1c8
HD
901 if (radix_tree_deref_retry(page)) {
902 /*
903 * Transient condition which can only trigger
904 * when entry at index 0 moves out of or back
905 * to root: none yet gotten, safe to restart.
906 */
907 goto restart;
908 }
a2c16d6c 909 /*
8079b1c8
HD
910 * Otherwise, shmem/tmpfs must be storing a swap entry
911 * here as an exceptional entry: so stop looking for
912 * contiguous pages.
a2c16d6c 913 */
8079b1c8 914 break;
a2c16d6c 915 }
ebf43500 916
a60637c8
NP
917 if (!page_cache_get_speculative(page))
918 goto repeat;
919
920 /* Has the page moved? */
0fc9d104 921 if (unlikely(page != *slot)) {
a60637c8
NP
922 page_cache_release(page);
923 goto repeat;
924 }
925
9cbb4cb2
NP
926 /*
927 * must check mapping and index after taking the ref.
928 * otherwise we can get both false positives and false
929 * negatives, which is just confusing to the caller.
930 */
0fc9d104 931 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
932 page_cache_release(page);
933 break;
934 }
935
a60637c8 936 pages[ret] = page;
0fc9d104
KK
937 if (++ret == nr_pages)
938 break;
ebf43500 939 }
a60637c8
NP
940 rcu_read_unlock();
941 return ret;
ebf43500 942}
ef71c15c 943EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 944
485bb99b
RD
945/**
946 * find_get_pages_tag - find and return pages that match @tag
947 * @mapping: the address_space to search
948 * @index: the starting page index
949 * @tag: the tag index
950 * @nr_pages: the maximum number of pages
951 * @pages: where the resulting pages are placed
952 *
1da177e4 953 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 954 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
955 */
956unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
957 int tag, unsigned int nr_pages, struct page **pages)
958{
0fc9d104
KK
959 struct radix_tree_iter iter;
960 void **slot;
961 unsigned ret = 0;
962
963 if (unlikely(!nr_pages))
964 return 0;
a60637c8
NP
965
966 rcu_read_lock();
967restart:
0fc9d104
KK
968 radix_tree_for_each_tagged(slot, &mapping->page_tree,
969 &iter, *index, tag) {
a60637c8
NP
970 struct page *page;
971repeat:
0fc9d104 972 page = radix_tree_deref_slot(slot);
a60637c8
NP
973 if (unlikely(!page))
974 continue;
9d8aa4ea 975
a2c16d6c 976 if (radix_tree_exception(page)) {
8079b1c8
HD
977 if (radix_tree_deref_retry(page)) {
978 /*
979 * Transient condition which can only trigger
980 * when entry at index 0 moves out of or back
981 * to root: none yet gotten, safe to restart.
982 */
983 goto restart;
984 }
a2c16d6c 985 /*
8079b1c8
HD
986 * This function is never used on a shmem/tmpfs
987 * mapping, so a swap entry won't be found here.
a2c16d6c 988 */
8079b1c8 989 BUG();
a2c16d6c 990 }
a60637c8
NP
991
992 if (!page_cache_get_speculative(page))
993 goto repeat;
994
995 /* Has the page moved? */
0fc9d104 996 if (unlikely(page != *slot)) {
a60637c8
NP
997 page_cache_release(page);
998 goto repeat;
999 }
1000
1001 pages[ret] = page;
0fc9d104
KK
1002 if (++ret == nr_pages)
1003 break;
a60637c8 1004 }
5b280c0c 1005
a60637c8 1006 rcu_read_unlock();
1da177e4 1007
1da177e4
LT
1008 if (ret)
1009 *index = pages[ret - 1]->index + 1;
a60637c8 1010
1da177e4
LT
1011 return ret;
1012}
ef71c15c 1013EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1014
485bb99b
RD
1015/**
1016 * grab_cache_page_nowait - returns locked page at given index in given cache
1017 * @mapping: target address_space
1018 * @index: the page index
1019 *
72fd4a35 1020 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
1021 * This is intended for speculative data generators, where the data can
1022 * be regenerated if the page couldn't be grabbed. This routine should
1023 * be safe to call while holding the lock for another page.
1024 *
1025 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1026 * and deadlock against the caller's locked page.
1027 */
1028struct page *
57f6b96c 1029grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
1030{
1031 struct page *page = find_get_page(mapping, index);
1da177e4
LT
1032
1033 if (page) {
529ae9aa 1034 if (trylock_page(page))
1da177e4
LT
1035 return page;
1036 page_cache_release(page);
1037 return NULL;
1038 }
2ae88149 1039 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 1040 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
1041 page_cache_release(page);
1042 page = NULL;
1043 }
1044 return page;
1045}
1da177e4
LT
1046EXPORT_SYMBOL(grab_cache_page_nowait);
1047
76d42bd9
WF
1048/*
1049 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1050 * a _large_ part of the i/o request. Imagine the worst scenario:
1051 *
1052 * ---R__________________________________________B__________
1053 * ^ reading here ^ bad block(assume 4k)
1054 *
1055 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1056 * => failing the whole request => read(R) => read(R+1) =>
1057 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1058 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1059 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1060 *
1061 * It is going insane. Fix it by quickly scaling down the readahead size.
1062 */
1063static void shrink_readahead_size_eio(struct file *filp,
1064 struct file_ra_state *ra)
1065{
76d42bd9 1066 ra->ra_pages /= 4;
76d42bd9
WF
1067}
1068
485bb99b 1069/**
36e78914 1070 * do_generic_file_read - generic file read routine
485bb99b
RD
1071 * @filp: the file to read
1072 * @ppos: current file position
1073 * @desc: read_descriptor
1074 * @actor: read method
1075 *
1da177e4 1076 * This is a generic file read routine, and uses the
485bb99b 1077 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1078 *
1079 * This is really ugly. But the goto's actually try to clarify some
1080 * of the logic when it comes to error handling etc.
1da177e4 1081 */
36e78914
CH
1082static void do_generic_file_read(struct file *filp, loff_t *ppos,
1083 read_descriptor_t *desc, read_actor_t actor)
1da177e4 1084{
36e78914 1085 struct address_space *mapping = filp->f_mapping;
1da177e4 1086 struct inode *inode = mapping->host;
36e78914 1087 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1088 pgoff_t index;
1089 pgoff_t last_index;
1090 pgoff_t prev_index;
1091 unsigned long offset; /* offset into pagecache page */
ec0f1637 1092 unsigned int prev_offset;
1da177e4 1093 int error;
1da177e4 1094
1da177e4 1095 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1096 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1097 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
1098 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1099 offset = *ppos & ~PAGE_CACHE_MASK;
1100
1da177e4
LT
1101 for (;;) {
1102 struct page *page;
57f6b96c 1103 pgoff_t end_index;
a32ea1e1 1104 loff_t isize;
1da177e4
LT
1105 unsigned long nr, ret;
1106
1da177e4 1107 cond_resched();
1da177e4
LT
1108find_page:
1109 page = find_get_page(mapping, index);
3ea89ee8 1110 if (!page) {
cf914a7d 1111 page_cache_sync_readahead(mapping,
7ff81078 1112 ra, filp,
3ea89ee8
FW
1113 index, last_index - index);
1114 page = find_get_page(mapping, index);
1115 if (unlikely(page == NULL))
1116 goto no_cached_page;
1117 }
1118 if (PageReadahead(page)) {
cf914a7d 1119 page_cache_async_readahead(mapping,
7ff81078 1120 ra, filp, page,
3ea89ee8 1121 index, last_index - index);
1da177e4 1122 }
8ab22b9a
HH
1123 if (!PageUptodate(page)) {
1124 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1125 !mapping->a_ops->is_partially_uptodate)
1126 goto page_not_up_to_date;
529ae9aa 1127 if (!trylock_page(page))
8ab22b9a 1128 goto page_not_up_to_date;
8d056cb9
DH
1129 /* Did it get truncated before we got the lock? */
1130 if (!page->mapping)
1131 goto page_not_up_to_date_locked;
8ab22b9a
HH
1132 if (!mapping->a_ops->is_partially_uptodate(page,
1133 desc, offset))
1134 goto page_not_up_to_date_locked;
1135 unlock_page(page);
1136 }
1da177e4 1137page_ok:
a32ea1e1
N
1138 /*
1139 * i_size must be checked after we know the page is Uptodate.
1140 *
1141 * Checking i_size after the check allows us to calculate
1142 * the correct value for "nr", which means the zero-filled
1143 * part of the page is not copied back to userspace (unless
1144 * another truncate extends the file - this is desired though).
1145 */
1146
1147 isize = i_size_read(inode);
1148 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1149 if (unlikely(!isize || index > end_index)) {
1150 page_cache_release(page);
1151 goto out;
1152 }
1153
1154 /* nr is the maximum number of bytes to copy from this page */
1155 nr = PAGE_CACHE_SIZE;
1156 if (index == end_index) {
1157 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1158 if (nr <= offset) {
1159 page_cache_release(page);
1160 goto out;
1161 }
1162 }
1163 nr = nr - offset;
1da177e4
LT
1164
1165 /* If users can be writing to this page using arbitrary
1166 * virtual addresses, take care about potential aliasing
1167 * before reading the page on the kernel side.
1168 */
1169 if (mapping_writably_mapped(mapping))
1170 flush_dcache_page(page);
1171
1172 /*
ec0f1637
JK
1173 * When a sequential read accesses a page several times,
1174 * only mark it as accessed the first time.
1da177e4 1175 */
ec0f1637 1176 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1177 mark_page_accessed(page);
1178 prev_index = index;
1179
1180 /*
1181 * Ok, we have the page, and it's up-to-date, so
1182 * now we can copy it to user space...
1183 *
1184 * The actor routine returns how many bytes were actually used..
1185 * NOTE! This may not be the same as how much of a user buffer
1186 * we filled up (we may be padding etc), so we can only update
1187 * "pos" here (the actor routine has to update the user buffer
1188 * pointers and the remaining count).
1189 */
1190 ret = actor(desc, page, offset, nr);
1191 offset += ret;
1192 index += offset >> PAGE_CACHE_SHIFT;
1193 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1194 prev_offset = offset;
1da177e4
LT
1195
1196 page_cache_release(page);
1197 if (ret == nr && desc->count)
1198 continue;
1199 goto out;
1200
1201page_not_up_to_date:
1202 /* Get exclusive access to the page ... */
85462323
ON
1203 error = lock_page_killable(page);
1204 if (unlikely(error))
1205 goto readpage_error;
1da177e4 1206
8ab22b9a 1207page_not_up_to_date_locked:
da6052f7 1208 /* Did it get truncated before we got the lock? */
1da177e4
LT
1209 if (!page->mapping) {
1210 unlock_page(page);
1211 page_cache_release(page);
1212 continue;
1213 }
1214
1215 /* Did somebody else fill it already? */
1216 if (PageUptodate(page)) {
1217 unlock_page(page);
1218 goto page_ok;
1219 }
1220
1221readpage:
91803b49
JM
1222 /*
1223 * A previous I/O error may have been due to temporary
1224 * failures, eg. multipath errors.
1225 * PG_error will be set again if readpage fails.
1226 */
1227 ClearPageError(page);
1da177e4
LT
1228 /* Start the actual read. The read will unlock the page. */
1229 error = mapping->a_ops->readpage(filp, page);
1230
994fc28c
ZB
1231 if (unlikely(error)) {
1232 if (error == AOP_TRUNCATED_PAGE) {
1233 page_cache_release(page);
1234 goto find_page;
1235 }
1da177e4 1236 goto readpage_error;
994fc28c 1237 }
1da177e4
LT
1238
1239 if (!PageUptodate(page)) {
85462323
ON
1240 error = lock_page_killable(page);
1241 if (unlikely(error))
1242 goto readpage_error;
1da177e4
LT
1243 if (!PageUptodate(page)) {
1244 if (page->mapping == NULL) {
1245 /*
2ecdc82e 1246 * invalidate_mapping_pages got it
1da177e4
LT
1247 */
1248 unlock_page(page);
1249 page_cache_release(page);
1250 goto find_page;
1251 }
1252 unlock_page(page);
7ff81078 1253 shrink_readahead_size_eio(filp, ra);
85462323
ON
1254 error = -EIO;
1255 goto readpage_error;
1da177e4
LT
1256 }
1257 unlock_page(page);
1258 }
1259
1da177e4
LT
1260 goto page_ok;
1261
1262readpage_error:
1263 /* UHHUH! A synchronous read error occurred. Report it */
1264 desc->error = error;
1265 page_cache_release(page);
1266 goto out;
1267
1268no_cached_page:
1269 /*
1270 * Ok, it wasn't cached, so we need to create a new
1271 * page..
1272 */
eb2be189
NP
1273 page = page_cache_alloc_cold(mapping);
1274 if (!page) {
1275 desc->error = -ENOMEM;
1276 goto out;
1da177e4 1277 }
eb2be189 1278 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1279 index, GFP_KERNEL);
1280 if (error) {
eb2be189 1281 page_cache_release(page);
1da177e4
LT
1282 if (error == -EEXIST)
1283 goto find_page;
1284 desc->error = error;
1285 goto out;
1286 }
1da177e4
LT
1287 goto readpage;
1288 }
1289
1290out:
7ff81078
FW
1291 ra->prev_pos = prev_index;
1292 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1293 ra->prev_pos |= prev_offset;
1da177e4 1294
f4e6b498 1295 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1296 file_accessed(filp);
1da177e4 1297}
1da177e4
LT
1298
1299int file_read_actor(read_descriptor_t *desc, struct page *page,
1300 unsigned long offset, unsigned long size)
1301{
1302 char *kaddr;
1303 unsigned long left, count = desc->count;
1304
1305 if (size > count)
1306 size = count;
1307
1308 /*
1309 * Faults on the destination of a read are common, so do it before
1310 * taking the kmap.
1311 */
1312 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
9b04c5fe 1313 kaddr = kmap_atomic(page);
1da177e4
LT
1314 left = __copy_to_user_inatomic(desc->arg.buf,
1315 kaddr + offset, size);
9b04c5fe 1316 kunmap_atomic(kaddr);
1da177e4
LT
1317 if (left == 0)
1318 goto success;
1319 }
1320
1321 /* Do it the slow way */
1322 kaddr = kmap(page);
1323 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1324 kunmap(page);
1325
1326 if (left) {
1327 size -= left;
1328 desc->error = -EFAULT;
1329 }
1330success:
1331 desc->count = count - size;
1332 desc->written += size;
1333 desc->arg.buf += size;
1334 return size;
1335}
1336
0ceb3314
DM
1337/*
1338 * Performs necessary checks before doing a write
1339 * @iov: io vector request
1340 * @nr_segs: number of segments in the iovec
1341 * @count: number of bytes to write
1342 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1343 *
1344 * Adjust number of segments and amount of bytes to write (nr_segs should be
1345 * properly initialized first). Returns appropriate error code that caller
1346 * should return or zero in case that write should be allowed.
1347 */
1348int generic_segment_checks(const struct iovec *iov,
1349 unsigned long *nr_segs, size_t *count, int access_flags)
1350{
1351 unsigned long seg;
1352 size_t cnt = 0;
1353 for (seg = 0; seg < *nr_segs; seg++) {
1354 const struct iovec *iv = &iov[seg];
1355
1356 /*
1357 * If any segment has a negative length, or the cumulative
1358 * length ever wraps negative then return -EINVAL.
1359 */
1360 cnt += iv->iov_len;
1361 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1362 return -EINVAL;
1363 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1364 continue;
1365 if (seg == 0)
1366 return -EFAULT;
1367 *nr_segs = seg;
1368 cnt -= iv->iov_len; /* This segment is no good */
1369 break;
1370 }
1371 *count = cnt;
1372 return 0;
1373}
1374EXPORT_SYMBOL(generic_segment_checks);
1375
485bb99b 1376/**
b2abacf3 1377 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1378 * @iocb: kernel I/O control block
1379 * @iov: io vector request
1380 * @nr_segs: number of segments in the iovec
b2abacf3 1381 * @pos: current file position
485bb99b 1382 *
1da177e4
LT
1383 * This is the "read()" routine for all filesystems
1384 * that can use the page cache directly.
1385 */
1386ssize_t
543ade1f
BP
1387generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1388 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1389{
1390 struct file *filp = iocb->ki_filp;
1391 ssize_t retval;
66f998f6 1392 unsigned long seg = 0;
1da177e4 1393 size_t count;
543ade1f 1394 loff_t *ppos = &iocb->ki_pos;
1da177e4
LT
1395
1396 count = 0;
0ceb3314
DM
1397 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1398 if (retval)
1399 return retval;
1da177e4
LT
1400
1401 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1402 if (filp->f_flags & O_DIRECT) {
543ade1f 1403 loff_t size;
1da177e4
LT
1404 struct address_space *mapping;
1405 struct inode *inode;
1406
1407 mapping = filp->f_mapping;
1408 inode = mapping->host;
1da177e4
LT
1409 if (!count)
1410 goto out; /* skip atime */
1411 size = i_size_read(inode);
1412 if (pos < size) {
48b47c56
NP
1413 retval = filemap_write_and_wait_range(mapping, pos,
1414 pos + iov_length(iov, nr_segs) - 1);
a969e903 1415 if (!retval) {
3deaa719
SL
1416 struct blk_plug plug;
1417
1418 blk_start_plug(&plug);
a969e903
CH
1419 retval = mapping->a_ops->direct_IO(READ, iocb,
1420 iov, pos, nr_segs);
3deaa719 1421 blk_finish_plug(&plug);
a969e903 1422 }
66f998f6 1423 if (retval > 0) {
1da177e4 1424 *ppos = pos + retval;
66f998f6
JB
1425 count -= retval;
1426 }
1427
1428 /*
1429 * Btrfs can have a short DIO read if we encounter
1430 * compressed extents, so if there was an error, or if
1431 * we've already read everything we wanted to, or if
1432 * there was a short read because we hit EOF, go ahead
1433 * and return. Otherwise fallthrough to buffered io for
1434 * the rest of the read.
1435 */
1436 if (retval < 0 || !count || *ppos >= size) {
11fa977e
HD
1437 file_accessed(filp);
1438 goto out;
1439 }
0e0bcae3 1440 }
1da177e4
LT
1441 }
1442
66f998f6 1443 count = retval;
11fa977e
HD
1444 for (seg = 0; seg < nr_segs; seg++) {
1445 read_descriptor_t desc;
66f998f6
JB
1446 loff_t offset = 0;
1447
1448 /*
1449 * If we did a short DIO read we need to skip the section of the
1450 * iov that we've already read data into.
1451 */
1452 if (count) {
1453 if (count > iov[seg].iov_len) {
1454 count -= iov[seg].iov_len;
1455 continue;
1456 }
1457 offset = count;
1458 count = 0;
1459 }
1da177e4 1460
11fa977e 1461 desc.written = 0;
66f998f6
JB
1462 desc.arg.buf = iov[seg].iov_base + offset;
1463 desc.count = iov[seg].iov_len - offset;
11fa977e
HD
1464 if (desc.count == 0)
1465 continue;
1466 desc.error = 0;
1467 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1468 retval += desc.written;
1469 if (desc.error) {
1470 retval = retval ?: desc.error;
1471 break;
1da177e4 1472 }
11fa977e
HD
1473 if (desc.count > 0)
1474 break;
1da177e4
LT
1475 }
1476out:
1477 return retval;
1478}
1da177e4
LT
1479EXPORT_SYMBOL(generic_file_aio_read);
1480
1da177e4
LT
1481static ssize_t
1482do_readahead(struct address_space *mapping, struct file *filp,
57f6b96c 1483 pgoff_t index, unsigned long nr)
1da177e4
LT
1484{
1485 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1486 return -EINVAL;
1487
f7e839dd 1488 force_page_cache_readahead(mapping, filp, index, nr);
1da177e4
LT
1489 return 0;
1490}
1491
6673e0c3 1492SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1da177e4
LT
1493{
1494 ssize_t ret;
1495 struct file *file;
1496
1497 ret = -EBADF;
1498 file = fget(fd);
1499 if (file) {
1500 if (file->f_mode & FMODE_READ) {
1501 struct address_space *mapping = file->f_mapping;
57f6b96c
FW
1502 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1503 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1504 unsigned long len = end - start + 1;
1505 ret = do_readahead(mapping, file, start, len);
1506 }
1507 fput(file);
1508 }
1509 return ret;
1510}
6673e0c3
HC
1511#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1512asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1513{
1514 return SYSC_readahead((int) fd, offset, (size_t) count);
1515}
1516SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1517#endif
1da177e4
LT
1518
1519#ifdef CONFIG_MMU
485bb99b
RD
1520/**
1521 * page_cache_read - adds requested page to the page cache if not already there
1522 * @file: file to read
1523 * @offset: page index
1524 *
1da177e4
LT
1525 * This adds the requested page to the page cache if it isn't already there,
1526 * and schedules an I/O to read in its contents from disk.
1527 */
920c7a5d 1528static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1529{
1530 struct address_space *mapping = file->f_mapping;
1531 struct page *page;
994fc28c 1532 int ret;
1da177e4 1533
994fc28c
ZB
1534 do {
1535 page = page_cache_alloc_cold(mapping);
1536 if (!page)
1537 return -ENOMEM;
1538
1539 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1540 if (ret == 0)
1541 ret = mapping->a_ops->readpage(file, page);
1542 else if (ret == -EEXIST)
1543 ret = 0; /* losing race to add is OK */
1da177e4 1544
1da177e4 1545 page_cache_release(page);
1da177e4 1546
994fc28c
ZB
1547 } while (ret == AOP_TRUNCATED_PAGE);
1548
1549 return ret;
1da177e4
LT
1550}
1551
1552#define MMAP_LOTSAMISS (100)
1553
ef00e08e
LT
1554/*
1555 * Synchronous readahead happens when we don't even find
1556 * a page in the page cache at all.
1557 */
1558static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1559 struct file_ra_state *ra,
1560 struct file *file,
1561 pgoff_t offset)
1562{
1563 unsigned long ra_pages;
1564 struct address_space *mapping = file->f_mapping;
1565
1566 /* If we don't want any read-ahead, don't bother */
1567 if (VM_RandomReadHint(vma))
1568 return;
275b12bf
WF
1569 if (!ra->ra_pages)
1570 return;
ef00e08e 1571
2cbea1d3 1572 if (VM_SequentialReadHint(vma)) {
7ffc59b4
WF
1573 page_cache_sync_readahead(mapping, ra, file, offset,
1574 ra->ra_pages);
ef00e08e
LT
1575 return;
1576 }
1577
207d04ba
AK
1578 /* Avoid banging the cache line if not needed */
1579 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1580 ra->mmap_miss++;
1581
1582 /*
1583 * Do we miss much more than hit in this file? If so,
1584 * stop bothering with read-ahead. It will only hurt.
1585 */
1586 if (ra->mmap_miss > MMAP_LOTSAMISS)
1587 return;
1588
d30a1100
WF
1589 /*
1590 * mmap read-around
1591 */
ef00e08e 1592 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1593 ra->start = max_t(long, 0, offset - ra_pages / 2);
1594 ra->size = ra_pages;
2cbea1d3 1595 ra->async_size = ra_pages / 4;
275b12bf 1596 ra_submit(ra, mapping, file);
ef00e08e
LT
1597}
1598
1599/*
1600 * Asynchronous readahead happens when we find the page and PG_readahead,
1601 * so we want to possibly extend the readahead further..
1602 */
1603static void do_async_mmap_readahead(struct vm_area_struct *vma,
1604 struct file_ra_state *ra,
1605 struct file *file,
1606 struct page *page,
1607 pgoff_t offset)
1608{
1609 struct address_space *mapping = file->f_mapping;
1610
1611 /* If we don't want any read-ahead, don't bother */
1612 if (VM_RandomReadHint(vma))
1613 return;
1614 if (ra->mmap_miss > 0)
1615 ra->mmap_miss--;
1616 if (PageReadahead(page))
2fad6f5d
WF
1617 page_cache_async_readahead(mapping, ra, file,
1618 page, offset, ra->ra_pages);
ef00e08e
LT
1619}
1620
485bb99b 1621/**
54cb8821 1622 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1623 * @vma: vma in which the fault was taken
1624 * @vmf: struct vm_fault containing details of the fault
485bb99b 1625 *
54cb8821 1626 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1627 * mapped memory region to read in file data during a page fault.
1628 *
1629 * The goto's are kind of ugly, but this streamlines the normal case of having
1630 * it in the page cache, and handles the special cases reasonably without
1631 * having a lot of duplicated code.
1632 */
d0217ac0 1633int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1634{
1635 int error;
54cb8821 1636 struct file *file = vma->vm_file;
1da177e4
LT
1637 struct address_space *mapping = file->f_mapping;
1638 struct file_ra_state *ra = &file->f_ra;
1639 struct inode *inode = mapping->host;
ef00e08e 1640 pgoff_t offset = vmf->pgoff;
1da177e4 1641 struct page *page;
2004dc8e 1642 pgoff_t size;
83c54070 1643 int ret = 0;
1da177e4 1644
1da177e4 1645 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1646 if (offset >= size)
5307cc1a 1647 return VM_FAULT_SIGBUS;
1da177e4 1648
1da177e4
LT
1649 /*
1650 * Do we have something in the page cache already?
1651 */
ef00e08e
LT
1652 page = find_get_page(mapping, offset);
1653 if (likely(page)) {
1da177e4 1654 /*
ef00e08e
LT
1655 * We found the page, so try async readahead before
1656 * waiting for the lock.
1da177e4 1657 */
ef00e08e 1658 do_async_mmap_readahead(vma, ra, file, page, offset);
ef00e08e
LT
1659 } else {
1660 /* No page in the page cache at all */
1661 do_sync_mmap_readahead(vma, ra, file, offset);
1662 count_vm_event(PGMAJFAULT);
456f998e 1663 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1664 ret = VM_FAULT_MAJOR;
1665retry_find:
b522c94d 1666 page = find_get_page(mapping, offset);
1da177e4
LT
1667 if (!page)
1668 goto no_cached_page;
1669 }
1670
d88c0922
ML
1671 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1672 page_cache_release(page);
d065bd81 1673 return ret | VM_FAULT_RETRY;
d88c0922 1674 }
b522c94d
ML
1675
1676 /* Did it get truncated? */
1677 if (unlikely(page->mapping != mapping)) {
1678 unlock_page(page);
1679 put_page(page);
1680 goto retry_find;
1681 }
1682 VM_BUG_ON(page->index != offset);
1683
1da177e4 1684 /*
d00806b1
NP
1685 * We have a locked page in the page cache, now we need to check
1686 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1687 */
d00806b1 1688 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1689 goto page_not_uptodate;
1690
ef00e08e
LT
1691 /*
1692 * Found the page and have a reference on it.
1693 * We must recheck i_size under page lock.
1694 */
d00806b1 1695 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1696 if (unlikely(offset >= size)) {
d00806b1 1697 unlock_page(page);
745ad48e 1698 page_cache_release(page);
5307cc1a 1699 return VM_FAULT_SIGBUS;
d00806b1
NP
1700 }
1701
d0217ac0 1702 vmf->page = page;
83c54070 1703 return ret | VM_FAULT_LOCKED;
1da177e4 1704
1da177e4
LT
1705no_cached_page:
1706 /*
1707 * We're only likely to ever get here if MADV_RANDOM is in
1708 * effect.
1709 */
ef00e08e 1710 error = page_cache_read(file, offset);
1da177e4
LT
1711
1712 /*
1713 * The page we want has now been added to the page cache.
1714 * In the unlikely event that someone removed it in the
1715 * meantime, we'll just come back here and read it again.
1716 */
1717 if (error >= 0)
1718 goto retry_find;
1719
1720 /*
1721 * An error return from page_cache_read can result if the
1722 * system is low on memory, or a problem occurs while trying
1723 * to schedule I/O.
1724 */
1725 if (error == -ENOMEM)
d0217ac0
NP
1726 return VM_FAULT_OOM;
1727 return VM_FAULT_SIGBUS;
1da177e4
LT
1728
1729page_not_uptodate:
1da177e4
LT
1730 /*
1731 * Umm, take care of errors if the page isn't up-to-date.
1732 * Try to re-read it _once_. We do this synchronously,
1733 * because there really aren't any performance issues here
1734 * and we need to check for errors.
1735 */
1da177e4 1736 ClearPageError(page);
994fc28c 1737 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1738 if (!error) {
1739 wait_on_page_locked(page);
1740 if (!PageUptodate(page))
1741 error = -EIO;
1742 }
d00806b1
NP
1743 page_cache_release(page);
1744
1745 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1746 goto retry_find;
1da177e4 1747
d00806b1 1748 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1749 shrink_readahead_size_eio(file, ra);
d0217ac0 1750 return VM_FAULT_SIGBUS;
54cb8821
NP
1751}
1752EXPORT_SYMBOL(filemap_fault);
1753
f0f37e2f 1754const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1755 .fault = filemap_fault,
1da177e4
LT
1756};
1757
1758/* This is used for a general mmap of a disk file */
1759
1760int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1761{
1762 struct address_space *mapping = file->f_mapping;
1763
1764 if (!mapping->a_ops->readpage)
1765 return -ENOEXEC;
1766 file_accessed(file);
1767 vma->vm_ops = &generic_file_vm_ops;
d0217ac0 1768 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1769 return 0;
1770}
1da177e4
LT
1771
1772/*
1773 * This is for filesystems which do not implement ->writepage.
1774 */
1775int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1776{
1777 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1778 return -EINVAL;
1779 return generic_file_mmap(file, vma);
1780}
1781#else
1782int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1783{
1784 return -ENOSYS;
1785}
1786int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1787{
1788 return -ENOSYS;
1789}
1790#endif /* CONFIG_MMU */
1791
1792EXPORT_SYMBOL(generic_file_mmap);
1793EXPORT_SYMBOL(generic_file_readonly_mmap);
1794
6fe6900e 1795static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1796 pgoff_t index,
5e5358e7 1797 int (*filler)(void *, struct page *),
0531b2aa
LT
1798 void *data,
1799 gfp_t gfp)
1da177e4 1800{
eb2be189 1801 struct page *page;
1da177e4
LT
1802 int err;
1803repeat:
1804 page = find_get_page(mapping, index);
1805 if (!page) {
0531b2aa 1806 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
1807 if (!page)
1808 return ERR_PTR(-ENOMEM);
e6f67b8c 1809 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
1810 if (unlikely(err)) {
1811 page_cache_release(page);
1812 if (err == -EEXIST)
1813 goto repeat;
1da177e4 1814 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1815 return ERR_PTR(err);
1816 }
1da177e4
LT
1817 err = filler(data, page);
1818 if (err < 0) {
1819 page_cache_release(page);
1820 page = ERR_PTR(err);
1821 }
1822 }
1da177e4
LT
1823 return page;
1824}
1825
0531b2aa 1826static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 1827 pgoff_t index,
5e5358e7 1828 int (*filler)(void *, struct page *),
0531b2aa
LT
1829 void *data,
1830 gfp_t gfp)
1831
1da177e4
LT
1832{
1833 struct page *page;
1834 int err;
1835
1836retry:
0531b2aa 1837 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 1838 if (IS_ERR(page))
c855ff37 1839 return page;
1da177e4
LT
1840 if (PageUptodate(page))
1841 goto out;
1842
1843 lock_page(page);
1844 if (!page->mapping) {
1845 unlock_page(page);
1846 page_cache_release(page);
1847 goto retry;
1848 }
1849 if (PageUptodate(page)) {
1850 unlock_page(page);
1851 goto out;
1852 }
1853 err = filler(data, page);
1854 if (err < 0) {
1855 page_cache_release(page);
c855ff37 1856 return ERR_PTR(err);
1da177e4 1857 }
c855ff37 1858out:
6fe6900e
NP
1859 mark_page_accessed(page);
1860 return page;
1861}
0531b2aa
LT
1862
1863/**
1864 * read_cache_page_async - read into page cache, fill it if needed
1865 * @mapping: the page's address_space
1866 * @index: the page index
1867 * @filler: function to perform the read
5e5358e7 1868 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa
LT
1869 *
1870 * Same as read_cache_page, but don't wait for page to become unlocked
1871 * after submitting it to the filler.
1872 *
1873 * Read into the page cache. If a page already exists, and PageUptodate() is
1874 * not set, try to fill the page but don't wait for it to become unlocked.
1875 *
1876 * If the page does not get brought uptodate, return -EIO.
1877 */
1878struct page *read_cache_page_async(struct address_space *mapping,
1879 pgoff_t index,
5e5358e7 1880 int (*filler)(void *, struct page *),
0531b2aa
LT
1881 void *data)
1882{
1883 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1884}
6fe6900e
NP
1885EXPORT_SYMBOL(read_cache_page_async);
1886
0531b2aa
LT
1887static struct page *wait_on_page_read(struct page *page)
1888{
1889 if (!IS_ERR(page)) {
1890 wait_on_page_locked(page);
1891 if (!PageUptodate(page)) {
1892 page_cache_release(page);
1893 page = ERR_PTR(-EIO);
1894 }
1895 }
1896 return page;
1897}
1898
1899/**
1900 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1901 * @mapping: the page's address_space
1902 * @index: the page index
1903 * @gfp: the page allocator flags to use if allocating
1904 *
1905 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 1906 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
1907 *
1908 * If the page does not get brought uptodate, return -EIO.
1909 */
1910struct page *read_cache_page_gfp(struct address_space *mapping,
1911 pgoff_t index,
1912 gfp_t gfp)
1913{
1914 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1915
1916 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1917}
1918EXPORT_SYMBOL(read_cache_page_gfp);
1919
6fe6900e
NP
1920/**
1921 * read_cache_page - read into page cache, fill it if needed
1922 * @mapping: the page's address_space
1923 * @index: the page index
1924 * @filler: function to perform the read
5e5358e7 1925 * @data: first arg to filler(data, page) function, often left as NULL
6fe6900e
NP
1926 *
1927 * Read into the page cache. If a page already exists, and PageUptodate() is
1928 * not set, try to fill the page then wait for it to become unlocked.
1929 *
1930 * If the page does not get brought uptodate, return -EIO.
1931 */
1932struct page *read_cache_page(struct address_space *mapping,
57f6b96c 1933 pgoff_t index,
5e5358e7 1934 int (*filler)(void *, struct page *),
6fe6900e
NP
1935 void *data)
1936{
0531b2aa 1937 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1da177e4 1938}
1da177e4
LT
1939EXPORT_SYMBOL(read_cache_page);
1940
2f718ffc 1941static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
1942 const struct iovec *iov, size_t base, size_t bytes)
1943{
f1800536 1944 size_t copied = 0, left = 0;
1da177e4
LT
1945
1946 while (bytes) {
1947 char __user *buf = iov->iov_base + base;
1948 int copy = min(bytes, iov->iov_len - base);
1949
1950 base = 0;
f1800536 1951 left = __copy_from_user_inatomic(vaddr, buf, copy);
1da177e4
LT
1952 copied += copy;
1953 bytes -= copy;
1954 vaddr += copy;
1955 iov++;
1956
01408c49 1957 if (unlikely(left))
1da177e4 1958 break;
1da177e4
LT
1959 }
1960 return copied - left;
1961}
1962
2f718ffc
NP
1963/*
1964 * Copy as much as we can into the page and return the number of bytes which
af901ca1 1965 * were successfully copied. If a fault is encountered then return the number of
2f718ffc
NP
1966 * bytes which were copied.
1967 */
1968size_t iov_iter_copy_from_user_atomic(struct page *page,
1969 struct iov_iter *i, unsigned long offset, size_t bytes)
1970{
1971 char *kaddr;
1972 size_t copied;
1973
1974 BUG_ON(!in_atomic());
9b04c5fe 1975 kaddr = kmap_atomic(page);
2f718ffc
NP
1976 if (likely(i->nr_segs == 1)) {
1977 int left;
1978 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 1979 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2f718ffc
NP
1980 copied = bytes - left;
1981 } else {
1982 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1983 i->iov, i->iov_offset, bytes);
1984 }
9b04c5fe 1985 kunmap_atomic(kaddr);
2f718ffc
NP
1986
1987 return copied;
1988}
89e10787 1989EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
1990
1991/*
1992 * This has the same sideeffects and return value as
1993 * iov_iter_copy_from_user_atomic().
1994 * The difference is that it attempts to resolve faults.
1995 * Page must not be locked.
1996 */
1997size_t iov_iter_copy_from_user(struct page *page,
1998 struct iov_iter *i, unsigned long offset, size_t bytes)
1999{
2000 char *kaddr;
2001 size_t copied;
2002
2003 kaddr = kmap(page);
2004 if (likely(i->nr_segs == 1)) {
2005 int left;
2006 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2007 left = __copy_from_user(kaddr + offset, buf, bytes);
2f718ffc
NP
2008 copied = bytes - left;
2009 } else {
2010 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2011 i->iov, i->iov_offset, bytes);
2012 }
2013 kunmap(page);
2014 return copied;
2015}
89e10787 2016EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 2017
f7009264 2018void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 2019{
f7009264
NP
2020 BUG_ON(i->count < bytes);
2021
2f718ffc
NP
2022 if (likely(i->nr_segs == 1)) {
2023 i->iov_offset += bytes;
f7009264 2024 i->count -= bytes;
2f718ffc
NP
2025 } else {
2026 const struct iovec *iov = i->iov;
2027 size_t base = i->iov_offset;
39be79c1 2028 unsigned long nr_segs = i->nr_segs;
2f718ffc 2029
124d3b70
NP
2030 /*
2031 * The !iov->iov_len check ensures we skip over unlikely
f7009264 2032 * zero-length segments (without overruning the iovec).
124d3b70 2033 */
94ad374a 2034 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 2035 int copy;
2f718ffc 2036
f7009264
NP
2037 copy = min(bytes, iov->iov_len - base);
2038 BUG_ON(!i->count || i->count < copy);
2039 i->count -= copy;
2f718ffc
NP
2040 bytes -= copy;
2041 base += copy;
2042 if (iov->iov_len == base) {
2043 iov++;
39be79c1 2044 nr_segs--;
2f718ffc
NP
2045 base = 0;
2046 }
2047 }
2048 i->iov = iov;
2049 i->iov_offset = base;
39be79c1 2050 i->nr_segs = nr_segs;
2f718ffc
NP
2051 }
2052}
89e10787 2053EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 2054
afddba49
NP
2055/*
2056 * Fault in the first iovec of the given iov_iter, to a maximum length
2057 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2058 * accessed (ie. because it is an invalid address).
2059 *
2060 * writev-intensive code may want this to prefault several iovecs -- that
2061 * would be possible (callers must not rely on the fact that _only_ the
2062 * first iovec will be faulted with the current implementation).
2063 */
2064int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 2065{
2f718ffc 2066 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
2067 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2068 return fault_in_pages_readable(buf, bytes);
2f718ffc 2069}
89e10787 2070EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
2071
2072/*
2073 * Return the count of just the current iov_iter segment.
2074 */
2075size_t iov_iter_single_seg_count(struct iov_iter *i)
2076{
2077 const struct iovec *iov = i->iov;
2078 if (i->nr_segs == 1)
2079 return i->count;
2080 else
2081 return min(i->count, iov->iov_len - i->iov_offset);
2082}
89e10787 2083EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 2084
1da177e4
LT
2085/*
2086 * Performs necessary checks before doing a write
2087 *
485bb99b 2088 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2089 * Returns appropriate error code that caller should return or
2090 * zero in case that write should be allowed.
2091 */
2092inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2093{
2094 struct inode *inode = file->f_mapping->host;
59e99e5b 2095 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2096
2097 if (unlikely(*pos < 0))
2098 return -EINVAL;
2099
1da177e4
LT
2100 if (!isblk) {
2101 /* FIXME: this is for backwards compatibility with 2.4 */
2102 if (file->f_flags & O_APPEND)
2103 *pos = i_size_read(inode);
2104
2105 if (limit != RLIM_INFINITY) {
2106 if (*pos >= limit) {
2107 send_sig(SIGXFSZ, current, 0);
2108 return -EFBIG;
2109 }
2110 if (*count > limit - (typeof(limit))*pos) {
2111 *count = limit - (typeof(limit))*pos;
2112 }
2113 }
2114 }
2115
2116 /*
2117 * LFS rule
2118 */
2119 if (unlikely(*pos + *count > MAX_NON_LFS &&
2120 !(file->f_flags & O_LARGEFILE))) {
2121 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2122 return -EFBIG;
2123 }
2124 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2125 *count = MAX_NON_LFS - (unsigned long)*pos;
2126 }
2127 }
2128
2129 /*
2130 * Are we about to exceed the fs block limit ?
2131 *
2132 * If we have written data it becomes a short write. If we have
2133 * exceeded without writing data we send a signal and return EFBIG.
2134 * Linus frestrict idea will clean these up nicely..
2135 */
2136 if (likely(!isblk)) {
2137 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2138 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2139 return -EFBIG;
2140 }
2141 /* zero-length writes at ->s_maxbytes are OK */
2142 }
2143
2144 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2145 *count = inode->i_sb->s_maxbytes - *pos;
2146 } else {
9361401e 2147#ifdef CONFIG_BLOCK
1da177e4
LT
2148 loff_t isize;
2149 if (bdev_read_only(I_BDEV(inode)))
2150 return -EPERM;
2151 isize = i_size_read(inode);
2152 if (*pos >= isize) {
2153 if (*count || *pos > isize)
2154 return -ENOSPC;
2155 }
2156
2157 if (*pos + *count > isize)
2158 *count = isize - *pos;
9361401e
DH
2159#else
2160 return -EPERM;
2161#endif
1da177e4
LT
2162 }
2163 return 0;
2164}
2165EXPORT_SYMBOL(generic_write_checks);
2166
afddba49
NP
2167int pagecache_write_begin(struct file *file, struct address_space *mapping,
2168 loff_t pos, unsigned len, unsigned flags,
2169 struct page **pagep, void **fsdata)
2170{
2171 const struct address_space_operations *aops = mapping->a_ops;
2172
4e02ed4b 2173 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2174 pagep, fsdata);
afddba49
NP
2175}
2176EXPORT_SYMBOL(pagecache_write_begin);
2177
2178int pagecache_write_end(struct file *file, struct address_space *mapping,
2179 loff_t pos, unsigned len, unsigned copied,
2180 struct page *page, void *fsdata)
2181{
2182 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2183
4e02ed4b
NP
2184 mark_page_accessed(page);
2185 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2186}
2187EXPORT_SYMBOL(pagecache_write_end);
2188
1da177e4
LT
2189ssize_t
2190generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2191 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2192 size_t count, size_t ocount)
2193{
2194 struct file *file = iocb->ki_filp;
2195 struct address_space *mapping = file->f_mapping;
2196 struct inode *inode = mapping->host;
2197 ssize_t written;
a969e903
CH
2198 size_t write_len;
2199 pgoff_t end;
1da177e4
LT
2200
2201 if (count != ocount)
2202 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2203
a969e903
CH
2204 write_len = iov_length(iov, *nr_segs);
2205 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2206
48b47c56 2207 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2208 if (written)
2209 goto out;
2210
2211 /*
2212 * After a write we want buffered reads to be sure to go to disk to get
2213 * the new data. We invalidate clean cached page from the region we're
2214 * about to write. We do this *before* the write so that we can return
6ccfa806 2215 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2216 */
2217 if (mapping->nrpages) {
2218 written = invalidate_inode_pages2_range(mapping,
2219 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2220 /*
2221 * If a page can not be invalidated, return 0 to fall back
2222 * to buffered write.
2223 */
2224 if (written) {
2225 if (written == -EBUSY)
2226 return 0;
a969e903 2227 goto out;
6ccfa806 2228 }
a969e903
CH
2229 }
2230
2231 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2232
2233 /*
2234 * Finally, try again to invalidate clean pages which might have been
2235 * cached by non-direct readahead, or faulted in by get_user_pages()
2236 * if the source of the write was an mmap'ed region of the file
2237 * we're writing. Either one is a pretty crazy thing to do,
2238 * so we don't support it 100%. If this invalidation
2239 * fails, tough, the write still worked...
2240 */
2241 if (mapping->nrpages) {
2242 invalidate_inode_pages2_range(mapping,
2243 pos >> PAGE_CACHE_SHIFT, end);
2244 }
2245
1da177e4 2246 if (written > 0) {
0116651c
NK
2247 pos += written;
2248 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2249 i_size_write(inode, pos);
1da177e4
LT
2250 mark_inode_dirty(inode);
2251 }
0116651c 2252 *ppos = pos;
1da177e4 2253 }
a969e903 2254out:
1da177e4
LT
2255 return written;
2256}
2257EXPORT_SYMBOL(generic_file_direct_write);
2258
eb2be189
NP
2259/*
2260 * Find or create a page at the given pagecache position. Return the locked
2261 * page. This function is specifically for buffered writes.
2262 */
54566b2c
NP
2263struct page *grab_cache_page_write_begin(struct address_space *mapping,
2264 pgoff_t index, unsigned flags)
eb2be189
NP
2265{
2266 int status;
0faa70cb 2267 gfp_t gfp_mask;
eb2be189 2268 struct page *page;
54566b2c 2269 gfp_t gfp_notmask = 0;
0faa70cb 2270
1010bb1b
FW
2271 gfp_mask = mapping_gfp_mask(mapping);
2272 if (mapping_cap_account_dirty(mapping))
2273 gfp_mask |= __GFP_WRITE;
54566b2c
NP
2274 if (flags & AOP_FLAG_NOFS)
2275 gfp_notmask = __GFP_FS;
eb2be189
NP
2276repeat:
2277 page = find_lock_page(mapping, index);
c585a267 2278 if (page)
3d08bcc8 2279 goto found;
eb2be189 2280
0faa70cb 2281 page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
eb2be189
NP
2282 if (!page)
2283 return NULL;
54566b2c
NP
2284 status = add_to_page_cache_lru(page, mapping, index,
2285 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2286 if (unlikely(status)) {
2287 page_cache_release(page);
2288 if (status == -EEXIST)
2289 goto repeat;
2290 return NULL;
2291 }
3d08bcc8
DW
2292found:
2293 wait_on_page_writeback(page);
eb2be189
NP
2294 return page;
2295}
54566b2c 2296EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2297
afddba49
NP
2298static ssize_t generic_perform_write(struct file *file,
2299 struct iov_iter *i, loff_t pos)
2300{
2301 struct address_space *mapping = file->f_mapping;
2302 const struct address_space_operations *a_ops = mapping->a_ops;
2303 long status = 0;
2304 ssize_t written = 0;
674b892e
NP
2305 unsigned int flags = 0;
2306
2307 /*
2308 * Copies from kernel address space cannot fail (NFSD is a big user).
2309 */
2310 if (segment_eq(get_fs(), KERNEL_DS))
2311 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2312
2313 do {
2314 struct page *page;
afddba49
NP
2315 unsigned long offset; /* Offset into pagecache page */
2316 unsigned long bytes; /* Bytes to write to page */
2317 size_t copied; /* Bytes copied from user */
2318 void *fsdata;
2319
2320 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2321 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2322 iov_iter_count(i));
2323
2324again:
afddba49
NP
2325 /*
2326 * Bring in the user page that we will copy from _first_.
2327 * Otherwise there's a nasty deadlock on copying from the
2328 * same page as we're writing to, without it being marked
2329 * up-to-date.
2330 *
2331 * Not only is this an optimisation, but it is also required
2332 * to check that the address is actually valid, when atomic
2333 * usercopies are used, below.
2334 */
2335 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2336 status = -EFAULT;
2337 break;
2338 }
2339
674b892e 2340 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2341 &page, &fsdata);
2342 if (unlikely(status))
2343 break;
2344
931e80e4 2345 if (mapping_writably_mapped(mapping))
2346 flush_dcache_page(page);
2347
afddba49
NP
2348 pagefault_disable();
2349 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2350 pagefault_enable();
2351 flush_dcache_page(page);
2352
c8236db9 2353 mark_page_accessed(page);
afddba49
NP
2354 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2355 page, fsdata);
2356 if (unlikely(status < 0))
2357 break;
2358 copied = status;
2359
2360 cond_resched();
2361
124d3b70 2362 iov_iter_advance(i, copied);
afddba49
NP
2363 if (unlikely(copied == 0)) {
2364 /*
2365 * If we were unable to copy any data at all, we must
2366 * fall back to a single segment length write.
2367 *
2368 * If we didn't fallback here, we could livelock
2369 * because not all segments in the iov can be copied at
2370 * once without a pagefault.
2371 */
2372 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2373 iov_iter_single_seg_count(i));
2374 goto again;
2375 }
afddba49
NP
2376 pos += copied;
2377 written += copied;
2378
2379 balance_dirty_pages_ratelimited(mapping);
a50527b1
JK
2380 if (fatal_signal_pending(current)) {
2381 status = -EINTR;
2382 break;
2383 }
afddba49
NP
2384 } while (iov_iter_count(i));
2385
2386 return written ? written : status;
2387}
2388
2389ssize_t
2390generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2391 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2392 size_t count, ssize_t written)
2393{
2394 struct file *file = iocb->ki_filp;
afddba49
NP
2395 ssize_t status;
2396 struct iov_iter i;
2397
2398 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2399 status = generic_perform_write(file, &i, pos);
1da177e4 2400
1da177e4 2401 if (likely(status >= 0)) {
afddba49
NP
2402 written += status;
2403 *ppos = pos + status;
1da177e4
LT
2404 }
2405
1da177e4
LT
2406 return written ? written : status;
2407}
2408EXPORT_SYMBOL(generic_file_buffered_write);
2409
e4dd9de3
JK
2410/**
2411 * __generic_file_aio_write - write data to a file
2412 * @iocb: IO state structure (file, offset, etc.)
2413 * @iov: vector with data to write
2414 * @nr_segs: number of segments in the vector
2415 * @ppos: position where to write
2416 *
2417 * This function does all the work needed for actually writing data to a
2418 * file. It does all basic checks, removes SUID from the file, updates
2419 * modification times and calls proper subroutines depending on whether we
2420 * do direct IO or a standard buffered write.
2421 *
2422 * It expects i_mutex to be grabbed unless we work on a block device or similar
2423 * object which does not need locking at all.
2424 *
2425 * This function does *not* take care of syncing data in case of O_SYNC write.
2426 * A caller has to handle it. This is mainly due to the fact that we want to
2427 * avoid syncing under i_mutex.
2428 */
2429ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2430 unsigned long nr_segs, loff_t *ppos)
1da177e4
LT
2431{
2432 struct file *file = iocb->ki_filp;
fb5527e6 2433 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2434 size_t ocount; /* original count */
2435 size_t count; /* after file limit checks */
2436 struct inode *inode = mapping->host;
1da177e4
LT
2437 loff_t pos;
2438 ssize_t written;
2439 ssize_t err;
2440
2441 ocount = 0;
0ceb3314
DM
2442 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2443 if (err)
2444 return err;
1da177e4
LT
2445
2446 count = ocount;
2447 pos = *ppos;
2448
2449 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2450
2451 /* We can write back this queue in page reclaim */
2452 current->backing_dev_info = mapping->backing_dev_info;
2453 written = 0;
2454
2455 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2456 if (err)
2457 goto out;
2458
2459 if (count == 0)
2460 goto out;
2461
2f1936b8 2462 err = file_remove_suid(file);
1da177e4
LT
2463 if (err)
2464 goto out;
2465
870f4817 2466 file_update_time(file);
1da177e4
LT
2467
2468 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2469 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2470 loff_t endbyte;
2471 ssize_t written_buffered;
2472
2473 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2474 ppos, count, ocount);
1da177e4
LT
2475 if (written < 0 || written == count)
2476 goto out;
2477 /*
2478 * direct-io write to a hole: fall through to buffered I/O
2479 * for completing the rest of the request.
2480 */
2481 pos += written;
2482 count -= written;
fb5527e6
JM
2483 written_buffered = generic_file_buffered_write(iocb, iov,
2484 nr_segs, pos, ppos, count,
2485 written);
2486 /*
2487 * If generic_file_buffered_write() retuned a synchronous error
2488 * then we want to return the number of bytes which were
2489 * direct-written, or the error code if that was zero. Note
2490 * that this differs from normal direct-io semantics, which
2491 * will return -EFOO even if some bytes were written.
2492 */
2493 if (written_buffered < 0) {
2494 err = written_buffered;
2495 goto out;
2496 }
1da177e4 2497
fb5527e6
JM
2498 /*
2499 * We need to ensure that the page cache pages are written to
2500 * disk and invalidated to preserve the expected O_DIRECT
2501 * semantics.
2502 */
2503 endbyte = pos + written_buffered - written - 1;
c05c4edd 2504 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6
JM
2505 if (err == 0) {
2506 written = written_buffered;
2507 invalidate_mapping_pages(mapping,
2508 pos >> PAGE_CACHE_SHIFT,
2509 endbyte >> PAGE_CACHE_SHIFT);
2510 } else {
2511 /*
2512 * We don't know how much we wrote, so just return
2513 * the number of bytes which were direct-written
2514 */
2515 }
2516 } else {
2517 written = generic_file_buffered_write(iocb, iov, nr_segs,
2518 pos, ppos, count, written);
2519 }
1da177e4
LT
2520out:
2521 current->backing_dev_info = NULL;
2522 return written ? written : err;
2523}
e4dd9de3
JK
2524EXPORT_SYMBOL(__generic_file_aio_write);
2525
e4dd9de3
JK
2526/**
2527 * generic_file_aio_write - write data to a file
2528 * @iocb: IO state structure
2529 * @iov: vector with data to write
2530 * @nr_segs: number of segments in the vector
2531 * @pos: position in file where to write
2532 *
2533 * This is a wrapper around __generic_file_aio_write() to be used by most
2534 * filesystems. It takes care of syncing the file in case of O_SYNC file
2535 * and acquires i_mutex as needed.
2536 */
027445c3
BP
2537ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2538 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2539{
2540 struct file *file = iocb->ki_filp;
148f948b 2541 struct inode *inode = file->f_mapping->host;
55602dd6 2542 struct blk_plug plug;
1da177e4 2543 ssize_t ret;
1da177e4
LT
2544
2545 BUG_ON(iocb->ki_pos != pos);
2546
1b1dcc1b 2547 mutex_lock(&inode->i_mutex);
55602dd6 2548 blk_start_plug(&plug);
e4dd9de3 2549 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1b1dcc1b 2550 mutex_unlock(&inode->i_mutex);
1da177e4 2551
148f948b 2552 if (ret > 0 || ret == -EIOCBQUEUED) {
1da177e4
LT
2553 ssize_t err;
2554
148f948b 2555 err = generic_write_sync(file, pos, ret);
c7b50db2 2556 if (err < 0 && ret > 0)
1da177e4
LT
2557 ret = err;
2558 }
55602dd6 2559 blk_finish_plug(&plug);
1da177e4
LT
2560 return ret;
2561}
2562EXPORT_SYMBOL(generic_file_aio_write);
2563
cf9a2ae8
DH
2564/**
2565 * try_to_release_page() - release old fs-specific metadata on a page
2566 *
2567 * @page: the page which the kernel is trying to free
2568 * @gfp_mask: memory allocation flags (and I/O mode)
2569 *
2570 * The address_space is to try to release any data against the page
2571 * (presumably at page->private). If the release was successful, return `1'.
2572 * Otherwise return zero.
2573 *
266cf658
DH
2574 * This may also be called if PG_fscache is set on a page, indicating that the
2575 * page is known to the local caching routines.
2576 *
cf9a2ae8 2577 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2578 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2579 *
cf9a2ae8
DH
2580 */
2581int try_to_release_page(struct page *page, gfp_t gfp_mask)
2582{
2583 struct address_space * const mapping = page->mapping;
2584
2585 BUG_ON(!PageLocked(page));
2586 if (PageWriteback(page))
2587 return 0;
2588
2589 if (mapping && mapping->a_ops->releasepage)
2590 return mapping->a_ops->releasepage(page, gfp_mask);
2591 return try_to_free_buffers(page);
2592}
2593
2594EXPORT_SYMBOL(try_to_release_page);