]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/filemap.c
memblock: fix missing comment of memblock_insert_region()
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 34#include <linux/memcontrol.h>
c515e1fd 35#include <linux/cleancache.h>
0f8053a5
NP
36#include "internal.h"
37
fe0bfaaf
RJ
38#define CREATE_TRACE_POINTS
39#include <trace/events/filemap.h>
40
1da177e4 41/*
1da177e4
LT
42 * FIXME: remove all knowledge of the buffer layer from the core VM
43 */
148f948b 44#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 45
1da177e4
LT
46#include <asm/mman.h>
47
48/*
49 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * though.
51 *
52 * Shared mappings now work. 15.8.1995 Bruno.
53 *
54 * finished 'unifying' the page and buffer cache and SMP-threaded the
55 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 *
57 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58 */
59
60/*
61 * Lock ordering:
62 *
3d48ae45 63 * ->i_mmap_mutex (truncate_pagecache)
1da177e4 64 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
65 * ->swap_lock (exclusive_swap_page, others)
66 * ->mapping->tree_lock
1da177e4 67 *
1b1dcc1b 68 * ->i_mutex
3d48ae45 69 * ->i_mmap_mutex (truncate->unmap_mapping_range)
1da177e4
LT
70 *
71 * ->mmap_sem
3d48ae45 72 * ->i_mmap_mutex
b8072f09 73 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
74 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 *
76 * ->mmap_sem
77 * ->lock_page (access_process_vm)
78 *
82591e6e
NP
79 * ->i_mutex (generic_file_buffered_write)
80 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 81 *
f758eeab 82 * bdi->wb.list_lock
a66979ab 83 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
84 * ->mapping->tree_lock (__sync_single_inode)
85 *
3d48ae45 86 * ->i_mmap_mutex
1da177e4
LT
87 * ->anon_vma.lock (vma_adjust)
88 *
89 * ->anon_vma.lock
b8072f09 90 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 91 *
b8072f09 92 * ->page_table_lock or pte_lock
5d337b91 93 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
94 * ->private_lock (try_to_unmap_one)
95 * ->tree_lock (try_to_unmap_one)
96 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 97 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
98 * ->private_lock (page_remove_rmap->set_page_dirty)
99 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 100 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 101 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
f758eeab 102 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 103 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
9a3c531d
AK
106 * ->i_mmap_mutex
107 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
108 */
109
110/*
e64a782f 111 * Delete a page from the page cache and free it. Caller has to make
1da177e4 112 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 113 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 114 */
e64a782f 115void __delete_from_page_cache(struct page *page)
1da177e4
LT
116{
117 struct address_space *mapping = page->mapping;
118
fe0bfaaf 119 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
120 /*
121 * if we're uptodate, flush out into the cleancache, otherwise
122 * invalidate any existing cleancache entries. We can't leave
123 * stale data around in the cleancache once our page is gone
124 */
125 if (PageUptodate(page) && PageMappedToDisk(page))
126 cleancache_put_page(page);
127 else
3167760f 128 cleancache_invalidate_page(mapping, page);
c515e1fd 129
1da177e4
LT
130 radix_tree_delete(&mapping->page_tree, page->index);
131 page->mapping = NULL;
b85e0eff 132 /* Leave page->index set: truncation lookup relies upon it */
1da177e4 133 mapping->nrpages--;
347ce434 134 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
135 if (PageSwapBacked(page))
136 __dec_zone_page_state(page, NR_SHMEM);
45426812 137 BUG_ON(page_mapped(page));
3a692790
LT
138
139 /*
140 * Some filesystems seem to re-dirty the page even after
141 * the VM has canceled the dirty bit (eg ext3 journaling).
142 *
143 * Fix it up by doing a final dirty accounting check after
144 * having removed the page entirely.
145 */
146 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
147 dec_zone_page_state(page, NR_FILE_DIRTY);
148 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
149 }
1da177e4
LT
150}
151
702cfbf9
MK
152/**
153 * delete_from_page_cache - delete page from page cache
154 * @page: the page which the kernel is trying to remove from page cache
155 *
156 * This must be called only on pages that have been verified to be in the page
157 * cache and locked. It will never put the page into the free list, the caller
158 * has a reference on the page.
159 */
160void delete_from_page_cache(struct page *page)
1da177e4
LT
161{
162 struct address_space *mapping = page->mapping;
6072d13c 163 void (*freepage)(struct page *);
1da177e4 164
cd7619d6 165 BUG_ON(!PageLocked(page));
1da177e4 166
6072d13c 167 freepage = mapping->a_ops->freepage;
19fd6231 168 spin_lock_irq(&mapping->tree_lock);
e64a782f 169 __delete_from_page_cache(page);
19fd6231 170 spin_unlock_irq(&mapping->tree_lock);
e767e056 171 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
172
173 if (freepage)
174 freepage(page);
97cecb5a
MK
175 page_cache_release(page);
176}
177EXPORT_SYMBOL(delete_from_page_cache);
178
7eaceacc 179static int sleep_on_page(void *word)
1da177e4 180{
1da177e4
LT
181 io_schedule();
182 return 0;
183}
184
7eaceacc 185static int sleep_on_page_killable(void *word)
2687a356 186{
7eaceacc 187 sleep_on_page(word);
2687a356
MW
188 return fatal_signal_pending(current) ? -EINTR : 0;
189}
190
1da177e4 191/**
485bb99b 192 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
193 * @mapping: address space structure to write
194 * @start: offset in bytes where the range starts
469eb4d0 195 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 196 * @sync_mode: enable synchronous operation
1da177e4 197 *
485bb99b
RD
198 * Start writeback against all of a mapping's dirty pages that lie
199 * within the byte offsets <start, end> inclusive.
200 *
1da177e4 201 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 202 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
203 * these two operations is that if a dirty page/buffer is encountered, it must
204 * be waited upon, and not just skipped over.
205 */
ebcf28e1
AM
206int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
207 loff_t end, int sync_mode)
1da177e4
LT
208{
209 int ret;
210 struct writeback_control wbc = {
211 .sync_mode = sync_mode,
05fe478d 212 .nr_to_write = LONG_MAX,
111ebb6e
OH
213 .range_start = start,
214 .range_end = end,
1da177e4
LT
215 };
216
217 if (!mapping_cap_writeback_dirty(mapping))
218 return 0;
219
220 ret = do_writepages(mapping, &wbc);
221 return ret;
222}
223
224static inline int __filemap_fdatawrite(struct address_space *mapping,
225 int sync_mode)
226{
111ebb6e 227 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
228}
229
230int filemap_fdatawrite(struct address_space *mapping)
231{
232 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
233}
234EXPORT_SYMBOL(filemap_fdatawrite);
235
f4c0a0fd 236int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 237 loff_t end)
1da177e4
LT
238{
239 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
240}
f4c0a0fd 241EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 242
485bb99b
RD
243/**
244 * filemap_flush - mostly a non-blocking flush
245 * @mapping: target address_space
246 *
1da177e4
LT
247 * This is a mostly non-blocking flush. Not suitable for data-integrity
248 * purposes - I/O may not be started against all dirty pages.
249 */
250int filemap_flush(struct address_space *mapping)
251{
252 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
253}
254EXPORT_SYMBOL(filemap_flush);
255
485bb99b 256/**
94004ed7
CH
257 * filemap_fdatawait_range - wait for writeback to complete
258 * @mapping: address space structure to wait for
259 * @start_byte: offset in bytes where the range starts
260 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 261 *
94004ed7
CH
262 * Walk the list of under-writeback pages of the given address space
263 * in the given range and wait for all of them.
1da177e4 264 */
94004ed7
CH
265int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
266 loff_t end_byte)
1da177e4 267{
94004ed7
CH
268 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
269 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
270 struct pagevec pvec;
271 int nr_pages;
272 int ret = 0;
1da177e4 273
94004ed7 274 if (end_byte < start_byte)
1da177e4
LT
275 return 0;
276
277 pagevec_init(&pvec, 0);
1da177e4
LT
278 while ((index <= end) &&
279 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
280 PAGECACHE_TAG_WRITEBACK,
281 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
282 unsigned i;
283
284 for (i = 0; i < nr_pages; i++) {
285 struct page *page = pvec.pages[i];
286
287 /* until radix tree lookup accepts end_index */
288 if (page->index > end)
289 continue;
290
291 wait_on_page_writeback(page);
212260aa 292 if (TestClearPageError(page))
1da177e4
LT
293 ret = -EIO;
294 }
295 pagevec_release(&pvec);
296 cond_resched();
297 }
298
299 /* Check for outstanding write errors */
300 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
301 ret = -ENOSPC;
302 if (test_and_clear_bit(AS_EIO, &mapping->flags))
303 ret = -EIO;
304
305 return ret;
306}
d3bccb6f
JK
307EXPORT_SYMBOL(filemap_fdatawait_range);
308
1da177e4 309/**
485bb99b 310 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 311 * @mapping: address space structure to wait for
485bb99b
RD
312 *
313 * Walk the list of under-writeback pages of the given address space
314 * and wait for all of them.
1da177e4
LT
315 */
316int filemap_fdatawait(struct address_space *mapping)
317{
318 loff_t i_size = i_size_read(mapping->host);
319
320 if (i_size == 0)
321 return 0;
322
94004ed7 323 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
324}
325EXPORT_SYMBOL(filemap_fdatawait);
326
327int filemap_write_and_wait(struct address_space *mapping)
328{
28fd1298 329 int err = 0;
1da177e4
LT
330
331 if (mapping->nrpages) {
28fd1298
OH
332 err = filemap_fdatawrite(mapping);
333 /*
334 * Even if the above returned error, the pages may be
335 * written partially (e.g. -ENOSPC), so we wait for it.
336 * But the -EIO is special case, it may indicate the worst
337 * thing (e.g. bug) happened, so we avoid waiting for it.
338 */
339 if (err != -EIO) {
340 int err2 = filemap_fdatawait(mapping);
341 if (!err)
342 err = err2;
343 }
1da177e4 344 }
28fd1298 345 return err;
1da177e4 346}
28fd1298 347EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 348
485bb99b
RD
349/**
350 * filemap_write_and_wait_range - write out & wait on a file range
351 * @mapping: the address_space for the pages
352 * @lstart: offset in bytes where the range starts
353 * @lend: offset in bytes where the range ends (inclusive)
354 *
469eb4d0
AM
355 * Write out and wait upon file offsets lstart->lend, inclusive.
356 *
357 * Note that `lend' is inclusive (describes the last byte to be written) so
358 * that this function can be used to write to the very end-of-file (end = -1).
359 */
1da177e4
LT
360int filemap_write_and_wait_range(struct address_space *mapping,
361 loff_t lstart, loff_t lend)
362{
28fd1298 363 int err = 0;
1da177e4
LT
364
365 if (mapping->nrpages) {
28fd1298
OH
366 err = __filemap_fdatawrite_range(mapping, lstart, lend,
367 WB_SYNC_ALL);
368 /* See comment of filemap_write_and_wait() */
369 if (err != -EIO) {
94004ed7
CH
370 int err2 = filemap_fdatawait_range(mapping,
371 lstart, lend);
28fd1298
OH
372 if (!err)
373 err = err2;
374 }
1da177e4 375 }
28fd1298 376 return err;
1da177e4 377}
f6995585 378EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 379
ef6a3c63
MS
380/**
381 * replace_page_cache_page - replace a pagecache page with a new one
382 * @old: page to be replaced
383 * @new: page to replace with
384 * @gfp_mask: allocation mode
385 *
386 * This function replaces a page in the pagecache with a new one. On
387 * success it acquires the pagecache reference for the new page and
388 * drops it for the old page. Both the old and new pages must be
389 * locked. This function does not add the new page to the LRU, the
390 * caller must do that.
391 *
392 * The remove + add is atomic. The only way this function can fail is
393 * memory allocation failure.
394 */
395int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
396{
397 int error;
ef6a3c63
MS
398
399 VM_BUG_ON(!PageLocked(old));
400 VM_BUG_ON(!PageLocked(new));
401 VM_BUG_ON(new->mapping);
402
ef6a3c63
MS
403 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
404 if (!error) {
405 struct address_space *mapping = old->mapping;
406 void (*freepage)(struct page *);
407
408 pgoff_t offset = old->index;
409 freepage = mapping->a_ops->freepage;
410
411 page_cache_get(new);
412 new->mapping = mapping;
413 new->index = offset;
414
415 spin_lock_irq(&mapping->tree_lock);
e64a782f 416 __delete_from_page_cache(old);
ef6a3c63
MS
417 error = radix_tree_insert(&mapping->page_tree, offset, new);
418 BUG_ON(error);
419 mapping->nrpages++;
420 __inc_zone_page_state(new, NR_FILE_PAGES);
421 if (PageSwapBacked(new))
422 __inc_zone_page_state(new, NR_SHMEM);
423 spin_unlock_irq(&mapping->tree_lock);
ab936cbc
KH
424 /* mem_cgroup codes must not be called under tree_lock */
425 mem_cgroup_replace_page_cache(old, new);
ef6a3c63
MS
426 radix_tree_preload_end();
427 if (freepage)
428 freepage(old);
429 page_cache_release(old);
ef6a3c63
MS
430 }
431
432 return error;
433}
434EXPORT_SYMBOL_GPL(replace_page_cache_page);
435
485bb99b 436/**
e286781d 437 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
438 * @page: page to add
439 * @mapping: the page's address_space
440 * @offset: page index
441 * @gfp_mask: page allocation mode
442 *
e286781d 443 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
444 * This function does not add the page to the LRU. The caller must do that.
445 */
e286781d 446int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 447 pgoff_t offset, gfp_t gfp_mask)
1da177e4 448{
e286781d
NP
449 int error;
450
451 VM_BUG_ON(!PageLocked(page));
31475dd6 452 VM_BUG_ON(PageSwapBacked(page));
e286781d
NP
453
454 error = mem_cgroup_cache_charge(page, current->mm,
2c26fdd7 455 gfp_mask & GFP_RECLAIM_MASK);
35c754d7
BS
456 if (error)
457 goto out;
1da177e4 458
35c754d7 459 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
1da177e4 460 if (error == 0) {
e286781d
NP
461 page_cache_get(page);
462 page->mapping = mapping;
463 page->index = offset;
464
19fd6231 465 spin_lock_irq(&mapping->tree_lock);
1da177e4 466 error = radix_tree_insert(&mapping->page_tree, offset, page);
e286781d 467 if (likely(!error)) {
1da177e4 468 mapping->nrpages++;
347ce434 469 __inc_zone_page_state(page, NR_FILE_PAGES);
e767e056 470 spin_unlock_irq(&mapping->tree_lock);
fe0bfaaf 471 trace_mm_filemap_add_to_page_cache(page);
e286781d
NP
472 } else {
473 page->mapping = NULL;
b85e0eff 474 /* Leave page->index set: truncation relies upon it */
e767e056 475 spin_unlock_irq(&mapping->tree_lock);
69029cd5 476 mem_cgroup_uncharge_cache_page(page);
e286781d
NP
477 page_cache_release(page);
478 }
1da177e4 479 radix_tree_preload_end();
35c754d7 480 } else
69029cd5 481 mem_cgroup_uncharge_cache_page(page);
8a9f3ccd 482out:
1da177e4
LT
483 return error;
484}
e286781d 485EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
486
487int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 488 pgoff_t offset, gfp_t gfp_mask)
1da177e4 489{
4f98a2fe
RR
490 int ret;
491
4f98a2fe 492 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
31475dd6
HD
493 if (ret == 0)
494 lru_cache_add_file(page);
1da177e4
LT
495 return ret;
496}
18bc0bbd 497EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 498
44110fe3 499#ifdef CONFIG_NUMA
2ae88149 500struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 501{
c0ff7453
MX
502 int n;
503 struct page *page;
504
44110fe3 505 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
506 unsigned int cpuset_mems_cookie;
507 do {
508 cpuset_mems_cookie = get_mems_allowed();
509 n = cpuset_mem_spread_node();
510 page = alloc_pages_exact_node(n, gfp, 0);
511 } while (!put_mems_allowed(cpuset_mems_cookie) && !page);
512
c0ff7453 513 return page;
44110fe3 514 }
2ae88149 515 return alloc_pages(gfp, 0);
44110fe3 516}
2ae88149 517EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
518#endif
519
1da177e4
LT
520/*
521 * In order to wait for pages to become available there must be
522 * waitqueues associated with pages. By using a hash table of
523 * waitqueues where the bucket discipline is to maintain all
524 * waiters on the same queue and wake all when any of the pages
525 * become available, and for the woken contexts to check to be
526 * sure the appropriate page became available, this saves space
527 * at a cost of "thundering herd" phenomena during rare hash
528 * collisions.
529 */
530static wait_queue_head_t *page_waitqueue(struct page *page)
531{
532 const struct zone *zone = page_zone(page);
533
534 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
535}
536
537static inline void wake_up_page(struct page *page, int bit)
538{
539 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
540}
541
920c7a5d 542void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
543{
544 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
545
546 if (test_bit(bit_nr, &page->flags))
7eaceacc 547 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
548 TASK_UNINTERRUPTIBLE);
549}
550EXPORT_SYMBOL(wait_on_page_bit);
551
f62e00cc
KM
552int wait_on_page_bit_killable(struct page *page, int bit_nr)
553{
554 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
555
556 if (!test_bit(bit_nr, &page->flags))
557 return 0;
558
559 return __wait_on_bit(page_waitqueue(page), &wait,
560 sleep_on_page_killable, TASK_KILLABLE);
561}
562
385e1ca5
DH
563/**
564 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
565 * @page: Page defining the wait queue of interest
566 * @waiter: Waiter to add to the queue
385e1ca5
DH
567 *
568 * Add an arbitrary @waiter to the wait queue for the nominated @page.
569 */
570void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
571{
572 wait_queue_head_t *q = page_waitqueue(page);
573 unsigned long flags;
574
575 spin_lock_irqsave(&q->lock, flags);
576 __add_wait_queue(q, waiter);
577 spin_unlock_irqrestore(&q->lock, flags);
578}
579EXPORT_SYMBOL_GPL(add_page_wait_queue);
580
1da177e4 581/**
485bb99b 582 * unlock_page - unlock a locked page
1da177e4
LT
583 * @page: the page
584 *
585 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
586 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
587 * mechananism between PageLocked pages and PageWriteback pages is shared.
588 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
589 *
8413ac9d
NP
590 * The mb is necessary to enforce ordering between the clear_bit and the read
591 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 592 */
920c7a5d 593void unlock_page(struct page *page)
1da177e4 594{
8413ac9d
NP
595 VM_BUG_ON(!PageLocked(page));
596 clear_bit_unlock(PG_locked, &page->flags);
597 smp_mb__after_clear_bit();
1da177e4
LT
598 wake_up_page(page, PG_locked);
599}
600EXPORT_SYMBOL(unlock_page);
601
485bb99b
RD
602/**
603 * end_page_writeback - end writeback against a page
604 * @page: the page
1da177e4
LT
605 */
606void end_page_writeback(struct page *page)
607{
ac6aadb2
MS
608 if (TestClearPageReclaim(page))
609 rotate_reclaimable_page(page);
610
611 if (!test_clear_page_writeback(page))
612 BUG();
613
1da177e4
LT
614 smp_mb__after_clear_bit();
615 wake_up_page(page, PG_writeback);
616}
617EXPORT_SYMBOL(end_page_writeback);
618
485bb99b
RD
619/**
620 * __lock_page - get a lock on the page, assuming we need to sleep to get it
621 * @page: the page to lock
1da177e4 622 */
920c7a5d 623void __lock_page(struct page *page)
1da177e4
LT
624{
625 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
626
7eaceacc 627 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
628 TASK_UNINTERRUPTIBLE);
629}
630EXPORT_SYMBOL(__lock_page);
631
b5606c2d 632int __lock_page_killable(struct page *page)
2687a356
MW
633{
634 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
635
636 return __wait_on_bit_lock(page_waitqueue(page), &wait,
7eaceacc 637 sleep_on_page_killable, TASK_KILLABLE);
2687a356 638}
18bc0bbd 639EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 640
d065bd81
ML
641int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
642 unsigned int flags)
643{
37b23e05
KM
644 if (flags & FAULT_FLAG_ALLOW_RETRY) {
645 /*
646 * CAUTION! In this case, mmap_sem is not released
647 * even though return 0.
648 */
649 if (flags & FAULT_FLAG_RETRY_NOWAIT)
650 return 0;
651
652 up_read(&mm->mmap_sem);
653 if (flags & FAULT_FLAG_KILLABLE)
654 wait_on_page_locked_killable(page);
655 else
318b275f 656 wait_on_page_locked(page);
d065bd81 657 return 0;
37b23e05
KM
658 } else {
659 if (flags & FAULT_FLAG_KILLABLE) {
660 int ret;
661
662 ret = __lock_page_killable(page);
663 if (ret) {
664 up_read(&mm->mmap_sem);
665 return 0;
666 }
667 } else
668 __lock_page(page);
669 return 1;
d065bd81
ML
670 }
671}
672
485bb99b
RD
673/**
674 * find_get_page - find and get a page reference
675 * @mapping: the address_space to search
676 * @offset: the page index
677 *
da6052f7
NP
678 * Is there a pagecache struct page at the given (mapping, offset) tuple?
679 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 680 */
a60637c8 681struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4 682{
a60637c8 683 void **pagep;
1da177e4
LT
684 struct page *page;
685
a60637c8
NP
686 rcu_read_lock();
687repeat:
688 page = NULL;
689 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
690 if (pagep) {
691 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
692 if (unlikely(!page))
693 goto out;
a2c16d6c 694 if (radix_tree_exception(page)) {
8079b1c8
HD
695 if (radix_tree_deref_retry(page))
696 goto repeat;
697 /*
698 * Otherwise, shmem/tmpfs must be storing a swap entry
699 * here as an exceptional entry: so return it without
700 * attempting to raise page count.
701 */
702 goto out;
a2c16d6c 703 }
a60637c8
NP
704 if (!page_cache_get_speculative(page))
705 goto repeat;
706
707 /*
708 * Has the page moved?
709 * This is part of the lockless pagecache protocol. See
710 * include/linux/pagemap.h for details.
711 */
712 if (unlikely(page != *pagep)) {
713 page_cache_release(page);
714 goto repeat;
715 }
716 }
27d20fdd 717out:
a60637c8
NP
718 rcu_read_unlock();
719
1da177e4
LT
720 return page;
721}
1da177e4
LT
722EXPORT_SYMBOL(find_get_page);
723
1da177e4
LT
724/**
725 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
726 * @mapping: the address_space to search
727 * @offset: the page index
1da177e4
LT
728 *
729 * Locates the desired pagecache page, locks it, increments its reference
730 * count and returns its address.
731 *
732 * Returns zero if the page was not present. find_lock_page() may sleep.
733 */
a60637c8 734struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
735{
736 struct page *page;
737
1da177e4 738repeat:
a60637c8 739 page = find_get_page(mapping, offset);
a2c16d6c 740 if (page && !radix_tree_exception(page)) {
a60637c8
NP
741 lock_page(page);
742 /* Has the page been truncated? */
743 if (unlikely(page->mapping != mapping)) {
744 unlock_page(page);
745 page_cache_release(page);
746 goto repeat;
1da177e4 747 }
a60637c8 748 VM_BUG_ON(page->index != offset);
1da177e4 749 }
1da177e4
LT
750 return page;
751}
1da177e4
LT
752EXPORT_SYMBOL(find_lock_page);
753
754/**
755 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
756 * @mapping: the page's address_space
757 * @index: the page's index into the mapping
758 * @gfp_mask: page allocation mode
1da177e4
LT
759 *
760 * Locates a page in the pagecache. If the page is not present, a new page
761 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
762 * LRU list. The returned page is locked and has its reference count
763 * incremented.
764 *
765 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
766 * allocation!
767 *
768 * find_or_create_page() returns the desired page's address, or zero on
769 * memory exhaustion.
770 */
771struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 772 pgoff_t index, gfp_t gfp_mask)
1da177e4 773{
eb2be189 774 struct page *page;
1da177e4
LT
775 int err;
776repeat:
777 page = find_lock_page(mapping, index);
778 if (!page) {
eb2be189
NP
779 page = __page_cache_alloc(gfp_mask);
780 if (!page)
781 return NULL;
67d58ac4
NP
782 /*
783 * We want a regular kernel memory (not highmem or DMA etc)
784 * allocation for the radix tree nodes, but we need to honour
785 * the context-specific requirements the caller has asked for.
786 * GFP_RECLAIM_MASK collects those requirements.
787 */
788 err = add_to_page_cache_lru(page, mapping, index,
789 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
790 if (unlikely(err)) {
791 page_cache_release(page);
792 page = NULL;
793 if (err == -EEXIST)
794 goto repeat;
1da177e4 795 }
1da177e4 796 }
1da177e4
LT
797 return page;
798}
1da177e4
LT
799EXPORT_SYMBOL(find_or_create_page);
800
801/**
802 * find_get_pages - gang pagecache lookup
803 * @mapping: The address_space to search
804 * @start: The starting page index
805 * @nr_pages: The maximum number of pages
806 * @pages: Where the resulting pages are placed
807 *
808 * find_get_pages() will search for and return a group of up to
809 * @nr_pages pages in the mapping. The pages are placed at @pages.
810 * find_get_pages() takes a reference against the returned pages.
811 *
812 * The search returns a group of mapping-contiguous pages with ascending
813 * indexes. There may be holes in the indices due to not-present pages.
814 *
815 * find_get_pages() returns the number of pages which were found.
816 */
817unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
818 unsigned int nr_pages, struct page **pages)
819{
0fc9d104
KK
820 struct radix_tree_iter iter;
821 void **slot;
822 unsigned ret = 0;
823
824 if (unlikely(!nr_pages))
825 return 0;
a60637c8
NP
826
827 rcu_read_lock();
828restart:
0fc9d104 829 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
830 struct page *page;
831repeat:
0fc9d104 832 page = radix_tree_deref_slot(slot);
a60637c8
NP
833 if (unlikely(!page))
834 continue;
9d8aa4ea 835
a2c16d6c 836 if (radix_tree_exception(page)) {
8079b1c8
HD
837 if (radix_tree_deref_retry(page)) {
838 /*
839 * Transient condition which can only trigger
840 * when entry at index 0 moves out of or back
841 * to root: none yet gotten, safe to restart.
842 */
0fc9d104 843 WARN_ON(iter.index);
8079b1c8
HD
844 goto restart;
845 }
a2c16d6c 846 /*
8079b1c8
HD
847 * Otherwise, shmem/tmpfs must be storing a swap entry
848 * here as an exceptional entry: so skip over it -
849 * we only reach this from invalidate_mapping_pages().
a2c16d6c 850 */
8079b1c8 851 continue;
27d20fdd 852 }
a60637c8
NP
853
854 if (!page_cache_get_speculative(page))
855 goto repeat;
856
857 /* Has the page moved? */
0fc9d104 858 if (unlikely(page != *slot)) {
a60637c8
NP
859 page_cache_release(page);
860 goto repeat;
861 }
1da177e4 862
a60637c8 863 pages[ret] = page;
0fc9d104
KK
864 if (++ret == nr_pages)
865 break;
a60637c8 866 }
5b280c0c 867
a60637c8 868 rcu_read_unlock();
1da177e4
LT
869 return ret;
870}
871
ebf43500
JA
872/**
873 * find_get_pages_contig - gang contiguous pagecache lookup
874 * @mapping: The address_space to search
875 * @index: The starting page index
876 * @nr_pages: The maximum number of pages
877 * @pages: Where the resulting pages are placed
878 *
879 * find_get_pages_contig() works exactly like find_get_pages(), except
880 * that the returned number of pages are guaranteed to be contiguous.
881 *
882 * find_get_pages_contig() returns the number of pages which were found.
883 */
884unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
885 unsigned int nr_pages, struct page **pages)
886{
0fc9d104
KK
887 struct radix_tree_iter iter;
888 void **slot;
889 unsigned int ret = 0;
890
891 if (unlikely(!nr_pages))
892 return 0;
a60637c8
NP
893
894 rcu_read_lock();
895restart:
0fc9d104 896 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
897 struct page *page;
898repeat:
0fc9d104
KK
899 page = radix_tree_deref_slot(slot);
900 /* The hole, there no reason to continue */
a60637c8 901 if (unlikely(!page))
0fc9d104 902 break;
9d8aa4ea 903
a2c16d6c 904 if (radix_tree_exception(page)) {
8079b1c8
HD
905 if (radix_tree_deref_retry(page)) {
906 /*
907 * Transient condition which can only trigger
908 * when entry at index 0 moves out of or back
909 * to root: none yet gotten, safe to restart.
910 */
911 goto restart;
912 }
a2c16d6c 913 /*
8079b1c8
HD
914 * Otherwise, shmem/tmpfs must be storing a swap entry
915 * here as an exceptional entry: so stop looking for
916 * contiguous pages.
a2c16d6c 917 */
8079b1c8 918 break;
a2c16d6c 919 }
ebf43500 920
a60637c8
NP
921 if (!page_cache_get_speculative(page))
922 goto repeat;
923
924 /* Has the page moved? */
0fc9d104 925 if (unlikely(page != *slot)) {
a60637c8
NP
926 page_cache_release(page);
927 goto repeat;
928 }
929
9cbb4cb2
NP
930 /*
931 * must check mapping and index after taking the ref.
932 * otherwise we can get both false positives and false
933 * negatives, which is just confusing to the caller.
934 */
0fc9d104 935 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
936 page_cache_release(page);
937 break;
938 }
939
a60637c8 940 pages[ret] = page;
0fc9d104
KK
941 if (++ret == nr_pages)
942 break;
ebf43500 943 }
a60637c8
NP
944 rcu_read_unlock();
945 return ret;
ebf43500 946}
ef71c15c 947EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 948
485bb99b
RD
949/**
950 * find_get_pages_tag - find and return pages that match @tag
951 * @mapping: the address_space to search
952 * @index: the starting page index
953 * @tag: the tag index
954 * @nr_pages: the maximum number of pages
955 * @pages: where the resulting pages are placed
956 *
1da177e4 957 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 958 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
959 */
960unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
961 int tag, unsigned int nr_pages, struct page **pages)
962{
0fc9d104
KK
963 struct radix_tree_iter iter;
964 void **slot;
965 unsigned ret = 0;
966
967 if (unlikely(!nr_pages))
968 return 0;
a60637c8
NP
969
970 rcu_read_lock();
971restart:
0fc9d104
KK
972 radix_tree_for_each_tagged(slot, &mapping->page_tree,
973 &iter, *index, tag) {
a60637c8
NP
974 struct page *page;
975repeat:
0fc9d104 976 page = radix_tree_deref_slot(slot);
a60637c8
NP
977 if (unlikely(!page))
978 continue;
9d8aa4ea 979
a2c16d6c 980 if (radix_tree_exception(page)) {
8079b1c8
HD
981 if (radix_tree_deref_retry(page)) {
982 /*
983 * Transient condition which can only trigger
984 * when entry at index 0 moves out of or back
985 * to root: none yet gotten, safe to restart.
986 */
987 goto restart;
988 }
a2c16d6c 989 /*
8079b1c8
HD
990 * This function is never used on a shmem/tmpfs
991 * mapping, so a swap entry won't be found here.
a2c16d6c 992 */
8079b1c8 993 BUG();
a2c16d6c 994 }
a60637c8
NP
995
996 if (!page_cache_get_speculative(page))
997 goto repeat;
998
999 /* Has the page moved? */
0fc9d104 1000 if (unlikely(page != *slot)) {
a60637c8
NP
1001 page_cache_release(page);
1002 goto repeat;
1003 }
1004
1005 pages[ret] = page;
0fc9d104
KK
1006 if (++ret == nr_pages)
1007 break;
a60637c8 1008 }
5b280c0c 1009
a60637c8 1010 rcu_read_unlock();
1da177e4 1011
1da177e4
LT
1012 if (ret)
1013 *index = pages[ret - 1]->index + 1;
a60637c8 1014
1da177e4
LT
1015 return ret;
1016}
ef71c15c 1017EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1018
485bb99b
RD
1019/**
1020 * grab_cache_page_nowait - returns locked page at given index in given cache
1021 * @mapping: target address_space
1022 * @index: the page index
1023 *
72fd4a35 1024 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
1025 * This is intended for speculative data generators, where the data can
1026 * be regenerated if the page couldn't be grabbed. This routine should
1027 * be safe to call while holding the lock for another page.
1028 *
1029 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1030 * and deadlock against the caller's locked page.
1031 */
1032struct page *
57f6b96c 1033grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
1034{
1035 struct page *page = find_get_page(mapping, index);
1da177e4
LT
1036
1037 if (page) {
529ae9aa 1038 if (trylock_page(page))
1da177e4
LT
1039 return page;
1040 page_cache_release(page);
1041 return NULL;
1042 }
2ae88149 1043 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 1044 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
1045 page_cache_release(page);
1046 page = NULL;
1047 }
1048 return page;
1049}
1da177e4
LT
1050EXPORT_SYMBOL(grab_cache_page_nowait);
1051
76d42bd9
WF
1052/*
1053 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1054 * a _large_ part of the i/o request. Imagine the worst scenario:
1055 *
1056 * ---R__________________________________________B__________
1057 * ^ reading here ^ bad block(assume 4k)
1058 *
1059 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1060 * => failing the whole request => read(R) => read(R+1) =>
1061 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1062 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1063 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1064 *
1065 * It is going insane. Fix it by quickly scaling down the readahead size.
1066 */
1067static void shrink_readahead_size_eio(struct file *filp,
1068 struct file_ra_state *ra)
1069{
76d42bd9 1070 ra->ra_pages /= 4;
76d42bd9
WF
1071}
1072
485bb99b 1073/**
36e78914 1074 * do_generic_file_read - generic file read routine
485bb99b
RD
1075 * @filp: the file to read
1076 * @ppos: current file position
1077 * @desc: read_descriptor
1078 * @actor: read method
1079 *
1da177e4 1080 * This is a generic file read routine, and uses the
485bb99b 1081 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1082 *
1083 * This is really ugly. But the goto's actually try to clarify some
1084 * of the logic when it comes to error handling etc.
1da177e4 1085 */
36e78914
CH
1086static void do_generic_file_read(struct file *filp, loff_t *ppos,
1087 read_descriptor_t *desc, read_actor_t actor)
1da177e4 1088{
36e78914 1089 struct address_space *mapping = filp->f_mapping;
1da177e4 1090 struct inode *inode = mapping->host;
36e78914 1091 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1092 pgoff_t index;
1093 pgoff_t last_index;
1094 pgoff_t prev_index;
1095 unsigned long offset; /* offset into pagecache page */
ec0f1637 1096 unsigned int prev_offset;
1da177e4 1097 int error;
1da177e4 1098
1da177e4 1099 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1100 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1101 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
1102 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1103 offset = *ppos & ~PAGE_CACHE_MASK;
1104
1da177e4
LT
1105 for (;;) {
1106 struct page *page;
57f6b96c 1107 pgoff_t end_index;
a32ea1e1 1108 loff_t isize;
1da177e4
LT
1109 unsigned long nr, ret;
1110
1da177e4 1111 cond_resched();
1da177e4
LT
1112find_page:
1113 page = find_get_page(mapping, index);
3ea89ee8 1114 if (!page) {
cf914a7d 1115 page_cache_sync_readahead(mapping,
7ff81078 1116 ra, filp,
3ea89ee8
FW
1117 index, last_index - index);
1118 page = find_get_page(mapping, index);
1119 if (unlikely(page == NULL))
1120 goto no_cached_page;
1121 }
1122 if (PageReadahead(page)) {
cf914a7d 1123 page_cache_async_readahead(mapping,
7ff81078 1124 ra, filp, page,
3ea89ee8 1125 index, last_index - index);
1da177e4 1126 }
8ab22b9a
HH
1127 if (!PageUptodate(page)) {
1128 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1129 !mapping->a_ops->is_partially_uptodate)
1130 goto page_not_up_to_date;
529ae9aa 1131 if (!trylock_page(page))
8ab22b9a 1132 goto page_not_up_to_date;
8d056cb9
DH
1133 /* Did it get truncated before we got the lock? */
1134 if (!page->mapping)
1135 goto page_not_up_to_date_locked;
8ab22b9a
HH
1136 if (!mapping->a_ops->is_partially_uptodate(page,
1137 desc, offset))
1138 goto page_not_up_to_date_locked;
1139 unlock_page(page);
1140 }
1da177e4 1141page_ok:
a32ea1e1
N
1142 /*
1143 * i_size must be checked after we know the page is Uptodate.
1144 *
1145 * Checking i_size after the check allows us to calculate
1146 * the correct value for "nr", which means the zero-filled
1147 * part of the page is not copied back to userspace (unless
1148 * another truncate extends the file - this is desired though).
1149 */
1150
1151 isize = i_size_read(inode);
1152 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1153 if (unlikely(!isize || index > end_index)) {
1154 page_cache_release(page);
1155 goto out;
1156 }
1157
1158 /* nr is the maximum number of bytes to copy from this page */
1159 nr = PAGE_CACHE_SIZE;
1160 if (index == end_index) {
1161 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1162 if (nr <= offset) {
1163 page_cache_release(page);
1164 goto out;
1165 }
1166 }
1167 nr = nr - offset;
1da177e4
LT
1168
1169 /* If users can be writing to this page using arbitrary
1170 * virtual addresses, take care about potential aliasing
1171 * before reading the page on the kernel side.
1172 */
1173 if (mapping_writably_mapped(mapping))
1174 flush_dcache_page(page);
1175
1176 /*
ec0f1637
JK
1177 * When a sequential read accesses a page several times,
1178 * only mark it as accessed the first time.
1da177e4 1179 */
ec0f1637 1180 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1181 mark_page_accessed(page);
1182 prev_index = index;
1183
1184 /*
1185 * Ok, we have the page, and it's up-to-date, so
1186 * now we can copy it to user space...
1187 *
1188 * The actor routine returns how many bytes were actually used..
1189 * NOTE! This may not be the same as how much of a user buffer
1190 * we filled up (we may be padding etc), so we can only update
1191 * "pos" here (the actor routine has to update the user buffer
1192 * pointers and the remaining count).
1193 */
1194 ret = actor(desc, page, offset, nr);
1195 offset += ret;
1196 index += offset >> PAGE_CACHE_SHIFT;
1197 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1198 prev_offset = offset;
1da177e4
LT
1199
1200 page_cache_release(page);
1201 if (ret == nr && desc->count)
1202 continue;
1203 goto out;
1204
1205page_not_up_to_date:
1206 /* Get exclusive access to the page ... */
85462323
ON
1207 error = lock_page_killable(page);
1208 if (unlikely(error))
1209 goto readpage_error;
1da177e4 1210
8ab22b9a 1211page_not_up_to_date_locked:
da6052f7 1212 /* Did it get truncated before we got the lock? */
1da177e4
LT
1213 if (!page->mapping) {
1214 unlock_page(page);
1215 page_cache_release(page);
1216 continue;
1217 }
1218
1219 /* Did somebody else fill it already? */
1220 if (PageUptodate(page)) {
1221 unlock_page(page);
1222 goto page_ok;
1223 }
1224
1225readpage:
91803b49
JM
1226 /*
1227 * A previous I/O error may have been due to temporary
1228 * failures, eg. multipath errors.
1229 * PG_error will be set again if readpage fails.
1230 */
1231 ClearPageError(page);
1da177e4
LT
1232 /* Start the actual read. The read will unlock the page. */
1233 error = mapping->a_ops->readpage(filp, page);
1234
994fc28c
ZB
1235 if (unlikely(error)) {
1236 if (error == AOP_TRUNCATED_PAGE) {
1237 page_cache_release(page);
1238 goto find_page;
1239 }
1da177e4 1240 goto readpage_error;
994fc28c 1241 }
1da177e4
LT
1242
1243 if (!PageUptodate(page)) {
85462323
ON
1244 error = lock_page_killable(page);
1245 if (unlikely(error))
1246 goto readpage_error;
1da177e4
LT
1247 if (!PageUptodate(page)) {
1248 if (page->mapping == NULL) {
1249 /*
2ecdc82e 1250 * invalidate_mapping_pages got it
1da177e4
LT
1251 */
1252 unlock_page(page);
1253 page_cache_release(page);
1254 goto find_page;
1255 }
1256 unlock_page(page);
7ff81078 1257 shrink_readahead_size_eio(filp, ra);
85462323
ON
1258 error = -EIO;
1259 goto readpage_error;
1da177e4
LT
1260 }
1261 unlock_page(page);
1262 }
1263
1da177e4
LT
1264 goto page_ok;
1265
1266readpage_error:
1267 /* UHHUH! A synchronous read error occurred. Report it */
1268 desc->error = error;
1269 page_cache_release(page);
1270 goto out;
1271
1272no_cached_page:
1273 /*
1274 * Ok, it wasn't cached, so we need to create a new
1275 * page..
1276 */
eb2be189
NP
1277 page = page_cache_alloc_cold(mapping);
1278 if (!page) {
1279 desc->error = -ENOMEM;
1280 goto out;
1da177e4 1281 }
eb2be189 1282 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1283 index, GFP_KERNEL);
1284 if (error) {
eb2be189 1285 page_cache_release(page);
1da177e4
LT
1286 if (error == -EEXIST)
1287 goto find_page;
1288 desc->error = error;
1289 goto out;
1290 }
1da177e4
LT
1291 goto readpage;
1292 }
1293
1294out:
7ff81078
FW
1295 ra->prev_pos = prev_index;
1296 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1297 ra->prev_pos |= prev_offset;
1da177e4 1298
f4e6b498 1299 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1300 file_accessed(filp);
1da177e4 1301}
1da177e4
LT
1302
1303int file_read_actor(read_descriptor_t *desc, struct page *page,
1304 unsigned long offset, unsigned long size)
1305{
1306 char *kaddr;
1307 unsigned long left, count = desc->count;
1308
1309 if (size > count)
1310 size = count;
1311
1312 /*
1313 * Faults on the destination of a read are common, so do it before
1314 * taking the kmap.
1315 */
1316 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
9b04c5fe 1317 kaddr = kmap_atomic(page);
1da177e4
LT
1318 left = __copy_to_user_inatomic(desc->arg.buf,
1319 kaddr + offset, size);
9b04c5fe 1320 kunmap_atomic(kaddr);
1da177e4
LT
1321 if (left == 0)
1322 goto success;
1323 }
1324
1325 /* Do it the slow way */
1326 kaddr = kmap(page);
1327 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1328 kunmap(page);
1329
1330 if (left) {
1331 size -= left;
1332 desc->error = -EFAULT;
1333 }
1334success:
1335 desc->count = count - size;
1336 desc->written += size;
1337 desc->arg.buf += size;
1338 return size;
1339}
1340
0ceb3314
DM
1341/*
1342 * Performs necessary checks before doing a write
1343 * @iov: io vector request
1344 * @nr_segs: number of segments in the iovec
1345 * @count: number of bytes to write
1346 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1347 *
1348 * Adjust number of segments and amount of bytes to write (nr_segs should be
1349 * properly initialized first). Returns appropriate error code that caller
1350 * should return or zero in case that write should be allowed.
1351 */
1352int generic_segment_checks(const struct iovec *iov,
1353 unsigned long *nr_segs, size_t *count, int access_flags)
1354{
1355 unsigned long seg;
1356 size_t cnt = 0;
1357 for (seg = 0; seg < *nr_segs; seg++) {
1358 const struct iovec *iv = &iov[seg];
1359
1360 /*
1361 * If any segment has a negative length, or the cumulative
1362 * length ever wraps negative then return -EINVAL.
1363 */
1364 cnt += iv->iov_len;
1365 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1366 return -EINVAL;
1367 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1368 continue;
1369 if (seg == 0)
1370 return -EFAULT;
1371 *nr_segs = seg;
1372 cnt -= iv->iov_len; /* This segment is no good */
1373 break;
1374 }
1375 *count = cnt;
1376 return 0;
1377}
1378EXPORT_SYMBOL(generic_segment_checks);
1379
485bb99b 1380/**
b2abacf3 1381 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1382 * @iocb: kernel I/O control block
1383 * @iov: io vector request
1384 * @nr_segs: number of segments in the iovec
b2abacf3 1385 * @pos: current file position
485bb99b 1386 *
1da177e4
LT
1387 * This is the "read()" routine for all filesystems
1388 * that can use the page cache directly.
1389 */
1390ssize_t
543ade1f
BP
1391generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1392 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1393{
1394 struct file *filp = iocb->ki_filp;
1395 ssize_t retval;
66f998f6 1396 unsigned long seg = 0;
1da177e4 1397 size_t count;
543ade1f 1398 loff_t *ppos = &iocb->ki_pos;
1da177e4
LT
1399
1400 count = 0;
0ceb3314
DM
1401 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1402 if (retval)
1403 return retval;
1da177e4
LT
1404
1405 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1406 if (filp->f_flags & O_DIRECT) {
543ade1f 1407 loff_t size;
1da177e4
LT
1408 struct address_space *mapping;
1409 struct inode *inode;
1410
1411 mapping = filp->f_mapping;
1412 inode = mapping->host;
1da177e4
LT
1413 if (!count)
1414 goto out; /* skip atime */
1415 size = i_size_read(inode);
1416 if (pos < size) {
48b47c56
NP
1417 retval = filemap_write_and_wait_range(mapping, pos,
1418 pos + iov_length(iov, nr_segs) - 1);
a969e903
CH
1419 if (!retval) {
1420 retval = mapping->a_ops->direct_IO(READ, iocb,
1421 iov, pos, nr_segs);
1422 }
66f998f6 1423 if (retval > 0) {
1da177e4 1424 *ppos = pos + retval;
66f998f6
JB
1425 count -= retval;
1426 }
1427
1428 /*
1429 * Btrfs can have a short DIO read if we encounter
1430 * compressed extents, so if there was an error, or if
1431 * we've already read everything we wanted to, or if
1432 * there was a short read because we hit EOF, go ahead
1433 * and return. Otherwise fallthrough to buffered io for
1434 * the rest of the read.
1435 */
1436 if (retval < 0 || !count || *ppos >= size) {
11fa977e
HD
1437 file_accessed(filp);
1438 goto out;
1439 }
0e0bcae3 1440 }
1da177e4
LT
1441 }
1442
66f998f6 1443 count = retval;
11fa977e
HD
1444 for (seg = 0; seg < nr_segs; seg++) {
1445 read_descriptor_t desc;
66f998f6
JB
1446 loff_t offset = 0;
1447
1448 /*
1449 * If we did a short DIO read we need to skip the section of the
1450 * iov that we've already read data into.
1451 */
1452 if (count) {
1453 if (count > iov[seg].iov_len) {
1454 count -= iov[seg].iov_len;
1455 continue;
1456 }
1457 offset = count;
1458 count = 0;
1459 }
1da177e4 1460
11fa977e 1461 desc.written = 0;
66f998f6
JB
1462 desc.arg.buf = iov[seg].iov_base + offset;
1463 desc.count = iov[seg].iov_len - offset;
11fa977e
HD
1464 if (desc.count == 0)
1465 continue;
1466 desc.error = 0;
1467 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1468 retval += desc.written;
1469 if (desc.error) {
1470 retval = retval ?: desc.error;
1471 break;
1da177e4 1472 }
11fa977e
HD
1473 if (desc.count > 0)
1474 break;
1da177e4
LT
1475 }
1476out:
1477 return retval;
1478}
1da177e4
LT
1479EXPORT_SYMBOL(generic_file_aio_read);
1480
1da177e4 1481#ifdef CONFIG_MMU
485bb99b
RD
1482/**
1483 * page_cache_read - adds requested page to the page cache if not already there
1484 * @file: file to read
1485 * @offset: page index
1486 *
1da177e4
LT
1487 * This adds the requested page to the page cache if it isn't already there,
1488 * and schedules an I/O to read in its contents from disk.
1489 */
920c7a5d 1490static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1491{
1492 struct address_space *mapping = file->f_mapping;
1493 struct page *page;
994fc28c 1494 int ret;
1da177e4 1495
994fc28c
ZB
1496 do {
1497 page = page_cache_alloc_cold(mapping);
1498 if (!page)
1499 return -ENOMEM;
1500
1501 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1502 if (ret == 0)
1503 ret = mapping->a_ops->readpage(file, page);
1504 else if (ret == -EEXIST)
1505 ret = 0; /* losing race to add is OK */
1da177e4 1506
1da177e4 1507 page_cache_release(page);
1da177e4 1508
994fc28c
ZB
1509 } while (ret == AOP_TRUNCATED_PAGE);
1510
1511 return ret;
1da177e4
LT
1512}
1513
1514#define MMAP_LOTSAMISS (100)
1515
ef00e08e
LT
1516/*
1517 * Synchronous readahead happens when we don't even find
1518 * a page in the page cache at all.
1519 */
1520static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1521 struct file_ra_state *ra,
1522 struct file *file,
1523 pgoff_t offset)
1524{
1525 unsigned long ra_pages;
1526 struct address_space *mapping = file->f_mapping;
1527
1528 /* If we don't want any read-ahead, don't bother */
1529 if (VM_RandomReadHint(vma))
1530 return;
275b12bf
WF
1531 if (!ra->ra_pages)
1532 return;
ef00e08e 1533
2cbea1d3 1534 if (VM_SequentialReadHint(vma)) {
7ffc59b4
WF
1535 page_cache_sync_readahead(mapping, ra, file, offset,
1536 ra->ra_pages);
ef00e08e
LT
1537 return;
1538 }
1539
207d04ba
AK
1540 /* Avoid banging the cache line if not needed */
1541 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1542 ra->mmap_miss++;
1543
1544 /*
1545 * Do we miss much more than hit in this file? If so,
1546 * stop bothering with read-ahead. It will only hurt.
1547 */
1548 if (ra->mmap_miss > MMAP_LOTSAMISS)
1549 return;
1550
d30a1100
WF
1551 /*
1552 * mmap read-around
1553 */
ef00e08e 1554 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1555 ra->start = max_t(long, 0, offset - ra_pages / 2);
1556 ra->size = ra_pages;
2cbea1d3 1557 ra->async_size = ra_pages / 4;
275b12bf 1558 ra_submit(ra, mapping, file);
ef00e08e
LT
1559}
1560
1561/*
1562 * Asynchronous readahead happens when we find the page and PG_readahead,
1563 * so we want to possibly extend the readahead further..
1564 */
1565static void do_async_mmap_readahead(struct vm_area_struct *vma,
1566 struct file_ra_state *ra,
1567 struct file *file,
1568 struct page *page,
1569 pgoff_t offset)
1570{
1571 struct address_space *mapping = file->f_mapping;
1572
1573 /* If we don't want any read-ahead, don't bother */
1574 if (VM_RandomReadHint(vma))
1575 return;
1576 if (ra->mmap_miss > 0)
1577 ra->mmap_miss--;
1578 if (PageReadahead(page))
2fad6f5d
WF
1579 page_cache_async_readahead(mapping, ra, file,
1580 page, offset, ra->ra_pages);
ef00e08e
LT
1581}
1582
485bb99b 1583/**
54cb8821 1584 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1585 * @vma: vma in which the fault was taken
1586 * @vmf: struct vm_fault containing details of the fault
485bb99b 1587 *
54cb8821 1588 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1589 * mapped memory region to read in file data during a page fault.
1590 *
1591 * The goto's are kind of ugly, but this streamlines the normal case of having
1592 * it in the page cache, and handles the special cases reasonably without
1593 * having a lot of duplicated code.
1594 */
d0217ac0 1595int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1596{
1597 int error;
54cb8821 1598 struct file *file = vma->vm_file;
1da177e4
LT
1599 struct address_space *mapping = file->f_mapping;
1600 struct file_ra_state *ra = &file->f_ra;
1601 struct inode *inode = mapping->host;
ef00e08e 1602 pgoff_t offset = vmf->pgoff;
1da177e4 1603 struct page *page;
2004dc8e 1604 pgoff_t size;
83c54070 1605 int ret = 0;
1da177e4 1606
1da177e4 1607 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1608 if (offset >= size)
5307cc1a 1609 return VM_FAULT_SIGBUS;
1da177e4 1610
1da177e4
LT
1611 /*
1612 * Do we have something in the page cache already?
1613 */
ef00e08e 1614 page = find_get_page(mapping, offset);
45cac65b 1615 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 1616 /*
ef00e08e
LT
1617 * We found the page, so try async readahead before
1618 * waiting for the lock.
1da177e4 1619 */
ef00e08e 1620 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 1621 } else if (!page) {
ef00e08e
LT
1622 /* No page in the page cache at all */
1623 do_sync_mmap_readahead(vma, ra, file, offset);
1624 count_vm_event(PGMAJFAULT);
456f998e 1625 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1626 ret = VM_FAULT_MAJOR;
1627retry_find:
b522c94d 1628 page = find_get_page(mapping, offset);
1da177e4
LT
1629 if (!page)
1630 goto no_cached_page;
1631 }
1632
d88c0922
ML
1633 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1634 page_cache_release(page);
d065bd81 1635 return ret | VM_FAULT_RETRY;
d88c0922 1636 }
b522c94d
ML
1637
1638 /* Did it get truncated? */
1639 if (unlikely(page->mapping != mapping)) {
1640 unlock_page(page);
1641 put_page(page);
1642 goto retry_find;
1643 }
1644 VM_BUG_ON(page->index != offset);
1645
1da177e4 1646 /*
d00806b1
NP
1647 * We have a locked page in the page cache, now we need to check
1648 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1649 */
d00806b1 1650 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1651 goto page_not_uptodate;
1652
ef00e08e
LT
1653 /*
1654 * Found the page and have a reference on it.
1655 * We must recheck i_size under page lock.
1656 */
d00806b1 1657 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1658 if (unlikely(offset >= size)) {
d00806b1 1659 unlock_page(page);
745ad48e 1660 page_cache_release(page);
5307cc1a 1661 return VM_FAULT_SIGBUS;
d00806b1
NP
1662 }
1663
d0217ac0 1664 vmf->page = page;
83c54070 1665 return ret | VM_FAULT_LOCKED;
1da177e4 1666
1da177e4
LT
1667no_cached_page:
1668 /*
1669 * We're only likely to ever get here if MADV_RANDOM is in
1670 * effect.
1671 */
ef00e08e 1672 error = page_cache_read(file, offset);
1da177e4
LT
1673
1674 /*
1675 * The page we want has now been added to the page cache.
1676 * In the unlikely event that someone removed it in the
1677 * meantime, we'll just come back here and read it again.
1678 */
1679 if (error >= 0)
1680 goto retry_find;
1681
1682 /*
1683 * An error return from page_cache_read can result if the
1684 * system is low on memory, or a problem occurs while trying
1685 * to schedule I/O.
1686 */
1687 if (error == -ENOMEM)
d0217ac0
NP
1688 return VM_FAULT_OOM;
1689 return VM_FAULT_SIGBUS;
1da177e4
LT
1690
1691page_not_uptodate:
1da177e4
LT
1692 /*
1693 * Umm, take care of errors if the page isn't up-to-date.
1694 * Try to re-read it _once_. We do this synchronously,
1695 * because there really aren't any performance issues here
1696 * and we need to check for errors.
1697 */
1da177e4 1698 ClearPageError(page);
994fc28c 1699 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1700 if (!error) {
1701 wait_on_page_locked(page);
1702 if (!PageUptodate(page))
1703 error = -EIO;
1704 }
d00806b1
NP
1705 page_cache_release(page);
1706
1707 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1708 goto retry_find;
1da177e4 1709
d00806b1 1710 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1711 shrink_readahead_size_eio(file, ra);
d0217ac0 1712 return VM_FAULT_SIGBUS;
54cb8821
NP
1713}
1714EXPORT_SYMBOL(filemap_fault);
1715
4fcf1c62
JK
1716int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1717{
1718 struct page *page = vmf->page;
496ad9aa 1719 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
1720 int ret = VM_FAULT_LOCKED;
1721
14da9200 1722 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
1723 file_update_time(vma->vm_file);
1724 lock_page(page);
1725 if (page->mapping != inode->i_mapping) {
1726 unlock_page(page);
1727 ret = VM_FAULT_NOPAGE;
1728 goto out;
1729 }
14da9200
JK
1730 /*
1731 * We mark the page dirty already here so that when freeze is in
1732 * progress, we are guaranteed that writeback during freezing will
1733 * see the dirty page and writeprotect it again.
1734 */
1735 set_page_dirty(page);
1d1d1a76 1736 wait_for_stable_page(page);
4fcf1c62 1737out:
14da9200 1738 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
1739 return ret;
1740}
1741EXPORT_SYMBOL(filemap_page_mkwrite);
1742
f0f37e2f 1743const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1744 .fault = filemap_fault,
4fcf1c62 1745 .page_mkwrite = filemap_page_mkwrite,
0b173bc4 1746 .remap_pages = generic_file_remap_pages,
1da177e4
LT
1747};
1748
1749/* This is used for a general mmap of a disk file */
1750
1751int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1752{
1753 struct address_space *mapping = file->f_mapping;
1754
1755 if (!mapping->a_ops->readpage)
1756 return -ENOEXEC;
1757 file_accessed(file);
1758 vma->vm_ops = &generic_file_vm_ops;
1759 return 0;
1760}
1da177e4
LT
1761
1762/*
1763 * This is for filesystems which do not implement ->writepage.
1764 */
1765int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1766{
1767 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1768 return -EINVAL;
1769 return generic_file_mmap(file, vma);
1770}
1771#else
1772int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1773{
1774 return -ENOSYS;
1775}
1776int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1777{
1778 return -ENOSYS;
1779}
1780#endif /* CONFIG_MMU */
1781
1782EXPORT_SYMBOL(generic_file_mmap);
1783EXPORT_SYMBOL(generic_file_readonly_mmap);
1784
6fe6900e 1785static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1786 pgoff_t index,
5e5358e7 1787 int (*filler)(void *, struct page *),
0531b2aa
LT
1788 void *data,
1789 gfp_t gfp)
1da177e4 1790{
eb2be189 1791 struct page *page;
1da177e4
LT
1792 int err;
1793repeat:
1794 page = find_get_page(mapping, index);
1795 if (!page) {
0531b2aa 1796 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
1797 if (!page)
1798 return ERR_PTR(-ENOMEM);
e6f67b8c 1799 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
1800 if (unlikely(err)) {
1801 page_cache_release(page);
1802 if (err == -EEXIST)
1803 goto repeat;
1da177e4 1804 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1805 return ERR_PTR(err);
1806 }
1da177e4
LT
1807 err = filler(data, page);
1808 if (err < 0) {
1809 page_cache_release(page);
1810 page = ERR_PTR(err);
1811 }
1812 }
1da177e4
LT
1813 return page;
1814}
1815
0531b2aa 1816static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 1817 pgoff_t index,
5e5358e7 1818 int (*filler)(void *, struct page *),
0531b2aa
LT
1819 void *data,
1820 gfp_t gfp)
1821
1da177e4
LT
1822{
1823 struct page *page;
1824 int err;
1825
1826retry:
0531b2aa 1827 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 1828 if (IS_ERR(page))
c855ff37 1829 return page;
1da177e4
LT
1830 if (PageUptodate(page))
1831 goto out;
1832
1833 lock_page(page);
1834 if (!page->mapping) {
1835 unlock_page(page);
1836 page_cache_release(page);
1837 goto retry;
1838 }
1839 if (PageUptodate(page)) {
1840 unlock_page(page);
1841 goto out;
1842 }
1843 err = filler(data, page);
1844 if (err < 0) {
1845 page_cache_release(page);
c855ff37 1846 return ERR_PTR(err);
1da177e4 1847 }
c855ff37 1848out:
6fe6900e
NP
1849 mark_page_accessed(page);
1850 return page;
1851}
0531b2aa
LT
1852
1853/**
1854 * read_cache_page_async - read into page cache, fill it if needed
1855 * @mapping: the page's address_space
1856 * @index: the page index
1857 * @filler: function to perform the read
5e5358e7 1858 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa
LT
1859 *
1860 * Same as read_cache_page, but don't wait for page to become unlocked
1861 * after submitting it to the filler.
1862 *
1863 * Read into the page cache. If a page already exists, and PageUptodate() is
1864 * not set, try to fill the page but don't wait for it to become unlocked.
1865 *
1866 * If the page does not get brought uptodate, return -EIO.
1867 */
1868struct page *read_cache_page_async(struct address_space *mapping,
1869 pgoff_t index,
5e5358e7 1870 int (*filler)(void *, struct page *),
0531b2aa
LT
1871 void *data)
1872{
1873 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1874}
6fe6900e
NP
1875EXPORT_SYMBOL(read_cache_page_async);
1876
0531b2aa
LT
1877static struct page *wait_on_page_read(struct page *page)
1878{
1879 if (!IS_ERR(page)) {
1880 wait_on_page_locked(page);
1881 if (!PageUptodate(page)) {
1882 page_cache_release(page);
1883 page = ERR_PTR(-EIO);
1884 }
1885 }
1886 return page;
1887}
1888
1889/**
1890 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1891 * @mapping: the page's address_space
1892 * @index: the page index
1893 * @gfp: the page allocator flags to use if allocating
1894 *
1895 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 1896 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
1897 *
1898 * If the page does not get brought uptodate, return -EIO.
1899 */
1900struct page *read_cache_page_gfp(struct address_space *mapping,
1901 pgoff_t index,
1902 gfp_t gfp)
1903{
1904 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1905
1906 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1907}
1908EXPORT_SYMBOL(read_cache_page_gfp);
1909
6fe6900e
NP
1910/**
1911 * read_cache_page - read into page cache, fill it if needed
1912 * @mapping: the page's address_space
1913 * @index: the page index
1914 * @filler: function to perform the read
5e5358e7 1915 * @data: first arg to filler(data, page) function, often left as NULL
6fe6900e
NP
1916 *
1917 * Read into the page cache. If a page already exists, and PageUptodate() is
1918 * not set, try to fill the page then wait for it to become unlocked.
1919 *
1920 * If the page does not get brought uptodate, return -EIO.
1921 */
1922struct page *read_cache_page(struct address_space *mapping,
57f6b96c 1923 pgoff_t index,
5e5358e7 1924 int (*filler)(void *, struct page *),
6fe6900e
NP
1925 void *data)
1926{
0531b2aa 1927 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1da177e4 1928}
1da177e4
LT
1929EXPORT_SYMBOL(read_cache_page);
1930
2f718ffc 1931static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
1932 const struct iovec *iov, size_t base, size_t bytes)
1933{
f1800536 1934 size_t copied = 0, left = 0;
1da177e4
LT
1935
1936 while (bytes) {
1937 char __user *buf = iov->iov_base + base;
1938 int copy = min(bytes, iov->iov_len - base);
1939
1940 base = 0;
f1800536 1941 left = __copy_from_user_inatomic(vaddr, buf, copy);
1da177e4
LT
1942 copied += copy;
1943 bytes -= copy;
1944 vaddr += copy;
1945 iov++;
1946
01408c49 1947 if (unlikely(left))
1da177e4 1948 break;
1da177e4
LT
1949 }
1950 return copied - left;
1951}
1952
2f718ffc
NP
1953/*
1954 * Copy as much as we can into the page and return the number of bytes which
af901ca1 1955 * were successfully copied. If a fault is encountered then return the number of
2f718ffc
NP
1956 * bytes which were copied.
1957 */
1958size_t iov_iter_copy_from_user_atomic(struct page *page,
1959 struct iov_iter *i, unsigned long offset, size_t bytes)
1960{
1961 char *kaddr;
1962 size_t copied;
1963
1964 BUG_ON(!in_atomic());
9b04c5fe 1965 kaddr = kmap_atomic(page);
2f718ffc
NP
1966 if (likely(i->nr_segs == 1)) {
1967 int left;
1968 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 1969 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2f718ffc
NP
1970 copied = bytes - left;
1971 } else {
1972 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1973 i->iov, i->iov_offset, bytes);
1974 }
9b04c5fe 1975 kunmap_atomic(kaddr);
2f718ffc
NP
1976
1977 return copied;
1978}
89e10787 1979EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
1980
1981/*
1982 * This has the same sideeffects and return value as
1983 * iov_iter_copy_from_user_atomic().
1984 * The difference is that it attempts to resolve faults.
1985 * Page must not be locked.
1986 */
1987size_t iov_iter_copy_from_user(struct page *page,
1988 struct iov_iter *i, unsigned long offset, size_t bytes)
1989{
1990 char *kaddr;
1991 size_t copied;
1992
1993 kaddr = kmap(page);
1994 if (likely(i->nr_segs == 1)) {
1995 int left;
1996 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 1997 left = __copy_from_user(kaddr + offset, buf, bytes);
2f718ffc
NP
1998 copied = bytes - left;
1999 } else {
2000 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2001 i->iov, i->iov_offset, bytes);
2002 }
2003 kunmap(page);
2004 return copied;
2005}
89e10787 2006EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 2007
f7009264 2008void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 2009{
f7009264
NP
2010 BUG_ON(i->count < bytes);
2011
2f718ffc
NP
2012 if (likely(i->nr_segs == 1)) {
2013 i->iov_offset += bytes;
f7009264 2014 i->count -= bytes;
2f718ffc
NP
2015 } else {
2016 const struct iovec *iov = i->iov;
2017 size_t base = i->iov_offset;
39be79c1 2018 unsigned long nr_segs = i->nr_segs;
2f718ffc 2019
124d3b70
NP
2020 /*
2021 * The !iov->iov_len check ensures we skip over unlikely
f7009264 2022 * zero-length segments (without overruning the iovec).
124d3b70 2023 */
94ad374a 2024 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 2025 int copy;
2f718ffc 2026
f7009264
NP
2027 copy = min(bytes, iov->iov_len - base);
2028 BUG_ON(!i->count || i->count < copy);
2029 i->count -= copy;
2f718ffc
NP
2030 bytes -= copy;
2031 base += copy;
2032 if (iov->iov_len == base) {
2033 iov++;
39be79c1 2034 nr_segs--;
2f718ffc
NP
2035 base = 0;
2036 }
2037 }
2038 i->iov = iov;
2039 i->iov_offset = base;
39be79c1 2040 i->nr_segs = nr_segs;
2f718ffc
NP
2041 }
2042}
89e10787 2043EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 2044
afddba49
NP
2045/*
2046 * Fault in the first iovec of the given iov_iter, to a maximum length
2047 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2048 * accessed (ie. because it is an invalid address).
2049 *
2050 * writev-intensive code may want this to prefault several iovecs -- that
2051 * would be possible (callers must not rely on the fact that _only_ the
2052 * first iovec will be faulted with the current implementation).
2053 */
2054int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 2055{
2f718ffc 2056 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
2057 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2058 return fault_in_pages_readable(buf, bytes);
2f718ffc 2059}
89e10787 2060EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
2061
2062/*
2063 * Return the count of just the current iov_iter segment.
2064 */
d28574e0 2065size_t iov_iter_single_seg_count(const struct iov_iter *i)
2f718ffc
NP
2066{
2067 const struct iovec *iov = i->iov;
2068 if (i->nr_segs == 1)
2069 return i->count;
2070 else
2071 return min(i->count, iov->iov_len - i->iov_offset);
2072}
89e10787 2073EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 2074
1da177e4
LT
2075/*
2076 * Performs necessary checks before doing a write
2077 *
485bb99b 2078 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2079 * Returns appropriate error code that caller should return or
2080 * zero in case that write should be allowed.
2081 */
2082inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2083{
2084 struct inode *inode = file->f_mapping->host;
59e99e5b 2085 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2086
2087 if (unlikely(*pos < 0))
2088 return -EINVAL;
2089
1da177e4
LT
2090 if (!isblk) {
2091 /* FIXME: this is for backwards compatibility with 2.4 */
2092 if (file->f_flags & O_APPEND)
2093 *pos = i_size_read(inode);
2094
2095 if (limit != RLIM_INFINITY) {
2096 if (*pos >= limit) {
2097 send_sig(SIGXFSZ, current, 0);
2098 return -EFBIG;
2099 }
2100 if (*count > limit - (typeof(limit))*pos) {
2101 *count = limit - (typeof(limit))*pos;
2102 }
2103 }
2104 }
2105
2106 /*
2107 * LFS rule
2108 */
2109 if (unlikely(*pos + *count > MAX_NON_LFS &&
2110 !(file->f_flags & O_LARGEFILE))) {
2111 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2112 return -EFBIG;
2113 }
2114 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2115 *count = MAX_NON_LFS - (unsigned long)*pos;
2116 }
2117 }
2118
2119 /*
2120 * Are we about to exceed the fs block limit ?
2121 *
2122 * If we have written data it becomes a short write. If we have
2123 * exceeded without writing data we send a signal and return EFBIG.
2124 * Linus frestrict idea will clean these up nicely..
2125 */
2126 if (likely(!isblk)) {
2127 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2128 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2129 return -EFBIG;
2130 }
2131 /* zero-length writes at ->s_maxbytes are OK */
2132 }
2133
2134 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2135 *count = inode->i_sb->s_maxbytes - *pos;
2136 } else {
9361401e 2137#ifdef CONFIG_BLOCK
1da177e4
LT
2138 loff_t isize;
2139 if (bdev_read_only(I_BDEV(inode)))
2140 return -EPERM;
2141 isize = i_size_read(inode);
2142 if (*pos >= isize) {
2143 if (*count || *pos > isize)
2144 return -ENOSPC;
2145 }
2146
2147 if (*pos + *count > isize)
2148 *count = isize - *pos;
9361401e
DH
2149#else
2150 return -EPERM;
2151#endif
1da177e4
LT
2152 }
2153 return 0;
2154}
2155EXPORT_SYMBOL(generic_write_checks);
2156
afddba49
NP
2157int pagecache_write_begin(struct file *file, struct address_space *mapping,
2158 loff_t pos, unsigned len, unsigned flags,
2159 struct page **pagep, void **fsdata)
2160{
2161 const struct address_space_operations *aops = mapping->a_ops;
2162
4e02ed4b 2163 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2164 pagep, fsdata);
afddba49
NP
2165}
2166EXPORT_SYMBOL(pagecache_write_begin);
2167
2168int pagecache_write_end(struct file *file, struct address_space *mapping,
2169 loff_t pos, unsigned len, unsigned copied,
2170 struct page *page, void *fsdata)
2171{
2172 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2173
4e02ed4b
NP
2174 mark_page_accessed(page);
2175 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2176}
2177EXPORT_SYMBOL(pagecache_write_end);
2178
1da177e4
LT
2179ssize_t
2180generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2181 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2182 size_t count, size_t ocount)
2183{
2184 struct file *file = iocb->ki_filp;
2185 struct address_space *mapping = file->f_mapping;
2186 struct inode *inode = mapping->host;
2187 ssize_t written;
a969e903
CH
2188 size_t write_len;
2189 pgoff_t end;
1da177e4
LT
2190
2191 if (count != ocount)
2192 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2193
a969e903
CH
2194 write_len = iov_length(iov, *nr_segs);
2195 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2196
48b47c56 2197 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2198 if (written)
2199 goto out;
2200
2201 /*
2202 * After a write we want buffered reads to be sure to go to disk to get
2203 * the new data. We invalidate clean cached page from the region we're
2204 * about to write. We do this *before* the write so that we can return
6ccfa806 2205 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2206 */
2207 if (mapping->nrpages) {
2208 written = invalidate_inode_pages2_range(mapping,
2209 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2210 /*
2211 * If a page can not be invalidated, return 0 to fall back
2212 * to buffered write.
2213 */
2214 if (written) {
2215 if (written == -EBUSY)
2216 return 0;
a969e903 2217 goto out;
6ccfa806 2218 }
a969e903
CH
2219 }
2220
2221 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2222
2223 /*
2224 * Finally, try again to invalidate clean pages which might have been
2225 * cached by non-direct readahead, or faulted in by get_user_pages()
2226 * if the source of the write was an mmap'ed region of the file
2227 * we're writing. Either one is a pretty crazy thing to do,
2228 * so we don't support it 100%. If this invalidation
2229 * fails, tough, the write still worked...
2230 */
2231 if (mapping->nrpages) {
2232 invalidate_inode_pages2_range(mapping,
2233 pos >> PAGE_CACHE_SHIFT, end);
2234 }
2235
1da177e4 2236 if (written > 0) {
0116651c
NK
2237 pos += written;
2238 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2239 i_size_write(inode, pos);
1da177e4
LT
2240 mark_inode_dirty(inode);
2241 }
0116651c 2242 *ppos = pos;
1da177e4 2243 }
a969e903 2244out:
1da177e4
LT
2245 return written;
2246}
2247EXPORT_SYMBOL(generic_file_direct_write);
2248
eb2be189
NP
2249/*
2250 * Find or create a page at the given pagecache position. Return the locked
2251 * page. This function is specifically for buffered writes.
2252 */
54566b2c
NP
2253struct page *grab_cache_page_write_begin(struct address_space *mapping,
2254 pgoff_t index, unsigned flags)
eb2be189
NP
2255{
2256 int status;
0faa70cb 2257 gfp_t gfp_mask;
eb2be189 2258 struct page *page;
54566b2c 2259 gfp_t gfp_notmask = 0;
0faa70cb 2260
1010bb1b
FW
2261 gfp_mask = mapping_gfp_mask(mapping);
2262 if (mapping_cap_account_dirty(mapping))
2263 gfp_mask |= __GFP_WRITE;
54566b2c
NP
2264 if (flags & AOP_FLAG_NOFS)
2265 gfp_notmask = __GFP_FS;
eb2be189
NP
2266repeat:
2267 page = find_lock_page(mapping, index);
c585a267 2268 if (page)
3d08bcc8 2269 goto found;
eb2be189 2270
0faa70cb 2271 page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
eb2be189
NP
2272 if (!page)
2273 return NULL;
54566b2c
NP
2274 status = add_to_page_cache_lru(page, mapping, index,
2275 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2276 if (unlikely(status)) {
2277 page_cache_release(page);
2278 if (status == -EEXIST)
2279 goto repeat;
2280 return NULL;
2281 }
3d08bcc8 2282found:
1d1d1a76 2283 wait_for_stable_page(page);
eb2be189
NP
2284 return page;
2285}
54566b2c 2286EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2287
afddba49
NP
2288static ssize_t generic_perform_write(struct file *file,
2289 struct iov_iter *i, loff_t pos)
2290{
2291 struct address_space *mapping = file->f_mapping;
2292 const struct address_space_operations *a_ops = mapping->a_ops;
2293 long status = 0;
2294 ssize_t written = 0;
674b892e
NP
2295 unsigned int flags = 0;
2296
2297 /*
2298 * Copies from kernel address space cannot fail (NFSD is a big user).
2299 */
2300 if (segment_eq(get_fs(), KERNEL_DS))
2301 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2302
2303 do {
2304 struct page *page;
afddba49
NP
2305 unsigned long offset; /* Offset into pagecache page */
2306 unsigned long bytes; /* Bytes to write to page */
2307 size_t copied; /* Bytes copied from user */
2308 void *fsdata;
2309
2310 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2311 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2312 iov_iter_count(i));
2313
2314again:
afddba49
NP
2315 /*
2316 * Bring in the user page that we will copy from _first_.
2317 * Otherwise there's a nasty deadlock on copying from the
2318 * same page as we're writing to, without it being marked
2319 * up-to-date.
2320 *
2321 * Not only is this an optimisation, but it is also required
2322 * to check that the address is actually valid, when atomic
2323 * usercopies are used, below.
2324 */
2325 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2326 status = -EFAULT;
2327 break;
2328 }
2329
674b892e 2330 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2331 &page, &fsdata);
2332 if (unlikely(status))
2333 break;
2334
931e80e4 2335 if (mapping_writably_mapped(mapping))
2336 flush_dcache_page(page);
2337
afddba49
NP
2338 pagefault_disable();
2339 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2340 pagefault_enable();
2341 flush_dcache_page(page);
2342
c8236db9 2343 mark_page_accessed(page);
afddba49
NP
2344 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2345 page, fsdata);
2346 if (unlikely(status < 0))
2347 break;
2348 copied = status;
2349
2350 cond_resched();
2351
124d3b70 2352 iov_iter_advance(i, copied);
afddba49
NP
2353 if (unlikely(copied == 0)) {
2354 /*
2355 * If we were unable to copy any data at all, we must
2356 * fall back to a single segment length write.
2357 *
2358 * If we didn't fallback here, we could livelock
2359 * because not all segments in the iov can be copied at
2360 * once without a pagefault.
2361 */
2362 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2363 iov_iter_single_seg_count(i));
2364 goto again;
2365 }
afddba49
NP
2366 pos += copied;
2367 written += copied;
2368
2369 balance_dirty_pages_ratelimited(mapping);
a50527b1
JK
2370 if (fatal_signal_pending(current)) {
2371 status = -EINTR;
2372 break;
2373 }
afddba49
NP
2374 } while (iov_iter_count(i));
2375
2376 return written ? written : status;
2377}
2378
2379ssize_t
2380generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2381 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2382 size_t count, ssize_t written)
2383{
2384 struct file *file = iocb->ki_filp;
afddba49
NP
2385 ssize_t status;
2386 struct iov_iter i;
2387
2388 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2389 status = generic_perform_write(file, &i, pos);
1da177e4 2390
1da177e4 2391 if (likely(status >= 0)) {
afddba49
NP
2392 written += status;
2393 *ppos = pos + status;
1da177e4
LT
2394 }
2395
1da177e4
LT
2396 return written ? written : status;
2397}
2398EXPORT_SYMBOL(generic_file_buffered_write);
2399
e4dd9de3
JK
2400/**
2401 * __generic_file_aio_write - write data to a file
2402 * @iocb: IO state structure (file, offset, etc.)
2403 * @iov: vector with data to write
2404 * @nr_segs: number of segments in the vector
2405 * @ppos: position where to write
2406 *
2407 * This function does all the work needed for actually writing data to a
2408 * file. It does all basic checks, removes SUID from the file, updates
2409 * modification times and calls proper subroutines depending on whether we
2410 * do direct IO or a standard buffered write.
2411 *
2412 * It expects i_mutex to be grabbed unless we work on a block device or similar
2413 * object which does not need locking at all.
2414 *
2415 * This function does *not* take care of syncing data in case of O_SYNC write.
2416 * A caller has to handle it. This is mainly due to the fact that we want to
2417 * avoid syncing under i_mutex.
2418 */
2419ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2420 unsigned long nr_segs, loff_t *ppos)
1da177e4
LT
2421{
2422 struct file *file = iocb->ki_filp;
fb5527e6 2423 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2424 size_t ocount; /* original count */
2425 size_t count; /* after file limit checks */
2426 struct inode *inode = mapping->host;
1da177e4
LT
2427 loff_t pos;
2428 ssize_t written;
2429 ssize_t err;
2430
2431 ocount = 0;
0ceb3314
DM
2432 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2433 if (err)
2434 return err;
1da177e4
LT
2435
2436 count = ocount;
2437 pos = *ppos;
2438
1da177e4
LT
2439 /* We can write back this queue in page reclaim */
2440 current->backing_dev_info = mapping->backing_dev_info;
2441 written = 0;
2442
2443 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2444 if (err)
2445 goto out;
2446
2447 if (count == 0)
2448 goto out;
2449
2f1936b8 2450 err = file_remove_suid(file);
1da177e4
LT
2451 if (err)
2452 goto out;
2453
c3b2da31
JB
2454 err = file_update_time(file);
2455 if (err)
2456 goto out;
1da177e4
LT
2457
2458 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2459 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2460 loff_t endbyte;
2461 ssize_t written_buffered;
2462
2463 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2464 ppos, count, ocount);
1da177e4
LT
2465 if (written < 0 || written == count)
2466 goto out;
2467 /*
2468 * direct-io write to a hole: fall through to buffered I/O
2469 * for completing the rest of the request.
2470 */
2471 pos += written;
2472 count -= written;
fb5527e6
JM
2473 written_buffered = generic_file_buffered_write(iocb, iov,
2474 nr_segs, pos, ppos, count,
2475 written);
2476 /*
2477 * If generic_file_buffered_write() retuned a synchronous error
2478 * then we want to return the number of bytes which were
2479 * direct-written, or the error code if that was zero. Note
2480 * that this differs from normal direct-io semantics, which
2481 * will return -EFOO even if some bytes were written.
2482 */
2483 if (written_buffered < 0) {
2484 err = written_buffered;
2485 goto out;
2486 }
1da177e4 2487
fb5527e6
JM
2488 /*
2489 * We need to ensure that the page cache pages are written to
2490 * disk and invalidated to preserve the expected O_DIRECT
2491 * semantics.
2492 */
2493 endbyte = pos + written_buffered - written - 1;
c05c4edd 2494 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6
JM
2495 if (err == 0) {
2496 written = written_buffered;
2497 invalidate_mapping_pages(mapping,
2498 pos >> PAGE_CACHE_SHIFT,
2499 endbyte >> PAGE_CACHE_SHIFT);
2500 } else {
2501 /*
2502 * We don't know how much we wrote, so just return
2503 * the number of bytes which were direct-written
2504 */
2505 }
2506 } else {
2507 written = generic_file_buffered_write(iocb, iov, nr_segs,
2508 pos, ppos, count, written);
2509 }
1da177e4
LT
2510out:
2511 current->backing_dev_info = NULL;
2512 return written ? written : err;
2513}
e4dd9de3
JK
2514EXPORT_SYMBOL(__generic_file_aio_write);
2515
e4dd9de3
JK
2516/**
2517 * generic_file_aio_write - write data to a file
2518 * @iocb: IO state structure
2519 * @iov: vector with data to write
2520 * @nr_segs: number of segments in the vector
2521 * @pos: position in file where to write
2522 *
2523 * This is a wrapper around __generic_file_aio_write() to be used by most
2524 * filesystems. It takes care of syncing the file in case of O_SYNC file
2525 * and acquires i_mutex as needed.
2526 */
027445c3
BP
2527ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2528 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2529{
2530 struct file *file = iocb->ki_filp;
148f948b 2531 struct inode *inode = file->f_mapping->host;
1da177e4 2532 ssize_t ret;
1da177e4
LT
2533
2534 BUG_ON(iocb->ki_pos != pos);
2535
14da9200 2536 sb_start_write(inode->i_sb);
1b1dcc1b 2537 mutex_lock(&inode->i_mutex);
e4dd9de3 2538 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1b1dcc1b 2539 mutex_unlock(&inode->i_mutex);
1da177e4 2540
148f948b 2541 if (ret > 0 || ret == -EIOCBQUEUED) {
1da177e4
LT
2542 ssize_t err;
2543
148f948b 2544 err = generic_write_sync(file, pos, ret);
c7b50db2 2545 if (err < 0 && ret > 0)
1da177e4
LT
2546 ret = err;
2547 }
14da9200 2548 sb_end_write(inode->i_sb);
1da177e4
LT
2549 return ret;
2550}
2551EXPORT_SYMBOL(generic_file_aio_write);
2552
cf9a2ae8
DH
2553/**
2554 * try_to_release_page() - release old fs-specific metadata on a page
2555 *
2556 * @page: the page which the kernel is trying to free
2557 * @gfp_mask: memory allocation flags (and I/O mode)
2558 *
2559 * The address_space is to try to release any data against the page
2560 * (presumably at page->private). If the release was successful, return `1'.
2561 * Otherwise return zero.
2562 *
266cf658
DH
2563 * This may also be called if PG_fscache is set on a page, indicating that the
2564 * page is known to the local caching routines.
2565 *
cf9a2ae8 2566 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2567 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2568 *
cf9a2ae8
DH
2569 */
2570int try_to_release_page(struct page *page, gfp_t gfp_mask)
2571{
2572 struct address_space * const mapping = page->mapping;
2573
2574 BUG_ON(!PageLocked(page));
2575 if (PageWriteback(page))
2576 return 0;
2577
2578 if (mapping && mapping->a_ops->releasepage)
2579 return mapping->a_ops->releasepage(page, gfp_mask);
2580 return try_to_free_buffers(page);
2581}
2582
2583EXPORT_SYMBOL(try_to_release_page);