]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/filemap.c
fs: convert a pile of fsync routines to errseq_t based reporting
[mirror_ubuntu-bionic-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
3f07c014 16#include <linux/sched/signal.h>
c22ce143 17#include <linux/uaccess.h>
c59ede7b 18#include <linux/capability.h>
1da177e4 19#include <linux/kernel_stat.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/mm.h>
22#include <linux/swap.h>
23#include <linux/mman.h>
24#include <linux/pagemap.h>
25#include <linux/file.h>
26#include <linux/uio.h>
27#include <linux/hash.h>
28#include <linux/writeback.h>
53253383 29#include <linux/backing-dev.h>
1da177e4
LT
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/security.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 35#include <linux/hugetlb.h>
8a9f3ccd 36#include <linux/memcontrol.h>
c515e1fd 37#include <linux/cleancache.h>
f1820361 38#include <linux/rmap.h>
0f8053a5
NP
39#include "internal.h"
40
fe0bfaaf
RJ
41#define CREATE_TRACE_POINTS
42#include <trace/events/filemap.h>
43
1da177e4 44/*
1da177e4
LT
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
148f948b 47#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 48
1da177e4
LT
49#include <asm/mman.h>
50
51/*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63/*
64 * Lock ordering:
65 *
c8c06efa 66 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
1da177e4 70 *
1b1dcc1b 71 * ->i_mutex
c8c06efa 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
73 *
74 * ->mmap_sem
c8c06efa 75 * ->i_mmap_rwsem
b8072f09 76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
ccad2365 82 * ->i_mutex (generic_perform_write)
82591e6e 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 84 *
f758eeab 85 * bdi->wb.list_lock
a66979ab 86 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
87 * ->mapping->tree_lock (__sync_single_inode)
88 *
c8c06efa 89 * ->i_mmap_rwsem
1da177e4
LT
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
b8072f09 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 94 *
b8072f09 95 * ->page_table_lock or pte_lock
5d337b91 96 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
a52633d8
MG
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
1da177e4
LT
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
c8c06efa 110 * ->i_mmap_rwsem
9a3c531d 111 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
112 */
113
22f2ac51
JW
114static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116{
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
121 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 if (!radix_tree_exceptional_entry(p))
130 return -EEXIST;
131
132 mapping->nrexceptional--;
133 if (!dax_mapping(mapping)) {
134 if (shadowp)
135 *shadowp = p;
22f2ac51
JW
136 } else {
137 /* DAX can replace empty locked entry with a hole */
138 WARN_ON_ONCE(p !=
642261ac 139 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
22f2ac51 140 /* Wakeup waiters for exceptional entry lock */
63e95b5c 141 dax_wake_mapping_entry_waiter(mapping, page->index, p,
965d004a 142 true);
22f2ac51
JW
143 }
144 }
14b46879
JW
145 __radix_tree_replace(&mapping->page_tree, node, slot, page,
146 workingset_update_node, mapping);
22f2ac51 147 mapping->nrpages++;
22f2ac51
JW
148 return 0;
149}
150
91b0abe3
JW
151static void page_cache_tree_delete(struct address_space *mapping,
152 struct page *page, void *shadow)
153{
c70b647d
KS
154 int i, nr;
155
156 /* hugetlb pages are represented by one entry in the radix tree */
157 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
91b0abe3 158
83929372
KS
159 VM_BUG_ON_PAGE(!PageLocked(page), page);
160 VM_BUG_ON_PAGE(PageTail(page), page);
161 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 162
83929372 163 for (i = 0; i < nr; i++) {
d3798ae8
JW
164 struct radix_tree_node *node;
165 void **slot;
166
167 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168 &node, &slot);
169
dbc446b8 170 VM_BUG_ON_PAGE(!node && nr != 1, page);
449dd698 171
14b46879
JW
172 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174 workingset_update_node, mapping);
449dd698 175 }
d3798ae8
JW
176
177 if (shadow) {
178 mapping->nrexceptional += nr;
179 /*
180 * Make sure the nrexceptional update is committed before
181 * the nrpages update so that final truncate racing
182 * with reclaim does not see both counters 0 at the
183 * same time and miss a shadow entry.
184 */
185 smp_wmb();
186 }
187 mapping->nrpages -= nr;
91b0abe3
JW
188}
189
1da177e4 190/*
e64a782f 191 * Delete a page from the page cache and free it. Caller has to make
1da177e4 192 * sure the page is locked and that nobody else uses it - or that usage
fdf1cdb9 193 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 194 */
62cccb8c 195void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
196{
197 struct address_space *mapping = page->mapping;
83929372 198 int nr = hpage_nr_pages(page);
1da177e4 199
fe0bfaaf 200 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
201 /*
202 * if we're uptodate, flush out into the cleancache, otherwise
203 * invalidate any existing cleancache entries. We can't leave
204 * stale data around in the cleancache once our page is gone
205 */
206 if (PageUptodate(page) && PageMappedToDisk(page))
207 cleancache_put_page(page);
208 else
3167760f 209 cleancache_invalidate_page(mapping, page);
c515e1fd 210
83929372 211 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
212 VM_BUG_ON_PAGE(page_mapped(page), page);
213 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214 int mapcount;
215
216 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
217 current->comm, page_to_pfn(page));
218 dump_page(page, "still mapped when deleted");
219 dump_stack();
220 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222 mapcount = page_mapcount(page);
223 if (mapping_exiting(mapping) &&
224 page_count(page) >= mapcount + 2) {
225 /*
226 * All vmas have already been torn down, so it's
227 * a good bet that actually the page is unmapped,
228 * and we'd prefer not to leak it: if we're wrong,
229 * some other bad page check should catch it later.
230 */
231 page_mapcount_reset(page);
6d061f9f 232 page_ref_sub(page, mapcount);
06b241f3
HD
233 }
234 }
235
91b0abe3
JW
236 page_cache_tree_delete(mapping, page, shadow);
237
1da177e4 238 page->mapping = NULL;
b85e0eff 239 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 240
4165b9b4 241 /* hugetlb pages do not participate in page cache accounting. */
09612fa6
NH
242 if (PageHuge(page))
243 return;
244
245 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
800d8c63 246 if (PageSwapBacked(page)) {
11fb9989 247 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
800d8c63 248 if (PageTransHuge(page))
11fb9989 249 __dec_node_page_state(page, NR_SHMEM_THPS);
800d8c63 250 } else {
09612fa6 251 VM_BUG_ON_PAGE(PageTransHuge(page), page);
800d8c63 252 }
3a692790
LT
253
254 /*
b9ea2515
KK
255 * At this point page must be either written or cleaned by truncate.
256 * Dirty page here signals a bug and loss of unwritten data.
3a692790 257 *
b9ea2515
KK
258 * This fixes dirty accounting after removing the page entirely but
259 * leaves PageDirty set: it has no effect for truncated page and
260 * anyway will be cleared before returning page into buddy allocator.
3a692790 261 */
b9ea2515 262 if (WARN_ON_ONCE(PageDirty(page)))
62cccb8c 263 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
1da177e4
LT
264}
265
702cfbf9
MK
266/**
267 * delete_from_page_cache - delete page from page cache
268 * @page: the page which the kernel is trying to remove from page cache
269 *
270 * This must be called only on pages that have been verified to be in the page
271 * cache and locked. It will never put the page into the free list, the caller
272 * has a reference on the page.
273 */
274void delete_from_page_cache(struct page *page)
1da177e4 275{
83929372 276 struct address_space *mapping = page_mapping(page);
c4843a75 277 unsigned long flags;
6072d13c 278 void (*freepage)(struct page *);
1da177e4 279
cd7619d6 280 BUG_ON(!PageLocked(page));
1da177e4 281
6072d13c 282 freepage = mapping->a_ops->freepage;
c4843a75 283
c4843a75 284 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 285 __delete_from_page_cache(page, NULL);
c4843a75 286 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
287
288 if (freepage)
289 freepage(page);
83929372
KS
290
291 if (PageTransHuge(page) && !PageHuge(page)) {
292 page_ref_sub(page, HPAGE_PMD_NR);
293 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
294 } else {
295 put_page(page);
296 }
97cecb5a
MK
297}
298EXPORT_SYMBOL(delete_from_page_cache);
299
d72d9e2a 300int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
301{
302 int ret = 0;
303 /* Check for outstanding write errors */
7fcbbaf1
JA
304 if (test_bit(AS_ENOSPC, &mapping->flags) &&
305 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 306 ret = -ENOSPC;
7fcbbaf1
JA
307 if (test_bit(AS_EIO, &mapping->flags) &&
308 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
309 ret = -EIO;
310 return ret;
311}
d72d9e2a 312EXPORT_SYMBOL(filemap_check_errors);
865ffef3 313
76341cab
JL
314static int filemap_check_and_keep_errors(struct address_space *mapping)
315{
316 /* Check for outstanding write errors */
317 if (test_bit(AS_EIO, &mapping->flags))
318 return -EIO;
319 if (test_bit(AS_ENOSPC, &mapping->flags))
320 return -ENOSPC;
321 return 0;
322}
323
1da177e4 324/**
485bb99b 325 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
326 * @mapping: address space structure to write
327 * @start: offset in bytes where the range starts
469eb4d0 328 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 329 * @sync_mode: enable synchronous operation
1da177e4 330 *
485bb99b
RD
331 * Start writeback against all of a mapping's dirty pages that lie
332 * within the byte offsets <start, end> inclusive.
333 *
1da177e4 334 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 335 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
336 * these two operations is that if a dirty page/buffer is encountered, it must
337 * be waited upon, and not just skipped over.
338 */
ebcf28e1
AM
339int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
340 loff_t end, int sync_mode)
1da177e4
LT
341{
342 int ret;
343 struct writeback_control wbc = {
344 .sync_mode = sync_mode,
05fe478d 345 .nr_to_write = LONG_MAX,
111ebb6e
OH
346 .range_start = start,
347 .range_end = end,
1da177e4
LT
348 };
349
350 if (!mapping_cap_writeback_dirty(mapping))
351 return 0;
352
b16b1deb 353 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 354 ret = do_writepages(mapping, &wbc);
b16b1deb 355 wbc_detach_inode(&wbc);
1da177e4
LT
356 return ret;
357}
358
359static inline int __filemap_fdatawrite(struct address_space *mapping,
360 int sync_mode)
361{
111ebb6e 362 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
363}
364
365int filemap_fdatawrite(struct address_space *mapping)
366{
367 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
368}
369EXPORT_SYMBOL(filemap_fdatawrite);
370
f4c0a0fd 371int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 372 loff_t end)
1da177e4
LT
373{
374 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
375}
f4c0a0fd 376EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 377
485bb99b
RD
378/**
379 * filemap_flush - mostly a non-blocking flush
380 * @mapping: target address_space
381 *
1da177e4
LT
382 * This is a mostly non-blocking flush. Not suitable for data-integrity
383 * purposes - I/O may not be started against all dirty pages.
384 */
385int filemap_flush(struct address_space *mapping)
386{
387 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
388}
389EXPORT_SYMBOL(filemap_flush);
390
7fc9e472
GR
391/**
392 * filemap_range_has_page - check if a page exists in range.
393 * @mapping: address space within which to check
394 * @start_byte: offset in bytes where the range starts
395 * @end_byte: offset in bytes where the range ends (inclusive)
396 *
397 * Find at least one page in the range supplied, usually used to check if
398 * direct writing in this range will trigger a writeback.
399 */
400bool filemap_range_has_page(struct address_space *mapping,
401 loff_t start_byte, loff_t end_byte)
402{
403 pgoff_t index = start_byte >> PAGE_SHIFT;
404 pgoff_t end = end_byte >> PAGE_SHIFT;
405 struct pagevec pvec;
406 bool ret;
407
408 if (end_byte < start_byte)
409 return false;
410
411 if (mapping->nrpages == 0)
412 return false;
413
414 pagevec_init(&pvec, 0);
415 if (!pagevec_lookup(&pvec, mapping, index, 1))
416 return false;
417 ret = (pvec.pages[0]->index <= end);
418 pagevec_release(&pvec);
419 return ret;
420}
421EXPORT_SYMBOL(filemap_range_has_page);
422
5e8fcc1a 423static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 424 loff_t start_byte, loff_t end_byte)
1da177e4 425{
09cbfeaf
KS
426 pgoff_t index = start_byte >> PAGE_SHIFT;
427 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
428 struct pagevec pvec;
429 int nr_pages;
1da177e4 430
94004ed7 431 if (end_byte < start_byte)
5e8fcc1a 432 return;
1da177e4
LT
433
434 pagevec_init(&pvec, 0);
1da177e4
LT
435 while ((index <= end) &&
436 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
437 PAGECACHE_TAG_WRITEBACK,
438 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
439 unsigned i;
440
441 for (i = 0; i < nr_pages; i++) {
442 struct page *page = pvec.pages[i];
443
444 /* until radix tree lookup accepts end_index */
445 if (page->index > end)
446 continue;
447
448 wait_on_page_writeback(page);
5e8fcc1a 449 ClearPageError(page);
1da177e4
LT
450 }
451 pagevec_release(&pvec);
452 cond_resched();
453 }
aa750fd7
JN
454}
455
456/**
457 * filemap_fdatawait_range - wait for writeback to complete
458 * @mapping: address space structure to wait for
459 * @start_byte: offset in bytes where the range starts
460 * @end_byte: offset in bytes where the range ends (inclusive)
461 *
462 * Walk the list of under-writeback pages of the given address space
463 * in the given range and wait for all of them. Check error status of
464 * the address space and return it.
465 *
466 * Since the error status of the address space is cleared by this function,
467 * callers are responsible for checking the return value and handling and/or
468 * reporting the error.
469 */
470int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
471 loff_t end_byte)
472{
5e8fcc1a
JL
473 __filemap_fdatawait_range(mapping, start_byte, end_byte);
474 return filemap_check_errors(mapping);
1da177e4 475}
d3bccb6f 476EXPORT_SYMBOL(filemap_fdatawait_range);
a823e458
JL
477
478/**
479 * file_fdatawait_range - wait for writeback to complete
480 * @file: file pointing to address space structure to wait for
481 * @start_byte: offset in bytes where the range starts
482 * @end_byte: offset in bytes where the range ends (inclusive)
483 *
484 * Walk the list of under-writeback pages of the address space that file
485 * refers to, in the given range and wait for all of them. Check error
486 * status of the address space vs. the file->f_wb_err cursor and return it.
487 *
488 * Since the error status of the file is advanced by this function,
489 * callers are responsible for checking the return value and handling and/or
490 * reporting the error.
491 */
492int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
493{
494 struct address_space *mapping = file->f_mapping;
495
496 __filemap_fdatawait_range(mapping, start_byte, end_byte);
497 return file_check_and_advance_wb_err(file);
498}
499EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 500
aa750fd7
JN
501/**
502 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
503 * @mapping: address space structure to wait for
504 *
505 * Walk the list of under-writeback pages of the given address space
506 * and wait for all of them. Unlike filemap_fdatawait(), this function
507 * does not clear error status of the address space.
508 *
509 * Use this function if callers don't handle errors themselves. Expected
510 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
511 * fsfreeze(8)
512 */
76341cab 513int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7
JN
514{
515 loff_t i_size = i_size_read(mapping->host);
516
517 if (i_size == 0)
76341cab 518 return 0;
aa750fd7
JN
519
520 __filemap_fdatawait_range(mapping, 0, i_size - 1);
76341cab 521 return filemap_check_and_keep_errors(mapping);
aa750fd7 522}
76341cab 523EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 524
1da177e4 525/**
485bb99b 526 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 527 * @mapping: address space structure to wait for
485bb99b
RD
528 *
529 * Walk the list of under-writeback pages of the given address space
aa750fd7
JN
530 * and wait for all of them. Check error status of the address space
531 * and return it.
532 *
533 * Since the error status of the address space is cleared by this function,
534 * callers are responsible for checking the return value and handling and/or
535 * reporting the error.
1da177e4
LT
536 */
537int filemap_fdatawait(struct address_space *mapping)
538{
539 loff_t i_size = i_size_read(mapping->host);
540
541 if (i_size == 0)
542 return 0;
543
94004ed7 544 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
545}
546EXPORT_SYMBOL(filemap_fdatawait);
547
9326c9b2
JL
548static bool mapping_needs_writeback(struct address_space *mapping)
549{
550 return (!dax_mapping(mapping) && mapping->nrpages) ||
551 (dax_mapping(mapping) && mapping->nrexceptional);
552}
553
1da177e4
LT
554int filemap_write_and_wait(struct address_space *mapping)
555{
28fd1298 556 int err = 0;
1da177e4 557
9326c9b2 558 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
559 err = filemap_fdatawrite(mapping);
560 /*
561 * Even if the above returned error, the pages may be
562 * written partially (e.g. -ENOSPC), so we wait for it.
563 * But the -EIO is special case, it may indicate the worst
564 * thing (e.g. bug) happened, so we avoid waiting for it.
565 */
566 if (err != -EIO) {
567 int err2 = filemap_fdatawait(mapping);
568 if (!err)
569 err = err2;
cbeaf951
JL
570 } else {
571 /* Clear any previously stored errors */
572 filemap_check_errors(mapping);
28fd1298 573 }
865ffef3
DM
574 } else {
575 err = filemap_check_errors(mapping);
1da177e4 576 }
28fd1298 577 return err;
1da177e4 578}
28fd1298 579EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 580
485bb99b
RD
581/**
582 * filemap_write_and_wait_range - write out & wait on a file range
583 * @mapping: the address_space for the pages
584 * @lstart: offset in bytes where the range starts
585 * @lend: offset in bytes where the range ends (inclusive)
586 *
469eb4d0
AM
587 * Write out and wait upon file offsets lstart->lend, inclusive.
588 *
0e056eb5 589 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0
AM
590 * that this function can be used to write to the very end-of-file (end = -1).
591 */
1da177e4
LT
592int filemap_write_and_wait_range(struct address_space *mapping,
593 loff_t lstart, loff_t lend)
594{
28fd1298 595 int err = 0;
1da177e4 596
9326c9b2 597 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
598 err = __filemap_fdatawrite_range(mapping, lstart, lend,
599 WB_SYNC_ALL);
600 /* See comment of filemap_write_and_wait() */
601 if (err != -EIO) {
94004ed7
CH
602 int err2 = filemap_fdatawait_range(mapping,
603 lstart, lend);
28fd1298
OH
604 if (!err)
605 err = err2;
cbeaf951
JL
606 } else {
607 /* Clear any previously stored errors */
608 filemap_check_errors(mapping);
28fd1298 609 }
865ffef3
DM
610 } else {
611 err = filemap_check_errors(mapping);
1da177e4 612 }
28fd1298 613 return err;
1da177e4 614}
f6995585 615EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 616
5660e13d
JL
617void __filemap_set_wb_err(struct address_space *mapping, int err)
618{
3acdfd28 619 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
620
621 trace_filemap_set_wb_err(mapping, eseq);
622}
623EXPORT_SYMBOL(__filemap_set_wb_err);
624
625/**
626 * file_check_and_advance_wb_err - report wb error (if any) that was previously
627 * and advance wb_err to current one
628 * @file: struct file on which the error is being reported
629 *
630 * When userland calls fsync (or something like nfsd does the equivalent), we
631 * want to report any writeback errors that occurred since the last fsync (or
632 * since the file was opened if there haven't been any).
633 *
634 * Grab the wb_err from the mapping. If it matches what we have in the file,
635 * then just quickly return 0. The file is all caught up.
636 *
637 * If it doesn't match, then take the mapping value, set the "seen" flag in
638 * it and try to swap it into place. If it works, or another task beat us
639 * to it with the new value, then update the f_wb_err and return the error
640 * portion. The error at this point must be reported via proper channels
641 * (a'la fsync, or NFS COMMIT operation, etc.).
642 *
643 * While we handle mapping->wb_err with atomic operations, the f_wb_err
644 * value is protected by the f_lock since we must ensure that it reflects
645 * the latest value swapped in for this file descriptor.
646 */
647int file_check_and_advance_wb_err(struct file *file)
648{
649 int err = 0;
650 errseq_t old = READ_ONCE(file->f_wb_err);
651 struct address_space *mapping = file->f_mapping;
652
653 /* Locklessly handle the common case where nothing has changed */
654 if (errseq_check(&mapping->wb_err, old)) {
655 /* Something changed, must use slow path */
656 spin_lock(&file->f_lock);
657 old = file->f_wb_err;
658 err = errseq_check_and_advance(&mapping->wb_err,
659 &file->f_wb_err);
660 trace_file_check_and_advance_wb_err(file, old);
661 spin_unlock(&file->f_lock);
662 }
663 return err;
664}
665EXPORT_SYMBOL(file_check_and_advance_wb_err);
666
667/**
668 * file_write_and_wait_range - write out & wait on a file range
669 * @file: file pointing to address_space with pages
670 * @lstart: offset in bytes where the range starts
671 * @lend: offset in bytes where the range ends (inclusive)
672 *
673 * Write out and wait upon file offsets lstart->lend, inclusive.
674 *
675 * Note that @lend is inclusive (describes the last byte to be written) so
676 * that this function can be used to write to the very end-of-file (end = -1).
677 *
678 * After writing out and waiting on the data, we check and advance the
679 * f_wb_err cursor to the latest value, and return any errors detected there.
680 */
681int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
682{
683 int err = 0, err2;
684 struct address_space *mapping = file->f_mapping;
685
9326c9b2 686 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
687 err = __filemap_fdatawrite_range(mapping, lstart, lend,
688 WB_SYNC_ALL);
689 /* See comment of filemap_write_and_wait() */
690 if (err != -EIO)
691 __filemap_fdatawait_range(mapping, lstart, lend);
692 }
693 err2 = file_check_and_advance_wb_err(file);
694 if (!err)
695 err = err2;
696 return err;
697}
698EXPORT_SYMBOL(file_write_and_wait_range);
699
ef6a3c63
MS
700/**
701 * replace_page_cache_page - replace a pagecache page with a new one
702 * @old: page to be replaced
703 * @new: page to replace with
704 * @gfp_mask: allocation mode
705 *
706 * This function replaces a page in the pagecache with a new one. On
707 * success it acquires the pagecache reference for the new page and
708 * drops it for the old page. Both the old and new pages must be
709 * locked. This function does not add the new page to the LRU, the
710 * caller must do that.
711 *
712 * The remove + add is atomic. The only way this function can fail is
713 * memory allocation failure.
714 */
715int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
716{
717 int error;
ef6a3c63 718
309381fe
SL
719 VM_BUG_ON_PAGE(!PageLocked(old), old);
720 VM_BUG_ON_PAGE(!PageLocked(new), new);
721 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 722
ef6a3c63
MS
723 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
724 if (!error) {
725 struct address_space *mapping = old->mapping;
726 void (*freepage)(struct page *);
c4843a75 727 unsigned long flags;
ef6a3c63
MS
728
729 pgoff_t offset = old->index;
730 freepage = mapping->a_ops->freepage;
731
09cbfeaf 732 get_page(new);
ef6a3c63
MS
733 new->mapping = mapping;
734 new->index = offset;
735
c4843a75 736 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 737 __delete_from_page_cache(old, NULL);
22f2ac51 738 error = page_cache_tree_insert(mapping, new, NULL);
ef6a3c63 739 BUG_ON(error);
4165b9b4
MH
740
741 /*
742 * hugetlb pages do not participate in page cache accounting.
743 */
744 if (!PageHuge(new))
11fb9989 745 __inc_node_page_state(new, NR_FILE_PAGES);
ef6a3c63 746 if (PageSwapBacked(new))
11fb9989 747 __inc_node_page_state(new, NR_SHMEM);
c4843a75 748 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6a93ca8f 749 mem_cgroup_migrate(old, new);
ef6a3c63
MS
750 radix_tree_preload_end();
751 if (freepage)
752 freepage(old);
09cbfeaf 753 put_page(old);
ef6a3c63
MS
754 }
755
756 return error;
757}
758EXPORT_SYMBOL_GPL(replace_page_cache_page);
759
a528910e
JW
760static int __add_to_page_cache_locked(struct page *page,
761 struct address_space *mapping,
762 pgoff_t offset, gfp_t gfp_mask,
763 void **shadowp)
1da177e4 764{
00501b53
JW
765 int huge = PageHuge(page);
766 struct mem_cgroup *memcg;
e286781d
NP
767 int error;
768
309381fe
SL
769 VM_BUG_ON_PAGE(!PageLocked(page), page);
770 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 771
00501b53
JW
772 if (!huge) {
773 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 774 gfp_mask, &memcg, false);
00501b53
JW
775 if (error)
776 return error;
777 }
1da177e4 778
5e4c0d97 779 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 780 if (error) {
00501b53 781 if (!huge)
f627c2f5 782 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
783 return error;
784 }
785
09cbfeaf 786 get_page(page);
66a0c8ee
KS
787 page->mapping = mapping;
788 page->index = offset;
789
790 spin_lock_irq(&mapping->tree_lock);
a528910e 791 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
792 radix_tree_preload_end();
793 if (unlikely(error))
794 goto err_insert;
4165b9b4
MH
795
796 /* hugetlb pages do not participate in page cache accounting. */
797 if (!huge)
11fb9989 798 __inc_node_page_state(page, NR_FILE_PAGES);
66a0c8ee 799 spin_unlock_irq(&mapping->tree_lock);
00501b53 800 if (!huge)
f627c2f5 801 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
802 trace_mm_filemap_add_to_page_cache(page);
803 return 0;
804err_insert:
805 page->mapping = NULL;
806 /* Leave page->index set: truncation relies upon it */
807 spin_unlock_irq(&mapping->tree_lock);
00501b53 808 if (!huge)
f627c2f5 809 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 810 put_page(page);
1da177e4
LT
811 return error;
812}
a528910e
JW
813
814/**
815 * add_to_page_cache_locked - add a locked page to the pagecache
816 * @page: page to add
817 * @mapping: the page's address_space
818 * @offset: page index
819 * @gfp_mask: page allocation mode
820 *
821 * This function is used to add a page to the pagecache. It must be locked.
822 * This function does not add the page to the LRU. The caller must do that.
823 */
824int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
825 pgoff_t offset, gfp_t gfp_mask)
826{
827 return __add_to_page_cache_locked(page, mapping, offset,
828 gfp_mask, NULL);
829}
e286781d 830EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
831
832int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 833 pgoff_t offset, gfp_t gfp_mask)
1da177e4 834{
a528910e 835 void *shadow = NULL;
4f98a2fe
RR
836 int ret;
837
48c935ad 838 __SetPageLocked(page);
a528910e
JW
839 ret = __add_to_page_cache_locked(page, mapping, offset,
840 gfp_mask, &shadow);
841 if (unlikely(ret))
48c935ad 842 __ClearPageLocked(page);
a528910e
JW
843 else {
844 /*
845 * The page might have been evicted from cache only
846 * recently, in which case it should be activated like
847 * any other repeatedly accessed page.
f0281a00
RR
848 * The exception is pages getting rewritten; evicting other
849 * data from the working set, only to cache data that will
850 * get overwritten with something else, is a waste of memory.
a528910e 851 */
f0281a00
RR
852 if (!(gfp_mask & __GFP_WRITE) &&
853 shadow && workingset_refault(shadow)) {
a528910e
JW
854 SetPageActive(page);
855 workingset_activation(page);
856 } else
857 ClearPageActive(page);
858 lru_cache_add(page);
859 }
1da177e4
LT
860 return ret;
861}
18bc0bbd 862EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 863
44110fe3 864#ifdef CONFIG_NUMA
2ae88149 865struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 866{
c0ff7453
MX
867 int n;
868 struct page *page;
869
44110fe3 870 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
871 unsigned int cpuset_mems_cookie;
872 do {
d26914d1 873 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 874 n = cpuset_mem_spread_node();
96db800f 875 page = __alloc_pages_node(n, gfp, 0);
d26914d1 876 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 877
c0ff7453 878 return page;
44110fe3 879 }
2ae88149 880 return alloc_pages(gfp, 0);
44110fe3 881}
2ae88149 882EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
883#endif
884
1da177e4
LT
885/*
886 * In order to wait for pages to become available there must be
887 * waitqueues associated with pages. By using a hash table of
888 * waitqueues where the bucket discipline is to maintain all
889 * waiters on the same queue and wake all when any of the pages
890 * become available, and for the woken contexts to check to be
891 * sure the appropriate page became available, this saves space
892 * at a cost of "thundering herd" phenomena during rare hash
893 * collisions.
894 */
62906027
NP
895#define PAGE_WAIT_TABLE_BITS 8
896#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
897static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
898
899static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 900{
62906027 901 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 902}
1da177e4 903
62906027 904void __init pagecache_init(void)
1da177e4 905{
62906027 906 int i;
1da177e4 907
62906027
NP
908 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
909 init_waitqueue_head(&page_wait_table[i]);
910
911 page_writeback_init();
1da177e4 912}
1da177e4 913
62906027
NP
914struct wait_page_key {
915 struct page *page;
916 int bit_nr;
917 int page_match;
918};
919
920struct wait_page_queue {
921 struct page *page;
922 int bit_nr;
ac6424b9 923 wait_queue_entry_t wait;
62906027
NP
924};
925
ac6424b9 926static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 927{
62906027
NP
928 struct wait_page_key *key = arg;
929 struct wait_page_queue *wait_page
930 = container_of(wait, struct wait_page_queue, wait);
931
932 if (wait_page->page != key->page)
933 return 0;
934 key->page_match = 1;
f62e00cc 935
62906027
NP
936 if (wait_page->bit_nr != key->bit_nr)
937 return 0;
938 if (test_bit(key->bit_nr, &key->page->flags))
f62e00cc
KM
939 return 0;
940
62906027 941 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
942}
943
74d81bfa 944static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 945{
62906027
NP
946 wait_queue_head_t *q = page_waitqueue(page);
947 struct wait_page_key key;
948 unsigned long flags;
cbbce822 949
62906027
NP
950 key.page = page;
951 key.bit_nr = bit_nr;
952 key.page_match = 0;
953
954 spin_lock_irqsave(&q->lock, flags);
955 __wake_up_locked_key(q, TASK_NORMAL, &key);
956 /*
957 * It is possible for other pages to have collided on the waitqueue
958 * hash, so in that case check for a page match. That prevents a long-
959 * term waiter
960 *
961 * It is still possible to miss a case here, when we woke page waiters
962 * and removed them from the waitqueue, but there are still other
963 * page waiters.
964 */
965 if (!waitqueue_active(q) || !key.page_match) {
966 ClearPageWaiters(page);
967 /*
968 * It's possible to miss clearing Waiters here, when we woke
969 * our page waiters, but the hashed waitqueue has waiters for
970 * other pages on it.
971 *
972 * That's okay, it's a rare case. The next waker will clear it.
973 */
974 }
975 spin_unlock_irqrestore(&q->lock, flags);
976}
74d81bfa
NP
977
978static void wake_up_page(struct page *page, int bit)
979{
980 if (!PageWaiters(page))
981 return;
982 wake_up_page_bit(page, bit);
983}
62906027
NP
984
985static inline int wait_on_page_bit_common(wait_queue_head_t *q,
986 struct page *page, int bit_nr, int state, bool lock)
987{
988 struct wait_page_queue wait_page;
ac6424b9 989 wait_queue_entry_t *wait = &wait_page.wait;
62906027
NP
990 int ret = 0;
991
992 init_wait(wait);
993 wait->func = wake_page_function;
994 wait_page.page = page;
995 wait_page.bit_nr = bit_nr;
996
997 for (;;) {
998 spin_lock_irq(&q->lock);
999
2055da97 1000 if (likely(list_empty(&wait->entry))) {
62906027 1001 if (lock)
ac6424b9 1002 __add_wait_queue_entry_tail_exclusive(q, wait);
62906027
NP
1003 else
1004 __add_wait_queue(q, wait);
1005 SetPageWaiters(page);
1006 }
1007
1008 set_current_state(state);
1009
1010 spin_unlock_irq(&q->lock);
1011
1012 if (likely(test_bit(bit_nr, &page->flags))) {
1013 io_schedule();
1014 if (unlikely(signal_pending_state(state, current))) {
1015 ret = -EINTR;
1016 break;
1017 }
1018 }
1019
1020 if (lock) {
1021 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1022 break;
1023 } else {
1024 if (!test_bit(bit_nr, &page->flags))
1025 break;
1026 }
1027 }
1028
1029 finish_wait(q, wait);
1030
1031 /*
1032 * A signal could leave PageWaiters set. Clearing it here if
1033 * !waitqueue_active would be possible (by open-coding finish_wait),
1034 * but still fail to catch it in the case of wait hash collision. We
1035 * already can fail to clear wait hash collision cases, so don't
1036 * bother with signals either.
1037 */
1038
1039 return ret;
1040}
1041
1042void wait_on_page_bit(struct page *page, int bit_nr)
1043{
1044 wait_queue_head_t *q = page_waitqueue(page);
1045 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1046}
1047EXPORT_SYMBOL(wait_on_page_bit);
1048
1049int wait_on_page_bit_killable(struct page *page, int bit_nr)
1050{
1051 wait_queue_head_t *q = page_waitqueue(page);
1052 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
cbbce822 1053}
cbbce822 1054
385e1ca5
DH
1055/**
1056 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1057 * @page: Page defining the wait queue of interest
1058 * @waiter: Waiter to add to the queue
385e1ca5
DH
1059 *
1060 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1061 */
ac6424b9 1062void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1063{
1064 wait_queue_head_t *q = page_waitqueue(page);
1065 unsigned long flags;
1066
1067 spin_lock_irqsave(&q->lock, flags);
1068 __add_wait_queue(q, waiter);
62906027 1069 SetPageWaiters(page);
385e1ca5
DH
1070 spin_unlock_irqrestore(&q->lock, flags);
1071}
1072EXPORT_SYMBOL_GPL(add_page_wait_queue);
1073
b91e1302
LT
1074#ifndef clear_bit_unlock_is_negative_byte
1075
1076/*
1077 * PG_waiters is the high bit in the same byte as PG_lock.
1078 *
1079 * On x86 (and on many other architectures), we can clear PG_lock and
1080 * test the sign bit at the same time. But if the architecture does
1081 * not support that special operation, we just do this all by hand
1082 * instead.
1083 *
1084 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1085 * being cleared, but a memory barrier should be unneccssary since it is
1086 * in the same byte as PG_locked.
1087 */
1088static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1089{
1090 clear_bit_unlock(nr, mem);
1091 /* smp_mb__after_atomic(); */
98473f9f 1092 return test_bit(PG_waiters, mem);
b91e1302
LT
1093}
1094
1095#endif
1096
1da177e4 1097/**
485bb99b 1098 * unlock_page - unlock a locked page
1da177e4
LT
1099 * @page: the page
1100 *
1101 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1102 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1103 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1104 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1105 *
b91e1302
LT
1106 * Note that this depends on PG_waiters being the sign bit in the byte
1107 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1108 * clear the PG_locked bit and test PG_waiters at the same time fairly
1109 * portably (architectures that do LL/SC can test any bit, while x86 can
1110 * test the sign bit).
1da177e4 1111 */
920c7a5d 1112void unlock_page(struct page *page)
1da177e4 1113{
b91e1302 1114 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1115 page = compound_head(page);
309381fe 1116 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1117 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1118 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1119}
1120EXPORT_SYMBOL(unlock_page);
1121
485bb99b
RD
1122/**
1123 * end_page_writeback - end writeback against a page
1124 * @page: the page
1da177e4
LT
1125 */
1126void end_page_writeback(struct page *page)
1127{
888cf2db
MG
1128 /*
1129 * TestClearPageReclaim could be used here but it is an atomic
1130 * operation and overkill in this particular case. Failing to
1131 * shuffle a page marked for immediate reclaim is too mild to
1132 * justify taking an atomic operation penalty at the end of
1133 * ever page writeback.
1134 */
1135 if (PageReclaim(page)) {
1136 ClearPageReclaim(page);
ac6aadb2 1137 rotate_reclaimable_page(page);
888cf2db 1138 }
ac6aadb2
MS
1139
1140 if (!test_clear_page_writeback(page))
1141 BUG();
1142
4e857c58 1143 smp_mb__after_atomic();
1da177e4
LT
1144 wake_up_page(page, PG_writeback);
1145}
1146EXPORT_SYMBOL(end_page_writeback);
1147
57d99845
MW
1148/*
1149 * After completing I/O on a page, call this routine to update the page
1150 * flags appropriately
1151 */
c11f0c0b 1152void page_endio(struct page *page, bool is_write, int err)
57d99845 1153{
c11f0c0b 1154 if (!is_write) {
57d99845
MW
1155 if (!err) {
1156 SetPageUptodate(page);
1157 } else {
1158 ClearPageUptodate(page);
1159 SetPageError(page);
1160 }
1161 unlock_page(page);
abf54548 1162 } else {
57d99845 1163 if (err) {
dd8416c4
MK
1164 struct address_space *mapping;
1165
57d99845 1166 SetPageError(page);
dd8416c4
MK
1167 mapping = page_mapping(page);
1168 if (mapping)
1169 mapping_set_error(mapping, err);
57d99845
MW
1170 }
1171 end_page_writeback(page);
1172 }
1173}
1174EXPORT_SYMBOL_GPL(page_endio);
1175
485bb99b
RD
1176/**
1177 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1178 * @__page: the page to lock
1da177e4 1179 */
62906027 1180void __lock_page(struct page *__page)
1da177e4 1181{
62906027
NP
1182 struct page *page = compound_head(__page);
1183 wait_queue_head_t *q = page_waitqueue(page);
1184 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1da177e4
LT
1185}
1186EXPORT_SYMBOL(__lock_page);
1187
62906027 1188int __lock_page_killable(struct page *__page)
2687a356 1189{
62906027
NP
1190 struct page *page = compound_head(__page);
1191 wait_queue_head_t *q = page_waitqueue(page);
1192 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
2687a356 1193}
18bc0bbd 1194EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1195
9a95f3cf
PC
1196/*
1197 * Return values:
1198 * 1 - page is locked; mmap_sem is still held.
1199 * 0 - page is not locked.
1200 * mmap_sem has been released (up_read()), unless flags had both
1201 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1202 * which case mmap_sem is still held.
1203 *
1204 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1205 * with the page locked and the mmap_sem unperturbed.
1206 */
d065bd81
ML
1207int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1208 unsigned int flags)
1209{
37b23e05
KM
1210 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1211 /*
1212 * CAUTION! In this case, mmap_sem is not released
1213 * even though return 0.
1214 */
1215 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1216 return 0;
1217
1218 up_read(&mm->mmap_sem);
1219 if (flags & FAULT_FLAG_KILLABLE)
1220 wait_on_page_locked_killable(page);
1221 else
318b275f 1222 wait_on_page_locked(page);
d065bd81 1223 return 0;
37b23e05
KM
1224 } else {
1225 if (flags & FAULT_FLAG_KILLABLE) {
1226 int ret;
1227
1228 ret = __lock_page_killable(page);
1229 if (ret) {
1230 up_read(&mm->mmap_sem);
1231 return 0;
1232 }
1233 } else
1234 __lock_page(page);
1235 return 1;
d065bd81
ML
1236 }
1237}
1238
e7b563bb
JW
1239/**
1240 * page_cache_next_hole - find the next hole (not-present entry)
1241 * @mapping: mapping
1242 * @index: index
1243 * @max_scan: maximum range to search
1244 *
1245 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1246 * lowest indexed hole.
1247 *
1248 * Returns: the index of the hole if found, otherwise returns an index
1249 * outside of the set specified (in which case 'return - index >=
1250 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1251 * be returned.
1252 *
1253 * page_cache_next_hole may be called under rcu_read_lock. However,
1254 * like radix_tree_gang_lookup, this will not atomically search a
1255 * snapshot of the tree at a single point in time. For example, if a
1256 * hole is created at index 5, then subsequently a hole is created at
1257 * index 10, page_cache_next_hole covering both indexes may return 10
1258 * if called under rcu_read_lock.
1259 */
1260pgoff_t page_cache_next_hole(struct address_space *mapping,
1261 pgoff_t index, unsigned long max_scan)
1262{
1263 unsigned long i;
1264
1265 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1266 struct page *page;
1267
1268 page = radix_tree_lookup(&mapping->page_tree, index);
1269 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1270 break;
1271 index++;
1272 if (index == 0)
1273 break;
1274 }
1275
1276 return index;
1277}
1278EXPORT_SYMBOL(page_cache_next_hole);
1279
1280/**
1281 * page_cache_prev_hole - find the prev hole (not-present entry)
1282 * @mapping: mapping
1283 * @index: index
1284 * @max_scan: maximum range to search
1285 *
1286 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1287 * the first hole.
1288 *
1289 * Returns: the index of the hole if found, otherwise returns an index
1290 * outside of the set specified (in which case 'index - return >=
1291 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1292 * will be returned.
1293 *
1294 * page_cache_prev_hole may be called under rcu_read_lock. However,
1295 * like radix_tree_gang_lookup, this will not atomically search a
1296 * snapshot of the tree at a single point in time. For example, if a
1297 * hole is created at index 10, then subsequently a hole is created at
1298 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1299 * called under rcu_read_lock.
1300 */
1301pgoff_t page_cache_prev_hole(struct address_space *mapping,
1302 pgoff_t index, unsigned long max_scan)
1303{
1304 unsigned long i;
1305
1306 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1307 struct page *page;
1308
1309 page = radix_tree_lookup(&mapping->page_tree, index);
1310 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1311 break;
1312 index--;
1313 if (index == ULONG_MAX)
1314 break;
1315 }
1316
1317 return index;
1318}
1319EXPORT_SYMBOL(page_cache_prev_hole);
1320
485bb99b 1321/**
0cd6144a 1322 * find_get_entry - find and get a page cache entry
485bb99b 1323 * @mapping: the address_space to search
0cd6144a
JW
1324 * @offset: the page cache index
1325 *
1326 * Looks up the page cache slot at @mapping & @offset. If there is a
1327 * page cache page, it is returned with an increased refcount.
485bb99b 1328 *
139b6a6f
JW
1329 * If the slot holds a shadow entry of a previously evicted page, or a
1330 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1331 *
1332 * Otherwise, %NULL is returned.
1da177e4 1333 */
0cd6144a 1334struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1335{
a60637c8 1336 void **pagep;
83929372 1337 struct page *head, *page;
1da177e4 1338
a60637c8
NP
1339 rcu_read_lock();
1340repeat:
1341 page = NULL;
1342 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1343 if (pagep) {
1344 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1345 if (unlikely(!page))
1346 goto out;
a2c16d6c 1347 if (radix_tree_exception(page)) {
8079b1c8
HD
1348 if (radix_tree_deref_retry(page))
1349 goto repeat;
1350 /*
139b6a6f
JW
1351 * A shadow entry of a recently evicted page,
1352 * or a swap entry from shmem/tmpfs. Return
1353 * it without attempting to raise page count.
8079b1c8
HD
1354 */
1355 goto out;
a2c16d6c 1356 }
83929372
KS
1357
1358 head = compound_head(page);
1359 if (!page_cache_get_speculative(head))
1360 goto repeat;
1361
1362 /* The page was split under us? */
1363 if (compound_head(page) != head) {
1364 put_page(head);
a60637c8 1365 goto repeat;
83929372 1366 }
a60637c8
NP
1367
1368 /*
1369 * Has the page moved?
1370 * This is part of the lockless pagecache protocol. See
1371 * include/linux/pagemap.h for details.
1372 */
1373 if (unlikely(page != *pagep)) {
83929372 1374 put_page(head);
a60637c8
NP
1375 goto repeat;
1376 }
1377 }
27d20fdd 1378out:
a60637c8
NP
1379 rcu_read_unlock();
1380
1da177e4
LT
1381 return page;
1382}
0cd6144a 1383EXPORT_SYMBOL(find_get_entry);
1da177e4 1384
0cd6144a
JW
1385/**
1386 * find_lock_entry - locate, pin and lock a page cache entry
1387 * @mapping: the address_space to search
1388 * @offset: the page cache index
1389 *
1390 * Looks up the page cache slot at @mapping & @offset. If there is a
1391 * page cache page, it is returned locked and with an increased
1392 * refcount.
1393 *
139b6a6f
JW
1394 * If the slot holds a shadow entry of a previously evicted page, or a
1395 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1396 *
1397 * Otherwise, %NULL is returned.
1398 *
1399 * find_lock_entry() may sleep.
1400 */
1401struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1402{
1403 struct page *page;
1404
1da177e4 1405repeat:
0cd6144a 1406 page = find_get_entry(mapping, offset);
a2c16d6c 1407 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1408 lock_page(page);
1409 /* Has the page been truncated? */
83929372 1410 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1411 unlock_page(page);
09cbfeaf 1412 put_page(page);
a60637c8 1413 goto repeat;
1da177e4 1414 }
83929372 1415 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1416 }
1da177e4
LT
1417 return page;
1418}
0cd6144a
JW
1419EXPORT_SYMBOL(find_lock_entry);
1420
1421/**
2457aec6 1422 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1423 * @mapping: the address_space to search
1424 * @offset: the page index
2457aec6 1425 * @fgp_flags: PCG flags
45f87de5 1426 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1427 *
2457aec6 1428 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1429 *
75325189 1430 * PCG flags modify how the page is returned.
0cd6144a 1431 *
0e056eb5
MCC
1432 * @fgp_flags can be:
1433 *
1434 * - FGP_ACCESSED: the page will be marked accessed
1435 * - FGP_LOCK: Page is return locked
1436 * - FGP_CREAT: If page is not present then a new page is allocated using
1437 * @gfp_mask and added to the page cache and the VM's LRU
1438 * list. The page is returned locked and with an increased
1439 * refcount. Otherwise, NULL is returned.
1da177e4 1440 *
2457aec6
MG
1441 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1442 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1443 *
2457aec6 1444 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1445 */
2457aec6 1446struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1447 int fgp_flags, gfp_t gfp_mask)
1da177e4 1448{
eb2be189 1449 struct page *page;
2457aec6 1450
1da177e4 1451repeat:
2457aec6
MG
1452 page = find_get_entry(mapping, offset);
1453 if (radix_tree_exceptional_entry(page))
1454 page = NULL;
1455 if (!page)
1456 goto no_page;
1457
1458 if (fgp_flags & FGP_LOCK) {
1459 if (fgp_flags & FGP_NOWAIT) {
1460 if (!trylock_page(page)) {
09cbfeaf 1461 put_page(page);
2457aec6
MG
1462 return NULL;
1463 }
1464 } else {
1465 lock_page(page);
1466 }
1467
1468 /* Has the page been truncated? */
1469 if (unlikely(page->mapping != mapping)) {
1470 unlock_page(page);
09cbfeaf 1471 put_page(page);
2457aec6
MG
1472 goto repeat;
1473 }
1474 VM_BUG_ON_PAGE(page->index != offset, page);
1475 }
1476
1477 if (page && (fgp_flags & FGP_ACCESSED))
1478 mark_page_accessed(page);
1479
1480no_page:
1481 if (!page && (fgp_flags & FGP_CREAT)) {
1482 int err;
1483 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1484 gfp_mask |= __GFP_WRITE;
1485 if (fgp_flags & FGP_NOFS)
1486 gfp_mask &= ~__GFP_FS;
2457aec6 1487
45f87de5 1488 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1489 if (!page)
1490 return NULL;
2457aec6
MG
1491
1492 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1493 fgp_flags |= FGP_LOCK;
1494
eb39d618 1495 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1496 if (fgp_flags & FGP_ACCESSED)
eb39d618 1497 __SetPageReferenced(page);
2457aec6 1498
45f87de5
MH
1499 err = add_to_page_cache_lru(page, mapping, offset,
1500 gfp_mask & GFP_RECLAIM_MASK);
eb2be189 1501 if (unlikely(err)) {
09cbfeaf 1502 put_page(page);
eb2be189
NP
1503 page = NULL;
1504 if (err == -EEXIST)
1505 goto repeat;
1da177e4 1506 }
1da177e4 1507 }
2457aec6 1508
1da177e4
LT
1509 return page;
1510}
2457aec6 1511EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1512
0cd6144a
JW
1513/**
1514 * find_get_entries - gang pagecache lookup
1515 * @mapping: The address_space to search
1516 * @start: The starting page cache index
1517 * @nr_entries: The maximum number of entries
1518 * @entries: Where the resulting entries are placed
1519 * @indices: The cache indices corresponding to the entries in @entries
1520 *
1521 * find_get_entries() will search for and return a group of up to
1522 * @nr_entries entries in the mapping. The entries are placed at
1523 * @entries. find_get_entries() takes a reference against any actual
1524 * pages it returns.
1525 *
1526 * The search returns a group of mapping-contiguous page cache entries
1527 * with ascending indexes. There may be holes in the indices due to
1528 * not-present pages.
1529 *
139b6a6f
JW
1530 * Any shadow entries of evicted pages, or swap entries from
1531 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1532 *
1533 * find_get_entries() returns the number of pages and shadow entries
1534 * which were found.
1535 */
1536unsigned find_get_entries(struct address_space *mapping,
1537 pgoff_t start, unsigned int nr_entries,
1538 struct page **entries, pgoff_t *indices)
1539{
1540 void **slot;
1541 unsigned int ret = 0;
1542 struct radix_tree_iter iter;
1543
1544 if (!nr_entries)
1545 return 0;
1546
1547 rcu_read_lock();
0cd6144a 1548 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1549 struct page *head, *page;
0cd6144a
JW
1550repeat:
1551 page = radix_tree_deref_slot(slot);
1552 if (unlikely(!page))
1553 continue;
1554 if (radix_tree_exception(page)) {
2cf938aa
MW
1555 if (radix_tree_deref_retry(page)) {
1556 slot = radix_tree_iter_retry(&iter);
1557 continue;
1558 }
0cd6144a 1559 /*
f9fe48be
RZ
1560 * A shadow entry of a recently evicted page, a swap
1561 * entry from shmem/tmpfs or a DAX entry. Return it
1562 * without attempting to raise page count.
0cd6144a
JW
1563 */
1564 goto export;
1565 }
83929372
KS
1566
1567 head = compound_head(page);
1568 if (!page_cache_get_speculative(head))
1569 goto repeat;
1570
1571 /* The page was split under us? */
1572 if (compound_head(page) != head) {
1573 put_page(head);
0cd6144a 1574 goto repeat;
83929372 1575 }
0cd6144a
JW
1576
1577 /* Has the page moved? */
1578 if (unlikely(page != *slot)) {
83929372 1579 put_page(head);
0cd6144a
JW
1580 goto repeat;
1581 }
1582export:
1583 indices[ret] = iter.index;
1584 entries[ret] = page;
1585 if (++ret == nr_entries)
1586 break;
1587 }
1588 rcu_read_unlock();
1589 return ret;
1590}
1591
1da177e4
LT
1592/**
1593 * find_get_pages - gang pagecache lookup
1594 * @mapping: The address_space to search
1595 * @start: The starting page index
1596 * @nr_pages: The maximum number of pages
1597 * @pages: Where the resulting pages are placed
1598 *
1599 * find_get_pages() will search for and return a group of up to
1600 * @nr_pages pages in the mapping. The pages are placed at @pages.
1601 * find_get_pages() takes a reference against the returned pages.
1602 *
1603 * The search returns a group of mapping-contiguous pages with ascending
1604 * indexes. There may be holes in the indices due to not-present pages.
1605 *
1606 * find_get_pages() returns the number of pages which were found.
1607 */
1608unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1609 unsigned int nr_pages, struct page **pages)
1610{
0fc9d104
KK
1611 struct radix_tree_iter iter;
1612 void **slot;
1613 unsigned ret = 0;
1614
1615 if (unlikely(!nr_pages))
1616 return 0;
a60637c8
NP
1617
1618 rcu_read_lock();
0fc9d104 1619 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1620 struct page *head, *page;
a60637c8 1621repeat:
0fc9d104 1622 page = radix_tree_deref_slot(slot);
a60637c8
NP
1623 if (unlikely(!page))
1624 continue;
9d8aa4ea 1625
a2c16d6c 1626 if (radix_tree_exception(page)) {
8079b1c8 1627 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1628 slot = radix_tree_iter_retry(&iter);
1629 continue;
8079b1c8 1630 }
a2c16d6c 1631 /*
139b6a6f
JW
1632 * A shadow entry of a recently evicted page,
1633 * or a swap entry from shmem/tmpfs. Skip
1634 * over it.
a2c16d6c 1635 */
8079b1c8 1636 continue;
27d20fdd 1637 }
a60637c8 1638
83929372
KS
1639 head = compound_head(page);
1640 if (!page_cache_get_speculative(head))
1641 goto repeat;
1642
1643 /* The page was split under us? */
1644 if (compound_head(page) != head) {
1645 put_page(head);
a60637c8 1646 goto repeat;
83929372 1647 }
a60637c8
NP
1648
1649 /* Has the page moved? */
0fc9d104 1650 if (unlikely(page != *slot)) {
83929372 1651 put_page(head);
a60637c8
NP
1652 goto repeat;
1653 }
1da177e4 1654
a60637c8 1655 pages[ret] = page;
0fc9d104
KK
1656 if (++ret == nr_pages)
1657 break;
a60637c8 1658 }
5b280c0c 1659
a60637c8 1660 rcu_read_unlock();
1da177e4
LT
1661 return ret;
1662}
1663
ebf43500
JA
1664/**
1665 * find_get_pages_contig - gang contiguous pagecache lookup
1666 * @mapping: The address_space to search
1667 * @index: The starting page index
1668 * @nr_pages: The maximum number of pages
1669 * @pages: Where the resulting pages are placed
1670 *
1671 * find_get_pages_contig() works exactly like find_get_pages(), except
1672 * that the returned number of pages are guaranteed to be contiguous.
1673 *
1674 * find_get_pages_contig() returns the number of pages which were found.
1675 */
1676unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1677 unsigned int nr_pages, struct page **pages)
1678{
0fc9d104
KK
1679 struct radix_tree_iter iter;
1680 void **slot;
1681 unsigned int ret = 0;
1682
1683 if (unlikely(!nr_pages))
1684 return 0;
a60637c8
NP
1685
1686 rcu_read_lock();
0fc9d104 1687 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
83929372 1688 struct page *head, *page;
a60637c8 1689repeat:
0fc9d104
KK
1690 page = radix_tree_deref_slot(slot);
1691 /* The hole, there no reason to continue */
a60637c8 1692 if (unlikely(!page))
0fc9d104 1693 break;
9d8aa4ea 1694
a2c16d6c 1695 if (radix_tree_exception(page)) {
8079b1c8 1696 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1697 slot = radix_tree_iter_retry(&iter);
1698 continue;
8079b1c8 1699 }
a2c16d6c 1700 /*
139b6a6f
JW
1701 * A shadow entry of a recently evicted page,
1702 * or a swap entry from shmem/tmpfs. Stop
1703 * looking for contiguous pages.
a2c16d6c 1704 */
8079b1c8 1705 break;
a2c16d6c 1706 }
ebf43500 1707
83929372
KS
1708 head = compound_head(page);
1709 if (!page_cache_get_speculative(head))
1710 goto repeat;
1711
1712 /* The page was split under us? */
1713 if (compound_head(page) != head) {
1714 put_page(head);
a60637c8 1715 goto repeat;
83929372 1716 }
a60637c8
NP
1717
1718 /* Has the page moved? */
0fc9d104 1719 if (unlikely(page != *slot)) {
83929372 1720 put_page(head);
a60637c8
NP
1721 goto repeat;
1722 }
1723
9cbb4cb2
NP
1724 /*
1725 * must check mapping and index after taking the ref.
1726 * otherwise we can get both false positives and false
1727 * negatives, which is just confusing to the caller.
1728 */
83929372 1729 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
09cbfeaf 1730 put_page(page);
9cbb4cb2
NP
1731 break;
1732 }
1733
a60637c8 1734 pages[ret] = page;
0fc9d104
KK
1735 if (++ret == nr_pages)
1736 break;
ebf43500 1737 }
a60637c8
NP
1738 rcu_read_unlock();
1739 return ret;
ebf43500 1740}
ef71c15c 1741EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1742
485bb99b
RD
1743/**
1744 * find_get_pages_tag - find and return pages that match @tag
1745 * @mapping: the address_space to search
1746 * @index: the starting page index
1747 * @tag: the tag index
1748 * @nr_pages: the maximum number of pages
1749 * @pages: where the resulting pages are placed
1750 *
1da177e4 1751 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1752 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1753 */
1754unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1755 int tag, unsigned int nr_pages, struct page **pages)
1756{
0fc9d104
KK
1757 struct radix_tree_iter iter;
1758 void **slot;
1759 unsigned ret = 0;
1760
1761 if (unlikely(!nr_pages))
1762 return 0;
a60637c8
NP
1763
1764 rcu_read_lock();
0fc9d104
KK
1765 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1766 &iter, *index, tag) {
83929372 1767 struct page *head, *page;
a60637c8 1768repeat:
0fc9d104 1769 page = radix_tree_deref_slot(slot);
a60637c8
NP
1770 if (unlikely(!page))
1771 continue;
9d8aa4ea 1772
a2c16d6c 1773 if (radix_tree_exception(page)) {
8079b1c8 1774 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1775 slot = radix_tree_iter_retry(&iter);
1776 continue;
8079b1c8 1777 }
a2c16d6c 1778 /*
139b6a6f
JW
1779 * A shadow entry of a recently evicted page.
1780 *
1781 * Those entries should never be tagged, but
1782 * this tree walk is lockless and the tags are
1783 * looked up in bulk, one radix tree node at a
1784 * time, so there is a sizable window for page
1785 * reclaim to evict a page we saw tagged.
1786 *
1787 * Skip over it.
a2c16d6c 1788 */
139b6a6f 1789 continue;
a2c16d6c 1790 }
a60637c8 1791
83929372
KS
1792 head = compound_head(page);
1793 if (!page_cache_get_speculative(head))
a60637c8
NP
1794 goto repeat;
1795
83929372
KS
1796 /* The page was split under us? */
1797 if (compound_head(page) != head) {
1798 put_page(head);
1799 goto repeat;
1800 }
1801
a60637c8 1802 /* Has the page moved? */
0fc9d104 1803 if (unlikely(page != *slot)) {
83929372 1804 put_page(head);
a60637c8
NP
1805 goto repeat;
1806 }
1807
1808 pages[ret] = page;
0fc9d104
KK
1809 if (++ret == nr_pages)
1810 break;
a60637c8 1811 }
5b280c0c 1812
a60637c8 1813 rcu_read_unlock();
1da177e4 1814
1da177e4
LT
1815 if (ret)
1816 *index = pages[ret - 1]->index + 1;
a60637c8 1817
1da177e4
LT
1818 return ret;
1819}
ef71c15c 1820EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1821
7e7f7749
RZ
1822/**
1823 * find_get_entries_tag - find and return entries that match @tag
1824 * @mapping: the address_space to search
1825 * @start: the starting page cache index
1826 * @tag: the tag index
1827 * @nr_entries: the maximum number of entries
1828 * @entries: where the resulting entries are placed
1829 * @indices: the cache indices corresponding to the entries in @entries
1830 *
1831 * Like find_get_entries, except we only return entries which are tagged with
1832 * @tag.
1833 */
1834unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1835 int tag, unsigned int nr_entries,
1836 struct page **entries, pgoff_t *indices)
1837{
1838 void **slot;
1839 unsigned int ret = 0;
1840 struct radix_tree_iter iter;
1841
1842 if (!nr_entries)
1843 return 0;
1844
1845 rcu_read_lock();
7e7f7749
RZ
1846 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1847 &iter, start, tag) {
83929372 1848 struct page *head, *page;
7e7f7749
RZ
1849repeat:
1850 page = radix_tree_deref_slot(slot);
1851 if (unlikely(!page))
1852 continue;
1853 if (radix_tree_exception(page)) {
1854 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1855 slot = radix_tree_iter_retry(&iter);
1856 continue;
7e7f7749
RZ
1857 }
1858
1859 /*
1860 * A shadow entry of a recently evicted page, a swap
1861 * entry from shmem/tmpfs or a DAX entry. Return it
1862 * without attempting to raise page count.
1863 */
1864 goto export;
1865 }
83929372
KS
1866
1867 head = compound_head(page);
1868 if (!page_cache_get_speculative(head))
7e7f7749
RZ
1869 goto repeat;
1870
83929372
KS
1871 /* The page was split under us? */
1872 if (compound_head(page) != head) {
1873 put_page(head);
1874 goto repeat;
1875 }
1876
7e7f7749
RZ
1877 /* Has the page moved? */
1878 if (unlikely(page != *slot)) {
83929372 1879 put_page(head);
7e7f7749
RZ
1880 goto repeat;
1881 }
1882export:
1883 indices[ret] = iter.index;
1884 entries[ret] = page;
1885 if (++ret == nr_entries)
1886 break;
1887 }
1888 rcu_read_unlock();
1889 return ret;
1890}
1891EXPORT_SYMBOL(find_get_entries_tag);
1892
76d42bd9
WF
1893/*
1894 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1895 * a _large_ part of the i/o request. Imagine the worst scenario:
1896 *
1897 * ---R__________________________________________B__________
1898 * ^ reading here ^ bad block(assume 4k)
1899 *
1900 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1901 * => failing the whole request => read(R) => read(R+1) =>
1902 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1903 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1904 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1905 *
1906 * It is going insane. Fix it by quickly scaling down the readahead size.
1907 */
1908static void shrink_readahead_size_eio(struct file *filp,
1909 struct file_ra_state *ra)
1910{
76d42bd9 1911 ra->ra_pages /= 4;
76d42bd9
WF
1912}
1913
485bb99b 1914/**
36e78914 1915 * do_generic_file_read - generic file read routine
485bb99b
RD
1916 * @filp: the file to read
1917 * @ppos: current file position
6e58e79d
AV
1918 * @iter: data destination
1919 * @written: already copied
485bb99b 1920 *
1da177e4 1921 * This is a generic file read routine, and uses the
485bb99b 1922 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1923 *
1924 * This is really ugly. But the goto's actually try to clarify some
1925 * of the logic when it comes to error handling etc.
1da177e4 1926 */
6e58e79d
AV
1927static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1928 struct iov_iter *iter, ssize_t written)
1da177e4 1929{
36e78914 1930 struct address_space *mapping = filp->f_mapping;
1da177e4 1931 struct inode *inode = mapping->host;
36e78914 1932 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1933 pgoff_t index;
1934 pgoff_t last_index;
1935 pgoff_t prev_index;
1936 unsigned long offset; /* offset into pagecache page */
ec0f1637 1937 unsigned int prev_offset;
6e58e79d 1938 int error = 0;
1da177e4 1939
c2a9737f 1940 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 1941 return 0;
c2a9737f
WF
1942 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1943
09cbfeaf
KS
1944 index = *ppos >> PAGE_SHIFT;
1945 prev_index = ra->prev_pos >> PAGE_SHIFT;
1946 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1947 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1948 offset = *ppos & ~PAGE_MASK;
1da177e4 1949
1da177e4
LT
1950 for (;;) {
1951 struct page *page;
57f6b96c 1952 pgoff_t end_index;
a32ea1e1 1953 loff_t isize;
1da177e4
LT
1954 unsigned long nr, ret;
1955
1da177e4 1956 cond_resched();
1da177e4 1957find_page:
5abf186a
MH
1958 if (fatal_signal_pending(current)) {
1959 error = -EINTR;
1960 goto out;
1961 }
1962
1da177e4 1963 page = find_get_page(mapping, index);
3ea89ee8 1964 if (!page) {
cf914a7d 1965 page_cache_sync_readahead(mapping,
7ff81078 1966 ra, filp,
3ea89ee8
FW
1967 index, last_index - index);
1968 page = find_get_page(mapping, index);
1969 if (unlikely(page == NULL))
1970 goto no_cached_page;
1971 }
1972 if (PageReadahead(page)) {
cf914a7d 1973 page_cache_async_readahead(mapping,
7ff81078 1974 ra, filp, page,
3ea89ee8 1975 index, last_index - index);
1da177e4 1976 }
8ab22b9a 1977 if (!PageUptodate(page)) {
ebded027
MG
1978 /*
1979 * See comment in do_read_cache_page on why
1980 * wait_on_page_locked is used to avoid unnecessarily
1981 * serialisations and why it's safe.
1982 */
c4b209a4
BVA
1983 error = wait_on_page_locked_killable(page);
1984 if (unlikely(error))
1985 goto readpage_error;
ebded027
MG
1986 if (PageUptodate(page))
1987 goto page_ok;
1988
09cbfeaf 1989 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
1990 !mapping->a_ops->is_partially_uptodate)
1991 goto page_not_up_to_date;
6d6d36bc
EG
1992 /* pipes can't handle partially uptodate pages */
1993 if (unlikely(iter->type & ITER_PIPE))
1994 goto page_not_up_to_date;
529ae9aa 1995 if (!trylock_page(page))
8ab22b9a 1996 goto page_not_up_to_date;
8d056cb9
DH
1997 /* Did it get truncated before we got the lock? */
1998 if (!page->mapping)
1999 goto page_not_up_to_date_locked;
8ab22b9a 2000 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 2001 offset, iter->count))
8ab22b9a
HH
2002 goto page_not_up_to_date_locked;
2003 unlock_page(page);
2004 }
1da177e4 2005page_ok:
a32ea1e1
N
2006 /*
2007 * i_size must be checked after we know the page is Uptodate.
2008 *
2009 * Checking i_size after the check allows us to calculate
2010 * the correct value for "nr", which means the zero-filled
2011 * part of the page is not copied back to userspace (unless
2012 * another truncate extends the file - this is desired though).
2013 */
2014
2015 isize = i_size_read(inode);
09cbfeaf 2016 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 2017 if (unlikely(!isize || index > end_index)) {
09cbfeaf 2018 put_page(page);
a32ea1e1
N
2019 goto out;
2020 }
2021
2022 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 2023 nr = PAGE_SIZE;
a32ea1e1 2024 if (index == end_index) {
09cbfeaf 2025 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 2026 if (nr <= offset) {
09cbfeaf 2027 put_page(page);
a32ea1e1
N
2028 goto out;
2029 }
2030 }
2031 nr = nr - offset;
1da177e4
LT
2032
2033 /* If users can be writing to this page using arbitrary
2034 * virtual addresses, take care about potential aliasing
2035 * before reading the page on the kernel side.
2036 */
2037 if (mapping_writably_mapped(mapping))
2038 flush_dcache_page(page);
2039
2040 /*
ec0f1637
JK
2041 * When a sequential read accesses a page several times,
2042 * only mark it as accessed the first time.
1da177e4 2043 */
ec0f1637 2044 if (prev_index != index || offset != prev_offset)
1da177e4
LT
2045 mark_page_accessed(page);
2046 prev_index = index;
2047
2048 /*
2049 * Ok, we have the page, and it's up-to-date, so
2050 * now we can copy it to user space...
1da177e4 2051 */
6e58e79d
AV
2052
2053 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 2054 offset += ret;
09cbfeaf
KS
2055 index += offset >> PAGE_SHIFT;
2056 offset &= ~PAGE_MASK;
6ce745ed 2057 prev_offset = offset;
1da177e4 2058
09cbfeaf 2059 put_page(page);
6e58e79d
AV
2060 written += ret;
2061 if (!iov_iter_count(iter))
2062 goto out;
2063 if (ret < nr) {
2064 error = -EFAULT;
2065 goto out;
2066 }
2067 continue;
1da177e4
LT
2068
2069page_not_up_to_date:
2070 /* Get exclusive access to the page ... */
85462323
ON
2071 error = lock_page_killable(page);
2072 if (unlikely(error))
2073 goto readpage_error;
1da177e4 2074
8ab22b9a 2075page_not_up_to_date_locked:
da6052f7 2076 /* Did it get truncated before we got the lock? */
1da177e4
LT
2077 if (!page->mapping) {
2078 unlock_page(page);
09cbfeaf 2079 put_page(page);
1da177e4
LT
2080 continue;
2081 }
2082
2083 /* Did somebody else fill it already? */
2084 if (PageUptodate(page)) {
2085 unlock_page(page);
2086 goto page_ok;
2087 }
2088
2089readpage:
91803b49
JM
2090 /*
2091 * A previous I/O error may have been due to temporary
2092 * failures, eg. multipath errors.
2093 * PG_error will be set again if readpage fails.
2094 */
2095 ClearPageError(page);
1da177e4
LT
2096 /* Start the actual read. The read will unlock the page. */
2097 error = mapping->a_ops->readpage(filp, page);
2098
994fc28c
ZB
2099 if (unlikely(error)) {
2100 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 2101 put_page(page);
6e58e79d 2102 error = 0;
994fc28c
ZB
2103 goto find_page;
2104 }
1da177e4 2105 goto readpage_error;
994fc28c 2106 }
1da177e4
LT
2107
2108 if (!PageUptodate(page)) {
85462323
ON
2109 error = lock_page_killable(page);
2110 if (unlikely(error))
2111 goto readpage_error;
1da177e4
LT
2112 if (!PageUptodate(page)) {
2113 if (page->mapping == NULL) {
2114 /*
2ecdc82e 2115 * invalidate_mapping_pages got it
1da177e4
LT
2116 */
2117 unlock_page(page);
09cbfeaf 2118 put_page(page);
1da177e4
LT
2119 goto find_page;
2120 }
2121 unlock_page(page);
7ff81078 2122 shrink_readahead_size_eio(filp, ra);
85462323
ON
2123 error = -EIO;
2124 goto readpage_error;
1da177e4
LT
2125 }
2126 unlock_page(page);
2127 }
2128
1da177e4
LT
2129 goto page_ok;
2130
2131readpage_error:
2132 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 2133 put_page(page);
1da177e4
LT
2134 goto out;
2135
2136no_cached_page:
2137 /*
2138 * Ok, it wasn't cached, so we need to create a new
2139 * page..
2140 */
eb2be189
NP
2141 page = page_cache_alloc_cold(mapping);
2142 if (!page) {
6e58e79d 2143 error = -ENOMEM;
eb2be189 2144 goto out;
1da177e4 2145 }
6afdb859 2146 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2147 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2148 if (error) {
09cbfeaf 2149 put_page(page);
6e58e79d
AV
2150 if (error == -EEXIST) {
2151 error = 0;
1da177e4 2152 goto find_page;
6e58e79d 2153 }
1da177e4
LT
2154 goto out;
2155 }
1da177e4
LT
2156 goto readpage;
2157 }
2158
2159out:
7ff81078 2160 ra->prev_pos = prev_index;
09cbfeaf 2161 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2162 ra->prev_pos |= prev_offset;
1da177e4 2163
09cbfeaf 2164 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2165 file_accessed(filp);
6e58e79d 2166 return written ? written : error;
1da177e4
LT
2167}
2168
485bb99b 2169/**
6abd2322 2170 * generic_file_read_iter - generic filesystem read routine
485bb99b 2171 * @iocb: kernel I/O control block
6abd2322 2172 * @iter: destination for the data read
485bb99b 2173 *
6abd2322 2174 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
2175 * that can use the page cache directly.
2176 */
2177ssize_t
ed978a81 2178generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2179{
ed978a81 2180 struct file *file = iocb->ki_filp;
cb66a7a1 2181 ssize_t retval = 0;
e7080a43
NS
2182 size_t count = iov_iter_count(iter);
2183
2184 if (!count)
2185 goto out; /* skip atime */
1da177e4 2186
2ba48ce5 2187 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
2188 struct address_space *mapping = file->f_mapping;
2189 struct inode *inode = mapping->host;
543ade1f 2190 loff_t size;
1da177e4 2191
1da177e4 2192 size = i_size_read(inode);
6be96d3a
GR
2193 if (iocb->ki_flags & IOCB_NOWAIT) {
2194 if (filemap_range_has_page(mapping, iocb->ki_pos,
2195 iocb->ki_pos + count - 1))
2196 return -EAGAIN;
2197 } else {
2198 retval = filemap_write_and_wait_range(mapping,
2199 iocb->ki_pos,
2200 iocb->ki_pos + count - 1);
2201 if (retval < 0)
2202 goto out;
2203 }
d8d3d94b 2204
0d5b0cf2
CH
2205 file_accessed(file);
2206
5ecda137 2207 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2208 if (retval >= 0) {
c64fb5c7 2209 iocb->ki_pos += retval;
5ecda137 2210 count -= retval;
9fe55eea 2211 }
5b47d59a 2212 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2213
9fe55eea
SW
2214 /*
2215 * Btrfs can have a short DIO read if we encounter
2216 * compressed extents, so if there was an error, or if
2217 * we've already read everything we wanted to, or if
2218 * there was a short read because we hit EOF, go ahead
2219 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2220 * the rest of the read. Buffered reads will not work for
2221 * DAX files, so don't bother trying.
9fe55eea 2222 */
5ecda137 2223 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2224 IS_DAX(inode))
9fe55eea 2225 goto out;
1da177e4
LT
2226 }
2227
c64fb5c7 2228 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1da177e4
LT
2229out:
2230 return retval;
2231}
ed978a81 2232EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2233
1da177e4 2234#ifdef CONFIG_MMU
485bb99b
RD
2235/**
2236 * page_cache_read - adds requested page to the page cache if not already there
2237 * @file: file to read
2238 * @offset: page index
62eb320a 2239 * @gfp_mask: memory allocation flags
485bb99b 2240 *
1da177e4
LT
2241 * This adds the requested page to the page cache if it isn't already there,
2242 * and schedules an I/O to read in its contents from disk.
2243 */
c20cd45e 2244static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
2245{
2246 struct address_space *mapping = file->f_mapping;
99dadfdd 2247 struct page *page;
994fc28c 2248 int ret;
1da177e4 2249
994fc28c 2250 do {
c20cd45e 2251 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
994fc28c
ZB
2252 if (!page)
2253 return -ENOMEM;
2254
c20cd45e 2255 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
994fc28c
ZB
2256 if (ret == 0)
2257 ret = mapping->a_ops->readpage(file, page);
2258 else if (ret == -EEXIST)
2259 ret = 0; /* losing race to add is OK */
1da177e4 2260
09cbfeaf 2261 put_page(page);
1da177e4 2262
994fc28c 2263 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 2264
994fc28c 2265 return ret;
1da177e4
LT
2266}
2267
2268#define MMAP_LOTSAMISS (100)
2269
ef00e08e
LT
2270/*
2271 * Synchronous readahead happens when we don't even find
2272 * a page in the page cache at all.
2273 */
2274static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2275 struct file_ra_state *ra,
2276 struct file *file,
2277 pgoff_t offset)
2278{
ef00e08e
LT
2279 struct address_space *mapping = file->f_mapping;
2280
2281 /* If we don't want any read-ahead, don't bother */
64363aad 2282 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 2283 return;
275b12bf
WF
2284 if (!ra->ra_pages)
2285 return;
ef00e08e 2286
64363aad 2287 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
2288 page_cache_sync_readahead(mapping, ra, file, offset,
2289 ra->ra_pages);
ef00e08e
LT
2290 return;
2291 }
2292
207d04ba
AK
2293 /* Avoid banging the cache line if not needed */
2294 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2295 ra->mmap_miss++;
2296
2297 /*
2298 * Do we miss much more than hit in this file? If so,
2299 * stop bothering with read-ahead. It will only hurt.
2300 */
2301 if (ra->mmap_miss > MMAP_LOTSAMISS)
2302 return;
2303
d30a1100
WF
2304 /*
2305 * mmap read-around
2306 */
600e19af
RG
2307 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2308 ra->size = ra->ra_pages;
2309 ra->async_size = ra->ra_pages / 4;
275b12bf 2310 ra_submit(ra, mapping, file);
ef00e08e
LT
2311}
2312
2313/*
2314 * Asynchronous readahead happens when we find the page and PG_readahead,
2315 * so we want to possibly extend the readahead further..
2316 */
2317static void do_async_mmap_readahead(struct vm_area_struct *vma,
2318 struct file_ra_state *ra,
2319 struct file *file,
2320 struct page *page,
2321 pgoff_t offset)
2322{
2323 struct address_space *mapping = file->f_mapping;
2324
2325 /* If we don't want any read-ahead, don't bother */
64363aad 2326 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
2327 return;
2328 if (ra->mmap_miss > 0)
2329 ra->mmap_miss--;
2330 if (PageReadahead(page))
2fad6f5d
WF
2331 page_cache_async_readahead(mapping, ra, file,
2332 page, offset, ra->ra_pages);
ef00e08e
LT
2333}
2334
485bb99b 2335/**
54cb8821 2336 * filemap_fault - read in file data for page fault handling
d0217ac0 2337 * @vmf: struct vm_fault containing details of the fault
485bb99b 2338 *
54cb8821 2339 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2340 * mapped memory region to read in file data during a page fault.
2341 *
2342 * The goto's are kind of ugly, but this streamlines the normal case of having
2343 * it in the page cache, and handles the special cases reasonably without
2344 * having a lot of duplicated code.
9a95f3cf
PC
2345 *
2346 * vma->vm_mm->mmap_sem must be held on entry.
2347 *
2348 * If our return value has VM_FAULT_RETRY set, it's because
2349 * lock_page_or_retry() returned 0.
2350 * The mmap_sem has usually been released in this case.
2351 * See __lock_page_or_retry() for the exception.
2352 *
2353 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2354 * has not been released.
2355 *
2356 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2357 */
11bac800 2358int filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2359{
2360 int error;
11bac800 2361 struct file *file = vmf->vma->vm_file;
1da177e4
LT
2362 struct address_space *mapping = file->f_mapping;
2363 struct file_ra_state *ra = &file->f_ra;
2364 struct inode *inode = mapping->host;
ef00e08e 2365 pgoff_t offset = vmf->pgoff;
9ab2594f 2366 pgoff_t max_off;
1da177e4 2367 struct page *page;
83c54070 2368 int ret = 0;
1da177e4 2369
9ab2594f
MW
2370 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2371 if (unlikely(offset >= max_off))
5307cc1a 2372 return VM_FAULT_SIGBUS;
1da177e4 2373
1da177e4 2374 /*
49426420 2375 * Do we have something in the page cache already?
1da177e4 2376 */
ef00e08e 2377 page = find_get_page(mapping, offset);
45cac65b 2378 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2379 /*
ef00e08e
LT
2380 * We found the page, so try async readahead before
2381 * waiting for the lock.
1da177e4 2382 */
11bac800 2383 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
45cac65b 2384 } else if (!page) {
ef00e08e 2385 /* No page in the page cache at all */
11bac800 2386 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
ef00e08e 2387 count_vm_event(PGMAJFAULT);
2262185c 2388 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2389 ret = VM_FAULT_MAJOR;
2390retry_find:
b522c94d 2391 page = find_get_page(mapping, offset);
1da177e4
LT
2392 if (!page)
2393 goto no_cached_page;
2394 }
2395
11bac800 2396 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
09cbfeaf 2397 put_page(page);
d065bd81 2398 return ret | VM_FAULT_RETRY;
d88c0922 2399 }
b522c94d
ML
2400
2401 /* Did it get truncated? */
2402 if (unlikely(page->mapping != mapping)) {
2403 unlock_page(page);
2404 put_page(page);
2405 goto retry_find;
2406 }
309381fe 2407 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2408
1da177e4 2409 /*
d00806b1
NP
2410 * We have a locked page in the page cache, now we need to check
2411 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2412 */
d00806b1 2413 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2414 goto page_not_uptodate;
2415
ef00e08e
LT
2416 /*
2417 * Found the page and have a reference on it.
2418 * We must recheck i_size under page lock.
2419 */
9ab2594f
MW
2420 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2421 if (unlikely(offset >= max_off)) {
d00806b1 2422 unlock_page(page);
09cbfeaf 2423 put_page(page);
5307cc1a 2424 return VM_FAULT_SIGBUS;
d00806b1
NP
2425 }
2426
d0217ac0 2427 vmf->page = page;
83c54070 2428 return ret | VM_FAULT_LOCKED;
1da177e4 2429
1da177e4
LT
2430no_cached_page:
2431 /*
2432 * We're only likely to ever get here if MADV_RANDOM is in
2433 * effect.
2434 */
c20cd45e 2435 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2436
2437 /*
2438 * The page we want has now been added to the page cache.
2439 * In the unlikely event that someone removed it in the
2440 * meantime, we'll just come back here and read it again.
2441 */
2442 if (error >= 0)
2443 goto retry_find;
2444
2445 /*
2446 * An error return from page_cache_read can result if the
2447 * system is low on memory, or a problem occurs while trying
2448 * to schedule I/O.
2449 */
2450 if (error == -ENOMEM)
d0217ac0
NP
2451 return VM_FAULT_OOM;
2452 return VM_FAULT_SIGBUS;
1da177e4
LT
2453
2454page_not_uptodate:
1da177e4
LT
2455 /*
2456 * Umm, take care of errors if the page isn't up-to-date.
2457 * Try to re-read it _once_. We do this synchronously,
2458 * because there really aren't any performance issues here
2459 * and we need to check for errors.
2460 */
1da177e4 2461 ClearPageError(page);
994fc28c 2462 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2463 if (!error) {
2464 wait_on_page_locked(page);
2465 if (!PageUptodate(page))
2466 error = -EIO;
2467 }
09cbfeaf 2468 put_page(page);
d00806b1
NP
2469
2470 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2471 goto retry_find;
1da177e4 2472
d00806b1 2473 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2474 shrink_readahead_size_eio(file, ra);
d0217ac0 2475 return VM_FAULT_SIGBUS;
54cb8821
NP
2476}
2477EXPORT_SYMBOL(filemap_fault);
2478
82b0f8c3 2479void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2480 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361
KS
2481{
2482 struct radix_tree_iter iter;
2483 void **slot;
82b0f8c3 2484 struct file *file = vmf->vma->vm_file;
f1820361 2485 struct address_space *mapping = file->f_mapping;
bae473a4 2486 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2487 unsigned long max_idx;
83929372 2488 struct page *head, *page;
f1820361
KS
2489
2490 rcu_read_lock();
bae473a4
KS
2491 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2492 start_pgoff) {
2493 if (iter.index > end_pgoff)
f1820361
KS
2494 break;
2495repeat:
2496 page = radix_tree_deref_slot(slot);
2497 if (unlikely(!page))
2498 goto next;
2499 if (radix_tree_exception(page)) {
2cf938aa
MW
2500 if (radix_tree_deref_retry(page)) {
2501 slot = radix_tree_iter_retry(&iter);
2502 continue;
2503 }
2504 goto next;
f1820361
KS
2505 }
2506
83929372
KS
2507 head = compound_head(page);
2508 if (!page_cache_get_speculative(head))
f1820361
KS
2509 goto repeat;
2510
83929372
KS
2511 /* The page was split under us? */
2512 if (compound_head(page) != head) {
2513 put_page(head);
2514 goto repeat;
2515 }
2516
f1820361
KS
2517 /* Has the page moved? */
2518 if (unlikely(page != *slot)) {
83929372 2519 put_page(head);
f1820361
KS
2520 goto repeat;
2521 }
2522
2523 if (!PageUptodate(page) ||
2524 PageReadahead(page) ||
2525 PageHWPoison(page))
2526 goto skip;
2527 if (!trylock_page(page))
2528 goto skip;
2529
2530 if (page->mapping != mapping || !PageUptodate(page))
2531 goto unlock;
2532
9ab2594f
MW
2533 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2534 if (page->index >= max_idx)
f1820361
KS
2535 goto unlock;
2536
f1820361
KS
2537 if (file->f_ra.mmap_miss > 0)
2538 file->f_ra.mmap_miss--;
7267ec00 2539
82b0f8c3
JK
2540 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2541 if (vmf->pte)
2542 vmf->pte += iter.index - last_pgoff;
7267ec00 2543 last_pgoff = iter.index;
82b0f8c3 2544 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2545 goto unlock;
f1820361
KS
2546 unlock_page(page);
2547 goto next;
2548unlock:
2549 unlock_page(page);
2550skip:
09cbfeaf 2551 put_page(page);
f1820361 2552next:
7267ec00 2553 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2554 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2555 break;
bae473a4 2556 if (iter.index == end_pgoff)
f1820361
KS
2557 break;
2558 }
2559 rcu_read_unlock();
2560}
2561EXPORT_SYMBOL(filemap_map_pages);
2562
11bac800 2563int filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2564{
2565 struct page *page = vmf->page;
11bac800 2566 struct inode *inode = file_inode(vmf->vma->vm_file);
4fcf1c62
JK
2567 int ret = VM_FAULT_LOCKED;
2568
14da9200 2569 sb_start_pagefault(inode->i_sb);
11bac800 2570 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2571 lock_page(page);
2572 if (page->mapping != inode->i_mapping) {
2573 unlock_page(page);
2574 ret = VM_FAULT_NOPAGE;
2575 goto out;
2576 }
14da9200
JK
2577 /*
2578 * We mark the page dirty already here so that when freeze is in
2579 * progress, we are guaranteed that writeback during freezing will
2580 * see the dirty page and writeprotect it again.
2581 */
2582 set_page_dirty(page);
1d1d1a76 2583 wait_for_stable_page(page);
4fcf1c62 2584out:
14da9200 2585 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2586 return ret;
2587}
2588EXPORT_SYMBOL(filemap_page_mkwrite);
2589
f0f37e2f 2590const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2591 .fault = filemap_fault,
f1820361 2592 .map_pages = filemap_map_pages,
4fcf1c62 2593 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2594};
2595
2596/* This is used for a general mmap of a disk file */
2597
2598int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2599{
2600 struct address_space *mapping = file->f_mapping;
2601
2602 if (!mapping->a_ops->readpage)
2603 return -ENOEXEC;
2604 file_accessed(file);
2605 vma->vm_ops = &generic_file_vm_ops;
2606 return 0;
2607}
1da177e4
LT
2608
2609/*
2610 * This is for filesystems which do not implement ->writepage.
2611 */
2612int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2613{
2614 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2615 return -EINVAL;
2616 return generic_file_mmap(file, vma);
2617}
2618#else
2619int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2620{
2621 return -ENOSYS;
2622}
2623int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2624{
2625 return -ENOSYS;
2626}
2627#endif /* CONFIG_MMU */
2628
2629EXPORT_SYMBOL(generic_file_mmap);
2630EXPORT_SYMBOL(generic_file_readonly_mmap);
2631
67f9fd91
SL
2632static struct page *wait_on_page_read(struct page *page)
2633{
2634 if (!IS_ERR(page)) {
2635 wait_on_page_locked(page);
2636 if (!PageUptodate(page)) {
09cbfeaf 2637 put_page(page);
67f9fd91
SL
2638 page = ERR_PTR(-EIO);
2639 }
2640 }
2641 return page;
2642}
2643
32b63529 2644static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2645 pgoff_t index,
5e5358e7 2646 int (*filler)(void *, struct page *),
0531b2aa
LT
2647 void *data,
2648 gfp_t gfp)
1da177e4 2649{
eb2be189 2650 struct page *page;
1da177e4
LT
2651 int err;
2652repeat:
2653 page = find_get_page(mapping, index);
2654 if (!page) {
0531b2aa 2655 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2656 if (!page)
2657 return ERR_PTR(-ENOMEM);
e6f67b8c 2658 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2659 if (unlikely(err)) {
09cbfeaf 2660 put_page(page);
eb2be189
NP
2661 if (err == -EEXIST)
2662 goto repeat;
1da177e4 2663 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2664 return ERR_PTR(err);
2665 }
32b63529
MG
2666
2667filler:
1da177e4
LT
2668 err = filler(data, page);
2669 if (err < 0) {
09cbfeaf 2670 put_page(page);
32b63529 2671 return ERR_PTR(err);
1da177e4 2672 }
1da177e4 2673
32b63529
MG
2674 page = wait_on_page_read(page);
2675 if (IS_ERR(page))
2676 return page;
2677 goto out;
2678 }
1da177e4
LT
2679 if (PageUptodate(page))
2680 goto out;
2681
ebded027
MG
2682 /*
2683 * Page is not up to date and may be locked due one of the following
2684 * case a: Page is being filled and the page lock is held
2685 * case b: Read/write error clearing the page uptodate status
2686 * case c: Truncation in progress (page locked)
2687 * case d: Reclaim in progress
2688 *
2689 * Case a, the page will be up to date when the page is unlocked.
2690 * There is no need to serialise on the page lock here as the page
2691 * is pinned so the lock gives no additional protection. Even if the
2692 * the page is truncated, the data is still valid if PageUptodate as
2693 * it's a race vs truncate race.
2694 * Case b, the page will not be up to date
2695 * Case c, the page may be truncated but in itself, the data may still
2696 * be valid after IO completes as it's a read vs truncate race. The
2697 * operation must restart if the page is not uptodate on unlock but
2698 * otherwise serialising on page lock to stabilise the mapping gives
2699 * no additional guarantees to the caller as the page lock is
2700 * released before return.
2701 * Case d, similar to truncation. If reclaim holds the page lock, it
2702 * will be a race with remove_mapping that determines if the mapping
2703 * is valid on unlock but otherwise the data is valid and there is
2704 * no need to serialise with page lock.
2705 *
2706 * As the page lock gives no additional guarantee, we optimistically
2707 * wait on the page to be unlocked and check if it's up to date and
2708 * use the page if it is. Otherwise, the page lock is required to
2709 * distinguish between the different cases. The motivation is that we
2710 * avoid spurious serialisations and wakeups when multiple processes
2711 * wait on the same page for IO to complete.
2712 */
2713 wait_on_page_locked(page);
2714 if (PageUptodate(page))
2715 goto out;
2716
2717 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2718 lock_page(page);
ebded027
MG
2719
2720 /* Case c or d, restart the operation */
1da177e4
LT
2721 if (!page->mapping) {
2722 unlock_page(page);
09cbfeaf 2723 put_page(page);
32b63529 2724 goto repeat;
1da177e4 2725 }
ebded027
MG
2726
2727 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2728 if (PageUptodate(page)) {
2729 unlock_page(page);
2730 goto out;
2731 }
32b63529
MG
2732 goto filler;
2733
c855ff37 2734out:
6fe6900e
NP
2735 mark_page_accessed(page);
2736 return page;
2737}
0531b2aa
LT
2738
2739/**
67f9fd91 2740 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2741 * @mapping: the page's address_space
2742 * @index: the page index
2743 * @filler: function to perform the read
5e5358e7 2744 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2745 *
0531b2aa 2746 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2747 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2748 *
2749 * If the page does not get brought uptodate, return -EIO.
2750 */
67f9fd91 2751struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2752 pgoff_t index,
5e5358e7 2753 int (*filler)(void *, struct page *),
0531b2aa
LT
2754 void *data)
2755{
2756 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2757}
67f9fd91 2758EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2759
2760/**
2761 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2762 * @mapping: the page's address_space
2763 * @index: the page index
2764 * @gfp: the page allocator flags to use if allocating
2765 *
2766 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2767 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2768 *
2769 * If the page does not get brought uptodate, return -EIO.
2770 */
2771struct page *read_cache_page_gfp(struct address_space *mapping,
2772 pgoff_t index,
2773 gfp_t gfp)
2774{
2775 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2776
67f9fd91 2777 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2778}
2779EXPORT_SYMBOL(read_cache_page_gfp);
2780
1da177e4
LT
2781/*
2782 * Performs necessary checks before doing a write
2783 *
485bb99b 2784 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2785 * Returns appropriate error code that caller should return or
2786 * zero in case that write should be allowed.
2787 */
3309dd04 2788inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2789{
3309dd04 2790 struct file *file = iocb->ki_filp;
1da177e4 2791 struct inode *inode = file->f_mapping->host;
59e99e5b 2792 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2793 loff_t pos;
1da177e4 2794
3309dd04
AV
2795 if (!iov_iter_count(from))
2796 return 0;
1da177e4 2797
0fa6b005 2798 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2799 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2800 iocb->ki_pos = i_size_read(inode);
1da177e4 2801
3309dd04 2802 pos = iocb->ki_pos;
1da177e4 2803
6be96d3a
GR
2804 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2805 return -EINVAL;
2806
0fa6b005 2807 if (limit != RLIM_INFINITY) {
3309dd04 2808 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2809 send_sig(SIGXFSZ, current, 0);
2810 return -EFBIG;
1da177e4 2811 }
3309dd04 2812 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2813 }
2814
2815 /*
2816 * LFS rule
2817 */
3309dd04 2818 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2819 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2820 if (pos >= MAX_NON_LFS)
1da177e4 2821 return -EFBIG;
3309dd04 2822 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2823 }
2824
2825 /*
2826 * Are we about to exceed the fs block limit ?
2827 *
2828 * If we have written data it becomes a short write. If we have
2829 * exceeded without writing data we send a signal and return EFBIG.
2830 * Linus frestrict idea will clean these up nicely..
2831 */
3309dd04
AV
2832 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2833 return -EFBIG;
1da177e4 2834
3309dd04
AV
2835 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2836 return iov_iter_count(from);
1da177e4
LT
2837}
2838EXPORT_SYMBOL(generic_write_checks);
2839
afddba49
NP
2840int pagecache_write_begin(struct file *file, struct address_space *mapping,
2841 loff_t pos, unsigned len, unsigned flags,
2842 struct page **pagep, void **fsdata)
2843{
2844 const struct address_space_operations *aops = mapping->a_ops;
2845
4e02ed4b 2846 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2847 pagep, fsdata);
afddba49
NP
2848}
2849EXPORT_SYMBOL(pagecache_write_begin);
2850
2851int pagecache_write_end(struct file *file, struct address_space *mapping,
2852 loff_t pos, unsigned len, unsigned copied,
2853 struct page *page, void *fsdata)
2854{
2855 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2856
4e02ed4b 2857 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2858}
2859EXPORT_SYMBOL(pagecache_write_end);
2860
1da177e4 2861ssize_t
1af5bb49 2862generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2863{
2864 struct file *file = iocb->ki_filp;
2865 struct address_space *mapping = file->f_mapping;
2866 struct inode *inode = mapping->host;
1af5bb49 2867 loff_t pos = iocb->ki_pos;
1da177e4 2868 ssize_t written;
a969e903
CH
2869 size_t write_len;
2870 pgoff_t end;
1da177e4 2871
0c949334 2872 write_len = iov_iter_count(from);
09cbfeaf 2873 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 2874
6be96d3a
GR
2875 if (iocb->ki_flags & IOCB_NOWAIT) {
2876 /* If there are pages to writeback, return */
2877 if (filemap_range_has_page(inode->i_mapping, pos,
2878 pos + iov_iter_count(from)))
2879 return -EAGAIN;
2880 } else {
2881 written = filemap_write_and_wait_range(mapping, pos,
2882 pos + write_len - 1);
2883 if (written)
2884 goto out;
2885 }
a969e903
CH
2886
2887 /*
2888 * After a write we want buffered reads to be sure to go to disk to get
2889 * the new data. We invalidate clean cached page from the region we're
2890 * about to write. We do this *before* the write so that we can return
6ccfa806 2891 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 2892 */
55635ba7 2893 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 2894 pos >> PAGE_SHIFT, end);
55635ba7
AR
2895 /*
2896 * If a page can not be invalidated, return 0 to fall back
2897 * to buffered write.
2898 */
2899 if (written) {
2900 if (written == -EBUSY)
2901 return 0;
2902 goto out;
a969e903
CH
2903 }
2904
639a93a5 2905 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
2906
2907 /*
2908 * Finally, try again to invalidate clean pages which might have been
2909 * cached by non-direct readahead, or faulted in by get_user_pages()
2910 * if the source of the write was an mmap'ed region of the file
2911 * we're writing. Either one is a pretty crazy thing to do,
2912 * so we don't support it 100%. If this invalidation
2913 * fails, tough, the write still worked...
2914 */
55635ba7
AR
2915 invalidate_inode_pages2_range(mapping,
2916 pos >> PAGE_SHIFT, end);
a969e903 2917
1da177e4 2918 if (written > 0) {
0116651c 2919 pos += written;
639a93a5 2920 write_len -= written;
0116651c
NK
2921 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2922 i_size_write(inode, pos);
1da177e4
LT
2923 mark_inode_dirty(inode);
2924 }
5cb6c6c7 2925 iocb->ki_pos = pos;
1da177e4 2926 }
639a93a5 2927 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 2928out:
1da177e4
LT
2929 return written;
2930}
2931EXPORT_SYMBOL(generic_file_direct_write);
2932
eb2be189
NP
2933/*
2934 * Find or create a page at the given pagecache position. Return the locked
2935 * page. This function is specifically for buffered writes.
2936 */
54566b2c
NP
2937struct page *grab_cache_page_write_begin(struct address_space *mapping,
2938 pgoff_t index, unsigned flags)
eb2be189 2939{
eb2be189 2940 struct page *page;
bbddabe2 2941 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 2942
54566b2c 2943 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2944 fgp_flags |= FGP_NOFS;
2945
2946 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2947 mapping_gfp_mask(mapping));
c585a267 2948 if (page)
2457aec6 2949 wait_for_stable_page(page);
eb2be189 2950
eb2be189
NP
2951 return page;
2952}
54566b2c 2953EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2954
3b93f911 2955ssize_t generic_perform_write(struct file *file,
afddba49
NP
2956 struct iov_iter *i, loff_t pos)
2957{
2958 struct address_space *mapping = file->f_mapping;
2959 const struct address_space_operations *a_ops = mapping->a_ops;
2960 long status = 0;
2961 ssize_t written = 0;
674b892e
NP
2962 unsigned int flags = 0;
2963
afddba49
NP
2964 do {
2965 struct page *page;
afddba49
NP
2966 unsigned long offset; /* Offset into pagecache page */
2967 unsigned long bytes; /* Bytes to write to page */
2968 size_t copied; /* Bytes copied from user */
2969 void *fsdata;
2970
09cbfeaf
KS
2971 offset = (pos & (PAGE_SIZE - 1));
2972 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2973 iov_iter_count(i));
2974
2975again:
00a3d660
LT
2976 /*
2977 * Bring in the user page that we will copy from _first_.
2978 * Otherwise there's a nasty deadlock on copying from the
2979 * same page as we're writing to, without it being marked
2980 * up-to-date.
2981 *
2982 * Not only is this an optimisation, but it is also required
2983 * to check that the address is actually valid, when atomic
2984 * usercopies are used, below.
2985 */
2986 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2987 status = -EFAULT;
2988 break;
2989 }
2990
296291cd
JK
2991 if (fatal_signal_pending(current)) {
2992 status = -EINTR;
2993 break;
2994 }
2995
674b892e 2996 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2997 &page, &fsdata);
2457aec6 2998 if (unlikely(status < 0))
afddba49
NP
2999 break;
3000
931e80e4 3001 if (mapping_writably_mapped(mapping))
3002 flush_dcache_page(page);
00a3d660 3003
afddba49 3004 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
3005 flush_dcache_page(page);
3006
3007 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3008 page, fsdata);
3009 if (unlikely(status < 0))
3010 break;
3011 copied = status;
3012
3013 cond_resched();
3014
124d3b70 3015 iov_iter_advance(i, copied);
afddba49
NP
3016 if (unlikely(copied == 0)) {
3017 /*
3018 * If we were unable to copy any data at all, we must
3019 * fall back to a single segment length write.
3020 *
3021 * If we didn't fallback here, we could livelock
3022 * because not all segments in the iov can be copied at
3023 * once without a pagefault.
3024 */
09cbfeaf 3025 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3026 iov_iter_single_seg_count(i));
3027 goto again;
3028 }
afddba49
NP
3029 pos += copied;
3030 written += copied;
3031
3032 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3033 } while (iov_iter_count(i));
3034
3035 return written ? written : status;
3036}
3b93f911 3037EXPORT_SYMBOL(generic_perform_write);
1da177e4 3038
e4dd9de3 3039/**
8174202b 3040 * __generic_file_write_iter - write data to a file
e4dd9de3 3041 * @iocb: IO state structure (file, offset, etc.)
8174202b 3042 * @from: iov_iter with data to write
e4dd9de3
JK
3043 *
3044 * This function does all the work needed for actually writing data to a
3045 * file. It does all basic checks, removes SUID from the file, updates
3046 * modification times and calls proper subroutines depending on whether we
3047 * do direct IO or a standard buffered write.
3048 *
3049 * It expects i_mutex to be grabbed unless we work on a block device or similar
3050 * object which does not need locking at all.
3051 *
3052 * This function does *not* take care of syncing data in case of O_SYNC write.
3053 * A caller has to handle it. This is mainly due to the fact that we want to
3054 * avoid syncing under i_mutex.
3055 */
8174202b 3056ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3057{
3058 struct file *file = iocb->ki_filp;
fb5527e6 3059 struct address_space * mapping = file->f_mapping;
1da177e4 3060 struct inode *inode = mapping->host;
3b93f911 3061 ssize_t written = 0;
1da177e4 3062 ssize_t err;
3b93f911 3063 ssize_t status;
1da177e4 3064
1da177e4 3065 /* We can write back this queue in page reclaim */
de1414a6 3066 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3067 err = file_remove_privs(file);
1da177e4
LT
3068 if (err)
3069 goto out;
3070
c3b2da31
JB
3071 err = file_update_time(file);
3072 if (err)
3073 goto out;
1da177e4 3074
2ba48ce5 3075 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3076 loff_t pos, endbyte;
fb5527e6 3077
1af5bb49 3078 written = generic_file_direct_write(iocb, from);
1da177e4 3079 /*
fbbbad4b
MW
3080 * If the write stopped short of completing, fall back to
3081 * buffered writes. Some filesystems do this for writes to
3082 * holes, for example. For DAX files, a buffered write will
3083 * not succeed (even if it did, DAX does not handle dirty
3084 * page-cache pages correctly).
1da177e4 3085 */
0b8def9d 3086 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3087 goto out;
3088
0b8def9d 3089 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3090 /*
3b93f911 3091 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3092 * then we want to return the number of bytes which were
3093 * direct-written, or the error code if that was zero. Note
3094 * that this differs from normal direct-io semantics, which
3095 * will return -EFOO even if some bytes were written.
3096 */
60bb4529 3097 if (unlikely(status < 0)) {
3b93f911 3098 err = status;
fb5527e6
JM
3099 goto out;
3100 }
fb5527e6
JM
3101 /*
3102 * We need to ensure that the page cache pages are written to
3103 * disk and invalidated to preserve the expected O_DIRECT
3104 * semantics.
3105 */
3b93f911 3106 endbyte = pos + status - 1;
0b8def9d 3107 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3108 if (err == 0) {
0b8def9d 3109 iocb->ki_pos = endbyte + 1;
3b93f911 3110 written += status;
fb5527e6 3111 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3112 pos >> PAGE_SHIFT,
3113 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3114 } else {
3115 /*
3116 * We don't know how much we wrote, so just return
3117 * the number of bytes which were direct-written
3118 */
3119 }
3120 } else {
0b8def9d
AV
3121 written = generic_perform_write(file, from, iocb->ki_pos);
3122 if (likely(written > 0))
3123 iocb->ki_pos += written;
fb5527e6 3124 }
1da177e4
LT
3125out:
3126 current->backing_dev_info = NULL;
3127 return written ? written : err;
3128}
8174202b 3129EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3130
e4dd9de3 3131/**
8174202b 3132 * generic_file_write_iter - write data to a file
e4dd9de3 3133 * @iocb: IO state structure
8174202b 3134 * @from: iov_iter with data to write
e4dd9de3 3135 *
8174202b 3136 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3137 * filesystems. It takes care of syncing the file in case of O_SYNC file
3138 * and acquires i_mutex as needed.
3139 */
8174202b 3140ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3141{
3142 struct file *file = iocb->ki_filp;
148f948b 3143 struct inode *inode = file->f_mapping->host;
1da177e4 3144 ssize_t ret;
1da177e4 3145
5955102c 3146 inode_lock(inode);
3309dd04
AV
3147 ret = generic_write_checks(iocb, from);
3148 if (ret > 0)
5f380c7f 3149 ret = __generic_file_write_iter(iocb, from);
5955102c 3150 inode_unlock(inode);
1da177e4 3151
e2592217
CH
3152 if (ret > 0)
3153 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3154 return ret;
3155}
8174202b 3156EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3157
cf9a2ae8
DH
3158/**
3159 * try_to_release_page() - release old fs-specific metadata on a page
3160 *
3161 * @page: the page which the kernel is trying to free
3162 * @gfp_mask: memory allocation flags (and I/O mode)
3163 *
3164 * The address_space is to try to release any data against the page
0e056eb5 3165 * (presumably at page->private). If the release was successful, return '1'.
cf9a2ae8
DH
3166 * Otherwise return zero.
3167 *
266cf658
DH
3168 * This may also be called if PG_fscache is set on a page, indicating that the
3169 * page is known to the local caching routines.
3170 *
cf9a2ae8 3171 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3172 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3173 *
cf9a2ae8
DH
3174 */
3175int try_to_release_page(struct page *page, gfp_t gfp_mask)
3176{
3177 struct address_space * const mapping = page->mapping;
3178
3179 BUG_ON(!PageLocked(page));
3180 if (PageWriteback(page))
3181 return 0;
3182
3183 if (mapping && mapping->a_ops->releasepage)
3184 return mapping->a_ops->releasepage(page, gfp_mask);
3185 return try_to_free_buffers(page);
3186}
3187
3188EXPORT_SYMBOL(try_to_release_page);