]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/filemap.c
fs: pass iocb to do_generic_file_read
[mirror_ubuntu-bionic-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
3f07c014 16#include <linux/sched/signal.h>
c22ce143 17#include <linux/uaccess.h>
c59ede7b 18#include <linux/capability.h>
1da177e4 19#include <linux/kernel_stat.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/mm.h>
22#include <linux/swap.h>
23#include <linux/mman.h>
24#include <linux/pagemap.h>
25#include <linux/file.h>
26#include <linux/uio.h>
27#include <linux/hash.h>
28#include <linux/writeback.h>
53253383 29#include <linux/backing-dev.h>
1da177e4
LT
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/security.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 35#include <linux/hugetlb.h>
8a9f3ccd 36#include <linux/memcontrol.h>
c515e1fd 37#include <linux/cleancache.h>
f1820361 38#include <linux/rmap.h>
0f8053a5
NP
39#include "internal.h"
40
fe0bfaaf
RJ
41#define CREATE_TRACE_POINTS
42#include <trace/events/filemap.h>
43
1da177e4 44/*
1da177e4
LT
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
148f948b 47#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 48
1da177e4
LT
49#include <asm/mman.h>
50
51/*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63/*
64 * Lock ordering:
65 *
c8c06efa 66 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
1da177e4 70 *
1b1dcc1b 71 * ->i_mutex
c8c06efa 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
73 *
74 * ->mmap_sem
c8c06efa 75 * ->i_mmap_rwsem
b8072f09 76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
ccad2365 82 * ->i_mutex (generic_perform_write)
82591e6e 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 84 *
f758eeab 85 * bdi->wb.list_lock
a66979ab 86 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
87 * ->mapping->tree_lock (__sync_single_inode)
88 *
c8c06efa 89 * ->i_mmap_rwsem
1da177e4
LT
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
b8072f09 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 94 *
b8072f09 95 * ->page_table_lock or pte_lock
5d337b91 96 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
a52633d8
MG
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
1da177e4
LT
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
c8c06efa 110 * ->i_mmap_rwsem
9a3c531d 111 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
112 */
113
22f2ac51
JW
114static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116{
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
121 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 if (!radix_tree_exceptional_entry(p))
130 return -EEXIST;
131
132 mapping->nrexceptional--;
133 if (!dax_mapping(mapping)) {
134 if (shadowp)
135 *shadowp = p;
22f2ac51
JW
136 } else {
137 /* DAX can replace empty locked entry with a hole */
138 WARN_ON_ONCE(p !=
642261ac 139 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
22f2ac51 140 /* Wakeup waiters for exceptional entry lock */
63e95b5c 141 dax_wake_mapping_entry_waiter(mapping, page->index, p,
965d004a 142 true);
22f2ac51
JW
143 }
144 }
14b46879
JW
145 __radix_tree_replace(&mapping->page_tree, node, slot, page,
146 workingset_update_node, mapping);
22f2ac51 147 mapping->nrpages++;
22f2ac51
JW
148 return 0;
149}
150
91b0abe3
JW
151static void page_cache_tree_delete(struct address_space *mapping,
152 struct page *page, void *shadow)
153{
c70b647d
KS
154 int i, nr;
155
156 /* hugetlb pages are represented by one entry in the radix tree */
157 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
91b0abe3 158
83929372
KS
159 VM_BUG_ON_PAGE(!PageLocked(page), page);
160 VM_BUG_ON_PAGE(PageTail(page), page);
161 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 162
83929372 163 for (i = 0; i < nr; i++) {
d3798ae8
JW
164 struct radix_tree_node *node;
165 void **slot;
166
167 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168 &node, &slot);
169
dbc446b8 170 VM_BUG_ON_PAGE(!node && nr != 1, page);
449dd698 171
14b46879
JW
172 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174 workingset_update_node, mapping);
449dd698 175 }
d3798ae8
JW
176
177 if (shadow) {
178 mapping->nrexceptional += nr;
179 /*
180 * Make sure the nrexceptional update is committed before
181 * the nrpages update so that final truncate racing
182 * with reclaim does not see both counters 0 at the
183 * same time and miss a shadow entry.
184 */
185 smp_wmb();
186 }
187 mapping->nrpages -= nr;
91b0abe3
JW
188}
189
1da177e4 190/*
e64a782f 191 * Delete a page from the page cache and free it. Caller has to make
1da177e4 192 * sure the page is locked and that nobody else uses it - or that usage
fdf1cdb9 193 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 194 */
62cccb8c 195void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
196{
197 struct address_space *mapping = page->mapping;
83929372 198 int nr = hpage_nr_pages(page);
1da177e4 199
fe0bfaaf 200 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
201 /*
202 * if we're uptodate, flush out into the cleancache, otherwise
203 * invalidate any existing cleancache entries. We can't leave
204 * stale data around in the cleancache once our page is gone
205 */
206 if (PageUptodate(page) && PageMappedToDisk(page))
207 cleancache_put_page(page);
208 else
3167760f 209 cleancache_invalidate_page(mapping, page);
c515e1fd 210
83929372 211 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
212 VM_BUG_ON_PAGE(page_mapped(page), page);
213 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214 int mapcount;
215
216 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
217 current->comm, page_to_pfn(page));
218 dump_page(page, "still mapped when deleted");
219 dump_stack();
220 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222 mapcount = page_mapcount(page);
223 if (mapping_exiting(mapping) &&
224 page_count(page) >= mapcount + 2) {
225 /*
226 * All vmas have already been torn down, so it's
227 * a good bet that actually the page is unmapped,
228 * and we'd prefer not to leak it: if we're wrong,
229 * some other bad page check should catch it later.
230 */
231 page_mapcount_reset(page);
6d061f9f 232 page_ref_sub(page, mapcount);
06b241f3
HD
233 }
234 }
235
91b0abe3
JW
236 page_cache_tree_delete(mapping, page, shadow);
237
1da177e4 238 page->mapping = NULL;
b85e0eff 239 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 240
4165b9b4 241 /* hugetlb pages do not participate in page cache accounting. */
09612fa6
NH
242 if (PageHuge(page))
243 return;
244
245 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
800d8c63 246 if (PageSwapBacked(page)) {
11fb9989 247 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
800d8c63 248 if (PageTransHuge(page))
11fb9989 249 __dec_node_page_state(page, NR_SHMEM_THPS);
800d8c63 250 } else {
09612fa6 251 VM_BUG_ON_PAGE(PageTransHuge(page), page);
800d8c63 252 }
3a692790
LT
253
254 /*
b9ea2515
KK
255 * At this point page must be either written or cleaned by truncate.
256 * Dirty page here signals a bug and loss of unwritten data.
3a692790 257 *
b9ea2515
KK
258 * This fixes dirty accounting after removing the page entirely but
259 * leaves PageDirty set: it has no effect for truncated page and
260 * anyway will be cleared before returning page into buddy allocator.
3a692790 261 */
b9ea2515 262 if (WARN_ON_ONCE(PageDirty(page)))
62cccb8c 263 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
1da177e4
LT
264}
265
702cfbf9
MK
266/**
267 * delete_from_page_cache - delete page from page cache
268 * @page: the page which the kernel is trying to remove from page cache
269 *
270 * This must be called only on pages that have been verified to be in the page
271 * cache and locked. It will never put the page into the free list, the caller
272 * has a reference on the page.
273 */
274void delete_from_page_cache(struct page *page)
1da177e4 275{
83929372 276 struct address_space *mapping = page_mapping(page);
c4843a75 277 unsigned long flags;
6072d13c 278 void (*freepage)(struct page *);
1da177e4 279
cd7619d6 280 BUG_ON(!PageLocked(page));
1da177e4 281
6072d13c 282 freepage = mapping->a_ops->freepage;
c4843a75 283
c4843a75 284 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 285 __delete_from_page_cache(page, NULL);
c4843a75 286 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
287
288 if (freepage)
289 freepage(page);
83929372
KS
290
291 if (PageTransHuge(page) && !PageHuge(page)) {
292 page_ref_sub(page, HPAGE_PMD_NR);
293 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
294 } else {
295 put_page(page);
296 }
97cecb5a
MK
297}
298EXPORT_SYMBOL(delete_from_page_cache);
299
d72d9e2a 300int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
301{
302 int ret = 0;
303 /* Check for outstanding write errors */
7fcbbaf1
JA
304 if (test_bit(AS_ENOSPC, &mapping->flags) &&
305 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 306 ret = -ENOSPC;
7fcbbaf1
JA
307 if (test_bit(AS_EIO, &mapping->flags) &&
308 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
309 ret = -EIO;
310 return ret;
311}
d72d9e2a 312EXPORT_SYMBOL(filemap_check_errors);
865ffef3 313
76341cab
JL
314static int filemap_check_and_keep_errors(struct address_space *mapping)
315{
316 /* Check for outstanding write errors */
317 if (test_bit(AS_EIO, &mapping->flags))
318 return -EIO;
319 if (test_bit(AS_ENOSPC, &mapping->flags))
320 return -ENOSPC;
321 return 0;
322}
323
1da177e4 324/**
485bb99b 325 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
326 * @mapping: address space structure to write
327 * @start: offset in bytes where the range starts
469eb4d0 328 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 329 * @sync_mode: enable synchronous operation
1da177e4 330 *
485bb99b
RD
331 * Start writeback against all of a mapping's dirty pages that lie
332 * within the byte offsets <start, end> inclusive.
333 *
1da177e4 334 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 335 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
336 * these two operations is that if a dirty page/buffer is encountered, it must
337 * be waited upon, and not just skipped over.
338 */
ebcf28e1
AM
339int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
340 loff_t end, int sync_mode)
1da177e4
LT
341{
342 int ret;
343 struct writeback_control wbc = {
344 .sync_mode = sync_mode,
05fe478d 345 .nr_to_write = LONG_MAX,
111ebb6e
OH
346 .range_start = start,
347 .range_end = end,
1da177e4
LT
348 };
349
350 if (!mapping_cap_writeback_dirty(mapping))
351 return 0;
352
b16b1deb 353 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 354 ret = do_writepages(mapping, &wbc);
b16b1deb 355 wbc_detach_inode(&wbc);
1da177e4
LT
356 return ret;
357}
358
359static inline int __filemap_fdatawrite(struct address_space *mapping,
360 int sync_mode)
361{
111ebb6e 362 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
363}
364
365int filemap_fdatawrite(struct address_space *mapping)
366{
367 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
368}
369EXPORT_SYMBOL(filemap_fdatawrite);
370
f4c0a0fd 371int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 372 loff_t end)
1da177e4
LT
373{
374 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
375}
f4c0a0fd 376EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 377
485bb99b
RD
378/**
379 * filemap_flush - mostly a non-blocking flush
380 * @mapping: target address_space
381 *
1da177e4
LT
382 * This is a mostly non-blocking flush. Not suitable for data-integrity
383 * purposes - I/O may not be started against all dirty pages.
384 */
385int filemap_flush(struct address_space *mapping)
386{
387 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
388}
389EXPORT_SYMBOL(filemap_flush);
390
7fc9e472
GR
391/**
392 * filemap_range_has_page - check if a page exists in range.
393 * @mapping: address space within which to check
394 * @start_byte: offset in bytes where the range starts
395 * @end_byte: offset in bytes where the range ends (inclusive)
396 *
397 * Find at least one page in the range supplied, usually used to check if
398 * direct writing in this range will trigger a writeback.
399 */
400bool filemap_range_has_page(struct address_space *mapping,
401 loff_t start_byte, loff_t end_byte)
402{
403 pgoff_t index = start_byte >> PAGE_SHIFT;
404 pgoff_t end = end_byte >> PAGE_SHIFT;
405 struct pagevec pvec;
406 bool ret;
407
408 if (end_byte < start_byte)
409 return false;
410
411 if (mapping->nrpages == 0)
412 return false;
413
414 pagevec_init(&pvec, 0);
415 if (!pagevec_lookup(&pvec, mapping, index, 1))
416 return false;
417 ret = (pvec.pages[0]->index <= end);
418 pagevec_release(&pvec);
419 return ret;
420}
421EXPORT_SYMBOL(filemap_range_has_page);
422
5e8fcc1a 423static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 424 loff_t start_byte, loff_t end_byte)
1da177e4 425{
09cbfeaf
KS
426 pgoff_t index = start_byte >> PAGE_SHIFT;
427 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
428 struct pagevec pvec;
429 int nr_pages;
1da177e4 430
94004ed7 431 if (end_byte < start_byte)
5e8fcc1a 432 return;
1da177e4
LT
433
434 pagevec_init(&pvec, 0);
1da177e4
LT
435 while ((index <= end) &&
436 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
437 PAGECACHE_TAG_WRITEBACK,
438 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
439 unsigned i;
440
441 for (i = 0; i < nr_pages; i++) {
442 struct page *page = pvec.pages[i];
443
444 /* until radix tree lookup accepts end_index */
445 if (page->index > end)
446 continue;
447
448 wait_on_page_writeback(page);
5e8fcc1a 449 ClearPageError(page);
1da177e4
LT
450 }
451 pagevec_release(&pvec);
452 cond_resched();
453 }
aa750fd7
JN
454}
455
456/**
457 * filemap_fdatawait_range - wait for writeback to complete
458 * @mapping: address space structure to wait for
459 * @start_byte: offset in bytes where the range starts
460 * @end_byte: offset in bytes where the range ends (inclusive)
461 *
462 * Walk the list of under-writeback pages of the given address space
463 * in the given range and wait for all of them. Check error status of
464 * the address space and return it.
465 *
466 * Since the error status of the address space is cleared by this function,
467 * callers are responsible for checking the return value and handling and/or
468 * reporting the error.
469 */
470int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
471 loff_t end_byte)
472{
5e8fcc1a
JL
473 __filemap_fdatawait_range(mapping, start_byte, end_byte);
474 return filemap_check_errors(mapping);
1da177e4 475}
d3bccb6f
JK
476EXPORT_SYMBOL(filemap_fdatawait_range);
477
aa750fd7
JN
478/**
479 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
480 * @mapping: address space structure to wait for
481 *
482 * Walk the list of under-writeback pages of the given address space
483 * and wait for all of them. Unlike filemap_fdatawait(), this function
484 * does not clear error status of the address space.
485 *
486 * Use this function if callers don't handle errors themselves. Expected
487 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
488 * fsfreeze(8)
489 */
76341cab 490int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7
JN
491{
492 loff_t i_size = i_size_read(mapping->host);
493
494 if (i_size == 0)
76341cab 495 return 0;
aa750fd7
JN
496
497 __filemap_fdatawait_range(mapping, 0, i_size - 1);
76341cab 498 return filemap_check_and_keep_errors(mapping);
aa750fd7 499}
76341cab 500EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 501
1da177e4 502/**
485bb99b 503 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 504 * @mapping: address space structure to wait for
485bb99b
RD
505 *
506 * Walk the list of under-writeback pages of the given address space
aa750fd7
JN
507 * and wait for all of them. Check error status of the address space
508 * and return it.
509 *
510 * Since the error status of the address space is cleared by this function,
511 * callers are responsible for checking the return value and handling and/or
512 * reporting the error.
1da177e4
LT
513 */
514int filemap_fdatawait(struct address_space *mapping)
515{
516 loff_t i_size = i_size_read(mapping->host);
517
518 if (i_size == 0)
519 return 0;
520
94004ed7 521 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
522}
523EXPORT_SYMBOL(filemap_fdatawait);
524
525int filemap_write_and_wait(struct address_space *mapping)
526{
28fd1298 527 int err = 0;
1da177e4 528
7f6d5b52
RZ
529 if ((!dax_mapping(mapping) && mapping->nrpages) ||
530 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
531 err = filemap_fdatawrite(mapping);
532 /*
533 * Even if the above returned error, the pages may be
534 * written partially (e.g. -ENOSPC), so we wait for it.
535 * But the -EIO is special case, it may indicate the worst
536 * thing (e.g. bug) happened, so we avoid waiting for it.
537 */
538 if (err != -EIO) {
539 int err2 = filemap_fdatawait(mapping);
540 if (!err)
541 err = err2;
cbeaf951
JL
542 } else {
543 /* Clear any previously stored errors */
544 filemap_check_errors(mapping);
28fd1298 545 }
865ffef3
DM
546 } else {
547 err = filemap_check_errors(mapping);
1da177e4 548 }
28fd1298 549 return err;
1da177e4 550}
28fd1298 551EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 552
485bb99b
RD
553/**
554 * filemap_write_and_wait_range - write out & wait on a file range
555 * @mapping: the address_space for the pages
556 * @lstart: offset in bytes where the range starts
557 * @lend: offset in bytes where the range ends (inclusive)
558 *
469eb4d0
AM
559 * Write out and wait upon file offsets lstart->lend, inclusive.
560 *
0e056eb5 561 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0
AM
562 * that this function can be used to write to the very end-of-file (end = -1).
563 */
1da177e4
LT
564int filemap_write_and_wait_range(struct address_space *mapping,
565 loff_t lstart, loff_t lend)
566{
28fd1298 567 int err = 0;
1da177e4 568
7f6d5b52
RZ
569 if ((!dax_mapping(mapping) && mapping->nrpages) ||
570 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
571 err = __filemap_fdatawrite_range(mapping, lstart, lend,
572 WB_SYNC_ALL);
573 /* See comment of filemap_write_and_wait() */
574 if (err != -EIO) {
94004ed7
CH
575 int err2 = filemap_fdatawait_range(mapping,
576 lstart, lend);
28fd1298
OH
577 if (!err)
578 err = err2;
cbeaf951
JL
579 } else {
580 /* Clear any previously stored errors */
581 filemap_check_errors(mapping);
28fd1298 582 }
865ffef3
DM
583 } else {
584 err = filemap_check_errors(mapping);
1da177e4 585 }
28fd1298 586 return err;
1da177e4 587}
f6995585 588EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 589
5660e13d
JL
590void __filemap_set_wb_err(struct address_space *mapping, int err)
591{
592 errseq_t eseq = __errseq_set(&mapping->wb_err, err);
593
594 trace_filemap_set_wb_err(mapping, eseq);
595}
596EXPORT_SYMBOL(__filemap_set_wb_err);
597
598/**
599 * file_check_and_advance_wb_err - report wb error (if any) that was previously
600 * and advance wb_err to current one
601 * @file: struct file on which the error is being reported
602 *
603 * When userland calls fsync (or something like nfsd does the equivalent), we
604 * want to report any writeback errors that occurred since the last fsync (or
605 * since the file was opened if there haven't been any).
606 *
607 * Grab the wb_err from the mapping. If it matches what we have in the file,
608 * then just quickly return 0. The file is all caught up.
609 *
610 * If it doesn't match, then take the mapping value, set the "seen" flag in
611 * it and try to swap it into place. If it works, or another task beat us
612 * to it with the new value, then update the f_wb_err and return the error
613 * portion. The error at this point must be reported via proper channels
614 * (a'la fsync, or NFS COMMIT operation, etc.).
615 *
616 * While we handle mapping->wb_err with atomic operations, the f_wb_err
617 * value is protected by the f_lock since we must ensure that it reflects
618 * the latest value swapped in for this file descriptor.
619 */
620int file_check_and_advance_wb_err(struct file *file)
621{
622 int err = 0;
623 errseq_t old = READ_ONCE(file->f_wb_err);
624 struct address_space *mapping = file->f_mapping;
625
626 /* Locklessly handle the common case where nothing has changed */
627 if (errseq_check(&mapping->wb_err, old)) {
628 /* Something changed, must use slow path */
629 spin_lock(&file->f_lock);
630 old = file->f_wb_err;
631 err = errseq_check_and_advance(&mapping->wb_err,
632 &file->f_wb_err);
633 trace_file_check_and_advance_wb_err(file, old);
634 spin_unlock(&file->f_lock);
635 }
636 return err;
637}
638EXPORT_SYMBOL(file_check_and_advance_wb_err);
639
640/**
641 * file_write_and_wait_range - write out & wait on a file range
642 * @file: file pointing to address_space with pages
643 * @lstart: offset in bytes where the range starts
644 * @lend: offset in bytes where the range ends (inclusive)
645 *
646 * Write out and wait upon file offsets lstart->lend, inclusive.
647 *
648 * Note that @lend is inclusive (describes the last byte to be written) so
649 * that this function can be used to write to the very end-of-file (end = -1).
650 *
651 * After writing out and waiting on the data, we check and advance the
652 * f_wb_err cursor to the latest value, and return any errors detected there.
653 */
654int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
655{
656 int err = 0, err2;
657 struct address_space *mapping = file->f_mapping;
658
659 if ((!dax_mapping(mapping) && mapping->nrpages) ||
660 (dax_mapping(mapping) && mapping->nrexceptional)) {
661 err = __filemap_fdatawrite_range(mapping, lstart, lend,
662 WB_SYNC_ALL);
663 /* See comment of filemap_write_and_wait() */
664 if (err != -EIO)
665 __filemap_fdatawait_range(mapping, lstart, lend);
666 }
667 err2 = file_check_and_advance_wb_err(file);
668 if (!err)
669 err = err2;
670 return err;
671}
672EXPORT_SYMBOL(file_write_and_wait_range);
673
ef6a3c63
MS
674/**
675 * replace_page_cache_page - replace a pagecache page with a new one
676 * @old: page to be replaced
677 * @new: page to replace with
678 * @gfp_mask: allocation mode
679 *
680 * This function replaces a page in the pagecache with a new one. On
681 * success it acquires the pagecache reference for the new page and
682 * drops it for the old page. Both the old and new pages must be
683 * locked. This function does not add the new page to the LRU, the
684 * caller must do that.
685 *
686 * The remove + add is atomic. The only way this function can fail is
687 * memory allocation failure.
688 */
689int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
690{
691 int error;
ef6a3c63 692
309381fe
SL
693 VM_BUG_ON_PAGE(!PageLocked(old), old);
694 VM_BUG_ON_PAGE(!PageLocked(new), new);
695 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 696
ef6a3c63
MS
697 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
698 if (!error) {
699 struct address_space *mapping = old->mapping;
700 void (*freepage)(struct page *);
c4843a75 701 unsigned long flags;
ef6a3c63
MS
702
703 pgoff_t offset = old->index;
704 freepage = mapping->a_ops->freepage;
705
09cbfeaf 706 get_page(new);
ef6a3c63
MS
707 new->mapping = mapping;
708 new->index = offset;
709
c4843a75 710 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 711 __delete_from_page_cache(old, NULL);
22f2ac51 712 error = page_cache_tree_insert(mapping, new, NULL);
ef6a3c63 713 BUG_ON(error);
4165b9b4
MH
714
715 /*
716 * hugetlb pages do not participate in page cache accounting.
717 */
718 if (!PageHuge(new))
11fb9989 719 __inc_node_page_state(new, NR_FILE_PAGES);
ef6a3c63 720 if (PageSwapBacked(new))
11fb9989 721 __inc_node_page_state(new, NR_SHMEM);
c4843a75 722 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6a93ca8f 723 mem_cgroup_migrate(old, new);
ef6a3c63
MS
724 radix_tree_preload_end();
725 if (freepage)
726 freepage(old);
09cbfeaf 727 put_page(old);
ef6a3c63
MS
728 }
729
730 return error;
731}
732EXPORT_SYMBOL_GPL(replace_page_cache_page);
733
a528910e
JW
734static int __add_to_page_cache_locked(struct page *page,
735 struct address_space *mapping,
736 pgoff_t offset, gfp_t gfp_mask,
737 void **shadowp)
1da177e4 738{
00501b53
JW
739 int huge = PageHuge(page);
740 struct mem_cgroup *memcg;
e286781d
NP
741 int error;
742
309381fe
SL
743 VM_BUG_ON_PAGE(!PageLocked(page), page);
744 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 745
00501b53
JW
746 if (!huge) {
747 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 748 gfp_mask, &memcg, false);
00501b53
JW
749 if (error)
750 return error;
751 }
1da177e4 752
5e4c0d97 753 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 754 if (error) {
00501b53 755 if (!huge)
f627c2f5 756 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
757 return error;
758 }
759
09cbfeaf 760 get_page(page);
66a0c8ee
KS
761 page->mapping = mapping;
762 page->index = offset;
763
764 spin_lock_irq(&mapping->tree_lock);
a528910e 765 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
766 radix_tree_preload_end();
767 if (unlikely(error))
768 goto err_insert;
4165b9b4
MH
769
770 /* hugetlb pages do not participate in page cache accounting. */
771 if (!huge)
11fb9989 772 __inc_node_page_state(page, NR_FILE_PAGES);
66a0c8ee 773 spin_unlock_irq(&mapping->tree_lock);
00501b53 774 if (!huge)
f627c2f5 775 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
776 trace_mm_filemap_add_to_page_cache(page);
777 return 0;
778err_insert:
779 page->mapping = NULL;
780 /* Leave page->index set: truncation relies upon it */
781 spin_unlock_irq(&mapping->tree_lock);
00501b53 782 if (!huge)
f627c2f5 783 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 784 put_page(page);
1da177e4
LT
785 return error;
786}
a528910e
JW
787
788/**
789 * add_to_page_cache_locked - add a locked page to the pagecache
790 * @page: page to add
791 * @mapping: the page's address_space
792 * @offset: page index
793 * @gfp_mask: page allocation mode
794 *
795 * This function is used to add a page to the pagecache. It must be locked.
796 * This function does not add the page to the LRU. The caller must do that.
797 */
798int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
799 pgoff_t offset, gfp_t gfp_mask)
800{
801 return __add_to_page_cache_locked(page, mapping, offset,
802 gfp_mask, NULL);
803}
e286781d 804EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
805
806int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 807 pgoff_t offset, gfp_t gfp_mask)
1da177e4 808{
a528910e 809 void *shadow = NULL;
4f98a2fe
RR
810 int ret;
811
48c935ad 812 __SetPageLocked(page);
a528910e
JW
813 ret = __add_to_page_cache_locked(page, mapping, offset,
814 gfp_mask, &shadow);
815 if (unlikely(ret))
48c935ad 816 __ClearPageLocked(page);
a528910e
JW
817 else {
818 /*
819 * The page might have been evicted from cache only
820 * recently, in which case it should be activated like
821 * any other repeatedly accessed page.
f0281a00
RR
822 * The exception is pages getting rewritten; evicting other
823 * data from the working set, only to cache data that will
824 * get overwritten with something else, is a waste of memory.
a528910e 825 */
f0281a00
RR
826 if (!(gfp_mask & __GFP_WRITE) &&
827 shadow && workingset_refault(shadow)) {
a528910e
JW
828 SetPageActive(page);
829 workingset_activation(page);
830 } else
831 ClearPageActive(page);
832 lru_cache_add(page);
833 }
1da177e4
LT
834 return ret;
835}
18bc0bbd 836EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 837
44110fe3 838#ifdef CONFIG_NUMA
2ae88149 839struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 840{
c0ff7453
MX
841 int n;
842 struct page *page;
843
44110fe3 844 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
845 unsigned int cpuset_mems_cookie;
846 do {
d26914d1 847 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 848 n = cpuset_mem_spread_node();
96db800f 849 page = __alloc_pages_node(n, gfp, 0);
d26914d1 850 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 851
c0ff7453 852 return page;
44110fe3 853 }
2ae88149 854 return alloc_pages(gfp, 0);
44110fe3 855}
2ae88149 856EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
857#endif
858
1da177e4
LT
859/*
860 * In order to wait for pages to become available there must be
861 * waitqueues associated with pages. By using a hash table of
862 * waitqueues where the bucket discipline is to maintain all
863 * waiters on the same queue and wake all when any of the pages
864 * become available, and for the woken contexts to check to be
865 * sure the appropriate page became available, this saves space
866 * at a cost of "thundering herd" phenomena during rare hash
867 * collisions.
868 */
62906027
NP
869#define PAGE_WAIT_TABLE_BITS 8
870#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
871static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
872
873static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 874{
62906027 875 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 876}
1da177e4 877
62906027 878void __init pagecache_init(void)
1da177e4 879{
62906027 880 int i;
1da177e4 881
62906027
NP
882 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
883 init_waitqueue_head(&page_wait_table[i]);
884
885 page_writeback_init();
1da177e4 886}
1da177e4 887
3510ca20 888/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
62906027
NP
889struct wait_page_key {
890 struct page *page;
891 int bit_nr;
892 int page_match;
893};
894
895struct wait_page_queue {
896 struct page *page;
897 int bit_nr;
ac6424b9 898 wait_queue_entry_t wait;
62906027
NP
899};
900
ac6424b9 901static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 902{
62906027
NP
903 struct wait_page_key *key = arg;
904 struct wait_page_queue *wait_page
905 = container_of(wait, struct wait_page_queue, wait);
906
907 if (wait_page->page != key->page)
908 return 0;
909 key->page_match = 1;
f62e00cc 910
62906027
NP
911 if (wait_page->bit_nr != key->bit_nr)
912 return 0;
3510ca20
LT
913
914 /* Stop walking if it's locked */
62906027 915 if (test_bit(key->bit_nr, &key->page->flags))
3510ca20 916 return -1;
f62e00cc 917
62906027 918 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
919}
920
74d81bfa 921static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 922{
62906027
NP
923 wait_queue_head_t *q = page_waitqueue(page);
924 struct wait_page_key key;
925 unsigned long flags;
cbbce822 926
62906027
NP
927 key.page = page;
928 key.bit_nr = bit_nr;
929 key.page_match = 0;
930
931 spin_lock_irqsave(&q->lock, flags);
932 __wake_up_locked_key(q, TASK_NORMAL, &key);
933 /*
934 * It is possible for other pages to have collided on the waitqueue
935 * hash, so in that case check for a page match. That prevents a long-
936 * term waiter
937 *
938 * It is still possible to miss a case here, when we woke page waiters
939 * and removed them from the waitqueue, but there are still other
940 * page waiters.
941 */
942 if (!waitqueue_active(q) || !key.page_match) {
943 ClearPageWaiters(page);
944 /*
945 * It's possible to miss clearing Waiters here, when we woke
946 * our page waiters, but the hashed waitqueue has waiters for
947 * other pages on it.
948 *
949 * That's okay, it's a rare case. The next waker will clear it.
950 */
951 }
952 spin_unlock_irqrestore(&q->lock, flags);
953}
74d81bfa
NP
954
955static void wake_up_page(struct page *page, int bit)
956{
957 if (!PageWaiters(page))
958 return;
959 wake_up_page_bit(page, bit);
960}
62906027
NP
961
962static inline int wait_on_page_bit_common(wait_queue_head_t *q,
963 struct page *page, int bit_nr, int state, bool lock)
964{
965 struct wait_page_queue wait_page;
ac6424b9 966 wait_queue_entry_t *wait = &wait_page.wait;
62906027
NP
967 int ret = 0;
968
969 init_wait(wait);
3510ca20 970 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
62906027
NP
971 wait->func = wake_page_function;
972 wait_page.page = page;
973 wait_page.bit_nr = bit_nr;
974
975 for (;;) {
976 spin_lock_irq(&q->lock);
977
2055da97 978 if (likely(list_empty(&wait->entry))) {
3510ca20 979 __add_wait_queue_entry_tail(q, wait);
62906027
NP
980 SetPageWaiters(page);
981 }
982
983 set_current_state(state);
984
985 spin_unlock_irq(&q->lock);
986
987 if (likely(test_bit(bit_nr, &page->flags))) {
988 io_schedule();
62906027
NP
989 }
990
991 if (lock) {
992 if (!test_and_set_bit_lock(bit_nr, &page->flags))
993 break;
994 } else {
995 if (!test_bit(bit_nr, &page->flags))
996 break;
997 }
a8b169af
LT
998
999 if (unlikely(signal_pending_state(state, current))) {
1000 ret = -EINTR;
1001 break;
1002 }
62906027
NP
1003 }
1004
1005 finish_wait(q, wait);
1006
1007 /*
1008 * A signal could leave PageWaiters set. Clearing it here if
1009 * !waitqueue_active would be possible (by open-coding finish_wait),
1010 * but still fail to catch it in the case of wait hash collision. We
1011 * already can fail to clear wait hash collision cases, so don't
1012 * bother with signals either.
1013 */
1014
1015 return ret;
1016}
1017
1018void wait_on_page_bit(struct page *page, int bit_nr)
1019{
1020 wait_queue_head_t *q = page_waitqueue(page);
1021 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1022}
1023EXPORT_SYMBOL(wait_on_page_bit);
1024
1025int wait_on_page_bit_killable(struct page *page, int bit_nr)
1026{
1027 wait_queue_head_t *q = page_waitqueue(page);
1028 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
cbbce822 1029}
cbbce822 1030
385e1ca5
DH
1031/**
1032 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1033 * @page: Page defining the wait queue of interest
1034 * @waiter: Waiter to add to the queue
385e1ca5
DH
1035 *
1036 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1037 */
ac6424b9 1038void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1039{
1040 wait_queue_head_t *q = page_waitqueue(page);
1041 unsigned long flags;
1042
1043 spin_lock_irqsave(&q->lock, flags);
1044 __add_wait_queue(q, waiter);
62906027 1045 SetPageWaiters(page);
385e1ca5
DH
1046 spin_unlock_irqrestore(&q->lock, flags);
1047}
1048EXPORT_SYMBOL_GPL(add_page_wait_queue);
1049
b91e1302
LT
1050#ifndef clear_bit_unlock_is_negative_byte
1051
1052/*
1053 * PG_waiters is the high bit in the same byte as PG_lock.
1054 *
1055 * On x86 (and on many other architectures), we can clear PG_lock and
1056 * test the sign bit at the same time. But if the architecture does
1057 * not support that special operation, we just do this all by hand
1058 * instead.
1059 *
1060 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1061 * being cleared, but a memory barrier should be unneccssary since it is
1062 * in the same byte as PG_locked.
1063 */
1064static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1065{
1066 clear_bit_unlock(nr, mem);
1067 /* smp_mb__after_atomic(); */
98473f9f 1068 return test_bit(PG_waiters, mem);
b91e1302
LT
1069}
1070
1071#endif
1072
1da177e4 1073/**
485bb99b 1074 * unlock_page - unlock a locked page
1da177e4
LT
1075 * @page: the page
1076 *
1077 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1078 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1079 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1080 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1081 *
b91e1302
LT
1082 * Note that this depends on PG_waiters being the sign bit in the byte
1083 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1084 * clear the PG_locked bit and test PG_waiters at the same time fairly
1085 * portably (architectures that do LL/SC can test any bit, while x86 can
1086 * test the sign bit).
1da177e4 1087 */
920c7a5d 1088void unlock_page(struct page *page)
1da177e4 1089{
b91e1302 1090 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1091 page = compound_head(page);
309381fe 1092 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1093 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1094 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1095}
1096EXPORT_SYMBOL(unlock_page);
1097
485bb99b
RD
1098/**
1099 * end_page_writeback - end writeback against a page
1100 * @page: the page
1da177e4
LT
1101 */
1102void end_page_writeback(struct page *page)
1103{
888cf2db
MG
1104 /*
1105 * TestClearPageReclaim could be used here but it is an atomic
1106 * operation and overkill in this particular case. Failing to
1107 * shuffle a page marked for immediate reclaim is too mild to
1108 * justify taking an atomic operation penalty at the end of
1109 * ever page writeback.
1110 */
1111 if (PageReclaim(page)) {
1112 ClearPageReclaim(page);
ac6aadb2 1113 rotate_reclaimable_page(page);
888cf2db 1114 }
ac6aadb2
MS
1115
1116 if (!test_clear_page_writeback(page))
1117 BUG();
1118
4e857c58 1119 smp_mb__after_atomic();
1da177e4
LT
1120 wake_up_page(page, PG_writeback);
1121}
1122EXPORT_SYMBOL(end_page_writeback);
1123
57d99845
MW
1124/*
1125 * After completing I/O on a page, call this routine to update the page
1126 * flags appropriately
1127 */
c11f0c0b 1128void page_endio(struct page *page, bool is_write, int err)
57d99845 1129{
c11f0c0b 1130 if (!is_write) {
57d99845
MW
1131 if (!err) {
1132 SetPageUptodate(page);
1133 } else {
1134 ClearPageUptodate(page);
1135 SetPageError(page);
1136 }
1137 unlock_page(page);
abf54548 1138 } else {
57d99845 1139 if (err) {
dd8416c4
MK
1140 struct address_space *mapping;
1141
57d99845 1142 SetPageError(page);
dd8416c4
MK
1143 mapping = page_mapping(page);
1144 if (mapping)
1145 mapping_set_error(mapping, err);
57d99845
MW
1146 }
1147 end_page_writeback(page);
1148 }
1149}
1150EXPORT_SYMBOL_GPL(page_endio);
1151
485bb99b
RD
1152/**
1153 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1154 * @__page: the page to lock
1da177e4 1155 */
62906027 1156void __lock_page(struct page *__page)
1da177e4 1157{
62906027
NP
1158 struct page *page = compound_head(__page);
1159 wait_queue_head_t *q = page_waitqueue(page);
1160 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1da177e4
LT
1161}
1162EXPORT_SYMBOL(__lock_page);
1163
62906027 1164int __lock_page_killable(struct page *__page)
2687a356 1165{
62906027
NP
1166 struct page *page = compound_head(__page);
1167 wait_queue_head_t *q = page_waitqueue(page);
1168 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
2687a356 1169}
18bc0bbd 1170EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1171
9a95f3cf
PC
1172/*
1173 * Return values:
1174 * 1 - page is locked; mmap_sem is still held.
1175 * 0 - page is not locked.
1176 * mmap_sem has been released (up_read()), unless flags had both
1177 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1178 * which case mmap_sem is still held.
1179 *
1180 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1181 * with the page locked and the mmap_sem unperturbed.
1182 */
d065bd81
ML
1183int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1184 unsigned int flags)
1185{
37b23e05
KM
1186 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1187 /*
1188 * CAUTION! In this case, mmap_sem is not released
1189 * even though return 0.
1190 */
1191 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1192 return 0;
1193
1194 up_read(&mm->mmap_sem);
1195 if (flags & FAULT_FLAG_KILLABLE)
1196 wait_on_page_locked_killable(page);
1197 else
318b275f 1198 wait_on_page_locked(page);
d065bd81 1199 return 0;
37b23e05
KM
1200 } else {
1201 if (flags & FAULT_FLAG_KILLABLE) {
1202 int ret;
1203
1204 ret = __lock_page_killable(page);
1205 if (ret) {
1206 up_read(&mm->mmap_sem);
1207 return 0;
1208 }
1209 } else
1210 __lock_page(page);
1211 return 1;
d065bd81
ML
1212 }
1213}
1214
e7b563bb
JW
1215/**
1216 * page_cache_next_hole - find the next hole (not-present entry)
1217 * @mapping: mapping
1218 * @index: index
1219 * @max_scan: maximum range to search
1220 *
1221 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1222 * lowest indexed hole.
1223 *
1224 * Returns: the index of the hole if found, otherwise returns an index
1225 * outside of the set specified (in which case 'return - index >=
1226 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1227 * be returned.
1228 *
1229 * page_cache_next_hole may be called under rcu_read_lock. However,
1230 * like radix_tree_gang_lookup, this will not atomically search a
1231 * snapshot of the tree at a single point in time. For example, if a
1232 * hole is created at index 5, then subsequently a hole is created at
1233 * index 10, page_cache_next_hole covering both indexes may return 10
1234 * if called under rcu_read_lock.
1235 */
1236pgoff_t page_cache_next_hole(struct address_space *mapping,
1237 pgoff_t index, unsigned long max_scan)
1238{
1239 unsigned long i;
1240
1241 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1242 struct page *page;
1243
1244 page = radix_tree_lookup(&mapping->page_tree, index);
1245 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1246 break;
1247 index++;
1248 if (index == 0)
1249 break;
1250 }
1251
1252 return index;
1253}
1254EXPORT_SYMBOL(page_cache_next_hole);
1255
1256/**
1257 * page_cache_prev_hole - find the prev hole (not-present entry)
1258 * @mapping: mapping
1259 * @index: index
1260 * @max_scan: maximum range to search
1261 *
1262 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1263 * the first hole.
1264 *
1265 * Returns: the index of the hole if found, otherwise returns an index
1266 * outside of the set specified (in which case 'index - return >=
1267 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1268 * will be returned.
1269 *
1270 * page_cache_prev_hole may be called under rcu_read_lock. However,
1271 * like radix_tree_gang_lookup, this will not atomically search a
1272 * snapshot of the tree at a single point in time. For example, if a
1273 * hole is created at index 10, then subsequently a hole is created at
1274 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1275 * called under rcu_read_lock.
1276 */
1277pgoff_t page_cache_prev_hole(struct address_space *mapping,
1278 pgoff_t index, unsigned long max_scan)
1279{
1280 unsigned long i;
1281
1282 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1283 struct page *page;
1284
1285 page = radix_tree_lookup(&mapping->page_tree, index);
1286 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1287 break;
1288 index--;
1289 if (index == ULONG_MAX)
1290 break;
1291 }
1292
1293 return index;
1294}
1295EXPORT_SYMBOL(page_cache_prev_hole);
1296
485bb99b 1297/**
0cd6144a 1298 * find_get_entry - find and get a page cache entry
485bb99b 1299 * @mapping: the address_space to search
0cd6144a
JW
1300 * @offset: the page cache index
1301 *
1302 * Looks up the page cache slot at @mapping & @offset. If there is a
1303 * page cache page, it is returned with an increased refcount.
485bb99b 1304 *
139b6a6f
JW
1305 * If the slot holds a shadow entry of a previously evicted page, or a
1306 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1307 *
1308 * Otherwise, %NULL is returned.
1da177e4 1309 */
0cd6144a 1310struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1311{
a60637c8 1312 void **pagep;
83929372 1313 struct page *head, *page;
1da177e4 1314
a60637c8
NP
1315 rcu_read_lock();
1316repeat:
1317 page = NULL;
1318 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1319 if (pagep) {
1320 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1321 if (unlikely(!page))
1322 goto out;
a2c16d6c 1323 if (radix_tree_exception(page)) {
8079b1c8
HD
1324 if (radix_tree_deref_retry(page))
1325 goto repeat;
1326 /*
139b6a6f
JW
1327 * A shadow entry of a recently evicted page,
1328 * or a swap entry from shmem/tmpfs. Return
1329 * it without attempting to raise page count.
8079b1c8
HD
1330 */
1331 goto out;
a2c16d6c 1332 }
83929372
KS
1333
1334 head = compound_head(page);
1335 if (!page_cache_get_speculative(head))
1336 goto repeat;
1337
1338 /* The page was split under us? */
1339 if (compound_head(page) != head) {
1340 put_page(head);
a60637c8 1341 goto repeat;
83929372 1342 }
a60637c8
NP
1343
1344 /*
1345 * Has the page moved?
1346 * This is part of the lockless pagecache protocol. See
1347 * include/linux/pagemap.h for details.
1348 */
1349 if (unlikely(page != *pagep)) {
83929372 1350 put_page(head);
a60637c8
NP
1351 goto repeat;
1352 }
1353 }
27d20fdd 1354out:
a60637c8
NP
1355 rcu_read_unlock();
1356
1da177e4
LT
1357 return page;
1358}
0cd6144a 1359EXPORT_SYMBOL(find_get_entry);
1da177e4 1360
0cd6144a
JW
1361/**
1362 * find_lock_entry - locate, pin and lock a page cache entry
1363 * @mapping: the address_space to search
1364 * @offset: the page cache index
1365 *
1366 * Looks up the page cache slot at @mapping & @offset. If there is a
1367 * page cache page, it is returned locked and with an increased
1368 * refcount.
1369 *
139b6a6f
JW
1370 * If the slot holds a shadow entry of a previously evicted page, or a
1371 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1372 *
1373 * Otherwise, %NULL is returned.
1374 *
1375 * find_lock_entry() may sleep.
1376 */
1377struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1378{
1379 struct page *page;
1380
1da177e4 1381repeat:
0cd6144a 1382 page = find_get_entry(mapping, offset);
a2c16d6c 1383 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1384 lock_page(page);
1385 /* Has the page been truncated? */
83929372 1386 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1387 unlock_page(page);
09cbfeaf 1388 put_page(page);
a60637c8 1389 goto repeat;
1da177e4 1390 }
83929372 1391 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1392 }
1da177e4
LT
1393 return page;
1394}
0cd6144a
JW
1395EXPORT_SYMBOL(find_lock_entry);
1396
1397/**
2457aec6 1398 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1399 * @mapping: the address_space to search
1400 * @offset: the page index
2457aec6 1401 * @fgp_flags: PCG flags
45f87de5 1402 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1403 *
2457aec6 1404 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1405 *
75325189 1406 * PCG flags modify how the page is returned.
0cd6144a 1407 *
0e056eb5
MCC
1408 * @fgp_flags can be:
1409 *
1410 * - FGP_ACCESSED: the page will be marked accessed
1411 * - FGP_LOCK: Page is return locked
1412 * - FGP_CREAT: If page is not present then a new page is allocated using
1413 * @gfp_mask and added to the page cache and the VM's LRU
1414 * list. The page is returned locked and with an increased
1415 * refcount. Otherwise, NULL is returned.
1da177e4 1416 *
2457aec6
MG
1417 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1418 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1419 *
2457aec6 1420 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1421 */
2457aec6 1422struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1423 int fgp_flags, gfp_t gfp_mask)
1da177e4 1424{
eb2be189 1425 struct page *page;
2457aec6 1426
1da177e4 1427repeat:
2457aec6
MG
1428 page = find_get_entry(mapping, offset);
1429 if (radix_tree_exceptional_entry(page))
1430 page = NULL;
1431 if (!page)
1432 goto no_page;
1433
1434 if (fgp_flags & FGP_LOCK) {
1435 if (fgp_flags & FGP_NOWAIT) {
1436 if (!trylock_page(page)) {
09cbfeaf 1437 put_page(page);
2457aec6
MG
1438 return NULL;
1439 }
1440 } else {
1441 lock_page(page);
1442 }
1443
1444 /* Has the page been truncated? */
1445 if (unlikely(page->mapping != mapping)) {
1446 unlock_page(page);
09cbfeaf 1447 put_page(page);
2457aec6
MG
1448 goto repeat;
1449 }
1450 VM_BUG_ON_PAGE(page->index != offset, page);
1451 }
1452
1453 if (page && (fgp_flags & FGP_ACCESSED))
1454 mark_page_accessed(page);
1455
1456no_page:
1457 if (!page && (fgp_flags & FGP_CREAT)) {
1458 int err;
1459 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1460 gfp_mask |= __GFP_WRITE;
1461 if (fgp_flags & FGP_NOFS)
1462 gfp_mask &= ~__GFP_FS;
2457aec6 1463
45f87de5 1464 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1465 if (!page)
1466 return NULL;
2457aec6
MG
1467
1468 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1469 fgp_flags |= FGP_LOCK;
1470
eb39d618 1471 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1472 if (fgp_flags & FGP_ACCESSED)
eb39d618 1473 __SetPageReferenced(page);
2457aec6 1474
45f87de5
MH
1475 err = add_to_page_cache_lru(page, mapping, offset,
1476 gfp_mask & GFP_RECLAIM_MASK);
eb2be189 1477 if (unlikely(err)) {
09cbfeaf 1478 put_page(page);
eb2be189
NP
1479 page = NULL;
1480 if (err == -EEXIST)
1481 goto repeat;
1da177e4 1482 }
1da177e4 1483 }
2457aec6 1484
1da177e4
LT
1485 return page;
1486}
2457aec6 1487EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1488
0cd6144a
JW
1489/**
1490 * find_get_entries - gang pagecache lookup
1491 * @mapping: The address_space to search
1492 * @start: The starting page cache index
1493 * @nr_entries: The maximum number of entries
1494 * @entries: Where the resulting entries are placed
1495 * @indices: The cache indices corresponding to the entries in @entries
1496 *
1497 * find_get_entries() will search for and return a group of up to
1498 * @nr_entries entries in the mapping. The entries are placed at
1499 * @entries. find_get_entries() takes a reference against any actual
1500 * pages it returns.
1501 *
1502 * The search returns a group of mapping-contiguous page cache entries
1503 * with ascending indexes. There may be holes in the indices due to
1504 * not-present pages.
1505 *
139b6a6f
JW
1506 * Any shadow entries of evicted pages, or swap entries from
1507 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1508 *
1509 * find_get_entries() returns the number of pages and shadow entries
1510 * which were found.
1511 */
1512unsigned find_get_entries(struct address_space *mapping,
1513 pgoff_t start, unsigned int nr_entries,
1514 struct page **entries, pgoff_t *indices)
1515{
1516 void **slot;
1517 unsigned int ret = 0;
1518 struct radix_tree_iter iter;
1519
1520 if (!nr_entries)
1521 return 0;
1522
1523 rcu_read_lock();
0cd6144a 1524 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1525 struct page *head, *page;
0cd6144a
JW
1526repeat:
1527 page = radix_tree_deref_slot(slot);
1528 if (unlikely(!page))
1529 continue;
1530 if (radix_tree_exception(page)) {
2cf938aa
MW
1531 if (radix_tree_deref_retry(page)) {
1532 slot = radix_tree_iter_retry(&iter);
1533 continue;
1534 }
0cd6144a 1535 /*
f9fe48be
RZ
1536 * A shadow entry of a recently evicted page, a swap
1537 * entry from shmem/tmpfs or a DAX entry. Return it
1538 * without attempting to raise page count.
0cd6144a
JW
1539 */
1540 goto export;
1541 }
83929372
KS
1542
1543 head = compound_head(page);
1544 if (!page_cache_get_speculative(head))
1545 goto repeat;
1546
1547 /* The page was split under us? */
1548 if (compound_head(page) != head) {
1549 put_page(head);
0cd6144a 1550 goto repeat;
83929372 1551 }
0cd6144a
JW
1552
1553 /* Has the page moved? */
1554 if (unlikely(page != *slot)) {
83929372 1555 put_page(head);
0cd6144a
JW
1556 goto repeat;
1557 }
1558export:
1559 indices[ret] = iter.index;
1560 entries[ret] = page;
1561 if (++ret == nr_entries)
1562 break;
1563 }
1564 rcu_read_unlock();
1565 return ret;
1566}
1567
1da177e4
LT
1568/**
1569 * find_get_pages - gang pagecache lookup
1570 * @mapping: The address_space to search
1571 * @start: The starting page index
1572 * @nr_pages: The maximum number of pages
1573 * @pages: Where the resulting pages are placed
1574 *
1575 * find_get_pages() will search for and return a group of up to
1576 * @nr_pages pages in the mapping. The pages are placed at @pages.
1577 * find_get_pages() takes a reference against the returned pages.
1578 *
1579 * The search returns a group of mapping-contiguous pages with ascending
1580 * indexes. There may be holes in the indices due to not-present pages.
1581 *
1582 * find_get_pages() returns the number of pages which were found.
1583 */
1584unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1585 unsigned int nr_pages, struct page **pages)
1586{
0fc9d104
KK
1587 struct radix_tree_iter iter;
1588 void **slot;
1589 unsigned ret = 0;
1590
1591 if (unlikely(!nr_pages))
1592 return 0;
a60637c8
NP
1593
1594 rcu_read_lock();
0fc9d104 1595 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1596 struct page *head, *page;
a60637c8 1597repeat:
0fc9d104 1598 page = radix_tree_deref_slot(slot);
a60637c8
NP
1599 if (unlikely(!page))
1600 continue;
9d8aa4ea 1601
a2c16d6c 1602 if (radix_tree_exception(page)) {
8079b1c8 1603 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1604 slot = radix_tree_iter_retry(&iter);
1605 continue;
8079b1c8 1606 }
a2c16d6c 1607 /*
139b6a6f
JW
1608 * A shadow entry of a recently evicted page,
1609 * or a swap entry from shmem/tmpfs. Skip
1610 * over it.
a2c16d6c 1611 */
8079b1c8 1612 continue;
27d20fdd 1613 }
a60637c8 1614
83929372
KS
1615 head = compound_head(page);
1616 if (!page_cache_get_speculative(head))
1617 goto repeat;
1618
1619 /* The page was split under us? */
1620 if (compound_head(page) != head) {
1621 put_page(head);
a60637c8 1622 goto repeat;
83929372 1623 }
a60637c8
NP
1624
1625 /* Has the page moved? */
0fc9d104 1626 if (unlikely(page != *slot)) {
83929372 1627 put_page(head);
a60637c8
NP
1628 goto repeat;
1629 }
1da177e4 1630
a60637c8 1631 pages[ret] = page;
0fc9d104
KK
1632 if (++ret == nr_pages)
1633 break;
a60637c8 1634 }
5b280c0c 1635
a60637c8 1636 rcu_read_unlock();
1da177e4
LT
1637 return ret;
1638}
1639
ebf43500
JA
1640/**
1641 * find_get_pages_contig - gang contiguous pagecache lookup
1642 * @mapping: The address_space to search
1643 * @index: The starting page index
1644 * @nr_pages: The maximum number of pages
1645 * @pages: Where the resulting pages are placed
1646 *
1647 * find_get_pages_contig() works exactly like find_get_pages(), except
1648 * that the returned number of pages are guaranteed to be contiguous.
1649 *
1650 * find_get_pages_contig() returns the number of pages which were found.
1651 */
1652unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1653 unsigned int nr_pages, struct page **pages)
1654{
0fc9d104
KK
1655 struct radix_tree_iter iter;
1656 void **slot;
1657 unsigned int ret = 0;
1658
1659 if (unlikely(!nr_pages))
1660 return 0;
a60637c8
NP
1661
1662 rcu_read_lock();
0fc9d104 1663 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
83929372 1664 struct page *head, *page;
a60637c8 1665repeat:
0fc9d104
KK
1666 page = radix_tree_deref_slot(slot);
1667 /* The hole, there no reason to continue */
a60637c8 1668 if (unlikely(!page))
0fc9d104 1669 break;
9d8aa4ea 1670
a2c16d6c 1671 if (radix_tree_exception(page)) {
8079b1c8 1672 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1673 slot = radix_tree_iter_retry(&iter);
1674 continue;
8079b1c8 1675 }
a2c16d6c 1676 /*
139b6a6f
JW
1677 * A shadow entry of a recently evicted page,
1678 * or a swap entry from shmem/tmpfs. Stop
1679 * looking for contiguous pages.
a2c16d6c 1680 */
8079b1c8 1681 break;
a2c16d6c 1682 }
ebf43500 1683
83929372
KS
1684 head = compound_head(page);
1685 if (!page_cache_get_speculative(head))
1686 goto repeat;
1687
1688 /* The page was split under us? */
1689 if (compound_head(page) != head) {
1690 put_page(head);
a60637c8 1691 goto repeat;
83929372 1692 }
a60637c8
NP
1693
1694 /* Has the page moved? */
0fc9d104 1695 if (unlikely(page != *slot)) {
83929372 1696 put_page(head);
a60637c8
NP
1697 goto repeat;
1698 }
1699
9cbb4cb2
NP
1700 /*
1701 * must check mapping and index after taking the ref.
1702 * otherwise we can get both false positives and false
1703 * negatives, which is just confusing to the caller.
1704 */
83929372 1705 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
09cbfeaf 1706 put_page(page);
9cbb4cb2
NP
1707 break;
1708 }
1709
a60637c8 1710 pages[ret] = page;
0fc9d104
KK
1711 if (++ret == nr_pages)
1712 break;
ebf43500 1713 }
a60637c8
NP
1714 rcu_read_unlock();
1715 return ret;
ebf43500 1716}
ef71c15c 1717EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1718
485bb99b
RD
1719/**
1720 * find_get_pages_tag - find and return pages that match @tag
1721 * @mapping: the address_space to search
1722 * @index: the starting page index
1723 * @tag: the tag index
1724 * @nr_pages: the maximum number of pages
1725 * @pages: where the resulting pages are placed
1726 *
1da177e4 1727 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1728 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1729 */
1730unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1731 int tag, unsigned int nr_pages, struct page **pages)
1732{
0fc9d104
KK
1733 struct radix_tree_iter iter;
1734 void **slot;
1735 unsigned ret = 0;
1736
1737 if (unlikely(!nr_pages))
1738 return 0;
a60637c8
NP
1739
1740 rcu_read_lock();
0fc9d104
KK
1741 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1742 &iter, *index, tag) {
83929372 1743 struct page *head, *page;
a60637c8 1744repeat:
0fc9d104 1745 page = radix_tree_deref_slot(slot);
a60637c8
NP
1746 if (unlikely(!page))
1747 continue;
9d8aa4ea 1748
a2c16d6c 1749 if (radix_tree_exception(page)) {
8079b1c8 1750 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1751 slot = radix_tree_iter_retry(&iter);
1752 continue;
8079b1c8 1753 }
a2c16d6c 1754 /*
139b6a6f
JW
1755 * A shadow entry of a recently evicted page.
1756 *
1757 * Those entries should never be tagged, but
1758 * this tree walk is lockless and the tags are
1759 * looked up in bulk, one radix tree node at a
1760 * time, so there is a sizable window for page
1761 * reclaim to evict a page we saw tagged.
1762 *
1763 * Skip over it.
a2c16d6c 1764 */
139b6a6f 1765 continue;
a2c16d6c 1766 }
a60637c8 1767
83929372
KS
1768 head = compound_head(page);
1769 if (!page_cache_get_speculative(head))
a60637c8
NP
1770 goto repeat;
1771
83929372
KS
1772 /* The page was split under us? */
1773 if (compound_head(page) != head) {
1774 put_page(head);
1775 goto repeat;
1776 }
1777
a60637c8 1778 /* Has the page moved? */
0fc9d104 1779 if (unlikely(page != *slot)) {
83929372 1780 put_page(head);
a60637c8
NP
1781 goto repeat;
1782 }
1783
1784 pages[ret] = page;
0fc9d104
KK
1785 if (++ret == nr_pages)
1786 break;
a60637c8 1787 }
5b280c0c 1788
a60637c8 1789 rcu_read_unlock();
1da177e4 1790
1da177e4
LT
1791 if (ret)
1792 *index = pages[ret - 1]->index + 1;
a60637c8 1793
1da177e4
LT
1794 return ret;
1795}
ef71c15c 1796EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1797
7e7f7749
RZ
1798/**
1799 * find_get_entries_tag - find and return entries that match @tag
1800 * @mapping: the address_space to search
1801 * @start: the starting page cache index
1802 * @tag: the tag index
1803 * @nr_entries: the maximum number of entries
1804 * @entries: where the resulting entries are placed
1805 * @indices: the cache indices corresponding to the entries in @entries
1806 *
1807 * Like find_get_entries, except we only return entries which are tagged with
1808 * @tag.
1809 */
1810unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1811 int tag, unsigned int nr_entries,
1812 struct page **entries, pgoff_t *indices)
1813{
1814 void **slot;
1815 unsigned int ret = 0;
1816 struct radix_tree_iter iter;
1817
1818 if (!nr_entries)
1819 return 0;
1820
1821 rcu_read_lock();
7e7f7749
RZ
1822 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1823 &iter, start, tag) {
83929372 1824 struct page *head, *page;
7e7f7749
RZ
1825repeat:
1826 page = radix_tree_deref_slot(slot);
1827 if (unlikely(!page))
1828 continue;
1829 if (radix_tree_exception(page)) {
1830 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1831 slot = radix_tree_iter_retry(&iter);
1832 continue;
7e7f7749
RZ
1833 }
1834
1835 /*
1836 * A shadow entry of a recently evicted page, a swap
1837 * entry from shmem/tmpfs or a DAX entry. Return it
1838 * without attempting to raise page count.
1839 */
1840 goto export;
1841 }
83929372
KS
1842
1843 head = compound_head(page);
1844 if (!page_cache_get_speculative(head))
7e7f7749
RZ
1845 goto repeat;
1846
83929372
KS
1847 /* The page was split under us? */
1848 if (compound_head(page) != head) {
1849 put_page(head);
1850 goto repeat;
1851 }
1852
7e7f7749
RZ
1853 /* Has the page moved? */
1854 if (unlikely(page != *slot)) {
83929372 1855 put_page(head);
7e7f7749
RZ
1856 goto repeat;
1857 }
1858export:
1859 indices[ret] = iter.index;
1860 entries[ret] = page;
1861 if (++ret == nr_entries)
1862 break;
1863 }
1864 rcu_read_unlock();
1865 return ret;
1866}
1867EXPORT_SYMBOL(find_get_entries_tag);
1868
76d42bd9
WF
1869/*
1870 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1871 * a _large_ part of the i/o request. Imagine the worst scenario:
1872 *
1873 * ---R__________________________________________B__________
1874 * ^ reading here ^ bad block(assume 4k)
1875 *
1876 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1877 * => failing the whole request => read(R) => read(R+1) =>
1878 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1879 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1880 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1881 *
1882 * It is going insane. Fix it by quickly scaling down the readahead size.
1883 */
1884static void shrink_readahead_size_eio(struct file *filp,
1885 struct file_ra_state *ra)
1886{
76d42bd9 1887 ra->ra_pages /= 4;
76d42bd9
WF
1888}
1889
485bb99b 1890/**
47c27bc4
CH
1891 * generic_file_buffered_read - generic file read routine
1892 * @iocb: the iocb to read
6e58e79d
AV
1893 * @iter: data destination
1894 * @written: already copied
485bb99b 1895 *
1da177e4 1896 * This is a generic file read routine, and uses the
485bb99b 1897 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1898 *
1899 * This is really ugly. But the goto's actually try to clarify some
1900 * of the logic when it comes to error handling etc.
1da177e4 1901 */
47c27bc4 1902static ssize_t generic_file_buffered_read(struct kiocb *iocb,
6e58e79d 1903 struct iov_iter *iter, ssize_t written)
1da177e4 1904{
47c27bc4 1905 struct file *filp = iocb->ki_filp;
36e78914 1906 struct address_space *mapping = filp->f_mapping;
1da177e4 1907 struct inode *inode = mapping->host;
36e78914 1908 struct file_ra_state *ra = &filp->f_ra;
47c27bc4 1909 loff_t *ppos = &iocb->ki_pos;
57f6b96c
FW
1910 pgoff_t index;
1911 pgoff_t last_index;
1912 pgoff_t prev_index;
1913 unsigned long offset; /* offset into pagecache page */
ec0f1637 1914 unsigned int prev_offset;
6e58e79d 1915 int error = 0;
1da177e4 1916
c2a9737f 1917 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 1918 return 0;
c2a9737f
WF
1919 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1920
09cbfeaf
KS
1921 index = *ppos >> PAGE_SHIFT;
1922 prev_index = ra->prev_pos >> PAGE_SHIFT;
1923 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1924 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1925 offset = *ppos & ~PAGE_MASK;
1da177e4 1926
1da177e4
LT
1927 for (;;) {
1928 struct page *page;
57f6b96c 1929 pgoff_t end_index;
a32ea1e1 1930 loff_t isize;
1da177e4
LT
1931 unsigned long nr, ret;
1932
1da177e4 1933 cond_resched();
1da177e4 1934find_page:
5abf186a
MH
1935 if (fatal_signal_pending(current)) {
1936 error = -EINTR;
1937 goto out;
1938 }
1939
1da177e4 1940 page = find_get_page(mapping, index);
3ea89ee8 1941 if (!page) {
cf914a7d 1942 page_cache_sync_readahead(mapping,
7ff81078 1943 ra, filp,
3ea89ee8
FW
1944 index, last_index - index);
1945 page = find_get_page(mapping, index);
1946 if (unlikely(page == NULL))
1947 goto no_cached_page;
1948 }
1949 if (PageReadahead(page)) {
cf914a7d 1950 page_cache_async_readahead(mapping,
7ff81078 1951 ra, filp, page,
3ea89ee8 1952 index, last_index - index);
1da177e4 1953 }
8ab22b9a 1954 if (!PageUptodate(page)) {
ebded027
MG
1955 /*
1956 * See comment in do_read_cache_page on why
1957 * wait_on_page_locked is used to avoid unnecessarily
1958 * serialisations and why it's safe.
1959 */
c4b209a4
BVA
1960 error = wait_on_page_locked_killable(page);
1961 if (unlikely(error))
1962 goto readpage_error;
ebded027
MG
1963 if (PageUptodate(page))
1964 goto page_ok;
1965
09cbfeaf 1966 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
1967 !mapping->a_ops->is_partially_uptodate)
1968 goto page_not_up_to_date;
6d6d36bc
EG
1969 /* pipes can't handle partially uptodate pages */
1970 if (unlikely(iter->type & ITER_PIPE))
1971 goto page_not_up_to_date;
529ae9aa 1972 if (!trylock_page(page))
8ab22b9a 1973 goto page_not_up_to_date;
8d056cb9
DH
1974 /* Did it get truncated before we got the lock? */
1975 if (!page->mapping)
1976 goto page_not_up_to_date_locked;
8ab22b9a 1977 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1978 offset, iter->count))
8ab22b9a
HH
1979 goto page_not_up_to_date_locked;
1980 unlock_page(page);
1981 }
1da177e4 1982page_ok:
a32ea1e1
N
1983 /*
1984 * i_size must be checked after we know the page is Uptodate.
1985 *
1986 * Checking i_size after the check allows us to calculate
1987 * the correct value for "nr", which means the zero-filled
1988 * part of the page is not copied back to userspace (unless
1989 * another truncate extends the file - this is desired though).
1990 */
1991
1992 isize = i_size_read(inode);
09cbfeaf 1993 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 1994 if (unlikely(!isize || index > end_index)) {
09cbfeaf 1995 put_page(page);
a32ea1e1
N
1996 goto out;
1997 }
1998
1999 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 2000 nr = PAGE_SIZE;
a32ea1e1 2001 if (index == end_index) {
09cbfeaf 2002 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 2003 if (nr <= offset) {
09cbfeaf 2004 put_page(page);
a32ea1e1
N
2005 goto out;
2006 }
2007 }
2008 nr = nr - offset;
1da177e4
LT
2009
2010 /* If users can be writing to this page using arbitrary
2011 * virtual addresses, take care about potential aliasing
2012 * before reading the page on the kernel side.
2013 */
2014 if (mapping_writably_mapped(mapping))
2015 flush_dcache_page(page);
2016
2017 /*
ec0f1637
JK
2018 * When a sequential read accesses a page several times,
2019 * only mark it as accessed the first time.
1da177e4 2020 */
ec0f1637 2021 if (prev_index != index || offset != prev_offset)
1da177e4
LT
2022 mark_page_accessed(page);
2023 prev_index = index;
2024
2025 /*
2026 * Ok, we have the page, and it's up-to-date, so
2027 * now we can copy it to user space...
1da177e4 2028 */
6e58e79d
AV
2029
2030 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 2031 offset += ret;
09cbfeaf
KS
2032 index += offset >> PAGE_SHIFT;
2033 offset &= ~PAGE_MASK;
6ce745ed 2034 prev_offset = offset;
1da177e4 2035
09cbfeaf 2036 put_page(page);
6e58e79d
AV
2037 written += ret;
2038 if (!iov_iter_count(iter))
2039 goto out;
2040 if (ret < nr) {
2041 error = -EFAULT;
2042 goto out;
2043 }
2044 continue;
1da177e4
LT
2045
2046page_not_up_to_date:
2047 /* Get exclusive access to the page ... */
85462323
ON
2048 error = lock_page_killable(page);
2049 if (unlikely(error))
2050 goto readpage_error;
1da177e4 2051
8ab22b9a 2052page_not_up_to_date_locked:
da6052f7 2053 /* Did it get truncated before we got the lock? */
1da177e4
LT
2054 if (!page->mapping) {
2055 unlock_page(page);
09cbfeaf 2056 put_page(page);
1da177e4
LT
2057 continue;
2058 }
2059
2060 /* Did somebody else fill it already? */
2061 if (PageUptodate(page)) {
2062 unlock_page(page);
2063 goto page_ok;
2064 }
2065
2066readpage:
91803b49
JM
2067 /*
2068 * A previous I/O error may have been due to temporary
2069 * failures, eg. multipath errors.
2070 * PG_error will be set again if readpage fails.
2071 */
2072 ClearPageError(page);
1da177e4
LT
2073 /* Start the actual read. The read will unlock the page. */
2074 error = mapping->a_ops->readpage(filp, page);
2075
994fc28c
ZB
2076 if (unlikely(error)) {
2077 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 2078 put_page(page);
6e58e79d 2079 error = 0;
994fc28c
ZB
2080 goto find_page;
2081 }
1da177e4 2082 goto readpage_error;
994fc28c 2083 }
1da177e4
LT
2084
2085 if (!PageUptodate(page)) {
85462323
ON
2086 error = lock_page_killable(page);
2087 if (unlikely(error))
2088 goto readpage_error;
1da177e4
LT
2089 if (!PageUptodate(page)) {
2090 if (page->mapping == NULL) {
2091 /*
2ecdc82e 2092 * invalidate_mapping_pages got it
1da177e4
LT
2093 */
2094 unlock_page(page);
09cbfeaf 2095 put_page(page);
1da177e4
LT
2096 goto find_page;
2097 }
2098 unlock_page(page);
7ff81078 2099 shrink_readahead_size_eio(filp, ra);
85462323
ON
2100 error = -EIO;
2101 goto readpage_error;
1da177e4
LT
2102 }
2103 unlock_page(page);
2104 }
2105
1da177e4
LT
2106 goto page_ok;
2107
2108readpage_error:
2109 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 2110 put_page(page);
1da177e4
LT
2111 goto out;
2112
2113no_cached_page:
2114 /*
2115 * Ok, it wasn't cached, so we need to create a new
2116 * page..
2117 */
eb2be189
NP
2118 page = page_cache_alloc_cold(mapping);
2119 if (!page) {
6e58e79d 2120 error = -ENOMEM;
eb2be189 2121 goto out;
1da177e4 2122 }
6afdb859 2123 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2124 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2125 if (error) {
09cbfeaf 2126 put_page(page);
6e58e79d
AV
2127 if (error == -EEXIST) {
2128 error = 0;
1da177e4 2129 goto find_page;
6e58e79d 2130 }
1da177e4
LT
2131 goto out;
2132 }
1da177e4
LT
2133 goto readpage;
2134 }
2135
2136out:
7ff81078 2137 ra->prev_pos = prev_index;
09cbfeaf 2138 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2139 ra->prev_pos |= prev_offset;
1da177e4 2140
09cbfeaf 2141 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2142 file_accessed(filp);
6e58e79d 2143 return written ? written : error;
1da177e4
LT
2144}
2145
485bb99b 2146/**
6abd2322 2147 * generic_file_read_iter - generic filesystem read routine
485bb99b 2148 * @iocb: kernel I/O control block
6abd2322 2149 * @iter: destination for the data read
485bb99b 2150 *
6abd2322 2151 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
2152 * that can use the page cache directly.
2153 */
2154ssize_t
ed978a81 2155generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2156{
e7080a43 2157 size_t count = iov_iter_count(iter);
47c27bc4 2158 ssize_t retval = 0;
e7080a43
NS
2159
2160 if (!count)
2161 goto out; /* skip atime */
1da177e4 2162
2ba48ce5 2163 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2164 struct file *file = iocb->ki_filp;
ed978a81
AV
2165 struct address_space *mapping = file->f_mapping;
2166 struct inode *inode = mapping->host;
543ade1f 2167 loff_t size;
1da177e4 2168
1da177e4 2169 size = i_size_read(inode);
6be96d3a
GR
2170 if (iocb->ki_flags & IOCB_NOWAIT) {
2171 if (filemap_range_has_page(mapping, iocb->ki_pos,
2172 iocb->ki_pos + count - 1))
2173 return -EAGAIN;
2174 } else {
2175 retval = filemap_write_and_wait_range(mapping,
2176 iocb->ki_pos,
2177 iocb->ki_pos + count - 1);
2178 if (retval < 0)
2179 goto out;
2180 }
d8d3d94b 2181
0d5b0cf2
CH
2182 file_accessed(file);
2183
5ecda137 2184 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2185 if (retval >= 0) {
c64fb5c7 2186 iocb->ki_pos += retval;
5ecda137 2187 count -= retval;
9fe55eea 2188 }
5b47d59a 2189 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2190
9fe55eea
SW
2191 /*
2192 * Btrfs can have a short DIO read if we encounter
2193 * compressed extents, so if there was an error, or if
2194 * we've already read everything we wanted to, or if
2195 * there was a short read because we hit EOF, go ahead
2196 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2197 * the rest of the read. Buffered reads will not work for
2198 * DAX files, so don't bother trying.
9fe55eea 2199 */
5ecda137 2200 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2201 IS_DAX(inode))
9fe55eea 2202 goto out;
1da177e4
LT
2203 }
2204
47c27bc4 2205 retval = generic_file_buffered_read(iocb, iter, retval);
1da177e4
LT
2206out:
2207 return retval;
2208}
ed978a81 2209EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2210
1da177e4 2211#ifdef CONFIG_MMU
485bb99b
RD
2212/**
2213 * page_cache_read - adds requested page to the page cache if not already there
2214 * @file: file to read
2215 * @offset: page index
62eb320a 2216 * @gfp_mask: memory allocation flags
485bb99b 2217 *
1da177e4
LT
2218 * This adds the requested page to the page cache if it isn't already there,
2219 * and schedules an I/O to read in its contents from disk.
2220 */
c20cd45e 2221static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
2222{
2223 struct address_space *mapping = file->f_mapping;
99dadfdd 2224 struct page *page;
994fc28c 2225 int ret;
1da177e4 2226
994fc28c 2227 do {
c20cd45e 2228 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
994fc28c
ZB
2229 if (!page)
2230 return -ENOMEM;
2231
c20cd45e 2232 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
994fc28c
ZB
2233 if (ret == 0)
2234 ret = mapping->a_ops->readpage(file, page);
2235 else if (ret == -EEXIST)
2236 ret = 0; /* losing race to add is OK */
1da177e4 2237
09cbfeaf 2238 put_page(page);
1da177e4 2239
994fc28c 2240 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 2241
994fc28c 2242 return ret;
1da177e4
LT
2243}
2244
2245#define MMAP_LOTSAMISS (100)
2246
ef00e08e
LT
2247/*
2248 * Synchronous readahead happens when we don't even find
2249 * a page in the page cache at all.
2250 */
2251static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2252 struct file_ra_state *ra,
2253 struct file *file,
2254 pgoff_t offset)
2255{
ef00e08e
LT
2256 struct address_space *mapping = file->f_mapping;
2257
2258 /* If we don't want any read-ahead, don't bother */
64363aad 2259 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 2260 return;
275b12bf
WF
2261 if (!ra->ra_pages)
2262 return;
ef00e08e 2263
64363aad 2264 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
2265 page_cache_sync_readahead(mapping, ra, file, offset,
2266 ra->ra_pages);
ef00e08e
LT
2267 return;
2268 }
2269
207d04ba
AK
2270 /* Avoid banging the cache line if not needed */
2271 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2272 ra->mmap_miss++;
2273
2274 /*
2275 * Do we miss much more than hit in this file? If so,
2276 * stop bothering with read-ahead. It will only hurt.
2277 */
2278 if (ra->mmap_miss > MMAP_LOTSAMISS)
2279 return;
2280
d30a1100
WF
2281 /*
2282 * mmap read-around
2283 */
600e19af
RG
2284 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2285 ra->size = ra->ra_pages;
2286 ra->async_size = ra->ra_pages / 4;
275b12bf 2287 ra_submit(ra, mapping, file);
ef00e08e
LT
2288}
2289
2290/*
2291 * Asynchronous readahead happens when we find the page and PG_readahead,
2292 * so we want to possibly extend the readahead further..
2293 */
2294static void do_async_mmap_readahead(struct vm_area_struct *vma,
2295 struct file_ra_state *ra,
2296 struct file *file,
2297 struct page *page,
2298 pgoff_t offset)
2299{
2300 struct address_space *mapping = file->f_mapping;
2301
2302 /* If we don't want any read-ahead, don't bother */
64363aad 2303 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
2304 return;
2305 if (ra->mmap_miss > 0)
2306 ra->mmap_miss--;
2307 if (PageReadahead(page))
2fad6f5d
WF
2308 page_cache_async_readahead(mapping, ra, file,
2309 page, offset, ra->ra_pages);
ef00e08e
LT
2310}
2311
485bb99b 2312/**
54cb8821 2313 * filemap_fault - read in file data for page fault handling
d0217ac0 2314 * @vmf: struct vm_fault containing details of the fault
485bb99b 2315 *
54cb8821 2316 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2317 * mapped memory region to read in file data during a page fault.
2318 *
2319 * The goto's are kind of ugly, but this streamlines the normal case of having
2320 * it in the page cache, and handles the special cases reasonably without
2321 * having a lot of duplicated code.
9a95f3cf
PC
2322 *
2323 * vma->vm_mm->mmap_sem must be held on entry.
2324 *
2325 * If our return value has VM_FAULT_RETRY set, it's because
2326 * lock_page_or_retry() returned 0.
2327 * The mmap_sem has usually been released in this case.
2328 * See __lock_page_or_retry() for the exception.
2329 *
2330 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2331 * has not been released.
2332 *
2333 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2334 */
11bac800 2335int filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2336{
2337 int error;
11bac800 2338 struct file *file = vmf->vma->vm_file;
1da177e4
LT
2339 struct address_space *mapping = file->f_mapping;
2340 struct file_ra_state *ra = &file->f_ra;
2341 struct inode *inode = mapping->host;
ef00e08e 2342 pgoff_t offset = vmf->pgoff;
9ab2594f 2343 pgoff_t max_off;
1da177e4 2344 struct page *page;
83c54070 2345 int ret = 0;
1da177e4 2346
9ab2594f
MW
2347 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2348 if (unlikely(offset >= max_off))
5307cc1a 2349 return VM_FAULT_SIGBUS;
1da177e4 2350
1da177e4 2351 /*
49426420 2352 * Do we have something in the page cache already?
1da177e4 2353 */
ef00e08e 2354 page = find_get_page(mapping, offset);
45cac65b 2355 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2356 /*
ef00e08e
LT
2357 * We found the page, so try async readahead before
2358 * waiting for the lock.
1da177e4 2359 */
11bac800 2360 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
45cac65b 2361 } else if (!page) {
ef00e08e 2362 /* No page in the page cache at all */
11bac800 2363 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
ef00e08e 2364 count_vm_event(PGMAJFAULT);
2262185c 2365 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2366 ret = VM_FAULT_MAJOR;
2367retry_find:
b522c94d 2368 page = find_get_page(mapping, offset);
1da177e4
LT
2369 if (!page)
2370 goto no_cached_page;
2371 }
2372
11bac800 2373 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
09cbfeaf 2374 put_page(page);
d065bd81 2375 return ret | VM_FAULT_RETRY;
d88c0922 2376 }
b522c94d
ML
2377
2378 /* Did it get truncated? */
2379 if (unlikely(page->mapping != mapping)) {
2380 unlock_page(page);
2381 put_page(page);
2382 goto retry_find;
2383 }
309381fe 2384 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2385
1da177e4 2386 /*
d00806b1
NP
2387 * We have a locked page in the page cache, now we need to check
2388 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2389 */
d00806b1 2390 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2391 goto page_not_uptodate;
2392
ef00e08e
LT
2393 /*
2394 * Found the page and have a reference on it.
2395 * We must recheck i_size under page lock.
2396 */
9ab2594f
MW
2397 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2398 if (unlikely(offset >= max_off)) {
d00806b1 2399 unlock_page(page);
09cbfeaf 2400 put_page(page);
5307cc1a 2401 return VM_FAULT_SIGBUS;
d00806b1
NP
2402 }
2403
d0217ac0 2404 vmf->page = page;
83c54070 2405 return ret | VM_FAULT_LOCKED;
1da177e4 2406
1da177e4
LT
2407no_cached_page:
2408 /*
2409 * We're only likely to ever get here if MADV_RANDOM is in
2410 * effect.
2411 */
c20cd45e 2412 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2413
2414 /*
2415 * The page we want has now been added to the page cache.
2416 * In the unlikely event that someone removed it in the
2417 * meantime, we'll just come back here and read it again.
2418 */
2419 if (error >= 0)
2420 goto retry_find;
2421
2422 /*
2423 * An error return from page_cache_read can result if the
2424 * system is low on memory, or a problem occurs while trying
2425 * to schedule I/O.
2426 */
2427 if (error == -ENOMEM)
d0217ac0
NP
2428 return VM_FAULT_OOM;
2429 return VM_FAULT_SIGBUS;
1da177e4
LT
2430
2431page_not_uptodate:
1da177e4
LT
2432 /*
2433 * Umm, take care of errors if the page isn't up-to-date.
2434 * Try to re-read it _once_. We do this synchronously,
2435 * because there really aren't any performance issues here
2436 * and we need to check for errors.
2437 */
1da177e4 2438 ClearPageError(page);
994fc28c 2439 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2440 if (!error) {
2441 wait_on_page_locked(page);
2442 if (!PageUptodate(page))
2443 error = -EIO;
2444 }
09cbfeaf 2445 put_page(page);
d00806b1
NP
2446
2447 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2448 goto retry_find;
1da177e4 2449
d00806b1 2450 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2451 shrink_readahead_size_eio(file, ra);
d0217ac0 2452 return VM_FAULT_SIGBUS;
54cb8821
NP
2453}
2454EXPORT_SYMBOL(filemap_fault);
2455
82b0f8c3 2456void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2457 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361
KS
2458{
2459 struct radix_tree_iter iter;
2460 void **slot;
82b0f8c3 2461 struct file *file = vmf->vma->vm_file;
f1820361 2462 struct address_space *mapping = file->f_mapping;
bae473a4 2463 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2464 unsigned long max_idx;
83929372 2465 struct page *head, *page;
f1820361
KS
2466
2467 rcu_read_lock();
bae473a4
KS
2468 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2469 start_pgoff) {
2470 if (iter.index > end_pgoff)
f1820361
KS
2471 break;
2472repeat:
2473 page = radix_tree_deref_slot(slot);
2474 if (unlikely(!page))
2475 goto next;
2476 if (radix_tree_exception(page)) {
2cf938aa
MW
2477 if (radix_tree_deref_retry(page)) {
2478 slot = radix_tree_iter_retry(&iter);
2479 continue;
2480 }
2481 goto next;
f1820361
KS
2482 }
2483
83929372
KS
2484 head = compound_head(page);
2485 if (!page_cache_get_speculative(head))
f1820361
KS
2486 goto repeat;
2487
83929372
KS
2488 /* The page was split under us? */
2489 if (compound_head(page) != head) {
2490 put_page(head);
2491 goto repeat;
2492 }
2493
f1820361
KS
2494 /* Has the page moved? */
2495 if (unlikely(page != *slot)) {
83929372 2496 put_page(head);
f1820361
KS
2497 goto repeat;
2498 }
2499
2500 if (!PageUptodate(page) ||
2501 PageReadahead(page) ||
2502 PageHWPoison(page))
2503 goto skip;
2504 if (!trylock_page(page))
2505 goto skip;
2506
2507 if (page->mapping != mapping || !PageUptodate(page))
2508 goto unlock;
2509
9ab2594f
MW
2510 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2511 if (page->index >= max_idx)
f1820361
KS
2512 goto unlock;
2513
f1820361
KS
2514 if (file->f_ra.mmap_miss > 0)
2515 file->f_ra.mmap_miss--;
7267ec00 2516
82b0f8c3
JK
2517 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2518 if (vmf->pte)
2519 vmf->pte += iter.index - last_pgoff;
7267ec00 2520 last_pgoff = iter.index;
82b0f8c3 2521 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2522 goto unlock;
f1820361
KS
2523 unlock_page(page);
2524 goto next;
2525unlock:
2526 unlock_page(page);
2527skip:
09cbfeaf 2528 put_page(page);
f1820361 2529next:
7267ec00 2530 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2531 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2532 break;
bae473a4 2533 if (iter.index == end_pgoff)
f1820361
KS
2534 break;
2535 }
2536 rcu_read_unlock();
2537}
2538EXPORT_SYMBOL(filemap_map_pages);
2539
11bac800 2540int filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2541{
2542 struct page *page = vmf->page;
11bac800 2543 struct inode *inode = file_inode(vmf->vma->vm_file);
4fcf1c62
JK
2544 int ret = VM_FAULT_LOCKED;
2545
14da9200 2546 sb_start_pagefault(inode->i_sb);
11bac800 2547 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2548 lock_page(page);
2549 if (page->mapping != inode->i_mapping) {
2550 unlock_page(page);
2551 ret = VM_FAULT_NOPAGE;
2552 goto out;
2553 }
14da9200
JK
2554 /*
2555 * We mark the page dirty already here so that when freeze is in
2556 * progress, we are guaranteed that writeback during freezing will
2557 * see the dirty page and writeprotect it again.
2558 */
2559 set_page_dirty(page);
1d1d1a76 2560 wait_for_stable_page(page);
4fcf1c62 2561out:
14da9200 2562 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2563 return ret;
2564}
2565EXPORT_SYMBOL(filemap_page_mkwrite);
2566
f0f37e2f 2567const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2568 .fault = filemap_fault,
f1820361 2569 .map_pages = filemap_map_pages,
4fcf1c62 2570 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2571};
2572
2573/* This is used for a general mmap of a disk file */
2574
2575int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2576{
2577 struct address_space *mapping = file->f_mapping;
2578
2579 if (!mapping->a_ops->readpage)
2580 return -ENOEXEC;
2581 file_accessed(file);
2582 vma->vm_ops = &generic_file_vm_ops;
2583 return 0;
2584}
1da177e4
LT
2585
2586/*
2587 * This is for filesystems which do not implement ->writepage.
2588 */
2589int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2590{
2591 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2592 return -EINVAL;
2593 return generic_file_mmap(file, vma);
2594}
2595#else
2596int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2597{
2598 return -ENOSYS;
2599}
2600int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2601{
2602 return -ENOSYS;
2603}
2604#endif /* CONFIG_MMU */
2605
2606EXPORT_SYMBOL(generic_file_mmap);
2607EXPORT_SYMBOL(generic_file_readonly_mmap);
2608
67f9fd91
SL
2609static struct page *wait_on_page_read(struct page *page)
2610{
2611 if (!IS_ERR(page)) {
2612 wait_on_page_locked(page);
2613 if (!PageUptodate(page)) {
09cbfeaf 2614 put_page(page);
67f9fd91
SL
2615 page = ERR_PTR(-EIO);
2616 }
2617 }
2618 return page;
2619}
2620
32b63529 2621static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2622 pgoff_t index,
5e5358e7 2623 int (*filler)(void *, struct page *),
0531b2aa
LT
2624 void *data,
2625 gfp_t gfp)
1da177e4 2626{
eb2be189 2627 struct page *page;
1da177e4
LT
2628 int err;
2629repeat:
2630 page = find_get_page(mapping, index);
2631 if (!page) {
0531b2aa 2632 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2633 if (!page)
2634 return ERR_PTR(-ENOMEM);
e6f67b8c 2635 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2636 if (unlikely(err)) {
09cbfeaf 2637 put_page(page);
eb2be189
NP
2638 if (err == -EEXIST)
2639 goto repeat;
1da177e4 2640 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2641 return ERR_PTR(err);
2642 }
32b63529
MG
2643
2644filler:
1da177e4
LT
2645 err = filler(data, page);
2646 if (err < 0) {
09cbfeaf 2647 put_page(page);
32b63529 2648 return ERR_PTR(err);
1da177e4 2649 }
1da177e4 2650
32b63529
MG
2651 page = wait_on_page_read(page);
2652 if (IS_ERR(page))
2653 return page;
2654 goto out;
2655 }
1da177e4
LT
2656 if (PageUptodate(page))
2657 goto out;
2658
ebded027
MG
2659 /*
2660 * Page is not up to date and may be locked due one of the following
2661 * case a: Page is being filled and the page lock is held
2662 * case b: Read/write error clearing the page uptodate status
2663 * case c: Truncation in progress (page locked)
2664 * case d: Reclaim in progress
2665 *
2666 * Case a, the page will be up to date when the page is unlocked.
2667 * There is no need to serialise on the page lock here as the page
2668 * is pinned so the lock gives no additional protection. Even if the
2669 * the page is truncated, the data is still valid if PageUptodate as
2670 * it's a race vs truncate race.
2671 * Case b, the page will not be up to date
2672 * Case c, the page may be truncated but in itself, the data may still
2673 * be valid after IO completes as it's a read vs truncate race. The
2674 * operation must restart if the page is not uptodate on unlock but
2675 * otherwise serialising on page lock to stabilise the mapping gives
2676 * no additional guarantees to the caller as the page lock is
2677 * released before return.
2678 * Case d, similar to truncation. If reclaim holds the page lock, it
2679 * will be a race with remove_mapping that determines if the mapping
2680 * is valid on unlock but otherwise the data is valid and there is
2681 * no need to serialise with page lock.
2682 *
2683 * As the page lock gives no additional guarantee, we optimistically
2684 * wait on the page to be unlocked and check if it's up to date and
2685 * use the page if it is. Otherwise, the page lock is required to
2686 * distinguish between the different cases. The motivation is that we
2687 * avoid spurious serialisations and wakeups when multiple processes
2688 * wait on the same page for IO to complete.
2689 */
2690 wait_on_page_locked(page);
2691 if (PageUptodate(page))
2692 goto out;
2693
2694 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2695 lock_page(page);
ebded027
MG
2696
2697 /* Case c or d, restart the operation */
1da177e4
LT
2698 if (!page->mapping) {
2699 unlock_page(page);
09cbfeaf 2700 put_page(page);
32b63529 2701 goto repeat;
1da177e4 2702 }
ebded027
MG
2703
2704 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2705 if (PageUptodate(page)) {
2706 unlock_page(page);
2707 goto out;
2708 }
32b63529
MG
2709 goto filler;
2710
c855ff37 2711out:
6fe6900e
NP
2712 mark_page_accessed(page);
2713 return page;
2714}
0531b2aa
LT
2715
2716/**
67f9fd91 2717 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2718 * @mapping: the page's address_space
2719 * @index: the page index
2720 * @filler: function to perform the read
5e5358e7 2721 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2722 *
0531b2aa 2723 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2724 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2725 *
2726 * If the page does not get brought uptodate, return -EIO.
2727 */
67f9fd91 2728struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2729 pgoff_t index,
5e5358e7 2730 int (*filler)(void *, struct page *),
0531b2aa
LT
2731 void *data)
2732{
2733 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2734}
67f9fd91 2735EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2736
2737/**
2738 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2739 * @mapping: the page's address_space
2740 * @index: the page index
2741 * @gfp: the page allocator flags to use if allocating
2742 *
2743 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2744 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2745 *
2746 * If the page does not get brought uptodate, return -EIO.
2747 */
2748struct page *read_cache_page_gfp(struct address_space *mapping,
2749 pgoff_t index,
2750 gfp_t gfp)
2751{
2752 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2753
67f9fd91 2754 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2755}
2756EXPORT_SYMBOL(read_cache_page_gfp);
2757
1da177e4
LT
2758/*
2759 * Performs necessary checks before doing a write
2760 *
485bb99b 2761 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2762 * Returns appropriate error code that caller should return or
2763 * zero in case that write should be allowed.
2764 */
3309dd04 2765inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2766{
3309dd04 2767 struct file *file = iocb->ki_filp;
1da177e4 2768 struct inode *inode = file->f_mapping->host;
59e99e5b 2769 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2770 loff_t pos;
1da177e4 2771
3309dd04
AV
2772 if (!iov_iter_count(from))
2773 return 0;
1da177e4 2774
0fa6b005 2775 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2776 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2777 iocb->ki_pos = i_size_read(inode);
1da177e4 2778
3309dd04 2779 pos = iocb->ki_pos;
1da177e4 2780
6be96d3a
GR
2781 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2782 return -EINVAL;
2783
0fa6b005 2784 if (limit != RLIM_INFINITY) {
3309dd04 2785 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2786 send_sig(SIGXFSZ, current, 0);
2787 return -EFBIG;
1da177e4 2788 }
3309dd04 2789 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2790 }
2791
2792 /*
2793 * LFS rule
2794 */
3309dd04 2795 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2796 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2797 if (pos >= MAX_NON_LFS)
1da177e4 2798 return -EFBIG;
3309dd04 2799 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2800 }
2801
2802 /*
2803 * Are we about to exceed the fs block limit ?
2804 *
2805 * If we have written data it becomes a short write. If we have
2806 * exceeded without writing data we send a signal and return EFBIG.
2807 * Linus frestrict idea will clean these up nicely..
2808 */
3309dd04
AV
2809 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2810 return -EFBIG;
1da177e4 2811
3309dd04
AV
2812 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2813 return iov_iter_count(from);
1da177e4
LT
2814}
2815EXPORT_SYMBOL(generic_write_checks);
2816
afddba49
NP
2817int pagecache_write_begin(struct file *file, struct address_space *mapping,
2818 loff_t pos, unsigned len, unsigned flags,
2819 struct page **pagep, void **fsdata)
2820{
2821 const struct address_space_operations *aops = mapping->a_ops;
2822
4e02ed4b 2823 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2824 pagep, fsdata);
afddba49
NP
2825}
2826EXPORT_SYMBOL(pagecache_write_begin);
2827
2828int pagecache_write_end(struct file *file, struct address_space *mapping,
2829 loff_t pos, unsigned len, unsigned copied,
2830 struct page *page, void *fsdata)
2831{
2832 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2833
4e02ed4b 2834 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2835}
2836EXPORT_SYMBOL(pagecache_write_end);
2837
1da177e4 2838ssize_t
1af5bb49 2839generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2840{
2841 struct file *file = iocb->ki_filp;
2842 struct address_space *mapping = file->f_mapping;
2843 struct inode *inode = mapping->host;
1af5bb49 2844 loff_t pos = iocb->ki_pos;
1da177e4 2845 ssize_t written;
a969e903
CH
2846 size_t write_len;
2847 pgoff_t end;
1da177e4 2848
0c949334 2849 write_len = iov_iter_count(from);
09cbfeaf 2850 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 2851
6be96d3a
GR
2852 if (iocb->ki_flags & IOCB_NOWAIT) {
2853 /* If there are pages to writeback, return */
2854 if (filemap_range_has_page(inode->i_mapping, pos,
2855 pos + iov_iter_count(from)))
2856 return -EAGAIN;
2857 } else {
2858 written = filemap_write_and_wait_range(mapping, pos,
2859 pos + write_len - 1);
2860 if (written)
2861 goto out;
2862 }
a969e903
CH
2863
2864 /*
2865 * After a write we want buffered reads to be sure to go to disk to get
2866 * the new data. We invalidate clean cached page from the region we're
2867 * about to write. We do this *before* the write so that we can return
6ccfa806 2868 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 2869 */
55635ba7 2870 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 2871 pos >> PAGE_SHIFT, end);
55635ba7
AR
2872 /*
2873 * If a page can not be invalidated, return 0 to fall back
2874 * to buffered write.
2875 */
2876 if (written) {
2877 if (written == -EBUSY)
2878 return 0;
2879 goto out;
a969e903
CH
2880 }
2881
639a93a5 2882 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
2883
2884 /*
2885 * Finally, try again to invalidate clean pages which might have been
2886 * cached by non-direct readahead, or faulted in by get_user_pages()
2887 * if the source of the write was an mmap'ed region of the file
2888 * we're writing. Either one is a pretty crazy thing to do,
2889 * so we don't support it 100%. If this invalidation
2890 * fails, tough, the write still worked...
2891 */
55635ba7
AR
2892 invalidate_inode_pages2_range(mapping,
2893 pos >> PAGE_SHIFT, end);
a969e903 2894
1da177e4 2895 if (written > 0) {
0116651c 2896 pos += written;
639a93a5 2897 write_len -= written;
0116651c
NK
2898 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2899 i_size_write(inode, pos);
1da177e4
LT
2900 mark_inode_dirty(inode);
2901 }
5cb6c6c7 2902 iocb->ki_pos = pos;
1da177e4 2903 }
639a93a5 2904 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 2905out:
1da177e4
LT
2906 return written;
2907}
2908EXPORT_SYMBOL(generic_file_direct_write);
2909
eb2be189
NP
2910/*
2911 * Find or create a page at the given pagecache position. Return the locked
2912 * page. This function is specifically for buffered writes.
2913 */
54566b2c
NP
2914struct page *grab_cache_page_write_begin(struct address_space *mapping,
2915 pgoff_t index, unsigned flags)
eb2be189 2916{
eb2be189 2917 struct page *page;
bbddabe2 2918 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 2919
54566b2c 2920 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2921 fgp_flags |= FGP_NOFS;
2922
2923 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2924 mapping_gfp_mask(mapping));
c585a267 2925 if (page)
2457aec6 2926 wait_for_stable_page(page);
eb2be189 2927
eb2be189
NP
2928 return page;
2929}
54566b2c 2930EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2931
3b93f911 2932ssize_t generic_perform_write(struct file *file,
afddba49
NP
2933 struct iov_iter *i, loff_t pos)
2934{
2935 struct address_space *mapping = file->f_mapping;
2936 const struct address_space_operations *a_ops = mapping->a_ops;
2937 long status = 0;
2938 ssize_t written = 0;
674b892e
NP
2939 unsigned int flags = 0;
2940
afddba49
NP
2941 do {
2942 struct page *page;
afddba49
NP
2943 unsigned long offset; /* Offset into pagecache page */
2944 unsigned long bytes; /* Bytes to write to page */
2945 size_t copied; /* Bytes copied from user */
2946 void *fsdata;
2947
09cbfeaf
KS
2948 offset = (pos & (PAGE_SIZE - 1));
2949 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2950 iov_iter_count(i));
2951
2952again:
00a3d660
LT
2953 /*
2954 * Bring in the user page that we will copy from _first_.
2955 * Otherwise there's a nasty deadlock on copying from the
2956 * same page as we're writing to, without it being marked
2957 * up-to-date.
2958 *
2959 * Not only is this an optimisation, but it is also required
2960 * to check that the address is actually valid, when atomic
2961 * usercopies are used, below.
2962 */
2963 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2964 status = -EFAULT;
2965 break;
2966 }
2967
296291cd
JK
2968 if (fatal_signal_pending(current)) {
2969 status = -EINTR;
2970 break;
2971 }
2972
674b892e 2973 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2974 &page, &fsdata);
2457aec6 2975 if (unlikely(status < 0))
afddba49
NP
2976 break;
2977
931e80e4 2978 if (mapping_writably_mapped(mapping))
2979 flush_dcache_page(page);
00a3d660 2980
afddba49 2981 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2982 flush_dcache_page(page);
2983
2984 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2985 page, fsdata);
2986 if (unlikely(status < 0))
2987 break;
2988 copied = status;
2989
2990 cond_resched();
2991
124d3b70 2992 iov_iter_advance(i, copied);
afddba49
NP
2993 if (unlikely(copied == 0)) {
2994 /*
2995 * If we were unable to copy any data at all, we must
2996 * fall back to a single segment length write.
2997 *
2998 * If we didn't fallback here, we could livelock
2999 * because not all segments in the iov can be copied at
3000 * once without a pagefault.
3001 */
09cbfeaf 3002 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3003 iov_iter_single_seg_count(i));
3004 goto again;
3005 }
afddba49
NP
3006 pos += copied;
3007 written += copied;
3008
3009 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3010 } while (iov_iter_count(i));
3011
3012 return written ? written : status;
3013}
3b93f911 3014EXPORT_SYMBOL(generic_perform_write);
1da177e4 3015
e4dd9de3 3016/**
8174202b 3017 * __generic_file_write_iter - write data to a file
e4dd9de3 3018 * @iocb: IO state structure (file, offset, etc.)
8174202b 3019 * @from: iov_iter with data to write
e4dd9de3
JK
3020 *
3021 * This function does all the work needed for actually writing data to a
3022 * file. It does all basic checks, removes SUID from the file, updates
3023 * modification times and calls proper subroutines depending on whether we
3024 * do direct IO or a standard buffered write.
3025 *
3026 * It expects i_mutex to be grabbed unless we work on a block device or similar
3027 * object which does not need locking at all.
3028 *
3029 * This function does *not* take care of syncing data in case of O_SYNC write.
3030 * A caller has to handle it. This is mainly due to the fact that we want to
3031 * avoid syncing under i_mutex.
3032 */
8174202b 3033ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3034{
3035 struct file *file = iocb->ki_filp;
fb5527e6 3036 struct address_space * mapping = file->f_mapping;
1da177e4 3037 struct inode *inode = mapping->host;
3b93f911 3038 ssize_t written = 0;
1da177e4 3039 ssize_t err;
3b93f911 3040 ssize_t status;
1da177e4 3041
1da177e4 3042 /* We can write back this queue in page reclaim */
de1414a6 3043 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3044 err = file_remove_privs(file);
1da177e4
LT
3045 if (err)
3046 goto out;
3047
c3b2da31
JB
3048 err = file_update_time(file);
3049 if (err)
3050 goto out;
1da177e4 3051
2ba48ce5 3052 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3053 loff_t pos, endbyte;
fb5527e6 3054
1af5bb49 3055 written = generic_file_direct_write(iocb, from);
1da177e4 3056 /*
fbbbad4b
MW
3057 * If the write stopped short of completing, fall back to
3058 * buffered writes. Some filesystems do this for writes to
3059 * holes, for example. For DAX files, a buffered write will
3060 * not succeed (even if it did, DAX does not handle dirty
3061 * page-cache pages correctly).
1da177e4 3062 */
0b8def9d 3063 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3064 goto out;
3065
0b8def9d 3066 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3067 /*
3b93f911 3068 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3069 * then we want to return the number of bytes which were
3070 * direct-written, or the error code if that was zero. Note
3071 * that this differs from normal direct-io semantics, which
3072 * will return -EFOO even if some bytes were written.
3073 */
60bb4529 3074 if (unlikely(status < 0)) {
3b93f911 3075 err = status;
fb5527e6
JM
3076 goto out;
3077 }
fb5527e6
JM
3078 /*
3079 * We need to ensure that the page cache pages are written to
3080 * disk and invalidated to preserve the expected O_DIRECT
3081 * semantics.
3082 */
3b93f911 3083 endbyte = pos + status - 1;
0b8def9d 3084 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3085 if (err == 0) {
0b8def9d 3086 iocb->ki_pos = endbyte + 1;
3b93f911 3087 written += status;
fb5527e6 3088 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3089 pos >> PAGE_SHIFT,
3090 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3091 } else {
3092 /*
3093 * We don't know how much we wrote, so just return
3094 * the number of bytes which were direct-written
3095 */
3096 }
3097 } else {
0b8def9d
AV
3098 written = generic_perform_write(file, from, iocb->ki_pos);
3099 if (likely(written > 0))
3100 iocb->ki_pos += written;
fb5527e6 3101 }
1da177e4
LT
3102out:
3103 current->backing_dev_info = NULL;
3104 return written ? written : err;
3105}
8174202b 3106EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3107
e4dd9de3 3108/**
8174202b 3109 * generic_file_write_iter - write data to a file
e4dd9de3 3110 * @iocb: IO state structure
8174202b 3111 * @from: iov_iter with data to write
e4dd9de3 3112 *
8174202b 3113 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3114 * filesystems. It takes care of syncing the file in case of O_SYNC file
3115 * and acquires i_mutex as needed.
3116 */
8174202b 3117ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3118{
3119 struct file *file = iocb->ki_filp;
148f948b 3120 struct inode *inode = file->f_mapping->host;
1da177e4 3121 ssize_t ret;
1da177e4 3122
5955102c 3123 inode_lock(inode);
3309dd04
AV
3124 ret = generic_write_checks(iocb, from);
3125 if (ret > 0)
5f380c7f 3126 ret = __generic_file_write_iter(iocb, from);
5955102c 3127 inode_unlock(inode);
1da177e4 3128
e2592217
CH
3129 if (ret > 0)
3130 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3131 return ret;
3132}
8174202b 3133EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3134
cf9a2ae8
DH
3135/**
3136 * try_to_release_page() - release old fs-specific metadata on a page
3137 *
3138 * @page: the page which the kernel is trying to free
3139 * @gfp_mask: memory allocation flags (and I/O mode)
3140 *
3141 * The address_space is to try to release any data against the page
0e056eb5 3142 * (presumably at page->private). If the release was successful, return '1'.
cf9a2ae8
DH
3143 * Otherwise return zero.
3144 *
266cf658
DH
3145 * This may also be called if PG_fscache is set on a page, indicating that the
3146 * page is known to the local caching routines.
3147 *
cf9a2ae8 3148 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3149 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3150 *
cf9a2ae8
DH
3151 */
3152int try_to_release_page(struct page *page, gfp_t gfp_mask)
3153{
3154 struct address_space * const mapping = page->mapping;
3155
3156 BUG_ON(!PageLocked(page));
3157 if (PageWriteback(page))
3158 return 0;
3159
3160 if (mapping && mapping->a_ops->releasepage)
3161 return mapping->a_ops->releasepage(page, gfp_mask);
3162 return try_to_free_buffers(page);
3163}
3164
3165EXPORT_SYMBOL(try_to_release_page);