]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/filemap.c
lib: radix-tree: update callback for changing leaf nodes
[mirror_ubuntu-zesty-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
c22ce143 16#include <linux/uaccess.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 34#include <linux/hugetlb.h>
8a9f3ccd 35#include <linux/memcontrol.h>
c515e1fd 36#include <linux/cleancache.h>
f1820361 37#include <linux/rmap.h>
0f8053a5
NP
38#include "internal.h"
39
fe0bfaaf
RJ
40#define CREATE_TRACE_POINTS
41#include <trace/events/filemap.h>
42
1da177e4 43/*
1da177e4
LT
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
148f948b 46#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 47
1da177e4
LT
48#include <asm/mman.h>
49
50/*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62/*
63 * Lock ordering:
64 *
c8c06efa 65 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
1da177e4 69 *
1b1dcc1b 70 * ->i_mutex
c8c06efa 71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
72 *
73 * ->mmap_sem
c8c06efa 74 * ->i_mmap_rwsem
b8072f09 75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
ccad2365 81 * ->i_mutex (generic_perform_write)
82591e6e 82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 83 *
f758eeab 84 * bdi->wb.list_lock
a66979ab 85 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
c8c06efa 88 * ->i_mmap_rwsem
1da177e4
LT
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
b8072f09 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 93 *
b8072f09 94 * ->page_table_lock or pte_lock
5d337b91 95 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
a52633d8
MG
98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
1da177e4
LT
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
c8c06efa 109 * ->i_mmap_rwsem
9a3c531d 110 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
111 */
112
22f2ac51
JW
113static int page_cache_tree_insert(struct address_space *mapping,
114 struct page *page, void **shadowp)
115{
116 struct radix_tree_node *node;
117 void **slot;
118 int error;
119
120 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 &node, &slot);
122 if (error)
123 return error;
124 if (*slot) {
125 void *p;
126
127 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 if (!radix_tree_exceptional_entry(p))
129 return -EEXIST;
130
131 mapping->nrexceptional--;
132 if (!dax_mapping(mapping)) {
133 if (shadowp)
134 *shadowp = p;
135 if (node)
136 workingset_node_shadows_dec(node);
137 } else {
138 /* DAX can replace empty locked entry with a hole */
139 WARN_ON_ONCE(p !=
140 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
141 RADIX_DAX_ENTRY_LOCK));
142 /* DAX accounts exceptional entries as normal pages */
143 if (node)
144 workingset_node_pages_dec(node);
145 /* Wakeup waiters for exceptional entry lock */
146 dax_wake_mapping_entry_waiter(mapping, page->index,
147 false);
148 }
149 }
6d75f366 150 radix_tree_replace_slot(&mapping->page_tree, slot, page);
22f2ac51
JW
151 mapping->nrpages++;
152 if (node) {
153 workingset_node_pages_inc(node);
154 /*
155 * Don't track node that contains actual pages.
156 *
157 * Avoid acquiring the list_lru lock if already
158 * untracked. The list_empty() test is safe as
159 * node->private_list is protected by
160 * mapping->tree_lock.
161 */
162 if (!list_empty(&node->private_list))
163 list_lru_del(&workingset_shadow_nodes,
164 &node->private_list);
165 }
166 return 0;
167}
168
91b0abe3
JW
169static void page_cache_tree_delete(struct address_space *mapping,
170 struct page *page, void *shadow)
171{
c70b647d
KS
172 int i, nr;
173
174 /* hugetlb pages are represented by one entry in the radix tree */
175 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
91b0abe3 176
83929372
KS
177 VM_BUG_ON_PAGE(!PageLocked(page), page);
178 VM_BUG_ON_PAGE(PageTail(page), page);
179 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 180
83929372 181 for (i = 0; i < nr; i++) {
d3798ae8
JW
182 struct radix_tree_node *node;
183 void **slot;
184
185 __radix_tree_lookup(&mapping->page_tree, page->index + i,
186 &node, &slot);
187
188 radix_tree_clear_tags(&mapping->page_tree, node, slot);
189
83929372
KS
190 if (!node) {
191 VM_BUG_ON_PAGE(nr != 1, page);
d3798ae8
JW
192 /*
193 * We need a node to properly account shadow
194 * entries. Don't plant any without. XXX
195 */
196 shadow = NULL;
83929372 197 }
449dd698 198
6d75f366 199 radix_tree_replace_slot(&mapping->page_tree, slot, shadow);
d3798ae8
JW
200
201 if (!node)
202 break;
203
83929372
KS
204 workingset_node_pages_dec(node);
205 if (shadow)
206 workingset_node_shadows_inc(node);
207 else
208 if (__radix_tree_delete_node(&mapping->page_tree, node))
209 continue;
210
211 /*
212 * Track node that only contains shadow entries. DAX mappings
213 * contain no shadow entries and may contain other exceptional
214 * entries so skip those.
215 *
216 * Avoid acquiring the list_lru lock if already tracked.
217 * The list_empty() test is safe as node->private_list is
218 * protected by mapping->tree_lock.
219 */
220 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
221 list_empty(&node->private_list)) {
222 node->private_data = mapping;
223 list_lru_add(&workingset_shadow_nodes,
224 &node->private_list);
225 }
449dd698 226 }
d3798ae8
JW
227
228 if (shadow) {
229 mapping->nrexceptional += nr;
230 /*
231 * Make sure the nrexceptional update is committed before
232 * the nrpages update so that final truncate racing
233 * with reclaim does not see both counters 0 at the
234 * same time and miss a shadow entry.
235 */
236 smp_wmb();
237 }
238 mapping->nrpages -= nr;
91b0abe3
JW
239}
240
1da177e4 241/*
e64a782f 242 * Delete a page from the page cache and free it. Caller has to make
1da177e4 243 * sure the page is locked and that nobody else uses it - or that usage
fdf1cdb9 244 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 245 */
62cccb8c 246void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
247{
248 struct address_space *mapping = page->mapping;
83929372 249 int nr = hpage_nr_pages(page);
1da177e4 250
fe0bfaaf 251 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
252 /*
253 * if we're uptodate, flush out into the cleancache, otherwise
254 * invalidate any existing cleancache entries. We can't leave
255 * stale data around in the cleancache once our page is gone
256 */
257 if (PageUptodate(page) && PageMappedToDisk(page))
258 cleancache_put_page(page);
259 else
3167760f 260 cleancache_invalidate_page(mapping, page);
c515e1fd 261
83929372 262 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
263 VM_BUG_ON_PAGE(page_mapped(page), page);
264 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
265 int mapcount;
266
267 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
268 current->comm, page_to_pfn(page));
269 dump_page(page, "still mapped when deleted");
270 dump_stack();
271 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
272
273 mapcount = page_mapcount(page);
274 if (mapping_exiting(mapping) &&
275 page_count(page) >= mapcount + 2) {
276 /*
277 * All vmas have already been torn down, so it's
278 * a good bet that actually the page is unmapped,
279 * and we'd prefer not to leak it: if we're wrong,
280 * some other bad page check should catch it later.
281 */
282 page_mapcount_reset(page);
6d061f9f 283 page_ref_sub(page, mapcount);
06b241f3
HD
284 }
285 }
286
91b0abe3
JW
287 page_cache_tree_delete(mapping, page, shadow);
288
1da177e4 289 page->mapping = NULL;
b85e0eff 290 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 291
4165b9b4
MH
292 /* hugetlb pages do not participate in page cache accounting. */
293 if (!PageHuge(page))
11fb9989 294 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
800d8c63 295 if (PageSwapBacked(page)) {
11fb9989 296 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
800d8c63 297 if (PageTransHuge(page))
11fb9989 298 __dec_node_page_state(page, NR_SHMEM_THPS);
800d8c63
KS
299 } else {
300 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
301 }
3a692790
LT
302
303 /*
b9ea2515
KK
304 * At this point page must be either written or cleaned by truncate.
305 * Dirty page here signals a bug and loss of unwritten data.
3a692790 306 *
b9ea2515
KK
307 * This fixes dirty accounting after removing the page entirely but
308 * leaves PageDirty set: it has no effect for truncated page and
309 * anyway will be cleared before returning page into buddy allocator.
3a692790 310 */
b9ea2515 311 if (WARN_ON_ONCE(PageDirty(page)))
62cccb8c 312 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
1da177e4
LT
313}
314
702cfbf9
MK
315/**
316 * delete_from_page_cache - delete page from page cache
317 * @page: the page which the kernel is trying to remove from page cache
318 *
319 * This must be called only on pages that have been verified to be in the page
320 * cache and locked. It will never put the page into the free list, the caller
321 * has a reference on the page.
322 */
323void delete_from_page_cache(struct page *page)
1da177e4 324{
83929372 325 struct address_space *mapping = page_mapping(page);
c4843a75 326 unsigned long flags;
6072d13c 327 void (*freepage)(struct page *);
1da177e4 328
cd7619d6 329 BUG_ON(!PageLocked(page));
1da177e4 330
6072d13c 331 freepage = mapping->a_ops->freepage;
c4843a75 332
c4843a75 333 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 334 __delete_from_page_cache(page, NULL);
c4843a75 335 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
336
337 if (freepage)
338 freepage(page);
83929372
KS
339
340 if (PageTransHuge(page) && !PageHuge(page)) {
341 page_ref_sub(page, HPAGE_PMD_NR);
342 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
343 } else {
344 put_page(page);
345 }
97cecb5a
MK
346}
347EXPORT_SYMBOL(delete_from_page_cache);
348
d72d9e2a 349int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
350{
351 int ret = 0;
352 /* Check for outstanding write errors */
7fcbbaf1
JA
353 if (test_bit(AS_ENOSPC, &mapping->flags) &&
354 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 355 ret = -ENOSPC;
7fcbbaf1
JA
356 if (test_bit(AS_EIO, &mapping->flags) &&
357 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
358 ret = -EIO;
359 return ret;
360}
d72d9e2a 361EXPORT_SYMBOL(filemap_check_errors);
865ffef3 362
1da177e4 363/**
485bb99b 364 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
365 * @mapping: address space structure to write
366 * @start: offset in bytes where the range starts
469eb4d0 367 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 368 * @sync_mode: enable synchronous operation
1da177e4 369 *
485bb99b
RD
370 * Start writeback against all of a mapping's dirty pages that lie
371 * within the byte offsets <start, end> inclusive.
372 *
1da177e4 373 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 374 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
375 * these two operations is that if a dirty page/buffer is encountered, it must
376 * be waited upon, and not just skipped over.
377 */
ebcf28e1
AM
378int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
379 loff_t end, int sync_mode)
1da177e4
LT
380{
381 int ret;
382 struct writeback_control wbc = {
383 .sync_mode = sync_mode,
05fe478d 384 .nr_to_write = LONG_MAX,
111ebb6e
OH
385 .range_start = start,
386 .range_end = end,
1da177e4
LT
387 };
388
389 if (!mapping_cap_writeback_dirty(mapping))
390 return 0;
391
b16b1deb 392 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 393 ret = do_writepages(mapping, &wbc);
b16b1deb 394 wbc_detach_inode(&wbc);
1da177e4
LT
395 return ret;
396}
397
398static inline int __filemap_fdatawrite(struct address_space *mapping,
399 int sync_mode)
400{
111ebb6e 401 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
402}
403
404int filemap_fdatawrite(struct address_space *mapping)
405{
406 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
407}
408EXPORT_SYMBOL(filemap_fdatawrite);
409
f4c0a0fd 410int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 411 loff_t end)
1da177e4
LT
412{
413 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
414}
f4c0a0fd 415EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 416
485bb99b
RD
417/**
418 * filemap_flush - mostly a non-blocking flush
419 * @mapping: target address_space
420 *
1da177e4
LT
421 * This is a mostly non-blocking flush. Not suitable for data-integrity
422 * purposes - I/O may not be started against all dirty pages.
423 */
424int filemap_flush(struct address_space *mapping)
425{
426 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
427}
428EXPORT_SYMBOL(filemap_flush);
429
aa750fd7
JN
430static int __filemap_fdatawait_range(struct address_space *mapping,
431 loff_t start_byte, loff_t end_byte)
1da177e4 432{
09cbfeaf
KS
433 pgoff_t index = start_byte >> PAGE_SHIFT;
434 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
435 struct pagevec pvec;
436 int nr_pages;
aa750fd7 437 int ret = 0;
1da177e4 438
94004ed7 439 if (end_byte < start_byte)
865ffef3 440 goto out;
1da177e4
LT
441
442 pagevec_init(&pvec, 0);
1da177e4
LT
443 while ((index <= end) &&
444 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 PAGECACHE_TAG_WRITEBACK,
446 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
447 unsigned i;
448
449 for (i = 0; i < nr_pages; i++) {
450 struct page *page = pvec.pages[i];
451
452 /* until radix tree lookup accepts end_index */
453 if (page->index > end)
454 continue;
455
456 wait_on_page_writeback(page);
212260aa 457 if (TestClearPageError(page))
1da177e4
LT
458 ret = -EIO;
459 }
460 pagevec_release(&pvec);
461 cond_resched();
462 }
865ffef3 463out:
aa750fd7
JN
464 return ret;
465}
466
467/**
468 * filemap_fdatawait_range - wait for writeback to complete
469 * @mapping: address space structure to wait for
470 * @start_byte: offset in bytes where the range starts
471 * @end_byte: offset in bytes where the range ends (inclusive)
472 *
473 * Walk the list of under-writeback pages of the given address space
474 * in the given range and wait for all of them. Check error status of
475 * the address space and return it.
476 *
477 * Since the error status of the address space is cleared by this function,
478 * callers are responsible for checking the return value and handling and/or
479 * reporting the error.
480 */
481int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
482 loff_t end_byte)
483{
484 int ret, ret2;
485
486 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
865ffef3
DM
487 ret2 = filemap_check_errors(mapping);
488 if (!ret)
489 ret = ret2;
1da177e4
LT
490
491 return ret;
492}
d3bccb6f
JK
493EXPORT_SYMBOL(filemap_fdatawait_range);
494
aa750fd7
JN
495/**
496 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
497 * @mapping: address space structure to wait for
498 *
499 * Walk the list of under-writeback pages of the given address space
500 * and wait for all of them. Unlike filemap_fdatawait(), this function
501 * does not clear error status of the address space.
502 *
503 * Use this function if callers don't handle errors themselves. Expected
504 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
505 * fsfreeze(8)
506 */
507void filemap_fdatawait_keep_errors(struct address_space *mapping)
508{
509 loff_t i_size = i_size_read(mapping->host);
510
511 if (i_size == 0)
512 return;
513
514 __filemap_fdatawait_range(mapping, 0, i_size - 1);
515}
516
1da177e4 517/**
485bb99b 518 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 519 * @mapping: address space structure to wait for
485bb99b
RD
520 *
521 * Walk the list of under-writeback pages of the given address space
aa750fd7
JN
522 * and wait for all of them. Check error status of the address space
523 * and return it.
524 *
525 * Since the error status of the address space is cleared by this function,
526 * callers are responsible for checking the return value and handling and/or
527 * reporting the error.
1da177e4
LT
528 */
529int filemap_fdatawait(struct address_space *mapping)
530{
531 loff_t i_size = i_size_read(mapping->host);
532
533 if (i_size == 0)
534 return 0;
535
94004ed7 536 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
537}
538EXPORT_SYMBOL(filemap_fdatawait);
539
540int filemap_write_and_wait(struct address_space *mapping)
541{
28fd1298 542 int err = 0;
1da177e4 543
7f6d5b52
RZ
544 if ((!dax_mapping(mapping) && mapping->nrpages) ||
545 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
546 err = filemap_fdatawrite(mapping);
547 /*
548 * Even if the above returned error, the pages may be
549 * written partially (e.g. -ENOSPC), so we wait for it.
550 * But the -EIO is special case, it may indicate the worst
551 * thing (e.g. bug) happened, so we avoid waiting for it.
552 */
553 if (err != -EIO) {
554 int err2 = filemap_fdatawait(mapping);
555 if (!err)
556 err = err2;
557 }
865ffef3
DM
558 } else {
559 err = filemap_check_errors(mapping);
1da177e4 560 }
28fd1298 561 return err;
1da177e4 562}
28fd1298 563EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 564
485bb99b
RD
565/**
566 * filemap_write_and_wait_range - write out & wait on a file range
567 * @mapping: the address_space for the pages
568 * @lstart: offset in bytes where the range starts
569 * @lend: offset in bytes where the range ends (inclusive)
570 *
469eb4d0
AM
571 * Write out and wait upon file offsets lstart->lend, inclusive.
572 *
573 * Note that `lend' is inclusive (describes the last byte to be written) so
574 * that this function can be used to write to the very end-of-file (end = -1).
575 */
1da177e4
LT
576int filemap_write_and_wait_range(struct address_space *mapping,
577 loff_t lstart, loff_t lend)
578{
28fd1298 579 int err = 0;
1da177e4 580
7f6d5b52
RZ
581 if ((!dax_mapping(mapping) && mapping->nrpages) ||
582 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
583 err = __filemap_fdatawrite_range(mapping, lstart, lend,
584 WB_SYNC_ALL);
585 /* See comment of filemap_write_and_wait() */
586 if (err != -EIO) {
94004ed7
CH
587 int err2 = filemap_fdatawait_range(mapping,
588 lstart, lend);
28fd1298
OH
589 if (!err)
590 err = err2;
591 }
865ffef3
DM
592 } else {
593 err = filemap_check_errors(mapping);
1da177e4 594 }
28fd1298 595 return err;
1da177e4 596}
f6995585 597EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 598
ef6a3c63
MS
599/**
600 * replace_page_cache_page - replace a pagecache page with a new one
601 * @old: page to be replaced
602 * @new: page to replace with
603 * @gfp_mask: allocation mode
604 *
605 * This function replaces a page in the pagecache with a new one. On
606 * success it acquires the pagecache reference for the new page and
607 * drops it for the old page. Both the old and new pages must be
608 * locked. This function does not add the new page to the LRU, the
609 * caller must do that.
610 *
611 * The remove + add is atomic. The only way this function can fail is
612 * memory allocation failure.
613 */
614int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
615{
616 int error;
ef6a3c63 617
309381fe
SL
618 VM_BUG_ON_PAGE(!PageLocked(old), old);
619 VM_BUG_ON_PAGE(!PageLocked(new), new);
620 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 621
ef6a3c63
MS
622 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
623 if (!error) {
624 struct address_space *mapping = old->mapping;
625 void (*freepage)(struct page *);
c4843a75 626 unsigned long flags;
ef6a3c63
MS
627
628 pgoff_t offset = old->index;
629 freepage = mapping->a_ops->freepage;
630
09cbfeaf 631 get_page(new);
ef6a3c63
MS
632 new->mapping = mapping;
633 new->index = offset;
634
c4843a75 635 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 636 __delete_from_page_cache(old, NULL);
22f2ac51 637 error = page_cache_tree_insert(mapping, new, NULL);
ef6a3c63 638 BUG_ON(error);
4165b9b4
MH
639
640 /*
641 * hugetlb pages do not participate in page cache accounting.
642 */
643 if (!PageHuge(new))
11fb9989 644 __inc_node_page_state(new, NR_FILE_PAGES);
ef6a3c63 645 if (PageSwapBacked(new))
11fb9989 646 __inc_node_page_state(new, NR_SHMEM);
c4843a75 647 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6a93ca8f 648 mem_cgroup_migrate(old, new);
ef6a3c63
MS
649 radix_tree_preload_end();
650 if (freepage)
651 freepage(old);
09cbfeaf 652 put_page(old);
ef6a3c63
MS
653 }
654
655 return error;
656}
657EXPORT_SYMBOL_GPL(replace_page_cache_page);
658
a528910e
JW
659static int __add_to_page_cache_locked(struct page *page,
660 struct address_space *mapping,
661 pgoff_t offset, gfp_t gfp_mask,
662 void **shadowp)
1da177e4 663{
00501b53
JW
664 int huge = PageHuge(page);
665 struct mem_cgroup *memcg;
e286781d
NP
666 int error;
667
309381fe
SL
668 VM_BUG_ON_PAGE(!PageLocked(page), page);
669 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 670
00501b53
JW
671 if (!huge) {
672 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 673 gfp_mask, &memcg, false);
00501b53
JW
674 if (error)
675 return error;
676 }
1da177e4 677
5e4c0d97 678 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 679 if (error) {
00501b53 680 if (!huge)
f627c2f5 681 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
682 return error;
683 }
684
09cbfeaf 685 get_page(page);
66a0c8ee
KS
686 page->mapping = mapping;
687 page->index = offset;
688
689 spin_lock_irq(&mapping->tree_lock);
a528910e 690 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
691 radix_tree_preload_end();
692 if (unlikely(error))
693 goto err_insert;
4165b9b4
MH
694
695 /* hugetlb pages do not participate in page cache accounting. */
696 if (!huge)
11fb9989 697 __inc_node_page_state(page, NR_FILE_PAGES);
66a0c8ee 698 spin_unlock_irq(&mapping->tree_lock);
00501b53 699 if (!huge)
f627c2f5 700 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
701 trace_mm_filemap_add_to_page_cache(page);
702 return 0;
703err_insert:
704 page->mapping = NULL;
705 /* Leave page->index set: truncation relies upon it */
706 spin_unlock_irq(&mapping->tree_lock);
00501b53 707 if (!huge)
f627c2f5 708 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 709 put_page(page);
1da177e4
LT
710 return error;
711}
a528910e
JW
712
713/**
714 * add_to_page_cache_locked - add a locked page to the pagecache
715 * @page: page to add
716 * @mapping: the page's address_space
717 * @offset: page index
718 * @gfp_mask: page allocation mode
719 *
720 * This function is used to add a page to the pagecache. It must be locked.
721 * This function does not add the page to the LRU. The caller must do that.
722 */
723int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
724 pgoff_t offset, gfp_t gfp_mask)
725{
726 return __add_to_page_cache_locked(page, mapping, offset,
727 gfp_mask, NULL);
728}
e286781d 729EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
730
731int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 732 pgoff_t offset, gfp_t gfp_mask)
1da177e4 733{
a528910e 734 void *shadow = NULL;
4f98a2fe
RR
735 int ret;
736
48c935ad 737 __SetPageLocked(page);
a528910e
JW
738 ret = __add_to_page_cache_locked(page, mapping, offset,
739 gfp_mask, &shadow);
740 if (unlikely(ret))
48c935ad 741 __ClearPageLocked(page);
a528910e
JW
742 else {
743 /*
744 * The page might have been evicted from cache only
745 * recently, in which case it should be activated like
746 * any other repeatedly accessed page.
f0281a00
RR
747 * The exception is pages getting rewritten; evicting other
748 * data from the working set, only to cache data that will
749 * get overwritten with something else, is a waste of memory.
a528910e 750 */
f0281a00
RR
751 if (!(gfp_mask & __GFP_WRITE) &&
752 shadow && workingset_refault(shadow)) {
a528910e
JW
753 SetPageActive(page);
754 workingset_activation(page);
755 } else
756 ClearPageActive(page);
757 lru_cache_add(page);
758 }
1da177e4
LT
759 return ret;
760}
18bc0bbd 761EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 762
44110fe3 763#ifdef CONFIG_NUMA
2ae88149 764struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 765{
c0ff7453
MX
766 int n;
767 struct page *page;
768
44110fe3 769 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
770 unsigned int cpuset_mems_cookie;
771 do {
d26914d1 772 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 773 n = cpuset_mem_spread_node();
96db800f 774 page = __alloc_pages_node(n, gfp, 0);
d26914d1 775 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 776
c0ff7453 777 return page;
44110fe3 778 }
2ae88149 779 return alloc_pages(gfp, 0);
44110fe3 780}
2ae88149 781EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
782#endif
783
1da177e4
LT
784/*
785 * In order to wait for pages to become available there must be
786 * waitqueues associated with pages. By using a hash table of
787 * waitqueues where the bucket discipline is to maintain all
788 * waiters on the same queue and wake all when any of the pages
789 * become available, and for the woken contexts to check to be
790 * sure the appropriate page became available, this saves space
791 * at a cost of "thundering herd" phenomena during rare hash
792 * collisions.
793 */
a4796e37 794wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 795{
9dcb8b68 796 return bit_waitqueue(page, 0);
1da177e4 797}
a4796e37 798EXPORT_SYMBOL(page_waitqueue);
1da177e4 799
920c7a5d 800void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
801{
802 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
803
804 if (test_bit(bit_nr, &page->flags))
74316201 805 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
806 TASK_UNINTERRUPTIBLE);
807}
808EXPORT_SYMBOL(wait_on_page_bit);
809
f62e00cc
KM
810int wait_on_page_bit_killable(struct page *page, int bit_nr)
811{
812 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
813
814 if (!test_bit(bit_nr, &page->flags))
815 return 0;
816
817 return __wait_on_bit(page_waitqueue(page), &wait,
74316201 818 bit_wait_io, TASK_KILLABLE);
f62e00cc
KM
819}
820
cbbce822
N
821int wait_on_page_bit_killable_timeout(struct page *page,
822 int bit_nr, unsigned long timeout)
823{
824 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
825
826 wait.key.timeout = jiffies + timeout;
827 if (!test_bit(bit_nr, &page->flags))
828 return 0;
829 return __wait_on_bit(page_waitqueue(page), &wait,
830 bit_wait_io_timeout, TASK_KILLABLE);
831}
832EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
833
385e1ca5
DH
834/**
835 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
836 * @page: Page defining the wait queue of interest
837 * @waiter: Waiter to add to the queue
385e1ca5
DH
838 *
839 * Add an arbitrary @waiter to the wait queue for the nominated @page.
840 */
841void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
842{
843 wait_queue_head_t *q = page_waitqueue(page);
844 unsigned long flags;
845
846 spin_lock_irqsave(&q->lock, flags);
847 __add_wait_queue(q, waiter);
848 spin_unlock_irqrestore(&q->lock, flags);
849}
850EXPORT_SYMBOL_GPL(add_page_wait_queue);
851
1da177e4 852/**
485bb99b 853 * unlock_page - unlock a locked page
1da177e4
LT
854 * @page: the page
855 *
856 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
857 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 858 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
859 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
860 *
8413ac9d
NP
861 * The mb is necessary to enforce ordering between the clear_bit and the read
862 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 863 */
920c7a5d 864void unlock_page(struct page *page)
1da177e4 865{
48c935ad 866 page = compound_head(page);
309381fe 867 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d 868 clear_bit_unlock(PG_locked, &page->flags);
4e857c58 869 smp_mb__after_atomic();
1da177e4
LT
870 wake_up_page(page, PG_locked);
871}
872EXPORT_SYMBOL(unlock_page);
873
485bb99b
RD
874/**
875 * end_page_writeback - end writeback against a page
876 * @page: the page
1da177e4
LT
877 */
878void end_page_writeback(struct page *page)
879{
888cf2db
MG
880 /*
881 * TestClearPageReclaim could be used here but it is an atomic
882 * operation and overkill in this particular case. Failing to
883 * shuffle a page marked for immediate reclaim is too mild to
884 * justify taking an atomic operation penalty at the end of
885 * ever page writeback.
886 */
887 if (PageReclaim(page)) {
888 ClearPageReclaim(page);
ac6aadb2 889 rotate_reclaimable_page(page);
888cf2db 890 }
ac6aadb2
MS
891
892 if (!test_clear_page_writeback(page))
893 BUG();
894
4e857c58 895 smp_mb__after_atomic();
1da177e4
LT
896 wake_up_page(page, PG_writeback);
897}
898EXPORT_SYMBOL(end_page_writeback);
899
57d99845
MW
900/*
901 * After completing I/O on a page, call this routine to update the page
902 * flags appropriately
903 */
c11f0c0b 904void page_endio(struct page *page, bool is_write, int err)
57d99845 905{
c11f0c0b 906 if (!is_write) {
57d99845
MW
907 if (!err) {
908 SetPageUptodate(page);
909 } else {
910 ClearPageUptodate(page);
911 SetPageError(page);
912 }
913 unlock_page(page);
abf54548 914 } else {
57d99845
MW
915 if (err) {
916 SetPageError(page);
917 if (page->mapping)
918 mapping_set_error(page->mapping, err);
919 }
920 end_page_writeback(page);
921 }
922}
923EXPORT_SYMBOL_GPL(page_endio);
924
485bb99b
RD
925/**
926 * __lock_page - get a lock on the page, assuming we need to sleep to get it
927 * @page: the page to lock
1da177e4 928 */
920c7a5d 929void __lock_page(struct page *page)
1da177e4 930{
48c935ad
KS
931 struct page *page_head = compound_head(page);
932 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
1da177e4 933
48c935ad 934 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
1da177e4
LT
935 TASK_UNINTERRUPTIBLE);
936}
937EXPORT_SYMBOL(__lock_page);
938
b5606c2d 939int __lock_page_killable(struct page *page)
2687a356 940{
48c935ad
KS
941 struct page *page_head = compound_head(page);
942 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
2687a356 943
48c935ad 944 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
74316201 945 bit_wait_io, TASK_KILLABLE);
2687a356 946}
18bc0bbd 947EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 948
9a95f3cf
PC
949/*
950 * Return values:
951 * 1 - page is locked; mmap_sem is still held.
952 * 0 - page is not locked.
953 * mmap_sem has been released (up_read()), unless flags had both
954 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
955 * which case mmap_sem is still held.
956 *
957 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
958 * with the page locked and the mmap_sem unperturbed.
959 */
d065bd81
ML
960int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
961 unsigned int flags)
962{
37b23e05
KM
963 if (flags & FAULT_FLAG_ALLOW_RETRY) {
964 /*
965 * CAUTION! In this case, mmap_sem is not released
966 * even though return 0.
967 */
968 if (flags & FAULT_FLAG_RETRY_NOWAIT)
969 return 0;
970
971 up_read(&mm->mmap_sem);
972 if (flags & FAULT_FLAG_KILLABLE)
973 wait_on_page_locked_killable(page);
974 else
318b275f 975 wait_on_page_locked(page);
d065bd81 976 return 0;
37b23e05
KM
977 } else {
978 if (flags & FAULT_FLAG_KILLABLE) {
979 int ret;
980
981 ret = __lock_page_killable(page);
982 if (ret) {
983 up_read(&mm->mmap_sem);
984 return 0;
985 }
986 } else
987 __lock_page(page);
988 return 1;
d065bd81
ML
989 }
990}
991
e7b563bb
JW
992/**
993 * page_cache_next_hole - find the next hole (not-present entry)
994 * @mapping: mapping
995 * @index: index
996 * @max_scan: maximum range to search
997 *
998 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
999 * lowest indexed hole.
1000 *
1001 * Returns: the index of the hole if found, otherwise returns an index
1002 * outside of the set specified (in which case 'return - index >=
1003 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1004 * be returned.
1005 *
1006 * page_cache_next_hole may be called under rcu_read_lock. However,
1007 * like radix_tree_gang_lookup, this will not atomically search a
1008 * snapshot of the tree at a single point in time. For example, if a
1009 * hole is created at index 5, then subsequently a hole is created at
1010 * index 10, page_cache_next_hole covering both indexes may return 10
1011 * if called under rcu_read_lock.
1012 */
1013pgoff_t page_cache_next_hole(struct address_space *mapping,
1014 pgoff_t index, unsigned long max_scan)
1015{
1016 unsigned long i;
1017
1018 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1019 struct page *page;
1020
1021 page = radix_tree_lookup(&mapping->page_tree, index);
1022 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1023 break;
1024 index++;
1025 if (index == 0)
1026 break;
1027 }
1028
1029 return index;
1030}
1031EXPORT_SYMBOL(page_cache_next_hole);
1032
1033/**
1034 * page_cache_prev_hole - find the prev hole (not-present entry)
1035 * @mapping: mapping
1036 * @index: index
1037 * @max_scan: maximum range to search
1038 *
1039 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1040 * the first hole.
1041 *
1042 * Returns: the index of the hole if found, otherwise returns an index
1043 * outside of the set specified (in which case 'index - return >=
1044 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1045 * will be returned.
1046 *
1047 * page_cache_prev_hole may be called under rcu_read_lock. However,
1048 * like radix_tree_gang_lookup, this will not atomically search a
1049 * snapshot of the tree at a single point in time. For example, if a
1050 * hole is created at index 10, then subsequently a hole is created at
1051 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1052 * called under rcu_read_lock.
1053 */
1054pgoff_t page_cache_prev_hole(struct address_space *mapping,
1055 pgoff_t index, unsigned long max_scan)
1056{
1057 unsigned long i;
1058
1059 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1060 struct page *page;
1061
1062 page = radix_tree_lookup(&mapping->page_tree, index);
1063 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1064 break;
1065 index--;
1066 if (index == ULONG_MAX)
1067 break;
1068 }
1069
1070 return index;
1071}
1072EXPORT_SYMBOL(page_cache_prev_hole);
1073
485bb99b 1074/**
0cd6144a 1075 * find_get_entry - find and get a page cache entry
485bb99b 1076 * @mapping: the address_space to search
0cd6144a
JW
1077 * @offset: the page cache index
1078 *
1079 * Looks up the page cache slot at @mapping & @offset. If there is a
1080 * page cache page, it is returned with an increased refcount.
485bb99b 1081 *
139b6a6f
JW
1082 * If the slot holds a shadow entry of a previously evicted page, or a
1083 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1084 *
1085 * Otherwise, %NULL is returned.
1da177e4 1086 */
0cd6144a 1087struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1088{
a60637c8 1089 void **pagep;
83929372 1090 struct page *head, *page;
1da177e4 1091
a60637c8
NP
1092 rcu_read_lock();
1093repeat:
1094 page = NULL;
1095 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1096 if (pagep) {
1097 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1098 if (unlikely(!page))
1099 goto out;
a2c16d6c 1100 if (radix_tree_exception(page)) {
8079b1c8
HD
1101 if (radix_tree_deref_retry(page))
1102 goto repeat;
1103 /*
139b6a6f
JW
1104 * A shadow entry of a recently evicted page,
1105 * or a swap entry from shmem/tmpfs. Return
1106 * it without attempting to raise page count.
8079b1c8
HD
1107 */
1108 goto out;
a2c16d6c 1109 }
83929372
KS
1110
1111 head = compound_head(page);
1112 if (!page_cache_get_speculative(head))
1113 goto repeat;
1114
1115 /* The page was split under us? */
1116 if (compound_head(page) != head) {
1117 put_page(head);
a60637c8 1118 goto repeat;
83929372 1119 }
a60637c8
NP
1120
1121 /*
1122 * Has the page moved?
1123 * This is part of the lockless pagecache protocol. See
1124 * include/linux/pagemap.h for details.
1125 */
1126 if (unlikely(page != *pagep)) {
83929372 1127 put_page(head);
a60637c8
NP
1128 goto repeat;
1129 }
1130 }
27d20fdd 1131out:
a60637c8
NP
1132 rcu_read_unlock();
1133
1da177e4
LT
1134 return page;
1135}
0cd6144a 1136EXPORT_SYMBOL(find_get_entry);
1da177e4 1137
0cd6144a
JW
1138/**
1139 * find_lock_entry - locate, pin and lock a page cache entry
1140 * @mapping: the address_space to search
1141 * @offset: the page cache index
1142 *
1143 * Looks up the page cache slot at @mapping & @offset. If there is a
1144 * page cache page, it is returned locked and with an increased
1145 * refcount.
1146 *
139b6a6f
JW
1147 * If the slot holds a shadow entry of a previously evicted page, or a
1148 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1149 *
1150 * Otherwise, %NULL is returned.
1151 *
1152 * find_lock_entry() may sleep.
1153 */
1154struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1155{
1156 struct page *page;
1157
1da177e4 1158repeat:
0cd6144a 1159 page = find_get_entry(mapping, offset);
a2c16d6c 1160 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1161 lock_page(page);
1162 /* Has the page been truncated? */
83929372 1163 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1164 unlock_page(page);
09cbfeaf 1165 put_page(page);
a60637c8 1166 goto repeat;
1da177e4 1167 }
83929372 1168 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1169 }
1da177e4
LT
1170 return page;
1171}
0cd6144a
JW
1172EXPORT_SYMBOL(find_lock_entry);
1173
1174/**
2457aec6 1175 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1176 * @mapping: the address_space to search
1177 * @offset: the page index
2457aec6 1178 * @fgp_flags: PCG flags
45f87de5 1179 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1180 *
2457aec6 1181 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1182 *
75325189 1183 * PCG flags modify how the page is returned.
0cd6144a 1184 *
2457aec6
MG
1185 * FGP_ACCESSED: the page will be marked accessed
1186 * FGP_LOCK: Page is return locked
1187 * FGP_CREAT: If page is not present then a new page is allocated using
45f87de5
MH
1188 * @gfp_mask and added to the page cache and the VM's LRU
1189 * list. The page is returned locked and with an increased
1190 * refcount. Otherwise, %NULL is returned.
1da177e4 1191 *
2457aec6
MG
1192 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1193 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1194 *
2457aec6 1195 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1196 */
2457aec6 1197struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1198 int fgp_flags, gfp_t gfp_mask)
1da177e4 1199{
eb2be189 1200 struct page *page;
2457aec6 1201
1da177e4 1202repeat:
2457aec6
MG
1203 page = find_get_entry(mapping, offset);
1204 if (radix_tree_exceptional_entry(page))
1205 page = NULL;
1206 if (!page)
1207 goto no_page;
1208
1209 if (fgp_flags & FGP_LOCK) {
1210 if (fgp_flags & FGP_NOWAIT) {
1211 if (!trylock_page(page)) {
09cbfeaf 1212 put_page(page);
2457aec6
MG
1213 return NULL;
1214 }
1215 } else {
1216 lock_page(page);
1217 }
1218
1219 /* Has the page been truncated? */
1220 if (unlikely(page->mapping != mapping)) {
1221 unlock_page(page);
09cbfeaf 1222 put_page(page);
2457aec6
MG
1223 goto repeat;
1224 }
1225 VM_BUG_ON_PAGE(page->index != offset, page);
1226 }
1227
1228 if (page && (fgp_flags & FGP_ACCESSED))
1229 mark_page_accessed(page);
1230
1231no_page:
1232 if (!page && (fgp_flags & FGP_CREAT)) {
1233 int err;
1234 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1235 gfp_mask |= __GFP_WRITE;
1236 if (fgp_flags & FGP_NOFS)
1237 gfp_mask &= ~__GFP_FS;
2457aec6 1238
45f87de5 1239 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1240 if (!page)
1241 return NULL;
2457aec6
MG
1242
1243 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1244 fgp_flags |= FGP_LOCK;
1245
eb39d618 1246 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1247 if (fgp_flags & FGP_ACCESSED)
eb39d618 1248 __SetPageReferenced(page);
2457aec6 1249
45f87de5
MH
1250 err = add_to_page_cache_lru(page, mapping, offset,
1251 gfp_mask & GFP_RECLAIM_MASK);
eb2be189 1252 if (unlikely(err)) {
09cbfeaf 1253 put_page(page);
eb2be189
NP
1254 page = NULL;
1255 if (err == -EEXIST)
1256 goto repeat;
1da177e4 1257 }
1da177e4 1258 }
2457aec6 1259
1da177e4
LT
1260 return page;
1261}
2457aec6 1262EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1263
0cd6144a
JW
1264/**
1265 * find_get_entries - gang pagecache lookup
1266 * @mapping: The address_space to search
1267 * @start: The starting page cache index
1268 * @nr_entries: The maximum number of entries
1269 * @entries: Where the resulting entries are placed
1270 * @indices: The cache indices corresponding to the entries in @entries
1271 *
1272 * find_get_entries() will search for and return a group of up to
1273 * @nr_entries entries in the mapping. The entries are placed at
1274 * @entries. find_get_entries() takes a reference against any actual
1275 * pages it returns.
1276 *
1277 * The search returns a group of mapping-contiguous page cache entries
1278 * with ascending indexes. There may be holes in the indices due to
1279 * not-present pages.
1280 *
139b6a6f
JW
1281 * Any shadow entries of evicted pages, or swap entries from
1282 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1283 *
1284 * find_get_entries() returns the number of pages and shadow entries
1285 * which were found.
1286 */
1287unsigned find_get_entries(struct address_space *mapping,
1288 pgoff_t start, unsigned int nr_entries,
1289 struct page **entries, pgoff_t *indices)
1290{
1291 void **slot;
1292 unsigned int ret = 0;
1293 struct radix_tree_iter iter;
1294
1295 if (!nr_entries)
1296 return 0;
1297
1298 rcu_read_lock();
0cd6144a 1299 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1300 struct page *head, *page;
0cd6144a
JW
1301repeat:
1302 page = radix_tree_deref_slot(slot);
1303 if (unlikely(!page))
1304 continue;
1305 if (radix_tree_exception(page)) {
2cf938aa
MW
1306 if (radix_tree_deref_retry(page)) {
1307 slot = radix_tree_iter_retry(&iter);
1308 continue;
1309 }
0cd6144a 1310 /*
f9fe48be
RZ
1311 * A shadow entry of a recently evicted page, a swap
1312 * entry from shmem/tmpfs or a DAX entry. Return it
1313 * without attempting to raise page count.
0cd6144a
JW
1314 */
1315 goto export;
1316 }
83929372
KS
1317
1318 head = compound_head(page);
1319 if (!page_cache_get_speculative(head))
1320 goto repeat;
1321
1322 /* The page was split under us? */
1323 if (compound_head(page) != head) {
1324 put_page(head);
0cd6144a 1325 goto repeat;
83929372 1326 }
0cd6144a
JW
1327
1328 /* Has the page moved? */
1329 if (unlikely(page != *slot)) {
83929372 1330 put_page(head);
0cd6144a
JW
1331 goto repeat;
1332 }
1333export:
1334 indices[ret] = iter.index;
1335 entries[ret] = page;
1336 if (++ret == nr_entries)
1337 break;
1338 }
1339 rcu_read_unlock();
1340 return ret;
1341}
1342
1da177e4
LT
1343/**
1344 * find_get_pages - gang pagecache lookup
1345 * @mapping: The address_space to search
1346 * @start: The starting page index
1347 * @nr_pages: The maximum number of pages
1348 * @pages: Where the resulting pages are placed
1349 *
1350 * find_get_pages() will search for and return a group of up to
1351 * @nr_pages pages in the mapping. The pages are placed at @pages.
1352 * find_get_pages() takes a reference against the returned pages.
1353 *
1354 * The search returns a group of mapping-contiguous pages with ascending
1355 * indexes. There may be holes in the indices due to not-present pages.
1356 *
1357 * find_get_pages() returns the number of pages which were found.
1358 */
1359unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1360 unsigned int nr_pages, struct page **pages)
1361{
0fc9d104
KK
1362 struct radix_tree_iter iter;
1363 void **slot;
1364 unsigned ret = 0;
1365
1366 if (unlikely(!nr_pages))
1367 return 0;
a60637c8
NP
1368
1369 rcu_read_lock();
0fc9d104 1370 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1371 struct page *head, *page;
a60637c8 1372repeat:
0fc9d104 1373 page = radix_tree_deref_slot(slot);
a60637c8
NP
1374 if (unlikely(!page))
1375 continue;
9d8aa4ea 1376
a2c16d6c 1377 if (radix_tree_exception(page)) {
8079b1c8 1378 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1379 slot = radix_tree_iter_retry(&iter);
1380 continue;
8079b1c8 1381 }
a2c16d6c 1382 /*
139b6a6f
JW
1383 * A shadow entry of a recently evicted page,
1384 * or a swap entry from shmem/tmpfs. Skip
1385 * over it.
a2c16d6c 1386 */
8079b1c8 1387 continue;
27d20fdd 1388 }
a60637c8 1389
83929372
KS
1390 head = compound_head(page);
1391 if (!page_cache_get_speculative(head))
1392 goto repeat;
1393
1394 /* The page was split under us? */
1395 if (compound_head(page) != head) {
1396 put_page(head);
a60637c8 1397 goto repeat;
83929372 1398 }
a60637c8
NP
1399
1400 /* Has the page moved? */
0fc9d104 1401 if (unlikely(page != *slot)) {
83929372 1402 put_page(head);
a60637c8
NP
1403 goto repeat;
1404 }
1da177e4 1405
a60637c8 1406 pages[ret] = page;
0fc9d104
KK
1407 if (++ret == nr_pages)
1408 break;
a60637c8 1409 }
5b280c0c 1410
a60637c8 1411 rcu_read_unlock();
1da177e4
LT
1412 return ret;
1413}
1414
ebf43500
JA
1415/**
1416 * find_get_pages_contig - gang contiguous pagecache lookup
1417 * @mapping: The address_space to search
1418 * @index: The starting page index
1419 * @nr_pages: The maximum number of pages
1420 * @pages: Where the resulting pages are placed
1421 *
1422 * find_get_pages_contig() works exactly like find_get_pages(), except
1423 * that the returned number of pages are guaranteed to be contiguous.
1424 *
1425 * find_get_pages_contig() returns the number of pages which were found.
1426 */
1427unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1428 unsigned int nr_pages, struct page **pages)
1429{
0fc9d104
KK
1430 struct radix_tree_iter iter;
1431 void **slot;
1432 unsigned int ret = 0;
1433
1434 if (unlikely(!nr_pages))
1435 return 0;
a60637c8
NP
1436
1437 rcu_read_lock();
0fc9d104 1438 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
83929372 1439 struct page *head, *page;
a60637c8 1440repeat:
0fc9d104
KK
1441 page = radix_tree_deref_slot(slot);
1442 /* The hole, there no reason to continue */
a60637c8 1443 if (unlikely(!page))
0fc9d104 1444 break;
9d8aa4ea 1445
a2c16d6c 1446 if (radix_tree_exception(page)) {
8079b1c8 1447 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1448 slot = radix_tree_iter_retry(&iter);
1449 continue;
8079b1c8 1450 }
a2c16d6c 1451 /*
139b6a6f
JW
1452 * A shadow entry of a recently evicted page,
1453 * or a swap entry from shmem/tmpfs. Stop
1454 * looking for contiguous pages.
a2c16d6c 1455 */
8079b1c8 1456 break;
a2c16d6c 1457 }
ebf43500 1458
83929372
KS
1459 head = compound_head(page);
1460 if (!page_cache_get_speculative(head))
1461 goto repeat;
1462
1463 /* The page was split under us? */
1464 if (compound_head(page) != head) {
1465 put_page(head);
a60637c8 1466 goto repeat;
83929372 1467 }
a60637c8
NP
1468
1469 /* Has the page moved? */
0fc9d104 1470 if (unlikely(page != *slot)) {
83929372 1471 put_page(head);
a60637c8
NP
1472 goto repeat;
1473 }
1474
9cbb4cb2
NP
1475 /*
1476 * must check mapping and index after taking the ref.
1477 * otherwise we can get both false positives and false
1478 * negatives, which is just confusing to the caller.
1479 */
83929372 1480 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
09cbfeaf 1481 put_page(page);
9cbb4cb2
NP
1482 break;
1483 }
1484
a60637c8 1485 pages[ret] = page;
0fc9d104
KK
1486 if (++ret == nr_pages)
1487 break;
ebf43500 1488 }
a60637c8
NP
1489 rcu_read_unlock();
1490 return ret;
ebf43500 1491}
ef71c15c 1492EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1493
485bb99b
RD
1494/**
1495 * find_get_pages_tag - find and return pages that match @tag
1496 * @mapping: the address_space to search
1497 * @index: the starting page index
1498 * @tag: the tag index
1499 * @nr_pages: the maximum number of pages
1500 * @pages: where the resulting pages are placed
1501 *
1da177e4 1502 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1503 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1504 */
1505unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1506 int tag, unsigned int nr_pages, struct page **pages)
1507{
0fc9d104
KK
1508 struct radix_tree_iter iter;
1509 void **slot;
1510 unsigned ret = 0;
1511
1512 if (unlikely(!nr_pages))
1513 return 0;
a60637c8
NP
1514
1515 rcu_read_lock();
0fc9d104
KK
1516 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1517 &iter, *index, tag) {
83929372 1518 struct page *head, *page;
a60637c8 1519repeat:
0fc9d104 1520 page = radix_tree_deref_slot(slot);
a60637c8
NP
1521 if (unlikely(!page))
1522 continue;
9d8aa4ea 1523
a2c16d6c 1524 if (radix_tree_exception(page)) {
8079b1c8 1525 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1526 slot = radix_tree_iter_retry(&iter);
1527 continue;
8079b1c8 1528 }
a2c16d6c 1529 /*
139b6a6f
JW
1530 * A shadow entry of a recently evicted page.
1531 *
1532 * Those entries should never be tagged, but
1533 * this tree walk is lockless and the tags are
1534 * looked up in bulk, one radix tree node at a
1535 * time, so there is a sizable window for page
1536 * reclaim to evict a page we saw tagged.
1537 *
1538 * Skip over it.
a2c16d6c 1539 */
139b6a6f 1540 continue;
a2c16d6c 1541 }
a60637c8 1542
83929372
KS
1543 head = compound_head(page);
1544 if (!page_cache_get_speculative(head))
a60637c8
NP
1545 goto repeat;
1546
83929372
KS
1547 /* The page was split under us? */
1548 if (compound_head(page) != head) {
1549 put_page(head);
1550 goto repeat;
1551 }
1552
a60637c8 1553 /* Has the page moved? */
0fc9d104 1554 if (unlikely(page != *slot)) {
83929372 1555 put_page(head);
a60637c8
NP
1556 goto repeat;
1557 }
1558
1559 pages[ret] = page;
0fc9d104
KK
1560 if (++ret == nr_pages)
1561 break;
a60637c8 1562 }
5b280c0c 1563
a60637c8 1564 rcu_read_unlock();
1da177e4 1565
1da177e4
LT
1566 if (ret)
1567 *index = pages[ret - 1]->index + 1;
a60637c8 1568
1da177e4
LT
1569 return ret;
1570}
ef71c15c 1571EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1572
7e7f7749
RZ
1573/**
1574 * find_get_entries_tag - find and return entries that match @tag
1575 * @mapping: the address_space to search
1576 * @start: the starting page cache index
1577 * @tag: the tag index
1578 * @nr_entries: the maximum number of entries
1579 * @entries: where the resulting entries are placed
1580 * @indices: the cache indices corresponding to the entries in @entries
1581 *
1582 * Like find_get_entries, except we only return entries which are tagged with
1583 * @tag.
1584 */
1585unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1586 int tag, unsigned int nr_entries,
1587 struct page **entries, pgoff_t *indices)
1588{
1589 void **slot;
1590 unsigned int ret = 0;
1591 struct radix_tree_iter iter;
1592
1593 if (!nr_entries)
1594 return 0;
1595
1596 rcu_read_lock();
7e7f7749
RZ
1597 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1598 &iter, start, tag) {
83929372 1599 struct page *head, *page;
7e7f7749
RZ
1600repeat:
1601 page = radix_tree_deref_slot(slot);
1602 if (unlikely(!page))
1603 continue;
1604 if (radix_tree_exception(page)) {
1605 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1606 slot = radix_tree_iter_retry(&iter);
1607 continue;
7e7f7749
RZ
1608 }
1609
1610 /*
1611 * A shadow entry of a recently evicted page, a swap
1612 * entry from shmem/tmpfs or a DAX entry. Return it
1613 * without attempting to raise page count.
1614 */
1615 goto export;
1616 }
83929372
KS
1617
1618 head = compound_head(page);
1619 if (!page_cache_get_speculative(head))
7e7f7749
RZ
1620 goto repeat;
1621
83929372
KS
1622 /* The page was split under us? */
1623 if (compound_head(page) != head) {
1624 put_page(head);
1625 goto repeat;
1626 }
1627
7e7f7749
RZ
1628 /* Has the page moved? */
1629 if (unlikely(page != *slot)) {
83929372 1630 put_page(head);
7e7f7749
RZ
1631 goto repeat;
1632 }
1633export:
1634 indices[ret] = iter.index;
1635 entries[ret] = page;
1636 if (++ret == nr_entries)
1637 break;
1638 }
1639 rcu_read_unlock();
1640 return ret;
1641}
1642EXPORT_SYMBOL(find_get_entries_tag);
1643
76d42bd9
WF
1644/*
1645 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1646 * a _large_ part of the i/o request. Imagine the worst scenario:
1647 *
1648 * ---R__________________________________________B__________
1649 * ^ reading here ^ bad block(assume 4k)
1650 *
1651 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1652 * => failing the whole request => read(R) => read(R+1) =>
1653 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1654 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1655 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1656 *
1657 * It is going insane. Fix it by quickly scaling down the readahead size.
1658 */
1659static void shrink_readahead_size_eio(struct file *filp,
1660 struct file_ra_state *ra)
1661{
76d42bd9 1662 ra->ra_pages /= 4;
76d42bd9
WF
1663}
1664
485bb99b 1665/**
36e78914 1666 * do_generic_file_read - generic file read routine
485bb99b
RD
1667 * @filp: the file to read
1668 * @ppos: current file position
6e58e79d
AV
1669 * @iter: data destination
1670 * @written: already copied
485bb99b 1671 *
1da177e4 1672 * This is a generic file read routine, and uses the
485bb99b 1673 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1674 *
1675 * This is really ugly. But the goto's actually try to clarify some
1676 * of the logic when it comes to error handling etc.
1da177e4 1677 */
6e58e79d
AV
1678static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1679 struct iov_iter *iter, ssize_t written)
1da177e4 1680{
36e78914 1681 struct address_space *mapping = filp->f_mapping;
1da177e4 1682 struct inode *inode = mapping->host;
36e78914 1683 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1684 pgoff_t index;
1685 pgoff_t last_index;
1686 pgoff_t prev_index;
1687 unsigned long offset; /* offset into pagecache page */
ec0f1637 1688 unsigned int prev_offset;
6e58e79d 1689 int error = 0;
1da177e4 1690
c2a9737f
WF
1691 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1692 return -EINVAL;
1693 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1694
09cbfeaf
KS
1695 index = *ppos >> PAGE_SHIFT;
1696 prev_index = ra->prev_pos >> PAGE_SHIFT;
1697 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1698 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1699 offset = *ppos & ~PAGE_MASK;
1da177e4 1700
1da177e4
LT
1701 for (;;) {
1702 struct page *page;
57f6b96c 1703 pgoff_t end_index;
a32ea1e1 1704 loff_t isize;
1da177e4
LT
1705 unsigned long nr, ret;
1706
1da177e4 1707 cond_resched();
1da177e4
LT
1708find_page:
1709 page = find_get_page(mapping, index);
3ea89ee8 1710 if (!page) {
cf914a7d 1711 page_cache_sync_readahead(mapping,
7ff81078 1712 ra, filp,
3ea89ee8
FW
1713 index, last_index - index);
1714 page = find_get_page(mapping, index);
1715 if (unlikely(page == NULL))
1716 goto no_cached_page;
1717 }
1718 if (PageReadahead(page)) {
cf914a7d 1719 page_cache_async_readahead(mapping,
7ff81078 1720 ra, filp, page,
3ea89ee8 1721 index, last_index - index);
1da177e4 1722 }
8ab22b9a 1723 if (!PageUptodate(page)) {
ebded027
MG
1724 /*
1725 * See comment in do_read_cache_page on why
1726 * wait_on_page_locked is used to avoid unnecessarily
1727 * serialisations and why it's safe.
1728 */
c4b209a4
BVA
1729 error = wait_on_page_locked_killable(page);
1730 if (unlikely(error))
1731 goto readpage_error;
ebded027
MG
1732 if (PageUptodate(page))
1733 goto page_ok;
1734
09cbfeaf 1735 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
1736 !mapping->a_ops->is_partially_uptodate)
1737 goto page_not_up_to_date;
6d6d36bc
EG
1738 /* pipes can't handle partially uptodate pages */
1739 if (unlikely(iter->type & ITER_PIPE))
1740 goto page_not_up_to_date;
529ae9aa 1741 if (!trylock_page(page))
8ab22b9a 1742 goto page_not_up_to_date;
8d056cb9
DH
1743 /* Did it get truncated before we got the lock? */
1744 if (!page->mapping)
1745 goto page_not_up_to_date_locked;
8ab22b9a 1746 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1747 offset, iter->count))
8ab22b9a
HH
1748 goto page_not_up_to_date_locked;
1749 unlock_page(page);
1750 }
1da177e4 1751page_ok:
a32ea1e1
N
1752 /*
1753 * i_size must be checked after we know the page is Uptodate.
1754 *
1755 * Checking i_size after the check allows us to calculate
1756 * the correct value for "nr", which means the zero-filled
1757 * part of the page is not copied back to userspace (unless
1758 * another truncate extends the file - this is desired though).
1759 */
1760
1761 isize = i_size_read(inode);
09cbfeaf 1762 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 1763 if (unlikely(!isize || index > end_index)) {
09cbfeaf 1764 put_page(page);
a32ea1e1
N
1765 goto out;
1766 }
1767
1768 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 1769 nr = PAGE_SIZE;
a32ea1e1 1770 if (index == end_index) {
09cbfeaf 1771 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 1772 if (nr <= offset) {
09cbfeaf 1773 put_page(page);
a32ea1e1
N
1774 goto out;
1775 }
1776 }
1777 nr = nr - offset;
1da177e4
LT
1778
1779 /* If users can be writing to this page using arbitrary
1780 * virtual addresses, take care about potential aliasing
1781 * before reading the page on the kernel side.
1782 */
1783 if (mapping_writably_mapped(mapping))
1784 flush_dcache_page(page);
1785
1786 /*
ec0f1637
JK
1787 * When a sequential read accesses a page several times,
1788 * only mark it as accessed the first time.
1da177e4 1789 */
ec0f1637 1790 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1791 mark_page_accessed(page);
1792 prev_index = index;
1793
1794 /*
1795 * Ok, we have the page, and it's up-to-date, so
1796 * now we can copy it to user space...
1da177e4 1797 */
6e58e79d
AV
1798
1799 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 1800 offset += ret;
09cbfeaf
KS
1801 index += offset >> PAGE_SHIFT;
1802 offset &= ~PAGE_MASK;
6ce745ed 1803 prev_offset = offset;
1da177e4 1804
09cbfeaf 1805 put_page(page);
6e58e79d
AV
1806 written += ret;
1807 if (!iov_iter_count(iter))
1808 goto out;
1809 if (ret < nr) {
1810 error = -EFAULT;
1811 goto out;
1812 }
1813 continue;
1da177e4
LT
1814
1815page_not_up_to_date:
1816 /* Get exclusive access to the page ... */
85462323
ON
1817 error = lock_page_killable(page);
1818 if (unlikely(error))
1819 goto readpage_error;
1da177e4 1820
8ab22b9a 1821page_not_up_to_date_locked:
da6052f7 1822 /* Did it get truncated before we got the lock? */
1da177e4
LT
1823 if (!page->mapping) {
1824 unlock_page(page);
09cbfeaf 1825 put_page(page);
1da177e4
LT
1826 continue;
1827 }
1828
1829 /* Did somebody else fill it already? */
1830 if (PageUptodate(page)) {
1831 unlock_page(page);
1832 goto page_ok;
1833 }
1834
1835readpage:
91803b49
JM
1836 /*
1837 * A previous I/O error may have been due to temporary
1838 * failures, eg. multipath errors.
1839 * PG_error will be set again if readpage fails.
1840 */
1841 ClearPageError(page);
1da177e4
LT
1842 /* Start the actual read. The read will unlock the page. */
1843 error = mapping->a_ops->readpage(filp, page);
1844
994fc28c
ZB
1845 if (unlikely(error)) {
1846 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 1847 put_page(page);
6e58e79d 1848 error = 0;
994fc28c
ZB
1849 goto find_page;
1850 }
1da177e4 1851 goto readpage_error;
994fc28c 1852 }
1da177e4
LT
1853
1854 if (!PageUptodate(page)) {
85462323
ON
1855 error = lock_page_killable(page);
1856 if (unlikely(error))
1857 goto readpage_error;
1da177e4
LT
1858 if (!PageUptodate(page)) {
1859 if (page->mapping == NULL) {
1860 /*
2ecdc82e 1861 * invalidate_mapping_pages got it
1da177e4
LT
1862 */
1863 unlock_page(page);
09cbfeaf 1864 put_page(page);
1da177e4
LT
1865 goto find_page;
1866 }
1867 unlock_page(page);
7ff81078 1868 shrink_readahead_size_eio(filp, ra);
85462323
ON
1869 error = -EIO;
1870 goto readpage_error;
1da177e4
LT
1871 }
1872 unlock_page(page);
1873 }
1874
1da177e4
LT
1875 goto page_ok;
1876
1877readpage_error:
1878 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 1879 put_page(page);
1da177e4
LT
1880 goto out;
1881
1882no_cached_page:
1883 /*
1884 * Ok, it wasn't cached, so we need to create a new
1885 * page..
1886 */
eb2be189
NP
1887 page = page_cache_alloc_cold(mapping);
1888 if (!page) {
6e58e79d 1889 error = -ENOMEM;
eb2be189 1890 goto out;
1da177e4 1891 }
6afdb859 1892 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 1893 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 1894 if (error) {
09cbfeaf 1895 put_page(page);
6e58e79d
AV
1896 if (error == -EEXIST) {
1897 error = 0;
1da177e4 1898 goto find_page;
6e58e79d 1899 }
1da177e4
LT
1900 goto out;
1901 }
1da177e4
LT
1902 goto readpage;
1903 }
1904
1905out:
7ff81078 1906 ra->prev_pos = prev_index;
09cbfeaf 1907 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 1908 ra->prev_pos |= prev_offset;
1da177e4 1909
09cbfeaf 1910 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 1911 file_accessed(filp);
6e58e79d 1912 return written ? written : error;
1da177e4
LT
1913}
1914
485bb99b 1915/**
6abd2322 1916 * generic_file_read_iter - generic filesystem read routine
485bb99b 1917 * @iocb: kernel I/O control block
6abd2322 1918 * @iter: destination for the data read
485bb99b 1919 *
6abd2322 1920 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
1921 * that can use the page cache directly.
1922 */
1923ssize_t
ed978a81 1924generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 1925{
ed978a81 1926 struct file *file = iocb->ki_filp;
cb66a7a1 1927 ssize_t retval = 0;
e7080a43
NS
1928 size_t count = iov_iter_count(iter);
1929
1930 if (!count)
1931 goto out; /* skip atime */
1da177e4 1932
2ba48ce5 1933 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
1934 struct address_space *mapping = file->f_mapping;
1935 struct inode *inode = mapping->host;
0d5b0cf2 1936 struct iov_iter data = *iter;
543ade1f 1937 loff_t size;
1da177e4 1938
1da177e4 1939 size = i_size_read(inode);
c64fb5c7
CH
1940 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1941 iocb->ki_pos + count - 1);
0d5b0cf2
CH
1942 if (retval < 0)
1943 goto out;
d8d3d94b 1944
0d5b0cf2
CH
1945 file_accessed(file);
1946
1947 retval = mapping->a_ops->direct_IO(iocb, &data);
c3a69024 1948 if (retval >= 0) {
c64fb5c7 1949 iocb->ki_pos += retval;
ed978a81 1950 iov_iter_advance(iter, retval);
9fe55eea 1951 }
66f998f6 1952
9fe55eea
SW
1953 /*
1954 * Btrfs can have a short DIO read if we encounter
1955 * compressed extents, so if there was an error, or if
1956 * we've already read everything we wanted to, or if
1957 * there was a short read because we hit EOF, go ahead
1958 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
1959 * the rest of the read. Buffered reads will not work for
1960 * DAX files, so don't bother trying.
9fe55eea 1961 */
c64fb5c7 1962 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
0d5b0cf2 1963 IS_DAX(inode))
9fe55eea 1964 goto out;
1da177e4
LT
1965 }
1966
c64fb5c7 1967 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1da177e4
LT
1968out:
1969 return retval;
1970}
ed978a81 1971EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 1972
1da177e4 1973#ifdef CONFIG_MMU
485bb99b
RD
1974/**
1975 * page_cache_read - adds requested page to the page cache if not already there
1976 * @file: file to read
1977 * @offset: page index
62eb320a 1978 * @gfp_mask: memory allocation flags
485bb99b 1979 *
1da177e4
LT
1980 * This adds the requested page to the page cache if it isn't already there,
1981 * and schedules an I/O to read in its contents from disk.
1982 */
c20cd45e 1983static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
1984{
1985 struct address_space *mapping = file->f_mapping;
99dadfdd 1986 struct page *page;
994fc28c 1987 int ret;
1da177e4 1988
994fc28c 1989 do {
c20cd45e 1990 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
994fc28c
ZB
1991 if (!page)
1992 return -ENOMEM;
1993
c20cd45e 1994 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
994fc28c
ZB
1995 if (ret == 0)
1996 ret = mapping->a_ops->readpage(file, page);
1997 else if (ret == -EEXIST)
1998 ret = 0; /* losing race to add is OK */
1da177e4 1999
09cbfeaf 2000 put_page(page);
1da177e4 2001
994fc28c 2002 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 2003
994fc28c 2004 return ret;
1da177e4
LT
2005}
2006
2007#define MMAP_LOTSAMISS (100)
2008
ef00e08e
LT
2009/*
2010 * Synchronous readahead happens when we don't even find
2011 * a page in the page cache at all.
2012 */
2013static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2014 struct file_ra_state *ra,
2015 struct file *file,
2016 pgoff_t offset)
2017{
ef00e08e
LT
2018 struct address_space *mapping = file->f_mapping;
2019
2020 /* If we don't want any read-ahead, don't bother */
64363aad 2021 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 2022 return;
275b12bf
WF
2023 if (!ra->ra_pages)
2024 return;
ef00e08e 2025
64363aad 2026 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
2027 page_cache_sync_readahead(mapping, ra, file, offset,
2028 ra->ra_pages);
ef00e08e
LT
2029 return;
2030 }
2031
207d04ba
AK
2032 /* Avoid banging the cache line if not needed */
2033 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2034 ra->mmap_miss++;
2035
2036 /*
2037 * Do we miss much more than hit in this file? If so,
2038 * stop bothering with read-ahead. It will only hurt.
2039 */
2040 if (ra->mmap_miss > MMAP_LOTSAMISS)
2041 return;
2042
d30a1100
WF
2043 /*
2044 * mmap read-around
2045 */
600e19af
RG
2046 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2047 ra->size = ra->ra_pages;
2048 ra->async_size = ra->ra_pages / 4;
275b12bf 2049 ra_submit(ra, mapping, file);
ef00e08e
LT
2050}
2051
2052/*
2053 * Asynchronous readahead happens when we find the page and PG_readahead,
2054 * so we want to possibly extend the readahead further..
2055 */
2056static void do_async_mmap_readahead(struct vm_area_struct *vma,
2057 struct file_ra_state *ra,
2058 struct file *file,
2059 struct page *page,
2060 pgoff_t offset)
2061{
2062 struct address_space *mapping = file->f_mapping;
2063
2064 /* If we don't want any read-ahead, don't bother */
64363aad 2065 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
2066 return;
2067 if (ra->mmap_miss > 0)
2068 ra->mmap_miss--;
2069 if (PageReadahead(page))
2fad6f5d
WF
2070 page_cache_async_readahead(mapping, ra, file,
2071 page, offset, ra->ra_pages);
ef00e08e
LT
2072}
2073
485bb99b 2074/**
54cb8821 2075 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
2076 * @vma: vma in which the fault was taken
2077 * @vmf: struct vm_fault containing details of the fault
485bb99b 2078 *
54cb8821 2079 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2080 * mapped memory region to read in file data during a page fault.
2081 *
2082 * The goto's are kind of ugly, but this streamlines the normal case of having
2083 * it in the page cache, and handles the special cases reasonably without
2084 * having a lot of duplicated code.
9a95f3cf
PC
2085 *
2086 * vma->vm_mm->mmap_sem must be held on entry.
2087 *
2088 * If our return value has VM_FAULT_RETRY set, it's because
2089 * lock_page_or_retry() returned 0.
2090 * The mmap_sem has usually been released in this case.
2091 * See __lock_page_or_retry() for the exception.
2092 *
2093 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2094 * has not been released.
2095 *
2096 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2097 */
d0217ac0 2098int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2099{
2100 int error;
54cb8821 2101 struct file *file = vma->vm_file;
1da177e4
LT
2102 struct address_space *mapping = file->f_mapping;
2103 struct file_ra_state *ra = &file->f_ra;
2104 struct inode *inode = mapping->host;
ef00e08e 2105 pgoff_t offset = vmf->pgoff;
1da177e4 2106 struct page *page;
99e3e53f 2107 loff_t size;
83c54070 2108 int ret = 0;
1da177e4 2109
09cbfeaf
KS
2110 size = round_up(i_size_read(inode), PAGE_SIZE);
2111 if (offset >= size >> PAGE_SHIFT)
5307cc1a 2112 return VM_FAULT_SIGBUS;
1da177e4 2113
1da177e4 2114 /*
49426420 2115 * Do we have something in the page cache already?
1da177e4 2116 */
ef00e08e 2117 page = find_get_page(mapping, offset);
45cac65b 2118 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2119 /*
ef00e08e
LT
2120 * We found the page, so try async readahead before
2121 * waiting for the lock.
1da177e4 2122 */
ef00e08e 2123 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 2124 } else if (!page) {
ef00e08e
LT
2125 /* No page in the page cache at all */
2126 do_sync_mmap_readahead(vma, ra, file, offset);
2127 count_vm_event(PGMAJFAULT);
456f998e 2128 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2129 ret = VM_FAULT_MAJOR;
2130retry_find:
b522c94d 2131 page = find_get_page(mapping, offset);
1da177e4
LT
2132 if (!page)
2133 goto no_cached_page;
2134 }
2135
d88c0922 2136 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
09cbfeaf 2137 put_page(page);
d065bd81 2138 return ret | VM_FAULT_RETRY;
d88c0922 2139 }
b522c94d
ML
2140
2141 /* Did it get truncated? */
2142 if (unlikely(page->mapping != mapping)) {
2143 unlock_page(page);
2144 put_page(page);
2145 goto retry_find;
2146 }
309381fe 2147 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2148
1da177e4 2149 /*
d00806b1
NP
2150 * We have a locked page in the page cache, now we need to check
2151 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2152 */
d00806b1 2153 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2154 goto page_not_uptodate;
2155
ef00e08e
LT
2156 /*
2157 * Found the page and have a reference on it.
2158 * We must recheck i_size under page lock.
2159 */
09cbfeaf
KS
2160 size = round_up(i_size_read(inode), PAGE_SIZE);
2161 if (unlikely(offset >= size >> PAGE_SHIFT)) {
d00806b1 2162 unlock_page(page);
09cbfeaf 2163 put_page(page);
5307cc1a 2164 return VM_FAULT_SIGBUS;
d00806b1
NP
2165 }
2166
d0217ac0 2167 vmf->page = page;
83c54070 2168 return ret | VM_FAULT_LOCKED;
1da177e4 2169
1da177e4
LT
2170no_cached_page:
2171 /*
2172 * We're only likely to ever get here if MADV_RANDOM is in
2173 * effect.
2174 */
c20cd45e 2175 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2176
2177 /*
2178 * The page we want has now been added to the page cache.
2179 * In the unlikely event that someone removed it in the
2180 * meantime, we'll just come back here and read it again.
2181 */
2182 if (error >= 0)
2183 goto retry_find;
2184
2185 /*
2186 * An error return from page_cache_read can result if the
2187 * system is low on memory, or a problem occurs while trying
2188 * to schedule I/O.
2189 */
2190 if (error == -ENOMEM)
d0217ac0
NP
2191 return VM_FAULT_OOM;
2192 return VM_FAULT_SIGBUS;
1da177e4
LT
2193
2194page_not_uptodate:
1da177e4
LT
2195 /*
2196 * Umm, take care of errors if the page isn't up-to-date.
2197 * Try to re-read it _once_. We do this synchronously,
2198 * because there really aren't any performance issues here
2199 * and we need to check for errors.
2200 */
1da177e4 2201 ClearPageError(page);
994fc28c 2202 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2203 if (!error) {
2204 wait_on_page_locked(page);
2205 if (!PageUptodate(page))
2206 error = -EIO;
2207 }
09cbfeaf 2208 put_page(page);
d00806b1
NP
2209
2210 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2211 goto retry_find;
1da177e4 2212
d00806b1 2213 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2214 shrink_readahead_size_eio(file, ra);
d0217ac0 2215 return VM_FAULT_SIGBUS;
54cb8821
NP
2216}
2217EXPORT_SYMBOL(filemap_fault);
2218
bae473a4
KS
2219void filemap_map_pages(struct fault_env *fe,
2220 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361
KS
2221{
2222 struct radix_tree_iter iter;
2223 void **slot;
bae473a4 2224 struct file *file = fe->vma->vm_file;
f1820361 2225 struct address_space *mapping = file->f_mapping;
bae473a4 2226 pgoff_t last_pgoff = start_pgoff;
f1820361 2227 loff_t size;
83929372 2228 struct page *head, *page;
f1820361
KS
2229
2230 rcu_read_lock();
bae473a4
KS
2231 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2232 start_pgoff) {
2233 if (iter.index > end_pgoff)
f1820361
KS
2234 break;
2235repeat:
2236 page = radix_tree_deref_slot(slot);
2237 if (unlikely(!page))
2238 goto next;
2239 if (radix_tree_exception(page)) {
2cf938aa
MW
2240 if (radix_tree_deref_retry(page)) {
2241 slot = radix_tree_iter_retry(&iter);
2242 continue;
2243 }
2244 goto next;
f1820361
KS
2245 }
2246
83929372
KS
2247 head = compound_head(page);
2248 if (!page_cache_get_speculative(head))
f1820361
KS
2249 goto repeat;
2250
83929372
KS
2251 /* The page was split under us? */
2252 if (compound_head(page) != head) {
2253 put_page(head);
2254 goto repeat;
2255 }
2256
f1820361
KS
2257 /* Has the page moved? */
2258 if (unlikely(page != *slot)) {
83929372 2259 put_page(head);
f1820361
KS
2260 goto repeat;
2261 }
2262
2263 if (!PageUptodate(page) ||
2264 PageReadahead(page) ||
2265 PageHWPoison(page))
2266 goto skip;
2267 if (!trylock_page(page))
2268 goto skip;
2269
2270 if (page->mapping != mapping || !PageUptodate(page))
2271 goto unlock;
2272
09cbfeaf
KS
2273 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2274 if (page->index >= size >> PAGE_SHIFT)
f1820361
KS
2275 goto unlock;
2276
f1820361
KS
2277 if (file->f_ra.mmap_miss > 0)
2278 file->f_ra.mmap_miss--;
7267ec00
KS
2279
2280 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2281 if (fe->pte)
2282 fe->pte += iter.index - last_pgoff;
2283 last_pgoff = iter.index;
2284 if (alloc_set_pte(fe, NULL, page))
2285 goto unlock;
f1820361
KS
2286 unlock_page(page);
2287 goto next;
2288unlock:
2289 unlock_page(page);
2290skip:
09cbfeaf 2291 put_page(page);
f1820361 2292next:
7267ec00
KS
2293 /* Huge page is mapped? No need to proceed. */
2294 if (pmd_trans_huge(*fe->pmd))
2295 break;
bae473a4 2296 if (iter.index == end_pgoff)
f1820361
KS
2297 break;
2298 }
2299 rcu_read_unlock();
2300}
2301EXPORT_SYMBOL(filemap_map_pages);
2302
4fcf1c62
JK
2303int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2304{
2305 struct page *page = vmf->page;
496ad9aa 2306 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
2307 int ret = VM_FAULT_LOCKED;
2308
14da9200 2309 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
2310 file_update_time(vma->vm_file);
2311 lock_page(page);
2312 if (page->mapping != inode->i_mapping) {
2313 unlock_page(page);
2314 ret = VM_FAULT_NOPAGE;
2315 goto out;
2316 }
14da9200
JK
2317 /*
2318 * We mark the page dirty already here so that when freeze is in
2319 * progress, we are guaranteed that writeback during freezing will
2320 * see the dirty page and writeprotect it again.
2321 */
2322 set_page_dirty(page);
1d1d1a76 2323 wait_for_stable_page(page);
4fcf1c62 2324out:
14da9200 2325 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2326 return ret;
2327}
2328EXPORT_SYMBOL(filemap_page_mkwrite);
2329
f0f37e2f 2330const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2331 .fault = filemap_fault,
f1820361 2332 .map_pages = filemap_map_pages,
4fcf1c62 2333 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2334};
2335
2336/* This is used for a general mmap of a disk file */
2337
2338int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2339{
2340 struct address_space *mapping = file->f_mapping;
2341
2342 if (!mapping->a_ops->readpage)
2343 return -ENOEXEC;
2344 file_accessed(file);
2345 vma->vm_ops = &generic_file_vm_ops;
2346 return 0;
2347}
1da177e4
LT
2348
2349/*
2350 * This is for filesystems which do not implement ->writepage.
2351 */
2352int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2353{
2354 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2355 return -EINVAL;
2356 return generic_file_mmap(file, vma);
2357}
2358#else
2359int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2360{
2361 return -ENOSYS;
2362}
2363int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2364{
2365 return -ENOSYS;
2366}
2367#endif /* CONFIG_MMU */
2368
2369EXPORT_SYMBOL(generic_file_mmap);
2370EXPORT_SYMBOL(generic_file_readonly_mmap);
2371
67f9fd91
SL
2372static struct page *wait_on_page_read(struct page *page)
2373{
2374 if (!IS_ERR(page)) {
2375 wait_on_page_locked(page);
2376 if (!PageUptodate(page)) {
09cbfeaf 2377 put_page(page);
67f9fd91
SL
2378 page = ERR_PTR(-EIO);
2379 }
2380 }
2381 return page;
2382}
2383
32b63529 2384static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2385 pgoff_t index,
5e5358e7 2386 int (*filler)(void *, struct page *),
0531b2aa
LT
2387 void *data,
2388 gfp_t gfp)
1da177e4 2389{
eb2be189 2390 struct page *page;
1da177e4
LT
2391 int err;
2392repeat:
2393 page = find_get_page(mapping, index);
2394 if (!page) {
0531b2aa 2395 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2396 if (!page)
2397 return ERR_PTR(-ENOMEM);
e6f67b8c 2398 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2399 if (unlikely(err)) {
09cbfeaf 2400 put_page(page);
eb2be189
NP
2401 if (err == -EEXIST)
2402 goto repeat;
1da177e4 2403 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2404 return ERR_PTR(err);
2405 }
32b63529
MG
2406
2407filler:
1da177e4
LT
2408 err = filler(data, page);
2409 if (err < 0) {
09cbfeaf 2410 put_page(page);
32b63529 2411 return ERR_PTR(err);
1da177e4 2412 }
1da177e4 2413
32b63529
MG
2414 page = wait_on_page_read(page);
2415 if (IS_ERR(page))
2416 return page;
2417 goto out;
2418 }
1da177e4
LT
2419 if (PageUptodate(page))
2420 goto out;
2421
ebded027
MG
2422 /*
2423 * Page is not up to date and may be locked due one of the following
2424 * case a: Page is being filled and the page lock is held
2425 * case b: Read/write error clearing the page uptodate status
2426 * case c: Truncation in progress (page locked)
2427 * case d: Reclaim in progress
2428 *
2429 * Case a, the page will be up to date when the page is unlocked.
2430 * There is no need to serialise on the page lock here as the page
2431 * is pinned so the lock gives no additional protection. Even if the
2432 * the page is truncated, the data is still valid if PageUptodate as
2433 * it's a race vs truncate race.
2434 * Case b, the page will not be up to date
2435 * Case c, the page may be truncated but in itself, the data may still
2436 * be valid after IO completes as it's a read vs truncate race. The
2437 * operation must restart if the page is not uptodate on unlock but
2438 * otherwise serialising on page lock to stabilise the mapping gives
2439 * no additional guarantees to the caller as the page lock is
2440 * released before return.
2441 * Case d, similar to truncation. If reclaim holds the page lock, it
2442 * will be a race with remove_mapping that determines if the mapping
2443 * is valid on unlock but otherwise the data is valid and there is
2444 * no need to serialise with page lock.
2445 *
2446 * As the page lock gives no additional guarantee, we optimistically
2447 * wait on the page to be unlocked and check if it's up to date and
2448 * use the page if it is. Otherwise, the page lock is required to
2449 * distinguish between the different cases. The motivation is that we
2450 * avoid spurious serialisations and wakeups when multiple processes
2451 * wait on the same page for IO to complete.
2452 */
2453 wait_on_page_locked(page);
2454 if (PageUptodate(page))
2455 goto out;
2456
2457 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2458 lock_page(page);
ebded027
MG
2459
2460 /* Case c or d, restart the operation */
1da177e4
LT
2461 if (!page->mapping) {
2462 unlock_page(page);
09cbfeaf 2463 put_page(page);
32b63529 2464 goto repeat;
1da177e4 2465 }
ebded027
MG
2466
2467 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2468 if (PageUptodate(page)) {
2469 unlock_page(page);
2470 goto out;
2471 }
32b63529
MG
2472 goto filler;
2473
c855ff37 2474out:
6fe6900e
NP
2475 mark_page_accessed(page);
2476 return page;
2477}
0531b2aa
LT
2478
2479/**
67f9fd91 2480 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2481 * @mapping: the page's address_space
2482 * @index: the page index
2483 * @filler: function to perform the read
5e5358e7 2484 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2485 *
0531b2aa 2486 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2487 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2488 *
2489 * If the page does not get brought uptodate, return -EIO.
2490 */
67f9fd91 2491struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2492 pgoff_t index,
5e5358e7 2493 int (*filler)(void *, struct page *),
0531b2aa
LT
2494 void *data)
2495{
2496 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2497}
67f9fd91 2498EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2499
2500/**
2501 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2502 * @mapping: the page's address_space
2503 * @index: the page index
2504 * @gfp: the page allocator flags to use if allocating
2505 *
2506 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2507 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2508 *
2509 * If the page does not get brought uptodate, return -EIO.
2510 */
2511struct page *read_cache_page_gfp(struct address_space *mapping,
2512 pgoff_t index,
2513 gfp_t gfp)
2514{
2515 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2516
67f9fd91 2517 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2518}
2519EXPORT_SYMBOL(read_cache_page_gfp);
2520
1da177e4
LT
2521/*
2522 * Performs necessary checks before doing a write
2523 *
485bb99b 2524 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2525 * Returns appropriate error code that caller should return or
2526 * zero in case that write should be allowed.
2527 */
3309dd04 2528inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2529{
3309dd04 2530 struct file *file = iocb->ki_filp;
1da177e4 2531 struct inode *inode = file->f_mapping->host;
59e99e5b 2532 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2533 loff_t pos;
1da177e4 2534
3309dd04
AV
2535 if (!iov_iter_count(from))
2536 return 0;
1da177e4 2537
0fa6b005 2538 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2539 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2540 iocb->ki_pos = i_size_read(inode);
1da177e4 2541
3309dd04 2542 pos = iocb->ki_pos;
1da177e4 2543
0fa6b005 2544 if (limit != RLIM_INFINITY) {
3309dd04 2545 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2546 send_sig(SIGXFSZ, current, 0);
2547 return -EFBIG;
1da177e4 2548 }
3309dd04 2549 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2550 }
2551
2552 /*
2553 * LFS rule
2554 */
3309dd04 2555 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2556 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2557 if (pos >= MAX_NON_LFS)
1da177e4 2558 return -EFBIG;
3309dd04 2559 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2560 }
2561
2562 /*
2563 * Are we about to exceed the fs block limit ?
2564 *
2565 * If we have written data it becomes a short write. If we have
2566 * exceeded without writing data we send a signal and return EFBIG.
2567 * Linus frestrict idea will clean these up nicely..
2568 */
3309dd04
AV
2569 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2570 return -EFBIG;
1da177e4 2571
3309dd04
AV
2572 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2573 return iov_iter_count(from);
1da177e4
LT
2574}
2575EXPORT_SYMBOL(generic_write_checks);
2576
afddba49
NP
2577int pagecache_write_begin(struct file *file, struct address_space *mapping,
2578 loff_t pos, unsigned len, unsigned flags,
2579 struct page **pagep, void **fsdata)
2580{
2581 const struct address_space_operations *aops = mapping->a_ops;
2582
4e02ed4b 2583 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2584 pagep, fsdata);
afddba49
NP
2585}
2586EXPORT_SYMBOL(pagecache_write_begin);
2587
2588int pagecache_write_end(struct file *file, struct address_space *mapping,
2589 loff_t pos, unsigned len, unsigned copied,
2590 struct page *page, void *fsdata)
2591{
2592 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2593
4e02ed4b 2594 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2595}
2596EXPORT_SYMBOL(pagecache_write_end);
2597
1da177e4 2598ssize_t
1af5bb49 2599generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2600{
2601 struct file *file = iocb->ki_filp;
2602 struct address_space *mapping = file->f_mapping;
2603 struct inode *inode = mapping->host;
1af5bb49 2604 loff_t pos = iocb->ki_pos;
1da177e4 2605 ssize_t written;
a969e903
CH
2606 size_t write_len;
2607 pgoff_t end;
26978b8b 2608 struct iov_iter data;
1da177e4 2609
0c949334 2610 write_len = iov_iter_count(from);
09cbfeaf 2611 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 2612
48b47c56 2613 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2614 if (written)
2615 goto out;
2616
2617 /*
2618 * After a write we want buffered reads to be sure to go to disk to get
2619 * the new data. We invalidate clean cached page from the region we're
2620 * about to write. We do this *before* the write so that we can return
6ccfa806 2621 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2622 */
2623 if (mapping->nrpages) {
2624 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 2625 pos >> PAGE_SHIFT, end);
6ccfa806
HH
2626 /*
2627 * If a page can not be invalidated, return 0 to fall back
2628 * to buffered write.
2629 */
2630 if (written) {
2631 if (written == -EBUSY)
2632 return 0;
a969e903 2633 goto out;
6ccfa806 2634 }
a969e903
CH
2635 }
2636
26978b8b 2637 data = *from;
c8b8e32d 2638 written = mapping->a_ops->direct_IO(iocb, &data);
a969e903
CH
2639
2640 /*
2641 * Finally, try again to invalidate clean pages which might have been
2642 * cached by non-direct readahead, or faulted in by get_user_pages()
2643 * if the source of the write was an mmap'ed region of the file
2644 * we're writing. Either one is a pretty crazy thing to do,
2645 * so we don't support it 100%. If this invalidation
2646 * fails, tough, the write still worked...
2647 */
2648 if (mapping->nrpages) {
2649 invalidate_inode_pages2_range(mapping,
09cbfeaf 2650 pos >> PAGE_SHIFT, end);
a969e903
CH
2651 }
2652
1da177e4 2653 if (written > 0) {
0116651c 2654 pos += written;
f8579f86 2655 iov_iter_advance(from, written);
0116651c
NK
2656 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2657 i_size_write(inode, pos);
1da177e4
LT
2658 mark_inode_dirty(inode);
2659 }
5cb6c6c7 2660 iocb->ki_pos = pos;
1da177e4 2661 }
a969e903 2662out:
1da177e4
LT
2663 return written;
2664}
2665EXPORT_SYMBOL(generic_file_direct_write);
2666
eb2be189
NP
2667/*
2668 * Find or create a page at the given pagecache position. Return the locked
2669 * page. This function is specifically for buffered writes.
2670 */
54566b2c
NP
2671struct page *grab_cache_page_write_begin(struct address_space *mapping,
2672 pgoff_t index, unsigned flags)
eb2be189 2673{
eb2be189 2674 struct page *page;
bbddabe2 2675 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 2676
54566b2c 2677 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2678 fgp_flags |= FGP_NOFS;
2679
2680 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2681 mapping_gfp_mask(mapping));
c585a267 2682 if (page)
2457aec6 2683 wait_for_stable_page(page);
eb2be189 2684
eb2be189
NP
2685 return page;
2686}
54566b2c 2687EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2688
3b93f911 2689ssize_t generic_perform_write(struct file *file,
afddba49
NP
2690 struct iov_iter *i, loff_t pos)
2691{
2692 struct address_space *mapping = file->f_mapping;
2693 const struct address_space_operations *a_ops = mapping->a_ops;
2694 long status = 0;
2695 ssize_t written = 0;
674b892e
NP
2696 unsigned int flags = 0;
2697
2698 /*
2699 * Copies from kernel address space cannot fail (NFSD is a big user).
2700 */
777eda2c 2701 if (!iter_is_iovec(i))
674b892e 2702 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2703
2704 do {
2705 struct page *page;
afddba49
NP
2706 unsigned long offset; /* Offset into pagecache page */
2707 unsigned long bytes; /* Bytes to write to page */
2708 size_t copied; /* Bytes copied from user */
2709 void *fsdata;
2710
09cbfeaf
KS
2711 offset = (pos & (PAGE_SIZE - 1));
2712 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2713 iov_iter_count(i));
2714
2715again:
00a3d660
LT
2716 /*
2717 * Bring in the user page that we will copy from _first_.
2718 * Otherwise there's a nasty deadlock on copying from the
2719 * same page as we're writing to, without it being marked
2720 * up-to-date.
2721 *
2722 * Not only is this an optimisation, but it is also required
2723 * to check that the address is actually valid, when atomic
2724 * usercopies are used, below.
2725 */
2726 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2727 status = -EFAULT;
2728 break;
2729 }
2730
296291cd
JK
2731 if (fatal_signal_pending(current)) {
2732 status = -EINTR;
2733 break;
2734 }
2735
674b892e 2736 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2737 &page, &fsdata);
2457aec6 2738 if (unlikely(status < 0))
afddba49
NP
2739 break;
2740
931e80e4 2741 if (mapping_writably_mapped(mapping))
2742 flush_dcache_page(page);
00a3d660 2743
afddba49 2744 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2745 flush_dcache_page(page);
2746
2747 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2748 page, fsdata);
2749 if (unlikely(status < 0))
2750 break;
2751 copied = status;
2752
2753 cond_resched();
2754
124d3b70 2755 iov_iter_advance(i, copied);
afddba49
NP
2756 if (unlikely(copied == 0)) {
2757 /*
2758 * If we were unable to copy any data at all, we must
2759 * fall back to a single segment length write.
2760 *
2761 * If we didn't fallback here, we could livelock
2762 * because not all segments in the iov can be copied at
2763 * once without a pagefault.
2764 */
09cbfeaf 2765 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2766 iov_iter_single_seg_count(i));
2767 goto again;
2768 }
afddba49
NP
2769 pos += copied;
2770 written += copied;
2771
2772 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
2773 } while (iov_iter_count(i));
2774
2775 return written ? written : status;
2776}
3b93f911 2777EXPORT_SYMBOL(generic_perform_write);
1da177e4 2778
e4dd9de3 2779/**
8174202b 2780 * __generic_file_write_iter - write data to a file
e4dd9de3 2781 * @iocb: IO state structure (file, offset, etc.)
8174202b 2782 * @from: iov_iter with data to write
e4dd9de3
JK
2783 *
2784 * This function does all the work needed for actually writing data to a
2785 * file. It does all basic checks, removes SUID from the file, updates
2786 * modification times and calls proper subroutines depending on whether we
2787 * do direct IO or a standard buffered write.
2788 *
2789 * It expects i_mutex to be grabbed unless we work on a block device or similar
2790 * object which does not need locking at all.
2791 *
2792 * This function does *not* take care of syncing data in case of O_SYNC write.
2793 * A caller has to handle it. This is mainly due to the fact that we want to
2794 * avoid syncing under i_mutex.
2795 */
8174202b 2796ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2797{
2798 struct file *file = iocb->ki_filp;
fb5527e6 2799 struct address_space * mapping = file->f_mapping;
1da177e4 2800 struct inode *inode = mapping->host;
3b93f911 2801 ssize_t written = 0;
1da177e4 2802 ssize_t err;
3b93f911 2803 ssize_t status;
1da177e4 2804
1da177e4 2805 /* We can write back this queue in page reclaim */
de1414a6 2806 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 2807 err = file_remove_privs(file);
1da177e4
LT
2808 if (err)
2809 goto out;
2810
c3b2da31
JB
2811 err = file_update_time(file);
2812 if (err)
2813 goto out;
1da177e4 2814
2ba48ce5 2815 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 2816 loff_t pos, endbyte;
fb5527e6 2817
1af5bb49 2818 written = generic_file_direct_write(iocb, from);
1da177e4 2819 /*
fbbbad4b
MW
2820 * If the write stopped short of completing, fall back to
2821 * buffered writes. Some filesystems do this for writes to
2822 * holes, for example. For DAX files, a buffered write will
2823 * not succeed (even if it did, DAX does not handle dirty
2824 * page-cache pages correctly).
1da177e4 2825 */
0b8def9d 2826 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
2827 goto out;
2828
0b8def9d 2829 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 2830 /*
3b93f911 2831 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2832 * then we want to return the number of bytes which were
2833 * direct-written, or the error code if that was zero. Note
2834 * that this differs from normal direct-io semantics, which
2835 * will return -EFOO even if some bytes were written.
2836 */
60bb4529 2837 if (unlikely(status < 0)) {
3b93f911 2838 err = status;
fb5527e6
JM
2839 goto out;
2840 }
fb5527e6
JM
2841 /*
2842 * We need to ensure that the page cache pages are written to
2843 * disk and invalidated to preserve the expected O_DIRECT
2844 * semantics.
2845 */
3b93f911 2846 endbyte = pos + status - 1;
0b8def9d 2847 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 2848 if (err == 0) {
0b8def9d 2849 iocb->ki_pos = endbyte + 1;
3b93f911 2850 written += status;
fb5527e6 2851 invalidate_mapping_pages(mapping,
09cbfeaf
KS
2852 pos >> PAGE_SHIFT,
2853 endbyte >> PAGE_SHIFT);
fb5527e6
JM
2854 } else {
2855 /*
2856 * We don't know how much we wrote, so just return
2857 * the number of bytes which were direct-written
2858 */
2859 }
2860 } else {
0b8def9d
AV
2861 written = generic_perform_write(file, from, iocb->ki_pos);
2862 if (likely(written > 0))
2863 iocb->ki_pos += written;
fb5527e6 2864 }
1da177e4
LT
2865out:
2866 current->backing_dev_info = NULL;
2867 return written ? written : err;
2868}
8174202b 2869EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2870
e4dd9de3 2871/**
8174202b 2872 * generic_file_write_iter - write data to a file
e4dd9de3 2873 * @iocb: IO state structure
8174202b 2874 * @from: iov_iter with data to write
e4dd9de3 2875 *
8174202b 2876 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2877 * filesystems. It takes care of syncing the file in case of O_SYNC file
2878 * and acquires i_mutex as needed.
2879 */
8174202b 2880ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2881{
2882 struct file *file = iocb->ki_filp;
148f948b 2883 struct inode *inode = file->f_mapping->host;
1da177e4 2884 ssize_t ret;
1da177e4 2885
5955102c 2886 inode_lock(inode);
3309dd04
AV
2887 ret = generic_write_checks(iocb, from);
2888 if (ret > 0)
5f380c7f 2889 ret = __generic_file_write_iter(iocb, from);
5955102c 2890 inode_unlock(inode);
1da177e4 2891
e2592217
CH
2892 if (ret > 0)
2893 ret = generic_write_sync(iocb, ret);
1da177e4
LT
2894 return ret;
2895}
8174202b 2896EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 2897
cf9a2ae8
DH
2898/**
2899 * try_to_release_page() - release old fs-specific metadata on a page
2900 *
2901 * @page: the page which the kernel is trying to free
2902 * @gfp_mask: memory allocation flags (and I/O mode)
2903 *
2904 * The address_space is to try to release any data against the page
2905 * (presumably at page->private). If the release was successful, return `1'.
2906 * Otherwise return zero.
2907 *
266cf658
DH
2908 * This may also be called if PG_fscache is set on a page, indicating that the
2909 * page is known to the local caching routines.
2910 *
cf9a2ae8 2911 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 2912 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 2913 *
cf9a2ae8
DH
2914 */
2915int try_to_release_page(struct page *page, gfp_t gfp_mask)
2916{
2917 struct address_space * const mapping = page->mapping;
2918
2919 BUG_ON(!PageLocked(page));
2920 if (PageWriteback(page))
2921 return 0;
2922
2923 if (mapping && mapping->a_ops->releasepage)
2924 return mapping->a_ops->releasepage(page, gfp_mask);
2925 return try_to_free_buffers(page);
2926}
2927
2928EXPORT_SYMBOL(try_to_release_page);