]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/filemap.c
fs: move i_sb_list out from under inode_lock
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
1da177e4 12#include <linux/module.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 35#include <linux/memcontrol.h>
4f98a2fe 36#include <linux/mm_inline.h> /* for page_is_file_cache() */
0f8053a5
NP
37#include "internal.h"
38
1da177e4 39/*
1da177e4
LT
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
148f948b 42#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 43
1da177e4
LT
44#include <asm/mman.h>
45
46/*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995 Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58/*
59 * Lock ordering:
60 *
25d9e2d1 61 * ->i_mmap_lock (truncate_pagecache)
1da177e4 62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
1da177e4 65 *
1b1dcc1b 66 * ->i_mutex
1da177e4
LT
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
68 *
69 * ->mmap_sem
70 * ->i_mmap_lock
b8072f09 71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
73 *
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
76 *
82591e6e
NP
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 79 *
1b1dcc1b 80 * ->i_mutex
1da177e4
LT
81 * ->i_alloc_sem (various)
82 *
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
b8072f09 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 92 *
b8072f09 93 * ->page_table_lock or pte_lock
5d337b91 94 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
250df6ed 102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
1da177e4 103 * ->inode_lock (zap_pte_range->set_page_dirty)
250df6ed 104 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 *
6a46079c
AK
107 * (code doesn't rely on that order, so you could switch it around)
108 * ->tasklist_lock (memory_failure, collect_procs_ao)
109 * ->i_mmap_lock
1da177e4
LT
110 */
111
112/*
e64a782f 113 * Delete a page from the page cache and free it. Caller has to make
1da177e4 114 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 115 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 116 */
e64a782f 117void __delete_from_page_cache(struct page *page)
1da177e4
LT
118{
119 struct address_space *mapping = page->mapping;
120
121 radix_tree_delete(&mapping->page_tree, page->index);
122 page->mapping = NULL;
123 mapping->nrpages--;
347ce434 124 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
125 if (PageSwapBacked(page))
126 __dec_zone_page_state(page, NR_SHMEM);
45426812 127 BUG_ON(page_mapped(page));
3a692790
LT
128
129 /*
130 * Some filesystems seem to re-dirty the page even after
131 * the VM has canceled the dirty bit (eg ext3 journaling).
132 *
133 * Fix it up by doing a final dirty accounting check after
134 * having removed the page entirely.
135 */
136 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
137 dec_zone_page_state(page, NR_FILE_DIRTY);
138 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
139 }
1da177e4
LT
140}
141
702cfbf9
MK
142/**
143 * delete_from_page_cache - delete page from page cache
144 * @page: the page which the kernel is trying to remove from page cache
145 *
146 * This must be called only on pages that have been verified to be in the page
147 * cache and locked. It will never put the page into the free list, the caller
148 * has a reference on the page.
149 */
150void delete_from_page_cache(struct page *page)
1da177e4
LT
151{
152 struct address_space *mapping = page->mapping;
6072d13c 153 void (*freepage)(struct page *);
1da177e4 154
cd7619d6 155 BUG_ON(!PageLocked(page));
1da177e4 156
6072d13c 157 freepage = mapping->a_ops->freepage;
19fd6231 158 spin_lock_irq(&mapping->tree_lock);
e64a782f 159 __delete_from_page_cache(page);
19fd6231 160 spin_unlock_irq(&mapping->tree_lock);
e767e056 161 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
162
163 if (freepage)
164 freepage(page);
97cecb5a
MK
165 page_cache_release(page);
166}
167EXPORT_SYMBOL(delete_from_page_cache);
168
1da177e4
LT
169static int sync_page(void *word)
170{
171 struct address_space *mapping;
172 struct page *page;
173
07808b74 174 page = container_of((unsigned long *)word, struct page, flags);
1da177e4
LT
175
176 /*
dd1d5afc
WLII
177 * page_mapping() is being called without PG_locked held.
178 * Some knowledge of the state and use of the page is used to
179 * reduce the requirements down to a memory barrier.
180 * The danger here is of a stale page_mapping() return value
181 * indicating a struct address_space different from the one it's
182 * associated with when it is associated with one.
183 * After smp_mb(), it's either the correct page_mapping() for
184 * the page, or an old page_mapping() and the page's own
185 * page_mapping() has gone NULL.
186 * The ->sync_page() address_space operation must tolerate
187 * page_mapping() going NULL. By an amazing coincidence,
188 * this comes about because none of the users of the page
189 * in the ->sync_page() methods make essential use of the
190 * page_mapping(), merely passing the page down to the backing
191 * device's unplug functions when it's non-NULL, which in turn
4c21e2f2 192 * ignore it for all cases but swap, where only page_private(page) is
dd1d5afc
WLII
193 * of interest. When page_mapping() does go NULL, the entire
194 * call stack gracefully ignores the page and returns.
195 * -- wli
1da177e4
LT
196 */
197 smp_mb();
198 mapping = page_mapping(page);
199 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
200 mapping->a_ops->sync_page(page);
201 io_schedule();
202 return 0;
203}
204
2687a356
MW
205static int sync_page_killable(void *word)
206{
207 sync_page(word);
208 return fatal_signal_pending(current) ? -EINTR : 0;
209}
210
1da177e4 211/**
485bb99b 212 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
213 * @mapping: address space structure to write
214 * @start: offset in bytes where the range starts
469eb4d0 215 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 216 * @sync_mode: enable synchronous operation
1da177e4 217 *
485bb99b
RD
218 * Start writeback against all of a mapping's dirty pages that lie
219 * within the byte offsets <start, end> inclusive.
220 *
1da177e4 221 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 222 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
223 * these two operations is that if a dirty page/buffer is encountered, it must
224 * be waited upon, and not just skipped over.
225 */
ebcf28e1
AM
226int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
227 loff_t end, int sync_mode)
1da177e4
LT
228{
229 int ret;
230 struct writeback_control wbc = {
231 .sync_mode = sync_mode,
05fe478d 232 .nr_to_write = LONG_MAX,
111ebb6e
OH
233 .range_start = start,
234 .range_end = end,
1da177e4
LT
235 };
236
237 if (!mapping_cap_writeback_dirty(mapping))
238 return 0;
239
240 ret = do_writepages(mapping, &wbc);
241 return ret;
242}
243
244static inline int __filemap_fdatawrite(struct address_space *mapping,
245 int sync_mode)
246{
111ebb6e 247 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
248}
249
250int filemap_fdatawrite(struct address_space *mapping)
251{
252 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
253}
254EXPORT_SYMBOL(filemap_fdatawrite);
255
f4c0a0fd 256int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 257 loff_t end)
1da177e4
LT
258{
259 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
260}
f4c0a0fd 261EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 262
485bb99b
RD
263/**
264 * filemap_flush - mostly a non-blocking flush
265 * @mapping: target address_space
266 *
1da177e4
LT
267 * This is a mostly non-blocking flush. Not suitable for data-integrity
268 * purposes - I/O may not be started against all dirty pages.
269 */
270int filemap_flush(struct address_space *mapping)
271{
272 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
273}
274EXPORT_SYMBOL(filemap_flush);
275
485bb99b 276/**
94004ed7
CH
277 * filemap_fdatawait_range - wait for writeback to complete
278 * @mapping: address space structure to wait for
279 * @start_byte: offset in bytes where the range starts
280 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 281 *
94004ed7
CH
282 * Walk the list of under-writeback pages of the given address space
283 * in the given range and wait for all of them.
1da177e4 284 */
94004ed7
CH
285int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
286 loff_t end_byte)
1da177e4 287{
94004ed7
CH
288 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
289 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
290 struct pagevec pvec;
291 int nr_pages;
292 int ret = 0;
1da177e4 293
94004ed7 294 if (end_byte < start_byte)
1da177e4
LT
295 return 0;
296
297 pagevec_init(&pvec, 0);
1da177e4
LT
298 while ((index <= end) &&
299 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
300 PAGECACHE_TAG_WRITEBACK,
301 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
302 unsigned i;
303
304 for (i = 0; i < nr_pages; i++) {
305 struct page *page = pvec.pages[i];
306
307 /* until radix tree lookup accepts end_index */
308 if (page->index > end)
309 continue;
310
311 wait_on_page_writeback(page);
212260aa 312 if (TestClearPageError(page))
1da177e4
LT
313 ret = -EIO;
314 }
315 pagevec_release(&pvec);
316 cond_resched();
317 }
318
319 /* Check for outstanding write errors */
320 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
321 ret = -ENOSPC;
322 if (test_and_clear_bit(AS_EIO, &mapping->flags))
323 ret = -EIO;
324
325 return ret;
326}
d3bccb6f
JK
327EXPORT_SYMBOL(filemap_fdatawait_range);
328
1da177e4 329/**
485bb99b 330 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 331 * @mapping: address space structure to wait for
485bb99b
RD
332 *
333 * Walk the list of under-writeback pages of the given address space
334 * and wait for all of them.
1da177e4
LT
335 */
336int filemap_fdatawait(struct address_space *mapping)
337{
338 loff_t i_size = i_size_read(mapping->host);
339
340 if (i_size == 0)
341 return 0;
342
94004ed7 343 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
344}
345EXPORT_SYMBOL(filemap_fdatawait);
346
347int filemap_write_and_wait(struct address_space *mapping)
348{
28fd1298 349 int err = 0;
1da177e4
LT
350
351 if (mapping->nrpages) {
28fd1298
OH
352 err = filemap_fdatawrite(mapping);
353 /*
354 * Even if the above returned error, the pages may be
355 * written partially (e.g. -ENOSPC), so we wait for it.
356 * But the -EIO is special case, it may indicate the worst
357 * thing (e.g. bug) happened, so we avoid waiting for it.
358 */
359 if (err != -EIO) {
360 int err2 = filemap_fdatawait(mapping);
361 if (!err)
362 err = err2;
363 }
1da177e4 364 }
28fd1298 365 return err;
1da177e4 366}
28fd1298 367EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 368
485bb99b
RD
369/**
370 * filemap_write_and_wait_range - write out & wait on a file range
371 * @mapping: the address_space for the pages
372 * @lstart: offset in bytes where the range starts
373 * @lend: offset in bytes where the range ends (inclusive)
374 *
469eb4d0
AM
375 * Write out and wait upon file offsets lstart->lend, inclusive.
376 *
377 * Note that `lend' is inclusive (describes the last byte to be written) so
378 * that this function can be used to write to the very end-of-file (end = -1).
379 */
1da177e4
LT
380int filemap_write_and_wait_range(struct address_space *mapping,
381 loff_t lstart, loff_t lend)
382{
28fd1298 383 int err = 0;
1da177e4
LT
384
385 if (mapping->nrpages) {
28fd1298
OH
386 err = __filemap_fdatawrite_range(mapping, lstart, lend,
387 WB_SYNC_ALL);
388 /* See comment of filemap_write_and_wait() */
389 if (err != -EIO) {
94004ed7
CH
390 int err2 = filemap_fdatawait_range(mapping,
391 lstart, lend);
28fd1298
OH
392 if (!err)
393 err = err2;
394 }
1da177e4 395 }
28fd1298 396 return err;
1da177e4 397}
f6995585 398EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 399
ef6a3c63
MS
400/**
401 * replace_page_cache_page - replace a pagecache page with a new one
402 * @old: page to be replaced
403 * @new: page to replace with
404 * @gfp_mask: allocation mode
405 *
406 * This function replaces a page in the pagecache with a new one. On
407 * success it acquires the pagecache reference for the new page and
408 * drops it for the old page. Both the old and new pages must be
409 * locked. This function does not add the new page to the LRU, the
410 * caller must do that.
411 *
412 * The remove + add is atomic. The only way this function can fail is
413 * memory allocation failure.
414 */
415int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
416{
417 int error;
418 struct mem_cgroup *memcg = NULL;
419
420 VM_BUG_ON(!PageLocked(old));
421 VM_BUG_ON(!PageLocked(new));
422 VM_BUG_ON(new->mapping);
423
424 /*
425 * This is not page migration, but prepare_migration and
426 * end_migration does enough work for charge replacement.
427 *
428 * In the longer term we probably want a specialized function
429 * for moving the charge from old to new in a more efficient
430 * manner.
431 */
432 error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
433 if (error)
434 return error;
435
436 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
437 if (!error) {
438 struct address_space *mapping = old->mapping;
439 void (*freepage)(struct page *);
440
441 pgoff_t offset = old->index;
442 freepage = mapping->a_ops->freepage;
443
444 page_cache_get(new);
445 new->mapping = mapping;
446 new->index = offset;
447
448 spin_lock_irq(&mapping->tree_lock);
e64a782f 449 __delete_from_page_cache(old);
ef6a3c63
MS
450 error = radix_tree_insert(&mapping->page_tree, offset, new);
451 BUG_ON(error);
452 mapping->nrpages++;
453 __inc_zone_page_state(new, NR_FILE_PAGES);
454 if (PageSwapBacked(new))
455 __inc_zone_page_state(new, NR_SHMEM);
456 spin_unlock_irq(&mapping->tree_lock);
457 radix_tree_preload_end();
458 if (freepage)
459 freepage(old);
460 page_cache_release(old);
461 mem_cgroup_end_migration(memcg, old, new, true);
462 } else {
463 mem_cgroup_end_migration(memcg, old, new, false);
464 }
465
466 return error;
467}
468EXPORT_SYMBOL_GPL(replace_page_cache_page);
469
485bb99b 470/**
e286781d 471 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
472 * @page: page to add
473 * @mapping: the page's address_space
474 * @offset: page index
475 * @gfp_mask: page allocation mode
476 *
e286781d 477 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
478 * This function does not add the page to the LRU. The caller must do that.
479 */
e286781d 480int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 481 pgoff_t offset, gfp_t gfp_mask)
1da177e4 482{
e286781d
NP
483 int error;
484
485 VM_BUG_ON(!PageLocked(page));
486
487 error = mem_cgroup_cache_charge(page, current->mm,
2c26fdd7 488 gfp_mask & GFP_RECLAIM_MASK);
35c754d7
BS
489 if (error)
490 goto out;
1da177e4 491
35c754d7 492 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
1da177e4 493 if (error == 0) {
e286781d
NP
494 page_cache_get(page);
495 page->mapping = mapping;
496 page->index = offset;
497
19fd6231 498 spin_lock_irq(&mapping->tree_lock);
1da177e4 499 error = radix_tree_insert(&mapping->page_tree, offset, page);
e286781d 500 if (likely(!error)) {
1da177e4 501 mapping->nrpages++;
347ce434 502 __inc_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
503 if (PageSwapBacked(page))
504 __inc_zone_page_state(page, NR_SHMEM);
e767e056 505 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
506 } else {
507 page->mapping = NULL;
e767e056 508 spin_unlock_irq(&mapping->tree_lock);
69029cd5 509 mem_cgroup_uncharge_cache_page(page);
e286781d
NP
510 page_cache_release(page);
511 }
1da177e4 512 radix_tree_preload_end();
35c754d7 513 } else
69029cd5 514 mem_cgroup_uncharge_cache_page(page);
8a9f3ccd 515out:
1da177e4
LT
516 return error;
517}
e286781d 518EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
519
520int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 521 pgoff_t offset, gfp_t gfp_mask)
1da177e4 522{
4f98a2fe
RR
523 int ret;
524
525 /*
526 * Splice_read and readahead add shmem/tmpfs pages into the page cache
527 * before shmem_readpage has a chance to mark them as SwapBacked: they
e9d6c157 528 * need to go on the anon lru below, and mem_cgroup_cache_charge
4f98a2fe
RR
529 * (called in add_to_page_cache) needs to know where they're going too.
530 */
531 if (mapping_cap_swap_backed(mapping))
532 SetPageSwapBacked(page);
533
534 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
535 if (ret == 0) {
536 if (page_is_file_cache(page))
537 lru_cache_add_file(page);
538 else
e9d6c157 539 lru_cache_add_anon(page);
4f98a2fe 540 }
1da177e4
LT
541 return ret;
542}
18bc0bbd 543EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 544
44110fe3 545#ifdef CONFIG_NUMA
2ae88149 546struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 547{
c0ff7453
MX
548 int n;
549 struct page *page;
550
44110fe3 551 if (cpuset_do_page_mem_spread()) {
c0ff7453
MX
552 get_mems_allowed();
553 n = cpuset_mem_spread_node();
554 page = alloc_pages_exact_node(n, gfp, 0);
555 put_mems_allowed();
556 return page;
44110fe3 557 }
2ae88149 558 return alloc_pages(gfp, 0);
44110fe3 559}
2ae88149 560EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
561#endif
562
db37648c
NP
563static int __sleep_on_page_lock(void *word)
564{
565 io_schedule();
566 return 0;
567}
568
1da177e4
LT
569/*
570 * In order to wait for pages to become available there must be
571 * waitqueues associated with pages. By using a hash table of
572 * waitqueues where the bucket discipline is to maintain all
573 * waiters on the same queue and wake all when any of the pages
574 * become available, and for the woken contexts to check to be
575 * sure the appropriate page became available, this saves space
576 * at a cost of "thundering herd" phenomena during rare hash
577 * collisions.
578 */
579static wait_queue_head_t *page_waitqueue(struct page *page)
580{
581 const struct zone *zone = page_zone(page);
582
583 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
584}
585
586static inline void wake_up_page(struct page *page, int bit)
587{
588 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
589}
590
920c7a5d 591void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
592{
593 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
594
595 if (test_bit(bit_nr, &page->flags))
596 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
597 TASK_UNINTERRUPTIBLE);
598}
599EXPORT_SYMBOL(wait_on_page_bit);
600
385e1ca5
DH
601/**
602 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
603 * @page: Page defining the wait queue of interest
604 * @waiter: Waiter to add to the queue
385e1ca5
DH
605 *
606 * Add an arbitrary @waiter to the wait queue for the nominated @page.
607 */
608void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
609{
610 wait_queue_head_t *q = page_waitqueue(page);
611 unsigned long flags;
612
613 spin_lock_irqsave(&q->lock, flags);
614 __add_wait_queue(q, waiter);
615 spin_unlock_irqrestore(&q->lock, flags);
616}
617EXPORT_SYMBOL_GPL(add_page_wait_queue);
618
1da177e4 619/**
485bb99b 620 * unlock_page - unlock a locked page
1da177e4
LT
621 * @page: the page
622 *
623 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
624 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
625 * mechananism between PageLocked pages and PageWriteback pages is shared.
626 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
627 *
8413ac9d
NP
628 * The mb is necessary to enforce ordering between the clear_bit and the read
629 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 630 */
920c7a5d 631void unlock_page(struct page *page)
1da177e4 632{
8413ac9d
NP
633 VM_BUG_ON(!PageLocked(page));
634 clear_bit_unlock(PG_locked, &page->flags);
635 smp_mb__after_clear_bit();
1da177e4
LT
636 wake_up_page(page, PG_locked);
637}
638EXPORT_SYMBOL(unlock_page);
639
485bb99b
RD
640/**
641 * end_page_writeback - end writeback against a page
642 * @page: the page
1da177e4
LT
643 */
644void end_page_writeback(struct page *page)
645{
ac6aadb2
MS
646 if (TestClearPageReclaim(page))
647 rotate_reclaimable_page(page);
648
649 if (!test_clear_page_writeback(page))
650 BUG();
651
1da177e4
LT
652 smp_mb__after_clear_bit();
653 wake_up_page(page, PG_writeback);
654}
655EXPORT_SYMBOL(end_page_writeback);
656
485bb99b
RD
657/**
658 * __lock_page - get a lock on the page, assuming we need to sleep to get it
659 * @page: the page to lock
1da177e4 660 *
485bb99b 661 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
1da177e4
LT
662 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
663 * chances are that on the second loop, the block layer's plug list is empty,
664 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
665 */
920c7a5d 666void __lock_page(struct page *page)
1da177e4
LT
667{
668 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
669
670 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
671 TASK_UNINTERRUPTIBLE);
672}
673EXPORT_SYMBOL(__lock_page);
674
b5606c2d 675int __lock_page_killable(struct page *page)
2687a356
MW
676{
677 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
678
679 return __wait_on_bit_lock(page_waitqueue(page), &wait,
680 sync_page_killable, TASK_KILLABLE);
681}
18bc0bbd 682EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 683
7682486b
RD
684/**
685 * __lock_page_nosync - get a lock on the page, without calling sync_page()
686 * @page: the page to lock
687 *
db37648c
NP
688 * Variant of lock_page that does not require the caller to hold a reference
689 * on the page's mapping.
690 */
920c7a5d 691void __lock_page_nosync(struct page *page)
db37648c
NP
692{
693 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
694 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
695 TASK_UNINTERRUPTIBLE);
696}
697
d065bd81
ML
698int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
699 unsigned int flags)
700{
701 if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
702 __lock_page(page);
703 return 1;
704 } else {
318b275f
GN
705 if (!(flags & FAULT_FLAG_RETRY_NOWAIT)) {
706 up_read(&mm->mmap_sem);
707 wait_on_page_locked(page);
708 }
d065bd81
ML
709 return 0;
710 }
711}
712
485bb99b
RD
713/**
714 * find_get_page - find and get a page reference
715 * @mapping: the address_space to search
716 * @offset: the page index
717 *
da6052f7
NP
718 * Is there a pagecache struct page at the given (mapping, offset) tuple?
719 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 720 */
a60637c8 721struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4 722{
a60637c8 723 void **pagep;
1da177e4
LT
724 struct page *page;
725
a60637c8
NP
726 rcu_read_lock();
727repeat:
728 page = NULL;
729 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
730 if (pagep) {
731 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
732 if (unlikely(!page))
733 goto out;
734 if (radix_tree_deref_retry(page))
a60637c8
NP
735 goto repeat;
736
737 if (!page_cache_get_speculative(page))
738 goto repeat;
739
740 /*
741 * Has the page moved?
742 * This is part of the lockless pagecache protocol. See
743 * include/linux/pagemap.h for details.
744 */
745 if (unlikely(page != *pagep)) {
746 page_cache_release(page);
747 goto repeat;
748 }
749 }
27d20fdd 750out:
a60637c8
NP
751 rcu_read_unlock();
752
1da177e4
LT
753 return page;
754}
1da177e4
LT
755EXPORT_SYMBOL(find_get_page);
756
1da177e4
LT
757/**
758 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
759 * @mapping: the address_space to search
760 * @offset: the page index
1da177e4
LT
761 *
762 * Locates the desired pagecache page, locks it, increments its reference
763 * count and returns its address.
764 *
765 * Returns zero if the page was not present. find_lock_page() may sleep.
766 */
a60637c8 767struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
768{
769 struct page *page;
770
1da177e4 771repeat:
a60637c8 772 page = find_get_page(mapping, offset);
1da177e4 773 if (page) {
a60637c8
NP
774 lock_page(page);
775 /* Has the page been truncated? */
776 if (unlikely(page->mapping != mapping)) {
777 unlock_page(page);
778 page_cache_release(page);
779 goto repeat;
1da177e4 780 }
a60637c8 781 VM_BUG_ON(page->index != offset);
1da177e4 782 }
1da177e4
LT
783 return page;
784}
1da177e4
LT
785EXPORT_SYMBOL(find_lock_page);
786
787/**
788 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
789 * @mapping: the page's address_space
790 * @index: the page's index into the mapping
791 * @gfp_mask: page allocation mode
1da177e4
LT
792 *
793 * Locates a page in the pagecache. If the page is not present, a new page
794 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
795 * LRU list. The returned page is locked and has its reference count
796 * incremented.
797 *
798 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
799 * allocation!
800 *
801 * find_or_create_page() returns the desired page's address, or zero on
802 * memory exhaustion.
803 */
804struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 805 pgoff_t index, gfp_t gfp_mask)
1da177e4 806{
eb2be189 807 struct page *page;
1da177e4
LT
808 int err;
809repeat:
810 page = find_lock_page(mapping, index);
811 if (!page) {
eb2be189
NP
812 page = __page_cache_alloc(gfp_mask);
813 if (!page)
814 return NULL;
67d58ac4
NP
815 /*
816 * We want a regular kernel memory (not highmem or DMA etc)
817 * allocation for the radix tree nodes, but we need to honour
818 * the context-specific requirements the caller has asked for.
819 * GFP_RECLAIM_MASK collects those requirements.
820 */
821 err = add_to_page_cache_lru(page, mapping, index,
822 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
823 if (unlikely(err)) {
824 page_cache_release(page);
825 page = NULL;
826 if (err == -EEXIST)
827 goto repeat;
1da177e4 828 }
1da177e4 829 }
1da177e4
LT
830 return page;
831}
1da177e4
LT
832EXPORT_SYMBOL(find_or_create_page);
833
834/**
835 * find_get_pages - gang pagecache lookup
836 * @mapping: The address_space to search
837 * @start: The starting page index
838 * @nr_pages: The maximum number of pages
839 * @pages: Where the resulting pages are placed
840 *
841 * find_get_pages() will search for and return a group of up to
842 * @nr_pages pages in the mapping. The pages are placed at @pages.
843 * find_get_pages() takes a reference against the returned pages.
844 *
845 * The search returns a group of mapping-contiguous pages with ascending
846 * indexes. There may be holes in the indices due to not-present pages.
847 *
848 * find_get_pages() returns the number of pages which were found.
849 */
850unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
851 unsigned int nr_pages, struct page **pages)
852{
853 unsigned int i;
854 unsigned int ret;
a60637c8
NP
855 unsigned int nr_found;
856
857 rcu_read_lock();
858restart:
859 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
860 (void ***)pages, start, nr_pages);
861 ret = 0;
862 for (i = 0; i < nr_found; i++) {
863 struct page *page;
864repeat:
865 page = radix_tree_deref_slot((void **)pages[i]);
866 if (unlikely(!page))
867 continue;
9d8aa4ea
HD
868
869 /*
870 * This can only trigger when the entry at index 0 moves out
871 * of or back to the root: none yet gotten, safe to restart.
872 */
27d20fdd 873 if (radix_tree_deref_retry(page)) {
9d8aa4ea 874 WARN_ON(start | i);
a60637c8 875 goto restart;
27d20fdd 876 }
a60637c8
NP
877
878 if (!page_cache_get_speculative(page))
879 goto repeat;
880
881 /* Has the page moved? */
882 if (unlikely(page != *((void **)pages[i]))) {
883 page_cache_release(page);
884 goto repeat;
885 }
1da177e4 886
a60637c8
NP
887 pages[ret] = page;
888 ret++;
889 }
5b280c0c
HD
890
891 /*
892 * If all entries were removed before we could secure them,
893 * try again, because callers stop trying once 0 is returned.
894 */
895 if (unlikely(!ret && nr_found))
896 goto restart;
a60637c8 897 rcu_read_unlock();
1da177e4
LT
898 return ret;
899}
900
ebf43500
JA
901/**
902 * find_get_pages_contig - gang contiguous pagecache lookup
903 * @mapping: The address_space to search
904 * @index: The starting page index
905 * @nr_pages: The maximum number of pages
906 * @pages: Where the resulting pages are placed
907 *
908 * find_get_pages_contig() works exactly like find_get_pages(), except
909 * that the returned number of pages are guaranteed to be contiguous.
910 *
911 * find_get_pages_contig() returns the number of pages which were found.
912 */
913unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
914 unsigned int nr_pages, struct page **pages)
915{
916 unsigned int i;
917 unsigned int ret;
a60637c8
NP
918 unsigned int nr_found;
919
920 rcu_read_lock();
921restart:
922 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
923 (void ***)pages, index, nr_pages);
924 ret = 0;
925 for (i = 0; i < nr_found; i++) {
926 struct page *page;
927repeat:
928 page = radix_tree_deref_slot((void **)pages[i]);
929 if (unlikely(!page))
930 continue;
9d8aa4ea
HD
931
932 /*
933 * This can only trigger when the entry at index 0 moves out
934 * of or back to the root: none yet gotten, safe to restart.
935 */
27d20fdd 936 if (radix_tree_deref_retry(page))
a60637c8 937 goto restart;
ebf43500 938
a60637c8
NP
939 if (!page_cache_get_speculative(page))
940 goto repeat;
941
942 /* Has the page moved? */
943 if (unlikely(page != *((void **)pages[i]))) {
944 page_cache_release(page);
945 goto repeat;
946 }
947
9cbb4cb2
NP
948 /*
949 * must check mapping and index after taking the ref.
950 * otherwise we can get both false positives and false
951 * negatives, which is just confusing to the caller.
952 */
953 if (page->mapping == NULL || page->index != index) {
954 page_cache_release(page);
955 break;
956 }
957
a60637c8
NP
958 pages[ret] = page;
959 ret++;
ebf43500
JA
960 index++;
961 }
a60637c8
NP
962 rcu_read_unlock();
963 return ret;
ebf43500 964}
ef71c15c 965EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 966
485bb99b
RD
967/**
968 * find_get_pages_tag - find and return pages that match @tag
969 * @mapping: the address_space to search
970 * @index: the starting page index
971 * @tag: the tag index
972 * @nr_pages: the maximum number of pages
973 * @pages: where the resulting pages are placed
974 *
1da177e4 975 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 976 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
977 */
978unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
979 int tag, unsigned int nr_pages, struct page **pages)
980{
981 unsigned int i;
982 unsigned int ret;
a60637c8
NP
983 unsigned int nr_found;
984
985 rcu_read_lock();
986restart:
987 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
988 (void ***)pages, *index, nr_pages, tag);
989 ret = 0;
990 for (i = 0; i < nr_found; i++) {
991 struct page *page;
992repeat:
993 page = radix_tree_deref_slot((void **)pages[i]);
994 if (unlikely(!page))
995 continue;
9d8aa4ea
HD
996
997 /*
998 * This can only trigger when the entry at index 0 moves out
999 * of or back to the root: none yet gotten, safe to restart.
1000 */
27d20fdd 1001 if (radix_tree_deref_retry(page))
a60637c8
NP
1002 goto restart;
1003
1004 if (!page_cache_get_speculative(page))
1005 goto repeat;
1006
1007 /* Has the page moved? */
1008 if (unlikely(page != *((void **)pages[i]))) {
1009 page_cache_release(page);
1010 goto repeat;
1011 }
1012
1013 pages[ret] = page;
1014 ret++;
1015 }
5b280c0c
HD
1016
1017 /*
1018 * If all entries were removed before we could secure them,
1019 * try again, because callers stop trying once 0 is returned.
1020 */
1021 if (unlikely(!ret && nr_found))
1022 goto restart;
a60637c8 1023 rcu_read_unlock();
1da177e4 1024
1da177e4
LT
1025 if (ret)
1026 *index = pages[ret - 1]->index + 1;
a60637c8 1027
1da177e4
LT
1028 return ret;
1029}
ef71c15c 1030EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1031
485bb99b
RD
1032/**
1033 * grab_cache_page_nowait - returns locked page at given index in given cache
1034 * @mapping: target address_space
1035 * @index: the page index
1036 *
72fd4a35 1037 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
1038 * This is intended for speculative data generators, where the data can
1039 * be regenerated if the page couldn't be grabbed. This routine should
1040 * be safe to call while holding the lock for another page.
1041 *
1042 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1043 * and deadlock against the caller's locked page.
1044 */
1045struct page *
57f6b96c 1046grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
1047{
1048 struct page *page = find_get_page(mapping, index);
1da177e4
LT
1049
1050 if (page) {
529ae9aa 1051 if (trylock_page(page))
1da177e4
LT
1052 return page;
1053 page_cache_release(page);
1054 return NULL;
1055 }
2ae88149 1056 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 1057 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
1058 page_cache_release(page);
1059 page = NULL;
1060 }
1061 return page;
1062}
1da177e4
LT
1063EXPORT_SYMBOL(grab_cache_page_nowait);
1064
76d42bd9
WF
1065/*
1066 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1067 * a _large_ part of the i/o request. Imagine the worst scenario:
1068 *
1069 * ---R__________________________________________B__________
1070 * ^ reading here ^ bad block(assume 4k)
1071 *
1072 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1073 * => failing the whole request => read(R) => read(R+1) =>
1074 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1075 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1076 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1077 *
1078 * It is going insane. Fix it by quickly scaling down the readahead size.
1079 */
1080static void shrink_readahead_size_eio(struct file *filp,
1081 struct file_ra_state *ra)
1082{
76d42bd9 1083 ra->ra_pages /= 4;
76d42bd9
WF
1084}
1085
485bb99b 1086/**
36e78914 1087 * do_generic_file_read - generic file read routine
485bb99b
RD
1088 * @filp: the file to read
1089 * @ppos: current file position
1090 * @desc: read_descriptor
1091 * @actor: read method
1092 *
1da177e4 1093 * This is a generic file read routine, and uses the
485bb99b 1094 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1095 *
1096 * This is really ugly. But the goto's actually try to clarify some
1097 * of the logic when it comes to error handling etc.
1da177e4 1098 */
36e78914
CH
1099static void do_generic_file_read(struct file *filp, loff_t *ppos,
1100 read_descriptor_t *desc, read_actor_t actor)
1da177e4 1101{
36e78914 1102 struct address_space *mapping = filp->f_mapping;
1da177e4 1103 struct inode *inode = mapping->host;
36e78914 1104 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1105 pgoff_t index;
1106 pgoff_t last_index;
1107 pgoff_t prev_index;
1108 unsigned long offset; /* offset into pagecache page */
ec0f1637 1109 unsigned int prev_offset;
1da177e4 1110 int error;
1da177e4 1111
1da177e4 1112 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1113 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1114 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
1115 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1116 offset = *ppos & ~PAGE_CACHE_MASK;
1117
1da177e4
LT
1118 for (;;) {
1119 struct page *page;
57f6b96c 1120 pgoff_t end_index;
a32ea1e1 1121 loff_t isize;
1da177e4
LT
1122 unsigned long nr, ret;
1123
1da177e4 1124 cond_resched();
1da177e4
LT
1125find_page:
1126 page = find_get_page(mapping, index);
3ea89ee8 1127 if (!page) {
cf914a7d 1128 page_cache_sync_readahead(mapping,
7ff81078 1129 ra, filp,
3ea89ee8
FW
1130 index, last_index - index);
1131 page = find_get_page(mapping, index);
1132 if (unlikely(page == NULL))
1133 goto no_cached_page;
1134 }
1135 if (PageReadahead(page)) {
cf914a7d 1136 page_cache_async_readahead(mapping,
7ff81078 1137 ra, filp, page,
3ea89ee8 1138 index, last_index - index);
1da177e4 1139 }
8ab22b9a
HH
1140 if (!PageUptodate(page)) {
1141 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1142 !mapping->a_ops->is_partially_uptodate)
1143 goto page_not_up_to_date;
529ae9aa 1144 if (!trylock_page(page))
8ab22b9a 1145 goto page_not_up_to_date;
8d056cb9
DH
1146 /* Did it get truncated before we got the lock? */
1147 if (!page->mapping)
1148 goto page_not_up_to_date_locked;
8ab22b9a
HH
1149 if (!mapping->a_ops->is_partially_uptodate(page,
1150 desc, offset))
1151 goto page_not_up_to_date_locked;
1152 unlock_page(page);
1153 }
1da177e4 1154page_ok:
a32ea1e1
N
1155 /*
1156 * i_size must be checked after we know the page is Uptodate.
1157 *
1158 * Checking i_size after the check allows us to calculate
1159 * the correct value for "nr", which means the zero-filled
1160 * part of the page is not copied back to userspace (unless
1161 * another truncate extends the file - this is desired though).
1162 */
1163
1164 isize = i_size_read(inode);
1165 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1166 if (unlikely(!isize || index > end_index)) {
1167 page_cache_release(page);
1168 goto out;
1169 }
1170
1171 /* nr is the maximum number of bytes to copy from this page */
1172 nr = PAGE_CACHE_SIZE;
1173 if (index == end_index) {
1174 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1175 if (nr <= offset) {
1176 page_cache_release(page);
1177 goto out;
1178 }
1179 }
1180 nr = nr - offset;
1da177e4
LT
1181
1182 /* If users can be writing to this page using arbitrary
1183 * virtual addresses, take care about potential aliasing
1184 * before reading the page on the kernel side.
1185 */
1186 if (mapping_writably_mapped(mapping))
1187 flush_dcache_page(page);
1188
1189 /*
ec0f1637
JK
1190 * When a sequential read accesses a page several times,
1191 * only mark it as accessed the first time.
1da177e4 1192 */
ec0f1637 1193 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1194 mark_page_accessed(page);
1195 prev_index = index;
1196
1197 /*
1198 * Ok, we have the page, and it's up-to-date, so
1199 * now we can copy it to user space...
1200 *
1201 * The actor routine returns how many bytes were actually used..
1202 * NOTE! This may not be the same as how much of a user buffer
1203 * we filled up (we may be padding etc), so we can only update
1204 * "pos" here (the actor routine has to update the user buffer
1205 * pointers and the remaining count).
1206 */
1207 ret = actor(desc, page, offset, nr);
1208 offset += ret;
1209 index += offset >> PAGE_CACHE_SHIFT;
1210 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1211 prev_offset = offset;
1da177e4
LT
1212
1213 page_cache_release(page);
1214 if (ret == nr && desc->count)
1215 continue;
1216 goto out;
1217
1218page_not_up_to_date:
1219 /* Get exclusive access to the page ... */
85462323
ON
1220 error = lock_page_killable(page);
1221 if (unlikely(error))
1222 goto readpage_error;
1da177e4 1223
8ab22b9a 1224page_not_up_to_date_locked:
da6052f7 1225 /* Did it get truncated before we got the lock? */
1da177e4
LT
1226 if (!page->mapping) {
1227 unlock_page(page);
1228 page_cache_release(page);
1229 continue;
1230 }
1231
1232 /* Did somebody else fill it already? */
1233 if (PageUptodate(page)) {
1234 unlock_page(page);
1235 goto page_ok;
1236 }
1237
1238readpage:
91803b49
JM
1239 /*
1240 * A previous I/O error may have been due to temporary
1241 * failures, eg. multipath errors.
1242 * PG_error will be set again if readpage fails.
1243 */
1244 ClearPageError(page);
1da177e4
LT
1245 /* Start the actual read. The read will unlock the page. */
1246 error = mapping->a_ops->readpage(filp, page);
1247
994fc28c
ZB
1248 if (unlikely(error)) {
1249 if (error == AOP_TRUNCATED_PAGE) {
1250 page_cache_release(page);
1251 goto find_page;
1252 }
1da177e4 1253 goto readpage_error;
994fc28c 1254 }
1da177e4
LT
1255
1256 if (!PageUptodate(page)) {
85462323
ON
1257 error = lock_page_killable(page);
1258 if (unlikely(error))
1259 goto readpage_error;
1da177e4
LT
1260 if (!PageUptodate(page)) {
1261 if (page->mapping == NULL) {
1262 /*
2ecdc82e 1263 * invalidate_mapping_pages got it
1da177e4
LT
1264 */
1265 unlock_page(page);
1266 page_cache_release(page);
1267 goto find_page;
1268 }
1269 unlock_page(page);
7ff81078 1270 shrink_readahead_size_eio(filp, ra);
85462323
ON
1271 error = -EIO;
1272 goto readpage_error;
1da177e4
LT
1273 }
1274 unlock_page(page);
1275 }
1276
1da177e4
LT
1277 goto page_ok;
1278
1279readpage_error:
1280 /* UHHUH! A synchronous read error occurred. Report it */
1281 desc->error = error;
1282 page_cache_release(page);
1283 goto out;
1284
1285no_cached_page:
1286 /*
1287 * Ok, it wasn't cached, so we need to create a new
1288 * page..
1289 */
eb2be189
NP
1290 page = page_cache_alloc_cold(mapping);
1291 if (!page) {
1292 desc->error = -ENOMEM;
1293 goto out;
1da177e4 1294 }
eb2be189 1295 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1296 index, GFP_KERNEL);
1297 if (error) {
eb2be189 1298 page_cache_release(page);
1da177e4
LT
1299 if (error == -EEXIST)
1300 goto find_page;
1301 desc->error = error;
1302 goto out;
1303 }
1da177e4
LT
1304 goto readpage;
1305 }
1306
1307out:
7ff81078
FW
1308 ra->prev_pos = prev_index;
1309 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1310 ra->prev_pos |= prev_offset;
1da177e4 1311
f4e6b498 1312 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1313 file_accessed(filp);
1da177e4 1314}
1da177e4
LT
1315
1316int file_read_actor(read_descriptor_t *desc, struct page *page,
1317 unsigned long offset, unsigned long size)
1318{
1319 char *kaddr;
1320 unsigned long left, count = desc->count;
1321
1322 if (size > count)
1323 size = count;
1324
1325 /*
1326 * Faults on the destination of a read are common, so do it before
1327 * taking the kmap.
1328 */
1329 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1330 kaddr = kmap_atomic(page, KM_USER0);
1331 left = __copy_to_user_inatomic(desc->arg.buf,
1332 kaddr + offset, size);
1333 kunmap_atomic(kaddr, KM_USER0);
1334 if (left == 0)
1335 goto success;
1336 }
1337
1338 /* Do it the slow way */
1339 kaddr = kmap(page);
1340 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1341 kunmap(page);
1342
1343 if (left) {
1344 size -= left;
1345 desc->error = -EFAULT;
1346 }
1347success:
1348 desc->count = count - size;
1349 desc->written += size;
1350 desc->arg.buf += size;
1351 return size;
1352}
1353
0ceb3314
DM
1354/*
1355 * Performs necessary checks before doing a write
1356 * @iov: io vector request
1357 * @nr_segs: number of segments in the iovec
1358 * @count: number of bytes to write
1359 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1360 *
1361 * Adjust number of segments and amount of bytes to write (nr_segs should be
1362 * properly initialized first). Returns appropriate error code that caller
1363 * should return or zero in case that write should be allowed.
1364 */
1365int generic_segment_checks(const struct iovec *iov,
1366 unsigned long *nr_segs, size_t *count, int access_flags)
1367{
1368 unsigned long seg;
1369 size_t cnt = 0;
1370 for (seg = 0; seg < *nr_segs; seg++) {
1371 const struct iovec *iv = &iov[seg];
1372
1373 /*
1374 * If any segment has a negative length, or the cumulative
1375 * length ever wraps negative then return -EINVAL.
1376 */
1377 cnt += iv->iov_len;
1378 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1379 return -EINVAL;
1380 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1381 continue;
1382 if (seg == 0)
1383 return -EFAULT;
1384 *nr_segs = seg;
1385 cnt -= iv->iov_len; /* This segment is no good */
1386 break;
1387 }
1388 *count = cnt;
1389 return 0;
1390}
1391EXPORT_SYMBOL(generic_segment_checks);
1392
485bb99b 1393/**
b2abacf3 1394 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1395 * @iocb: kernel I/O control block
1396 * @iov: io vector request
1397 * @nr_segs: number of segments in the iovec
b2abacf3 1398 * @pos: current file position
485bb99b 1399 *
1da177e4
LT
1400 * This is the "read()" routine for all filesystems
1401 * that can use the page cache directly.
1402 */
1403ssize_t
543ade1f
BP
1404generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1405 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1406{
1407 struct file *filp = iocb->ki_filp;
1408 ssize_t retval;
66f998f6 1409 unsigned long seg = 0;
1da177e4 1410 size_t count;
543ade1f 1411 loff_t *ppos = &iocb->ki_pos;
1da177e4
LT
1412
1413 count = 0;
0ceb3314
DM
1414 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1415 if (retval)
1416 return retval;
1da177e4
LT
1417
1418 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1419 if (filp->f_flags & O_DIRECT) {
543ade1f 1420 loff_t size;
1da177e4
LT
1421 struct address_space *mapping;
1422 struct inode *inode;
1423
1424 mapping = filp->f_mapping;
1425 inode = mapping->host;
1da177e4
LT
1426 if (!count)
1427 goto out; /* skip atime */
1428 size = i_size_read(inode);
1429 if (pos < size) {
48b47c56
NP
1430 retval = filemap_write_and_wait_range(mapping, pos,
1431 pos + iov_length(iov, nr_segs) - 1);
a969e903
CH
1432 if (!retval) {
1433 retval = mapping->a_ops->direct_IO(READ, iocb,
1434 iov, pos, nr_segs);
1435 }
66f998f6 1436 if (retval > 0) {
1da177e4 1437 *ppos = pos + retval;
66f998f6
JB
1438 count -= retval;
1439 }
1440
1441 /*
1442 * Btrfs can have a short DIO read if we encounter
1443 * compressed extents, so if there was an error, or if
1444 * we've already read everything we wanted to, or if
1445 * there was a short read because we hit EOF, go ahead
1446 * and return. Otherwise fallthrough to buffered io for
1447 * the rest of the read.
1448 */
1449 if (retval < 0 || !count || *ppos >= size) {
11fa977e
HD
1450 file_accessed(filp);
1451 goto out;
1452 }
0e0bcae3 1453 }
1da177e4
LT
1454 }
1455
66f998f6 1456 count = retval;
11fa977e
HD
1457 for (seg = 0; seg < nr_segs; seg++) {
1458 read_descriptor_t desc;
66f998f6
JB
1459 loff_t offset = 0;
1460
1461 /*
1462 * If we did a short DIO read we need to skip the section of the
1463 * iov that we've already read data into.
1464 */
1465 if (count) {
1466 if (count > iov[seg].iov_len) {
1467 count -= iov[seg].iov_len;
1468 continue;
1469 }
1470 offset = count;
1471 count = 0;
1472 }
1da177e4 1473
11fa977e 1474 desc.written = 0;
66f998f6
JB
1475 desc.arg.buf = iov[seg].iov_base + offset;
1476 desc.count = iov[seg].iov_len - offset;
11fa977e
HD
1477 if (desc.count == 0)
1478 continue;
1479 desc.error = 0;
1480 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1481 retval += desc.written;
1482 if (desc.error) {
1483 retval = retval ?: desc.error;
1484 break;
1da177e4 1485 }
11fa977e
HD
1486 if (desc.count > 0)
1487 break;
1da177e4
LT
1488 }
1489out:
1490 return retval;
1491}
1da177e4
LT
1492EXPORT_SYMBOL(generic_file_aio_read);
1493
1da177e4
LT
1494static ssize_t
1495do_readahead(struct address_space *mapping, struct file *filp,
57f6b96c 1496 pgoff_t index, unsigned long nr)
1da177e4
LT
1497{
1498 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1499 return -EINVAL;
1500
f7e839dd 1501 force_page_cache_readahead(mapping, filp, index, nr);
1da177e4
LT
1502 return 0;
1503}
1504
6673e0c3 1505SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1da177e4
LT
1506{
1507 ssize_t ret;
1508 struct file *file;
1509
1510 ret = -EBADF;
1511 file = fget(fd);
1512 if (file) {
1513 if (file->f_mode & FMODE_READ) {
1514 struct address_space *mapping = file->f_mapping;
57f6b96c
FW
1515 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1516 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1517 unsigned long len = end - start + 1;
1518 ret = do_readahead(mapping, file, start, len);
1519 }
1520 fput(file);
1521 }
1522 return ret;
1523}
6673e0c3
HC
1524#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1525asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1526{
1527 return SYSC_readahead((int) fd, offset, (size_t) count);
1528}
1529SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1530#endif
1da177e4
LT
1531
1532#ifdef CONFIG_MMU
485bb99b
RD
1533/**
1534 * page_cache_read - adds requested page to the page cache if not already there
1535 * @file: file to read
1536 * @offset: page index
1537 *
1da177e4
LT
1538 * This adds the requested page to the page cache if it isn't already there,
1539 * and schedules an I/O to read in its contents from disk.
1540 */
920c7a5d 1541static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1542{
1543 struct address_space *mapping = file->f_mapping;
1544 struct page *page;
994fc28c 1545 int ret;
1da177e4 1546
994fc28c
ZB
1547 do {
1548 page = page_cache_alloc_cold(mapping);
1549 if (!page)
1550 return -ENOMEM;
1551
1552 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1553 if (ret == 0)
1554 ret = mapping->a_ops->readpage(file, page);
1555 else if (ret == -EEXIST)
1556 ret = 0; /* losing race to add is OK */
1da177e4 1557
1da177e4 1558 page_cache_release(page);
1da177e4 1559
994fc28c
ZB
1560 } while (ret == AOP_TRUNCATED_PAGE);
1561
1562 return ret;
1da177e4
LT
1563}
1564
1565#define MMAP_LOTSAMISS (100)
1566
ef00e08e
LT
1567/*
1568 * Synchronous readahead happens when we don't even find
1569 * a page in the page cache at all.
1570 */
1571static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1572 struct file_ra_state *ra,
1573 struct file *file,
1574 pgoff_t offset)
1575{
1576 unsigned long ra_pages;
1577 struct address_space *mapping = file->f_mapping;
1578
1579 /* If we don't want any read-ahead, don't bother */
1580 if (VM_RandomReadHint(vma))
1581 return;
1582
70ac23cf
WF
1583 if (VM_SequentialReadHint(vma) ||
1584 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
7ffc59b4
WF
1585 page_cache_sync_readahead(mapping, ra, file, offset,
1586 ra->ra_pages);
ef00e08e
LT
1587 return;
1588 }
1589
1590 if (ra->mmap_miss < INT_MAX)
1591 ra->mmap_miss++;
1592
1593 /*
1594 * Do we miss much more than hit in this file? If so,
1595 * stop bothering with read-ahead. It will only hurt.
1596 */
1597 if (ra->mmap_miss > MMAP_LOTSAMISS)
1598 return;
1599
d30a1100
WF
1600 /*
1601 * mmap read-around
1602 */
ef00e08e
LT
1603 ra_pages = max_sane_readahead(ra->ra_pages);
1604 if (ra_pages) {
d30a1100
WF
1605 ra->start = max_t(long, 0, offset - ra_pages/2);
1606 ra->size = ra_pages;
1607 ra->async_size = 0;
1608 ra_submit(ra, mapping, file);
ef00e08e
LT
1609 }
1610}
1611
1612/*
1613 * Asynchronous readahead happens when we find the page and PG_readahead,
1614 * so we want to possibly extend the readahead further..
1615 */
1616static void do_async_mmap_readahead(struct vm_area_struct *vma,
1617 struct file_ra_state *ra,
1618 struct file *file,
1619 struct page *page,
1620 pgoff_t offset)
1621{
1622 struct address_space *mapping = file->f_mapping;
1623
1624 /* If we don't want any read-ahead, don't bother */
1625 if (VM_RandomReadHint(vma))
1626 return;
1627 if (ra->mmap_miss > 0)
1628 ra->mmap_miss--;
1629 if (PageReadahead(page))
2fad6f5d
WF
1630 page_cache_async_readahead(mapping, ra, file,
1631 page, offset, ra->ra_pages);
ef00e08e
LT
1632}
1633
485bb99b 1634/**
54cb8821 1635 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1636 * @vma: vma in which the fault was taken
1637 * @vmf: struct vm_fault containing details of the fault
485bb99b 1638 *
54cb8821 1639 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1640 * mapped memory region to read in file data during a page fault.
1641 *
1642 * The goto's are kind of ugly, but this streamlines the normal case of having
1643 * it in the page cache, and handles the special cases reasonably without
1644 * having a lot of duplicated code.
1645 */
d0217ac0 1646int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1647{
1648 int error;
54cb8821 1649 struct file *file = vma->vm_file;
1da177e4
LT
1650 struct address_space *mapping = file->f_mapping;
1651 struct file_ra_state *ra = &file->f_ra;
1652 struct inode *inode = mapping->host;
ef00e08e 1653 pgoff_t offset = vmf->pgoff;
1da177e4 1654 struct page *page;
2004dc8e 1655 pgoff_t size;
83c54070 1656 int ret = 0;
1da177e4 1657
1da177e4 1658 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1659 if (offset >= size)
5307cc1a 1660 return VM_FAULT_SIGBUS;
1da177e4 1661
1da177e4
LT
1662 /*
1663 * Do we have something in the page cache already?
1664 */
ef00e08e
LT
1665 page = find_get_page(mapping, offset);
1666 if (likely(page)) {
1da177e4 1667 /*
ef00e08e
LT
1668 * We found the page, so try async readahead before
1669 * waiting for the lock.
1da177e4 1670 */
ef00e08e 1671 do_async_mmap_readahead(vma, ra, file, page, offset);
ef00e08e
LT
1672 } else {
1673 /* No page in the page cache at all */
1674 do_sync_mmap_readahead(vma, ra, file, offset);
1675 count_vm_event(PGMAJFAULT);
1676 ret = VM_FAULT_MAJOR;
1677retry_find:
b522c94d 1678 page = find_get_page(mapping, offset);
1da177e4
LT
1679 if (!page)
1680 goto no_cached_page;
1681 }
1682
d88c0922
ML
1683 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1684 page_cache_release(page);
d065bd81 1685 return ret | VM_FAULT_RETRY;
d88c0922 1686 }
b522c94d
ML
1687
1688 /* Did it get truncated? */
1689 if (unlikely(page->mapping != mapping)) {
1690 unlock_page(page);
1691 put_page(page);
1692 goto retry_find;
1693 }
1694 VM_BUG_ON(page->index != offset);
1695
1da177e4 1696 /*
d00806b1
NP
1697 * We have a locked page in the page cache, now we need to check
1698 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1699 */
d00806b1 1700 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1701 goto page_not_uptodate;
1702
ef00e08e
LT
1703 /*
1704 * Found the page and have a reference on it.
1705 * We must recheck i_size under page lock.
1706 */
d00806b1 1707 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1708 if (unlikely(offset >= size)) {
d00806b1 1709 unlock_page(page);
745ad48e 1710 page_cache_release(page);
5307cc1a 1711 return VM_FAULT_SIGBUS;
d00806b1
NP
1712 }
1713
ef00e08e 1714 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
d0217ac0 1715 vmf->page = page;
83c54070 1716 return ret | VM_FAULT_LOCKED;
1da177e4 1717
1da177e4
LT
1718no_cached_page:
1719 /*
1720 * We're only likely to ever get here if MADV_RANDOM is in
1721 * effect.
1722 */
ef00e08e 1723 error = page_cache_read(file, offset);
1da177e4
LT
1724
1725 /*
1726 * The page we want has now been added to the page cache.
1727 * In the unlikely event that someone removed it in the
1728 * meantime, we'll just come back here and read it again.
1729 */
1730 if (error >= 0)
1731 goto retry_find;
1732
1733 /*
1734 * An error return from page_cache_read can result if the
1735 * system is low on memory, or a problem occurs while trying
1736 * to schedule I/O.
1737 */
1738 if (error == -ENOMEM)
d0217ac0
NP
1739 return VM_FAULT_OOM;
1740 return VM_FAULT_SIGBUS;
1da177e4
LT
1741
1742page_not_uptodate:
1da177e4
LT
1743 /*
1744 * Umm, take care of errors if the page isn't up-to-date.
1745 * Try to re-read it _once_. We do this synchronously,
1746 * because there really aren't any performance issues here
1747 * and we need to check for errors.
1748 */
1da177e4 1749 ClearPageError(page);
994fc28c 1750 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1751 if (!error) {
1752 wait_on_page_locked(page);
1753 if (!PageUptodate(page))
1754 error = -EIO;
1755 }
d00806b1
NP
1756 page_cache_release(page);
1757
1758 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1759 goto retry_find;
1da177e4 1760
d00806b1 1761 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1762 shrink_readahead_size_eio(file, ra);
d0217ac0 1763 return VM_FAULT_SIGBUS;
54cb8821
NP
1764}
1765EXPORT_SYMBOL(filemap_fault);
1766
f0f37e2f 1767const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1768 .fault = filemap_fault,
1da177e4
LT
1769};
1770
1771/* This is used for a general mmap of a disk file */
1772
1773int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1774{
1775 struct address_space *mapping = file->f_mapping;
1776
1777 if (!mapping->a_ops->readpage)
1778 return -ENOEXEC;
1779 file_accessed(file);
1780 vma->vm_ops = &generic_file_vm_ops;
d0217ac0 1781 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1782 return 0;
1783}
1da177e4
LT
1784
1785/*
1786 * This is for filesystems which do not implement ->writepage.
1787 */
1788int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1789{
1790 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1791 return -EINVAL;
1792 return generic_file_mmap(file, vma);
1793}
1794#else
1795int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1796{
1797 return -ENOSYS;
1798}
1799int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1800{
1801 return -ENOSYS;
1802}
1803#endif /* CONFIG_MMU */
1804
1805EXPORT_SYMBOL(generic_file_mmap);
1806EXPORT_SYMBOL(generic_file_readonly_mmap);
1807
6fe6900e 1808static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1809 pgoff_t index,
1da177e4 1810 int (*filler)(void *,struct page*),
0531b2aa
LT
1811 void *data,
1812 gfp_t gfp)
1da177e4 1813{
eb2be189 1814 struct page *page;
1da177e4
LT
1815 int err;
1816repeat:
1817 page = find_get_page(mapping, index);
1818 if (!page) {
0531b2aa 1819 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
1820 if (!page)
1821 return ERR_PTR(-ENOMEM);
1822 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1823 if (unlikely(err)) {
1824 page_cache_release(page);
1825 if (err == -EEXIST)
1826 goto repeat;
1da177e4 1827 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1828 return ERR_PTR(err);
1829 }
1da177e4
LT
1830 err = filler(data, page);
1831 if (err < 0) {
1832 page_cache_release(page);
1833 page = ERR_PTR(err);
1834 }
1835 }
1da177e4
LT
1836 return page;
1837}
1838
0531b2aa 1839static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 1840 pgoff_t index,
1da177e4 1841 int (*filler)(void *,struct page*),
0531b2aa
LT
1842 void *data,
1843 gfp_t gfp)
1844
1da177e4
LT
1845{
1846 struct page *page;
1847 int err;
1848
1849retry:
0531b2aa 1850 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 1851 if (IS_ERR(page))
c855ff37 1852 return page;
1da177e4
LT
1853 if (PageUptodate(page))
1854 goto out;
1855
1856 lock_page(page);
1857 if (!page->mapping) {
1858 unlock_page(page);
1859 page_cache_release(page);
1860 goto retry;
1861 }
1862 if (PageUptodate(page)) {
1863 unlock_page(page);
1864 goto out;
1865 }
1866 err = filler(data, page);
1867 if (err < 0) {
1868 page_cache_release(page);
c855ff37 1869 return ERR_PTR(err);
1da177e4 1870 }
c855ff37 1871out:
6fe6900e
NP
1872 mark_page_accessed(page);
1873 return page;
1874}
0531b2aa
LT
1875
1876/**
1877 * read_cache_page_async - read into page cache, fill it if needed
1878 * @mapping: the page's address_space
1879 * @index: the page index
1880 * @filler: function to perform the read
1881 * @data: destination for read data
1882 *
1883 * Same as read_cache_page, but don't wait for page to become unlocked
1884 * after submitting it to the filler.
1885 *
1886 * Read into the page cache. If a page already exists, and PageUptodate() is
1887 * not set, try to fill the page but don't wait for it to become unlocked.
1888 *
1889 * If the page does not get brought uptodate, return -EIO.
1890 */
1891struct page *read_cache_page_async(struct address_space *mapping,
1892 pgoff_t index,
1893 int (*filler)(void *,struct page*),
1894 void *data)
1895{
1896 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1897}
6fe6900e
NP
1898EXPORT_SYMBOL(read_cache_page_async);
1899
0531b2aa
LT
1900static struct page *wait_on_page_read(struct page *page)
1901{
1902 if (!IS_ERR(page)) {
1903 wait_on_page_locked(page);
1904 if (!PageUptodate(page)) {
1905 page_cache_release(page);
1906 page = ERR_PTR(-EIO);
1907 }
1908 }
1909 return page;
1910}
1911
1912/**
1913 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1914 * @mapping: the page's address_space
1915 * @index: the page index
1916 * @gfp: the page allocator flags to use if allocating
1917 *
1918 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1919 * any new page allocations done using the specified allocation flags. Note
1920 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1921 * expect to do this atomically or anything like that - but you can pass in
1922 * other page requirements.
1923 *
1924 * If the page does not get brought uptodate, return -EIO.
1925 */
1926struct page *read_cache_page_gfp(struct address_space *mapping,
1927 pgoff_t index,
1928 gfp_t gfp)
1929{
1930 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1931
1932 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1933}
1934EXPORT_SYMBOL(read_cache_page_gfp);
1935
6fe6900e
NP
1936/**
1937 * read_cache_page - read into page cache, fill it if needed
1938 * @mapping: the page's address_space
1939 * @index: the page index
1940 * @filler: function to perform the read
1941 * @data: destination for read data
1942 *
1943 * Read into the page cache. If a page already exists, and PageUptodate() is
1944 * not set, try to fill the page then wait for it to become unlocked.
1945 *
1946 * If the page does not get brought uptodate, return -EIO.
1947 */
1948struct page *read_cache_page(struct address_space *mapping,
57f6b96c 1949 pgoff_t index,
6fe6900e
NP
1950 int (*filler)(void *,struct page*),
1951 void *data)
1952{
0531b2aa 1953 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1da177e4 1954}
1da177e4
LT
1955EXPORT_SYMBOL(read_cache_page);
1956
1da177e4
LT
1957/*
1958 * The logic we want is
1959 *
1960 * if suid or (sgid and xgrp)
1961 * remove privs
1962 */
01de85e0 1963int should_remove_suid(struct dentry *dentry)
1da177e4
LT
1964{
1965 mode_t mode = dentry->d_inode->i_mode;
1966 int kill = 0;
1da177e4
LT
1967
1968 /* suid always must be killed */
1969 if (unlikely(mode & S_ISUID))
1970 kill = ATTR_KILL_SUID;
1971
1972 /*
1973 * sgid without any exec bits is just a mandatory locking mark; leave
1974 * it alone. If some exec bits are set, it's a real sgid; kill it.
1975 */
1976 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1977 kill |= ATTR_KILL_SGID;
1978
7f5ff766 1979 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
01de85e0 1980 return kill;
1da177e4 1981
01de85e0
JA
1982 return 0;
1983}
d23a147b 1984EXPORT_SYMBOL(should_remove_suid);
01de85e0 1985
7f3d4ee1 1986static int __remove_suid(struct dentry *dentry, int kill)
01de85e0
JA
1987{
1988 struct iattr newattrs;
1989
1990 newattrs.ia_valid = ATTR_FORCE | kill;
1991 return notify_change(dentry, &newattrs);
1992}
1993
2f1936b8 1994int file_remove_suid(struct file *file)
01de85e0 1995{
2f1936b8 1996 struct dentry *dentry = file->f_path.dentry;
b5376771
SH
1997 int killsuid = should_remove_suid(dentry);
1998 int killpriv = security_inode_need_killpriv(dentry);
1999 int error = 0;
01de85e0 2000
b5376771
SH
2001 if (killpriv < 0)
2002 return killpriv;
2003 if (killpriv)
2004 error = security_inode_killpriv(dentry);
2005 if (!error && killsuid)
2006 error = __remove_suid(dentry, killsuid);
01de85e0 2007
b5376771 2008 return error;
1da177e4 2009}
2f1936b8 2010EXPORT_SYMBOL(file_remove_suid);
1da177e4 2011
2f718ffc 2012static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
2013 const struct iovec *iov, size_t base, size_t bytes)
2014{
f1800536 2015 size_t copied = 0, left = 0;
1da177e4
LT
2016
2017 while (bytes) {
2018 char __user *buf = iov->iov_base + base;
2019 int copy = min(bytes, iov->iov_len - base);
2020
2021 base = 0;
f1800536 2022 left = __copy_from_user_inatomic(vaddr, buf, copy);
1da177e4
LT
2023 copied += copy;
2024 bytes -= copy;
2025 vaddr += copy;
2026 iov++;
2027
01408c49 2028 if (unlikely(left))
1da177e4 2029 break;
1da177e4
LT
2030 }
2031 return copied - left;
2032}
2033
2f718ffc
NP
2034/*
2035 * Copy as much as we can into the page and return the number of bytes which
af901ca1 2036 * were successfully copied. If a fault is encountered then return the number of
2f718ffc
NP
2037 * bytes which were copied.
2038 */
2039size_t iov_iter_copy_from_user_atomic(struct page *page,
2040 struct iov_iter *i, unsigned long offset, size_t bytes)
2041{
2042 char *kaddr;
2043 size_t copied;
2044
2045 BUG_ON(!in_atomic());
2046 kaddr = kmap_atomic(page, KM_USER0);
2047 if (likely(i->nr_segs == 1)) {
2048 int left;
2049 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2050 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2f718ffc
NP
2051 copied = bytes - left;
2052 } else {
2053 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2054 i->iov, i->iov_offset, bytes);
2055 }
2056 kunmap_atomic(kaddr, KM_USER0);
2057
2058 return copied;
2059}
89e10787 2060EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
2061
2062/*
2063 * This has the same sideeffects and return value as
2064 * iov_iter_copy_from_user_atomic().
2065 * The difference is that it attempts to resolve faults.
2066 * Page must not be locked.
2067 */
2068size_t iov_iter_copy_from_user(struct page *page,
2069 struct iov_iter *i, unsigned long offset, size_t bytes)
2070{
2071 char *kaddr;
2072 size_t copied;
2073
2074 kaddr = kmap(page);
2075 if (likely(i->nr_segs == 1)) {
2076 int left;
2077 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2078 left = __copy_from_user(kaddr + offset, buf, bytes);
2f718ffc
NP
2079 copied = bytes - left;
2080 } else {
2081 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2082 i->iov, i->iov_offset, bytes);
2083 }
2084 kunmap(page);
2085 return copied;
2086}
89e10787 2087EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 2088
f7009264 2089void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 2090{
f7009264
NP
2091 BUG_ON(i->count < bytes);
2092
2f718ffc
NP
2093 if (likely(i->nr_segs == 1)) {
2094 i->iov_offset += bytes;
f7009264 2095 i->count -= bytes;
2f718ffc
NP
2096 } else {
2097 const struct iovec *iov = i->iov;
2098 size_t base = i->iov_offset;
2099
124d3b70
NP
2100 /*
2101 * The !iov->iov_len check ensures we skip over unlikely
f7009264 2102 * zero-length segments (without overruning the iovec).
124d3b70 2103 */
94ad374a 2104 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 2105 int copy;
2f718ffc 2106
f7009264
NP
2107 copy = min(bytes, iov->iov_len - base);
2108 BUG_ON(!i->count || i->count < copy);
2109 i->count -= copy;
2f718ffc
NP
2110 bytes -= copy;
2111 base += copy;
2112 if (iov->iov_len == base) {
2113 iov++;
2114 base = 0;
2115 }
2116 }
2117 i->iov = iov;
2118 i->iov_offset = base;
2119 }
2120}
89e10787 2121EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 2122
afddba49
NP
2123/*
2124 * Fault in the first iovec of the given iov_iter, to a maximum length
2125 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2126 * accessed (ie. because it is an invalid address).
2127 *
2128 * writev-intensive code may want this to prefault several iovecs -- that
2129 * would be possible (callers must not rely on the fact that _only_ the
2130 * first iovec will be faulted with the current implementation).
2131 */
2132int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 2133{
2f718ffc 2134 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
2135 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2136 return fault_in_pages_readable(buf, bytes);
2f718ffc 2137}
89e10787 2138EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
2139
2140/*
2141 * Return the count of just the current iov_iter segment.
2142 */
2143size_t iov_iter_single_seg_count(struct iov_iter *i)
2144{
2145 const struct iovec *iov = i->iov;
2146 if (i->nr_segs == 1)
2147 return i->count;
2148 else
2149 return min(i->count, iov->iov_len - i->iov_offset);
2150}
89e10787 2151EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 2152
1da177e4
LT
2153/*
2154 * Performs necessary checks before doing a write
2155 *
485bb99b 2156 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2157 * Returns appropriate error code that caller should return or
2158 * zero in case that write should be allowed.
2159 */
2160inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2161{
2162 struct inode *inode = file->f_mapping->host;
59e99e5b 2163 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2164
2165 if (unlikely(*pos < 0))
2166 return -EINVAL;
2167
1da177e4
LT
2168 if (!isblk) {
2169 /* FIXME: this is for backwards compatibility with 2.4 */
2170 if (file->f_flags & O_APPEND)
2171 *pos = i_size_read(inode);
2172
2173 if (limit != RLIM_INFINITY) {
2174 if (*pos >= limit) {
2175 send_sig(SIGXFSZ, current, 0);
2176 return -EFBIG;
2177 }
2178 if (*count > limit - (typeof(limit))*pos) {
2179 *count = limit - (typeof(limit))*pos;
2180 }
2181 }
2182 }
2183
2184 /*
2185 * LFS rule
2186 */
2187 if (unlikely(*pos + *count > MAX_NON_LFS &&
2188 !(file->f_flags & O_LARGEFILE))) {
2189 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2190 return -EFBIG;
2191 }
2192 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2193 *count = MAX_NON_LFS - (unsigned long)*pos;
2194 }
2195 }
2196
2197 /*
2198 * Are we about to exceed the fs block limit ?
2199 *
2200 * If we have written data it becomes a short write. If we have
2201 * exceeded without writing data we send a signal and return EFBIG.
2202 * Linus frestrict idea will clean these up nicely..
2203 */
2204 if (likely(!isblk)) {
2205 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2206 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2207 return -EFBIG;
2208 }
2209 /* zero-length writes at ->s_maxbytes are OK */
2210 }
2211
2212 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2213 *count = inode->i_sb->s_maxbytes - *pos;
2214 } else {
9361401e 2215#ifdef CONFIG_BLOCK
1da177e4
LT
2216 loff_t isize;
2217 if (bdev_read_only(I_BDEV(inode)))
2218 return -EPERM;
2219 isize = i_size_read(inode);
2220 if (*pos >= isize) {
2221 if (*count || *pos > isize)
2222 return -ENOSPC;
2223 }
2224
2225 if (*pos + *count > isize)
2226 *count = isize - *pos;
9361401e
DH
2227#else
2228 return -EPERM;
2229#endif
1da177e4
LT
2230 }
2231 return 0;
2232}
2233EXPORT_SYMBOL(generic_write_checks);
2234
afddba49
NP
2235int pagecache_write_begin(struct file *file, struct address_space *mapping,
2236 loff_t pos, unsigned len, unsigned flags,
2237 struct page **pagep, void **fsdata)
2238{
2239 const struct address_space_operations *aops = mapping->a_ops;
2240
4e02ed4b 2241 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2242 pagep, fsdata);
afddba49
NP
2243}
2244EXPORT_SYMBOL(pagecache_write_begin);
2245
2246int pagecache_write_end(struct file *file, struct address_space *mapping,
2247 loff_t pos, unsigned len, unsigned copied,
2248 struct page *page, void *fsdata)
2249{
2250 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2251
4e02ed4b
NP
2252 mark_page_accessed(page);
2253 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2254}
2255EXPORT_SYMBOL(pagecache_write_end);
2256
1da177e4
LT
2257ssize_t
2258generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2259 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2260 size_t count, size_t ocount)
2261{
2262 struct file *file = iocb->ki_filp;
2263 struct address_space *mapping = file->f_mapping;
2264 struct inode *inode = mapping->host;
2265 ssize_t written;
a969e903
CH
2266 size_t write_len;
2267 pgoff_t end;
1da177e4
LT
2268
2269 if (count != ocount)
2270 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2271
a969e903
CH
2272 write_len = iov_length(iov, *nr_segs);
2273 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2274
48b47c56 2275 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2276 if (written)
2277 goto out;
2278
2279 /*
2280 * After a write we want buffered reads to be sure to go to disk to get
2281 * the new data. We invalidate clean cached page from the region we're
2282 * about to write. We do this *before* the write so that we can return
6ccfa806 2283 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2284 */
2285 if (mapping->nrpages) {
2286 written = invalidate_inode_pages2_range(mapping,
2287 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2288 /*
2289 * If a page can not be invalidated, return 0 to fall back
2290 * to buffered write.
2291 */
2292 if (written) {
2293 if (written == -EBUSY)
2294 return 0;
a969e903 2295 goto out;
6ccfa806 2296 }
a969e903
CH
2297 }
2298
2299 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2300
2301 /*
2302 * Finally, try again to invalidate clean pages which might have been
2303 * cached by non-direct readahead, or faulted in by get_user_pages()
2304 * if the source of the write was an mmap'ed region of the file
2305 * we're writing. Either one is a pretty crazy thing to do,
2306 * so we don't support it 100%. If this invalidation
2307 * fails, tough, the write still worked...
2308 */
2309 if (mapping->nrpages) {
2310 invalidate_inode_pages2_range(mapping,
2311 pos >> PAGE_CACHE_SHIFT, end);
2312 }
2313
1da177e4 2314 if (written > 0) {
0116651c
NK
2315 pos += written;
2316 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2317 i_size_write(inode, pos);
1da177e4
LT
2318 mark_inode_dirty(inode);
2319 }
0116651c 2320 *ppos = pos;
1da177e4 2321 }
a969e903 2322out:
1da177e4
LT
2323 return written;
2324}
2325EXPORT_SYMBOL(generic_file_direct_write);
2326
eb2be189
NP
2327/*
2328 * Find or create a page at the given pagecache position. Return the locked
2329 * page. This function is specifically for buffered writes.
2330 */
54566b2c
NP
2331struct page *grab_cache_page_write_begin(struct address_space *mapping,
2332 pgoff_t index, unsigned flags)
eb2be189
NP
2333{
2334 int status;
2335 struct page *page;
54566b2c
NP
2336 gfp_t gfp_notmask = 0;
2337 if (flags & AOP_FLAG_NOFS)
2338 gfp_notmask = __GFP_FS;
eb2be189
NP
2339repeat:
2340 page = find_lock_page(mapping, index);
c585a267 2341 if (page)
eb2be189
NP
2342 return page;
2343
54566b2c 2344 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
eb2be189
NP
2345 if (!page)
2346 return NULL;
54566b2c
NP
2347 status = add_to_page_cache_lru(page, mapping, index,
2348 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2349 if (unlikely(status)) {
2350 page_cache_release(page);
2351 if (status == -EEXIST)
2352 goto repeat;
2353 return NULL;
2354 }
2355 return page;
2356}
54566b2c 2357EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2358
afddba49
NP
2359static ssize_t generic_perform_write(struct file *file,
2360 struct iov_iter *i, loff_t pos)
2361{
2362 struct address_space *mapping = file->f_mapping;
2363 const struct address_space_operations *a_ops = mapping->a_ops;
2364 long status = 0;
2365 ssize_t written = 0;
674b892e
NP
2366 unsigned int flags = 0;
2367
2368 /*
2369 * Copies from kernel address space cannot fail (NFSD is a big user).
2370 */
2371 if (segment_eq(get_fs(), KERNEL_DS))
2372 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2373
2374 do {
2375 struct page *page;
afddba49
NP
2376 unsigned long offset; /* Offset into pagecache page */
2377 unsigned long bytes; /* Bytes to write to page */
2378 size_t copied; /* Bytes copied from user */
2379 void *fsdata;
2380
2381 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2382 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2383 iov_iter_count(i));
2384
2385again:
2386
2387 /*
2388 * Bring in the user page that we will copy from _first_.
2389 * Otherwise there's a nasty deadlock on copying from the
2390 * same page as we're writing to, without it being marked
2391 * up-to-date.
2392 *
2393 * Not only is this an optimisation, but it is also required
2394 * to check that the address is actually valid, when atomic
2395 * usercopies are used, below.
2396 */
2397 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2398 status = -EFAULT;
2399 break;
2400 }
2401
674b892e 2402 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2403 &page, &fsdata);
2404 if (unlikely(status))
2405 break;
2406
931e80e4 2407 if (mapping_writably_mapped(mapping))
2408 flush_dcache_page(page);
2409
afddba49
NP
2410 pagefault_disable();
2411 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2412 pagefault_enable();
2413 flush_dcache_page(page);
2414
c8236db9 2415 mark_page_accessed(page);
afddba49
NP
2416 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2417 page, fsdata);
2418 if (unlikely(status < 0))
2419 break;
2420 copied = status;
2421
2422 cond_resched();
2423
124d3b70 2424 iov_iter_advance(i, copied);
afddba49
NP
2425 if (unlikely(copied == 0)) {
2426 /*
2427 * If we were unable to copy any data at all, we must
2428 * fall back to a single segment length write.
2429 *
2430 * If we didn't fallback here, we could livelock
2431 * because not all segments in the iov can be copied at
2432 * once without a pagefault.
2433 */
2434 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2435 iov_iter_single_seg_count(i));
2436 goto again;
2437 }
afddba49
NP
2438 pos += copied;
2439 written += copied;
2440
2441 balance_dirty_pages_ratelimited(mapping);
2442
2443 } while (iov_iter_count(i));
2444
2445 return written ? written : status;
2446}
2447
2448ssize_t
2449generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2450 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2451 size_t count, ssize_t written)
2452{
2453 struct file *file = iocb->ki_filp;
afddba49
NP
2454 ssize_t status;
2455 struct iov_iter i;
2456
2457 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2458 status = generic_perform_write(file, &i, pos);
1da177e4 2459
1da177e4 2460 if (likely(status >= 0)) {
afddba49
NP
2461 written += status;
2462 *ppos = pos + status;
1da177e4
LT
2463 }
2464
1da177e4
LT
2465 return written ? written : status;
2466}
2467EXPORT_SYMBOL(generic_file_buffered_write);
2468
e4dd9de3
JK
2469/**
2470 * __generic_file_aio_write - write data to a file
2471 * @iocb: IO state structure (file, offset, etc.)
2472 * @iov: vector with data to write
2473 * @nr_segs: number of segments in the vector
2474 * @ppos: position where to write
2475 *
2476 * This function does all the work needed for actually writing data to a
2477 * file. It does all basic checks, removes SUID from the file, updates
2478 * modification times and calls proper subroutines depending on whether we
2479 * do direct IO or a standard buffered write.
2480 *
2481 * It expects i_mutex to be grabbed unless we work on a block device or similar
2482 * object which does not need locking at all.
2483 *
2484 * This function does *not* take care of syncing data in case of O_SYNC write.
2485 * A caller has to handle it. This is mainly due to the fact that we want to
2486 * avoid syncing under i_mutex.
2487 */
2488ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2489 unsigned long nr_segs, loff_t *ppos)
1da177e4
LT
2490{
2491 struct file *file = iocb->ki_filp;
fb5527e6 2492 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2493 size_t ocount; /* original count */
2494 size_t count; /* after file limit checks */
2495 struct inode *inode = mapping->host;
1da177e4
LT
2496 loff_t pos;
2497 ssize_t written;
2498 ssize_t err;
2499
2500 ocount = 0;
0ceb3314
DM
2501 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2502 if (err)
2503 return err;
1da177e4
LT
2504
2505 count = ocount;
2506 pos = *ppos;
2507
2508 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2509
2510 /* We can write back this queue in page reclaim */
2511 current->backing_dev_info = mapping->backing_dev_info;
2512 written = 0;
2513
2514 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2515 if (err)
2516 goto out;
2517
2518 if (count == 0)
2519 goto out;
2520
2f1936b8 2521 err = file_remove_suid(file);
1da177e4
LT
2522 if (err)
2523 goto out;
2524
870f4817 2525 file_update_time(file);
1da177e4
LT
2526
2527 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2528 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2529 loff_t endbyte;
2530 ssize_t written_buffered;
2531
2532 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2533 ppos, count, ocount);
1da177e4
LT
2534 if (written < 0 || written == count)
2535 goto out;
2536 /*
2537 * direct-io write to a hole: fall through to buffered I/O
2538 * for completing the rest of the request.
2539 */
2540 pos += written;
2541 count -= written;
fb5527e6
JM
2542 written_buffered = generic_file_buffered_write(iocb, iov,
2543 nr_segs, pos, ppos, count,
2544 written);
2545 /*
2546 * If generic_file_buffered_write() retuned a synchronous error
2547 * then we want to return the number of bytes which were
2548 * direct-written, or the error code if that was zero. Note
2549 * that this differs from normal direct-io semantics, which
2550 * will return -EFOO even if some bytes were written.
2551 */
2552 if (written_buffered < 0) {
2553 err = written_buffered;
2554 goto out;
2555 }
1da177e4 2556
fb5527e6
JM
2557 /*
2558 * We need to ensure that the page cache pages are written to
2559 * disk and invalidated to preserve the expected O_DIRECT
2560 * semantics.
2561 */
2562 endbyte = pos + written_buffered - written - 1;
c05c4edd 2563 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6
JM
2564 if (err == 0) {
2565 written = written_buffered;
2566 invalidate_mapping_pages(mapping,
2567 pos >> PAGE_CACHE_SHIFT,
2568 endbyte >> PAGE_CACHE_SHIFT);
2569 } else {
2570 /*
2571 * We don't know how much we wrote, so just return
2572 * the number of bytes which were direct-written
2573 */
2574 }
2575 } else {
2576 written = generic_file_buffered_write(iocb, iov, nr_segs,
2577 pos, ppos, count, written);
2578 }
1da177e4
LT
2579out:
2580 current->backing_dev_info = NULL;
2581 return written ? written : err;
2582}
e4dd9de3
JK
2583EXPORT_SYMBOL(__generic_file_aio_write);
2584
e4dd9de3
JK
2585/**
2586 * generic_file_aio_write - write data to a file
2587 * @iocb: IO state structure
2588 * @iov: vector with data to write
2589 * @nr_segs: number of segments in the vector
2590 * @pos: position in file where to write
2591 *
2592 * This is a wrapper around __generic_file_aio_write() to be used by most
2593 * filesystems. It takes care of syncing the file in case of O_SYNC file
2594 * and acquires i_mutex as needed.
2595 */
027445c3
BP
2596ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2597 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2598{
2599 struct file *file = iocb->ki_filp;
148f948b 2600 struct inode *inode = file->f_mapping->host;
1da177e4 2601 ssize_t ret;
1da177e4
LT
2602
2603 BUG_ON(iocb->ki_pos != pos);
2604
1b1dcc1b 2605 mutex_lock(&inode->i_mutex);
e4dd9de3 2606 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1b1dcc1b 2607 mutex_unlock(&inode->i_mutex);
1da177e4 2608
148f948b 2609 if (ret > 0 || ret == -EIOCBQUEUED) {
1da177e4
LT
2610 ssize_t err;
2611
148f948b 2612 err = generic_write_sync(file, pos, ret);
c7b50db2 2613 if (err < 0 && ret > 0)
1da177e4
LT
2614 ret = err;
2615 }
2616 return ret;
2617}
2618EXPORT_SYMBOL(generic_file_aio_write);
2619
cf9a2ae8
DH
2620/**
2621 * try_to_release_page() - release old fs-specific metadata on a page
2622 *
2623 * @page: the page which the kernel is trying to free
2624 * @gfp_mask: memory allocation flags (and I/O mode)
2625 *
2626 * The address_space is to try to release any data against the page
2627 * (presumably at page->private). If the release was successful, return `1'.
2628 * Otherwise return zero.
2629 *
266cf658
DH
2630 * This may also be called if PG_fscache is set on a page, indicating that the
2631 * page is known to the local caching routines.
2632 *
cf9a2ae8 2633 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2634 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2635 *
cf9a2ae8
DH
2636 */
2637int try_to_release_page(struct page *page, gfp_t gfp_mask)
2638{
2639 struct address_space * const mapping = page->mapping;
2640
2641 BUG_ON(!PageLocked(page));
2642 if (PageWriteback(page))
2643 return 0;
2644
2645 if (mapping && mapping->a_ops->releasepage)
2646 return mapping->a_ops->releasepage(page, gfp_mask);
2647 return try_to_free_buffers(page);
2648}
2649
2650EXPORT_SYMBOL(try_to_release_page);