]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/filemap.c
mm: simplify lock_page_memcg()
[mirror_ubuntu-zesty-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
c22ce143 16#include <linux/uaccess.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 34#include <linux/hugetlb.h>
8a9f3ccd 35#include <linux/memcontrol.h>
c515e1fd 36#include <linux/cleancache.h>
f1820361 37#include <linux/rmap.h>
0f8053a5
NP
38#include "internal.h"
39
fe0bfaaf
RJ
40#define CREATE_TRACE_POINTS
41#include <trace/events/filemap.h>
42
1da177e4 43/*
1da177e4
LT
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
148f948b 46#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 47
1da177e4
LT
48#include <asm/mman.h>
49
50/*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62/*
63 * Lock ordering:
64 *
c8c06efa 65 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
1da177e4 69 *
1b1dcc1b 70 * ->i_mutex
c8c06efa 71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
72 *
73 * ->mmap_sem
c8c06efa 74 * ->i_mmap_rwsem
b8072f09 75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
ccad2365 81 * ->i_mutex (generic_perform_write)
82591e6e 82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 83 *
f758eeab 84 * bdi->wb.list_lock
a66979ab 85 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
c8c06efa 88 * ->i_mmap_rwsem
1da177e4
LT
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
b8072f09 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 93 *
b8072f09 94 * ->page_table_lock or pte_lock
5d337b91 95 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
c8c06efa 109 * ->i_mmap_rwsem
9a3c531d 110 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
111 */
112
91b0abe3
JW
113static void page_cache_tree_delete(struct address_space *mapping,
114 struct page *page, void *shadow)
115{
449dd698
JW
116 struct radix_tree_node *node;
117 unsigned long index;
118 unsigned int offset;
119 unsigned int tag;
120 void **slot;
91b0abe3 121
449dd698
JW
122 VM_BUG_ON(!PageLocked(page));
123
124 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125
126 if (shadow) {
f9fe48be 127 mapping->nrexceptional++;
91b0abe3 128 /*
f9fe48be 129 * Make sure the nrexceptional update is committed before
91b0abe3
JW
130 * the nrpages update so that final truncate racing
131 * with reclaim does not see both counters 0 at the
132 * same time and miss a shadow entry.
133 */
134 smp_wmb();
449dd698 135 }
91b0abe3 136 mapping->nrpages--;
449dd698
JW
137
138 if (!node) {
139 /* Clear direct pointer tags in root node */
140 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141 radix_tree_replace_slot(slot, shadow);
142 return;
143 }
144
145 /* Clear tree tags for the removed page */
146 index = page->index;
147 offset = index & RADIX_TREE_MAP_MASK;
148 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149 if (test_bit(offset, node->tags[tag]))
150 radix_tree_tag_clear(&mapping->page_tree, index, tag);
151 }
152
153 /* Delete page, swap shadow entry */
154 radix_tree_replace_slot(slot, shadow);
155 workingset_node_pages_dec(node);
156 if (shadow)
157 workingset_node_shadows_inc(node);
158 else
159 if (__radix_tree_delete_node(&mapping->page_tree, node))
160 return;
161
162 /*
163 * Track node that only contains shadow entries.
164 *
165 * Avoid acquiring the list_lru lock if already tracked. The
166 * list_empty() test is safe as node->private_list is
167 * protected by mapping->tree_lock.
168 */
169 if (!workingset_node_pages(node) &&
170 list_empty(&node->private_list)) {
171 node->private_data = mapping;
172 list_lru_add(&workingset_shadow_nodes, &node->private_list);
173 }
91b0abe3
JW
174}
175
1da177e4 176/*
e64a782f 177 * Delete a page from the page cache and free it. Caller has to make
1da177e4 178 * sure the page is locked and that nobody else uses it - or that usage
c4843a75 179 * is safe. The caller must hold the mapping's tree_lock and
81f8c3a4 180 * lock_page_memcg().
1da177e4 181 */
62cccb8c 182void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
183{
184 struct address_space *mapping = page->mapping;
185
fe0bfaaf 186 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
187 /*
188 * if we're uptodate, flush out into the cleancache, otherwise
189 * invalidate any existing cleancache entries. We can't leave
190 * stale data around in the cleancache once our page is gone
191 */
192 if (PageUptodate(page) && PageMappedToDisk(page))
193 cleancache_put_page(page);
194 else
3167760f 195 cleancache_invalidate_page(mapping, page);
c515e1fd 196
06b241f3
HD
197 VM_BUG_ON_PAGE(page_mapped(page), page);
198 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
199 int mapcount;
200
201 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
202 current->comm, page_to_pfn(page));
203 dump_page(page, "still mapped when deleted");
204 dump_stack();
205 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
206
207 mapcount = page_mapcount(page);
208 if (mapping_exiting(mapping) &&
209 page_count(page) >= mapcount + 2) {
210 /*
211 * All vmas have already been torn down, so it's
212 * a good bet that actually the page is unmapped,
213 * and we'd prefer not to leak it: if we're wrong,
214 * some other bad page check should catch it later.
215 */
216 page_mapcount_reset(page);
217 atomic_sub(mapcount, &page->_count);
218 }
219 }
220
91b0abe3
JW
221 page_cache_tree_delete(mapping, page, shadow);
222
1da177e4 223 page->mapping = NULL;
b85e0eff 224 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 225
4165b9b4
MH
226 /* hugetlb pages do not participate in page cache accounting. */
227 if (!PageHuge(page))
228 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
229 if (PageSwapBacked(page))
230 __dec_zone_page_state(page, NR_SHMEM);
3a692790
LT
231
232 /*
b9ea2515
KK
233 * At this point page must be either written or cleaned by truncate.
234 * Dirty page here signals a bug and loss of unwritten data.
3a692790 235 *
b9ea2515
KK
236 * This fixes dirty accounting after removing the page entirely but
237 * leaves PageDirty set: it has no effect for truncated page and
238 * anyway will be cleared before returning page into buddy allocator.
3a692790 239 */
b9ea2515 240 if (WARN_ON_ONCE(PageDirty(page)))
62cccb8c 241 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
1da177e4
LT
242}
243
702cfbf9
MK
244/**
245 * delete_from_page_cache - delete page from page cache
246 * @page: the page which the kernel is trying to remove from page cache
247 *
248 * This must be called only on pages that have been verified to be in the page
249 * cache and locked. It will never put the page into the free list, the caller
250 * has a reference on the page.
251 */
252void delete_from_page_cache(struct page *page)
1da177e4
LT
253{
254 struct address_space *mapping = page->mapping;
c4843a75
GT
255 unsigned long flags;
256
6072d13c 257 void (*freepage)(struct page *);
1da177e4 258
cd7619d6 259 BUG_ON(!PageLocked(page));
1da177e4 260
6072d13c 261 freepage = mapping->a_ops->freepage;
c4843a75 262
62cccb8c 263 lock_page_memcg(page);
c4843a75 264 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 265 __delete_from_page_cache(page, NULL);
c4843a75 266 spin_unlock_irqrestore(&mapping->tree_lock, flags);
62cccb8c 267 unlock_page_memcg(page);
6072d13c
LT
268
269 if (freepage)
270 freepage(page);
97cecb5a
MK
271 page_cache_release(page);
272}
273EXPORT_SYMBOL(delete_from_page_cache);
274
865ffef3
DM
275static int filemap_check_errors(struct address_space *mapping)
276{
277 int ret = 0;
278 /* Check for outstanding write errors */
7fcbbaf1
JA
279 if (test_bit(AS_ENOSPC, &mapping->flags) &&
280 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 281 ret = -ENOSPC;
7fcbbaf1
JA
282 if (test_bit(AS_EIO, &mapping->flags) &&
283 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
284 ret = -EIO;
285 return ret;
286}
287
1da177e4 288/**
485bb99b 289 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
290 * @mapping: address space structure to write
291 * @start: offset in bytes where the range starts
469eb4d0 292 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 293 * @sync_mode: enable synchronous operation
1da177e4 294 *
485bb99b
RD
295 * Start writeback against all of a mapping's dirty pages that lie
296 * within the byte offsets <start, end> inclusive.
297 *
1da177e4 298 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 299 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
300 * these two operations is that if a dirty page/buffer is encountered, it must
301 * be waited upon, and not just skipped over.
302 */
ebcf28e1
AM
303int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
304 loff_t end, int sync_mode)
1da177e4
LT
305{
306 int ret;
307 struct writeback_control wbc = {
308 .sync_mode = sync_mode,
05fe478d 309 .nr_to_write = LONG_MAX,
111ebb6e
OH
310 .range_start = start,
311 .range_end = end,
1da177e4
LT
312 };
313
314 if (!mapping_cap_writeback_dirty(mapping))
315 return 0;
316
b16b1deb 317 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 318 ret = do_writepages(mapping, &wbc);
b16b1deb 319 wbc_detach_inode(&wbc);
1da177e4
LT
320 return ret;
321}
322
323static inline int __filemap_fdatawrite(struct address_space *mapping,
324 int sync_mode)
325{
111ebb6e 326 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
327}
328
329int filemap_fdatawrite(struct address_space *mapping)
330{
331 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
332}
333EXPORT_SYMBOL(filemap_fdatawrite);
334
f4c0a0fd 335int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 336 loff_t end)
1da177e4
LT
337{
338 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
339}
f4c0a0fd 340EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 341
485bb99b
RD
342/**
343 * filemap_flush - mostly a non-blocking flush
344 * @mapping: target address_space
345 *
1da177e4
LT
346 * This is a mostly non-blocking flush. Not suitable for data-integrity
347 * purposes - I/O may not be started against all dirty pages.
348 */
349int filemap_flush(struct address_space *mapping)
350{
351 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
352}
353EXPORT_SYMBOL(filemap_flush);
354
aa750fd7
JN
355static int __filemap_fdatawait_range(struct address_space *mapping,
356 loff_t start_byte, loff_t end_byte)
1da177e4 357{
94004ed7
CH
358 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
359 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
360 struct pagevec pvec;
361 int nr_pages;
aa750fd7 362 int ret = 0;
1da177e4 363
94004ed7 364 if (end_byte < start_byte)
865ffef3 365 goto out;
1da177e4
LT
366
367 pagevec_init(&pvec, 0);
1da177e4
LT
368 while ((index <= end) &&
369 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
370 PAGECACHE_TAG_WRITEBACK,
371 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
372 unsigned i;
373
374 for (i = 0; i < nr_pages; i++) {
375 struct page *page = pvec.pages[i];
376
377 /* until radix tree lookup accepts end_index */
378 if (page->index > end)
379 continue;
380
381 wait_on_page_writeback(page);
212260aa 382 if (TestClearPageError(page))
1da177e4
LT
383 ret = -EIO;
384 }
385 pagevec_release(&pvec);
386 cond_resched();
387 }
865ffef3 388out:
aa750fd7
JN
389 return ret;
390}
391
392/**
393 * filemap_fdatawait_range - wait for writeback to complete
394 * @mapping: address space structure to wait for
395 * @start_byte: offset in bytes where the range starts
396 * @end_byte: offset in bytes where the range ends (inclusive)
397 *
398 * Walk the list of under-writeback pages of the given address space
399 * in the given range and wait for all of them. Check error status of
400 * the address space and return it.
401 *
402 * Since the error status of the address space is cleared by this function,
403 * callers are responsible for checking the return value and handling and/or
404 * reporting the error.
405 */
406int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
407 loff_t end_byte)
408{
409 int ret, ret2;
410
411 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
865ffef3
DM
412 ret2 = filemap_check_errors(mapping);
413 if (!ret)
414 ret = ret2;
1da177e4
LT
415
416 return ret;
417}
d3bccb6f
JK
418EXPORT_SYMBOL(filemap_fdatawait_range);
419
aa750fd7
JN
420/**
421 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
422 * @mapping: address space structure to wait for
423 *
424 * Walk the list of under-writeback pages of the given address space
425 * and wait for all of them. Unlike filemap_fdatawait(), this function
426 * does not clear error status of the address space.
427 *
428 * Use this function if callers don't handle errors themselves. Expected
429 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
430 * fsfreeze(8)
431 */
432void filemap_fdatawait_keep_errors(struct address_space *mapping)
433{
434 loff_t i_size = i_size_read(mapping->host);
435
436 if (i_size == 0)
437 return;
438
439 __filemap_fdatawait_range(mapping, 0, i_size - 1);
440}
441
1da177e4 442/**
485bb99b 443 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 444 * @mapping: address space structure to wait for
485bb99b
RD
445 *
446 * Walk the list of under-writeback pages of the given address space
aa750fd7
JN
447 * and wait for all of them. Check error status of the address space
448 * and return it.
449 *
450 * Since the error status of the address space is cleared by this function,
451 * callers are responsible for checking the return value and handling and/or
452 * reporting the error.
1da177e4
LT
453 */
454int filemap_fdatawait(struct address_space *mapping)
455{
456 loff_t i_size = i_size_read(mapping->host);
457
458 if (i_size == 0)
459 return 0;
460
94004ed7 461 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
462}
463EXPORT_SYMBOL(filemap_fdatawait);
464
465int filemap_write_and_wait(struct address_space *mapping)
466{
28fd1298 467 int err = 0;
1da177e4 468
7f6d5b52
RZ
469 if ((!dax_mapping(mapping) && mapping->nrpages) ||
470 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
471 err = filemap_fdatawrite(mapping);
472 /*
473 * Even if the above returned error, the pages may be
474 * written partially (e.g. -ENOSPC), so we wait for it.
475 * But the -EIO is special case, it may indicate the worst
476 * thing (e.g. bug) happened, so we avoid waiting for it.
477 */
478 if (err != -EIO) {
479 int err2 = filemap_fdatawait(mapping);
480 if (!err)
481 err = err2;
482 }
865ffef3
DM
483 } else {
484 err = filemap_check_errors(mapping);
1da177e4 485 }
28fd1298 486 return err;
1da177e4 487}
28fd1298 488EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 489
485bb99b
RD
490/**
491 * filemap_write_and_wait_range - write out & wait on a file range
492 * @mapping: the address_space for the pages
493 * @lstart: offset in bytes where the range starts
494 * @lend: offset in bytes where the range ends (inclusive)
495 *
469eb4d0
AM
496 * Write out and wait upon file offsets lstart->lend, inclusive.
497 *
498 * Note that `lend' is inclusive (describes the last byte to be written) so
499 * that this function can be used to write to the very end-of-file (end = -1).
500 */
1da177e4
LT
501int filemap_write_and_wait_range(struct address_space *mapping,
502 loff_t lstart, loff_t lend)
503{
28fd1298 504 int err = 0;
1da177e4 505
7f6d5b52
RZ
506 if ((!dax_mapping(mapping) && mapping->nrpages) ||
507 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
508 err = __filemap_fdatawrite_range(mapping, lstart, lend,
509 WB_SYNC_ALL);
510 /* See comment of filemap_write_and_wait() */
511 if (err != -EIO) {
94004ed7
CH
512 int err2 = filemap_fdatawait_range(mapping,
513 lstart, lend);
28fd1298
OH
514 if (!err)
515 err = err2;
516 }
865ffef3
DM
517 } else {
518 err = filemap_check_errors(mapping);
1da177e4 519 }
28fd1298 520 return err;
1da177e4 521}
f6995585 522EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 523
ef6a3c63
MS
524/**
525 * replace_page_cache_page - replace a pagecache page with a new one
526 * @old: page to be replaced
527 * @new: page to replace with
528 * @gfp_mask: allocation mode
529 *
530 * This function replaces a page in the pagecache with a new one. On
531 * success it acquires the pagecache reference for the new page and
532 * drops it for the old page. Both the old and new pages must be
533 * locked. This function does not add the new page to the LRU, the
534 * caller must do that.
535 *
536 * The remove + add is atomic. The only way this function can fail is
537 * memory allocation failure.
538 */
539int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
540{
541 int error;
ef6a3c63 542
309381fe
SL
543 VM_BUG_ON_PAGE(!PageLocked(old), old);
544 VM_BUG_ON_PAGE(!PageLocked(new), new);
545 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 546
ef6a3c63
MS
547 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
548 if (!error) {
549 struct address_space *mapping = old->mapping;
550 void (*freepage)(struct page *);
c4843a75 551 unsigned long flags;
ef6a3c63
MS
552
553 pgoff_t offset = old->index;
554 freepage = mapping->a_ops->freepage;
555
556 page_cache_get(new);
557 new->mapping = mapping;
558 new->index = offset;
559
62cccb8c 560 lock_page_memcg(old);
c4843a75 561 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 562 __delete_from_page_cache(old, NULL);
ef6a3c63
MS
563 error = radix_tree_insert(&mapping->page_tree, offset, new);
564 BUG_ON(error);
565 mapping->nrpages++;
4165b9b4
MH
566
567 /*
568 * hugetlb pages do not participate in page cache accounting.
569 */
570 if (!PageHuge(new))
571 __inc_zone_page_state(new, NR_FILE_PAGES);
ef6a3c63
MS
572 if (PageSwapBacked(new))
573 __inc_zone_page_state(new, NR_SHMEM);
c4843a75 574 spin_unlock_irqrestore(&mapping->tree_lock, flags);
62cccb8c 575 unlock_page_memcg(old);
6a93ca8f 576 mem_cgroup_migrate(old, new);
ef6a3c63
MS
577 radix_tree_preload_end();
578 if (freepage)
579 freepage(old);
580 page_cache_release(old);
ef6a3c63
MS
581 }
582
583 return error;
584}
585EXPORT_SYMBOL_GPL(replace_page_cache_page);
586
0cd6144a 587static int page_cache_tree_insert(struct address_space *mapping,
a528910e 588 struct page *page, void **shadowp)
0cd6144a 589{
449dd698 590 struct radix_tree_node *node;
0cd6144a
JW
591 void **slot;
592 int error;
593
449dd698
JW
594 error = __radix_tree_create(&mapping->page_tree, page->index,
595 &node, &slot);
596 if (error)
597 return error;
598 if (*slot) {
0cd6144a
JW
599 void *p;
600
601 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
602 if (!radix_tree_exceptional_entry(p))
603 return -EEXIST;
f9fe48be
RZ
604
605 if (WARN_ON(dax_mapping(mapping)))
606 return -EINVAL;
607
a528910e
JW
608 if (shadowp)
609 *shadowp = p;
f9fe48be 610 mapping->nrexceptional--;
449dd698
JW
611 if (node)
612 workingset_node_shadows_dec(node);
0cd6144a 613 }
449dd698
JW
614 radix_tree_replace_slot(slot, page);
615 mapping->nrpages++;
616 if (node) {
617 workingset_node_pages_inc(node);
618 /*
619 * Don't track node that contains actual pages.
620 *
621 * Avoid acquiring the list_lru lock if already
622 * untracked. The list_empty() test is safe as
623 * node->private_list is protected by
624 * mapping->tree_lock.
625 */
626 if (!list_empty(&node->private_list))
627 list_lru_del(&workingset_shadow_nodes,
628 &node->private_list);
629 }
630 return 0;
0cd6144a
JW
631}
632
a528910e
JW
633static int __add_to_page_cache_locked(struct page *page,
634 struct address_space *mapping,
635 pgoff_t offset, gfp_t gfp_mask,
636 void **shadowp)
1da177e4 637{
00501b53
JW
638 int huge = PageHuge(page);
639 struct mem_cgroup *memcg;
e286781d
NP
640 int error;
641
309381fe
SL
642 VM_BUG_ON_PAGE(!PageLocked(page), page);
643 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 644
00501b53
JW
645 if (!huge) {
646 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 647 gfp_mask, &memcg, false);
00501b53
JW
648 if (error)
649 return error;
650 }
1da177e4 651
5e4c0d97 652 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 653 if (error) {
00501b53 654 if (!huge)
f627c2f5 655 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
656 return error;
657 }
658
659 page_cache_get(page);
660 page->mapping = mapping;
661 page->index = offset;
662
663 spin_lock_irq(&mapping->tree_lock);
a528910e 664 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
665 radix_tree_preload_end();
666 if (unlikely(error))
667 goto err_insert;
4165b9b4
MH
668
669 /* hugetlb pages do not participate in page cache accounting. */
670 if (!huge)
671 __inc_zone_page_state(page, NR_FILE_PAGES);
66a0c8ee 672 spin_unlock_irq(&mapping->tree_lock);
00501b53 673 if (!huge)
f627c2f5 674 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
675 trace_mm_filemap_add_to_page_cache(page);
676 return 0;
677err_insert:
678 page->mapping = NULL;
679 /* Leave page->index set: truncation relies upon it */
680 spin_unlock_irq(&mapping->tree_lock);
00501b53 681 if (!huge)
f627c2f5 682 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee 683 page_cache_release(page);
1da177e4
LT
684 return error;
685}
a528910e
JW
686
687/**
688 * add_to_page_cache_locked - add a locked page to the pagecache
689 * @page: page to add
690 * @mapping: the page's address_space
691 * @offset: page index
692 * @gfp_mask: page allocation mode
693 *
694 * This function is used to add a page to the pagecache. It must be locked.
695 * This function does not add the page to the LRU. The caller must do that.
696 */
697int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
698 pgoff_t offset, gfp_t gfp_mask)
699{
700 return __add_to_page_cache_locked(page, mapping, offset,
701 gfp_mask, NULL);
702}
e286781d 703EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
704
705int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 706 pgoff_t offset, gfp_t gfp_mask)
1da177e4 707{
a528910e 708 void *shadow = NULL;
4f98a2fe
RR
709 int ret;
710
48c935ad 711 __SetPageLocked(page);
a528910e
JW
712 ret = __add_to_page_cache_locked(page, mapping, offset,
713 gfp_mask, &shadow);
714 if (unlikely(ret))
48c935ad 715 __ClearPageLocked(page);
a528910e
JW
716 else {
717 /*
718 * The page might have been evicted from cache only
719 * recently, in which case it should be activated like
720 * any other repeatedly accessed page.
721 */
722 if (shadow && workingset_refault(shadow)) {
723 SetPageActive(page);
724 workingset_activation(page);
725 } else
726 ClearPageActive(page);
727 lru_cache_add(page);
728 }
1da177e4
LT
729 return ret;
730}
18bc0bbd 731EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 732
44110fe3 733#ifdef CONFIG_NUMA
2ae88149 734struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 735{
c0ff7453
MX
736 int n;
737 struct page *page;
738
44110fe3 739 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
740 unsigned int cpuset_mems_cookie;
741 do {
d26914d1 742 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 743 n = cpuset_mem_spread_node();
96db800f 744 page = __alloc_pages_node(n, gfp, 0);
d26914d1 745 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 746
c0ff7453 747 return page;
44110fe3 748 }
2ae88149 749 return alloc_pages(gfp, 0);
44110fe3 750}
2ae88149 751EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
752#endif
753
1da177e4
LT
754/*
755 * In order to wait for pages to become available there must be
756 * waitqueues associated with pages. By using a hash table of
757 * waitqueues where the bucket discipline is to maintain all
758 * waiters on the same queue and wake all when any of the pages
759 * become available, and for the woken contexts to check to be
760 * sure the appropriate page became available, this saves space
761 * at a cost of "thundering herd" phenomena during rare hash
762 * collisions.
763 */
a4796e37 764wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4
LT
765{
766 const struct zone *zone = page_zone(page);
767
768 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
769}
a4796e37 770EXPORT_SYMBOL(page_waitqueue);
1da177e4 771
920c7a5d 772void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
773{
774 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
775
776 if (test_bit(bit_nr, &page->flags))
74316201 777 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
778 TASK_UNINTERRUPTIBLE);
779}
780EXPORT_SYMBOL(wait_on_page_bit);
781
f62e00cc
KM
782int wait_on_page_bit_killable(struct page *page, int bit_nr)
783{
784 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
785
786 if (!test_bit(bit_nr, &page->flags))
787 return 0;
788
789 return __wait_on_bit(page_waitqueue(page), &wait,
74316201 790 bit_wait_io, TASK_KILLABLE);
f62e00cc
KM
791}
792
cbbce822
N
793int wait_on_page_bit_killable_timeout(struct page *page,
794 int bit_nr, unsigned long timeout)
795{
796 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
797
798 wait.key.timeout = jiffies + timeout;
799 if (!test_bit(bit_nr, &page->flags))
800 return 0;
801 return __wait_on_bit(page_waitqueue(page), &wait,
802 bit_wait_io_timeout, TASK_KILLABLE);
803}
804EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
805
385e1ca5
DH
806/**
807 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
808 * @page: Page defining the wait queue of interest
809 * @waiter: Waiter to add to the queue
385e1ca5
DH
810 *
811 * Add an arbitrary @waiter to the wait queue for the nominated @page.
812 */
813void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
814{
815 wait_queue_head_t *q = page_waitqueue(page);
816 unsigned long flags;
817
818 spin_lock_irqsave(&q->lock, flags);
819 __add_wait_queue(q, waiter);
820 spin_unlock_irqrestore(&q->lock, flags);
821}
822EXPORT_SYMBOL_GPL(add_page_wait_queue);
823
1da177e4 824/**
485bb99b 825 * unlock_page - unlock a locked page
1da177e4
LT
826 * @page: the page
827 *
828 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
829 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 830 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
831 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
832 *
8413ac9d
NP
833 * The mb is necessary to enforce ordering between the clear_bit and the read
834 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 835 */
920c7a5d 836void unlock_page(struct page *page)
1da177e4 837{
48c935ad 838 page = compound_head(page);
309381fe 839 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d 840 clear_bit_unlock(PG_locked, &page->flags);
4e857c58 841 smp_mb__after_atomic();
1da177e4
LT
842 wake_up_page(page, PG_locked);
843}
844EXPORT_SYMBOL(unlock_page);
845
485bb99b
RD
846/**
847 * end_page_writeback - end writeback against a page
848 * @page: the page
1da177e4
LT
849 */
850void end_page_writeback(struct page *page)
851{
888cf2db
MG
852 /*
853 * TestClearPageReclaim could be used here but it is an atomic
854 * operation and overkill in this particular case. Failing to
855 * shuffle a page marked for immediate reclaim is too mild to
856 * justify taking an atomic operation penalty at the end of
857 * ever page writeback.
858 */
859 if (PageReclaim(page)) {
860 ClearPageReclaim(page);
ac6aadb2 861 rotate_reclaimable_page(page);
888cf2db 862 }
ac6aadb2
MS
863
864 if (!test_clear_page_writeback(page))
865 BUG();
866
4e857c58 867 smp_mb__after_atomic();
1da177e4
LT
868 wake_up_page(page, PG_writeback);
869}
870EXPORT_SYMBOL(end_page_writeback);
871
57d99845
MW
872/*
873 * After completing I/O on a page, call this routine to update the page
874 * flags appropriately
875 */
876void page_endio(struct page *page, int rw, int err)
877{
878 if (rw == READ) {
879 if (!err) {
880 SetPageUptodate(page);
881 } else {
882 ClearPageUptodate(page);
883 SetPageError(page);
884 }
885 unlock_page(page);
886 } else { /* rw == WRITE */
887 if (err) {
888 SetPageError(page);
889 if (page->mapping)
890 mapping_set_error(page->mapping, err);
891 }
892 end_page_writeback(page);
893 }
894}
895EXPORT_SYMBOL_GPL(page_endio);
896
485bb99b
RD
897/**
898 * __lock_page - get a lock on the page, assuming we need to sleep to get it
899 * @page: the page to lock
1da177e4 900 */
920c7a5d 901void __lock_page(struct page *page)
1da177e4 902{
48c935ad
KS
903 struct page *page_head = compound_head(page);
904 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
1da177e4 905
48c935ad 906 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
1da177e4
LT
907 TASK_UNINTERRUPTIBLE);
908}
909EXPORT_SYMBOL(__lock_page);
910
b5606c2d 911int __lock_page_killable(struct page *page)
2687a356 912{
48c935ad
KS
913 struct page *page_head = compound_head(page);
914 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
2687a356 915
48c935ad 916 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
74316201 917 bit_wait_io, TASK_KILLABLE);
2687a356 918}
18bc0bbd 919EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 920
9a95f3cf
PC
921/*
922 * Return values:
923 * 1 - page is locked; mmap_sem is still held.
924 * 0 - page is not locked.
925 * mmap_sem has been released (up_read()), unless flags had both
926 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
927 * which case mmap_sem is still held.
928 *
929 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
930 * with the page locked and the mmap_sem unperturbed.
931 */
d065bd81
ML
932int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
933 unsigned int flags)
934{
37b23e05
KM
935 if (flags & FAULT_FLAG_ALLOW_RETRY) {
936 /*
937 * CAUTION! In this case, mmap_sem is not released
938 * even though return 0.
939 */
940 if (flags & FAULT_FLAG_RETRY_NOWAIT)
941 return 0;
942
943 up_read(&mm->mmap_sem);
944 if (flags & FAULT_FLAG_KILLABLE)
945 wait_on_page_locked_killable(page);
946 else
318b275f 947 wait_on_page_locked(page);
d065bd81 948 return 0;
37b23e05
KM
949 } else {
950 if (flags & FAULT_FLAG_KILLABLE) {
951 int ret;
952
953 ret = __lock_page_killable(page);
954 if (ret) {
955 up_read(&mm->mmap_sem);
956 return 0;
957 }
958 } else
959 __lock_page(page);
960 return 1;
d065bd81
ML
961 }
962}
963
e7b563bb
JW
964/**
965 * page_cache_next_hole - find the next hole (not-present entry)
966 * @mapping: mapping
967 * @index: index
968 * @max_scan: maximum range to search
969 *
970 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
971 * lowest indexed hole.
972 *
973 * Returns: the index of the hole if found, otherwise returns an index
974 * outside of the set specified (in which case 'return - index >=
975 * max_scan' will be true). In rare cases of index wrap-around, 0 will
976 * be returned.
977 *
978 * page_cache_next_hole may be called under rcu_read_lock. However,
979 * like radix_tree_gang_lookup, this will not atomically search a
980 * snapshot of the tree at a single point in time. For example, if a
981 * hole is created at index 5, then subsequently a hole is created at
982 * index 10, page_cache_next_hole covering both indexes may return 10
983 * if called under rcu_read_lock.
984 */
985pgoff_t page_cache_next_hole(struct address_space *mapping,
986 pgoff_t index, unsigned long max_scan)
987{
988 unsigned long i;
989
990 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
991 struct page *page;
992
993 page = radix_tree_lookup(&mapping->page_tree, index);
994 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
995 break;
996 index++;
997 if (index == 0)
998 break;
999 }
1000
1001 return index;
1002}
1003EXPORT_SYMBOL(page_cache_next_hole);
1004
1005/**
1006 * page_cache_prev_hole - find the prev hole (not-present entry)
1007 * @mapping: mapping
1008 * @index: index
1009 * @max_scan: maximum range to search
1010 *
1011 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1012 * the first hole.
1013 *
1014 * Returns: the index of the hole if found, otherwise returns an index
1015 * outside of the set specified (in which case 'index - return >=
1016 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1017 * will be returned.
1018 *
1019 * page_cache_prev_hole may be called under rcu_read_lock. However,
1020 * like radix_tree_gang_lookup, this will not atomically search a
1021 * snapshot of the tree at a single point in time. For example, if a
1022 * hole is created at index 10, then subsequently a hole is created at
1023 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1024 * called under rcu_read_lock.
1025 */
1026pgoff_t page_cache_prev_hole(struct address_space *mapping,
1027 pgoff_t index, unsigned long max_scan)
1028{
1029 unsigned long i;
1030
1031 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1032 struct page *page;
1033
1034 page = radix_tree_lookup(&mapping->page_tree, index);
1035 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1036 break;
1037 index--;
1038 if (index == ULONG_MAX)
1039 break;
1040 }
1041
1042 return index;
1043}
1044EXPORT_SYMBOL(page_cache_prev_hole);
1045
485bb99b 1046/**
0cd6144a 1047 * find_get_entry - find and get a page cache entry
485bb99b 1048 * @mapping: the address_space to search
0cd6144a
JW
1049 * @offset: the page cache index
1050 *
1051 * Looks up the page cache slot at @mapping & @offset. If there is a
1052 * page cache page, it is returned with an increased refcount.
485bb99b 1053 *
139b6a6f
JW
1054 * If the slot holds a shadow entry of a previously evicted page, or a
1055 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1056 *
1057 * Otherwise, %NULL is returned.
1da177e4 1058 */
0cd6144a 1059struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1060{
a60637c8 1061 void **pagep;
1da177e4
LT
1062 struct page *page;
1063
a60637c8
NP
1064 rcu_read_lock();
1065repeat:
1066 page = NULL;
1067 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1068 if (pagep) {
1069 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1070 if (unlikely(!page))
1071 goto out;
a2c16d6c 1072 if (radix_tree_exception(page)) {
8079b1c8
HD
1073 if (radix_tree_deref_retry(page))
1074 goto repeat;
1075 /*
139b6a6f
JW
1076 * A shadow entry of a recently evicted page,
1077 * or a swap entry from shmem/tmpfs. Return
1078 * it without attempting to raise page count.
8079b1c8
HD
1079 */
1080 goto out;
a2c16d6c 1081 }
a60637c8
NP
1082 if (!page_cache_get_speculative(page))
1083 goto repeat;
1084
1085 /*
1086 * Has the page moved?
1087 * This is part of the lockless pagecache protocol. See
1088 * include/linux/pagemap.h for details.
1089 */
1090 if (unlikely(page != *pagep)) {
1091 page_cache_release(page);
1092 goto repeat;
1093 }
1094 }
27d20fdd 1095out:
a60637c8
NP
1096 rcu_read_unlock();
1097
1da177e4
LT
1098 return page;
1099}
0cd6144a 1100EXPORT_SYMBOL(find_get_entry);
1da177e4 1101
0cd6144a
JW
1102/**
1103 * find_lock_entry - locate, pin and lock a page cache entry
1104 * @mapping: the address_space to search
1105 * @offset: the page cache index
1106 *
1107 * Looks up the page cache slot at @mapping & @offset. If there is a
1108 * page cache page, it is returned locked and with an increased
1109 * refcount.
1110 *
139b6a6f
JW
1111 * If the slot holds a shadow entry of a previously evicted page, or a
1112 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1113 *
1114 * Otherwise, %NULL is returned.
1115 *
1116 * find_lock_entry() may sleep.
1117 */
1118struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1119{
1120 struct page *page;
1121
1da177e4 1122repeat:
0cd6144a 1123 page = find_get_entry(mapping, offset);
a2c16d6c 1124 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1125 lock_page(page);
1126 /* Has the page been truncated? */
1127 if (unlikely(page->mapping != mapping)) {
1128 unlock_page(page);
1129 page_cache_release(page);
1130 goto repeat;
1da177e4 1131 }
309381fe 1132 VM_BUG_ON_PAGE(page->index != offset, page);
1da177e4 1133 }
1da177e4
LT
1134 return page;
1135}
0cd6144a
JW
1136EXPORT_SYMBOL(find_lock_entry);
1137
1138/**
2457aec6 1139 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1140 * @mapping: the address_space to search
1141 * @offset: the page index
2457aec6 1142 * @fgp_flags: PCG flags
45f87de5 1143 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1144 *
2457aec6 1145 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1146 *
75325189 1147 * PCG flags modify how the page is returned.
0cd6144a 1148 *
2457aec6
MG
1149 * FGP_ACCESSED: the page will be marked accessed
1150 * FGP_LOCK: Page is return locked
1151 * FGP_CREAT: If page is not present then a new page is allocated using
45f87de5
MH
1152 * @gfp_mask and added to the page cache and the VM's LRU
1153 * list. The page is returned locked and with an increased
1154 * refcount. Otherwise, %NULL is returned.
1da177e4 1155 *
2457aec6
MG
1156 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1157 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1158 *
2457aec6 1159 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1160 */
2457aec6 1161struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1162 int fgp_flags, gfp_t gfp_mask)
1da177e4 1163{
eb2be189 1164 struct page *page;
2457aec6 1165
1da177e4 1166repeat:
2457aec6
MG
1167 page = find_get_entry(mapping, offset);
1168 if (radix_tree_exceptional_entry(page))
1169 page = NULL;
1170 if (!page)
1171 goto no_page;
1172
1173 if (fgp_flags & FGP_LOCK) {
1174 if (fgp_flags & FGP_NOWAIT) {
1175 if (!trylock_page(page)) {
1176 page_cache_release(page);
1177 return NULL;
1178 }
1179 } else {
1180 lock_page(page);
1181 }
1182
1183 /* Has the page been truncated? */
1184 if (unlikely(page->mapping != mapping)) {
1185 unlock_page(page);
1186 page_cache_release(page);
1187 goto repeat;
1188 }
1189 VM_BUG_ON_PAGE(page->index != offset, page);
1190 }
1191
1192 if (page && (fgp_flags & FGP_ACCESSED))
1193 mark_page_accessed(page);
1194
1195no_page:
1196 if (!page && (fgp_flags & FGP_CREAT)) {
1197 int err;
1198 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1199 gfp_mask |= __GFP_WRITE;
1200 if (fgp_flags & FGP_NOFS)
1201 gfp_mask &= ~__GFP_FS;
2457aec6 1202
45f87de5 1203 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1204 if (!page)
1205 return NULL;
2457aec6
MG
1206
1207 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1208 fgp_flags |= FGP_LOCK;
1209
eb39d618 1210 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1211 if (fgp_flags & FGP_ACCESSED)
eb39d618 1212 __SetPageReferenced(page);
2457aec6 1213
45f87de5
MH
1214 err = add_to_page_cache_lru(page, mapping, offset,
1215 gfp_mask & GFP_RECLAIM_MASK);
eb2be189
NP
1216 if (unlikely(err)) {
1217 page_cache_release(page);
1218 page = NULL;
1219 if (err == -EEXIST)
1220 goto repeat;
1da177e4 1221 }
1da177e4 1222 }
2457aec6 1223
1da177e4
LT
1224 return page;
1225}
2457aec6 1226EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1227
0cd6144a
JW
1228/**
1229 * find_get_entries - gang pagecache lookup
1230 * @mapping: The address_space to search
1231 * @start: The starting page cache index
1232 * @nr_entries: The maximum number of entries
1233 * @entries: Where the resulting entries are placed
1234 * @indices: The cache indices corresponding to the entries in @entries
1235 *
1236 * find_get_entries() will search for and return a group of up to
1237 * @nr_entries entries in the mapping. The entries are placed at
1238 * @entries. find_get_entries() takes a reference against any actual
1239 * pages it returns.
1240 *
1241 * The search returns a group of mapping-contiguous page cache entries
1242 * with ascending indexes. There may be holes in the indices due to
1243 * not-present pages.
1244 *
139b6a6f
JW
1245 * Any shadow entries of evicted pages, or swap entries from
1246 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1247 *
1248 * find_get_entries() returns the number of pages and shadow entries
1249 * which were found.
1250 */
1251unsigned find_get_entries(struct address_space *mapping,
1252 pgoff_t start, unsigned int nr_entries,
1253 struct page **entries, pgoff_t *indices)
1254{
1255 void **slot;
1256 unsigned int ret = 0;
1257 struct radix_tree_iter iter;
1258
1259 if (!nr_entries)
1260 return 0;
1261
1262 rcu_read_lock();
1263restart:
1264 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1265 struct page *page;
1266repeat:
1267 page = radix_tree_deref_slot(slot);
1268 if (unlikely(!page))
1269 continue;
1270 if (radix_tree_exception(page)) {
1271 if (radix_tree_deref_retry(page))
1272 goto restart;
1273 /*
f9fe48be
RZ
1274 * A shadow entry of a recently evicted page, a swap
1275 * entry from shmem/tmpfs or a DAX entry. Return it
1276 * without attempting to raise page count.
0cd6144a
JW
1277 */
1278 goto export;
1279 }
1280 if (!page_cache_get_speculative(page))
1281 goto repeat;
1282
1283 /* Has the page moved? */
1284 if (unlikely(page != *slot)) {
1285 page_cache_release(page);
1286 goto repeat;
1287 }
1288export:
1289 indices[ret] = iter.index;
1290 entries[ret] = page;
1291 if (++ret == nr_entries)
1292 break;
1293 }
1294 rcu_read_unlock();
1295 return ret;
1296}
1297
1da177e4
LT
1298/**
1299 * find_get_pages - gang pagecache lookup
1300 * @mapping: The address_space to search
1301 * @start: The starting page index
1302 * @nr_pages: The maximum number of pages
1303 * @pages: Where the resulting pages are placed
1304 *
1305 * find_get_pages() will search for and return a group of up to
1306 * @nr_pages pages in the mapping. The pages are placed at @pages.
1307 * find_get_pages() takes a reference against the returned pages.
1308 *
1309 * The search returns a group of mapping-contiguous pages with ascending
1310 * indexes. There may be holes in the indices due to not-present pages.
1311 *
1312 * find_get_pages() returns the number of pages which were found.
1313 */
1314unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1315 unsigned int nr_pages, struct page **pages)
1316{
0fc9d104
KK
1317 struct radix_tree_iter iter;
1318 void **slot;
1319 unsigned ret = 0;
1320
1321 if (unlikely(!nr_pages))
1322 return 0;
a60637c8
NP
1323
1324 rcu_read_lock();
1325restart:
0fc9d104 1326 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
1327 struct page *page;
1328repeat:
0fc9d104 1329 page = radix_tree_deref_slot(slot);
a60637c8
NP
1330 if (unlikely(!page))
1331 continue;
9d8aa4ea 1332
a2c16d6c 1333 if (radix_tree_exception(page)) {
8079b1c8
HD
1334 if (radix_tree_deref_retry(page)) {
1335 /*
1336 * Transient condition which can only trigger
1337 * when entry at index 0 moves out of or back
1338 * to root: none yet gotten, safe to restart.
1339 */
0fc9d104 1340 WARN_ON(iter.index);
8079b1c8
HD
1341 goto restart;
1342 }
a2c16d6c 1343 /*
139b6a6f
JW
1344 * A shadow entry of a recently evicted page,
1345 * or a swap entry from shmem/tmpfs. Skip
1346 * over it.
a2c16d6c 1347 */
8079b1c8 1348 continue;
27d20fdd 1349 }
a60637c8
NP
1350
1351 if (!page_cache_get_speculative(page))
1352 goto repeat;
1353
1354 /* Has the page moved? */
0fc9d104 1355 if (unlikely(page != *slot)) {
a60637c8
NP
1356 page_cache_release(page);
1357 goto repeat;
1358 }
1da177e4 1359
a60637c8 1360 pages[ret] = page;
0fc9d104
KK
1361 if (++ret == nr_pages)
1362 break;
a60637c8 1363 }
5b280c0c 1364
a60637c8 1365 rcu_read_unlock();
1da177e4
LT
1366 return ret;
1367}
1368
ebf43500
JA
1369/**
1370 * find_get_pages_contig - gang contiguous pagecache lookup
1371 * @mapping: The address_space to search
1372 * @index: The starting page index
1373 * @nr_pages: The maximum number of pages
1374 * @pages: Where the resulting pages are placed
1375 *
1376 * find_get_pages_contig() works exactly like find_get_pages(), except
1377 * that the returned number of pages are guaranteed to be contiguous.
1378 *
1379 * find_get_pages_contig() returns the number of pages which were found.
1380 */
1381unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1382 unsigned int nr_pages, struct page **pages)
1383{
0fc9d104
KK
1384 struct radix_tree_iter iter;
1385 void **slot;
1386 unsigned int ret = 0;
1387
1388 if (unlikely(!nr_pages))
1389 return 0;
a60637c8
NP
1390
1391 rcu_read_lock();
1392restart:
0fc9d104 1393 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
1394 struct page *page;
1395repeat:
0fc9d104
KK
1396 page = radix_tree_deref_slot(slot);
1397 /* The hole, there no reason to continue */
a60637c8 1398 if (unlikely(!page))
0fc9d104 1399 break;
9d8aa4ea 1400
a2c16d6c 1401 if (radix_tree_exception(page)) {
8079b1c8
HD
1402 if (radix_tree_deref_retry(page)) {
1403 /*
1404 * Transient condition which can only trigger
1405 * when entry at index 0 moves out of or back
1406 * to root: none yet gotten, safe to restart.
1407 */
1408 goto restart;
1409 }
a2c16d6c 1410 /*
139b6a6f
JW
1411 * A shadow entry of a recently evicted page,
1412 * or a swap entry from shmem/tmpfs. Stop
1413 * looking for contiguous pages.
a2c16d6c 1414 */
8079b1c8 1415 break;
a2c16d6c 1416 }
ebf43500 1417
a60637c8
NP
1418 if (!page_cache_get_speculative(page))
1419 goto repeat;
1420
1421 /* Has the page moved? */
0fc9d104 1422 if (unlikely(page != *slot)) {
a60637c8
NP
1423 page_cache_release(page);
1424 goto repeat;
1425 }
1426
9cbb4cb2
NP
1427 /*
1428 * must check mapping and index after taking the ref.
1429 * otherwise we can get both false positives and false
1430 * negatives, which is just confusing to the caller.
1431 */
0fc9d104 1432 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
1433 page_cache_release(page);
1434 break;
1435 }
1436
a60637c8 1437 pages[ret] = page;
0fc9d104
KK
1438 if (++ret == nr_pages)
1439 break;
ebf43500 1440 }
a60637c8
NP
1441 rcu_read_unlock();
1442 return ret;
ebf43500 1443}
ef71c15c 1444EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1445
485bb99b
RD
1446/**
1447 * find_get_pages_tag - find and return pages that match @tag
1448 * @mapping: the address_space to search
1449 * @index: the starting page index
1450 * @tag: the tag index
1451 * @nr_pages: the maximum number of pages
1452 * @pages: where the resulting pages are placed
1453 *
1da177e4 1454 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1455 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1456 */
1457unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1458 int tag, unsigned int nr_pages, struct page **pages)
1459{
0fc9d104
KK
1460 struct radix_tree_iter iter;
1461 void **slot;
1462 unsigned ret = 0;
1463
1464 if (unlikely(!nr_pages))
1465 return 0;
a60637c8
NP
1466
1467 rcu_read_lock();
1468restart:
0fc9d104
KK
1469 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1470 &iter, *index, tag) {
a60637c8
NP
1471 struct page *page;
1472repeat:
0fc9d104 1473 page = radix_tree_deref_slot(slot);
a60637c8
NP
1474 if (unlikely(!page))
1475 continue;
9d8aa4ea 1476
a2c16d6c 1477 if (radix_tree_exception(page)) {
8079b1c8
HD
1478 if (radix_tree_deref_retry(page)) {
1479 /*
1480 * Transient condition which can only trigger
1481 * when entry at index 0 moves out of or back
1482 * to root: none yet gotten, safe to restart.
1483 */
1484 goto restart;
1485 }
a2c16d6c 1486 /*
139b6a6f
JW
1487 * A shadow entry of a recently evicted page.
1488 *
1489 * Those entries should never be tagged, but
1490 * this tree walk is lockless and the tags are
1491 * looked up in bulk, one radix tree node at a
1492 * time, so there is a sizable window for page
1493 * reclaim to evict a page we saw tagged.
1494 *
1495 * Skip over it.
a2c16d6c 1496 */
139b6a6f 1497 continue;
a2c16d6c 1498 }
a60637c8
NP
1499
1500 if (!page_cache_get_speculative(page))
1501 goto repeat;
1502
1503 /* Has the page moved? */
0fc9d104 1504 if (unlikely(page != *slot)) {
a60637c8
NP
1505 page_cache_release(page);
1506 goto repeat;
1507 }
1508
1509 pages[ret] = page;
0fc9d104
KK
1510 if (++ret == nr_pages)
1511 break;
a60637c8 1512 }
5b280c0c 1513
a60637c8 1514 rcu_read_unlock();
1da177e4 1515
1da177e4
LT
1516 if (ret)
1517 *index = pages[ret - 1]->index + 1;
a60637c8 1518
1da177e4
LT
1519 return ret;
1520}
ef71c15c 1521EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1522
7e7f7749
RZ
1523/**
1524 * find_get_entries_tag - find and return entries that match @tag
1525 * @mapping: the address_space to search
1526 * @start: the starting page cache index
1527 * @tag: the tag index
1528 * @nr_entries: the maximum number of entries
1529 * @entries: where the resulting entries are placed
1530 * @indices: the cache indices corresponding to the entries in @entries
1531 *
1532 * Like find_get_entries, except we only return entries which are tagged with
1533 * @tag.
1534 */
1535unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1536 int tag, unsigned int nr_entries,
1537 struct page **entries, pgoff_t *indices)
1538{
1539 void **slot;
1540 unsigned int ret = 0;
1541 struct radix_tree_iter iter;
1542
1543 if (!nr_entries)
1544 return 0;
1545
1546 rcu_read_lock();
1547restart:
1548 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1549 &iter, start, tag) {
1550 struct page *page;
1551repeat:
1552 page = radix_tree_deref_slot(slot);
1553 if (unlikely(!page))
1554 continue;
1555 if (radix_tree_exception(page)) {
1556 if (radix_tree_deref_retry(page)) {
1557 /*
1558 * Transient condition which can only trigger
1559 * when entry at index 0 moves out of or back
1560 * to root: none yet gotten, safe to restart.
1561 */
1562 goto restart;
1563 }
1564
1565 /*
1566 * A shadow entry of a recently evicted page, a swap
1567 * entry from shmem/tmpfs or a DAX entry. Return it
1568 * without attempting to raise page count.
1569 */
1570 goto export;
1571 }
1572 if (!page_cache_get_speculative(page))
1573 goto repeat;
1574
1575 /* Has the page moved? */
1576 if (unlikely(page != *slot)) {
1577 page_cache_release(page);
1578 goto repeat;
1579 }
1580export:
1581 indices[ret] = iter.index;
1582 entries[ret] = page;
1583 if (++ret == nr_entries)
1584 break;
1585 }
1586 rcu_read_unlock();
1587 return ret;
1588}
1589EXPORT_SYMBOL(find_get_entries_tag);
1590
76d42bd9
WF
1591/*
1592 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1593 * a _large_ part of the i/o request. Imagine the worst scenario:
1594 *
1595 * ---R__________________________________________B__________
1596 * ^ reading here ^ bad block(assume 4k)
1597 *
1598 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1599 * => failing the whole request => read(R) => read(R+1) =>
1600 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1601 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1602 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1603 *
1604 * It is going insane. Fix it by quickly scaling down the readahead size.
1605 */
1606static void shrink_readahead_size_eio(struct file *filp,
1607 struct file_ra_state *ra)
1608{
76d42bd9 1609 ra->ra_pages /= 4;
76d42bd9
WF
1610}
1611
485bb99b 1612/**
36e78914 1613 * do_generic_file_read - generic file read routine
485bb99b
RD
1614 * @filp: the file to read
1615 * @ppos: current file position
6e58e79d
AV
1616 * @iter: data destination
1617 * @written: already copied
485bb99b 1618 *
1da177e4 1619 * This is a generic file read routine, and uses the
485bb99b 1620 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1621 *
1622 * This is really ugly. But the goto's actually try to clarify some
1623 * of the logic when it comes to error handling etc.
1da177e4 1624 */
6e58e79d
AV
1625static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1626 struct iov_iter *iter, ssize_t written)
1da177e4 1627{
36e78914 1628 struct address_space *mapping = filp->f_mapping;
1da177e4 1629 struct inode *inode = mapping->host;
36e78914 1630 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1631 pgoff_t index;
1632 pgoff_t last_index;
1633 pgoff_t prev_index;
1634 unsigned long offset; /* offset into pagecache page */
ec0f1637 1635 unsigned int prev_offset;
6e58e79d 1636 int error = 0;
1da177e4 1637
1da177e4 1638 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1639 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1640 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
6e58e79d 1641 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1642 offset = *ppos & ~PAGE_CACHE_MASK;
1643
1da177e4
LT
1644 for (;;) {
1645 struct page *page;
57f6b96c 1646 pgoff_t end_index;
a32ea1e1 1647 loff_t isize;
1da177e4
LT
1648 unsigned long nr, ret;
1649
1da177e4 1650 cond_resched();
1da177e4
LT
1651find_page:
1652 page = find_get_page(mapping, index);
3ea89ee8 1653 if (!page) {
cf914a7d 1654 page_cache_sync_readahead(mapping,
7ff81078 1655 ra, filp,
3ea89ee8
FW
1656 index, last_index - index);
1657 page = find_get_page(mapping, index);
1658 if (unlikely(page == NULL))
1659 goto no_cached_page;
1660 }
1661 if (PageReadahead(page)) {
cf914a7d 1662 page_cache_async_readahead(mapping,
7ff81078 1663 ra, filp, page,
3ea89ee8 1664 index, last_index - index);
1da177e4 1665 }
8ab22b9a 1666 if (!PageUptodate(page)) {
ebded027
MG
1667 /*
1668 * See comment in do_read_cache_page on why
1669 * wait_on_page_locked is used to avoid unnecessarily
1670 * serialisations and why it's safe.
1671 */
1672 wait_on_page_locked_killable(page);
1673 if (PageUptodate(page))
1674 goto page_ok;
1675
8ab22b9a
HH
1676 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1677 !mapping->a_ops->is_partially_uptodate)
1678 goto page_not_up_to_date;
529ae9aa 1679 if (!trylock_page(page))
8ab22b9a 1680 goto page_not_up_to_date;
8d056cb9
DH
1681 /* Did it get truncated before we got the lock? */
1682 if (!page->mapping)
1683 goto page_not_up_to_date_locked;
8ab22b9a 1684 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1685 offset, iter->count))
8ab22b9a
HH
1686 goto page_not_up_to_date_locked;
1687 unlock_page(page);
1688 }
1da177e4 1689page_ok:
a32ea1e1
N
1690 /*
1691 * i_size must be checked after we know the page is Uptodate.
1692 *
1693 * Checking i_size after the check allows us to calculate
1694 * the correct value for "nr", which means the zero-filled
1695 * part of the page is not copied back to userspace (unless
1696 * another truncate extends the file - this is desired though).
1697 */
1698
1699 isize = i_size_read(inode);
1700 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1701 if (unlikely(!isize || index > end_index)) {
1702 page_cache_release(page);
1703 goto out;
1704 }
1705
1706 /* nr is the maximum number of bytes to copy from this page */
1707 nr = PAGE_CACHE_SIZE;
1708 if (index == end_index) {
1709 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1710 if (nr <= offset) {
1711 page_cache_release(page);
1712 goto out;
1713 }
1714 }
1715 nr = nr - offset;
1da177e4
LT
1716
1717 /* If users can be writing to this page using arbitrary
1718 * virtual addresses, take care about potential aliasing
1719 * before reading the page on the kernel side.
1720 */
1721 if (mapping_writably_mapped(mapping))
1722 flush_dcache_page(page);
1723
1724 /*
ec0f1637
JK
1725 * When a sequential read accesses a page several times,
1726 * only mark it as accessed the first time.
1da177e4 1727 */
ec0f1637 1728 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1729 mark_page_accessed(page);
1730 prev_index = index;
1731
1732 /*
1733 * Ok, we have the page, and it's up-to-date, so
1734 * now we can copy it to user space...
1da177e4 1735 */
6e58e79d
AV
1736
1737 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4
LT
1738 offset += ret;
1739 index += offset >> PAGE_CACHE_SHIFT;
1740 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1741 prev_offset = offset;
1da177e4
LT
1742
1743 page_cache_release(page);
6e58e79d
AV
1744 written += ret;
1745 if (!iov_iter_count(iter))
1746 goto out;
1747 if (ret < nr) {
1748 error = -EFAULT;
1749 goto out;
1750 }
1751 continue;
1da177e4
LT
1752
1753page_not_up_to_date:
1754 /* Get exclusive access to the page ... */
85462323
ON
1755 error = lock_page_killable(page);
1756 if (unlikely(error))
1757 goto readpage_error;
1da177e4 1758
8ab22b9a 1759page_not_up_to_date_locked:
da6052f7 1760 /* Did it get truncated before we got the lock? */
1da177e4
LT
1761 if (!page->mapping) {
1762 unlock_page(page);
1763 page_cache_release(page);
1764 continue;
1765 }
1766
1767 /* Did somebody else fill it already? */
1768 if (PageUptodate(page)) {
1769 unlock_page(page);
1770 goto page_ok;
1771 }
1772
1773readpage:
91803b49
JM
1774 /*
1775 * A previous I/O error may have been due to temporary
1776 * failures, eg. multipath errors.
1777 * PG_error will be set again if readpage fails.
1778 */
1779 ClearPageError(page);
1da177e4
LT
1780 /* Start the actual read. The read will unlock the page. */
1781 error = mapping->a_ops->readpage(filp, page);
1782
994fc28c
ZB
1783 if (unlikely(error)) {
1784 if (error == AOP_TRUNCATED_PAGE) {
1785 page_cache_release(page);
6e58e79d 1786 error = 0;
994fc28c
ZB
1787 goto find_page;
1788 }
1da177e4 1789 goto readpage_error;
994fc28c 1790 }
1da177e4
LT
1791
1792 if (!PageUptodate(page)) {
85462323
ON
1793 error = lock_page_killable(page);
1794 if (unlikely(error))
1795 goto readpage_error;
1da177e4
LT
1796 if (!PageUptodate(page)) {
1797 if (page->mapping == NULL) {
1798 /*
2ecdc82e 1799 * invalidate_mapping_pages got it
1da177e4
LT
1800 */
1801 unlock_page(page);
1802 page_cache_release(page);
1803 goto find_page;
1804 }
1805 unlock_page(page);
7ff81078 1806 shrink_readahead_size_eio(filp, ra);
85462323
ON
1807 error = -EIO;
1808 goto readpage_error;
1da177e4
LT
1809 }
1810 unlock_page(page);
1811 }
1812
1da177e4
LT
1813 goto page_ok;
1814
1815readpage_error:
1816 /* UHHUH! A synchronous read error occurred. Report it */
1da177e4
LT
1817 page_cache_release(page);
1818 goto out;
1819
1820no_cached_page:
1821 /*
1822 * Ok, it wasn't cached, so we need to create a new
1823 * page..
1824 */
eb2be189
NP
1825 page = page_cache_alloc_cold(mapping);
1826 if (!page) {
6e58e79d 1827 error = -ENOMEM;
eb2be189 1828 goto out;
1da177e4 1829 }
6afdb859 1830 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 1831 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 1832 if (error) {
eb2be189 1833 page_cache_release(page);
6e58e79d
AV
1834 if (error == -EEXIST) {
1835 error = 0;
1da177e4 1836 goto find_page;
6e58e79d 1837 }
1da177e4
LT
1838 goto out;
1839 }
1da177e4
LT
1840 goto readpage;
1841 }
1842
1843out:
7ff81078
FW
1844 ra->prev_pos = prev_index;
1845 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1846 ra->prev_pos |= prev_offset;
1da177e4 1847
f4e6b498 1848 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1849 file_accessed(filp);
6e58e79d 1850 return written ? written : error;
1da177e4
LT
1851}
1852
485bb99b 1853/**
6abd2322 1854 * generic_file_read_iter - generic filesystem read routine
485bb99b 1855 * @iocb: kernel I/O control block
6abd2322 1856 * @iter: destination for the data read
485bb99b 1857 *
6abd2322 1858 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
1859 * that can use the page cache directly.
1860 */
1861ssize_t
ed978a81 1862generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 1863{
ed978a81 1864 struct file *file = iocb->ki_filp;
cb66a7a1 1865 ssize_t retval = 0;
543ade1f 1866 loff_t *ppos = &iocb->ki_pos;
ed978a81 1867 loff_t pos = *ppos;
1da177e4 1868
2ba48ce5 1869 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
1870 struct address_space *mapping = file->f_mapping;
1871 struct inode *inode = mapping->host;
1872 size_t count = iov_iter_count(iter);
543ade1f 1873 loff_t size;
1da177e4 1874
1da177e4
LT
1875 if (!count)
1876 goto out; /* skip atime */
1877 size = i_size_read(inode);
9fe55eea 1878 retval = filemap_write_and_wait_range(mapping, pos,
a6cbcd4a 1879 pos + count - 1);
9fe55eea 1880 if (!retval) {
ed978a81 1881 struct iov_iter data = *iter;
22c6186e 1882 retval = mapping->a_ops->direct_IO(iocb, &data, pos);
9fe55eea 1883 }
d8d3d94b 1884
9fe55eea
SW
1885 if (retval > 0) {
1886 *ppos = pos + retval;
ed978a81 1887 iov_iter_advance(iter, retval);
9fe55eea 1888 }
66f998f6 1889
9fe55eea
SW
1890 /*
1891 * Btrfs can have a short DIO read if we encounter
1892 * compressed extents, so if there was an error, or if
1893 * we've already read everything we wanted to, or if
1894 * there was a short read because we hit EOF, go ahead
1895 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
1896 * the rest of the read. Buffered reads will not work for
1897 * DAX files, so don't bother trying.
9fe55eea 1898 */
fbbbad4b
MW
1899 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1900 IS_DAX(inode)) {
ed978a81 1901 file_accessed(file);
9fe55eea 1902 goto out;
0e0bcae3 1903 }
1da177e4
LT
1904 }
1905
ed978a81 1906 retval = do_generic_file_read(file, ppos, iter, retval);
1da177e4
LT
1907out:
1908 return retval;
1909}
ed978a81 1910EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 1911
1da177e4 1912#ifdef CONFIG_MMU
485bb99b
RD
1913/**
1914 * page_cache_read - adds requested page to the page cache if not already there
1915 * @file: file to read
1916 * @offset: page index
62eb320a 1917 * @gfp_mask: memory allocation flags
485bb99b 1918 *
1da177e4
LT
1919 * This adds the requested page to the page cache if it isn't already there,
1920 * and schedules an I/O to read in its contents from disk.
1921 */
c20cd45e 1922static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
1923{
1924 struct address_space *mapping = file->f_mapping;
99dadfdd 1925 struct page *page;
994fc28c 1926 int ret;
1da177e4 1927
994fc28c 1928 do {
c20cd45e 1929 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
994fc28c
ZB
1930 if (!page)
1931 return -ENOMEM;
1932
c20cd45e 1933 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
994fc28c
ZB
1934 if (ret == 0)
1935 ret = mapping->a_ops->readpage(file, page);
1936 else if (ret == -EEXIST)
1937 ret = 0; /* losing race to add is OK */
1da177e4 1938
1da177e4 1939 page_cache_release(page);
1da177e4 1940
994fc28c 1941 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 1942
994fc28c 1943 return ret;
1da177e4
LT
1944}
1945
1946#define MMAP_LOTSAMISS (100)
1947
ef00e08e
LT
1948/*
1949 * Synchronous readahead happens when we don't even find
1950 * a page in the page cache at all.
1951 */
1952static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1953 struct file_ra_state *ra,
1954 struct file *file,
1955 pgoff_t offset)
1956{
ef00e08e
LT
1957 struct address_space *mapping = file->f_mapping;
1958
1959 /* If we don't want any read-ahead, don't bother */
64363aad 1960 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1961 return;
275b12bf
WF
1962 if (!ra->ra_pages)
1963 return;
ef00e08e 1964
64363aad 1965 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1966 page_cache_sync_readahead(mapping, ra, file, offset,
1967 ra->ra_pages);
ef00e08e
LT
1968 return;
1969 }
1970
207d04ba
AK
1971 /* Avoid banging the cache line if not needed */
1972 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1973 ra->mmap_miss++;
1974
1975 /*
1976 * Do we miss much more than hit in this file? If so,
1977 * stop bothering with read-ahead. It will only hurt.
1978 */
1979 if (ra->mmap_miss > MMAP_LOTSAMISS)
1980 return;
1981
d30a1100
WF
1982 /*
1983 * mmap read-around
1984 */
600e19af
RG
1985 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1986 ra->size = ra->ra_pages;
1987 ra->async_size = ra->ra_pages / 4;
275b12bf 1988 ra_submit(ra, mapping, file);
ef00e08e
LT
1989}
1990
1991/*
1992 * Asynchronous readahead happens when we find the page and PG_readahead,
1993 * so we want to possibly extend the readahead further..
1994 */
1995static void do_async_mmap_readahead(struct vm_area_struct *vma,
1996 struct file_ra_state *ra,
1997 struct file *file,
1998 struct page *page,
1999 pgoff_t offset)
2000{
2001 struct address_space *mapping = file->f_mapping;
2002
2003 /* If we don't want any read-ahead, don't bother */
64363aad 2004 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
2005 return;
2006 if (ra->mmap_miss > 0)
2007 ra->mmap_miss--;
2008 if (PageReadahead(page))
2fad6f5d
WF
2009 page_cache_async_readahead(mapping, ra, file,
2010 page, offset, ra->ra_pages);
ef00e08e
LT
2011}
2012
485bb99b 2013/**
54cb8821 2014 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
2015 * @vma: vma in which the fault was taken
2016 * @vmf: struct vm_fault containing details of the fault
485bb99b 2017 *
54cb8821 2018 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2019 * mapped memory region to read in file data during a page fault.
2020 *
2021 * The goto's are kind of ugly, but this streamlines the normal case of having
2022 * it in the page cache, and handles the special cases reasonably without
2023 * having a lot of duplicated code.
9a95f3cf
PC
2024 *
2025 * vma->vm_mm->mmap_sem must be held on entry.
2026 *
2027 * If our return value has VM_FAULT_RETRY set, it's because
2028 * lock_page_or_retry() returned 0.
2029 * The mmap_sem has usually been released in this case.
2030 * See __lock_page_or_retry() for the exception.
2031 *
2032 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2033 * has not been released.
2034 *
2035 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2036 */
d0217ac0 2037int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2038{
2039 int error;
54cb8821 2040 struct file *file = vma->vm_file;
1da177e4
LT
2041 struct address_space *mapping = file->f_mapping;
2042 struct file_ra_state *ra = &file->f_ra;
2043 struct inode *inode = mapping->host;
ef00e08e 2044 pgoff_t offset = vmf->pgoff;
1da177e4 2045 struct page *page;
99e3e53f 2046 loff_t size;
83c54070 2047 int ret = 0;
1da177e4 2048
99e3e53f
KS
2049 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2050 if (offset >= size >> PAGE_CACHE_SHIFT)
5307cc1a 2051 return VM_FAULT_SIGBUS;
1da177e4 2052
1da177e4 2053 /*
49426420 2054 * Do we have something in the page cache already?
1da177e4 2055 */
ef00e08e 2056 page = find_get_page(mapping, offset);
45cac65b 2057 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2058 /*
ef00e08e
LT
2059 * We found the page, so try async readahead before
2060 * waiting for the lock.
1da177e4 2061 */
ef00e08e 2062 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 2063 } else if (!page) {
ef00e08e
LT
2064 /* No page in the page cache at all */
2065 do_sync_mmap_readahead(vma, ra, file, offset);
2066 count_vm_event(PGMAJFAULT);
456f998e 2067 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2068 ret = VM_FAULT_MAJOR;
2069retry_find:
b522c94d 2070 page = find_get_page(mapping, offset);
1da177e4
LT
2071 if (!page)
2072 goto no_cached_page;
2073 }
2074
d88c0922
ML
2075 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2076 page_cache_release(page);
d065bd81 2077 return ret | VM_FAULT_RETRY;
d88c0922 2078 }
b522c94d
ML
2079
2080 /* Did it get truncated? */
2081 if (unlikely(page->mapping != mapping)) {
2082 unlock_page(page);
2083 put_page(page);
2084 goto retry_find;
2085 }
309381fe 2086 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2087
1da177e4 2088 /*
d00806b1
NP
2089 * We have a locked page in the page cache, now we need to check
2090 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2091 */
d00806b1 2092 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2093 goto page_not_uptodate;
2094
ef00e08e
LT
2095 /*
2096 * Found the page and have a reference on it.
2097 * We must recheck i_size under page lock.
2098 */
99e3e53f
KS
2099 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2100 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
d00806b1 2101 unlock_page(page);
745ad48e 2102 page_cache_release(page);
5307cc1a 2103 return VM_FAULT_SIGBUS;
d00806b1
NP
2104 }
2105
d0217ac0 2106 vmf->page = page;
83c54070 2107 return ret | VM_FAULT_LOCKED;
1da177e4 2108
1da177e4
LT
2109no_cached_page:
2110 /*
2111 * We're only likely to ever get here if MADV_RANDOM is in
2112 * effect.
2113 */
c20cd45e 2114 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2115
2116 /*
2117 * The page we want has now been added to the page cache.
2118 * In the unlikely event that someone removed it in the
2119 * meantime, we'll just come back here and read it again.
2120 */
2121 if (error >= 0)
2122 goto retry_find;
2123
2124 /*
2125 * An error return from page_cache_read can result if the
2126 * system is low on memory, or a problem occurs while trying
2127 * to schedule I/O.
2128 */
2129 if (error == -ENOMEM)
d0217ac0
NP
2130 return VM_FAULT_OOM;
2131 return VM_FAULT_SIGBUS;
1da177e4
LT
2132
2133page_not_uptodate:
1da177e4
LT
2134 /*
2135 * Umm, take care of errors if the page isn't up-to-date.
2136 * Try to re-read it _once_. We do this synchronously,
2137 * because there really aren't any performance issues here
2138 * and we need to check for errors.
2139 */
1da177e4 2140 ClearPageError(page);
994fc28c 2141 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2142 if (!error) {
2143 wait_on_page_locked(page);
2144 if (!PageUptodate(page))
2145 error = -EIO;
2146 }
d00806b1
NP
2147 page_cache_release(page);
2148
2149 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2150 goto retry_find;
1da177e4 2151
d00806b1 2152 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2153 shrink_readahead_size_eio(file, ra);
d0217ac0 2154 return VM_FAULT_SIGBUS;
54cb8821
NP
2155}
2156EXPORT_SYMBOL(filemap_fault);
2157
f1820361
KS
2158void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2159{
2160 struct radix_tree_iter iter;
2161 void **slot;
2162 struct file *file = vma->vm_file;
2163 struct address_space *mapping = file->f_mapping;
2164 loff_t size;
2165 struct page *page;
2166 unsigned long address = (unsigned long) vmf->virtual_address;
2167 unsigned long addr;
2168 pte_t *pte;
2169
2170 rcu_read_lock();
2171 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2172 if (iter.index > vmf->max_pgoff)
2173 break;
2174repeat:
2175 page = radix_tree_deref_slot(slot);
2176 if (unlikely(!page))
2177 goto next;
2178 if (radix_tree_exception(page)) {
2179 if (radix_tree_deref_retry(page))
2180 break;
2181 else
2182 goto next;
2183 }
2184
2185 if (!page_cache_get_speculative(page))
2186 goto repeat;
2187
2188 /* Has the page moved? */
2189 if (unlikely(page != *slot)) {
2190 page_cache_release(page);
2191 goto repeat;
2192 }
2193
2194 if (!PageUptodate(page) ||
2195 PageReadahead(page) ||
2196 PageHWPoison(page))
2197 goto skip;
2198 if (!trylock_page(page))
2199 goto skip;
2200
2201 if (page->mapping != mapping || !PageUptodate(page))
2202 goto unlock;
2203
99e3e53f
KS
2204 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2205 if (page->index >= size >> PAGE_CACHE_SHIFT)
f1820361
KS
2206 goto unlock;
2207
2208 pte = vmf->pte + page->index - vmf->pgoff;
2209 if (!pte_none(*pte))
2210 goto unlock;
2211
2212 if (file->f_ra.mmap_miss > 0)
2213 file->f_ra.mmap_miss--;
2214 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2215 do_set_pte(vma, addr, page, pte, false, false);
2216 unlock_page(page);
2217 goto next;
2218unlock:
2219 unlock_page(page);
2220skip:
2221 page_cache_release(page);
2222next:
2223 if (iter.index == vmf->max_pgoff)
2224 break;
2225 }
2226 rcu_read_unlock();
2227}
2228EXPORT_SYMBOL(filemap_map_pages);
2229
4fcf1c62
JK
2230int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2231{
2232 struct page *page = vmf->page;
496ad9aa 2233 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
2234 int ret = VM_FAULT_LOCKED;
2235
14da9200 2236 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
2237 file_update_time(vma->vm_file);
2238 lock_page(page);
2239 if (page->mapping != inode->i_mapping) {
2240 unlock_page(page);
2241 ret = VM_FAULT_NOPAGE;
2242 goto out;
2243 }
14da9200
JK
2244 /*
2245 * We mark the page dirty already here so that when freeze is in
2246 * progress, we are guaranteed that writeback during freezing will
2247 * see the dirty page and writeprotect it again.
2248 */
2249 set_page_dirty(page);
1d1d1a76 2250 wait_for_stable_page(page);
4fcf1c62 2251out:
14da9200 2252 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2253 return ret;
2254}
2255EXPORT_SYMBOL(filemap_page_mkwrite);
2256
f0f37e2f 2257const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2258 .fault = filemap_fault,
f1820361 2259 .map_pages = filemap_map_pages,
4fcf1c62 2260 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2261};
2262
2263/* This is used for a general mmap of a disk file */
2264
2265int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2266{
2267 struct address_space *mapping = file->f_mapping;
2268
2269 if (!mapping->a_ops->readpage)
2270 return -ENOEXEC;
2271 file_accessed(file);
2272 vma->vm_ops = &generic_file_vm_ops;
2273 return 0;
2274}
1da177e4
LT
2275
2276/*
2277 * This is for filesystems which do not implement ->writepage.
2278 */
2279int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2280{
2281 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2282 return -EINVAL;
2283 return generic_file_mmap(file, vma);
2284}
2285#else
2286int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2287{
2288 return -ENOSYS;
2289}
2290int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2291{
2292 return -ENOSYS;
2293}
2294#endif /* CONFIG_MMU */
2295
2296EXPORT_SYMBOL(generic_file_mmap);
2297EXPORT_SYMBOL(generic_file_readonly_mmap);
2298
67f9fd91
SL
2299static struct page *wait_on_page_read(struct page *page)
2300{
2301 if (!IS_ERR(page)) {
2302 wait_on_page_locked(page);
2303 if (!PageUptodate(page)) {
2304 page_cache_release(page);
2305 page = ERR_PTR(-EIO);
2306 }
2307 }
2308 return page;
2309}
2310
32b63529 2311static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2312 pgoff_t index,
5e5358e7 2313 int (*filler)(void *, struct page *),
0531b2aa
LT
2314 void *data,
2315 gfp_t gfp)
1da177e4 2316{
eb2be189 2317 struct page *page;
1da177e4
LT
2318 int err;
2319repeat:
2320 page = find_get_page(mapping, index);
2321 if (!page) {
0531b2aa 2322 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2323 if (!page)
2324 return ERR_PTR(-ENOMEM);
e6f67b8c 2325 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
2326 if (unlikely(err)) {
2327 page_cache_release(page);
2328 if (err == -EEXIST)
2329 goto repeat;
1da177e4 2330 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2331 return ERR_PTR(err);
2332 }
32b63529
MG
2333
2334filler:
1da177e4
LT
2335 err = filler(data, page);
2336 if (err < 0) {
2337 page_cache_release(page);
32b63529 2338 return ERR_PTR(err);
1da177e4 2339 }
1da177e4 2340
32b63529
MG
2341 page = wait_on_page_read(page);
2342 if (IS_ERR(page))
2343 return page;
2344 goto out;
2345 }
1da177e4
LT
2346 if (PageUptodate(page))
2347 goto out;
2348
ebded027
MG
2349 /*
2350 * Page is not up to date and may be locked due one of the following
2351 * case a: Page is being filled and the page lock is held
2352 * case b: Read/write error clearing the page uptodate status
2353 * case c: Truncation in progress (page locked)
2354 * case d: Reclaim in progress
2355 *
2356 * Case a, the page will be up to date when the page is unlocked.
2357 * There is no need to serialise on the page lock here as the page
2358 * is pinned so the lock gives no additional protection. Even if the
2359 * the page is truncated, the data is still valid if PageUptodate as
2360 * it's a race vs truncate race.
2361 * Case b, the page will not be up to date
2362 * Case c, the page may be truncated but in itself, the data may still
2363 * be valid after IO completes as it's a read vs truncate race. The
2364 * operation must restart if the page is not uptodate on unlock but
2365 * otherwise serialising on page lock to stabilise the mapping gives
2366 * no additional guarantees to the caller as the page lock is
2367 * released before return.
2368 * Case d, similar to truncation. If reclaim holds the page lock, it
2369 * will be a race with remove_mapping that determines if the mapping
2370 * is valid on unlock but otherwise the data is valid and there is
2371 * no need to serialise with page lock.
2372 *
2373 * As the page lock gives no additional guarantee, we optimistically
2374 * wait on the page to be unlocked and check if it's up to date and
2375 * use the page if it is. Otherwise, the page lock is required to
2376 * distinguish between the different cases. The motivation is that we
2377 * avoid spurious serialisations and wakeups when multiple processes
2378 * wait on the same page for IO to complete.
2379 */
2380 wait_on_page_locked(page);
2381 if (PageUptodate(page))
2382 goto out;
2383
2384 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2385 lock_page(page);
ebded027
MG
2386
2387 /* Case c or d, restart the operation */
1da177e4
LT
2388 if (!page->mapping) {
2389 unlock_page(page);
2390 page_cache_release(page);
32b63529 2391 goto repeat;
1da177e4 2392 }
ebded027
MG
2393
2394 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2395 if (PageUptodate(page)) {
2396 unlock_page(page);
2397 goto out;
2398 }
32b63529
MG
2399 goto filler;
2400
c855ff37 2401out:
6fe6900e
NP
2402 mark_page_accessed(page);
2403 return page;
2404}
0531b2aa
LT
2405
2406/**
67f9fd91 2407 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2408 * @mapping: the page's address_space
2409 * @index: the page index
2410 * @filler: function to perform the read
5e5358e7 2411 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2412 *
0531b2aa 2413 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2414 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2415 *
2416 * If the page does not get brought uptodate, return -EIO.
2417 */
67f9fd91 2418struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2419 pgoff_t index,
5e5358e7 2420 int (*filler)(void *, struct page *),
0531b2aa
LT
2421 void *data)
2422{
2423 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2424}
67f9fd91 2425EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2426
2427/**
2428 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2429 * @mapping: the page's address_space
2430 * @index: the page index
2431 * @gfp: the page allocator flags to use if allocating
2432 *
2433 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2434 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2435 *
2436 * If the page does not get brought uptodate, return -EIO.
2437 */
2438struct page *read_cache_page_gfp(struct address_space *mapping,
2439 pgoff_t index,
2440 gfp_t gfp)
2441{
2442 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2443
67f9fd91 2444 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2445}
2446EXPORT_SYMBOL(read_cache_page_gfp);
2447
1da177e4
LT
2448/*
2449 * Performs necessary checks before doing a write
2450 *
485bb99b 2451 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2452 * Returns appropriate error code that caller should return or
2453 * zero in case that write should be allowed.
2454 */
3309dd04 2455inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2456{
3309dd04 2457 struct file *file = iocb->ki_filp;
1da177e4 2458 struct inode *inode = file->f_mapping->host;
59e99e5b 2459 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2460 loff_t pos;
1da177e4 2461
3309dd04
AV
2462 if (!iov_iter_count(from))
2463 return 0;
1da177e4 2464
0fa6b005 2465 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2466 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2467 iocb->ki_pos = i_size_read(inode);
1da177e4 2468
3309dd04 2469 pos = iocb->ki_pos;
1da177e4 2470
0fa6b005 2471 if (limit != RLIM_INFINITY) {
3309dd04 2472 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2473 send_sig(SIGXFSZ, current, 0);
2474 return -EFBIG;
1da177e4 2475 }
3309dd04 2476 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2477 }
2478
2479 /*
2480 * LFS rule
2481 */
3309dd04 2482 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2483 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2484 if (pos >= MAX_NON_LFS)
1da177e4 2485 return -EFBIG;
3309dd04 2486 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2487 }
2488
2489 /*
2490 * Are we about to exceed the fs block limit ?
2491 *
2492 * If we have written data it becomes a short write. If we have
2493 * exceeded without writing data we send a signal and return EFBIG.
2494 * Linus frestrict idea will clean these up nicely..
2495 */
3309dd04
AV
2496 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2497 return -EFBIG;
1da177e4 2498
3309dd04
AV
2499 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2500 return iov_iter_count(from);
1da177e4
LT
2501}
2502EXPORT_SYMBOL(generic_write_checks);
2503
afddba49
NP
2504int pagecache_write_begin(struct file *file, struct address_space *mapping,
2505 loff_t pos, unsigned len, unsigned flags,
2506 struct page **pagep, void **fsdata)
2507{
2508 const struct address_space_operations *aops = mapping->a_ops;
2509
4e02ed4b 2510 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2511 pagep, fsdata);
afddba49
NP
2512}
2513EXPORT_SYMBOL(pagecache_write_begin);
2514
2515int pagecache_write_end(struct file *file, struct address_space *mapping,
2516 loff_t pos, unsigned len, unsigned copied,
2517 struct page *page, void *fsdata)
2518{
2519 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2520
4e02ed4b 2521 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2522}
2523EXPORT_SYMBOL(pagecache_write_end);
2524
1da177e4 2525ssize_t
0c949334 2526generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
1da177e4
LT
2527{
2528 struct file *file = iocb->ki_filp;
2529 struct address_space *mapping = file->f_mapping;
2530 struct inode *inode = mapping->host;
2531 ssize_t written;
a969e903
CH
2532 size_t write_len;
2533 pgoff_t end;
26978b8b 2534 struct iov_iter data;
1da177e4 2535
0c949334 2536 write_len = iov_iter_count(from);
a969e903 2537 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2538
48b47c56 2539 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2540 if (written)
2541 goto out;
2542
2543 /*
2544 * After a write we want buffered reads to be sure to go to disk to get
2545 * the new data. We invalidate clean cached page from the region we're
2546 * about to write. We do this *before* the write so that we can return
6ccfa806 2547 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2548 */
2549 if (mapping->nrpages) {
2550 written = invalidate_inode_pages2_range(mapping,
2551 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2552 /*
2553 * If a page can not be invalidated, return 0 to fall back
2554 * to buffered write.
2555 */
2556 if (written) {
2557 if (written == -EBUSY)
2558 return 0;
a969e903 2559 goto out;
6ccfa806 2560 }
a969e903
CH
2561 }
2562
26978b8b 2563 data = *from;
22c6186e 2564 written = mapping->a_ops->direct_IO(iocb, &data, pos);
a969e903
CH
2565
2566 /*
2567 * Finally, try again to invalidate clean pages which might have been
2568 * cached by non-direct readahead, or faulted in by get_user_pages()
2569 * if the source of the write was an mmap'ed region of the file
2570 * we're writing. Either one is a pretty crazy thing to do,
2571 * so we don't support it 100%. If this invalidation
2572 * fails, tough, the write still worked...
2573 */
2574 if (mapping->nrpages) {
2575 invalidate_inode_pages2_range(mapping,
2576 pos >> PAGE_CACHE_SHIFT, end);
2577 }
2578
1da177e4 2579 if (written > 0) {
0116651c 2580 pos += written;
f8579f86 2581 iov_iter_advance(from, written);
0116651c
NK
2582 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2583 i_size_write(inode, pos);
1da177e4
LT
2584 mark_inode_dirty(inode);
2585 }
5cb6c6c7 2586 iocb->ki_pos = pos;
1da177e4 2587 }
a969e903 2588out:
1da177e4
LT
2589 return written;
2590}
2591EXPORT_SYMBOL(generic_file_direct_write);
2592
eb2be189
NP
2593/*
2594 * Find or create a page at the given pagecache position. Return the locked
2595 * page. This function is specifically for buffered writes.
2596 */
54566b2c
NP
2597struct page *grab_cache_page_write_begin(struct address_space *mapping,
2598 pgoff_t index, unsigned flags)
eb2be189 2599{
eb2be189 2600 struct page *page;
2457aec6 2601 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
0faa70cb 2602
54566b2c 2603 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2604 fgp_flags |= FGP_NOFS;
2605
2606 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2607 mapping_gfp_mask(mapping));
c585a267 2608 if (page)
2457aec6 2609 wait_for_stable_page(page);
eb2be189 2610
eb2be189
NP
2611 return page;
2612}
54566b2c 2613EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2614
3b93f911 2615ssize_t generic_perform_write(struct file *file,
afddba49
NP
2616 struct iov_iter *i, loff_t pos)
2617{
2618 struct address_space *mapping = file->f_mapping;
2619 const struct address_space_operations *a_ops = mapping->a_ops;
2620 long status = 0;
2621 ssize_t written = 0;
674b892e
NP
2622 unsigned int flags = 0;
2623
2624 /*
2625 * Copies from kernel address space cannot fail (NFSD is a big user).
2626 */
777eda2c 2627 if (!iter_is_iovec(i))
674b892e 2628 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2629
2630 do {
2631 struct page *page;
afddba49
NP
2632 unsigned long offset; /* Offset into pagecache page */
2633 unsigned long bytes; /* Bytes to write to page */
2634 size_t copied; /* Bytes copied from user */
2635 void *fsdata;
2636
2637 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2638 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2639 iov_iter_count(i));
2640
2641again:
00a3d660
LT
2642 /*
2643 * Bring in the user page that we will copy from _first_.
2644 * Otherwise there's a nasty deadlock on copying from the
2645 * same page as we're writing to, without it being marked
2646 * up-to-date.
2647 *
2648 * Not only is this an optimisation, but it is also required
2649 * to check that the address is actually valid, when atomic
2650 * usercopies are used, below.
2651 */
2652 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2653 status = -EFAULT;
2654 break;
2655 }
2656
296291cd
JK
2657 if (fatal_signal_pending(current)) {
2658 status = -EINTR;
2659 break;
2660 }
2661
674b892e 2662 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2663 &page, &fsdata);
2457aec6 2664 if (unlikely(status < 0))
afddba49
NP
2665 break;
2666
931e80e4 2667 if (mapping_writably_mapped(mapping))
2668 flush_dcache_page(page);
00a3d660 2669
afddba49 2670 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2671 flush_dcache_page(page);
2672
2673 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2674 page, fsdata);
2675 if (unlikely(status < 0))
2676 break;
2677 copied = status;
2678
2679 cond_resched();
2680
124d3b70 2681 iov_iter_advance(i, copied);
afddba49
NP
2682 if (unlikely(copied == 0)) {
2683 /*
2684 * If we were unable to copy any data at all, we must
2685 * fall back to a single segment length write.
2686 *
2687 * If we didn't fallback here, we could livelock
2688 * because not all segments in the iov can be copied at
2689 * once without a pagefault.
2690 */
2691 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2692 iov_iter_single_seg_count(i));
2693 goto again;
2694 }
afddba49
NP
2695 pos += copied;
2696 written += copied;
2697
2698 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
2699 } while (iov_iter_count(i));
2700
2701 return written ? written : status;
2702}
3b93f911 2703EXPORT_SYMBOL(generic_perform_write);
1da177e4 2704
e4dd9de3 2705/**
8174202b 2706 * __generic_file_write_iter - write data to a file
e4dd9de3 2707 * @iocb: IO state structure (file, offset, etc.)
8174202b 2708 * @from: iov_iter with data to write
e4dd9de3
JK
2709 *
2710 * This function does all the work needed for actually writing data to a
2711 * file. It does all basic checks, removes SUID from the file, updates
2712 * modification times and calls proper subroutines depending on whether we
2713 * do direct IO or a standard buffered write.
2714 *
2715 * It expects i_mutex to be grabbed unless we work on a block device or similar
2716 * object which does not need locking at all.
2717 *
2718 * This function does *not* take care of syncing data in case of O_SYNC write.
2719 * A caller has to handle it. This is mainly due to the fact that we want to
2720 * avoid syncing under i_mutex.
2721 */
8174202b 2722ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2723{
2724 struct file *file = iocb->ki_filp;
fb5527e6 2725 struct address_space * mapping = file->f_mapping;
1da177e4 2726 struct inode *inode = mapping->host;
3b93f911 2727 ssize_t written = 0;
1da177e4 2728 ssize_t err;
3b93f911 2729 ssize_t status;
1da177e4 2730
1da177e4 2731 /* We can write back this queue in page reclaim */
de1414a6 2732 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 2733 err = file_remove_privs(file);
1da177e4
LT
2734 if (err)
2735 goto out;
2736
c3b2da31
JB
2737 err = file_update_time(file);
2738 if (err)
2739 goto out;
1da177e4 2740
2ba48ce5 2741 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 2742 loff_t pos, endbyte;
fb5527e6 2743
0b8def9d 2744 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
1da177e4 2745 /*
fbbbad4b
MW
2746 * If the write stopped short of completing, fall back to
2747 * buffered writes. Some filesystems do this for writes to
2748 * holes, for example. For DAX files, a buffered write will
2749 * not succeed (even if it did, DAX does not handle dirty
2750 * page-cache pages correctly).
1da177e4 2751 */
0b8def9d 2752 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
2753 goto out;
2754
0b8def9d 2755 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 2756 /*
3b93f911 2757 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2758 * then we want to return the number of bytes which were
2759 * direct-written, or the error code if that was zero. Note
2760 * that this differs from normal direct-io semantics, which
2761 * will return -EFOO even if some bytes were written.
2762 */
60bb4529 2763 if (unlikely(status < 0)) {
3b93f911 2764 err = status;
fb5527e6
JM
2765 goto out;
2766 }
fb5527e6
JM
2767 /*
2768 * We need to ensure that the page cache pages are written to
2769 * disk and invalidated to preserve the expected O_DIRECT
2770 * semantics.
2771 */
3b93f911 2772 endbyte = pos + status - 1;
0b8def9d 2773 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 2774 if (err == 0) {
0b8def9d 2775 iocb->ki_pos = endbyte + 1;
3b93f911 2776 written += status;
fb5527e6
JM
2777 invalidate_mapping_pages(mapping,
2778 pos >> PAGE_CACHE_SHIFT,
2779 endbyte >> PAGE_CACHE_SHIFT);
2780 } else {
2781 /*
2782 * We don't know how much we wrote, so just return
2783 * the number of bytes which were direct-written
2784 */
2785 }
2786 } else {
0b8def9d
AV
2787 written = generic_perform_write(file, from, iocb->ki_pos);
2788 if (likely(written > 0))
2789 iocb->ki_pos += written;
fb5527e6 2790 }
1da177e4
LT
2791out:
2792 current->backing_dev_info = NULL;
2793 return written ? written : err;
2794}
8174202b 2795EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2796
e4dd9de3 2797/**
8174202b 2798 * generic_file_write_iter - write data to a file
e4dd9de3 2799 * @iocb: IO state structure
8174202b 2800 * @from: iov_iter with data to write
e4dd9de3 2801 *
8174202b 2802 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2803 * filesystems. It takes care of syncing the file in case of O_SYNC file
2804 * and acquires i_mutex as needed.
2805 */
8174202b 2806ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2807{
2808 struct file *file = iocb->ki_filp;
148f948b 2809 struct inode *inode = file->f_mapping->host;
1da177e4 2810 ssize_t ret;
1da177e4 2811
5955102c 2812 inode_lock(inode);
3309dd04
AV
2813 ret = generic_write_checks(iocb, from);
2814 if (ret > 0)
5f380c7f 2815 ret = __generic_file_write_iter(iocb, from);
5955102c 2816 inode_unlock(inode);
1da177e4 2817
02afc27f 2818 if (ret > 0) {
1da177e4
LT
2819 ssize_t err;
2820
d311d79d
AV
2821 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2822 if (err < 0)
1da177e4
LT
2823 ret = err;
2824 }
2825 return ret;
2826}
8174202b 2827EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 2828
cf9a2ae8
DH
2829/**
2830 * try_to_release_page() - release old fs-specific metadata on a page
2831 *
2832 * @page: the page which the kernel is trying to free
2833 * @gfp_mask: memory allocation flags (and I/O mode)
2834 *
2835 * The address_space is to try to release any data against the page
2836 * (presumably at page->private). If the release was successful, return `1'.
2837 * Otherwise return zero.
2838 *
266cf658
DH
2839 * This may also be called if PG_fscache is set on a page, indicating that the
2840 * page is known to the local caching routines.
2841 *
cf9a2ae8 2842 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 2843 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 2844 *
cf9a2ae8
DH
2845 */
2846int try_to_release_page(struct page *page, gfp_t gfp_mask)
2847{
2848 struct address_space * const mapping = page->mapping;
2849
2850 BUG_ON(!PageLocked(page));
2851 if (PageWriteback(page))
2852 return 0;
2853
2854 if (mapping && mapping->a_ops->releasepage)
2855 return mapping->a_ops->releasepage(page, gfp_mask);
2856 return try_to_free_buffers(page);
2857}
2858
2859EXPORT_SYMBOL(try_to_release_page);