]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/filemap.c
jbd2: don't clear and reset errors after waiting on writeback
[mirror_ubuntu-bionic-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
3f07c014 16#include <linux/sched/signal.h>
c22ce143 17#include <linux/uaccess.h>
c59ede7b 18#include <linux/capability.h>
1da177e4 19#include <linux/kernel_stat.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/mm.h>
22#include <linux/swap.h>
23#include <linux/mman.h>
24#include <linux/pagemap.h>
25#include <linux/file.h>
26#include <linux/uio.h>
27#include <linux/hash.h>
28#include <linux/writeback.h>
53253383 29#include <linux/backing-dev.h>
1da177e4
LT
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/security.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 35#include <linux/hugetlb.h>
8a9f3ccd 36#include <linux/memcontrol.h>
c515e1fd 37#include <linux/cleancache.h>
f1820361 38#include <linux/rmap.h>
0f8053a5
NP
39#include "internal.h"
40
fe0bfaaf
RJ
41#define CREATE_TRACE_POINTS
42#include <trace/events/filemap.h>
43
1da177e4 44/*
1da177e4
LT
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
148f948b 47#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 48
1da177e4
LT
49#include <asm/mman.h>
50
51/*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63/*
64 * Lock ordering:
65 *
c8c06efa 66 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
1da177e4 70 *
1b1dcc1b 71 * ->i_mutex
c8c06efa 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
73 *
74 * ->mmap_sem
c8c06efa 75 * ->i_mmap_rwsem
b8072f09 76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
ccad2365 82 * ->i_mutex (generic_perform_write)
82591e6e 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 84 *
f758eeab 85 * bdi->wb.list_lock
a66979ab 86 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
87 * ->mapping->tree_lock (__sync_single_inode)
88 *
c8c06efa 89 * ->i_mmap_rwsem
1da177e4
LT
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
b8072f09 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 94 *
b8072f09 95 * ->page_table_lock or pte_lock
5d337b91 96 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
a52633d8
MG
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
1da177e4
LT
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
c8c06efa 110 * ->i_mmap_rwsem
9a3c531d 111 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
112 */
113
22f2ac51
JW
114static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116{
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
121 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 if (!radix_tree_exceptional_entry(p))
130 return -EEXIST;
131
132 mapping->nrexceptional--;
133 if (!dax_mapping(mapping)) {
134 if (shadowp)
135 *shadowp = p;
22f2ac51
JW
136 } else {
137 /* DAX can replace empty locked entry with a hole */
138 WARN_ON_ONCE(p !=
642261ac 139 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
22f2ac51 140 /* Wakeup waiters for exceptional entry lock */
63e95b5c 141 dax_wake_mapping_entry_waiter(mapping, page->index, p,
965d004a 142 true);
22f2ac51
JW
143 }
144 }
14b46879
JW
145 __radix_tree_replace(&mapping->page_tree, node, slot, page,
146 workingset_update_node, mapping);
22f2ac51 147 mapping->nrpages++;
22f2ac51
JW
148 return 0;
149}
150
91b0abe3
JW
151static void page_cache_tree_delete(struct address_space *mapping,
152 struct page *page, void *shadow)
153{
c70b647d
KS
154 int i, nr;
155
156 /* hugetlb pages are represented by one entry in the radix tree */
157 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
91b0abe3 158
83929372
KS
159 VM_BUG_ON_PAGE(!PageLocked(page), page);
160 VM_BUG_ON_PAGE(PageTail(page), page);
161 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 162
83929372 163 for (i = 0; i < nr; i++) {
d3798ae8
JW
164 struct radix_tree_node *node;
165 void **slot;
166
167 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168 &node, &slot);
169
dbc446b8 170 VM_BUG_ON_PAGE(!node && nr != 1, page);
449dd698 171
14b46879
JW
172 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174 workingset_update_node, mapping);
449dd698 175 }
d3798ae8
JW
176
177 if (shadow) {
178 mapping->nrexceptional += nr;
179 /*
180 * Make sure the nrexceptional update is committed before
181 * the nrpages update so that final truncate racing
182 * with reclaim does not see both counters 0 at the
183 * same time and miss a shadow entry.
184 */
185 smp_wmb();
186 }
187 mapping->nrpages -= nr;
91b0abe3
JW
188}
189
1da177e4 190/*
e64a782f 191 * Delete a page from the page cache and free it. Caller has to make
1da177e4 192 * sure the page is locked and that nobody else uses it - or that usage
fdf1cdb9 193 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 194 */
62cccb8c 195void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
196{
197 struct address_space *mapping = page->mapping;
83929372 198 int nr = hpage_nr_pages(page);
1da177e4 199
fe0bfaaf 200 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
201 /*
202 * if we're uptodate, flush out into the cleancache, otherwise
203 * invalidate any existing cleancache entries. We can't leave
204 * stale data around in the cleancache once our page is gone
205 */
206 if (PageUptodate(page) && PageMappedToDisk(page))
207 cleancache_put_page(page);
208 else
3167760f 209 cleancache_invalidate_page(mapping, page);
c515e1fd 210
83929372 211 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
212 VM_BUG_ON_PAGE(page_mapped(page), page);
213 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214 int mapcount;
215
216 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
217 current->comm, page_to_pfn(page));
218 dump_page(page, "still mapped when deleted");
219 dump_stack();
220 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222 mapcount = page_mapcount(page);
223 if (mapping_exiting(mapping) &&
224 page_count(page) >= mapcount + 2) {
225 /*
226 * All vmas have already been torn down, so it's
227 * a good bet that actually the page is unmapped,
228 * and we'd prefer not to leak it: if we're wrong,
229 * some other bad page check should catch it later.
230 */
231 page_mapcount_reset(page);
6d061f9f 232 page_ref_sub(page, mapcount);
06b241f3
HD
233 }
234 }
235
91b0abe3
JW
236 page_cache_tree_delete(mapping, page, shadow);
237
1da177e4 238 page->mapping = NULL;
b85e0eff 239 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 240
4165b9b4
MH
241 /* hugetlb pages do not participate in page cache accounting. */
242 if (!PageHuge(page))
11fb9989 243 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
800d8c63 244 if (PageSwapBacked(page)) {
11fb9989 245 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
800d8c63 246 if (PageTransHuge(page))
11fb9989 247 __dec_node_page_state(page, NR_SHMEM_THPS);
800d8c63
KS
248 } else {
249 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
250 }
3a692790
LT
251
252 /*
b9ea2515
KK
253 * At this point page must be either written or cleaned by truncate.
254 * Dirty page here signals a bug and loss of unwritten data.
3a692790 255 *
b9ea2515
KK
256 * This fixes dirty accounting after removing the page entirely but
257 * leaves PageDirty set: it has no effect for truncated page and
258 * anyway will be cleared before returning page into buddy allocator.
3a692790 259 */
b9ea2515 260 if (WARN_ON_ONCE(PageDirty(page)))
62cccb8c 261 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
1da177e4
LT
262}
263
702cfbf9
MK
264/**
265 * delete_from_page_cache - delete page from page cache
266 * @page: the page which the kernel is trying to remove from page cache
267 *
268 * This must be called only on pages that have been verified to be in the page
269 * cache and locked. It will never put the page into the free list, the caller
270 * has a reference on the page.
271 */
272void delete_from_page_cache(struct page *page)
1da177e4 273{
83929372 274 struct address_space *mapping = page_mapping(page);
c4843a75 275 unsigned long flags;
6072d13c 276 void (*freepage)(struct page *);
1da177e4 277
cd7619d6 278 BUG_ON(!PageLocked(page));
1da177e4 279
6072d13c 280 freepage = mapping->a_ops->freepage;
c4843a75 281
c4843a75 282 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 283 __delete_from_page_cache(page, NULL);
c4843a75 284 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
285
286 if (freepage)
287 freepage(page);
83929372
KS
288
289 if (PageTransHuge(page) && !PageHuge(page)) {
290 page_ref_sub(page, HPAGE_PMD_NR);
291 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
292 } else {
293 put_page(page);
294 }
97cecb5a
MK
295}
296EXPORT_SYMBOL(delete_from_page_cache);
297
d72d9e2a 298int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
299{
300 int ret = 0;
301 /* Check for outstanding write errors */
7fcbbaf1
JA
302 if (test_bit(AS_ENOSPC, &mapping->flags) &&
303 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 304 ret = -ENOSPC;
7fcbbaf1
JA
305 if (test_bit(AS_EIO, &mapping->flags) &&
306 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
307 ret = -EIO;
308 return ret;
309}
d72d9e2a 310EXPORT_SYMBOL(filemap_check_errors);
865ffef3 311
76341cab
JL
312static int filemap_check_and_keep_errors(struct address_space *mapping)
313{
314 /* Check for outstanding write errors */
315 if (test_bit(AS_EIO, &mapping->flags))
316 return -EIO;
317 if (test_bit(AS_ENOSPC, &mapping->flags))
318 return -ENOSPC;
319 return 0;
320}
321
1da177e4 322/**
485bb99b 323 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
324 * @mapping: address space structure to write
325 * @start: offset in bytes where the range starts
469eb4d0 326 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 327 * @sync_mode: enable synchronous operation
1da177e4 328 *
485bb99b
RD
329 * Start writeback against all of a mapping's dirty pages that lie
330 * within the byte offsets <start, end> inclusive.
331 *
1da177e4 332 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 333 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
334 * these two operations is that if a dirty page/buffer is encountered, it must
335 * be waited upon, and not just skipped over.
336 */
ebcf28e1
AM
337int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
338 loff_t end, int sync_mode)
1da177e4
LT
339{
340 int ret;
341 struct writeback_control wbc = {
342 .sync_mode = sync_mode,
05fe478d 343 .nr_to_write = LONG_MAX,
111ebb6e
OH
344 .range_start = start,
345 .range_end = end,
1da177e4
LT
346 };
347
348 if (!mapping_cap_writeback_dirty(mapping))
349 return 0;
350
b16b1deb 351 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 352 ret = do_writepages(mapping, &wbc);
b16b1deb 353 wbc_detach_inode(&wbc);
1da177e4
LT
354 return ret;
355}
356
357static inline int __filemap_fdatawrite(struct address_space *mapping,
358 int sync_mode)
359{
111ebb6e 360 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
361}
362
363int filemap_fdatawrite(struct address_space *mapping)
364{
365 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
366}
367EXPORT_SYMBOL(filemap_fdatawrite);
368
f4c0a0fd 369int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 370 loff_t end)
1da177e4
LT
371{
372 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
373}
f4c0a0fd 374EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 375
485bb99b
RD
376/**
377 * filemap_flush - mostly a non-blocking flush
378 * @mapping: target address_space
379 *
1da177e4
LT
380 * This is a mostly non-blocking flush. Not suitable for data-integrity
381 * purposes - I/O may not be started against all dirty pages.
382 */
383int filemap_flush(struct address_space *mapping)
384{
385 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
386}
387EXPORT_SYMBOL(filemap_flush);
388
aa750fd7
JN
389static int __filemap_fdatawait_range(struct address_space *mapping,
390 loff_t start_byte, loff_t end_byte)
1da177e4 391{
09cbfeaf
KS
392 pgoff_t index = start_byte >> PAGE_SHIFT;
393 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
394 struct pagevec pvec;
395 int nr_pages;
aa750fd7 396 int ret = 0;
1da177e4 397
94004ed7 398 if (end_byte < start_byte)
865ffef3 399 goto out;
1da177e4
LT
400
401 pagevec_init(&pvec, 0);
1da177e4
LT
402 while ((index <= end) &&
403 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
404 PAGECACHE_TAG_WRITEBACK,
405 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
406 unsigned i;
407
408 for (i = 0; i < nr_pages; i++) {
409 struct page *page = pvec.pages[i];
410
411 /* until radix tree lookup accepts end_index */
412 if (page->index > end)
413 continue;
414
415 wait_on_page_writeback(page);
212260aa 416 if (TestClearPageError(page))
1da177e4
LT
417 ret = -EIO;
418 }
419 pagevec_release(&pvec);
420 cond_resched();
421 }
865ffef3 422out:
aa750fd7
JN
423 return ret;
424}
425
426/**
427 * filemap_fdatawait_range - wait for writeback to complete
428 * @mapping: address space structure to wait for
429 * @start_byte: offset in bytes where the range starts
430 * @end_byte: offset in bytes where the range ends (inclusive)
431 *
432 * Walk the list of under-writeback pages of the given address space
433 * in the given range and wait for all of them. Check error status of
434 * the address space and return it.
435 *
436 * Since the error status of the address space is cleared by this function,
437 * callers are responsible for checking the return value and handling and/or
438 * reporting the error.
439 */
440int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
441 loff_t end_byte)
442{
443 int ret, ret2;
444
445 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
865ffef3
DM
446 ret2 = filemap_check_errors(mapping);
447 if (!ret)
448 ret = ret2;
1da177e4
LT
449
450 return ret;
451}
d3bccb6f
JK
452EXPORT_SYMBOL(filemap_fdatawait_range);
453
aa750fd7
JN
454/**
455 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
456 * @mapping: address space structure to wait for
457 *
458 * Walk the list of under-writeback pages of the given address space
459 * and wait for all of them. Unlike filemap_fdatawait(), this function
460 * does not clear error status of the address space.
461 *
462 * Use this function if callers don't handle errors themselves. Expected
463 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
464 * fsfreeze(8)
465 */
76341cab 466int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7
JN
467{
468 loff_t i_size = i_size_read(mapping->host);
469
470 if (i_size == 0)
76341cab 471 return 0;
aa750fd7
JN
472
473 __filemap_fdatawait_range(mapping, 0, i_size - 1);
76341cab 474 return filemap_check_and_keep_errors(mapping);
aa750fd7 475}
76341cab 476EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 477
1da177e4 478/**
485bb99b 479 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 480 * @mapping: address space structure to wait for
485bb99b
RD
481 *
482 * Walk the list of under-writeback pages of the given address space
aa750fd7
JN
483 * and wait for all of them. Check error status of the address space
484 * and return it.
485 *
486 * Since the error status of the address space is cleared by this function,
487 * callers are responsible for checking the return value and handling and/or
488 * reporting the error.
1da177e4
LT
489 */
490int filemap_fdatawait(struct address_space *mapping)
491{
492 loff_t i_size = i_size_read(mapping->host);
493
494 if (i_size == 0)
495 return 0;
496
94004ed7 497 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
498}
499EXPORT_SYMBOL(filemap_fdatawait);
500
501int filemap_write_and_wait(struct address_space *mapping)
502{
28fd1298 503 int err = 0;
1da177e4 504
7f6d5b52
RZ
505 if ((!dax_mapping(mapping) && mapping->nrpages) ||
506 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
507 err = filemap_fdatawrite(mapping);
508 /*
509 * Even if the above returned error, the pages may be
510 * written partially (e.g. -ENOSPC), so we wait for it.
511 * But the -EIO is special case, it may indicate the worst
512 * thing (e.g. bug) happened, so we avoid waiting for it.
513 */
514 if (err != -EIO) {
515 int err2 = filemap_fdatawait(mapping);
516 if (!err)
517 err = err2;
518 }
865ffef3
DM
519 } else {
520 err = filemap_check_errors(mapping);
1da177e4 521 }
28fd1298 522 return err;
1da177e4 523}
28fd1298 524EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 525
485bb99b
RD
526/**
527 * filemap_write_and_wait_range - write out & wait on a file range
528 * @mapping: the address_space for the pages
529 * @lstart: offset in bytes where the range starts
530 * @lend: offset in bytes where the range ends (inclusive)
531 *
469eb4d0
AM
532 * Write out and wait upon file offsets lstart->lend, inclusive.
533 *
0e056eb5 534 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0
AM
535 * that this function can be used to write to the very end-of-file (end = -1).
536 */
1da177e4
LT
537int filemap_write_and_wait_range(struct address_space *mapping,
538 loff_t lstart, loff_t lend)
539{
28fd1298 540 int err = 0;
1da177e4 541
7f6d5b52
RZ
542 if ((!dax_mapping(mapping) && mapping->nrpages) ||
543 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
544 err = __filemap_fdatawrite_range(mapping, lstart, lend,
545 WB_SYNC_ALL);
546 /* See comment of filemap_write_and_wait() */
547 if (err != -EIO) {
94004ed7
CH
548 int err2 = filemap_fdatawait_range(mapping,
549 lstart, lend);
28fd1298
OH
550 if (!err)
551 err = err2;
552 }
865ffef3
DM
553 } else {
554 err = filemap_check_errors(mapping);
1da177e4 555 }
28fd1298 556 return err;
1da177e4 557}
f6995585 558EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 559
ef6a3c63
MS
560/**
561 * replace_page_cache_page - replace a pagecache page with a new one
562 * @old: page to be replaced
563 * @new: page to replace with
564 * @gfp_mask: allocation mode
565 *
566 * This function replaces a page in the pagecache with a new one. On
567 * success it acquires the pagecache reference for the new page and
568 * drops it for the old page. Both the old and new pages must be
569 * locked. This function does not add the new page to the LRU, the
570 * caller must do that.
571 *
572 * The remove + add is atomic. The only way this function can fail is
573 * memory allocation failure.
574 */
575int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
576{
577 int error;
ef6a3c63 578
309381fe
SL
579 VM_BUG_ON_PAGE(!PageLocked(old), old);
580 VM_BUG_ON_PAGE(!PageLocked(new), new);
581 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 582
ef6a3c63
MS
583 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
584 if (!error) {
585 struct address_space *mapping = old->mapping;
586 void (*freepage)(struct page *);
c4843a75 587 unsigned long flags;
ef6a3c63
MS
588
589 pgoff_t offset = old->index;
590 freepage = mapping->a_ops->freepage;
591
09cbfeaf 592 get_page(new);
ef6a3c63
MS
593 new->mapping = mapping;
594 new->index = offset;
595
c4843a75 596 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 597 __delete_from_page_cache(old, NULL);
22f2ac51 598 error = page_cache_tree_insert(mapping, new, NULL);
ef6a3c63 599 BUG_ON(error);
4165b9b4
MH
600
601 /*
602 * hugetlb pages do not participate in page cache accounting.
603 */
604 if (!PageHuge(new))
11fb9989 605 __inc_node_page_state(new, NR_FILE_PAGES);
ef6a3c63 606 if (PageSwapBacked(new))
11fb9989 607 __inc_node_page_state(new, NR_SHMEM);
c4843a75 608 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6a93ca8f 609 mem_cgroup_migrate(old, new);
ef6a3c63
MS
610 radix_tree_preload_end();
611 if (freepage)
612 freepage(old);
09cbfeaf 613 put_page(old);
ef6a3c63
MS
614 }
615
616 return error;
617}
618EXPORT_SYMBOL_GPL(replace_page_cache_page);
619
a528910e
JW
620static int __add_to_page_cache_locked(struct page *page,
621 struct address_space *mapping,
622 pgoff_t offset, gfp_t gfp_mask,
623 void **shadowp)
1da177e4 624{
00501b53
JW
625 int huge = PageHuge(page);
626 struct mem_cgroup *memcg;
e286781d
NP
627 int error;
628
309381fe
SL
629 VM_BUG_ON_PAGE(!PageLocked(page), page);
630 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 631
00501b53
JW
632 if (!huge) {
633 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 634 gfp_mask, &memcg, false);
00501b53
JW
635 if (error)
636 return error;
637 }
1da177e4 638
5e4c0d97 639 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 640 if (error) {
00501b53 641 if (!huge)
f627c2f5 642 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
643 return error;
644 }
645
09cbfeaf 646 get_page(page);
66a0c8ee
KS
647 page->mapping = mapping;
648 page->index = offset;
649
650 spin_lock_irq(&mapping->tree_lock);
a528910e 651 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
652 radix_tree_preload_end();
653 if (unlikely(error))
654 goto err_insert;
4165b9b4
MH
655
656 /* hugetlb pages do not participate in page cache accounting. */
657 if (!huge)
11fb9989 658 __inc_node_page_state(page, NR_FILE_PAGES);
66a0c8ee 659 spin_unlock_irq(&mapping->tree_lock);
00501b53 660 if (!huge)
f627c2f5 661 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
662 trace_mm_filemap_add_to_page_cache(page);
663 return 0;
664err_insert:
665 page->mapping = NULL;
666 /* Leave page->index set: truncation relies upon it */
667 spin_unlock_irq(&mapping->tree_lock);
00501b53 668 if (!huge)
f627c2f5 669 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 670 put_page(page);
1da177e4
LT
671 return error;
672}
a528910e
JW
673
674/**
675 * add_to_page_cache_locked - add a locked page to the pagecache
676 * @page: page to add
677 * @mapping: the page's address_space
678 * @offset: page index
679 * @gfp_mask: page allocation mode
680 *
681 * This function is used to add a page to the pagecache. It must be locked.
682 * This function does not add the page to the LRU. The caller must do that.
683 */
684int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
685 pgoff_t offset, gfp_t gfp_mask)
686{
687 return __add_to_page_cache_locked(page, mapping, offset,
688 gfp_mask, NULL);
689}
e286781d 690EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
691
692int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 693 pgoff_t offset, gfp_t gfp_mask)
1da177e4 694{
a528910e 695 void *shadow = NULL;
4f98a2fe
RR
696 int ret;
697
48c935ad 698 __SetPageLocked(page);
a528910e
JW
699 ret = __add_to_page_cache_locked(page, mapping, offset,
700 gfp_mask, &shadow);
701 if (unlikely(ret))
48c935ad 702 __ClearPageLocked(page);
a528910e
JW
703 else {
704 /*
705 * The page might have been evicted from cache only
706 * recently, in which case it should be activated like
707 * any other repeatedly accessed page.
f0281a00
RR
708 * The exception is pages getting rewritten; evicting other
709 * data from the working set, only to cache data that will
710 * get overwritten with something else, is a waste of memory.
a528910e 711 */
f0281a00
RR
712 if (!(gfp_mask & __GFP_WRITE) &&
713 shadow && workingset_refault(shadow)) {
a528910e
JW
714 SetPageActive(page);
715 workingset_activation(page);
716 } else
717 ClearPageActive(page);
718 lru_cache_add(page);
719 }
1da177e4
LT
720 return ret;
721}
18bc0bbd 722EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 723
44110fe3 724#ifdef CONFIG_NUMA
2ae88149 725struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 726{
c0ff7453
MX
727 int n;
728 struct page *page;
729
44110fe3 730 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
731 unsigned int cpuset_mems_cookie;
732 do {
d26914d1 733 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 734 n = cpuset_mem_spread_node();
96db800f 735 page = __alloc_pages_node(n, gfp, 0);
d26914d1 736 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 737
c0ff7453 738 return page;
44110fe3 739 }
2ae88149 740 return alloc_pages(gfp, 0);
44110fe3 741}
2ae88149 742EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
743#endif
744
1da177e4
LT
745/*
746 * In order to wait for pages to become available there must be
747 * waitqueues associated with pages. By using a hash table of
748 * waitqueues where the bucket discipline is to maintain all
749 * waiters on the same queue and wake all when any of the pages
750 * become available, and for the woken contexts to check to be
751 * sure the appropriate page became available, this saves space
752 * at a cost of "thundering herd" phenomena during rare hash
753 * collisions.
754 */
62906027
NP
755#define PAGE_WAIT_TABLE_BITS 8
756#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
757static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
758
759static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 760{
62906027 761 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 762}
1da177e4 763
62906027 764void __init pagecache_init(void)
1da177e4 765{
62906027 766 int i;
1da177e4 767
62906027
NP
768 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
769 init_waitqueue_head(&page_wait_table[i]);
770
771 page_writeback_init();
1da177e4 772}
1da177e4 773
62906027
NP
774struct wait_page_key {
775 struct page *page;
776 int bit_nr;
777 int page_match;
778};
779
780struct wait_page_queue {
781 struct page *page;
782 int bit_nr;
783 wait_queue_t wait;
784};
785
786static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 787{
62906027
NP
788 struct wait_page_key *key = arg;
789 struct wait_page_queue *wait_page
790 = container_of(wait, struct wait_page_queue, wait);
791
792 if (wait_page->page != key->page)
793 return 0;
794 key->page_match = 1;
f62e00cc 795
62906027
NP
796 if (wait_page->bit_nr != key->bit_nr)
797 return 0;
798 if (test_bit(key->bit_nr, &key->page->flags))
f62e00cc
KM
799 return 0;
800
62906027 801 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
802}
803
74d81bfa 804static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 805{
62906027
NP
806 wait_queue_head_t *q = page_waitqueue(page);
807 struct wait_page_key key;
808 unsigned long flags;
cbbce822 809
62906027
NP
810 key.page = page;
811 key.bit_nr = bit_nr;
812 key.page_match = 0;
813
814 spin_lock_irqsave(&q->lock, flags);
815 __wake_up_locked_key(q, TASK_NORMAL, &key);
816 /*
817 * It is possible for other pages to have collided on the waitqueue
818 * hash, so in that case check for a page match. That prevents a long-
819 * term waiter
820 *
821 * It is still possible to miss a case here, when we woke page waiters
822 * and removed them from the waitqueue, but there are still other
823 * page waiters.
824 */
825 if (!waitqueue_active(q) || !key.page_match) {
826 ClearPageWaiters(page);
827 /*
828 * It's possible to miss clearing Waiters here, when we woke
829 * our page waiters, but the hashed waitqueue has waiters for
830 * other pages on it.
831 *
832 * That's okay, it's a rare case. The next waker will clear it.
833 */
834 }
835 spin_unlock_irqrestore(&q->lock, flags);
836}
74d81bfa
NP
837
838static void wake_up_page(struct page *page, int bit)
839{
840 if (!PageWaiters(page))
841 return;
842 wake_up_page_bit(page, bit);
843}
62906027
NP
844
845static inline int wait_on_page_bit_common(wait_queue_head_t *q,
846 struct page *page, int bit_nr, int state, bool lock)
847{
848 struct wait_page_queue wait_page;
849 wait_queue_t *wait = &wait_page.wait;
850 int ret = 0;
851
852 init_wait(wait);
853 wait->func = wake_page_function;
854 wait_page.page = page;
855 wait_page.bit_nr = bit_nr;
856
857 for (;;) {
858 spin_lock_irq(&q->lock);
859
860 if (likely(list_empty(&wait->task_list))) {
861 if (lock)
862 __add_wait_queue_tail_exclusive(q, wait);
863 else
864 __add_wait_queue(q, wait);
865 SetPageWaiters(page);
866 }
867
868 set_current_state(state);
869
870 spin_unlock_irq(&q->lock);
871
872 if (likely(test_bit(bit_nr, &page->flags))) {
873 io_schedule();
874 if (unlikely(signal_pending_state(state, current))) {
875 ret = -EINTR;
876 break;
877 }
878 }
879
880 if (lock) {
881 if (!test_and_set_bit_lock(bit_nr, &page->flags))
882 break;
883 } else {
884 if (!test_bit(bit_nr, &page->flags))
885 break;
886 }
887 }
888
889 finish_wait(q, wait);
890
891 /*
892 * A signal could leave PageWaiters set. Clearing it here if
893 * !waitqueue_active would be possible (by open-coding finish_wait),
894 * but still fail to catch it in the case of wait hash collision. We
895 * already can fail to clear wait hash collision cases, so don't
896 * bother with signals either.
897 */
898
899 return ret;
900}
901
902void wait_on_page_bit(struct page *page, int bit_nr)
903{
904 wait_queue_head_t *q = page_waitqueue(page);
905 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
906}
907EXPORT_SYMBOL(wait_on_page_bit);
908
909int wait_on_page_bit_killable(struct page *page, int bit_nr)
910{
911 wait_queue_head_t *q = page_waitqueue(page);
912 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
cbbce822 913}
cbbce822 914
385e1ca5
DH
915/**
916 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
917 * @page: Page defining the wait queue of interest
918 * @waiter: Waiter to add to the queue
385e1ca5
DH
919 *
920 * Add an arbitrary @waiter to the wait queue for the nominated @page.
921 */
922void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
923{
924 wait_queue_head_t *q = page_waitqueue(page);
925 unsigned long flags;
926
927 spin_lock_irqsave(&q->lock, flags);
928 __add_wait_queue(q, waiter);
62906027 929 SetPageWaiters(page);
385e1ca5
DH
930 spin_unlock_irqrestore(&q->lock, flags);
931}
932EXPORT_SYMBOL_GPL(add_page_wait_queue);
933
b91e1302
LT
934#ifndef clear_bit_unlock_is_negative_byte
935
936/*
937 * PG_waiters is the high bit in the same byte as PG_lock.
938 *
939 * On x86 (and on many other architectures), we can clear PG_lock and
940 * test the sign bit at the same time. But if the architecture does
941 * not support that special operation, we just do this all by hand
942 * instead.
943 *
944 * The read of PG_waiters has to be after (or concurrently with) PG_locked
945 * being cleared, but a memory barrier should be unneccssary since it is
946 * in the same byte as PG_locked.
947 */
948static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
949{
950 clear_bit_unlock(nr, mem);
951 /* smp_mb__after_atomic(); */
98473f9f 952 return test_bit(PG_waiters, mem);
b91e1302
LT
953}
954
955#endif
956
1da177e4 957/**
485bb99b 958 * unlock_page - unlock a locked page
1da177e4
LT
959 * @page: the page
960 *
961 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
962 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 963 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
964 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
965 *
b91e1302
LT
966 * Note that this depends on PG_waiters being the sign bit in the byte
967 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
968 * clear the PG_locked bit and test PG_waiters at the same time fairly
969 * portably (architectures that do LL/SC can test any bit, while x86 can
970 * test the sign bit).
1da177e4 971 */
920c7a5d 972void unlock_page(struct page *page)
1da177e4 973{
b91e1302 974 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 975 page = compound_head(page);
309381fe 976 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
977 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
978 wake_up_page_bit(page, PG_locked);
1da177e4
LT
979}
980EXPORT_SYMBOL(unlock_page);
981
485bb99b
RD
982/**
983 * end_page_writeback - end writeback against a page
984 * @page: the page
1da177e4
LT
985 */
986void end_page_writeback(struct page *page)
987{
888cf2db
MG
988 /*
989 * TestClearPageReclaim could be used here but it is an atomic
990 * operation and overkill in this particular case. Failing to
991 * shuffle a page marked for immediate reclaim is too mild to
992 * justify taking an atomic operation penalty at the end of
993 * ever page writeback.
994 */
995 if (PageReclaim(page)) {
996 ClearPageReclaim(page);
ac6aadb2 997 rotate_reclaimable_page(page);
888cf2db 998 }
ac6aadb2
MS
999
1000 if (!test_clear_page_writeback(page))
1001 BUG();
1002
4e857c58 1003 smp_mb__after_atomic();
1da177e4
LT
1004 wake_up_page(page, PG_writeback);
1005}
1006EXPORT_SYMBOL(end_page_writeback);
1007
57d99845
MW
1008/*
1009 * After completing I/O on a page, call this routine to update the page
1010 * flags appropriately
1011 */
c11f0c0b 1012void page_endio(struct page *page, bool is_write, int err)
57d99845 1013{
c11f0c0b 1014 if (!is_write) {
57d99845
MW
1015 if (!err) {
1016 SetPageUptodate(page);
1017 } else {
1018 ClearPageUptodate(page);
1019 SetPageError(page);
1020 }
1021 unlock_page(page);
abf54548 1022 } else {
57d99845 1023 if (err) {
dd8416c4
MK
1024 struct address_space *mapping;
1025
57d99845 1026 SetPageError(page);
dd8416c4
MK
1027 mapping = page_mapping(page);
1028 if (mapping)
1029 mapping_set_error(mapping, err);
57d99845
MW
1030 }
1031 end_page_writeback(page);
1032 }
1033}
1034EXPORT_SYMBOL_GPL(page_endio);
1035
485bb99b
RD
1036/**
1037 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1038 * @__page: the page to lock
1da177e4 1039 */
62906027 1040void __lock_page(struct page *__page)
1da177e4 1041{
62906027
NP
1042 struct page *page = compound_head(__page);
1043 wait_queue_head_t *q = page_waitqueue(page);
1044 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1da177e4
LT
1045}
1046EXPORT_SYMBOL(__lock_page);
1047
62906027 1048int __lock_page_killable(struct page *__page)
2687a356 1049{
62906027
NP
1050 struct page *page = compound_head(__page);
1051 wait_queue_head_t *q = page_waitqueue(page);
1052 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
2687a356 1053}
18bc0bbd 1054EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1055
9a95f3cf
PC
1056/*
1057 * Return values:
1058 * 1 - page is locked; mmap_sem is still held.
1059 * 0 - page is not locked.
1060 * mmap_sem has been released (up_read()), unless flags had both
1061 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1062 * which case mmap_sem is still held.
1063 *
1064 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1065 * with the page locked and the mmap_sem unperturbed.
1066 */
d065bd81
ML
1067int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1068 unsigned int flags)
1069{
37b23e05
KM
1070 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1071 /*
1072 * CAUTION! In this case, mmap_sem is not released
1073 * even though return 0.
1074 */
1075 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1076 return 0;
1077
1078 up_read(&mm->mmap_sem);
1079 if (flags & FAULT_FLAG_KILLABLE)
1080 wait_on_page_locked_killable(page);
1081 else
318b275f 1082 wait_on_page_locked(page);
d065bd81 1083 return 0;
37b23e05
KM
1084 } else {
1085 if (flags & FAULT_FLAG_KILLABLE) {
1086 int ret;
1087
1088 ret = __lock_page_killable(page);
1089 if (ret) {
1090 up_read(&mm->mmap_sem);
1091 return 0;
1092 }
1093 } else
1094 __lock_page(page);
1095 return 1;
d065bd81
ML
1096 }
1097}
1098
e7b563bb
JW
1099/**
1100 * page_cache_next_hole - find the next hole (not-present entry)
1101 * @mapping: mapping
1102 * @index: index
1103 * @max_scan: maximum range to search
1104 *
1105 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1106 * lowest indexed hole.
1107 *
1108 * Returns: the index of the hole if found, otherwise returns an index
1109 * outside of the set specified (in which case 'return - index >=
1110 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1111 * be returned.
1112 *
1113 * page_cache_next_hole may be called under rcu_read_lock. However,
1114 * like radix_tree_gang_lookup, this will not atomically search a
1115 * snapshot of the tree at a single point in time. For example, if a
1116 * hole is created at index 5, then subsequently a hole is created at
1117 * index 10, page_cache_next_hole covering both indexes may return 10
1118 * if called under rcu_read_lock.
1119 */
1120pgoff_t page_cache_next_hole(struct address_space *mapping,
1121 pgoff_t index, unsigned long max_scan)
1122{
1123 unsigned long i;
1124
1125 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1126 struct page *page;
1127
1128 page = radix_tree_lookup(&mapping->page_tree, index);
1129 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1130 break;
1131 index++;
1132 if (index == 0)
1133 break;
1134 }
1135
1136 return index;
1137}
1138EXPORT_SYMBOL(page_cache_next_hole);
1139
1140/**
1141 * page_cache_prev_hole - find the prev hole (not-present entry)
1142 * @mapping: mapping
1143 * @index: index
1144 * @max_scan: maximum range to search
1145 *
1146 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1147 * the first hole.
1148 *
1149 * Returns: the index of the hole if found, otherwise returns an index
1150 * outside of the set specified (in which case 'index - return >=
1151 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1152 * will be returned.
1153 *
1154 * page_cache_prev_hole may be called under rcu_read_lock. However,
1155 * like radix_tree_gang_lookup, this will not atomically search a
1156 * snapshot of the tree at a single point in time. For example, if a
1157 * hole is created at index 10, then subsequently a hole is created at
1158 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1159 * called under rcu_read_lock.
1160 */
1161pgoff_t page_cache_prev_hole(struct address_space *mapping,
1162 pgoff_t index, unsigned long max_scan)
1163{
1164 unsigned long i;
1165
1166 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1167 struct page *page;
1168
1169 page = radix_tree_lookup(&mapping->page_tree, index);
1170 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1171 break;
1172 index--;
1173 if (index == ULONG_MAX)
1174 break;
1175 }
1176
1177 return index;
1178}
1179EXPORT_SYMBOL(page_cache_prev_hole);
1180
485bb99b 1181/**
0cd6144a 1182 * find_get_entry - find and get a page cache entry
485bb99b 1183 * @mapping: the address_space to search
0cd6144a
JW
1184 * @offset: the page cache index
1185 *
1186 * Looks up the page cache slot at @mapping & @offset. If there is a
1187 * page cache page, it is returned with an increased refcount.
485bb99b 1188 *
139b6a6f
JW
1189 * If the slot holds a shadow entry of a previously evicted page, or a
1190 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1191 *
1192 * Otherwise, %NULL is returned.
1da177e4 1193 */
0cd6144a 1194struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1195{
a60637c8 1196 void **pagep;
83929372 1197 struct page *head, *page;
1da177e4 1198
a60637c8
NP
1199 rcu_read_lock();
1200repeat:
1201 page = NULL;
1202 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1203 if (pagep) {
1204 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1205 if (unlikely(!page))
1206 goto out;
a2c16d6c 1207 if (radix_tree_exception(page)) {
8079b1c8
HD
1208 if (radix_tree_deref_retry(page))
1209 goto repeat;
1210 /*
139b6a6f
JW
1211 * A shadow entry of a recently evicted page,
1212 * or a swap entry from shmem/tmpfs. Return
1213 * it without attempting to raise page count.
8079b1c8
HD
1214 */
1215 goto out;
a2c16d6c 1216 }
83929372
KS
1217
1218 head = compound_head(page);
1219 if (!page_cache_get_speculative(head))
1220 goto repeat;
1221
1222 /* The page was split under us? */
1223 if (compound_head(page) != head) {
1224 put_page(head);
a60637c8 1225 goto repeat;
83929372 1226 }
a60637c8
NP
1227
1228 /*
1229 * Has the page moved?
1230 * This is part of the lockless pagecache protocol. See
1231 * include/linux/pagemap.h for details.
1232 */
1233 if (unlikely(page != *pagep)) {
83929372 1234 put_page(head);
a60637c8
NP
1235 goto repeat;
1236 }
1237 }
27d20fdd 1238out:
a60637c8
NP
1239 rcu_read_unlock();
1240
1da177e4
LT
1241 return page;
1242}
0cd6144a 1243EXPORT_SYMBOL(find_get_entry);
1da177e4 1244
0cd6144a
JW
1245/**
1246 * find_lock_entry - locate, pin and lock a page cache entry
1247 * @mapping: the address_space to search
1248 * @offset: the page cache index
1249 *
1250 * Looks up the page cache slot at @mapping & @offset. If there is a
1251 * page cache page, it is returned locked and with an increased
1252 * refcount.
1253 *
139b6a6f
JW
1254 * If the slot holds a shadow entry of a previously evicted page, or a
1255 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1256 *
1257 * Otherwise, %NULL is returned.
1258 *
1259 * find_lock_entry() may sleep.
1260 */
1261struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1262{
1263 struct page *page;
1264
1da177e4 1265repeat:
0cd6144a 1266 page = find_get_entry(mapping, offset);
a2c16d6c 1267 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1268 lock_page(page);
1269 /* Has the page been truncated? */
83929372 1270 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1271 unlock_page(page);
09cbfeaf 1272 put_page(page);
a60637c8 1273 goto repeat;
1da177e4 1274 }
83929372 1275 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1276 }
1da177e4
LT
1277 return page;
1278}
0cd6144a
JW
1279EXPORT_SYMBOL(find_lock_entry);
1280
1281/**
2457aec6 1282 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1283 * @mapping: the address_space to search
1284 * @offset: the page index
2457aec6 1285 * @fgp_flags: PCG flags
45f87de5 1286 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1287 *
2457aec6 1288 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1289 *
75325189 1290 * PCG flags modify how the page is returned.
0cd6144a 1291 *
0e056eb5
MCC
1292 * @fgp_flags can be:
1293 *
1294 * - FGP_ACCESSED: the page will be marked accessed
1295 * - FGP_LOCK: Page is return locked
1296 * - FGP_CREAT: If page is not present then a new page is allocated using
1297 * @gfp_mask and added to the page cache and the VM's LRU
1298 * list. The page is returned locked and with an increased
1299 * refcount. Otherwise, NULL is returned.
1da177e4 1300 *
2457aec6
MG
1301 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1302 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1303 *
2457aec6 1304 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1305 */
2457aec6 1306struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1307 int fgp_flags, gfp_t gfp_mask)
1da177e4 1308{
eb2be189 1309 struct page *page;
2457aec6 1310
1da177e4 1311repeat:
2457aec6
MG
1312 page = find_get_entry(mapping, offset);
1313 if (radix_tree_exceptional_entry(page))
1314 page = NULL;
1315 if (!page)
1316 goto no_page;
1317
1318 if (fgp_flags & FGP_LOCK) {
1319 if (fgp_flags & FGP_NOWAIT) {
1320 if (!trylock_page(page)) {
09cbfeaf 1321 put_page(page);
2457aec6
MG
1322 return NULL;
1323 }
1324 } else {
1325 lock_page(page);
1326 }
1327
1328 /* Has the page been truncated? */
1329 if (unlikely(page->mapping != mapping)) {
1330 unlock_page(page);
09cbfeaf 1331 put_page(page);
2457aec6
MG
1332 goto repeat;
1333 }
1334 VM_BUG_ON_PAGE(page->index != offset, page);
1335 }
1336
1337 if (page && (fgp_flags & FGP_ACCESSED))
1338 mark_page_accessed(page);
1339
1340no_page:
1341 if (!page && (fgp_flags & FGP_CREAT)) {
1342 int err;
1343 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1344 gfp_mask |= __GFP_WRITE;
1345 if (fgp_flags & FGP_NOFS)
1346 gfp_mask &= ~__GFP_FS;
2457aec6 1347
45f87de5 1348 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1349 if (!page)
1350 return NULL;
2457aec6
MG
1351
1352 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1353 fgp_flags |= FGP_LOCK;
1354
eb39d618 1355 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1356 if (fgp_flags & FGP_ACCESSED)
eb39d618 1357 __SetPageReferenced(page);
2457aec6 1358
45f87de5
MH
1359 err = add_to_page_cache_lru(page, mapping, offset,
1360 gfp_mask & GFP_RECLAIM_MASK);
eb2be189 1361 if (unlikely(err)) {
09cbfeaf 1362 put_page(page);
eb2be189
NP
1363 page = NULL;
1364 if (err == -EEXIST)
1365 goto repeat;
1da177e4 1366 }
1da177e4 1367 }
2457aec6 1368
1da177e4
LT
1369 return page;
1370}
2457aec6 1371EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1372
0cd6144a
JW
1373/**
1374 * find_get_entries - gang pagecache lookup
1375 * @mapping: The address_space to search
1376 * @start: The starting page cache index
1377 * @nr_entries: The maximum number of entries
1378 * @entries: Where the resulting entries are placed
1379 * @indices: The cache indices corresponding to the entries in @entries
1380 *
1381 * find_get_entries() will search for and return a group of up to
1382 * @nr_entries entries in the mapping. The entries are placed at
1383 * @entries. find_get_entries() takes a reference against any actual
1384 * pages it returns.
1385 *
1386 * The search returns a group of mapping-contiguous page cache entries
1387 * with ascending indexes. There may be holes in the indices due to
1388 * not-present pages.
1389 *
139b6a6f
JW
1390 * Any shadow entries of evicted pages, or swap entries from
1391 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1392 *
1393 * find_get_entries() returns the number of pages and shadow entries
1394 * which were found.
1395 */
1396unsigned find_get_entries(struct address_space *mapping,
1397 pgoff_t start, unsigned int nr_entries,
1398 struct page **entries, pgoff_t *indices)
1399{
1400 void **slot;
1401 unsigned int ret = 0;
1402 struct radix_tree_iter iter;
1403
1404 if (!nr_entries)
1405 return 0;
1406
1407 rcu_read_lock();
0cd6144a 1408 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1409 struct page *head, *page;
0cd6144a
JW
1410repeat:
1411 page = radix_tree_deref_slot(slot);
1412 if (unlikely(!page))
1413 continue;
1414 if (radix_tree_exception(page)) {
2cf938aa
MW
1415 if (radix_tree_deref_retry(page)) {
1416 slot = radix_tree_iter_retry(&iter);
1417 continue;
1418 }
0cd6144a 1419 /*
f9fe48be
RZ
1420 * A shadow entry of a recently evicted page, a swap
1421 * entry from shmem/tmpfs or a DAX entry. Return it
1422 * without attempting to raise page count.
0cd6144a
JW
1423 */
1424 goto export;
1425 }
83929372
KS
1426
1427 head = compound_head(page);
1428 if (!page_cache_get_speculative(head))
1429 goto repeat;
1430
1431 /* The page was split under us? */
1432 if (compound_head(page) != head) {
1433 put_page(head);
0cd6144a 1434 goto repeat;
83929372 1435 }
0cd6144a
JW
1436
1437 /* Has the page moved? */
1438 if (unlikely(page != *slot)) {
83929372 1439 put_page(head);
0cd6144a
JW
1440 goto repeat;
1441 }
1442export:
1443 indices[ret] = iter.index;
1444 entries[ret] = page;
1445 if (++ret == nr_entries)
1446 break;
1447 }
1448 rcu_read_unlock();
1449 return ret;
1450}
1451
1da177e4
LT
1452/**
1453 * find_get_pages - gang pagecache lookup
1454 * @mapping: The address_space to search
1455 * @start: The starting page index
1456 * @nr_pages: The maximum number of pages
1457 * @pages: Where the resulting pages are placed
1458 *
1459 * find_get_pages() will search for and return a group of up to
1460 * @nr_pages pages in the mapping. The pages are placed at @pages.
1461 * find_get_pages() takes a reference against the returned pages.
1462 *
1463 * The search returns a group of mapping-contiguous pages with ascending
1464 * indexes. There may be holes in the indices due to not-present pages.
1465 *
1466 * find_get_pages() returns the number of pages which were found.
1467 */
1468unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1469 unsigned int nr_pages, struct page **pages)
1470{
0fc9d104
KK
1471 struct radix_tree_iter iter;
1472 void **slot;
1473 unsigned ret = 0;
1474
1475 if (unlikely(!nr_pages))
1476 return 0;
a60637c8
NP
1477
1478 rcu_read_lock();
0fc9d104 1479 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1480 struct page *head, *page;
a60637c8 1481repeat:
0fc9d104 1482 page = radix_tree_deref_slot(slot);
a60637c8
NP
1483 if (unlikely(!page))
1484 continue;
9d8aa4ea 1485
a2c16d6c 1486 if (radix_tree_exception(page)) {
8079b1c8 1487 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1488 slot = radix_tree_iter_retry(&iter);
1489 continue;
8079b1c8 1490 }
a2c16d6c 1491 /*
139b6a6f
JW
1492 * A shadow entry of a recently evicted page,
1493 * or a swap entry from shmem/tmpfs. Skip
1494 * over it.
a2c16d6c 1495 */
8079b1c8 1496 continue;
27d20fdd 1497 }
a60637c8 1498
83929372
KS
1499 head = compound_head(page);
1500 if (!page_cache_get_speculative(head))
1501 goto repeat;
1502
1503 /* The page was split under us? */
1504 if (compound_head(page) != head) {
1505 put_page(head);
a60637c8 1506 goto repeat;
83929372 1507 }
a60637c8
NP
1508
1509 /* Has the page moved? */
0fc9d104 1510 if (unlikely(page != *slot)) {
83929372 1511 put_page(head);
a60637c8
NP
1512 goto repeat;
1513 }
1da177e4 1514
a60637c8 1515 pages[ret] = page;
0fc9d104
KK
1516 if (++ret == nr_pages)
1517 break;
a60637c8 1518 }
5b280c0c 1519
a60637c8 1520 rcu_read_unlock();
1da177e4
LT
1521 return ret;
1522}
1523
ebf43500
JA
1524/**
1525 * find_get_pages_contig - gang contiguous pagecache lookup
1526 * @mapping: The address_space to search
1527 * @index: The starting page index
1528 * @nr_pages: The maximum number of pages
1529 * @pages: Where the resulting pages are placed
1530 *
1531 * find_get_pages_contig() works exactly like find_get_pages(), except
1532 * that the returned number of pages are guaranteed to be contiguous.
1533 *
1534 * find_get_pages_contig() returns the number of pages which were found.
1535 */
1536unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1537 unsigned int nr_pages, struct page **pages)
1538{
0fc9d104
KK
1539 struct radix_tree_iter iter;
1540 void **slot;
1541 unsigned int ret = 0;
1542
1543 if (unlikely(!nr_pages))
1544 return 0;
a60637c8
NP
1545
1546 rcu_read_lock();
0fc9d104 1547 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
83929372 1548 struct page *head, *page;
a60637c8 1549repeat:
0fc9d104
KK
1550 page = radix_tree_deref_slot(slot);
1551 /* The hole, there no reason to continue */
a60637c8 1552 if (unlikely(!page))
0fc9d104 1553 break;
9d8aa4ea 1554
a2c16d6c 1555 if (radix_tree_exception(page)) {
8079b1c8 1556 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1557 slot = radix_tree_iter_retry(&iter);
1558 continue;
8079b1c8 1559 }
a2c16d6c 1560 /*
139b6a6f
JW
1561 * A shadow entry of a recently evicted page,
1562 * or a swap entry from shmem/tmpfs. Stop
1563 * looking for contiguous pages.
a2c16d6c 1564 */
8079b1c8 1565 break;
a2c16d6c 1566 }
ebf43500 1567
83929372
KS
1568 head = compound_head(page);
1569 if (!page_cache_get_speculative(head))
1570 goto repeat;
1571
1572 /* The page was split under us? */
1573 if (compound_head(page) != head) {
1574 put_page(head);
a60637c8 1575 goto repeat;
83929372 1576 }
a60637c8
NP
1577
1578 /* Has the page moved? */
0fc9d104 1579 if (unlikely(page != *slot)) {
83929372 1580 put_page(head);
a60637c8
NP
1581 goto repeat;
1582 }
1583
9cbb4cb2
NP
1584 /*
1585 * must check mapping and index after taking the ref.
1586 * otherwise we can get both false positives and false
1587 * negatives, which is just confusing to the caller.
1588 */
83929372 1589 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
09cbfeaf 1590 put_page(page);
9cbb4cb2
NP
1591 break;
1592 }
1593
a60637c8 1594 pages[ret] = page;
0fc9d104
KK
1595 if (++ret == nr_pages)
1596 break;
ebf43500 1597 }
a60637c8
NP
1598 rcu_read_unlock();
1599 return ret;
ebf43500 1600}
ef71c15c 1601EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1602
485bb99b
RD
1603/**
1604 * find_get_pages_tag - find and return pages that match @tag
1605 * @mapping: the address_space to search
1606 * @index: the starting page index
1607 * @tag: the tag index
1608 * @nr_pages: the maximum number of pages
1609 * @pages: where the resulting pages are placed
1610 *
1da177e4 1611 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1612 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1613 */
1614unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1615 int tag, unsigned int nr_pages, struct page **pages)
1616{
0fc9d104
KK
1617 struct radix_tree_iter iter;
1618 void **slot;
1619 unsigned ret = 0;
1620
1621 if (unlikely(!nr_pages))
1622 return 0;
a60637c8
NP
1623
1624 rcu_read_lock();
0fc9d104
KK
1625 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1626 &iter, *index, tag) {
83929372 1627 struct page *head, *page;
a60637c8 1628repeat:
0fc9d104 1629 page = radix_tree_deref_slot(slot);
a60637c8
NP
1630 if (unlikely(!page))
1631 continue;
9d8aa4ea 1632
a2c16d6c 1633 if (radix_tree_exception(page)) {
8079b1c8 1634 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1635 slot = radix_tree_iter_retry(&iter);
1636 continue;
8079b1c8 1637 }
a2c16d6c 1638 /*
139b6a6f
JW
1639 * A shadow entry of a recently evicted page.
1640 *
1641 * Those entries should never be tagged, but
1642 * this tree walk is lockless and the tags are
1643 * looked up in bulk, one radix tree node at a
1644 * time, so there is a sizable window for page
1645 * reclaim to evict a page we saw tagged.
1646 *
1647 * Skip over it.
a2c16d6c 1648 */
139b6a6f 1649 continue;
a2c16d6c 1650 }
a60637c8 1651
83929372
KS
1652 head = compound_head(page);
1653 if (!page_cache_get_speculative(head))
a60637c8
NP
1654 goto repeat;
1655
83929372
KS
1656 /* The page was split under us? */
1657 if (compound_head(page) != head) {
1658 put_page(head);
1659 goto repeat;
1660 }
1661
a60637c8 1662 /* Has the page moved? */
0fc9d104 1663 if (unlikely(page != *slot)) {
83929372 1664 put_page(head);
a60637c8
NP
1665 goto repeat;
1666 }
1667
1668 pages[ret] = page;
0fc9d104
KK
1669 if (++ret == nr_pages)
1670 break;
a60637c8 1671 }
5b280c0c 1672
a60637c8 1673 rcu_read_unlock();
1da177e4 1674
1da177e4
LT
1675 if (ret)
1676 *index = pages[ret - 1]->index + 1;
a60637c8 1677
1da177e4
LT
1678 return ret;
1679}
ef71c15c 1680EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1681
7e7f7749
RZ
1682/**
1683 * find_get_entries_tag - find and return entries that match @tag
1684 * @mapping: the address_space to search
1685 * @start: the starting page cache index
1686 * @tag: the tag index
1687 * @nr_entries: the maximum number of entries
1688 * @entries: where the resulting entries are placed
1689 * @indices: the cache indices corresponding to the entries in @entries
1690 *
1691 * Like find_get_entries, except we only return entries which are tagged with
1692 * @tag.
1693 */
1694unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1695 int tag, unsigned int nr_entries,
1696 struct page **entries, pgoff_t *indices)
1697{
1698 void **slot;
1699 unsigned int ret = 0;
1700 struct radix_tree_iter iter;
1701
1702 if (!nr_entries)
1703 return 0;
1704
1705 rcu_read_lock();
7e7f7749
RZ
1706 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1707 &iter, start, tag) {
83929372 1708 struct page *head, *page;
7e7f7749
RZ
1709repeat:
1710 page = radix_tree_deref_slot(slot);
1711 if (unlikely(!page))
1712 continue;
1713 if (radix_tree_exception(page)) {
1714 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1715 slot = radix_tree_iter_retry(&iter);
1716 continue;
7e7f7749
RZ
1717 }
1718
1719 /*
1720 * A shadow entry of a recently evicted page, a swap
1721 * entry from shmem/tmpfs or a DAX entry. Return it
1722 * without attempting to raise page count.
1723 */
1724 goto export;
1725 }
83929372
KS
1726
1727 head = compound_head(page);
1728 if (!page_cache_get_speculative(head))
7e7f7749
RZ
1729 goto repeat;
1730
83929372
KS
1731 /* The page was split under us? */
1732 if (compound_head(page) != head) {
1733 put_page(head);
1734 goto repeat;
1735 }
1736
7e7f7749
RZ
1737 /* Has the page moved? */
1738 if (unlikely(page != *slot)) {
83929372 1739 put_page(head);
7e7f7749
RZ
1740 goto repeat;
1741 }
1742export:
1743 indices[ret] = iter.index;
1744 entries[ret] = page;
1745 if (++ret == nr_entries)
1746 break;
1747 }
1748 rcu_read_unlock();
1749 return ret;
1750}
1751EXPORT_SYMBOL(find_get_entries_tag);
1752
76d42bd9
WF
1753/*
1754 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1755 * a _large_ part of the i/o request. Imagine the worst scenario:
1756 *
1757 * ---R__________________________________________B__________
1758 * ^ reading here ^ bad block(assume 4k)
1759 *
1760 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1761 * => failing the whole request => read(R) => read(R+1) =>
1762 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1763 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1764 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1765 *
1766 * It is going insane. Fix it by quickly scaling down the readahead size.
1767 */
1768static void shrink_readahead_size_eio(struct file *filp,
1769 struct file_ra_state *ra)
1770{
76d42bd9 1771 ra->ra_pages /= 4;
76d42bd9
WF
1772}
1773
485bb99b 1774/**
36e78914 1775 * do_generic_file_read - generic file read routine
485bb99b
RD
1776 * @filp: the file to read
1777 * @ppos: current file position
6e58e79d
AV
1778 * @iter: data destination
1779 * @written: already copied
485bb99b 1780 *
1da177e4 1781 * This is a generic file read routine, and uses the
485bb99b 1782 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1783 *
1784 * This is really ugly. But the goto's actually try to clarify some
1785 * of the logic when it comes to error handling etc.
1da177e4 1786 */
6e58e79d
AV
1787static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1788 struct iov_iter *iter, ssize_t written)
1da177e4 1789{
36e78914 1790 struct address_space *mapping = filp->f_mapping;
1da177e4 1791 struct inode *inode = mapping->host;
36e78914 1792 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1793 pgoff_t index;
1794 pgoff_t last_index;
1795 pgoff_t prev_index;
1796 unsigned long offset; /* offset into pagecache page */
ec0f1637 1797 unsigned int prev_offset;
6e58e79d 1798 int error = 0;
1da177e4 1799
c2a9737f 1800 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 1801 return 0;
c2a9737f
WF
1802 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1803
09cbfeaf
KS
1804 index = *ppos >> PAGE_SHIFT;
1805 prev_index = ra->prev_pos >> PAGE_SHIFT;
1806 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1807 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1808 offset = *ppos & ~PAGE_MASK;
1da177e4 1809
1da177e4
LT
1810 for (;;) {
1811 struct page *page;
57f6b96c 1812 pgoff_t end_index;
a32ea1e1 1813 loff_t isize;
1da177e4
LT
1814 unsigned long nr, ret;
1815
1da177e4 1816 cond_resched();
1da177e4 1817find_page:
5abf186a
MH
1818 if (fatal_signal_pending(current)) {
1819 error = -EINTR;
1820 goto out;
1821 }
1822
1da177e4 1823 page = find_get_page(mapping, index);
3ea89ee8 1824 if (!page) {
cf914a7d 1825 page_cache_sync_readahead(mapping,
7ff81078 1826 ra, filp,
3ea89ee8
FW
1827 index, last_index - index);
1828 page = find_get_page(mapping, index);
1829 if (unlikely(page == NULL))
1830 goto no_cached_page;
1831 }
1832 if (PageReadahead(page)) {
cf914a7d 1833 page_cache_async_readahead(mapping,
7ff81078 1834 ra, filp, page,
3ea89ee8 1835 index, last_index - index);
1da177e4 1836 }
8ab22b9a 1837 if (!PageUptodate(page)) {
ebded027
MG
1838 /*
1839 * See comment in do_read_cache_page on why
1840 * wait_on_page_locked is used to avoid unnecessarily
1841 * serialisations and why it's safe.
1842 */
c4b209a4
BVA
1843 error = wait_on_page_locked_killable(page);
1844 if (unlikely(error))
1845 goto readpage_error;
ebded027
MG
1846 if (PageUptodate(page))
1847 goto page_ok;
1848
09cbfeaf 1849 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
1850 !mapping->a_ops->is_partially_uptodate)
1851 goto page_not_up_to_date;
6d6d36bc
EG
1852 /* pipes can't handle partially uptodate pages */
1853 if (unlikely(iter->type & ITER_PIPE))
1854 goto page_not_up_to_date;
529ae9aa 1855 if (!trylock_page(page))
8ab22b9a 1856 goto page_not_up_to_date;
8d056cb9
DH
1857 /* Did it get truncated before we got the lock? */
1858 if (!page->mapping)
1859 goto page_not_up_to_date_locked;
8ab22b9a 1860 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1861 offset, iter->count))
8ab22b9a
HH
1862 goto page_not_up_to_date_locked;
1863 unlock_page(page);
1864 }
1da177e4 1865page_ok:
a32ea1e1
N
1866 /*
1867 * i_size must be checked after we know the page is Uptodate.
1868 *
1869 * Checking i_size after the check allows us to calculate
1870 * the correct value for "nr", which means the zero-filled
1871 * part of the page is not copied back to userspace (unless
1872 * another truncate extends the file - this is desired though).
1873 */
1874
1875 isize = i_size_read(inode);
09cbfeaf 1876 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 1877 if (unlikely(!isize || index > end_index)) {
09cbfeaf 1878 put_page(page);
a32ea1e1
N
1879 goto out;
1880 }
1881
1882 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 1883 nr = PAGE_SIZE;
a32ea1e1 1884 if (index == end_index) {
09cbfeaf 1885 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 1886 if (nr <= offset) {
09cbfeaf 1887 put_page(page);
a32ea1e1
N
1888 goto out;
1889 }
1890 }
1891 nr = nr - offset;
1da177e4
LT
1892
1893 /* If users can be writing to this page using arbitrary
1894 * virtual addresses, take care about potential aliasing
1895 * before reading the page on the kernel side.
1896 */
1897 if (mapping_writably_mapped(mapping))
1898 flush_dcache_page(page);
1899
1900 /*
ec0f1637
JK
1901 * When a sequential read accesses a page several times,
1902 * only mark it as accessed the first time.
1da177e4 1903 */
ec0f1637 1904 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1905 mark_page_accessed(page);
1906 prev_index = index;
1907
1908 /*
1909 * Ok, we have the page, and it's up-to-date, so
1910 * now we can copy it to user space...
1da177e4 1911 */
6e58e79d
AV
1912
1913 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 1914 offset += ret;
09cbfeaf
KS
1915 index += offset >> PAGE_SHIFT;
1916 offset &= ~PAGE_MASK;
6ce745ed 1917 prev_offset = offset;
1da177e4 1918
09cbfeaf 1919 put_page(page);
6e58e79d
AV
1920 written += ret;
1921 if (!iov_iter_count(iter))
1922 goto out;
1923 if (ret < nr) {
1924 error = -EFAULT;
1925 goto out;
1926 }
1927 continue;
1da177e4
LT
1928
1929page_not_up_to_date:
1930 /* Get exclusive access to the page ... */
85462323
ON
1931 error = lock_page_killable(page);
1932 if (unlikely(error))
1933 goto readpage_error;
1da177e4 1934
8ab22b9a 1935page_not_up_to_date_locked:
da6052f7 1936 /* Did it get truncated before we got the lock? */
1da177e4
LT
1937 if (!page->mapping) {
1938 unlock_page(page);
09cbfeaf 1939 put_page(page);
1da177e4
LT
1940 continue;
1941 }
1942
1943 /* Did somebody else fill it already? */
1944 if (PageUptodate(page)) {
1945 unlock_page(page);
1946 goto page_ok;
1947 }
1948
1949readpage:
91803b49
JM
1950 /*
1951 * A previous I/O error may have been due to temporary
1952 * failures, eg. multipath errors.
1953 * PG_error will be set again if readpage fails.
1954 */
1955 ClearPageError(page);
1da177e4
LT
1956 /* Start the actual read. The read will unlock the page. */
1957 error = mapping->a_ops->readpage(filp, page);
1958
994fc28c
ZB
1959 if (unlikely(error)) {
1960 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 1961 put_page(page);
6e58e79d 1962 error = 0;
994fc28c
ZB
1963 goto find_page;
1964 }
1da177e4 1965 goto readpage_error;
994fc28c 1966 }
1da177e4
LT
1967
1968 if (!PageUptodate(page)) {
85462323
ON
1969 error = lock_page_killable(page);
1970 if (unlikely(error))
1971 goto readpage_error;
1da177e4
LT
1972 if (!PageUptodate(page)) {
1973 if (page->mapping == NULL) {
1974 /*
2ecdc82e 1975 * invalidate_mapping_pages got it
1da177e4
LT
1976 */
1977 unlock_page(page);
09cbfeaf 1978 put_page(page);
1da177e4
LT
1979 goto find_page;
1980 }
1981 unlock_page(page);
7ff81078 1982 shrink_readahead_size_eio(filp, ra);
85462323
ON
1983 error = -EIO;
1984 goto readpage_error;
1da177e4
LT
1985 }
1986 unlock_page(page);
1987 }
1988
1da177e4
LT
1989 goto page_ok;
1990
1991readpage_error:
1992 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 1993 put_page(page);
1da177e4
LT
1994 goto out;
1995
1996no_cached_page:
1997 /*
1998 * Ok, it wasn't cached, so we need to create a new
1999 * page..
2000 */
eb2be189
NP
2001 page = page_cache_alloc_cold(mapping);
2002 if (!page) {
6e58e79d 2003 error = -ENOMEM;
eb2be189 2004 goto out;
1da177e4 2005 }
6afdb859 2006 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2007 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2008 if (error) {
09cbfeaf 2009 put_page(page);
6e58e79d
AV
2010 if (error == -EEXIST) {
2011 error = 0;
1da177e4 2012 goto find_page;
6e58e79d 2013 }
1da177e4
LT
2014 goto out;
2015 }
1da177e4
LT
2016 goto readpage;
2017 }
2018
2019out:
7ff81078 2020 ra->prev_pos = prev_index;
09cbfeaf 2021 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2022 ra->prev_pos |= prev_offset;
1da177e4 2023
09cbfeaf 2024 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2025 file_accessed(filp);
6e58e79d 2026 return written ? written : error;
1da177e4
LT
2027}
2028
485bb99b 2029/**
6abd2322 2030 * generic_file_read_iter - generic filesystem read routine
485bb99b 2031 * @iocb: kernel I/O control block
6abd2322 2032 * @iter: destination for the data read
485bb99b 2033 *
6abd2322 2034 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
2035 * that can use the page cache directly.
2036 */
2037ssize_t
ed978a81 2038generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2039{
ed978a81 2040 struct file *file = iocb->ki_filp;
cb66a7a1 2041 ssize_t retval = 0;
e7080a43
NS
2042 size_t count = iov_iter_count(iter);
2043
2044 if (!count)
2045 goto out; /* skip atime */
1da177e4 2046
2ba48ce5 2047 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
2048 struct address_space *mapping = file->f_mapping;
2049 struct inode *inode = mapping->host;
543ade1f 2050 loff_t size;
1da177e4 2051
1da177e4 2052 size = i_size_read(inode);
c64fb5c7
CH
2053 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2054 iocb->ki_pos + count - 1);
0d5b0cf2
CH
2055 if (retval < 0)
2056 goto out;
d8d3d94b 2057
0d5b0cf2
CH
2058 file_accessed(file);
2059
5ecda137 2060 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2061 if (retval >= 0) {
c64fb5c7 2062 iocb->ki_pos += retval;
5ecda137 2063 count -= retval;
9fe55eea 2064 }
5b47d59a 2065 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2066
9fe55eea
SW
2067 /*
2068 * Btrfs can have a short DIO read if we encounter
2069 * compressed extents, so if there was an error, or if
2070 * we've already read everything we wanted to, or if
2071 * there was a short read because we hit EOF, go ahead
2072 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2073 * the rest of the read. Buffered reads will not work for
2074 * DAX files, so don't bother trying.
9fe55eea 2075 */
5ecda137 2076 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2077 IS_DAX(inode))
9fe55eea 2078 goto out;
1da177e4
LT
2079 }
2080
c64fb5c7 2081 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1da177e4
LT
2082out:
2083 return retval;
2084}
ed978a81 2085EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2086
1da177e4 2087#ifdef CONFIG_MMU
485bb99b
RD
2088/**
2089 * page_cache_read - adds requested page to the page cache if not already there
2090 * @file: file to read
2091 * @offset: page index
62eb320a 2092 * @gfp_mask: memory allocation flags
485bb99b 2093 *
1da177e4
LT
2094 * This adds the requested page to the page cache if it isn't already there,
2095 * and schedules an I/O to read in its contents from disk.
2096 */
c20cd45e 2097static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
2098{
2099 struct address_space *mapping = file->f_mapping;
99dadfdd 2100 struct page *page;
994fc28c 2101 int ret;
1da177e4 2102
994fc28c 2103 do {
c20cd45e 2104 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
994fc28c
ZB
2105 if (!page)
2106 return -ENOMEM;
2107
c20cd45e 2108 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
994fc28c
ZB
2109 if (ret == 0)
2110 ret = mapping->a_ops->readpage(file, page);
2111 else if (ret == -EEXIST)
2112 ret = 0; /* losing race to add is OK */
1da177e4 2113
09cbfeaf 2114 put_page(page);
1da177e4 2115
994fc28c 2116 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 2117
994fc28c 2118 return ret;
1da177e4
LT
2119}
2120
2121#define MMAP_LOTSAMISS (100)
2122
ef00e08e
LT
2123/*
2124 * Synchronous readahead happens when we don't even find
2125 * a page in the page cache at all.
2126 */
2127static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2128 struct file_ra_state *ra,
2129 struct file *file,
2130 pgoff_t offset)
2131{
ef00e08e
LT
2132 struct address_space *mapping = file->f_mapping;
2133
2134 /* If we don't want any read-ahead, don't bother */
64363aad 2135 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 2136 return;
275b12bf
WF
2137 if (!ra->ra_pages)
2138 return;
ef00e08e 2139
64363aad 2140 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
2141 page_cache_sync_readahead(mapping, ra, file, offset,
2142 ra->ra_pages);
ef00e08e
LT
2143 return;
2144 }
2145
207d04ba
AK
2146 /* Avoid banging the cache line if not needed */
2147 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2148 ra->mmap_miss++;
2149
2150 /*
2151 * Do we miss much more than hit in this file? If so,
2152 * stop bothering with read-ahead. It will only hurt.
2153 */
2154 if (ra->mmap_miss > MMAP_LOTSAMISS)
2155 return;
2156
d30a1100
WF
2157 /*
2158 * mmap read-around
2159 */
600e19af
RG
2160 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2161 ra->size = ra->ra_pages;
2162 ra->async_size = ra->ra_pages / 4;
275b12bf 2163 ra_submit(ra, mapping, file);
ef00e08e
LT
2164}
2165
2166/*
2167 * Asynchronous readahead happens when we find the page and PG_readahead,
2168 * so we want to possibly extend the readahead further..
2169 */
2170static void do_async_mmap_readahead(struct vm_area_struct *vma,
2171 struct file_ra_state *ra,
2172 struct file *file,
2173 struct page *page,
2174 pgoff_t offset)
2175{
2176 struct address_space *mapping = file->f_mapping;
2177
2178 /* If we don't want any read-ahead, don't bother */
64363aad 2179 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
2180 return;
2181 if (ra->mmap_miss > 0)
2182 ra->mmap_miss--;
2183 if (PageReadahead(page))
2fad6f5d
WF
2184 page_cache_async_readahead(mapping, ra, file,
2185 page, offset, ra->ra_pages);
ef00e08e
LT
2186}
2187
485bb99b 2188/**
54cb8821 2189 * filemap_fault - read in file data for page fault handling
d0217ac0 2190 * @vmf: struct vm_fault containing details of the fault
485bb99b 2191 *
54cb8821 2192 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2193 * mapped memory region to read in file data during a page fault.
2194 *
2195 * The goto's are kind of ugly, but this streamlines the normal case of having
2196 * it in the page cache, and handles the special cases reasonably without
2197 * having a lot of duplicated code.
9a95f3cf
PC
2198 *
2199 * vma->vm_mm->mmap_sem must be held on entry.
2200 *
2201 * If our return value has VM_FAULT_RETRY set, it's because
2202 * lock_page_or_retry() returned 0.
2203 * The mmap_sem has usually been released in this case.
2204 * See __lock_page_or_retry() for the exception.
2205 *
2206 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2207 * has not been released.
2208 *
2209 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2210 */
11bac800 2211int filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2212{
2213 int error;
11bac800 2214 struct file *file = vmf->vma->vm_file;
1da177e4
LT
2215 struct address_space *mapping = file->f_mapping;
2216 struct file_ra_state *ra = &file->f_ra;
2217 struct inode *inode = mapping->host;
ef00e08e 2218 pgoff_t offset = vmf->pgoff;
9ab2594f 2219 pgoff_t max_off;
1da177e4 2220 struct page *page;
83c54070 2221 int ret = 0;
1da177e4 2222
9ab2594f
MW
2223 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2224 if (unlikely(offset >= max_off))
5307cc1a 2225 return VM_FAULT_SIGBUS;
1da177e4 2226
1da177e4 2227 /*
49426420 2228 * Do we have something in the page cache already?
1da177e4 2229 */
ef00e08e 2230 page = find_get_page(mapping, offset);
45cac65b 2231 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2232 /*
ef00e08e
LT
2233 * We found the page, so try async readahead before
2234 * waiting for the lock.
1da177e4 2235 */
11bac800 2236 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
45cac65b 2237 } else if (!page) {
ef00e08e 2238 /* No page in the page cache at all */
11bac800 2239 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
ef00e08e 2240 count_vm_event(PGMAJFAULT);
11bac800 2241 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2242 ret = VM_FAULT_MAJOR;
2243retry_find:
b522c94d 2244 page = find_get_page(mapping, offset);
1da177e4
LT
2245 if (!page)
2246 goto no_cached_page;
2247 }
2248
11bac800 2249 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
09cbfeaf 2250 put_page(page);
d065bd81 2251 return ret | VM_FAULT_RETRY;
d88c0922 2252 }
b522c94d
ML
2253
2254 /* Did it get truncated? */
2255 if (unlikely(page->mapping != mapping)) {
2256 unlock_page(page);
2257 put_page(page);
2258 goto retry_find;
2259 }
309381fe 2260 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2261
1da177e4 2262 /*
d00806b1
NP
2263 * We have a locked page in the page cache, now we need to check
2264 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2265 */
d00806b1 2266 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2267 goto page_not_uptodate;
2268
ef00e08e
LT
2269 /*
2270 * Found the page and have a reference on it.
2271 * We must recheck i_size under page lock.
2272 */
9ab2594f
MW
2273 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2274 if (unlikely(offset >= max_off)) {
d00806b1 2275 unlock_page(page);
09cbfeaf 2276 put_page(page);
5307cc1a 2277 return VM_FAULT_SIGBUS;
d00806b1
NP
2278 }
2279
d0217ac0 2280 vmf->page = page;
83c54070 2281 return ret | VM_FAULT_LOCKED;
1da177e4 2282
1da177e4
LT
2283no_cached_page:
2284 /*
2285 * We're only likely to ever get here if MADV_RANDOM is in
2286 * effect.
2287 */
c20cd45e 2288 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2289
2290 /*
2291 * The page we want has now been added to the page cache.
2292 * In the unlikely event that someone removed it in the
2293 * meantime, we'll just come back here and read it again.
2294 */
2295 if (error >= 0)
2296 goto retry_find;
2297
2298 /*
2299 * An error return from page_cache_read can result if the
2300 * system is low on memory, or a problem occurs while trying
2301 * to schedule I/O.
2302 */
2303 if (error == -ENOMEM)
d0217ac0
NP
2304 return VM_FAULT_OOM;
2305 return VM_FAULT_SIGBUS;
1da177e4
LT
2306
2307page_not_uptodate:
1da177e4
LT
2308 /*
2309 * Umm, take care of errors if the page isn't up-to-date.
2310 * Try to re-read it _once_. We do this synchronously,
2311 * because there really aren't any performance issues here
2312 * and we need to check for errors.
2313 */
1da177e4 2314 ClearPageError(page);
994fc28c 2315 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2316 if (!error) {
2317 wait_on_page_locked(page);
2318 if (!PageUptodate(page))
2319 error = -EIO;
2320 }
09cbfeaf 2321 put_page(page);
d00806b1
NP
2322
2323 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2324 goto retry_find;
1da177e4 2325
d00806b1 2326 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2327 shrink_readahead_size_eio(file, ra);
d0217ac0 2328 return VM_FAULT_SIGBUS;
54cb8821
NP
2329}
2330EXPORT_SYMBOL(filemap_fault);
2331
82b0f8c3 2332void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2333 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361
KS
2334{
2335 struct radix_tree_iter iter;
2336 void **slot;
82b0f8c3 2337 struct file *file = vmf->vma->vm_file;
f1820361 2338 struct address_space *mapping = file->f_mapping;
bae473a4 2339 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2340 unsigned long max_idx;
83929372 2341 struct page *head, *page;
f1820361
KS
2342
2343 rcu_read_lock();
bae473a4
KS
2344 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2345 start_pgoff) {
2346 if (iter.index > end_pgoff)
f1820361
KS
2347 break;
2348repeat:
2349 page = radix_tree_deref_slot(slot);
2350 if (unlikely(!page))
2351 goto next;
2352 if (radix_tree_exception(page)) {
2cf938aa
MW
2353 if (radix_tree_deref_retry(page)) {
2354 slot = radix_tree_iter_retry(&iter);
2355 continue;
2356 }
2357 goto next;
f1820361
KS
2358 }
2359
83929372
KS
2360 head = compound_head(page);
2361 if (!page_cache_get_speculative(head))
f1820361
KS
2362 goto repeat;
2363
83929372
KS
2364 /* The page was split under us? */
2365 if (compound_head(page) != head) {
2366 put_page(head);
2367 goto repeat;
2368 }
2369
f1820361
KS
2370 /* Has the page moved? */
2371 if (unlikely(page != *slot)) {
83929372 2372 put_page(head);
f1820361
KS
2373 goto repeat;
2374 }
2375
2376 if (!PageUptodate(page) ||
2377 PageReadahead(page) ||
2378 PageHWPoison(page))
2379 goto skip;
2380 if (!trylock_page(page))
2381 goto skip;
2382
2383 if (page->mapping != mapping || !PageUptodate(page))
2384 goto unlock;
2385
9ab2594f
MW
2386 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2387 if (page->index >= max_idx)
f1820361
KS
2388 goto unlock;
2389
f1820361
KS
2390 if (file->f_ra.mmap_miss > 0)
2391 file->f_ra.mmap_miss--;
7267ec00 2392
82b0f8c3
JK
2393 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2394 if (vmf->pte)
2395 vmf->pte += iter.index - last_pgoff;
7267ec00 2396 last_pgoff = iter.index;
82b0f8c3 2397 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2398 goto unlock;
f1820361
KS
2399 unlock_page(page);
2400 goto next;
2401unlock:
2402 unlock_page(page);
2403skip:
09cbfeaf 2404 put_page(page);
f1820361 2405next:
7267ec00 2406 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2407 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2408 break;
bae473a4 2409 if (iter.index == end_pgoff)
f1820361
KS
2410 break;
2411 }
2412 rcu_read_unlock();
2413}
2414EXPORT_SYMBOL(filemap_map_pages);
2415
11bac800 2416int filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2417{
2418 struct page *page = vmf->page;
11bac800 2419 struct inode *inode = file_inode(vmf->vma->vm_file);
4fcf1c62
JK
2420 int ret = VM_FAULT_LOCKED;
2421
14da9200 2422 sb_start_pagefault(inode->i_sb);
11bac800 2423 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2424 lock_page(page);
2425 if (page->mapping != inode->i_mapping) {
2426 unlock_page(page);
2427 ret = VM_FAULT_NOPAGE;
2428 goto out;
2429 }
14da9200
JK
2430 /*
2431 * We mark the page dirty already here so that when freeze is in
2432 * progress, we are guaranteed that writeback during freezing will
2433 * see the dirty page and writeprotect it again.
2434 */
2435 set_page_dirty(page);
1d1d1a76 2436 wait_for_stable_page(page);
4fcf1c62 2437out:
14da9200 2438 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2439 return ret;
2440}
2441EXPORT_SYMBOL(filemap_page_mkwrite);
2442
f0f37e2f 2443const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2444 .fault = filemap_fault,
f1820361 2445 .map_pages = filemap_map_pages,
4fcf1c62 2446 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2447};
2448
2449/* This is used for a general mmap of a disk file */
2450
2451int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2452{
2453 struct address_space *mapping = file->f_mapping;
2454
2455 if (!mapping->a_ops->readpage)
2456 return -ENOEXEC;
2457 file_accessed(file);
2458 vma->vm_ops = &generic_file_vm_ops;
2459 return 0;
2460}
1da177e4
LT
2461
2462/*
2463 * This is for filesystems which do not implement ->writepage.
2464 */
2465int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2466{
2467 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2468 return -EINVAL;
2469 return generic_file_mmap(file, vma);
2470}
2471#else
2472int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2473{
2474 return -ENOSYS;
2475}
2476int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2477{
2478 return -ENOSYS;
2479}
2480#endif /* CONFIG_MMU */
2481
2482EXPORT_SYMBOL(generic_file_mmap);
2483EXPORT_SYMBOL(generic_file_readonly_mmap);
2484
67f9fd91
SL
2485static struct page *wait_on_page_read(struct page *page)
2486{
2487 if (!IS_ERR(page)) {
2488 wait_on_page_locked(page);
2489 if (!PageUptodate(page)) {
09cbfeaf 2490 put_page(page);
67f9fd91
SL
2491 page = ERR_PTR(-EIO);
2492 }
2493 }
2494 return page;
2495}
2496
32b63529 2497static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2498 pgoff_t index,
5e5358e7 2499 int (*filler)(void *, struct page *),
0531b2aa
LT
2500 void *data,
2501 gfp_t gfp)
1da177e4 2502{
eb2be189 2503 struct page *page;
1da177e4
LT
2504 int err;
2505repeat:
2506 page = find_get_page(mapping, index);
2507 if (!page) {
0531b2aa 2508 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2509 if (!page)
2510 return ERR_PTR(-ENOMEM);
e6f67b8c 2511 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2512 if (unlikely(err)) {
09cbfeaf 2513 put_page(page);
eb2be189
NP
2514 if (err == -EEXIST)
2515 goto repeat;
1da177e4 2516 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2517 return ERR_PTR(err);
2518 }
32b63529
MG
2519
2520filler:
1da177e4
LT
2521 err = filler(data, page);
2522 if (err < 0) {
09cbfeaf 2523 put_page(page);
32b63529 2524 return ERR_PTR(err);
1da177e4 2525 }
1da177e4 2526
32b63529
MG
2527 page = wait_on_page_read(page);
2528 if (IS_ERR(page))
2529 return page;
2530 goto out;
2531 }
1da177e4
LT
2532 if (PageUptodate(page))
2533 goto out;
2534
ebded027
MG
2535 /*
2536 * Page is not up to date and may be locked due one of the following
2537 * case a: Page is being filled and the page lock is held
2538 * case b: Read/write error clearing the page uptodate status
2539 * case c: Truncation in progress (page locked)
2540 * case d: Reclaim in progress
2541 *
2542 * Case a, the page will be up to date when the page is unlocked.
2543 * There is no need to serialise on the page lock here as the page
2544 * is pinned so the lock gives no additional protection. Even if the
2545 * the page is truncated, the data is still valid if PageUptodate as
2546 * it's a race vs truncate race.
2547 * Case b, the page will not be up to date
2548 * Case c, the page may be truncated but in itself, the data may still
2549 * be valid after IO completes as it's a read vs truncate race. The
2550 * operation must restart if the page is not uptodate on unlock but
2551 * otherwise serialising on page lock to stabilise the mapping gives
2552 * no additional guarantees to the caller as the page lock is
2553 * released before return.
2554 * Case d, similar to truncation. If reclaim holds the page lock, it
2555 * will be a race with remove_mapping that determines if the mapping
2556 * is valid on unlock but otherwise the data is valid and there is
2557 * no need to serialise with page lock.
2558 *
2559 * As the page lock gives no additional guarantee, we optimistically
2560 * wait on the page to be unlocked and check if it's up to date and
2561 * use the page if it is. Otherwise, the page lock is required to
2562 * distinguish between the different cases. The motivation is that we
2563 * avoid spurious serialisations and wakeups when multiple processes
2564 * wait on the same page for IO to complete.
2565 */
2566 wait_on_page_locked(page);
2567 if (PageUptodate(page))
2568 goto out;
2569
2570 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2571 lock_page(page);
ebded027
MG
2572
2573 /* Case c or d, restart the operation */
1da177e4
LT
2574 if (!page->mapping) {
2575 unlock_page(page);
09cbfeaf 2576 put_page(page);
32b63529 2577 goto repeat;
1da177e4 2578 }
ebded027
MG
2579
2580 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2581 if (PageUptodate(page)) {
2582 unlock_page(page);
2583 goto out;
2584 }
32b63529
MG
2585 goto filler;
2586
c855ff37 2587out:
6fe6900e
NP
2588 mark_page_accessed(page);
2589 return page;
2590}
0531b2aa
LT
2591
2592/**
67f9fd91 2593 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2594 * @mapping: the page's address_space
2595 * @index: the page index
2596 * @filler: function to perform the read
5e5358e7 2597 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2598 *
0531b2aa 2599 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2600 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2601 *
2602 * If the page does not get brought uptodate, return -EIO.
2603 */
67f9fd91 2604struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2605 pgoff_t index,
5e5358e7 2606 int (*filler)(void *, struct page *),
0531b2aa
LT
2607 void *data)
2608{
2609 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2610}
67f9fd91 2611EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2612
2613/**
2614 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2615 * @mapping: the page's address_space
2616 * @index: the page index
2617 * @gfp: the page allocator flags to use if allocating
2618 *
2619 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2620 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2621 *
2622 * If the page does not get brought uptodate, return -EIO.
2623 */
2624struct page *read_cache_page_gfp(struct address_space *mapping,
2625 pgoff_t index,
2626 gfp_t gfp)
2627{
2628 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2629
67f9fd91 2630 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2631}
2632EXPORT_SYMBOL(read_cache_page_gfp);
2633
1da177e4
LT
2634/*
2635 * Performs necessary checks before doing a write
2636 *
485bb99b 2637 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2638 * Returns appropriate error code that caller should return or
2639 * zero in case that write should be allowed.
2640 */
3309dd04 2641inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2642{
3309dd04 2643 struct file *file = iocb->ki_filp;
1da177e4 2644 struct inode *inode = file->f_mapping->host;
59e99e5b 2645 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2646 loff_t pos;
1da177e4 2647
3309dd04
AV
2648 if (!iov_iter_count(from))
2649 return 0;
1da177e4 2650
0fa6b005 2651 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2652 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2653 iocb->ki_pos = i_size_read(inode);
1da177e4 2654
3309dd04 2655 pos = iocb->ki_pos;
1da177e4 2656
0fa6b005 2657 if (limit != RLIM_INFINITY) {
3309dd04 2658 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2659 send_sig(SIGXFSZ, current, 0);
2660 return -EFBIG;
1da177e4 2661 }
3309dd04 2662 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2663 }
2664
2665 /*
2666 * LFS rule
2667 */
3309dd04 2668 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2669 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2670 if (pos >= MAX_NON_LFS)
1da177e4 2671 return -EFBIG;
3309dd04 2672 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2673 }
2674
2675 /*
2676 * Are we about to exceed the fs block limit ?
2677 *
2678 * If we have written data it becomes a short write. If we have
2679 * exceeded without writing data we send a signal and return EFBIG.
2680 * Linus frestrict idea will clean these up nicely..
2681 */
3309dd04
AV
2682 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2683 return -EFBIG;
1da177e4 2684
3309dd04
AV
2685 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2686 return iov_iter_count(from);
1da177e4
LT
2687}
2688EXPORT_SYMBOL(generic_write_checks);
2689
afddba49
NP
2690int pagecache_write_begin(struct file *file, struct address_space *mapping,
2691 loff_t pos, unsigned len, unsigned flags,
2692 struct page **pagep, void **fsdata)
2693{
2694 const struct address_space_operations *aops = mapping->a_ops;
2695
4e02ed4b 2696 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2697 pagep, fsdata);
afddba49
NP
2698}
2699EXPORT_SYMBOL(pagecache_write_begin);
2700
2701int pagecache_write_end(struct file *file, struct address_space *mapping,
2702 loff_t pos, unsigned len, unsigned copied,
2703 struct page *page, void *fsdata)
2704{
2705 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2706
4e02ed4b 2707 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2708}
2709EXPORT_SYMBOL(pagecache_write_end);
2710
1da177e4 2711ssize_t
1af5bb49 2712generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2713{
2714 struct file *file = iocb->ki_filp;
2715 struct address_space *mapping = file->f_mapping;
2716 struct inode *inode = mapping->host;
1af5bb49 2717 loff_t pos = iocb->ki_pos;
1da177e4 2718 ssize_t written;
a969e903
CH
2719 size_t write_len;
2720 pgoff_t end;
1da177e4 2721
0c949334 2722 write_len = iov_iter_count(from);
09cbfeaf 2723 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 2724
48b47c56 2725 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2726 if (written)
2727 goto out;
2728
2729 /*
2730 * After a write we want buffered reads to be sure to go to disk to get
2731 * the new data. We invalidate clean cached page from the region we're
2732 * about to write. We do this *before* the write so that we can return
6ccfa806 2733 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 2734 */
55635ba7 2735 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 2736 pos >> PAGE_SHIFT, end);
55635ba7
AR
2737 /*
2738 * If a page can not be invalidated, return 0 to fall back
2739 * to buffered write.
2740 */
2741 if (written) {
2742 if (written == -EBUSY)
2743 return 0;
2744 goto out;
a969e903
CH
2745 }
2746
639a93a5 2747 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
2748
2749 /*
2750 * Finally, try again to invalidate clean pages which might have been
2751 * cached by non-direct readahead, or faulted in by get_user_pages()
2752 * if the source of the write was an mmap'ed region of the file
2753 * we're writing. Either one is a pretty crazy thing to do,
2754 * so we don't support it 100%. If this invalidation
2755 * fails, tough, the write still worked...
2756 */
55635ba7
AR
2757 invalidate_inode_pages2_range(mapping,
2758 pos >> PAGE_SHIFT, end);
a969e903 2759
1da177e4 2760 if (written > 0) {
0116651c 2761 pos += written;
639a93a5 2762 write_len -= written;
0116651c
NK
2763 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2764 i_size_write(inode, pos);
1da177e4
LT
2765 mark_inode_dirty(inode);
2766 }
5cb6c6c7 2767 iocb->ki_pos = pos;
1da177e4 2768 }
639a93a5 2769 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 2770out:
1da177e4
LT
2771 return written;
2772}
2773EXPORT_SYMBOL(generic_file_direct_write);
2774
eb2be189
NP
2775/*
2776 * Find or create a page at the given pagecache position. Return the locked
2777 * page. This function is specifically for buffered writes.
2778 */
54566b2c
NP
2779struct page *grab_cache_page_write_begin(struct address_space *mapping,
2780 pgoff_t index, unsigned flags)
eb2be189 2781{
eb2be189 2782 struct page *page;
bbddabe2 2783 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 2784
54566b2c 2785 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2786 fgp_flags |= FGP_NOFS;
2787
2788 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2789 mapping_gfp_mask(mapping));
c585a267 2790 if (page)
2457aec6 2791 wait_for_stable_page(page);
eb2be189 2792
eb2be189
NP
2793 return page;
2794}
54566b2c 2795EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2796
3b93f911 2797ssize_t generic_perform_write(struct file *file,
afddba49
NP
2798 struct iov_iter *i, loff_t pos)
2799{
2800 struct address_space *mapping = file->f_mapping;
2801 const struct address_space_operations *a_ops = mapping->a_ops;
2802 long status = 0;
2803 ssize_t written = 0;
674b892e
NP
2804 unsigned int flags = 0;
2805
afddba49
NP
2806 do {
2807 struct page *page;
afddba49
NP
2808 unsigned long offset; /* Offset into pagecache page */
2809 unsigned long bytes; /* Bytes to write to page */
2810 size_t copied; /* Bytes copied from user */
2811 void *fsdata;
2812
09cbfeaf
KS
2813 offset = (pos & (PAGE_SIZE - 1));
2814 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2815 iov_iter_count(i));
2816
2817again:
00a3d660
LT
2818 /*
2819 * Bring in the user page that we will copy from _first_.
2820 * Otherwise there's a nasty deadlock on copying from the
2821 * same page as we're writing to, without it being marked
2822 * up-to-date.
2823 *
2824 * Not only is this an optimisation, but it is also required
2825 * to check that the address is actually valid, when atomic
2826 * usercopies are used, below.
2827 */
2828 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2829 status = -EFAULT;
2830 break;
2831 }
2832
296291cd
JK
2833 if (fatal_signal_pending(current)) {
2834 status = -EINTR;
2835 break;
2836 }
2837
674b892e 2838 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2839 &page, &fsdata);
2457aec6 2840 if (unlikely(status < 0))
afddba49
NP
2841 break;
2842
931e80e4 2843 if (mapping_writably_mapped(mapping))
2844 flush_dcache_page(page);
00a3d660 2845
afddba49 2846 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2847 flush_dcache_page(page);
2848
2849 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2850 page, fsdata);
2851 if (unlikely(status < 0))
2852 break;
2853 copied = status;
2854
2855 cond_resched();
2856
124d3b70 2857 iov_iter_advance(i, copied);
afddba49
NP
2858 if (unlikely(copied == 0)) {
2859 /*
2860 * If we were unable to copy any data at all, we must
2861 * fall back to a single segment length write.
2862 *
2863 * If we didn't fallback here, we could livelock
2864 * because not all segments in the iov can be copied at
2865 * once without a pagefault.
2866 */
09cbfeaf 2867 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2868 iov_iter_single_seg_count(i));
2869 goto again;
2870 }
afddba49
NP
2871 pos += copied;
2872 written += copied;
2873
2874 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
2875 } while (iov_iter_count(i));
2876
2877 return written ? written : status;
2878}
3b93f911 2879EXPORT_SYMBOL(generic_perform_write);
1da177e4 2880
e4dd9de3 2881/**
8174202b 2882 * __generic_file_write_iter - write data to a file
e4dd9de3 2883 * @iocb: IO state structure (file, offset, etc.)
8174202b 2884 * @from: iov_iter with data to write
e4dd9de3
JK
2885 *
2886 * This function does all the work needed for actually writing data to a
2887 * file. It does all basic checks, removes SUID from the file, updates
2888 * modification times and calls proper subroutines depending on whether we
2889 * do direct IO or a standard buffered write.
2890 *
2891 * It expects i_mutex to be grabbed unless we work on a block device or similar
2892 * object which does not need locking at all.
2893 *
2894 * This function does *not* take care of syncing data in case of O_SYNC write.
2895 * A caller has to handle it. This is mainly due to the fact that we want to
2896 * avoid syncing under i_mutex.
2897 */
8174202b 2898ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2899{
2900 struct file *file = iocb->ki_filp;
fb5527e6 2901 struct address_space * mapping = file->f_mapping;
1da177e4 2902 struct inode *inode = mapping->host;
3b93f911 2903 ssize_t written = 0;
1da177e4 2904 ssize_t err;
3b93f911 2905 ssize_t status;
1da177e4 2906
1da177e4 2907 /* We can write back this queue in page reclaim */
de1414a6 2908 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 2909 err = file_remove_privs(file);
1da177e4
LT
2910 if (err)
2911 goto out;
2912
c3b2da31
JB
2913 err = file_update_time(file);
2914 if (err)
2915 goto out;
1da177e4 2916
2ba48ce5 2917 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 2918 loff_t pos, endbyte;
fb5527e6 2919
1af5bb49 2920 written = generic_file_direct_write(iocb, from);
1da177e4 2921 /*
fbbbad4b
MW
2922 * If the write stopped short of completing, fall back to
2923 * buffered writes. Some filesystems do this for writes to
2924 * holes, for example. For DAX files, a buffered write will
2925 * not succeed (even if it did, DAX does not handle dirty
2926 * page-cache pages correctly).
1da177e4 2927 */
0b8def9d 2928 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
2929 goto out;
2930
0b8def9d 2931 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 2932 /*
3b93f911 2933 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2934 * then we want to return the number of bytes which were
2935 * direct-written, or the error code if that was zero. Note
2936 * that this differs from normal direct-io semantics, which
2937 * will return -EFOO even if some bytes were written.
2938 */
60bb4529 2939 if (unlikely(status < 0)) {
3b93f911 2940 err = status;
fb5527e6
JM
2941 goto out;
2942 }
fb5527e6
JM
2943 /*
2944 * We need to ensure that the page cache pages are written to
2945 * disk and invalidated to preserve the expected O_DIRECT
2946 * semantics.
2947 */
3b93f911 2948 endbyte = pos + status - 1;
0b8def9d 2949 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 2950 if (err == 0) {
0b8def9d 2951 iocb->ki_pos = endbyte + 1;
3b93f911 2952 written += status;
fb5527e6 2953 invalidate_mapping_pages(mapping,
09cbfeaf
KS
2954 pos >> PAGE_SHIFT,
2955 endbyte >> PAGE_SHIFT);
fb5527e6
JM
2956 } else {
2957 /*
2958 * We don't know how much we wrote, so just return
2959 * the number of bytes which were direct-written
2960 */
2961 }
2962 } else {
0b8def9d
AV
2963 written = generic_perform_write(file, from, iocb->ki_pos);
2964 if (likely(written > 0))
2965 iocb->ki_pos += written;
fb5527e6 2966 }
1da177e4
LT
2967out:
2968 current->backing_dev_info = NULL;
2969 return written ? written : err;
2970}
8174202b 2971EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2972
e4dd9de3 2973/**
8174202b 2974 * generic_file_write_iter - write data to a file
e4dd9de3 2975 * @iocb: IO state structure
8174202b 2976 * @from: iov_iter with data to write
e4dd9de3 2977 *
8174202b 2978 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2979 * filesystems. It takes care of syncing the file in case of O_SYNC file
2980 * and acquires i_mutex as needed.
2981 */
8174202b 2982ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2983{
2984 struct file *file = iocb->ki_filp;
148f948b 2985 struct inode *inode = file->f_mapping->host;
1da177e4 2986 ssize_t ret;
1da177e4 2987
5955102c 2988 inode_lock(inode);
3309dd04
AV
2989 ret = generic_write_checks(iocb, from);
2990 if (ret > 0)
5f380c7f 2991 ret = __generic_file_write_iter(iocb, from);
5955102c 2992 inode_unlock(inode);
1da177e4 2993
e2592217
CH
2994 if (ret > 0)
2995 ret = generic_write_sync(iocb, ret);
1da177e4
LT
2996 return ret;
2997}
8174202b 2998EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 2999
cf9a2ae8
DH
3000/**
3001 * try_to_release_page() - release old fs-specific metadata on a page
3002 *
3003 * @page: the page which the kernel is trying to free
3004 * @gfp_mask: memory allocation flags (and I/O mode)
3005 *
3006 * The address_space is to try to release any data against the page
0e056eb5 3007 * (presumably at page->private). If the release was successful, return '1'.
cf9a2ae8
DH
3008 * Otherwise return zero.
3009 *
266cf658
DH
3010 * This may also be called if PG_fscache is set on a page, indicating that the
3011 * page is known to the local caching routines.
3012 *
cf9a2ae8 3013 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3014 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3015 *
cf9a2ae8
DH
3016 */
3017int try_to_release_page(struct page *page, gfp_t gfp_mask)
3018{
3019 struct address_space * const mapping = page->mapping;
3020
3021 BUG_ON(!PageLocked(page));
3022 if (PageWriteback(page))
3023 return 0;
3024
3025 if (mapping && mapping->a_ops->releasepage)
3026 return mapping->a_ops->releasepage(page, gfp_mask);
3027 return try_to_free_buffers(page);
3028}
3029
3030EXPORT_SYMBOL(try_to_release_page);